1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "hw/semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/kvm.h" 28 #include "sysemu/tcg.h" 29 #include "qemu/range.h" 30 #include "qapi/qapi-commands-machine-target.h" 31 #include "qapi/error.h" 32 #include "qemu/guest-random.h" 33 #ifdef CONFIG_TCG 34 #include "arm_ldst.h" 35 #include "exec/cpu_ldst.h" 36 #endif 37 38 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 39 40 #ifndef CONFIG_USER_ONLY 41 42 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 43 MMUAccessType access_type, ARMMMUIdx mmu_idx, 44 bool s1_is_el0, 45 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 46 target_ulong *page_size_ptr, 47 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 48 __attribute__((nonnull)); 49 #endif 50 51 static void switch_mode(CPUARMState *env, int mode); 52 53 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 54 { 55 ARMCPU *cpu = env_archcpu(env); 56 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 57 58 /* VFP data registers are always little-endian. */ 59 if (reg < nregs) { 60 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg)); 61 } 62 if (arm_feature(env, ARM_FEATURE_NEON)) { 63 /* Aliases for Q regs. */ 64 nregs += 16; 65 if (reg < nregs) { 66 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 67 return gdb_get_reg128(buf, q[0], q[1]); 68 } 69 } 70 switch (reg - nregs) { 71 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break; 72 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break; 73 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break; 74 } 75 return 0; 76 } 77 78 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 79 { 80 ARMCPU *cpu = env_archcpu(env); 81 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 82 83 if (reg < nregs) { 84 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 85 return 8; 86 } 87 if (arm_feature(env, ARM_FEATURE_NEON)) { 88 nregs += 16; 89 if (reg < nregs) { 90 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 91 q[0] = ldq_le_p(buf); 92 q[1] = ldq_le_p(buf + 8); 93 return 16; 94 } 95 } 96 switch (reg - nregs) { 97 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 98 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 99 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 100 } 101 return 0; 102 } 103 104 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 105 { 106 switch (reg) { 107 case 0 ... 31: 108 { 109 /* 128 bit FP register - quads are in LE order */ 110 uint64_t *q = aa64_vfp_qreg(env, reg); 111 return gdb_get_reg128(buf, q[1], q[0]); 112 } 113 case 32: 114 /* FPSR */ 115 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 116 case 33: 117 /* FPCR */ 118 return gdb_get_reg32(buf,vfp_get_fpcr(env)); 119 default: 120 return 0; 121 } 122 } 123 124 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 125 { 126 switch (reg) { 127 case 0 ... 31: 128 /* 128 bit FP register */ 129 { 130 uint64_t *q = aa64_vfp_qreg(env, reg); 131 q[0] = ldq_le_p(buf); 132 q[1] = ldq_le_p(buf + 8); 133 return 16; 134 } 135 case 32: 136 /* FPSR */ 137 vfp_set_fpsr(env, ldl_p(buf)); 138 return 4; 139 case 33: 140 /* FPCR */ 141 vfp_set_fpcr(env, ldl_p(buf)); 142 return 4; 143 default: 144 return 0; 145 } 146 } 147 148 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 149 { 150 assert(ri->fieldoffset); 151 if (cpreg_field_is_64bit(ri)) { 152 return CPREG_FIELD64(env, ri); 153 } else { 154 return CPREG_FIELD32(env, ri); 155 } 156 } 157 158 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 159 uint64_t value) 160 { 161 assert(ri->fieldoffset); 162 if (cpreg_field_is_64bit(ri)) { 163 CPREG_FIELD64(env, ri) = value; 164 } else { 165 CPREG_FIELD32(env, ri) = value; 166 } 167 } 168 169 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 170 { 171 return (char *)env + ri->fieldoffset; 172 } 173 174 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 175 { 176 /* Raw read of a coprocessor register (as needed for migration, etc). */ 177 if (ri->type & ARM_CP_CONST) { 178 return ri->resetvalue; 179 } else if (ri->raw_readfn) { 180 return ri->raw_readfn(env, ri); 181 } else if (ri->readfn) { 182 return ri->readfn(env, ri); 183 } else { 184 return raw_read(env, ri); 185 } 186 } 187 188 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 189 uint64_t v) 190 { 191 /* Raw write of a coprocessor register (as needed for migration, etc). 192 * Note that constant registers are treated as write-ignored; the 193 * caller should check for success by whether a readback gives the 194 * value written. 195 */ 196 if (ri->type & ARM_CP_CONST) { 197 return; 198 } else if (ri->raw_writefn) { 199 ri->raw_writefn(env, ri, v); 200 } else if (ri->writefn) { 201 ri->writefn(env, ri, v); 202 } else { 203 raw_write(env, ri, v); 204 } 205 } 206 207 /** 208 * arm_get/set_gdb_*: get/set a gdb register 209 * @env: the CPU state 210 * @buf: a buffer to copy to/from 211 * @reg: register number (offset from start of group) 212 * 213 * We return the number of bytes copied 214 */ 215 216 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) 217 { 218 ARMCPU *cpu = env_archcpu(env); 219 const ARMCPRegInfo *ri; 220 uint32_t key; 221 222 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg]; 223 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 224 if (ri) { 225 if (cpreg_field_is_64bit(ri)) { 226 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 227 } else { 228 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 229 } 230 } 231 return 0; 232 } 233 234 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 235 { 236 return 0; 237 } 238 239 #ifdef TARGET_AARCH64 240 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg) 241 { 242 ARMCPU *cpu = env_archcpu(env); 243 244 switch (reg) { 245 /* The first 32 registers are the zregs */ 246 case 0 ... 31: 247 { 248 int vq, len = 0; 249 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 250 len += gdb_get_reg128(buf, 251 env->vfp.zregs[reg].d[vq * 2 + 1], 252 env->vfp.zregs[reg].d[vq * 2]); 253 } 254 return len; 255 } 256 case 32: 257 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 258 case 33: 259 return gdb_get_reg32(buf, vfp_get_fpcr(env)); 260 /* then 16 predicates and the ffr */ 261 case 34 ... 50: 262 { 263 int preg = reg - 34; 264 int vq, len = 0; 265 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 266 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]); 267 } 268 return len; 269 } 270 case 51: 271 { 272 /* 273 * We report in Vector Granules (VG) which is 64bit in a Z reg 274 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks. 275 */ 276 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1; 277 return gdb_get_reg32(buf, vq * 2); 278 } 279 default: 280 /* gdbstub asked for something out our range */ 281 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg); 282 break; 283 } 284 285 return 0; 286 } 287 288 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg) 289 { 290 ARMCPU *cpu = env_archcpu(env); 291 292 /* The first 32 registers are the zregs */ 293 switch (reg) { 294 /* The first 32 registers are the zregs */ 295 case 0 ... 31: 296 { 297 int vq, len = 0; 298 uint64_t *p = (uint64_t *) buf; 299 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 300 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++; 301 env->vfp.zregs[reg].d[vq * 2] = *p++; 302 len += 16; 303 } 304 return len; 305 } 306 case 32: 307 vfp_set_fpsr(env, *(uint32_t *)buf); 308 return 4; 309 case 33: 310 vfp_set_fpcr(env, *(uint32_t *)buf); 311 return 4; 312 case 34 ... 50: 313 { 314 int preg = reg - 34; 315 int vq, len = 0; 316 uint64_t *p = (uint64_t *) buf; 317 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 318 env->vfp.pregs[preg].p[vq / 4] = *p++; 319 len += 8; 320 } 321 return len; 322 } 323 case 51: 324 /* cannot set vg via gdbstub */ 325 return 0; 326 default: 327 /* gdbstub asked for something out our range */ 328 break; 329 } 330 331 return 0; 332 } 333 #endif /* TARGET_AARCH64 */ 334 335 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 336 { 337 /* Return true if the regdef would cause an assertion if you called 338 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 339 * program bug for it not to have the NO_RAW flag). 340 * NB that returning false here doesn't necessarily mean that calling 341 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 342 * read/write access functions which are safe for raw use" from "has 343 * read/write access functions which have side effects but has forgotten 344 * to provide raw access functions". 345 * The tests here line up with the conditions in read/write_raw_cp_reg() 346 * and assertions in raw_read()/raw_write(). 347 */ 348 if ((ri->type & ARM_CP_CONST) || 349 ri->fieldoffset || 350 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 351 return false; 352 } 353 return true; 354 } 355 356 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 357 { 358 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 359 int i; 360 bool ok = true; 361 362 for (i = 0; i < cpu->cpreg_array_len; i++) { 363 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 364 const ARMCPRegInfo *ri; 365 uint64_t newval; 366 367 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 368 if (!ri) { 369 ok = false; 370 continue; 371 } 372 if (ri->type & ARM_CP_NO_RAW) { 373 continue; 374 } 375 376 newval = read_raw_cp_reg(&cpu->env, ri); 377 if (kvm_sync) { 378 /* 379 * Only sync if the previous list->cpustate sync succeeded. 380 * Rather than tracking the success/failure state for every 381 * item in the list, we just recheck "does the raw write we must 382 * have made in write_list_to_cpustate() read back OK" here. 383 */ 384 uint64_t oldval = cpu->cpreg_values[i]; 385 386 if (oldval == newval) { 387 continue; 388 } 389 390 write_raw_cp_reg(&cpu->env, ri, oldval); 391 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 392 continue; 393 } 394 395 write_raw_cp_reg(&cpu->env, ri, newval); 396 } 397 cpu->cpreg_values[i] = newval; 398 } 399 return ok; 400 } 401 402 bool write_list_to_cpustate(ARMCPU *cpu) 403 { 404 int i; 405 bool ok = true; 406 407 for (i = 0; i < cpu->cpreg_array_len; i++) { 408 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 409 uint64_t v = cpu->cpreg_values[i]; 410 const ARMCPRegInfo *ri; 411 412 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 413 if (!ri) { 414 ok = false; 415 continue; 416 } 417 if (ri->type & ARM_CP_NO_RAW) { 418 continue; 419 } 420 /* Write value and confirm it reads back as written 421 * (to catch read-only registers and partially read-only 422 * registers where the incoming migration value doesn't match) 423 */ 424 write_raw_cp_reg(&cpu->env, ri, v); 425 if (read_raw_cp_reg(&cpu->env, ri) != v) { 426 ok = false; 427 } 428 } 429 return ok; 430 } 431 432 static void add_cpreg_to_list(gpointer key, gpointer opaque) 433 { 434 ARMCPU *cpu = opaque; 435 uint64_t regidx; 436 const ARMCPRegInfo *ri; 437 438 regidx = *(uint32_t *)key; 439 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 440 441 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 442 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 443 /* The value array need not be initialized at this point */ 444 cpu->cpreg_array_len++; 445 } 446 } 447 448 static void count_cpreg(gpointer key, gpointer opaque) 449 { 450 ARMCPU *cpu = opaque; 451 uint64_t regidx; 452 const ARMCPRegInfo *ri; 453 454 regidx = *(uint32_t *)key; 455 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 456 457 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 458 cpu->cpreg_array_len++; 459 } 460 } 461 462 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 463 { 464 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 465 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 466 467 if (aidx > bidx) { 468 return 1; 469 } 470 if (aidx < bidx) { 471 return -1; 472 } 473 return 0; 474 } 475 476 void init_cpreg_list(ARMCPU *cpu) 477 { 478 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 479 * Note that we require cpreg_tuples[] to be sorted by key ID. 480 */ 481 GList *keys; 482 int arraylen; 483 484 keys = g_hash_table_get_keys(cpu->cp_regs); 485 keys = g_list_sort(keys, cpreg_key_compare); 486 487 cpu->cpreg_array_len = 0; 488 489 g_list_foreach(keys, count_cpreg, cpu); 490 491 arraylen = cpu->cpreg_array_len; 492 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 493 cpu->cpreg_values = g_new(uint64_t, arraylen); 494 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 495 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 496 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 497 cpu->cpreg_array_len = 0; 498 499 g_list_foreach(keys, add_cpreg_to_list, cpu); 500 501 assert(cpu->cpreg_array_len == arraylen); 502 503 g_list_free(keys); 504 } 505 506 /* 507 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 508 */ 509 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 510 const ARMCPRegInfo *ri, 511 bool isread) 512 { 513 if (!is_a64(env) && arm_current_el(env) == 3 && 514 arm_is_secure_below_el3(env)) { 515 return CP_ACCESS_TRAP_UNCATEGORIZED; 516 } 517 return CP_ACCESS_OK; 518 } 519 520 /* Some secure-only AArch32 registers trap to EL3 if used from 521 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 522 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 523 * We assume that the .access field is set to PL1_RW. 524 */ 525 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 526 const ARMCPRegInfo *ri, 527 bool isread) 528 { 529 if (arm_current_el(env) == 3) { 530 return CP_ACCESS_OK; 531 } 532 if (arm_is_secure_below_el3(env)) { 533 return CP_ACCESS_TRAP_EL3; 534 } 535 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 536 return CP_ACCESS_TRAP_UNCATEGORIZED; 537 } 538 539 /* Check for traps to "powerdown debug" registers, which are controlled 540 * by MDCR.TDOSA 541 */ 542 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 543 bool isread) 544 { 545 int el = arm_current_el(env); 546 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 547 (env->cp15.mdcr_el2 & MDCR_TDE) || 548 (arm_hcr_el2_eff(env) & HCR_TGE); 549 550 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 551 return CP_ACCESS_TRAP_EL2; 552 } 553 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 554 return CP_ACCESS_TRAP_EL3; 555 } 556 return CP_ACCESS_OK; 557 } 558 559 /* Check for traps to "debug ROM" registers, which are controlled 560 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 561 */ 562 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 563 bool isread) 564 { 565 int el = arm_current_el(env); 566 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 567 (env->cp15.mdcr_el2 & MDCR_TDE) || 568 (arm_hcr_el2_eff(env) & HCR_TGE); 569 570 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 571 return CP_ACCESS_TRAP_EL2; 572 } 573 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 574 return CP_ACCESS_TRAP_EL3; 575 } 576 return CP_ACCESS_OK; 577 } 578 579 /* Check for traps to general debug registers, which are controlled 580 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 581 */ 582 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 583 bool isread) 584 { 585 int el = arm_current_el(env); 586 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 587 (env->cp15.mdcr_el2 & MDCR_TDE) || 588 (arm_hcr_el2_eff(env) & HCR_TGE); 589 590 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 591 return CP_ACCESS_TRAP_EL2; 592 } 593 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 594 return CP_ACCESS_TRAP_EL3; 595 } 596 return CP_ACCESS_OK; 597 } 598 599 /* Check for traps to performance monitor registers, which are controlled 600 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 601 */ 602 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 603 bool isread) 604 { 605 int el = arm_current_el(env); 606 607 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 608 && !arm_is_secure_below_el3(env)) { 609 return CP_ACCESS_TRAP_EL2; 610 } 611 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 612 return CP_ACCESS_TRAP_EL3; 613 } 614 return CP_ACCESS_OK; 615 } 616 617 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 618 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 619 bool isread) 620 { 621 if (arm_current_el(env) == 1) { 622 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 623 if (arm_hcr_el2_eff(env) & trap) { 624 return CP_ACCESS_TRAP_EL2; 625 } 626 } 627 return CP_ACCESS_OK; 628 } 629 630 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 631 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 632 bool isread) 633 { 634 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 635 return CP_ACCESS_TRAP_EL2; 636 } 637 return CP_ACCESS_OK; 638 } 639 640 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 641 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 642 bool isread) 643 { 644 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 645 return CP_ACCESS_TRAP_EL2; 646 } 647 return CP_ACCESS_OK; 648 } 649 650 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 651 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 652 bool isread) 653 { 654 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 655 return CP_ACCESS_TRAP_EL2; 656 } 657 return CP_ACCESS_OK; 658 } 659 660 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 661 { 662 ARMCPU *cpu = env_archcpu(env); 663 664 raw_write(env, ri, value); 665 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 666 } 667 668 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 669 { 670 ARMCPU *cpu = env_archcpu(env); 671 672 if (raw_read(env, ri) != value) { 673 /* Unlike real hardware the qemu TLB uses virtual addresses, 674 * not modified virtual addresses, so this causes a TLB flush. 675 */ 676 tlb_flush(CPU(cpu)); 677 raw_write(env, ri, value); 678 } 679 } 680 681 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 682 uint64_t value) 683 { 684 ARMCPU *cpu = env_archcpu(env); 685 686 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 687 && !extended_addresses_enabled(env)) { 688 /* For VMSA (when not using the LPAE long descriptor page table 689 * format) this register includes the ASID, so do a TLB flush. 690 * For PMSA it is purely a process ID and no action is needed. 691 */ 692 tlb_flush(CPU(cpu)); 693 } 694 raw_write(env, ri, value); 695 } 696 697 /* IS variants of TLB operations must affect all cores */ 698 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 699 uint64_t value) 700 { 701 CPUState *cs = env_cpu(env); 702 703 tlb_flush_all_cpus_synced(cs); 704 } 705 706 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 707 uint64_t value) 708 { 709 CPUState *cs = env_cpu(env); 710 711 tlb_flush_all_cpus_synced(cs); 712 } 713 714 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 715 uint64_t value) 716 { 717 CPUState *cs = env_cpu(env); 718 719 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 720 } 721 722 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 723 uint64_t value) 724 { 725 CPUState *cs = env_cpu(env); 726 727 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 728 } 729 730 /* 731 * Non-IS variants of TLB operations are upgraded to 732 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to 733 * force broadcast of these operations. 734 */ 735 static bool tlb_force_broadcast(CPUARMState *env) 736 { 737 return (env->cp15.hcr_el2 & HCR_FB) && 738 arm_current_el(env) == 1 && arm_is_secure_below_el3(env); 739 } 740 741 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 742 uint64_t value) 743 { 744 /* Invalidate all (TLBIALL) */ 745 CPUState *cs = env_cpu(env); 746 747 if (tlb_force_broadcast(env)) { 748 tlb_flush_all_cpus_synced(cs); 749 } else { 750 tlb_flush(cs); 751 } 752 } 753 754 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 755 uint64_t value) 756 { 757 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 758 CPUState *cs = env_cpu(env); 759 760 value &= TARGET_PAGE_MASK; 761 if (tlb_force_broadcast(env)) { 762 tlb_flush_page_all_cpus_synced(cs, value); 763 } else { 764 tlb_flush_page(cs, value); 765 } 766 } 767 768 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 769 uint64_t value) 770 { 771 /* Invalidate by ASID (TLBIASID) */ 772 CPUState *cs = env_cpu(env); 773 774 if (tlb_force_broadcast(env)) { 775 tlb_flush_all_cpus_synced(cs); 776 } else { 777 tlb_flush(cs); 778 } 779 } 780 781 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 782 uint64_t value) 783 { 784 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 785 CPUState *cs = env_cpu(env); 786 787 value &= TARGET_PAGE_MASK; 788 if (tlb_force_broadcast(env)) { 789 tlb_flush_page_all_cpus_synced(cs, value); 790 } else { 791 tlb_flush_page(cs, value); 792 } 793 } 794 795 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 796 uint64_t value) 797 { 798 CPUState *cs = env_cpu(env); 799 800 tlb_flush_by_mmuidx(cs, 801 ARMMMUIdxBit_E10_1 | 802 ARMMMUIdxBit_E10_1_PAN | 803 ARMMMUIdxBit_E10_0); 804 } 805 806 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 807 uint64_t value) 808 { 809 CPUState *cs = env_cpu(env); 810 811 tlb_flush_by_mmuidx_all_cpus_synced(cs, 812 ARMMMUIdxBit_E10_1 | 813 ARMMMUIdxBit_E10_1_PAN | 814 ARMMMUIdxBit_E10_0); 815 } 816 817 818 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 819 uint64_t value) 820 { 821 CPUState *cs = env_cpu(env); 822 823 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 824 } 825 826 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 827 uint64_t value) 828 { 829 CPUState *cs = env_cpu(env); 830 831 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 832 } 833 834 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 835 uint64_t value) 836 { 837 CPUState *cs = env_cpu(env); 838 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 839 840 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 841 } 842 843 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 844 uint64_t value) 845 { 846 CPUState *cs = env_cpu(env); 847 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 848 849 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 850 ARMMMUIdxBit_E2); 851 } 852 853 static const ARMCPRegInfo cp_reginfo[] = { 854 /* Define the secure and non-secure FCSE identifier CP registers 855 * separately because there is no secure bank in V8 (no _EL3). This allows 856 * the secure register to be properly reset and migrated. There is also no 857 * v8 EL1 version of the register so the non-secure instance stands alone. 858 */ 859 { .name = "FCSEIDR", 860 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 861 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 862 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 863 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 864 { .name = "FCSEIDR_S", 865 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 866 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 867 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 868 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 869 /* Define the secure and non-secure context identifier CP registers 870 * separately because there is no secure bank in V8 (no _EL3). This allows 871 * the secure register to be properly reset and migrated. In the 872 * non-secure case, the 32-bit register will have reset and migration 873 * disabled during registration as it is handled by the 64-bit instance. 874 */ 875 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 876 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 877 .access = PL1_RW, .accessfn = access_tvm_trvm, 878 .secure = ARM_CP_SECSTATE_NS, 879 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 880 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 881 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 882 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 883 .access = PL1_RW, .accessfn = access_tvm_trvm, 884 .secure = ARM_CP_SECSTATE_S, 885 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 886 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 887 REGINFO_SENTINEL 888 }; 889 890 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 891 /* NB: Some of these registers exist in v8 but with more precise 892 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 893 */ 894 /* MMU Domain access control / MPU write buffer control */ 895 { .name = "DACR", 896 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 897 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 898 .writefn = dacr_write, .raw_writefn = raw_write, 899 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 900 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 901 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 902 * For v6 and v5, these mappings are overly broad. 903 */ 904 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 905 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 906 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 907 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 908 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 909 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 910 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 911 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 912 /* Cache maintenance ops; some of this space may be overridden later. */ 913 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 914 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 915 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 916 REGINFO_SENTINEL 917 }; 918 919 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 920 /* Not all pre-v6 cores implemented this WFI, so this is slightly 921 * over-broad. 922 */ 923 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 924 .access = PL1_W, .type = ARM_CP_WFI }, 925 REGINFO_SENTINEL 926 }; 927 928 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 929 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 930 * is UNPREDICTABLE; we choose to NOP as most implementations do). 931 */ 932 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 933 .access = PL1_W, .type = ARM_CP_WFI }, 934 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 935 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 936 * OMAPCP will override this space. 937 */ 938 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 939 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 940 .resetvalue = 0 }, 941 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 942 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 943 .resetvalue = 0 }, 944 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 945 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 946 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 947 .resetvalue = 0 }, 948 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 949 * implementing it as RAZ means the "debug architecture version" bits 950 * will read as a reserved value, which should cause Linux to not try 951 * to use the debug hardware. 952 */ 953 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 954 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 955 /* MMU TLB control. Note that the wildcarding means we cover not just 956 * the unified TLB ops but also the dside/iside/inner-shareable variants. 957 */ 958 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 959 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 960 .type = ARM_CP_NO_RAW }, 961 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 962 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 963 .type = ARM_CP_NO_RAW }, 964 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 965 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 966 .type = ARM_CP_NO_RAW }, 967 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 968 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 969 .type = ARM_CP_NO_RAW }, 970 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 971 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 972 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 973 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 974 REGINFO_SENTINEL 975 }; 976 977 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 978 uint64_t value) 979 { 980 uint32_t mask = 0; 981 982 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 983 if (!arm_feature(env, ARM_FEATURE_V8)) { 984 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 985 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 986 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 987 */ 988 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 989 /* VFP coprocessor: cp10 & cp11 [23:20] */ 990 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 991 992 if (!arm_feature(env, ARM_FEATURE_NEON)) { 993 /* ASEDIS [31] bit is RAO/WI */ 994 value |= (1 << 31); 995 } 996 997 /* VFPv3 and upwards with NEON implement 32 double precision 998 * registers (D0-D31). 999 */ 1000 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 1001 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 1002 value |= (1 << 30); 1003 } 1004 } 1005 value &= mask; 1006 } 1007 1008 /* 1009 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1010 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1011 */ 1012 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1013 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1014 value &= ~(0xf << 20); 1015 value |= env->cp15.cpacr_el1 & (0xf << 20); 1016 } 1017 1018 env->cp15.cpacr_el1 = value; 1019 } 1020 1021 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1022 { 1023 /* 1024 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1025 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1026 */ 1027 uint64_t value = env->cp15.cpacr_el1; 1028 1029 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1030 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1031 value &= ~(0xf << 20); 1032 } 1033 return value; 1034 } 1035 1036 1037 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1038 { 1039 /* Call cpacr_write() so that we reset with the correct RAO bits set 1040 * for our CPU features. 1041 */ 1042 cpacr_write(env, ri, 0); 1043 } 1044 1045 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1046 bool isread) 1047 { 1048 if (arm_feature(env, ARM_FEATURE_V8)) { 1049 /* Check if CPACR accesses are to be trapped to EL2 */ 1050 if (arm_current_el(env) == 1 && 1051 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 1052 return CP_ACCESS_TRAP_EL2; 1053 /* Check if CPACR accesses are to be trapped to EL3 */ 1054 } else if (arm_current_el(env) < 3 && 1055 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1056 return CP_ACCESS_TRAP_EL3; 1057 } 1058 } 1059 1060 return CP_ACCESS_OK; 1061 } 1062 1063 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1064 bool isread) 1065 { 1066 /* Check if CPTR accesses are set to trap to EL3 */ 1067 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1068 return CP_ACCESS_TRAP_EL3; 1069 } 1070 1071 return CP_ACCESS_OK; 1072 } 1073 1074 static const ARMCPRegInfo v6_cp_reginfo[] = { 1075 /* prefetch by MVA in v6, NOP in v7 */ 1076 { .name = "MVA_prefetch", 1077 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 1078 .access = PL1_W, .type = ARM_CP_NOP }, 1079 /* We need to break the TB after ISB to execute self-modifying code 1080 * correctly and also to take any pending interrupts immediately. 1081 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 1082 */ 1083 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 1084 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 1085 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 1086 .access = PL0_W, .type = ARM_CP_NOP }, 1087 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 1088 .access = PL0_W, .type = ARM_CP_NOP }, 1089 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 1090 .access = PL1_RW, .accessfn = access_tvm_trvm, 1091 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1092 offsetof(CPUARMState, cp15.ifar_ns) }, 1093 .resetvalue = 0, }, 1094 /* Watchpoint Fault Address Register : should actually only be present 1095 * for 1136, 1176, 11MPCore. 1096 */ 1097 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1098 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1099 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1100 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1101 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1102 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1103 REGINFO_SENTINEL 1104 }; 1105 1106 /* Definitions for the PMU registers */ 1107 #define PMCRN_MASK 0xf800 1108 #define PMCRN_SHIFT 11 1109 #define PMCRLC 0x40 1110 #define PMCRDP 0x20 1111 #define PMCRX 0x10 1112 #define PMCRD 0x8 1113 #define PMCRC 0x4 1114 #define PMCRP 0x2 1115 #define PMCRE 0x1 1116 /* 1117 * Mask of PMCR bits writeable by guest (not including WO bits like C, P, 1118 * which can be written as 1 to trigger behaviour but which stay RAZ). 1119 */ 1120 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1121 1122 #define PMXEVTYPER_P 0x80000000 1123 #define PMXEVTYPER_U 0x40000000 1124 #define PMXEVTYPER_NSK 0x20000000 1125 #define PMXEVTYPER_NSU 0x10000000 1126 #define PMXEVTYPER_NSH 0x08000000 1127 #define PMXEVTYPER_M 0x04000000 1128 #define PMXEVTYPER_MT 0x02000000 1129 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1130 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1131 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1132 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1133 PMXEVTYPER_EVTCOUNT) 1134 1135 #define PMCCFILTR 0xf8000000 1136 #define PMCCFILTR_M PMXEVTYPER_M 1137 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1138 1139 static inline uint32_t pmu_num_counters(CPUARMState *env) 1140 { 1141 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1142 } 1143 1144 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1145 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1146 { 1147 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1148 } 1149 1150 typedef struct pm_event { 1151 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1152 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1153 bool (*supported)(CPUARMState *); 1154 /* 1155 * Retrieve the current count of the underlying event. The programmed 1156 * counters hold a difference from the return value from this function 1157 */ 1158 uint64_t (*get_count)(CPUARMState *); 1159 /* 1160 * Return how many nanoseconds it will take (at a minimum) for count events 1161 * to occur. A negative value indicates the counter will never overflow, or 1162 * that the counter has otherwise arranged for the overflow bit to be set 1163 * and the PMU interrupt to be raised on overflow. 1164 */ 1165 int64_t (*ns_per_count)(uint64_t); 1166 } pm_event; 1167 1168 static bool event_always_supported(CPUARMState *env) 1169 { 1170 return true; 1171 } 1172 1173 static uint64_t swinc_get_count(CPUARMState *env) 1174 { 1175 /* 1176 * SW_INCR events are written directly to the pmevcntr's by writes to 1177 * PMSWINC, so there is no underlying count maintained by the PMU itself 1178 */ 1179 return 0; 1180 } 1181 1182 static int64_t swinc_ns_per(uint64_t ignored) 1183 { 1184 return -1; 1185 } 1186 1187 /* 1188 * Return the underlying cycle count for the PMU cycle counters. If we're in 1189 * usermode, simply return 0. 1190 */ 1191 static uint64_t cycles_get_count(CPUARMState *env) 1192 { 1193 #ifndef CONFIG_USER_ONLY 1194 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1195 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1196 #else 1197 return cpu_get_host_ticks(); 1198 #endif 1199 } 1200 1201 #ifndef CONFIG_USER_ONLY 1202 static int64_t cycles_ns_per(uint64_t cycles) 1203 { 1204 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1205 } 1206 1207 static bool instructions_supported(CPUARMState *env) 1208 { 1209 return use_icount == 1 /* Precise instruction counting */; 1210 } 1211 1212 static uint64_t instructions_get_count(CPUARMState *env) 1213 { 1214 return (uint64_t)cpu_get_icount_raw(); 1215 } 1216 1217 static int64_t instructions_ns_per(uint64_t icount) 1218 { 1219 return cpu_icount_to_ns((int64_t)icount); 1220 } 1221 #endif 1222 1223 static bool pmu_8_1_events_supported(CPUARMState *env) 1224 { 1225 /* For events which are supported in any v8.1 PMU */ 1226 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 1227 } 1228 1229 static bool pmu_8_4_events_supported(CPUARMState *env) 1230 { 1231 /* For events which are supported in any v8.1 PMU */ 1232 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 1233 } 1234 1235 static uint64_t zero_event_get_count(CPUARMState *env) 1236 { 1237 /* For events which on QEMU never fire, so their count is always zero */ 1238 return 0; 1239 } 1240 1241 static int64_t zero_event_ns_per(uint64_t cycles) 1242 { 1243 /* An event which never fires can never overflow */ 1244 return -1; 1245 } 1246 1247 static const pm_event pm_events[] = { 1248 { .number = 0x000, /* SW_INCR */ 1249 .supported = event_always_supported, 1250 .get_count = swinc_get_count, 1251 .ns_per_count = swinc_ns_per, 1252 }, 1253 #ifndef CONFIG_USER_ONLY 1254 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1255 .supported = instructions_supported, 1256 .get_count = instructions_get_count, 1257 .ns_per_count = instructions_ns_per, 1258 }, 1259 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1260 .supported = event_always_supported, 1261 .get_count = cycles_get_count, 1262 .ns_per_count = cycles_ns_per, 1263 }, 1264 #endif 1265 { .number = 0x023, /* STALL_FRONTEND */ 1266 .supported = pmu_8_1_events_supported, 1267 .get_count = zero_event_get_count, 1268 .ns_per_count = zero_event_ns_per, 1269 }, 1270 { .number = 0x024, /* STALL_BACKEND */ 1271 .supported = pmu_8_1_events_supported, 1272 .get_count = zero_event_get_count, 1273 .ns_per_count = zero_event_ns_per, 1274 }, 1275 { .number = 0x03c, /* STALL */ 1276 .supported = pmu_8_4_events_supported, 1277 .get_count = zero_event_get_count, 1278 .ns_per_count = zero_event_ns_per, 1279 }, 1280 }; 1281 1282 /* 1283 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1284 * events (i.e. the statistical profiling extension), this implementation 1285 * should first be updated to something sparse instead of the current 1286 * supported_event_map[] array. 1287 */ 1288 #define MAX_EVENT_ID 0x3c 1289 #define UNSUPPORTED_EVENT UINT16_MAX 1290 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1291 1292 /* 1293 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1294 * of ARM event numbers to indices in our pm_events array. 1295 * 1296 * Note: Events in the 0x40XX range are not currently supported. 1297 */ 1298 void pmu_init(ARMCPU *cpu) 1299 { 1300 unsigned int i; 1301 1302 /* 1303 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1304 * events to them 1305 */ 1306 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1307 supported_event_map[i] = UNSUPPORTED_EVENT; 1308 } 1309 cpu->pmceid0 = 0; 1310 cpu->pmceid1 = 0; 1311 1312 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1313 const pm_event *cnt = &pm_events[i]; 1314 assert(cnt->number <= MAX_EVENT_ID); 1315 /* We do not currently support events in the 0x40xx range */ 1316 assert(cnt->number <= 0x3f); 1317 1318 if (cnt->supported(&cpu->env)) { 1319 supported_event_map[cnt->number] = i; 1320 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1321 if (cnt->number & 0x20) { 1322 cpu->pmceid1 |= event_mask; 1323 } else { 1324 cpu->pmceid0 |= event_mask; 1325 } 1326 } 1327 } 1328 } 1329 1330 /* 1331 * Check at runtime whether a PMU event is supported for the current machine 1332 */ 1333 static bool event_supported(uint16_t number) 1334 { 1335 if (number > MAX_EVENT_ID) { 1336 return false; 1337 } 1338 return supported_event_map[number] != UNSUPPORTED_EVENT; 1339 } 1340 1341 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1342 bool isread) 1343 { 1344 /* Performance monitor registers user accessibility is controlled 1345 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1346 * trapping to EL2 or EL3 for other accesses. 1347 */ 1348 int el = arm_current_el(env); 1349 1350 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1351 return CP_ACCESS_TRAP; 1352 } 1353 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1354 && !arm_is_secure_below_el3(env)) { 1355 return CP_ACCESS_TRAP_EL2; 1356 } 1357 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1358 return CP_ACCESS_TRAP_EL3; 1359 } 1360 1361 return CP_ACCESS_OK; 1362 } 1363 1364 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1365 const ARMCPRegInfo *ri, 1366 bool isread) 1367 { 1368 /* ER: event counter read trap control */ 1369 if (arm_feature(env, ARM_FEATURE_V8) 1370 && arm_current_el(env) == 0 1371 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1372 && isread) { 1373 return CP_ACCESS_OK; 1374 } 1375 1376 return pmreg_access(env, ri, isread); 1377 } 1378 1379 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1380 const ARMCPRegInfo *ri, 1381 bool isread) 1382 { 1383 /* SW: software increment write trap control */ 1384 if (arm_feature(env, ARM_FEATURE_V8) 1385 && arm_current_el(env) == 0 1386 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1387 && !isread) { 1388 return CP_ACCESS_OK; 1389 } 1390 1391 return pmreg_access(env, ri, isread); 1392 } 1393 1394 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1395 const ARMCPRegInfo *ri, 1396 bool isread) 1397 { 1398 /* ER: event counter read trap control */ 1399 if (arm_feature(env, ARM_FEATURE_V8) 1400 && arm_current_el(env) == 0 1401 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1402 return CP_ACCESS_OK; 1403 } 1404 1405 return pmreg_access(env, ri, isread); 1406 } 1407 1408 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1409 const ARMCPRegInfo *ri, 1410 bool isread) 1411 { 1412 /* CR: cycle counter read trap control */ 1413 if (arm_feature(env, ARM_FEATURE_V8) 1414 && arm_current_el(env) == 0 1415 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1416 && isread) { 1417 return CP_ACCESS_OK; 1418 } 1419 1420 return pmreg_access(env, ri, isread); 1421 } 1422 1423 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1424 * the current EL, security state, and register configuration. 1425 */ 1426 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1427 { 1428 uint64_t filter; 1429 bool e, p, u, nsk, nsu, nsh, m; 1430 bool enabled, prohibited, filtered; 1431 bool secure = arm_is_secure(env); 1432 int el = arm_current_el(env); 1433 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1434 1435 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1436 return false; 1437 } 1438 1439 if (!arm_feature(env, ARM_FEATURE_EL2) || 1440 (counter < hpmn || counter == 31)) { 1441 e = env->cp15.c9_pmcr & PMCRE; 1442 } else { 1443 e = env->cp15.mdcr_el2 & MDCR_HPME; 1444 } 1445 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1446 1447 if (!secure) { 1448 if (el == 2 && (counter < hpmn || counter == 31)) { 1449 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; 1450 } else { 1451 prohibited = false; 1452 } 1453 } else { 1454 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1455 !(env->cp15.mdcr_el3 & MDCR_SPME); 1456 } 1457 1458 if (prohibited && counter == 31) { 1459 prohibited = env->cp15.c9_pmcr & PMCRDP; 1460 } 1461 1462 if (counter == 31) { 1463 filter = env->cp15.pmccfiltr_el0; 1464 } else { 1465 filter = env->cp15.c14_pmevtyper[counter]; 1466 } 1467 1468 p = filter & PMXEVTYPER_P; 1469 u = filter & PMXEVTYPER_U; 1470 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1471 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1472 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1473 m = arm_el_is_aa64(env, 1) && 1474 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1475 1476 if (el == 0) { 1477 filtered = secure ? u : u != nsu; 1478 } else if (el == 1) { 1479 filtered = secure ? p : p != nsk; 1480 } else if (el == 2) { 1481 filtered = !nsh; 1482 } else { /* EL3 */ 1483 filtered = m != p; 1484 } 1485 1486 if (counter != 31) { 1487 /* 1488 * If not checking PMCCNTR, ensure the counter is setup to an event we 1489 * support 1490 */ 1491 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1492 if (!event_supported(event)) { 1493 return false; 1494 } 1495 } 1496 1497 return enabled && !prohibited && !filtered; 1498 } 1499 1500 static void pmu_update_irq(CPUARMState *env) 1501 { 1502 ARMCPU *cpu = env_archcpu(env); 1503 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1504 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1505 } 1506 1507 /* 1508 * Ensure c15_ccnt is the guest-visible count so that operations such as 1509 * enabling/disabling the counter or filtering, modifying the count itself, 1510 * etc. can be done logically. This is essentially a no-op if the counter is 1511 * not enabled at the time of the call. 1512 */ 1513 static void pmccntr_op_start(CPUARMState *env) 1514 { 1515 uint64_t cycles = cycles_get_count(env); 1516 1517 if (pmu_counter_enabled(env, 31)) { 1518 uint64_t eff_cycles = cycles; 1519 if (env->cp15.c9_pmcr & PMCRD) { 1520 /* Increment once every 64 processor clock cycles */ 1521 eff_cycles /= 64; 1522 } 1523 1524 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1525 1526 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1527 1ull << 63 : 1ull << 31; 1528 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1529 env->cp15.c9_pmovsr |= (1 << 31); 1530 pmu_update_irq(env); 1531 } 1532 1533 env->cp15.c15_ccnt = new_pmccntr; 1534 } 1535 env->cp15.c15_ccnt_delta = cycles; 1536 } 1537 1538 /* 1539 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1540 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1541 * pmccntr_op_start. 1542 */ 1543 static void pmccntr_op_finish(CPUARMState *env) 1544 { 1545 if (pmu_counter_enabled(env, 31)) { 1546 #ifndef CONFIG_USER_ONLY 1547 /* Calculate when the counter will next overflow */ 1548 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1549 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1550 remaining_cycles = (uint32_t)remaining_cycles; 1551 } 1552 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1553 1554 if (overflow_in > 0) { 1555 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1556 overflow_in; 1557 ARMCPU *cpu = env_archcpu(env); 1558 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1559 } 1560 #endif 1561 1562 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1563 if (env->cp15.c9_pmcr & PMCRD) { 1564 /* Increment once every 64 processor clock cycles */ 1565 prev_cycles /= 64; 1566 } 1567 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1568 } 1569 } 1570 1571 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1572 { 1573 1574 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1575 uint64_t count = 0; 1576 if (event_supported(event)) { 1577 uint16_t event_idx = supported_event_map[event]; 1578 count = pm_events[event_idx].get_count(env); 1579 } 1580 1581 if (pmu_counter_enabled(env, counter)) { 1582 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1583 1584 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1585 env->cp15.c9_pmovsr |= (1 << counter); 1586 pmu_update_irq(env); 1587 } 1588 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1589 } 1590 env->cp15.c14_pmevcntr_delta[counter] = count; 1591 } 1592 1593 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1594 { 1595 if (pmu_counter_enabled(env, counter)) { 1596 #ifndef CONFIG_USER_ONLY 1597 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1598 uint16_t event_idx = supported_event_map[event]; 1599 uint64_t delta = UINT32_MAX - 1600 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1601 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1602 1603 if (overflow_in > 0) { 1604 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1605 overflow_in; 1606 ARMCPU *cpu = env_archcpu(env); 1607 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1608 } 1609 #endif 1610 1611 env->cp15.c14_pmevcntr_delta[counter] -= 1612 env->cp15.c14_pmevcntr[counter]; 1613 } 1614 } 1615 1616 void pmu_op_start(CPUARMState *env) 1617 { 1618 unsigned int i; 1619 pmccntr_op_start(env); 1620 for (i = 0; i < pmu_num_counters(env); i++) { 1621 pmevcntr_op_start(env, i); 1622 } 1623 } 1624 1625 void pmu_op_finish(CPUARMState *env) 1626 { 1627 unsigned int i; 1628 pmccntr_op_finish(env); 1629 for (i = 0; i < pmu_num_counters(env); i++) { 1630 pmevcntr_op_finish(env, i); 1631 } 1632 } 1633 1634 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1635 { 1636 pmu_op_start(&cpu->env); 1637 } 1638 1639 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1640 { 1641 pmu_op_finish(&cpu->env); 1642 } 1643 1644 void arm_pmu_timer_cb(void *opaque) 1645 { 1646 ARMCPU *cpu = opaque; 1647 1648 /* 1649 * Update all the counter values based on the current underlying counts, 1650 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1651 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1652 * counter may expire. 1653 */ 1654 pmu_op_start(&cpu->env); 1655 pmu_op_finish(&cpu->env); 1656 } 1657 1658 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1659 uint64_t value) 1660 { 1661 pmu_op_start(env); 1662 1663 if (value & PMCRC) { 1664 /* The counter has been reset */ 1665 env->cp15.c15_ccnt = 0; 1666 } 1667 1668 if (value & PMCRP) { 1669 unsigned int i; 1670 for (i = 0; i < pmu_num_counters(env); i++) { 1671 env->cp15.c14_pmevcntr[i] = 0; 1672 } 1673 } 1674 1675 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1676 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1677 1678 pmu_op_finish(env); 1679 } 1680 1681 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1682 uint64_t value) 1683 { 1684 unsigned int i; 1685 for (i = 0; i < pmu_num_counters(env); i++) { 1686 /* Increment a counter's count iff: */ 1687 if ((value & (1 << i)) && /* counter's bit is set */ 1688 /* counter is enabled and not filtered */ 1689 pmu_counter_enabled(env, i) && 1690 /* counter is SW_INCR */ 1691 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1692 pmevcntr_op_start(env, i); 1693 1694 /* 1695 * Detect if this write causes an overflow since we can't predict 1696 * PMSWINC overflows like we can for other events 1697 */ 1698 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1699 1700 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1701 env->cp15.c9_pmovsr |= (1 << i); 1702 pmu_update_irq(env); 1703 } 1704 1705 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1706 1707 pmevcntr_op_finish(env, i); 1708 } 1709 } 1710 } 1711 1712 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1713 { 1714 uint64_t ret; 1715 pmccntr_op_start(env); 1716 ret = env->cp15.c15_ccnt; 1717 pmccntr_op_finish(env); 1718 return ret; 1719 } 1720 1721 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1722 uint64_t value) 1723 { 1724 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1725 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1726 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1727 * accessed. 1728 */ 1729 env->cp15.c9_pmselr = value & 0x1f; 1730 } 1731 1732 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1733 uint64_t value) 1734 { 1735 pmccntr_op_start(env); 1736 env->cp15.c15_ccnt = value; 1737 pmccntr_op_finish(env); 1738 } 1739 1740 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1741 uint64_t value) 1742 { 1743 uint64_t cur_val = pmccntr_read(env, NULL); 1744 1745 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1746 } 1747 1748 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1749 uint64_t value) 1750 { 1751 pmccntr_op_start(env); 1752 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1753 pmccntr_op_finish(env); 1754 } 1755 1756 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1757 uint64_t value) 1758 { 1759 pmccntr_op_start(env); 1760 /* M is not accessible from AArch32 */ 1761 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1762 (value & PMCCFILTR); 1763 pmccntr_op_finish(env); 1764 } 1765 1766 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1767 { 1768 /* M is not visible in AArch32 */ 1769 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1770 } 1771 1772 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1773 uint64_t value) 1774 { 1775 value &= pmu_counter_mask(env); 1776 env->cp15.c9_pmcnten |= value; 1777 } 1778 1779 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1780 uint64_t value) 1781 { 1782 value &= pmu_counter_mask(env); 1783 env->cp15.c9_pmcnten &= ~value; 1784 } 1785 1786 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1787 uint64_t value) 1788 { 1789 value &= pmu_counter_mask(env); 1790 env->cp15.c9_pmovsr &= ~value; 1791 pmu_update_irq(env); 1792 } 1793 1794 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1795 uint64_t value) 1796 { 1797 value &= pmu_counter_mask(env); 1798 env->cp15.c9_pmovsr |= value; 1799 pmu_update_irq(env); 1800 } 1801 1802 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1803 uint64_t value, const uint8_t counter) 1804 { 1805 if (counter == 31) { 1806 pmccfiltr_write(env, ri, value); 1807 } else if (counter < pmu_num_counters(env)) { 1808 pmevcntr_op_start(env, counter); 1809 1810 /* 1811 * If this counter's event type is changing, store the current 1812 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1813 * pmevcntr_op_finish has the correct baseline when it converts back to 1814 * a delta. 1815 */ 1816 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1817 PMXEVTYPER_EVTCOUNT; 1818 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1819 if (old_event != new_event) { 1820 uint64_t count = 0; 1821 if (event_supported(new_event)) { 1822 uint16_t event_idx = supported_event_map[new_event]; 1823 count = pm_events[event_idx].get_count(env); 1824 } 1825 env->cp15.c14_pmevcntr_delta[counter] = count; 1826 } 1827 1828 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1829 pmevcntr_op_finish(env, counter); 1830 } 1831 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1832 * PMSELR value is equal to or greater than the number of implemented 1833 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1834 */ 1835 } 1836 1837 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1838 const uint8_t counter) 1839 { 1840 if (counter == 31) { 1841 return env->cp15.pmccfiltr_el0; 1842 } else if (counter < pmu_num_counters(env)) { 1843 return env->cp15.c14_pmevtyper[counter]; 1844 } else { 1845 /* 1846 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1847 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1848 */ 1849 return 0; 1850 } 1851 } 1852 1853 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1854 uint64_t value) 1855 { 1856 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1857 pmevtyper_write(env, ri, value, counter); 1858 } 1859 1860 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1861 uint64_t value) 1862 { 1863 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1864 env->cp15.c14_pmevtyper[counter] = value; 1865 1866 /* 1867 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1868 * pmu_op_finish calls when loading saved state for a migration. Because 1869 * we're potentially updating the type of event here, the value written to 1870 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1871 * different counter type. Therefore, we need to set this value to the 1872 * current count for the counter type we're writing so that pmu_op_finish 1873 * has the correct count for its calculation. 1874 */ 1875 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1876 if (event_supported(event)) { 1877 uint16_t event_idx = supported_event_map[event]; 1878 env->cp15.c14_pmevcntr_delta[counter] = 1879 pm_events[event_idx].get_count(env); 1880 } 1881 } 1882 1883 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1884 { 1885 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1886 return pmevtyper_read(env, ri, counter); 1887 } 1888 1889 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1890 uint64_t value) 1891 { 1892 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1893 } 1894 1895 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1896 { 1897 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1898 } 1899 1900 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1901 uint64_t value, uint8_t counter) 1902 { 1903 if (counter < pmu_num_counters(env)) { 1904 pmevcntr_op_start(env, counter); 1905 env->cp15.c14_pmevcntr[counter] = value; 1906 pmevcntr_op_finish(env, counter); 1907 } 1908 /* 1909 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1910 * are CONSTRAINED UNPREDICTABLE. 1911 */ 1912 } 1913 1914 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1915 uint8_t counter) 1916 { 1917 if (counter < pmu_num_counters(env)) { 1918 uint64_t ret; 1919 pmevcntr_op_start(env, counter); 1920 ret = env->cp15.c14_pmevcntr[counter]; 1921 pmevcntr_op_finish(env, counter); 1922 return ret; 1923 } else { 1924 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1925 * are CONSTRAINED UNPREDICTABLE. */ 1926 return 0; 1927 } 1928 } 1929 1930 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1931 uint64_t value) 1932 { 1933 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1934 pmevcntr_write(env, ri, value, counter); 1935 } 1936 1937 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1938 { 1939 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1940 return pmevcntr_read(env, ri, counter); 1941 } 1942 1943 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1944 uint64_t value) 1945 { 1946 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1947 assert(counter < pmu_num_counters(env)); 1948 env->cp15.c14_pmevcntr[counter] = value; 1949 pmevcntr_write(env, ri, value, counter); 1950 } 1951 1952 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1953 { 1954 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1955 assert(counter < pmu_num_counters(env)); 1956 return env->cp15.c14_pmevcntr[counter]; 1957 } 1958 1959 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1960 uint64_t value) 1961 { 1962 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1963 } 1964 1965 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1966 { 1967 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1968 } 1969 1970 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1971 uint64_t value) 1972 { 1973 if (arm_feature(env, ARM_FEATURE_V8)) { 1974 env->cp15.c9_pmuserenr = value & 0xf; 1975 } else { 1976 env->cp15.c9_pmuserenr = value & 1; 1977 } 1978 } 1979 1980 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1981 uint64_t value) 1982 { 1983 /* We have no event counters so only the C bit can be changed */ 1984 value &= pmu_counter_mask(env); 1985 env->cp15.c9_pminten |= value; 1986 pmu_update_irq(env); 1987 } 1988 1989 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1990 uint64_t value) 1991 { 1992 value &= pmu_counter_mask(env); 1993 env->cp15.c9_pminten &= ~value; 1994 pmu_update_irq(env); 1995 } 1996 1997 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1998 uint64_t value) 1999 { 2000 /* Note that even though the AArch64 view of this register has bits 2001 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 2002 * architectural requirements for bits which are RES0 only in some 2003 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 2004 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 2005 */ 2006 raw_write(env, ri, value & ~0x1FULL); 2007 } 2008 2009 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2010 { 2011 /* Begin with base v8.0 state. */ 2012 uint32_t valid_mask = 0x3fff; 2013 ARMCPU *cpu = env_archcpu(env); 2014 2015 if (ri->state == ARM_CP_STATE_AA64) { 2016 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 2017 valid_mask &= ~SCR_NET; 2018 2019 if (cpu_isar_feature(aa64_lor, cpu)) { 2020 valid_mask |= SCR_TLOR; 2021 } 2022 if (cpu_isar_feature(aa64_pauth, cpu)) { 2023 valid_mask |= SCR_API | SCR_APK; 2024 } 2025 if (cpu_isar_feature(aa64_mte, cpu)) { 2026 valid_mask |= SCR_ATA; 2027 } 2028 } else { 2029 valid_mask &= ~(SCR_RW | SCR_ST); 2030 } 2031 2032 if (!arm_feature(env, ARM_FEATURE_EL2)) { 2033 valid_mask &= ~SCR_HCE; 2034 2035 /* On ARMv7, SMD (or SCD as it is called in v7) is only 2036 * supported if EL2 exists. The bit is UNK/SBZP when 2037 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 2038 * when EL2 is unavailable. 2039 * On ARMv8, this bit is always available. 2040 */ 2041 if (arm_feature(env, ARM_FEATURE_V7) && 2042 !arm_feature(env, ARM_FEATURE_V8)) { 2043 valid_mask &= ~SCR_SMD; 2044 } 2045 } 2046 2047 /* Clear all-context RES0 bits. */ 2048 value &= valid_mask; 2049 raw_write(env, ri, value); 2050 } 2051 2052 static CPAccessResult access_aa64_tid2(CPUARMState *env, 2053 const ARMCPRegInfo *ri, 2054 bool isread) 2055 { 2056 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 2057 return CP_ACCESS_TRAP_EL2; 2058 } 2059 2060 return CP_ACCESS_OK; 2061 } 2062 2063 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2064 { 2065 ARMCPU *cpu = env_archcpu(env); 2066 2067 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 2068 * bank 2069 */ 2070 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2071 ri->secure & ARM_CP_SECSTATE_S); 2072 2073 return cpu->ccsidr[index]; 2074 } 2075 2076 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2077 uint64_t value) 2078 { 2079 raw_write(env, ri, value & 0xf); 2080 } 2081 2082 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2083 { 2084 CPUState *cs = env_cpu(env); 2085 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 2086 uint64_t ret = 0; 2087 bool allow_virt = (arm_current_el(env) == 1 && 2088 (!arm_is_secure_below_el3(env) || 2089 (env->cp15.scr_el3 & SCR_EEL2))); 2090 2091 if (allow_virt && (hcr_el2 & HCR_IMO)) { 2092 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2093 ret |= CPSR_I; 2094 } 2095 } else { 2096 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2097 ret |= CPSR_I; 2098 } 2099 } 2100 2101 if (allow_virt && (hcr_el2 & HCR_FMO)) { 2102 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2103 ret |= CPSR_F; 2104 } 2105 } else { 2106 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2107 ret |= CPSR_F; 2108 } 2109 } 2110 2111 /* External aborts are not possible in QEMU so A bit is always clear */ 2112 return ret; 2113 } 2114 2115 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2116 bool isread) 2117 { 2118 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2119 return CP_ACCESS_TRAP_EL2; 2120 } 2121 2122 return CP_ACCESS_OK; 2123 } 2124 2125 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2126 bool isread) 2127 { 2128 if (arm_feature(env, ARM_FEATURE_V8)) { 2129 return access_aa64_tid1(env, ri, isread); 2130 } 2131 2132 return CP_ACCESS_OK; 2133 } 2134 2135 static const ARMCPRegInfo v7_cp_reginfo[] = { 2136 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2137 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2138 .access = PL1_W, .type = ARM_CP_NOP }, 2139 /* Performance monitors are implementation defined in v7, 2140 * but with an ARM recommended set of registers, which we 2141 * follow. 2142 * 2143 * Performance registers fall into three categories: 2144 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2145 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2146 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2147 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2148 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2149 */ 2150 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2151 .access = PL0_RW, .type = ARM_CP_ALIAS, 2152 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2153 .writefn = pmcntenset_write, 2154 .accessfn = pmreg_access, 2155 .raw_writefn = raw_write }, 2156 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 2157 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2158 .access = PL0_RW, .accessfn = pmreg_access, 2159 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2160 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2161 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2162 .access = PL0_RW, 2163 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2164 .accessfn = pmreg_access, 2165 .writefn = pmcntenclr_write, 2166 .type = ARM_CP_ALIAS }, 2167 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2168 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2169 .access = PL0_RW, .accessfn = pmreg_access, 2170 .type = ARM_CP_ALIAS, 2171 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2172 .writefn = pmcntenclr_write }, 2173 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2174 .access = PL0_RW, .type = ARM_CP_IO, 2175 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2176 .accessfn = pmreg_access, 2177 .writefn = pmovsr_write, 2178 .raw_writefn = raw_write }, 2179 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2180 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2181 .access = PL0_RW, .accessfn = pmreg_access, 2182 .type = ARM_CP_ALIAS | ARM_CP_IO, 2183 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2184 .writefn = pmovsr_write, 2185 .raw_writefn = raw_write }, 2186 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2187 .access = PL0_W, .accessfn = pmreg_access_swinc, 2188 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2189 .writefn = pmswinc_write }, 2190 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2191 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2192 .access = PL0_W, .accessfn = pmreg_access_swinc, 2193 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2194 .writefn = pmswinc_write }, 2195 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2196 .access = PL0_RW, .type = ARM_CP_ALIAS, 2197 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2198 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2199 .raw_writefn = raw_write}, 2200 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2201 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2202 .access = PL0_RW, .accessfn = pmreg_access_selr, 2203 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2204 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2205 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2206 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2207 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2208 .accessfn = pmreg_access_ccntr }, 2209 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2210 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2211 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2212 .type = ARM_CP_IO, 2213 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2214 .readfn = pmccntr_read, .writefn = pmccntr_write, 2215 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2216 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2217 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2218 .access = PL0_RW, .accessfn = pmreg_access, 2219 .type = ARM_CP_ALIAS | ARM_CP_IO, 2220 .resetvalue = 0, }, 2221 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2222 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2223 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2224 .access = PL0_RW, .accessfn = pmreg_access, 2225 .type = ARM_CP_IO, 2226 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2227 .resetvalue = 0, }, 2228 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2229 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2230 .accessfn = pmreg_access, 2231 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2232 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2233 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2234 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2235 .accessfn = pmreg_access, 2236 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2237 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2238 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2239 .accessfn = pmreg_access_xevcntr, 2240 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2241 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2242 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2243 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2244 .accessfn = pmreg_access_xevcntr, 2245 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2246 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2247 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2248 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2249 .resetvalue = 0, 2250 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2251 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2252 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2253 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2254 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2255 .resetvalue = 0, 2256 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2257 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2258 .access = PL1_RW, .accessfn = access_tpm, 2259 .type = ARM_CP_ALIAS | ARM_CP_IO, 2260 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2261 .resetvalue = 0, 2262 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2263 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2264 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2265 .access = PL1_RW, .accessfn = access_tpm, 2266 .type = ARM_CP_IO, 2267 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2268 .writefn = pmintenset_write, .raw_writefn = raw_write, 2269 .resetvalue = 0x0 }, 2270 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2271 .access = PL1_RW, .accessfn = access_tpm, 2272 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2273 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2274 .writefn = pmintenclr_write, }, 2275 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2276 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2277 .access = PL1_RW, .accessfn = access_tpm, 2278 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2279 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2280 .writefn = pmintenclr_write }, 2281 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2282 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2283 .access = PL1_R, 2284 .accessfn = access_aa64_tid2, 2285 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2286 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2287 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2288 .access = PL1_RW, 2289 .accessfn = access_aa64_tid2, 2290 .writefn = csselr_write, .resetvalue = 0, 2291 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2292 offsetof(CPUARMState, cp15.csselr_ns) } }, 2293 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2294 * just RAZ for all cores: 2295 */ 2296 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2297 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2298 .access = PL1_R, .type = ARM_CP_CONST, 2299 .accessfn = access_aa64_tid1, 2300 .resetvalue = 0 }, 2301 /* Auxiliary fault status registers: these also are IMPDEF, and we 2302 * choose to RAZ/WI for all cores. 2303 */ 2304 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2305 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2306 .access = PL1_RW, .accessfn = access_tvm_trvm, 2307 .type = ARM_CP_CONST, .resetvalue = 0 }, 2308 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2309 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2310 .access = PL1_RW, .accessfn = access_tvm_trvm, 2311 .type = ARM_CP_CONST, .resetvalue = 0 }, 2312 /* MAIR can just read-as-written because we don't implement caches 2313 * and so don't need to care about memory attributes. 2314 */ 2315 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2316 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2317 .access = PL1_RW, .accessfn = access_tvm_trvm, 2318 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2319 .resetvalue = 0 }, 2320 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2321 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2322 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2323 .resetvalue = 0 }, 2324 /* For non-long-descriptor page tables these are PRRR and NMRR; 2325 * regardless they still act as reads-as-written for QEMU. 2326 */ 2327 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2328 * allows them to assign the correct fieldoffset based on the endianness 2329 * handled in the field definitions. 2330 */ 2331 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2332 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2333 .access = PL1_RW, .accessfn = access_tvm_trvm, 2334 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2335 offsetof(CPUARMState, cp15.mair0_ns) }, 2336 .resetfn = arm_cp_reset_ignore }, 2337 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2338 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2339 .access = PL1_RW, .accessfn = access_tvm_trvm, 2340 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2341 offsetof(CPUARMState, cp15.mair1_ns) }, 2342 .resetfn = arm_cp_reset_ignore }, 2343 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2344 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2345 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2346 /* 32 bit ITLB invalidates */ 2347 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2348 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2349 .writefn = tlbiall_write }, 2350 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2351 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2352 .writefn = tlbimva_write }, 2353 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2354 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2355 .writefn = tlbiasid_write }, 2356 /* 32 bit DTLB invalidates */ 2357 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2358 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2359 .writefn = tlbiall_write }, 2360 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2361 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2362 .writefn = tlbimva_write }, 2363 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2364 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2365 .writefn = tlbiasid_write }, 2366 /* 32 bit TLB invalidates */ 2367 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2368 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2369 .writefn = tlbiall_write }, 2370 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2371 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2372 .writefn = tlbimva_write }, 2373 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2374 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2375 .writefn = tlbiasid_write }, 2376 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2377 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2378 .writefn = tlbimvaa_write }, 2379 REGINFO_SENTINEL 2380 }; 2381 2382 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2383 /* 32 bit TLB invalidates, Inner Shareable */ 2384 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2385 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2386 .writefn = tlbiall_is_write }, 2387 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2388 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2389 .writefn = tlbimva_is_write }, 2390 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2391 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2392 .writefn = tlbiasid_is_write }, 2393 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2394 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2395 .writefn = tlbimvaa_is_write }, 2396 REGINFO_SENTINEL 2397 }; 2398 2399 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2400 /* PMOVSSET is not implemented in v7 before v7ve */ 2401 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2402 .access = PL0_RW, .accessfn = pmreg_access, 2403 .type = ARM_CP_ALIAS | ARM_CP_IO, 2404 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2405 .writefn = pmovsset_write, 2406 .raw_writefn = raw_write }, 2407 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2408 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2409 .access = PL0_RW, .accessfn = pmreg_access, 2410 .type = ARM_CP_ALIAS | ARM_CP_IO, 2411 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2412 .writefn = pmovsset_write, 2413 .raw_writefn = raw_write }, 2414 REGINFO_SENTINEL 2415 }; 2416 2417 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2418 uint64_t value) 2419 { 2420 value &= 1; 2421 env->teecr = value; 2422 } 2423 2424 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2425 bool isread) 2426 { 2427 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2428 return CP_ACCESS_TRAP; 2429 } 2430 return CP_ACCESS_OK; 2431 } 2432 2433 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2434 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2435 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2436 .resetvalue = 0, 2437 .writefn = teecr_write }, 2438 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2439 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2440 .accessfn = teehbr_access, .resetvalue = 0 }, 2441 REGINFO_SENTINEL 2442 }; 2443 2444 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2445 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2446 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2447 .access = PL0_RW, 2448 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2449 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2450 .access = PL0_RW, 2451 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2452 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2453 .resetfn = arm_cp_reset_ignore }, 2454 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2455 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2456 .access = PL0_R|PL1_W, 2457 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2458 .resetvalue = 0}, 2459 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2460 .access = PL0_R|PL1_W, 2461 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2462 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2463 .resetfn = arm_cp_reset_ignore }, 2464 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2465 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2466 .access = PL1_RW, 2467 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2468 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2469 .access = PL1_RW, 2470 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2471 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2472 .resetvalue = 0 }, 2473 REGINFO_SENTINEL 2474 }; 2475 2476 #ifndef CONFIG_USER_ONLY 2477 2478 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2479 bool isread) 2480 { 2481 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2482 * Writable only at the highest implemented exception level. 2483 */ 2484 int el = arm_current_el(env); 2485 uint64_t hcr; 2486 uint32_t cntkctl; 2487 2488 switch (el) { 2489 case 0: 2490 hcr = arm_hcr_el2_eff(env); 2491 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2492 cntkctl = env->cp15.cnthctl_el2; 2493 } else { 2494 cntkctl = env->cp15.c14_cntkctl; 2495 } 2496 if (!extract32(cntkctl, 0, 2)) { 2497 return CP_ACCESS_TRAP; 2498 } 2499 break; 2500 case 1: 2501 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2502 arm_is_secure_below_el3(env)) { 2503 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2504 return CP_ACCESS_TRAP_UNCATEGORIZED; 2505 } 2506 break; 2507 case 2: 2508 case 3: 2509 break; 2510 } 2511 2512 if (!isread && el < arm_highest_el(env)) { 2513 return CP_ACCESS_TRAP_UNCATEGORIZED; 2514 } 2515 2516 return CP_ACCESS_OK; 2517 } 2518 2519 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2520 bool isread) 2521 { 2522 unsigned int cur_el = arm_current_el(env); 2523 bool secure = arm_is_secure(env); 2524 uint64_t hcr = arm_hcr_el2_eff(env); 2525 2526 switch (cur_el) { 2527 case 0: 2528 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2529 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2530 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2531 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2532 } 2533 2534 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2535 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2536 return CP_ACCESS_TRAP; 2537 } 2538 2539 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2540 if (hcr & HCR_E2H) { 2541 if (timeridx == GTIMER_PHYS && 2542 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2543 return CP_ACCESS_TRAP_EL2; 2544 } 2545 } else { 2546 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2547 if (arm_feature(env, ARM_FEATURE_EL2) && 2548 timeridx == GTIMER_PHYS && !secure && 2549 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2550 return CP_ACCESS_TRAP_EL2; 2551 } 2552 } 2553 break; 2554 2555 case 1: 2556 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2557 if (arm_feature(env, ARM_FEATURE_EL2) && 2558 timeridx == GTIMER_PHYS && !secure && 2559 (hcr & HCR_E2H 2560 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2561 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2562 return CP_ACCESS_TRAP_EL2; 2563 } 2564 break; 2565 } 2566 return CP_ACCESS_OK; 2567 } 2568 2569 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2570 bool isread) 2571 { 2572 unsigned int cur_el = arm_current_el(env); 2573 bool secure = arm_is_secure(env); 2574 uint64_t hcr = arm_hcr_el2_eff(env); 2575 2576 switch (cur_el) { 2577 case 0: 2578 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2579 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2580 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2581 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2582 } 2583 2584 /* 2585 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2586 * EL0 if EL0[PV]TEN is zero. 2587 */ 2588 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2589 return CP_ACCESS_TRAP; 2590 } 2591 /* fall through */ 2592 2593 case 1: 2594 if (arm_feature(env, ARM_FEATURE_EL2) && 2595 timeridx == GTIMER_PHYS && !secure) { 2596 if (hcr & HCR_E2H) { 2597 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2598 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2599 return CP_ACCESS_TRAP_EL2; 2600 } 2601 } else { 2602 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2603 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2604 return CP_ACCESS_TRAP_EL2; 2605 } 2606 } 2607 } 2608 break; 2609 } 2610 return CP_ACCESS_OK; 2611 } 2612 2613 static CPAccessResult gt_pct_access(CPUARMState *env, 2614 const ARMCPRegInfo *ri, 2615 bool isread) 2616 { 2617 return gt_counter_access(env, GTIMER_PHYS, isread); 2618 } 2619 2620 static CPAccessResult gt_vct_access(CPUARMState *env, 2621 const ARMCPRegInfo *ri, 2622 bool isread) 2623 { 2624 return gt_counter_access(env, GTIMER_VIRT, isread); 2625 } 2626 2627 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2628 bool isread) 2629 { 2630 return gt_timer_access(env, GTIMER_PHYS, isread); 2631 } 2632 2633 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2634 bool isread) 2635 { 2636 return gt_timer_access(env, GTIMER_VIRT, isread); 2637 } 2638 2639 static CPAccessResult gt_stimer_access(CPUARMState *env, 2640 const ARMCPRegInfo *ri, 2641 bool isread) 2642 { 2643 /* The AArch64 register view of the secure physical timer is 2644 * always accessible from EL3, and configurably accessible from 2645 * Secure EL1. 2646 */ 2647 switch (arm_current_el(env)) { 2648 case 1: 2649 if (!arm_is_secure(env)) { 2650 return CP_ACCESS_TRAP; 2651 } 2652 if (!(env->cp15.scr_el3 & SCR_ST)) { 2653 return CP_ACCESS_TRAP_EL3; 2654 } 2655 return CP_ACCESS_OK; 2656 case 0: 2657 case 2: 2658 return CP_ACCESS_TRAP; 2659 case 3: 2660 return CP_ACCESS_OK; 2661 default: 2662 g_assert_not_reached(); 2663 } 2664 } 2665 2666 static uint64_t gt_get_countervalue(CPUARMState *env) 2667 { 2668 ARMCPU *cpu = env_archcpu(env); 2669 2670 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2671 } 2672 2673 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2674 { 2675 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2676 2677 if (gt->ctl & 1) { 2678 /* Timer enabled: calculate and set current ISTATUS, irq, and 2679 * reset timer to when ISTATUS next has to change 2680 */ 2681 uint64_t offset = timeridx == GTIMER_VIRT ? 2682 cpu->env.cp15.cntvoff_el2 : 0; 2683 uint64_t count = gt_get_countervalue(&cpu->env); 2684 /* Note that this must be unsigned 64 bit arithmetic: */ 2685 int istatus = count - offset >= gt->cval; 2686 uint64_t nexttick; 2687 int irqstate; 2688 2689 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2690 2691 irqstate = (istatus && !(gt->ctl & 2)); 2692 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2693 2694 if (istatus) { 2695 /* Next transition is when count rolls back over to zero */ 2696 nexttick = UINT64_MAX; 2697 } else { 2698 /* Next transition is when we hit cval */ 2699 nexttick = gt->cval + offset; 2700 } 2701 /* Note that the desired next expiry time might be beyond the 2702 * signed-64-bit range of a QEMUTimer -- in this case we just 2703 * set the timer for as far in the future as possible. When the 2704 * timer expires we will reset the timer for any remaining period. 2705 */ 2706 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2707 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2708 } else { 2709 timer_mod(cpu->gt_timer[timeridx], nexttick); 2710 } 2711 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2712 } else { 2713 /* Timer disabled: ISTATUS and timer output always clear */ 2714 gt->ctl &= ~4; 2715 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2716 timer_del(cpu->gt_timer[timeridx]); 2717 trace_arm_gt_recalc_disabled(timeridx); 2718 } 2719 } 2720 2721 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2722 int timeridx) 2723 { 2724 ARMCPU *cpu = env_archcpu(env); 2725 2726 timer_del(cpu->gt_timer[timeridx]); 2727 } 2728 2729 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2730 { 2731 return gt_get_countervalue(env); 2732 } 2733 2734 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2735 { 2736 uint64_t hcr; 2737 2738 switch (arm_current_el(env)) { 2739 case 2: 2740 hcr = arm_hcr_el2_eff(env); 2741 if (hcr & HCR_E2H) { 2742 return 0; 2743 } 2744 break; 2745 case 0: 2746 hcr = arm_hcr_el2_eff(env); 2747 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2748 return 0; 2749 } 2750 break; 2751 } 2752 2753 return env->cp15.cntvoff_el2; 2754 } 2755 2756 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2757 { 2758 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2759 } 2760 2761 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2762 int timeridx, 2763 uint64_t value) 2764 { 2765 trace_arm_gt_cval_write(timeridx, value); 2766 env->cp15.c14_timer[timeridx].cval = value; 2767 gt_recalc_timer(env_archcpu(env), timeridx); 2768 } 2769 2770 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2771 int timeridx) 2772 { 2773 uint64_t offset = 0; 2774 2775 switch (timeridx) { 2776 case GTIMER_VIRT: 2777 case GTIMER_HYPVIRT: 2778 offset = gt_virt_cnt_offset(env); 2779 break; 2780 } 2781 2782 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2783 (gt_get_countervalue(env) - offset)); 2784 } 2785 2786 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2787 int timeridx, 2788 uint64_t value) 2789 { 2790 uint64_t offset = 0; 2791 2792 switch (timeridx) { 2793 case GTIMER_VIRT: 2794 case GTIMER_HYPVIRT: 2795 offset = gt_virt_cnt_offset(env); 2796 break; 2797 } 2798 2799 trace_arm_gt_tval_write(timeridx, value); 2800 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2801 sextract64(value, 0, 32); 2802 gt_recalc_timer(env_archcpu(env), timeridx); 2803 } 2804 2805 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2806 int timeridx, 2807 uint64_t value) 2808 { 2809 ARMCPU *cpu = env_archcpu(env); 2810 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2811 2812 trace_arm_gt_ctl_write(timeridx, value); 2813 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2814 if ((oldval ^ value) & 1) { 2815 /* Enable toggled */ 2816 gt_recalc_timer(cpu, timeridx); 2817 } else if ((oldval ^ value) & 2) { 2818 /* IMASK toggled: don't need to recalculate, 2819 * just set the interrupt line based on ISTATUS 2820 */ 2821 int irqstate = (oldval & 4) && !(value & 2); 2822 2823 trace_arm_gt_imask_toggle(timeridx, irqstate); 2824 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2825 } 2826 } 2827 2828 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2829 { 2830 gt_timer_reset(env, ri, GTIMER_PHYS); 2831 } 2832 2833 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2834 uint64_t value) 2835 { 2836 gt_cval_write(env, ri, GTIMER_PHYS, value); 2837 } 2838 2839 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2840 { 2841 return gt_tval_read(env, ri, GTIMER_PHYS); 2842 } 2843 2844 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2845 uint64_t value) 2846 { 2847 gt_tval_write(env, ri, GTIMER_PHYS, value); 2848 } 2849 2850 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2851 uint64_t value) 2852 { 2853 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2854 } 2855 2856 static int gt_phys_redir_timeridx(CPUARMState *env) 2857 { 2858 switch (arm_mmu_idx(env)) { 2859 case ARMMMUIdx_E20_0: 2860 case ARMMMUIdx_E20_2: 2861 case ARMMMUIdx_E20_2_PAN: 2862 return GTIMER_HYP; 2863 default: 2864 return GTIMER_PHYS; 2865 } 2866 } 2867 2868 static int gt_virt_redir_timeridx(CPUARMState *env) 2869 { 2870 switch (arm_mmu_idx(env)) { 2871 case ARMMMUIdx_E20_0: 2872 case ARMMMUIdx_E20_2: 2873 case ARMMMUIdx_E20_2_PAN: 2874 return GTIMER_HYPVIRT; 2875 default: 2876 return GTIMER_VIRT; 2877 } 2878 } 2879 2880 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2881 const ARMCPRegInfo *ri) 2882 { 2883 int timeridx = gt_phys_redir_timeridx(env); 2884 return env->cp15.c14_timer[timeridx].cval; 2885 } 2886 2887 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2888 uint64_t value) 2889 { 2890 int timeridx = gt_phys_redir_timeridx(env); 2891 gt_cval_write(env, ri, timeridx, value); 2892 } 2893 2894 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2895 const ARMCPRegInfo *ri) 2896 { 2897 int timeridx = gt_phys_redir_timeridx(env); 2898 return gt_tval_read(env, ri, timeridx); 2899 } 2900 2901 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2902 uint64_t value) 2903 { 2904 int timeridx = gt_phys_redir_timeridx(env); 2905 gt_tval_write(env, ri, timeridx, value); 2906 } 2907 2908 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2909 const ARMCPRegInfo *ri) 2910 { 2911 int timeridx = gt_phys_redir_timeridx(env); 2912 return env->cp15.c14_timer[timeridx].ctl; 2913 } 2914 2915 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2916 uint64_t value) 2917 { 2918 int timeridx = gt_phys_redir_timeridx(env); 2919 gt_ctl_write(env, ri, timeridx, value); 2920 } 2921 2922 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2923 { 2924 gt_timer_reset(env, ri, GTIMER_VIRT); 2925 } 2926 2927 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2928 uint64_t value) 2929 { 2930 gt_cval_write(env, ri, GTIMER_VIRT, value); 2931 } 2932 2933 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2934 { 2935 return gt_tval_read(env, ri, GTIMER_VIRT); 2936 } 2937 2938 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2939 uint64_t value) 2940 { 2941 gt_tval_write(env, ri, GTIMER_VIRT, value); 2942 } 2943 2944 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2945 uint64_t value) 2946 { 2947 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2948 } 2949 2950 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2951 uint64_t value) 2952 { 2953 ARMCPU *cpu = env_archcpu(env); 2954 2955 trace_arm_gt_cntvoff_write(value); 2956 raw_write(env, ri, value); 2957 gt_recalc_timer(cpu, GTIMER_VIRT); 2958 } 2959 2960 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2961 const ARMCPRegInfo *ri) 2962 { 2963 int timeridx = gt_virt_redir_timeridx(env); 2964 return env->cp15.c14_timer[timeridx].cval; 2965 } 2966 2967 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2968 uint64_t value) 2969 { 2970 int timeridx = gt_virt_redir_timeridx(env); 2971 gt_cval_write(env, ri, timeridx, value); 2972 } 2973 2974 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2975 const ARMCPRegInfo *ri) 2976 { 2977 int timeridx = gt_virt_redir_timeridx(env); 2978 return gt_tval_read(env, ri, timeridx); 2979 } 2980 2981 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2982 uint64_t value) 2983 { 2984 int timeridx = gt_virt_redir_timeridx(env); 2985 gt_tval_write(env, ri, timeridx, value); 2986 } 2987 2988 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2989 const ARMCPRegInfo *ri) 2990 { 2991 int timeridx = gt_virt_redir_timeridx(env); 2992 return env->cp15.c14_timer[timeridx].ctl; 2993 } 2994 2995 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2996 uint64_t value) 2997 { 2998 int timeridx = gt_virt_redir_timeridx(env); 2999 gt_ctl_write(env, ri, timeridx, value); 3000 } 3001 3002 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3003 { 3004 gt_timer_reset(env, ri, GTIMER_HYP); 3005 } 3006 3007 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3008 uint64_t value) 3009 { 3010 gt_cval_write(env, ri, GTIMER_HYP, value); 3011 } 3012 3013 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3014 { 3015 return gt_tval_read(env, ri, GTIMER_HYP); 3016 } 3017 3018 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3019 uint64_t value) 3020 { 3021 gt_tval_write(env, ri, GTIMER_HYP, value); 3022 } 3023 3024 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3025 uint64_t value) 3026 { 3027 gt_ctl_write(env, ri, GTIMER_HYP, value); 3028 } 3029 3030 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3031 { 3032 gt_timer_reset(env, ri, GTIMER_SEC); 3033 } 3034 3035 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3036 uint64_t value) 3037 { 3038 gt_cval_write(env, ri, GTIMER_SEC, value); 3039 } 3040 3041 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3042 { 3043 return gt_tval_read(env, ri, GTIMER_SEC); 3044 } 3045 3046 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3047 uint64_t value) 3048 { 3049 gt_tval_write(env, ri, GTIMER_SEC, value); 3050 } 3051 3052 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3053 uint64_t value) 3054 { 3055 gt_ctl_write(env, ri, GTIMER_SEC, value); 3056 } 3057 3058 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3059 { 3060 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3061 } 3062 3063 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3064 uint64_t value) 3065 { 3066 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3067 } 3068 3069 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3070 { 3071 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3072 } 3073 3074 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3075 uint64_t value) 3076 { 3077 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3078 } 3079 3080 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3081 uint64_t value) 3082 { 3083 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3084 } 3085 3086 void arm_gt_ptimer_cb(void *opaque) 3087 { 3088 ARMCPU *cpu = opaque; 3089 3090 gt_recalc_timer(cpu, GTIMER_PHYS); 3091 } 3092 3093 void arm_gt_vtimer_cb(void *opaque) 3094 { 3095 ARMCPU *cpu = opaque; 3096 3097 gt_recalc_timer(cpu, GTIMER_VIRT); 3098 } 3099 3100 void arm_gt_htimer_cb(void *opaque) 3101 { 3102 ARMCPU *cpu = opaque; 3103 3104 gt_recalc_timer(cpu, GTIMER_HYP); 3105 } 3106 3107 void arm_gt_stimer_cb(void *opaque) 3108 { 3109 ARMCPU *cpu = opaque; 3110 3111 gt_recalc_timer(cpu, GTIMER_SEC); 3112 } 3113 3114 void arm_gt_hvtimer_cb(void *opaque) 3115 { 3116 ARMCPU *cpu = opaque; 3117 3118 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3119 } 3120 3121 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3122 { 3123 ARMCPU *cpu = env_archcpu(env); 3124 3125 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3126 } 3127 3128 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3129 /* Note that CNTFRQ is purely reads-as-written for the benefit 3130 * of software; writing it doesn't actually change the timer frequency. 3131 * Our reset value matches the fixed frequency we implement the timer at. 3132 */ 3133 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3134 .type = ARM_CP_ALIAS, 3135 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3136 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3137 }, 3138 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3139 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3140 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3141 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3142 .resetfn = arm_gt_cntfrq_reset, 3143 }, 3144 /* overall control: mostly access permissions */ 3145 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3146 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3147 .access = PL1_RW, 3148 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3149 .resetvalue = 0, 3150 }, 3151 /* per-timer control */ 3152 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3153 .secure = ARM_CP_SECSTATE_NS, 3154 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3155 .accessfn = gt_ptimer_access, 3156 .fieldoffset = offsetoflow32(CPUARMState, 3157 cp15.c14_timer[GTIMER_PHYS].ctl), 3158 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3159 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3160 }, 3161 { .name = "CNTP_CTL_S", 3162 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3163 .secure = ARM_CP_SECSTATE_S, 3164 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3165 .accessfn = gt_ptimer_access, 3166 .fieldoffset = offsetoflow32(CPUARMState, 3167 cp15.c14_timer[GTIMER_SEC].ctl), 3168 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3169 }, 3170 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3171 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3172 .type = ARM_CP_IO, .access = PL0_RW, 3173 .accessfn = gt_ptimer_access, 3174 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3175 .resetvalue = 0, 3176 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3177 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3178 }, 3179 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3180 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3181 .accessfn = gt_vtimer_access, 3182 .fieldoffset = offsetoflow32(CPUARMState, 3183 cp15.c14_timer[GTIMER_VIRT].ctl), 3184 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3185 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3186 }, 3187 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3188 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3189 .type = ARM_CP_IO, .access = PL0_RW, 3190 .accessfn = gt_vtimer_access, 3191 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3192 .resetvalue = 0, 3193 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3194 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3195 }, 3196 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3197 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3198 .secure = ARM_CP_SECSTATE_NS, 3199 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3200 .accessfn = gt_ptimer_access, 3201 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3202 }, 3203 { .name = "CNTP_TVAL_S", 3204 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3205 .secure = ARM_CP_SECSTATE_S, 3206 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3207 .accessfn = gt_ptimer_access, 3208 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3209 }, 3210 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3211 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3212 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3213 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3214 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3215 }, 3216 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3217 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3218 .accessfn = gt_vtimer_access, 3219 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3220 }, 3221 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3222 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3223 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3224 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3225 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3226 }, 3227 /* The counter itself */ 3228 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3229 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3230 .accessfn = gt_pct_access, 3231 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3232 }, 3233 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3234 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3235 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3236 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3237 }, 3238 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3239 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3240 .accessfn = gt_vct_access, 3241 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3242 }, 3243 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3244 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3245 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3246 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3247 }, 3248 /* Comparison value, indicating when the timer goes off */ 3249 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3250 .secure = ARM_CP_SECSTATE_NS, 3251 .access = PL0_RW, 3252 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3253 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3254 .accessfn = gt_ptimer_access, 3255 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3256 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3257 }, 3258 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3259 .secure = ARM_CP_SECSTATE_S, 3260 .access = PL0_RW, 3261 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3262 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3263 .accessfn = gt_ptimer_access, 3264 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3265 }, 3266 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3267 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3268 .access = PL0_RW, 3269 .type = ARM_CP_IO, 3270 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3271 .resetvalue = 0, .accessfn = gt_ptimer_access, 3272 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3273 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3274 }, 3275 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3276 .access = PL0_RW, 3277 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3278 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3279 .accessfn = gt_vtimer_access, 3280 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3281 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3282 }, 3283 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3284 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3285 .access = PL0_RW, 3286 .type = ARM_CP_IO, 3287 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3288 .resetvalue = 0, .accessfn = gt_vtimer_access, 3289 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3290 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3291 }, 3292 /* Secure timer -- this is actually restricted to only EL3 3293 * and configurably Secure-EL1 via the accessfn. 3294 */ 3295 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3296 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3297 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3298 .accessfn = gt_stimer_access, 3299 .readfn = gt_sec_tval_read, 3300 .writefn = gt_sec_tval_write, 3301 .resetfn = gt_sec_timer_reset, 3302 }, 3303 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3304 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3305 .type = ARM_CP_IO, .access = PL1_RW, 3306 .accessfn = gt_stimer_access, 3307 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3308 .resetvalue = 0, 3309 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3310 }, 3311 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3312 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3313 .type = ARM_CP_IO, .access = PL1_RW, 3314 .accessfn = gt_stimer_access, 3315 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3316 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3317 }, 3318 REGINFO_SENTINEL 3319 }; 3320 3321 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3322 bool isread) 3323 { 3324 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3325 return CP_ACCESS_TRAP; 3326 } 3327 return CP_ACCESS_OK; 3328 } 3329 3330 #else 3331 3332 /* In user-mode most of the generic timer registers are inaccessible 3333 * however modern kernels (4.12+) allow access to cntvct_el0 3334 */ 3335 3336 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3337 { 3338 ARMCPU *cpu = env_archcpu(env); 3339 3340 /* Currently we have no support for QEMUTimer in linux-user so we 3341 * can't call gt_get_countervalue(env), instead we directly 3342 * call the lower level functions. 3343 */ 3344 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3345 } 3346 3347 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3348 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3349 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3350 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3351 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3352 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3353 }, 3354 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3355 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3356 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3357 .readfn = gt_virt_cnt_read, 3358 }, 3359 REGINFO_SENTINEL 3360 }; 3361 3362 #endif 3363 3364 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3365 { 3366 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3367 raw_write(env, ri, value); 3368 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3369 raw_write(env, ri, value & 0xfffff6ff); 3370 } else { 3371 raw_write(env, ri, value & 0xfffff1ff); 3372 } 3373 } 3374 3375 #ifndef CONFIG_USER_ONLY 3376 /* get_phys_addr() isn't present for user-mode-only targets */ 3377 3378 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3379 bool isread) 3380 { 3381 if (ri->opc2 & 4) { 3382 /* The ATS12NSO* operations must trap to EL3 if executed in 3383 * Secure EL1 (which can only happen if EL3 is AArch64). 3384 * They are simply UNDEF if executed from NS EL1. 3385 * They function normally from EL2 or EL3. 3386 */ 3387 if (arm_current_el(env) == 1) { 3388 if (arm_is_secure_below_el3(env)) { 3389 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3390 } 3391 return CP_ACCESS_TRAP_UNCATEGORIZED; 3392 } 3393 } 3394 return CP_ACCESS_OK; 3395 } 3396 3397 #ifdef CONFIG_TCG 3398 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3399 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3400 { 3401 hwaddr phys_addr; 3402 target_ulong page_size; 3403 int prot; 3404 bool ret; 3405 uint64_t par64; 3406 bool format64 = false; 3407 MemTxAttrs attrs = {}; 3408 ARMMMUFaultInfo fi = {}; 3409 ARMCacheAttrs cacheattrs = {}; 3410 3411 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3412 &prot, &page_size, &fi, &cacheattrs); 3413 3414 if (ret) { 3415 /* 3416 * Some kinds of translation fault must cause exceptions rather 3417 * than being reported in the PAR. 3418 */ 3419 int current_el = arm_current_el(env); 3420 int target_el; 3421 uint32_t syn, fsr, fsc; 3422 bool take_exc = false; 3423 3424 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env) 3425 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3426 /* 3427 * Synchronous stage 2 fault on an access made as part of the 3428 * translation table walk for AT S1E0* or AT S1E1* insn 3429 * executed from NS EL1. If this is a synchronous external abort 3430 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3431 * to EL3. Otherwise the fault is taken as an exception to EL2, 3432 * and HPFAR_EL2 holds the faulting IPA. 3433 */ 3434 if (fi.type == ARMFault_SyncExternalOnWalk && 3435 (env->cp15.scr_el3 & SCR_EA)) { 3436 target_el = 3; 3437 } else { 3438 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3439 target_el = 2; 3440 } 3441 take_exc = true; 3442 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3443 /* 3444 * Synchronous external aborts during a translation table walk 3445 * are taken as Data Abort exceptions. 3446 */ 3447 if (fi.stage2) { 3448 if (current_el == 3) { 3449 target_el = 3; 3450 } else { 3451 target_el = 2; 3452 } 3453 } else { 3454 target_el = exception_target_el(env); 3455 } 3456 take_exc = true; 3457 } 3458 3459 if (take_exc) { 3460 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3461 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3462 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3463 fsr = arm_fi_to_lfsc(&fi); 3464 fsc = extract32(fsr, 0, 6); 3465 } else { 3466 fsr = arm_fi_to_sfsc(&fi); 3467 fsc = 0x3f; 3468 } 3469 /* 3470 * Report exception with ESR indicating a fault due to a 3471 * translation table walk for a cache maintenance instruction. 3472 */ 3473 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3474 fi.ea, 1, fi.s1ptw, 1, fsc); 3475 env->exception.vaddress = value; 3476 env->exception.fsr = fsr; 3477 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3478 } 3479 } 3480 3481 if (is_a64(env)) { 3482 format64 = true; 3483 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3484 /* 3485 * ATS1Cxx: 3486 * * TTBCR.EAE determines whether the result is returned using the 3487 * 32-bit or the 64-bit PAR format 3488 * * Instructions executed in Hyp mode always use the 64bit format 3489 * 3490 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3491 * * The Non-secure TTBCR.EAE bit is set to 1 3492 * * The implementation includes EL2, and the value of HCR.VM is 1 3493 * 3494 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3495 * 3496 * ATS1Hx always uses the 64bit format. 3497 */ 3498 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3499 3500 if (arm_feature(env, ARM_FEATURE_EL2)) { 3501 if (mmu_idx == ARMMMUIdx_E10_0 || 3502 mmu_idx == ARMMMUIdx_E10_1 || 3503 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3504 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3505 } else { 3506 format64 |= arm_current_el(env) == 2; 3507 } 3508 } 3509 } 3510 3511 if (format64) { 3512 /* Create a 64-bit PAR */ 3513 par64 = (1 << 11); /* LPAE bit always set */ 3514 if (!ret) { 3515 par64 |= phys_addr & ~0xfffULL; 3516 if (!attrs.secure) { 3517 par64 |= (1 << 9); /* NS */ 3518 } 3519 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3520 par64 |= cacheattrs.shareability << 7; /* SH */ 3521 } else { 3522 uint32_t fsr = arm_fi_to_lfsc(&fi); 3523 3524 par64 |= 1; /* F */ 3525 par64 |= (fsr & 0x3f) << 1; /* FS */ 3526 if (fi.stage2) { 3527 par64 |= (1 << 9); /* S */ 3528 } 3529 if (fi.s1ptw) { 3530 par64 |= (1 << 8); /* PTW */ 3531 } 3532 } 3533 } else { 3534 /* fsr is a DFSR/IFSR value for the short descriptor 3535 * translation table format (with WnR always clear). 3536 * Convert it to a 32-bit PAR. 3537 */ 3538 if (!ret) { 3539 /* We do not set any attribute bits in the PAR */ 3540 if (page_size == (1 << 24) 3541 && arm_feature(env, ARM_FEATURE_V7)) { 3542 par64 = (phys_addr & 0xff000000) | (1 << 1); 3543 } else { 3544 par64 = phys_addr & 0xfffff000; 3545 } 3546 if (!attrs.secure) { 3547 par64 |= (1 << 9); /* NS */ 3548 } 3549 } else { 3550 uint32_t fsr = arm_fi_to_sfsc(&fi); 3551 3552 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3553 ((fsr & 0xf) << 1) | 1; 3554 } 3555 } 3556 return par64; 3557 } 3558 #endif /* CONFIG_TCG */ 3559 3560 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3561 { 3562 #ifdef CONFIG_TCG 3563 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3564 uint64_t par64; 3565 ARMMMUIdx mmu_idx; 3566 int el = arm_current_el(env); 3567 bool secure = arm_is_secure_below_el3(env); 3568 3569 switch (ri->opc2 & 6) { 3570 case 0: 3571 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3572 switch (el) { 3573 case 3: 3574 mmu_idx = ARMMMUIdx_SE3; 3575 break; 3576 case 2: 3577 g_assert(!secure); /* TODO: ARMv8.4-SecEL2 */ 3578 /* fall through */ 3579 case 1: 3580 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3581 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN 3582 : ARMMMUIdx_Stage1_E1_PAN); 3583 } else { 3584 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; 3585 } 3586 break; 3587 default: 3588 g_assert_not_reached(); 3589 } 3590 break; 3591 case 2: 3592 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3593 switch (el) { 3594 case 3: 3595 mmu_idx = ARMMMUIdx_SE10_0; 3596 break; 3597 case 2: 3598 mmu_idx = ARMMMUIdx_Stage1_E0; 3599 break; 3600 case 1: 3601 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; 3602 break; 3603 default: 3604 g_assert_not_reached(); 3605 } 3606 break; 3607 case 4: 3608 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3609 mmu_idx = ARMMMUIdx_E10_1; 3610 break; 3611 case 6: 3612 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3613 mmu_idx = ARMMMUIdx_E10_0; 3614 break; 3615 default: 3616 g_assert_not_reached(); 3617 } 3618 3619 par64 = do_ats_write(env, value, access_type, mmu_idx); 3620 3621 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3622 #else 3623 /* Handled by hardware accelerator. */ 3624 g_assert_not_reached(); 3625 #endif /* CONFIG_TCG */ 3626 } 3627 3628 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3629 uint64_t value) 3630 { 3631 #ifdef CONFIG_TCG 3632 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3633 uint64_t par64; 3634 3635 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3636 3637 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3638 #else 3639 /* Handled by hardware accelerator. */ 3640 g_assert_not_reached(); 3641 #endif /* CONFIG_TCG */ 3642 } 3643 3644 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3645 bool isread) 3646 { 3647 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 3648 return CP_ACCESS_TRAP; 3649 } 3650 return CP_ACCESS_OK; 3651 } 3652 3653 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3654 uint64_t value) 3655 { 3656 #ifdef CONFIG_TCG 3657 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3658 ARMMMUIdx mmu_idx; 3659 int secure = arm_is_secure_below_el3(env); 3660 3661 switch (ri->opc2 & 6) { 3662 case 0: 3663 switch (ri->opc1) { 3664 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3665 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3666 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN 3667 : ARMMMUIdx_Stage1_E1_PAN); 3668 } else { 3669 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; 3670 } 3671 break; 3672 case 4: /* AT S1E2R, AT S1E2W */ 3673 mmu_idx = ARMMMUIdx_E2; 3674 break; 3675 case 6: /* AT S1E3R, AT S1E3W */ 3676 mmu_idx = ARMMMUIdx_SE3; 3677 break; 3678 default: 3679 g_assert_not_reached(); 3680 } 3681 break; 3682 case 2: /* AT S1E0R, AT S1E0W */ 3683 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; 3684 break; 3685 case 4: /* AT S12E1R, AT S12E1W */ 3686 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3687 break; 3688 case 6: /* AT S12E0R, AT S12E0W */ 3689 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3690 break; 3691 default: 3692 g_assert_not_reached(); 3693 } 3694 3695 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3696 #else 3697 /* Handled by hardware accelerator. */ 3698 g_assert_not_reached(); 3699 #endif /* CONFIG_TCG */ 3700 } 3701 #endif 3702 3703 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3704 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3705 .access = PL1_RW, .resetvalue = 0, 3706 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3707 offsetoflow32(CPUARMState, cp15.par_ns) }, 3708 .writefn = par_write }, 3709 #ifndef CONFIG_USER_ONLY 3710 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3711 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3712 .access = PL1_W, .accessfn = ats_access, 3713 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3714 #endif 3715 REGINFO_SENTINEL 3716 }; 3717 3718 /* Return basic MPU access permission bits. */ 3719 static uint32_t simple_mpu_ap_bits(uint32_t val) 3720 { 3721 uint32_t ret; 3722 uint32_t mask; 3723 int i; 3724 ret = 0; 3725 mask = 3; 3726 for (i = 0; i < 16; i += 2) { 3727 ret |= (val >> i) & mask; 3728 mask <<= 2; 3729 } 3730 return ret; 3731 } 3732 3733 /* Pad basic MPU access permission bits to extended format. */ 3734 static uint32_t extended_mpu_ap_bits(uint32_t val) 3735 { 3736 uint32_t ret; 3737 uint32_t mask; 3738 int i; 3739 ret = 0; 3740 mask = 3; 3741 for (i = 0; i < 16; i += 2) { 3742 ret |= (val & mask) << i; 3743 mask <<= 2; 3744 } 3745 return ret; 3746 } 3747 3748 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3749 uint64_t value) 3750 { 3751 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3752 } 3753 3754 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3755 { 3756 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3757 } 3758 3759 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3760 uint64_t value) 3761 { 3762 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3763 } 3764 3765 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3766 { 3767 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3768 } 3769 3770 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3771 { 3772 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3773 3774 if (!u32p) { 3775 return 0; 3776 } 3777 3778 u32p += env->pmsav7.rnr[M_REG_NS]; 3779 return *u32p; 3780 } 3781 3782 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3783 uint64_t value) 3784 { 3785 ARMCPU *cpu = env_archcpu(env); 3786 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3787 3788 if (!u32p) { 3789 return; 3790 } 3791 3792 u32p += env->pmsav7.rnr[M_REG_NS]; 3793 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3794 *u32p = value; 3795 } 3796 3797 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3798 uint64_t value) 3799 { 3800 ARMCPU *cpu = env_archcpu(env); 3801 uint32_t nrgs = cpu->pmsav7_dregion; 3802 3803 if (value >= nrgs) { 3804 qemu_log_mask(LOG_GUEST_ERROR, 3805 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3806 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3807 return; 3808 } 3809 3810 raw_write(env, ri, value); 3811 } 3812 3813 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3814 /* Reset for all these registers is handled in arm_cpu_reset(), 3815 * because the PMSAv7 is also used by M-profile CPUs, which do 3816 * not register cpregs but still need the state to be reset. 3817 */ 3818 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3819 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3820 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3821 .readfn = pmsav7_read, .writefn = pmsav7_write, 3822 .resetfn = arm_cp_reset_ignore }, 3823 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3824 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3825 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3826 .readfn = pmsav7_read, .writefn = pmsav7_write, 3827 .resetfn = arm_cp_reset_ignore }, 3828 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3829 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3830 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3831 .readfn = pmsav7_read, .writefn = pmsav7_write, 3832 .resetfn = arm_cp_reset_ignore }, 3833 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3834 .access = PL1_RW, 3835 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3836 .writefn = pmsav7_rgnr_write, 3837 .resetfn = arm_cp_reset_ignore }, 3838 REGINFO_SENTINEL 3839 }; 3840 3841 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3842 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3843 .access = PL1_RW, .type = ARM_CP_ALIAS, 3844 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3845 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3846 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3847 .access = PL1_RW, .type = ARM_CP_ALIAS, 3848 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3849 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3850 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3851 .access = PL1_RW, 3852 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3853 .resetvalue = 0, }, 3854 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3855 .access = PL1_RW, 3856 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3857 .resetvalue = 0, }, 3858 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3859 .access = PL1_RW, 3860 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3861 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3862 .access = PL1_RW, 3863 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3864 /* Protection region base and size registers */ 3865 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3866 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3867 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3868 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3869 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3870 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3871 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3872 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3873 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3874 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3875 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3876 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3877 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3878 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3879 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3880 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3881 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3882 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3883 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3884 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3885 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3886 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3887 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3888 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3889 REGINFO_SENTINEL 3890 }; 3891 3892 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3893 uint64_t value) 3894 { 3895 TCR *tcr = raw_ptr(env, ri); 3896 int maskshift = extract32(value, 0, 3); 3897 3898 if (!arm_feature(env, ARM_FEATURE_V8)) { 3899 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3900 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3901 * using Long-desciptor translation table format */ 3902 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3903 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3904 /* In an implementation that includes the Security Extensions 3905 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3906 * Short-descriptor translation table format. 3907 */ 3908 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3909 } else { 3910 value &= TTBCR_N; 3911 } 3912 } 3913 3914 /* Update the masks corresponding to the TCR bank being written 3915 * Note that we always calculate mask and base_mask, but 3916 * they are only used for short-descriptor tables (ie if EAE is 0); 3917 * for long-descriptor tables the TCR fields are used differently 3918 * and the mask and base_mask values are meaningless. 3919 */ 3920 tcr->raw_tcr = value; 3921 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3922 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3923 } 3924 3925 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3926 uint64_t value) 3927 { 3928 ARMCPU *cpu = env_archcpu(env); 3929 TCR *tcr = raw_ptr(env, ri); 3930 3931 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3932 /* With LPAE the TTBCR could result in a change of ASID 3933 * via the TTBCR.A1 bit, so do a TLB flush. 3934 */ 3935 tlb_flush(CPU(cpu)); 3936 } 3937 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3938 value = deposit64(tcr->raw_tcr, 0, 32, value); 3939 vmsa_ttbcr_raw_write(env, ri, value); 3940 } 3941 3942 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3943 { 3944 TCR *tcr = raw_ptr(env, ri); 3945 3946 /* Reset both the TCR as well as the masks corresponding to the bank of 3947 * the TCR being reset. 3948 */ 3949 tcr->raw_tcr = 0; 3950 tcr->mask = 0; 3951 tcr->base_mask = 0xffffc000u; 3952 } 3953 3954 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3955 uint64_t value) 3956 { 3957 ARMCPU *cpu = env_archcpu(env); 3958 TCR *tcr = raw_ptr(env, ri); 3959 3960 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3961 tlb_flush(CPU(cpu)); 3962 tcr->raw_tcr = value; 3963 } 3964 3965 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3966 uint64_t value) 3967 { 3968 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3969 if (cpreg_field_is_64bit(ri) && 3970 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3971 ARMCPU *cpu = env_archcpu(env); 3972 tlb_flush(CPU(cpu)); 3973 } 3974 raw_write(env, ri, value); 3975 } 3976 3977 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3978 uint64_t value) 3979 { 3980 /* 3981 * If we are running with E2&0 regime, then an ASID is active. 3982 * Flush if that might be changing. Note we're not checking 3983 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3984 * holds the active ASID, only checking the field that might. 3985 */ 3986 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3987 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3988 tlb_flush_by_mmuidx(env_cpu(env), 3989 ARMMMUIdxBit_E20_2 | 3990 ARMMMUIdxBit_E20_2_PAN | 3991 ARMMMUIdxBit_E20_0); 3992 } 3993 raw_write(env, ri, value); 3994 } 3995 3996 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3997 uint64_t value) 3998 { 3999 ARMCPU *cpu = env_archcpu(env); 4000 CPUState *cs = CPU(cpu); 4001 4002 /* 4003 * A change in VMID to the stage2 page table (Stage2) invalidates 4004 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 4005 */ 4006 if (raw_read(env, ri) != value) { 4007 tlb_flush_by_mmuidx(cs, 4008 ARMMMUIdxBit_E10_1 | 4009 ARMMMUIdxBit_E10_1_PAN | 4010 ARMMMUIdxBit_E10_0); 4011 raw_write(env, ri, value); 4012 } 4013 } 4014 4015 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4016 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4017 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4018 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4019 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4020 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4021 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4022 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4023 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4024 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4025 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4026 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4027 offsetof(CPUARMState, cp15.dfar_ns) } }, 4028 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4029 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4030 .access = PL1_RW, .accessfn = access_tvm_trvm, 4031 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4032 .resetvalue = 0, }, 4033 REGINFO_SENTINEL 4034 }; 4035 4036 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4037 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4038 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4039 .access = PL1_RW, .accessfn = access_tvm_trvm, 4040 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4041 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4042 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4043 .access = PL1_RW, .accessfn = access_tvm_trvm, 4044 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4045 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4046 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4047 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4048 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4049 .access = PL1_RW, .accessfn = access_tvm_trvm, 4050 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4051 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4052 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4053 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4054 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4055 .access = PL1_RW, .accessfn = access_tvm_trvm, 4056 .writefn = vmsa_tcr_el12_write, 4057 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 4058 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4059 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4060 .access = PL1_RW, .accessfn = access_tvm_trvm, 4061 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4062 .raw_writefn = vmsa_ttbcr_raw_write, 4063 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4064 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4065 REGINFO_SENTINEL 4066 }; 4067 4068 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4069 * qemu tlbs nor adjusting cached masks. 4070 */ 4071 static const ARMCPRegInfo ttbcr2_reginfo = { 4072 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4073 .access = PL1_RW, .accessfn = access_tvm_trvm, 4074 .type = ARM_CP_ALIAS, 4075 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4076 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 4077 }; 4078 4079 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4080 uint64_t value) 4081 { 4082 env->cp15.c15_ticonfig = value & 0xe7; 4083 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4084 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4085 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4086 } 4087 4088 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4089 uint64_t value) 4090 { 4091 env->cp15.c15_threadid = value & 0xffff; 4092 } 4093 4094 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4095 uint64_t value) 4096 { 4097 /* Wait-for-interrupt (deprecated) */ 4098 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4099 } 4100 4101 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4102 uint64_t value) 4103 { 4104 /* On OMAP there are registers indicating the max/min index of dcache lines 4105 * containing a dirty line; cache flush operations have to reset these. 4106 */ 4107 env->cp15.c15_i_max = 0x000; 4108 env->cp15.c15_i_min = 0xff0; 4109 } 4110 4111 static const ARMCPRegInfo omap_cp_reginfo[] = { 4112 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4113 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4114 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4115 .resetvalue = 0, }, 4116 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4117 .access = PL1_RW, .type = ARM_CP_NOP }, 4118 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4119 .access = PL1_RW, 4120 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4121 .writefn = omap_ticonfig_write }, 4122 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4123 .access = PL1_RW, 4124 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4125 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4126 .access = PL1_RW, .resetvalue = 0xff0, 4127 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4128 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4129 .access = PL1_RW, 4130 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4131 .writefn = omap_threadid_write }, 4132 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4133 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4134 .type = ARM_CP_NO_RAW, 4135 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4136 /* TODO: Peripheral port remap register: 4137 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4138 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4139 * when MMU is off. 4140 */ 4141 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4142 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4143 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4144 .writefn = omap_cachemaint_write }, 4145 { .name = "C9", .cp = 15, .crn = 9, 4146 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4147 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4148 REGINFO_SENTINEL 4149 }; 4150 4151 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4152 uint64_t value) 4153 { 4154 env->cp15.c15_cpar = value & 0x3fff; 4155 } 4156 4157 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4158 { .name = "XSCALE_CPAR", 4159 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4160 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4161 .writefn = xscale_cpar_write, }, 4162 { .name = "XSCALE_AUXCR", 4163 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4164 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4165 .resetvalue = 0, }, 4166 /* XScale specific cache-lockdown: since we have no cache we NOP these 4167 * and hope the guest does not really rely on cache behaviour. 4168 */ 4169 { .name = "XSCALE_LOCK_ICACHE_LINE", 4170 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4171 .access = PL1_W, .type = ARM_CP_NOP }, 4172 { .name = "XSCALE_UNLOCK_ICACHE", 4173 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4174 .access = PL1_W, .type = ARM_CP_NOP }, 4175 { .name = "XSCALE_DCACHE_LOCK", 4176 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4177 .access = PL1_RW, .type = ARM_CP_NOP }, 4178 { .name = "XSCALE_UNLOCK_DCACHE", 4179 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4180 .access = PL1_W, .type = ARM_CP_NOP }, 4181 REGINFO_SENTINEL 4182 }; 4183 4184 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4185 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 4186 * implementation of this implementation-defined space. 4187 * Ideally this should eventually disappear in favour of actually 4188 * implementing the correct behaviour for all cores. 4189 */ 4190 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4191 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4192 .access = PL1_RW, 4193 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4194 .resetvalue = 0 }, 4195 REGINFO_SENTINEL 4196 }; 4197 4198 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4199 /* Cache status: RAZ because we have no cache so it's always clean */ 4200 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4201 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4202 .resetvalue = 0 }, 4203 REGINFO_SENTINEL 4204 }; 4205 4206 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4207 /* We never have a a block transfer operation in progress */ 4208 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4209 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4210 .resetvalue = 0 }, 4211 /* The cache ops themselves: these all NOP for QEMU */ 4212 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4213 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4214 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4215 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4216 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4217 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4218 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4219 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4220 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4221 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4222 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4223 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4224 REGINFO_SENTINEL 4225 }; 4226 4227 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4228 /* The cache test-and-clean instructions always return (1 << 30) 4229 * to indicate that there are no dirty cache lines. 4230 */ 4231 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4232 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4233 .resetvalue = (1 << 30) }, 4234 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4235 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4236 .resetvalue = (1 << 30) }, 4237 REGINFO_SENTINEL 4238 }; 4239 4240 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4241 /* Ignore ReadBuffer accesses */ 4242 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4243 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4244 .access = PL1_RW, .resetvalue = 0, 4245 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4246 REGINFO_SENTINEL 4247 }; 4248 4249 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4250 { 4251 ARMCPU *cpu = env_archcpu(env); 4252 unsigned int cur_el = arm_current_el(env); 4253 bool secure = arm_is_secure(env); 4254 4255 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 4256 return env->cp15.vpidr_el2; 4257 } 4258 return raw_read(env, ri); 4259 } 4260 4261 static uint64_t mpidr_read_val(CPUARMState *env) 4262 { 4263 ARMCPU *cpu = env_archcpu(env); 4264 uint64_t mpidr = cpu->mp_affinity; 4265 4266 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4267 mpidr |= (1U << 31); 4268 /* Cores which are uniprocessor (non-coherent) 4269 * but still implement the MP extensions set 4270 * bit 30. (For instance, Cortex-R5). 4271 */ 4272 if (cpu->mp_is_up) { 4273 mpidr |= (1u << 30); 4274 } 4275 } 4276 return mpidr; 4277 } 4278 4279 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4280 { 4281 unsigned int cur_el = arm_current_el(env); 4282 bool secure = arm_is_secure(env); 4283 4284 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 4285 return env->cp15.vmpidr_el2; 4286 } 4287 return mpidr_read_val(env); 4288 } 4289 4290 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4291 /* NOP AMAIR0/1 */ 4292 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4293 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4294 .access = PL1_RW, .accessfn = access_tvm_trvm, 4295 .type = ARM_CP_CONST, .resetvalue = 0 }, 4296 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4297 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4298 .access = PL1_RW, .accessfn = access_tvm_trvm, 4299 .type = ARM_CP_CONST, .resetvalue = 0 }, 4300 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4301 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4302 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4303 offsetof(CPUARMState, cp15.par_ns)} }, 4304 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4305 .access = PL1_RW, .accessfn = access_tvm_trvm, 4306 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4307 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4308 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4309 .writefn = vmsa_ttbr_write, }, 4310 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4311 .access = PL1_RW, .accessfn = access_tvm_trvm, 4312 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4313 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4314 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4315 .writefn = vmsa_ttbr_write, }, 4316 REGINFO_SENTINEL 4317 }; 4318 4319 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4320 { 4321 return vfp_get_fpcr(env); 4322 } 4323 4324 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4325 uint64_t value) 4326 { 4327 vfp_set_fpcr(env, value); 4328 } 4329 4330 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4331 { 4332 return vfp_get_fpsr(env); 4333 } 4334 4335 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4336 uint64_t value) 4337 { 4338 vfp_set_fpsr(env, value); 4339 } 4340 4341 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4342 bool isread) 4343 { 4344 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4345 return CP_ACCESS_TRAP; 4346 } 4347 return CP_ACCESS_OK; 4348 } 4349 4350 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4351 uint64_t value) 4352 { 4353 env->daif = value & PSTATE_DAIF; 4354 } 4355 4356 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4357 { 4358 return env->pstate & PSTATE_PAN; 4359 } 4360 4361 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4362 uint64_t value) 4363 { 4364 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4365 } 4366 4367 static const ARMCPRegInfo pan_reginfo = { 4368 .name = "PAN", .state = ARM_CP_STATE_AA64, 4369 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4370 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4371 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4372 }; 4373 4374 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4375 { 4376 return env->pstate & PSTATE_UAO; 4377 } 4378 4379 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4380 uint64_t value) 4381 { 4382 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4383 } 4384 4385 static const ARMCPRegInfo uao_reginfo = { 4386 .name = "UAO", .state = ARM_CP_STATE_AA64, 4387 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4388 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4389 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4390 }; 4391 4392 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4393 const ARMCPRegInfo *ri, 4394 bool isread) 4395 { 4396 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4397 switch (arm_current_el(env)) { 4398 case 0: 4399 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4400 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4401 return CP_ACCESS_TRAP; 4402 } 4403 /* fall through */ 4404 case 1: 4405 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4406 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4407 return CP_ACCESS_TRAP_EL2; 4408 } 4409 break; 4410 } 4411 return CP_ACCESS_OK; 4412 } 4413 4414 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4415 const ARMCPRegInfo *ri, 4416 bool isread) 4417 { 4418 /* Cache invalidate/clean to Point of Unification... */ 4419 switch (arm_current_el(env)) { 4420 case 0: 4421 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4422 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4423 return CP_ACCESS_TRAP; 4424 } 4425 /* fall through */ 4426 case 1: 4427 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4428 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4429 return CP_ACCESS_TRAP_EL2; 4430 } 4431 break; 4432 } 4433 return CP_ACCESS_OK; 4434 } 4435 4436 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4437 * Page D4-1736 (DDI0487A.b) 4438 */ 4439 4440 static int vae1_tlbmask(CPUARMState *env) 4441 { 4442 /* Since we exclude secure first, we may read HCR_EL2 directly. */ 4443 if (arm_is_secure_below_el3(env)) { 4444 return ARMMMUIdxBit_SE10_1 | 4445 ARMMMUIdxBit_SE10_1_PAN | 4446 ARMMMUIdxBit_SE10_0; 4447 } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) 4448 == (HCR_E2H | HCR_TGE)) { 4449 return ARMMMUIdxBit_E20_2 | 4450 ARMMMUIdxBit_E20_2_PAN | 4451 ARMMMUIdxBit_E20_0; 4452 } else { 4453 return ARMMMUIdxBit_E10_1 | 4454 ARMMMUIdxBit_E10_1_PAN | 4455 ARMMMUIdxBit_E10_0; 4456 } 4457 } 4458 4459 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4460 uint64_t value) 4461 { 4462 CPUState *cs = env_cpu(env); 4463 int mask = vae1_tlbmask(env); 4464 4465 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4466 } 4467 4468 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4469 uint64_t value) 4470 { 4471 CPUState *cs = env_cpu(env); 4472 int mask = vae1_tlbmask(env); 4473 4474 if (tlb_force_broadcast(env)) { 4475 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4476 } else { 4477 tlb_flush_by_mmuidx(cs, mask); 4478 } 4479 } 4480 4481 static int alle1_tlbmask(CPUARMState *env) 4482 { 4483 /* 4484 * Note that the 'ALL' scope must invalidate both stage 1 and 4485 * stage 2 translations, whereas most other scopes only invalidate 4486 * stage 1 translations. 4487 */ 4488 if (arm_is_secure_below_el3(env)) { 4489 return ARMMMUIdxBit_SE10_1 | 4490 ARMMMUIdxBit_SE10_1_PAN | 4491 ARMMMUIdxBit_SE10_0; 4492 } else { 4493 return ARMMMUIdxBit_E10_1 | 4494 ARMMMUIdxBit_E10_1_PAN | 4495 ARMMMUIdxBit_E10_0; 4496 } 4497 } 4498 4499 static int e2_tlbmask(CPUARMState *env) 4500 { 4501 /* TODO: ARMv8.4-SecEL2 */ 4502 return ARMMMUIdxBit_E20_0 | 4503 ARMMMUIdxBit_E20_2 | 4504 ARMMMUIdxBit_E20_2_PAN | 4505 ARMMMUIdxBit_E2; 4506 } 4507 4508 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4509 uint64_t value) 4510 { 4511 CPUState *cs = env_cpu(env); 4512 int mask = alle1_tlbmask(env); 4513 4514 tlb_flush_by_mmuidx(cs, mask); 4515 } 4516 4517 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4518 uint64_t value) 4519 { 4520 CPUState *cs = env_cpu(env); 4521 int mask = e2_tlbmask(env); 4522 4523 tlb_flush_by_mmuidx(cs, mask); 4524 } 4525 4526 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4527 uint64_t value) 4528 { 4529 ARMCPU *cpu = env_archcpu(env); 4530 CPUState *cs = CPU(cpu); 4531 4532 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4533 } 4534 4535 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4536 uint64_t value) 4537 { 4538 CPUState *cs = env_cpu(env); 4539 int mask = alle1_tlbmask(env); 4540 4541 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4542 } 4543 4544 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4545 uint64_t value) 4546 { 4547 CPUState *cs = env_cpu(env); 4548 int mask = e2_tlbmask(env); 4549 4550 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4551 } 4552 4553 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4554 uint64_t value) 4555 { 4556 CPUState *cs = env_cpu(env); 4557 4558 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4559 } 4560 4561 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4562 uint64_t value) 4563 { 4564 /* Invalidate by VA, EL2 4565 * Currently handles both VAE2 and VALE2, since we don't support 4566 * flush-last-level-only. 4567 */ 4568 CPUState *cs = env_cpu(env); 4569 int mask = e2_tlbmask(env); 4570 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4571 4572 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4573 } 4574 4575 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4576 uint64_t value) 4577 { 4578 /* Invalidate by VA, EL3 4579 * Currently handles both VAE3 and VALE3, since we don't support 4580 * flush-last-level-only. 4581 */ 4582 ARMCPU *cpu = env_archcpu(env); 4583 CPUState *cs = CPU(cpu); 4584 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4585 4586 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4587 } 4588 4589 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4590 uint64_t value) 4591 { 4592 CPUState *cs = env_cpu(env); 4593 int mask = vae1_tlbmask(env); 4594 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4595 4596 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4597 } 4598 4599 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4600 uint64_t value) 4601 { 4602 /* Invalidate by VA, EL1&0 (AArch64 version). 4603 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4604 * since we don't support flush-for-specific-ASID-only or 4605 * flush-last-level-only. 4606 */ 4607 CPUState *cs = env_cpu(env); 4608 int mask = vae1_tlbmask(env); 4609 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4610 4611 if (tlb_force_broadcast(env)) { 4612 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4613 } else { 4614 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4615 } 4616 } 4617 4618 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4619 uint64_t value) 4620 { 4621 CPUState *cs = env_cpu(env); 4622 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4623 4624 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4625 ARMMMUIdxBit_E2); 4626 } 4627 4628 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4629 uint64_t value) 4630 { 4631 CPUState *cs = env_cpu(env); 4632 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4633 4634 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4635 ARMMMUIdxBit_SE3); 4636 } 4637 4638 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4639 bool isread) 4640 { 4641 int cur_el = arm_current_el(env); 4642 4643 if (cur_el < 2) { 4644 uint64_t hcr = arm_hcr_el2_eff(env); 4645 4646 if (cur_el == 0) { 4647 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4648 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4649 return CP_ACCESS_TRAP_EL2; 4650 } 4651 } else { 4652 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4653 return CP_ACCESS_TRAP; 4654 } 4655 if (hcr & HCR_TDZ) { 4656 return CP_ACCESS_TRAP_EL2; 4657 } 4658 } 4659 } else if (hcr & HCR_TDZ) { 4660 return CP_ACCESS_TRAP_EL2; 4661 } 4662 } 4663 return CP_ACCESS_OK; 4664 } 4665 4666 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4667 { 4668 ARMCPU *cpu = env_archcpu(env); 4669 int dzp_bit = 1 << 4; 4670 4671 /* DZP indicates whether DC ZVA access is allowed */ 4672 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4673 dzp_bit = 0; 4674 } 4675 return cpu->dcz_blocksize | dzp_bit; 4676 } 4677 4678 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4679 bool isread) 4680 { 4681 if (!(env->pstate & PSTATE_SP)) { 4682 /* Access to SP_EL0 is undefined if it's being used as 4683 * the stack pointer. 4684 */ 4685 return CP_ACCESS_TRAP_UNCATEGORIZED; 4686 } 4687 return CP_ACCESS_OK; 4688 } 4689 4690 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4691 { 4692 return env->pstate & PSTATE_SP; 4693 } 4694 4695 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4696 { 4697 update_spsel(env, val); 4698 } 4699 4700 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4701 uint64_t value) 4702 { 4703 ARMCPU *cpu = env_archcpu(env); 4704 4705 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4706 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4707 value &= ~SCTLR_M; 4708 } 4709 4710 /* ??? Lots of these bits are not implemented. */ 4711 4712 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4713 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4714 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4715 } else { 4716 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4717 SCTLR_ATA0 | SCTLR_ATA); 4718 } 4719 } 4720 4721 if (raw_read(env, ri) == value) { 4722 /* Skip the TLB flush if nothing actually changed; Linux likes 4723 * to do a lot of pointless SCTLR writes. 4724 */ 4725 return; 4726 } 4727 4728 raw_write(env, ri, value); 4729 4730 /* This may enable/disable the MMU, so do a TLB flush. */ 4731 tlb_flush(CPU(cpu)); 4732 4733 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4734 /* 4735 * Normally we would always end the TB on an SCTLR write; see the 4736 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4737 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4738 * of hflags from the translator, so do it here. 4739 */ 4740 arm_rebuild_hflags(env); 4741 } 4742 } 4743 4744 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4745 bool isread) 4746 { 4747 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4748 return CP_ACCESS_TRAP_FP_EL2; 4749 } 4750 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4751 return CP_ACCESS_TRAP_FP_EL3; 4752 } 4753 return CP_ACCESS_OK; 4754 } 4755 4756 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4757 uint64_t value) 4758 { 4759 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4760 } 4761 4762 static const ARMCPRegInfo v8_cp_reginfo[] = { 4763 /* Minimal set of EL0-visible registers. This will need to be expanded 4764 * significantly for system emulation of AArch64 CPUs. 4765 */ 4766 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4767 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4768 .access = PL0_RW, .type = ARM_CP_NZCV }, 4769 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4770 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4771 .type = ARM_CP_NO_RAW, 4772 .access = PL0_RW, .accessfn = aa64_daif_access, 4773 .fieldoffset = offsetof(CPUARMState, daif), 4774 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4775 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4776 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4777 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4778 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4779 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4780 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4781 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4782 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4783 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4784 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4785 .access = PL0_R, .type = ARM_CP_NO_RAW, 4786 .readfn = aa64_dczid_read }, 4787 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4788 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4789 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4790 #ifndef CONFIG_USER_ONLY 4791 /* Avoid overhead of an access check that always passes in user-mode */ 4792 .accessfn = aa64_zva_access, 4793 #endif 4794 }, 4795 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4796 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4797 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4798 /* Cache ops: all NOPs since we don't emulate caches */ 4799 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4800 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4801 .access = PL1_W, .type = ARM_CP_NOP, 4802 .accessfn = aa64_cacheop_pou_access }, 4803 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4804 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4805 .access = PL1_W, .type = ARM_CP_NOP, 4806 .accessfn = aa64_cacheop_pou_access }, 4807 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4808 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4809 .access = PL0_W, .type = ARM_CP_NOP, 4810 .accessfn = aa64_cacheop_pou_access }, 4811 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4812 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4813 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4814 .type = ARM_CP_NOP }, 4815 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4816 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4817 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4818 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4819 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4820 .access = PL0_W, .type = ARM_CP_NOP, 4821 .accessfn = aa64_cacheop_poc_access }, 4822 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4823 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4824 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4825 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4826 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4827 .access = PL0_W, .type = ARM_CP_NOP, 4828 .accessfn = aa64_cacheop_pou_access }, 4829 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4830 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4831 .access = PL0_W, .type = ARM_CP_NOP, 4832 .accessfn = aa64_cacheop_poc_access }, 4833 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4834 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4835 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4836 /* TLBI operations */ 4837 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4838 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4839 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4840 .writefn = tlbi_aa64_vmalle1is_write }, 4841 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4842 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4843 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4844 .writefn = tlbi_aa64_vae1is_write }, 4845 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4846 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4847 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4848 .writefn = tlbi_aa64_vmalle1is_write }, 4849 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4850 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4851 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4852 .writefn = tlbi_aa64_vae1is_write }, 4853 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4854 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4855 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4856 .writefn = tlbi_aa64_vae1is_write }, 4857 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4858 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4859 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4860 .writefn = tlbi_aa64_vae1is_write }, 4861 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4862 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4863 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4864 .writefn = tlbi_aa64_vmalle1_write }, 4865 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4866 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4867 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4868 .writefn = tlbi_aa64_vae1_write }, 4869 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4870 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4871 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4872 .writefn = tlbi_aa64_vmalle1_write }, 4873 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4874 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4875 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4876 .writefn = tlbi_aa64_vae1_write }, 4877 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4878 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4879 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4880 .writefn = tlbi_aa64_vae1_write }, 4881 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4882 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4883 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4884 .writefn = tlbi_aa64_vae1_write }, 4885 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4886 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4887 .access = PL2_W, .type = ARM_CP_NOP }, 4888 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4889 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4890 .access = PL2_W, .type = ARM_CP_NOP }, 4891 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4892 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4893 .access = PL2_W, .type = ARM_CP_NO_RAW, 4894 .writefn = tlbi_aa64_alle1is_write }, 4895 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4896 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4897 .access = PL2_W, .type = ARM_CP_NO_RAW, 4898 .writefn = tlbi_aa64_alle1is_write }, 4899 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4900 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4901 .access = PL2_W, .type = ARM_CP_NOP }, 4902 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4903 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4904 .access = PL2_W, .type = ARM_CP_NOP }, 4905 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4906 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4907 .access = PL2_W, .type = ARM_CP_NO_RAW, 4908 .writefn = tlbi_aa64_alle1_write }, 4909 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4910 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4911 .access = PL2_W, .type = ARM_CP_NO_RAW, 4912 .writefn = tlbi_aa64_alle1is_write }, 4913 #ifndef CONFIG_USER_ONLY 4914 /* 64 bit address translation operations */ 4915 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4916 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4917 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4918 .writefn = ats_write64 }, 4919 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4920 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4921 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4922 .writefn = ats_write64 }, 4923 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4924 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4925 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4926 .writefn = ats_write64 }, 4927 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4928 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4929 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4930 .writefn = ats_write64 }, 4931 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4932 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4933 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4934 .writefn = ats_write64 }, 4935 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4936 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4937 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4938 .writefn = ats_write64 }, 4939 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4940 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4941 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4942 .writefn = ats_write64 }, 4943 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4944 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4945 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4946 .writefn = ats_write64 }, 4947 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4948 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4949 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4950 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4951 .writefn = ats_write64 }, 4952 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4953 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4954 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4955 .writefn = ats_write64 }, 4956 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4957 .type = ARM_CP_ALIAS, 4958 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4959 .access = PL1_RW, .resetvalue = 0, 4960 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4961 .writefn = par_write }, 4962 #endif 4963 /* TLB invalidate last level of translation table walk */ 4964 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4965 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4966 .writefn = tlbimva_is_write }, 4967 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4968 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4969 .writefn = tlbimvaa_is_write }, 4970 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4971 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4972 .writefn = tlbimva_write }, 4973 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4974 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4975 .writefn = tlbimvaa_write }, 4976 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4977 .type = ARM_CP_NO_RAW, .access = PL2_W, 4978 .writefn = tlbimva_hyp_write }, 4979 { .name = "TLBIMVALHIS", 4980 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4981 .type = ARM_CP_NO_RAW, .access = PL2_W, 4982 .writefn = tlbimva_hyp_is_write }, 4983 { .name = "TLBIIPAS2", 4984 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4985 .type = ARM_CP_NOP, .access = PL2_W }, 4986 { .name = "TLBIIPAS2IS", 4987 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4988 .type = ARM_CP_NOP, .access = PL2_W }, 4989 { .name = "TLBIIPAS2L", 4990 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4991 .type = ARM_CP_NOP, .access = PL2_W }, 4992 { .name = "TLBIIPAS2LIS", 4993 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4994 .type = ARM_CP_NOP, .access = PL2_W }, 4995 /* 32 bit cache operations */ 4996 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4997 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 4998 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 4999 .type = ARM_CP_NOP, .access = PL1_W }, 5000 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5001 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5002 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5003 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5004 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5005 .type = ARM_CP_NOP, .access = PL1_W }, 5006 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5007 .type = ARM_CP_NOP, .access = PL1_W }, 5008 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5009 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5010 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5011 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5012 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5013 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5014 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5015 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5016 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5017 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5018 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5019 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5020 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5021 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5022 /* MMU Domain access control / MPU write buffer control */ 5023 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5024 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5025 .writefn = dacr_write, .raw_writefn = raw_write, 5026 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5027 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5028 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5029 .type = ARM_CP_ALIAS, 5030 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5031 .access = PL1_RW, 5032 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5033 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5034 .type = ARM_CP_ALIAS, 5035 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5036 .access = PL1_RW, 5037 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5038 /* We rely on the access checks not allowing the guest to write to the 5039 * state field when SPSel indicates that it's being used as the stack 5040 * pointer. 5041 */ 5042 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5043 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5044 .access = PL1_RW, .accessfn = sp_el0_access, 5045 .type = ARM_CP_ALIAS, 5046 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5047 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5048 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5049 .access = PL2_RW, .type = ARM_CP_ALIAS, 5050 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5051 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5052 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5053 .type = ARM_CP_NO_RAW, 5054 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5055 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5056 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5057 .type = ARM_CP_ALIAS, 5058 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5059 .access = PL2_RW, .accessfn = fpexc32_access }, 5060 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5061 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5062 .access = PL2_RW, .resetvalue = 0, 5063 .writefn = dacr_write, .raw_writefn = raw_write, 5064 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5065 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5066 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5067 .access = PL2_RW, .resetvalue = 0, 5068 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5069 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5070 .type = ARM_CP_ALIAS, 5071 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5072 .access = PL2_RW, 5073 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5074 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5075 .type = ARM_CP_ALIAS, 5076 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5077 .access = PL2_RW, 5078 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5079 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5080 .type = ARM_CP_ALIAS, 5081 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5082 .access = PL2_RW, 5083 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5084 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5085 .type = ARM_CP_ALIAS, 5086 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5087 .access = PL2_RW, 5088 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5089 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5090 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5091 .resetvalue = 0, 5092 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5093 { .name = "SDCR", .type = ARM_CP_ALIAS, 5094 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5095 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5096 .writefn = sdcr_write, 5097 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5098 REGINFO_SENTINEL 5099 }; 5100 5101 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5102 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5103 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5104 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5105 .access = PL2_RW, 5106 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5107 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5108 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5109 .access = PL2_RW, 5110 .type = ARM_CP_CONST, .resetvalue = 0 }, 5111 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5112 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5113 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5114 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5115 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5116 .access = PL2_RW, 5117 .type = ARM_CP_CONST, .resetvalue = 0 }, 5118 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5119 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5120 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5121 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5122 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5123 .access = PL2_RW, .type = ARM_CP_CONST, 5124 .resetvalue = 0 }, 5125 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5126 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5127 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5128 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5129 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5130 .access = PL2_RW, .type = ARM_CP_CONST, 5131 .resetvalue = 0 }, 5132 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5133 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5134 .access = PL2_RW, .type = ARM_CP_CONST, 5135 .resetvalue = 0 }, 5136 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5137 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5138 .access = PL2_RW, .type = ARM_CP_CONST, 5139 .resetvalue = 0 }, 5140 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5141 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5142 .access = PL2_RW, .type = ARM_CP_CONST, 5143 .resetvalue = 0 }, 5144 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5145 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5146 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5147 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5148 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5149 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5150 .type = ARM_CP_CONST, .resetvalue = 0 }, 5151 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5152 .cp = 15, .opc1 = 6, .crm = 2, 5153 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5154 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5155 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5156 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5157 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5158 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5159 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5160 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5161 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5162 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5163 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5164 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5165 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5166 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5167 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5168 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5169 .resetvalue = 0 }, 5170 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5171 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5172 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5173 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5174 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5175 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5176 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5177 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5178 .resetvalue = 0 }, 5179 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5180 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5181 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5182 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5183 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5184 .resetvalue = 0 }, 5185 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5186 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5187 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5188 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5189 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5190 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5191 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5192 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5193 .access = PL2_RW, .accessfn = access_tda, 5194 .type = ARM_CP_CONST, .resetvalue = 0 }, 5195 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5196 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5197 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5198 .type = ARM_CP_CONST, .resetvalue = 0 }, 5199 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5200 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5201 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5202 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5203 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5204 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5205 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5206 .type = ARM_CP_CONST, 5207 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5208 .access = PL2_RW, .resetvalue = 0 }, 5209 REGINFO_SENTINEL 5210 }; 5211 5212 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5213 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5214 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5215 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5216 .access = PL2_RW, 5217 .type = ARM_CP_CONST, .resetvalue = 0 }, 5218 REGINFO_SENTINEL 5219 }; 5220 5221 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5222 { 5223 ARMCPU *cpu = env_archcpu(env); 5224 5225 if (arm_feature(env, ARM_FEATURE_V8)) { 5226 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5227 } else { 5228 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5229 } 5230 5231 if (arm_feature(env, ARM_FEATURE_EL3)) { 5232 valid_mask &= ~HCR_HCD; 5233 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5234 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5235 * However, if we're using the SMC PSCI conduit then QEMU is 5236 * effectively acting like EL3 firmware and so the guest at 5237 * EL2 should retain the ability to prevent EL1 from being 5238 * able to make SMC calls into the ersatz firmware, so in 5239 * that case HCR.TSC should be read/write. 5240 */ 5241 valid_mask &= ~HCR_TSC; 5242 } 5243 5244 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5245 if (cpu_isar_feature(aa64_vh, cpu)) { 5246 valid_mask |= HCR_E2H; 5247 } 5248 if (cpu_isar_feature(aa64_lor, cpu)) { 5249 valid_mask |= HCR_TLOR; 5250 } 5251 if (cpu_isar_feature(aa64_pauth, cpu)) { 5252 valid_mask |= HCR_API | HCR_APK; 5253 } 5254 if (cpu_isar_feature(aa64_mte, cpu)) { 5255 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5256 } 5257 } 5258 5259 /* Clear RES0 bits. */ 5260 value &= valid_mask; 5261 5262 /* 5263 * These bits change the MMU setup: 5264 * HCR_VM enables stage 2 translation 5265 * HCR_PTW forbids certain page-table setups 5266 * HCR_DC disables stage1 and enables stage2 translation 5267 * HCR_DCT enables tagging on (disabled) stage1 translation 5268 */ 5269 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5270 tlb_flush(CPU(cpu)); 5271 } 5272 env->cp15.hcr_el2 = value; 5273 5274 /* 5275 * Updates to VI and VF require us to update the status of 5276 * virtual interrupts, which are the logical OR of these bits 5277 * and the state of the input lines from the GIC. (This requires 5278 * that we have the iothread lock, which is done by marking the 5279 * reginfo structs as ARM_CP_IO.) 5280 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5281 * possible for it to be taken immediately, because VIRQ and 5282 * VFIQ are masked unless running at EL0 or EL1, and HCR 5283 * can only be written at EL2. 5284 */ 5285 g_assert(qemu_mutex_iothread_locked()); 5286 arm_cpu_update_virq(cpu); 5287 arm_cpu_update_vfiq(cpu); 5288 } 5289 5290 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5291 { 5292 do_hcr_write(env, value, 0); 5293 } 5294 5295 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5296 uint64_t value) 5297 { 5298 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5299 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5300 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5301 } 5302 5303 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5304 uint64_t value) 5305 { 5306 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5307 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5308 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5309 } 5310 5311 /* 5312 * Return the effective value of HCR_EL2. 5313 * Bits that are not included here: 5314 * RW (read from SCR_EL3.RW as needed) 5315 */ 5316 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5317 { 5318 uint64_t ret = env->cp15.hcr_el2; 5319 5320 if (arm_is_secure_below_el3(env)) { 5321 /* 5322 * "This register has no effect if EL2 is not enabled in the 5323 * current Security state". This is ARMv8.4-SecEL2 speak for 5324 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5325 * 5326 * Prior to that, the language was "In an implementation that 5327 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5328 * as if this field is 0 for all purposes other than a direct 5329 * read or write access of HCR_EL2". With lots of enumeration 5330 * on a per-field basis. In current QEMU, this is condition 5331 * is arm_is_secure_below_el3. 5332 * 5333 * Since the v8.4 language applies to the entire register, and 5334 * appears to be backward compatible, use that. 5335 */ 5336 return 0; 5337 } 5338 5339 /* 5340 * For a cpu that supports both aarch64 and aarch32, we can set bits 5341 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5342 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5343 */ 5344 if (!arm_el_is_aa64(env, 2)) { 5345 uint64_t aa32_valid; 5346 5347 /* 5348 * These bits are up-to-date as of ARMv8.6. 5349 * For HCR, it's easiest to list just the 2 bits that are invalid. 5350 * For HCR2, list those that are valid. 5351 */ 5352 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5353 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5354 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5355 ret &= aa32_valid; 5356 } 5357 5358 if (ret & HCR_TGE) { 5359 /* These bits are up-to-date as of ARMv8.6. */ 5360 if (ret & HCR_E2H) { 5361 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5362 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5363 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5364 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5365 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5366 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5367 } else { 5368 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5369 } 5370 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5371 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5372 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5373 HCR_TLOR); 5374 } 5375 5376 return ret; 5377 } 5378 5379 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5380 uint64_t value) 5381 { 5382 /* 5383 * For A-profile AArch32 EL3, if NSACR.CP10 5384 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5385 */ 5386 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5387 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5388 value &= ~(0x3 << 10); 5389 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5390 } 5391 env->cp15.cptr_el[2] = value; 5392 } 5393 5394 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5395 { 5396 /* 5397 * For A-profile AArch32 EL3, if NSACR.CP10 5398 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5399 */ 5400 uint64_t value = env->cp15.cptr_el[2]; 5401 5402 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5403 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5404 value |= 0x3 << 10; 5405 } 5406 return value; 5407 } 5408 5409 static const ARMCPRegInfo el2_cp_reginfo[] = { 5410 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5411 .type = ARM_CP_IO, 5412 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5413 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5414 .writefn = hcr_write }, 5415 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5416 .type = ARM_CP_ALIAS | ARM_CP_IO, 5417 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5418 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5419 .writefn = hcr_writelow }, 5420 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5421 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5422 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5423 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5424 .type = ARM_CP_ALIAS, 5425 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5426 .access = PL2_RW, 5427 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5428 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5429 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5430 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5431 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5432 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5433 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5434 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5435 .type = ARM_CP_ALIAS, 5436 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5437 .access = PL2_RW, 5438 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5439 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5440 .type = ARM_CP_ALIAS, 5441 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5442 .access = PL2_RW, 5443 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5444 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5445 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5446 .access = PL2_RW, .writefn = vbar_write, 5447 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5448 .resetvalue = 0 }, 5449 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5450 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5451 .access = PL3_RW, .type = ARM_CP_ALIAS, 5452 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5453 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5454 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5455 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5456 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5457 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5458 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5459 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5460 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5461 .resetvalue = 0 }, 5462 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5463 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5464 .access = PL2_RW, .type = ARM_CP_ALIAS, 5465 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5466 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5467 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5468 .access = PL2_RW, .type = ARM_CP_CONST, 5469 .resetvalue = 0 }, 5470 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5471 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5472 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5473 .access = PL2_RW, .type = ARM_CP_CONST, 5474 .resetvalue = 0 }, 5475 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5476 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5477 .access = PL2_RW, .type = ARM_CP_CONST, 5478 .resetvalue = 0 }, 5479 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5480 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5481 .access = PL2_RW, .type = ARM_CP_CONST, 5482 .resetvalue = 0 }, 5483 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5484 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5485 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5486 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5487 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5488 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5489 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5490 .type = ARM_CP_ALIAS, 5491 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5492 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5493 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5494 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5495 .access = PL2_RW, 5496 /* no .writefn needed as this can't cause an ASID change; 5497 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5498 */ 5499 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5500 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5501 .cp = 15, .opc1 = 6, .crm = 2, 5502 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5503 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5504 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5505 .writefn = vttbr_write }, 5506 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5507 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5508 .access = PL2_RW, .writefn = vttbr_write, 5509 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5510 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5511 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5512 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5513 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5514 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5515 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5516 .access = PL2_RW, .resetvalue = 0, 5517 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5518 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5519 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5520 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5521 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5522 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5523 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5524 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5525 { .name = "TLBIALLNSNH", 5526 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5527 .type = ARM_CP_NO_RAW, .access = PL2_W, 5528 .writefn = tlbiall_nsnh_write }, 5529 { .name = "TLBIALLNSNHIS", 5530 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5531 .type = ARM_CP_NO_RAW, .access = PL2_W, 5532 .writefn = tlbiall_nsnh_is_write }, 5533 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5534 .type = ARM_CP_NO_RAW, .access = PL2_W, 5535 .writefn = tlbiall_hyp_write }, 5536 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5537 .type = ARM_CP_NO_RAW, .access = PL2_W, 5538 .writefn = tlbiall_hyp_is_write }, 5539 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5540 .type = ARM_CP_NO_RAW, .access = PL2_W, 5541 .writefn = tlbimva_hyp_write }, 5542 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5543 .type = ARM_CP_NO_RAW, .access = PL2_W, 5544 .writefn = tlbimva_hyp_is_write }, 5545 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5546 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5547 .type = ARM_CP_NO_RAW, .access = PL2_W, 5548 .writefn = tlbi_aa64_alle2_write }, 5549 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5550 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5551 .type = ARM_CP_NO_RAW, .access = PL2_W, 5552 .writefn = tlbi_aa64_vae2_write }, 5553 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5554 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5555 .access = PL2_W, .type = ARM_CP_NO_RAW, 5556 .writefn = tlbi_aa64_vae2_write }, 5557 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5558 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5559 .access = PL2_W, .type = ARM_CP_NO_RAW, 5560 .writefn = tlbi_aa64_alle2is_write }, 5561 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5562 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5563 .type = ARM_CP_NO_RAW, .access = PL2_W, 5564 .writefn = tlbi_aa64_vae2is_write }, 5565 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5566 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5567 .access = PL2_W, .type = ARM_CP_NO_RAW, 5568 .writefn = tlbi_aa64_vae2is_write }, 5569 #ifndef CONFIG_USER_ONLY 5570 /* Unlike the other EL2-related AT operations, these must 5571 * UNDEF from EL3 if EL2 is not implemented, which is why we 5572 * define them here rather than with the rest of the AT ops. 5573 */ 5574 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5575 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5576 .access = PL2_W, .accessfn = at_s1e2_access, 5577 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5578 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5579 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5580 .access = PL2_W, .accessfn = at_s1e2_access, 5581 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5582 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5583 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5584 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5585 * to behave as if SCR.NS was 1. 5586 */ 5587 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5588 .access = PL2_W, 5589 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5590 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5591 .access = PL2_W, 5592 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5593 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5594 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5595 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5596 * reset values as IMPDEF. We choose to reset to 3 to comply with 5597 * both ARMv7 and ARMv8. 5598 */ 5599 .access = PL2_RW, .resetvalue = 3, 5600 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5601 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5602 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5603 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5604 .writefn = gt_cntvoff_write, 5605 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5606 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5607 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5608 .writefn = gt_cntvoff_write, 5609 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5610 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5611 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5612 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5613 .type = ARM_CP_IO, .access = PL2_RW, 5614 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5615 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5616 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5617 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5618 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5619 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5620 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5621 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5622 .resetfn = gt_hyp_timer_reset, 5623 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5624 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5625 .type = ARM_CP_IO, 5626 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5627 .access = PL2_RW, 5628 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5629 .resetvalue = 0, 5630 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5631 #endif 5632 /* The only field of MDCR_EL2 that has a defined architectural reset value 5633 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 5634 * don't implement any PMU event counters, so using zero as a reset 5635 * value for MDCR_EL2 is okay 5636 */ 5637 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5638 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5639 .access = PL2_RW, .resetvalue = 0, 5640 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5641 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5642 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5643 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5644 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5645 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5646 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5647 .access = PL2_RW, 5648 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5649 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5650 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5651 .access = PL2_RW, 5652 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5653 REGINFO_SENTINEL 5654 }; 5655 5656 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5657 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5658 .type = ARM_CP_ALIAS | ARM_CP_IO, 5659 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5660 .access = PL2_RW, 5661 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5662 .writefn = hcr_writehigh }, 5663 REGINFO_SENTINEL 5664 }; 5665 5666 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5667 bool isread) 5668 { 5669 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5670 * At Secure EL1 it traps to EL3. 5671 */ 5672 if (arm_current_el(env) == 3) { 5673 return CP_ACCESS_OK; 5674 } 5675 if (arm_is_secure_below_el3(env)) { 5676 return CP_ACCESS_TRAP_EL3; 5677 } 5678 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5679 if (isread) { 5680 return CP_ACCESS_OK; 5681 } 5682 return CP_ACCESS_TRAP_UNCATEGORIZED; 5683 } 5684 5685 static const ARMCPRegInfo el3_cp_reginfo[] = { 5686 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5687 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5688 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5689 .resetvalue = 0, .writefn = scr_write }, 5690 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5691 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5692 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5693 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5694 .writefn = scr_write }, 5695 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5696 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5697 .access = PL3_RW, .resetvalue = 0, 5698 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5699 { .name = "SDER", 5700 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5701 .access = PL3_RW, .resetvalue = 0, 5702 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5703 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5704 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5705 .writefn = vbar_write, .resetvalue = 0, 5706 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5707 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5708 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5709 .access = PL3_RW, .resetvalue = 0, 5710 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5711 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5712 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5713 .access = PL3_RW, 5714 /* no .writefn needed as this can't cause an ASID change; 5715 * we must provide a .raw_writefn and .resetfn because we handle 5716 * reset and migration for the AArch32 TTBCR(S), which might be 5717 * using mask and base_mask. 5718 */ 5719 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5720 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5721 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5722 .type = ARM_CP_ALIAS, 5723 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5724 .access = PL3_RW, 5725 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5726 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5727 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5728 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5729 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5730 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5731 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5732 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5733 .type = ARM_CP_ALIAS, 5734 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5735 .access = PL3_RW, 5736 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5737 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5738 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5739 .access = PL3_RW, .writefn = vbar_write, 5740 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5741 .resetvalue = 0 }, 5742 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5743 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5744 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5745 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5746 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5747 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5748 .access = PL3_RW, .resetvalue = 0, 5749 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5750 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5751 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5752 .access = PL3_RW, .type = ARM_CP_CONST, 5753 .resetvalue = 0 }, 5754 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5755 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5756 .access = PL3_RW, .type = ARM_CP_CONST, 5757 .resetvalue = 0 }, 5758 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5759 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5760 .access = PL3_RW, .type = ARM_CP_CONST, 5761 .resetvalue = 0 }, 5762 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5763 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5764 .access = PL3_W, .type = ARM_CP_NO_RAW, 5765 .writefn = tlbi_aa64_alle3is_write }, 5766 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5767 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5768 .access = PL3_W, .type = ARM_CP_NO_RAW, 5769 .writefn = tlbi_aa64_vae3is_write }, 5770 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5771 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5772 .access = PL3_W, .type = ARM_CP_NO_RAW, 5773 .writefn = tlbi_aa64_vae3is_write }, 5774 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5775 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5776 .access = PL3_W, .type = ARM_CP_NO_RAW, 5777 .writefn = tlbi_aa64_alle3_write }, 5778 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5779 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5780 .access = PL3_W, .type = ARM_CP_NO_RAW, 5781 .writefn = tlbi_aa64_vae3_write }, 5782 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5783 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5784 .access = PL3_W, .type = ARM_CP_NO_RAW, 5785 .writefn = tlbi_aa64_vae3_write }, 5786 REGINFO_SENTINEL 5787 }; 5788 5789 #ifndef CONFIG_USER_ONLY 5790 /* Test if system register redirection is to occur in the current state. */ 5791 static bool redirect_for_e2h(CPUARMState *env) 5792 { 5793 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5794 } 5795 5796 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5797 { 5798 CPReadFn *readfn; 5799 5800 if (redirect_for_e2h(env)) { 5801 /* Switch to the saved EL2 version of the register. */ 5802 ri = ri->opaque; 5803 readfn = ri->readfn; 5804 } else { 5805 readfn = ri->orig_readfn; 5806 } 5807 if (readfn == NULL) { 5808 readfn = raw_read; 5809 } 5810 return readfn(env, ri); 5811 } 5812 5813 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5814 uint64_t value) 5815 { 5816 CPWriteFn *writefn; 5817 5818 if (redirect_for_e2h(env)) { 5819 /* Switch to the saved EL2 version of the register. */ 5820 ri = ri->opaque; 5821 writefn = ri->writefn; 5822 } else { 5823 writefn = ri->orig_writefn; 5824 } 5825 if (writefn == NULL) { 5826 writefn = raw_write; 5827 } 5828 writefn(env, ri, value); 5829 } 5830 5831 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5832 { 5833 struct E2HAlias { 5834 uint32_t src_key, dst_key, new_key; 5835 const char *src_name, *dst_name, *new_name; 5836 bool (*feature)(const ARMISARegisters *id); 5837 }; 5838 5839 #define K(op0, op1, crn, crm, op2) \ 5840 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5841 5842 static const struct E2HAlias aliases[] = { 5843 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5844 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5845 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5846 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5847 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5848 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5849 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5850 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5851 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5852 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5853 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5854 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5855 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5856 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5857 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5858 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5859 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5860 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5861 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5862 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5863 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5864 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5865 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5866 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5867 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5868 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5869 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5870 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5871 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5872 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5873 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5874 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5875 5876 /* 5877 * Note that redirection of ZCR is mentioned in the description 5878 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5879 * not in the summary table. 5880 */ 5881 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5882 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5883 5884 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5885 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5886 5887 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5888 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5889 }; 5890 #undef K 5891 5892 size_t i; 5893 5894 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5895 const struct E2HAlias *a = &aliases[i]; 5896 ARMCPRegInfo *src_reg, *dst_reg; 5897 5898 if (a->feature && !a->feature(&cpu->isar)) { 5899 continue; 5900 } 5901 5902 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 5903 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 5904 g_assert(src_reg != NULL); 5905 g_assert(dst_reg != NULL); 5906 5907 /* Cross-compare names to detect typos in the keys. */ 5908 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5909 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5910 5911 /* None of the core system registers use opaque; we will. */ 5912 g_assert(src_reg->opaque == NULL); 5913 5914 /* Create alias before redirection so we dup the right data. */ 5915 if (a->new_key) { 5916 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5917 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 5918 bool ok; 5919 5920 new_reg->name = a->new_name; 5921 new_reg->type |= ARM_CP_ALIAS; 5922 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5923 new_reg->access &= PL2_RW | PL3_RW; 5924 5925 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 5926 g_assert(ok); 5927 } 5928 5929 src_reg->opaque = dst_reg; 5930 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5931 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5932 if (!src_reg->raw_readfn) { 5933 src_reg->raw_readfn = raw_read; 5934 } 5935 if (!src_reg->raw_writefn) { 5936 src_reg->raw_writefn = raw_write; 5937 } 5938 src_reg->readfn = el2_e2h_read; 5939 src_reg->writefn = el2_e2h_write; 5940 } 5941 } 5942 #endif 5943 5944 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5945 bool isread) 5946 { 5947 int cur_el = arm_current_el(env); 5948 5949 if (cur_el < 2) { 5950 uint64_t hcr = arm_hcr_el2_eff(env); 5951 5952 if (cur_el == 0) { 5953 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5954 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 5955 return CP_ACCESS_TRAP_EL2; 5956 } 5957 } else { 5958 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5959 return CP_ACCESS_TRAP; 5960 } 5961 if (hcr & HCR_TID2) { 5962 return CP_ACCESS_TRAP_EL2; 5963 } 5964 } 5965 } else if (hcr & HCR_TID2) { 5966 return CP_ACCESS_TRAP_EL2; 5967 } 5968 } 5969 5970 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 5971 return CP_ACCESS_TRAP_EL2; 5972 } 5973 5974 return CP_ACCESS_OK; 5975 } 5976 5977 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5978 uint64_t value) 5979 { 5980 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5981 * read via a bit in OSLSR_EL1. 5982 */ 5983 int oslock; 5984 5985 if (ri->state == ARM_CP_STATE_AA32) { 5986 oslock = (value == 0xC5ACCE55); 5987 } else { 5988 oslock = value & 1; 5989 } 5990 5991 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5992 } 5993 5994 static const ARMCPRegInfo debug_cp_reginfo[] = { 5995 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5996 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5997 * unlike DBGDRAR it is never accessible from EL0. 5998 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 5999 * accessor. 6000 */ 6001 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6002 .access = PL0_R, .accessfn = access_tdra, 6003 .type = ARM_CP_CONST, .resetvalue = 0 }, 6004 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6005 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6006 .access = PL1_R, .accessfn = access_tdra, 6007 .type = ARM_CP_CONST, .resetvalue = 0 }, 6008 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6009 .access = PL0_R, .accessfn = access_tdra, 6010 .type = ARM_CP_CONST, .resetvalue = 0 }, 6011 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6012 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6013 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6014 .access = PL1_RW, .accessfn = access_tda, 6015 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6016 .resetvalue = 0 }, 6017 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 6018 * We don't implement the configurable EL0 access. 6019 */ 6020 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 6021 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6022 .type = ARM_CP_ALIAS, 6023 .access = PL1_R, .accessfn = access_tda, 6024 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6025 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6026 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6027 .access = PL1_W, .type = ARM_CP_NO_RAW, 6028 .accessfn = access_tdosa, 6029 .writefn = oslar_write }, 6030 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6031 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6032 .access = PL1_R, .resetvalue = 10, 6033 .accessfn = access_tdosa, 6034 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6035 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6036 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6037 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6038 .access = PL1_RW, .accessfn = access_tdosa, 6039 .type = ARM_CP_NOP }, 6040 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6041 * implement vector catch debug events yet. 6042 */ 6043 { .name = "DBGVCR", 6044 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6045 .access = PL1_RW, .accessfn = access_tda, 6046 .type = ARM_CP_NOP }, 6047 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6048 * to save and restore a 32-bit guest's DBGVCR) 6049 */ 6050 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6051 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6052 .access = PL2_RW, .accessfn = access_tda, 6053 .type = ARM_CP_NOP }, 6054 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6055 * Channel but Linux may try to access this register. The 32-bit 6056 * alias is DBGDCCINT. 6057 */ 6058 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6059 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6060 .access = PL1_RW, .accessfn = access_tda, 6061 .type = ARM_CP_NOP }, 6062 REGINFO_SENTINEL 6063 }; 6064 6065 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6066 /* 64 bit access versions of the (dummy) debug registers */ 6067 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6068 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6069 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6070 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6071 REGINFO_SENTINEL 6072 }; 6073 6074 /* Return the exception level to which exceptions should be taken 6075 * via SVEAccessTrap. If an exception should be routed through 6076 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6077 * take care of raising that exception. 6078 * C.f. the ARM pseudocode function CheckSVEEnabled. 6079 */ 6080 int sve_exception_el(CPUARMState *env, int el) 6081 { 6082 #ifndef CONFIG_USER_ONLY 6083 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6084 6085 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6086 bool disabled = false; 6087 6088 /* The CPACR.ZEN controls traps to EL1: 6089 * 0, 2 : trap EL0 and EL1 accesses 6090 * 1 : trap only EL0 accesses 6091 * 3 : trap no accesses 6092 */ 6093 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 6094 disabled = true; 6095 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 6096 disabled = el == 0; 6097 } 6098 if (disabled) { 6099 /* route_to_el2 */ 6100 return hcr_el2 & HCR_TGE ? 2 : 1; 6101 } 6102 6103 /* Check CPACR.FPEN. */ 6104 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 6105 disabled = true; 6106 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 6107 disabled = el == 0; 6108 } 6109 if (disabled) { 6110 return 0; 6111 } 6112 } 6113 6114 /* CPTR_EL2. Since TZ and TFP are positive, 6115 * they will be zero when EL2 is not present. 6116 */ 6117 if (el <= 2 && !arm_is_secure_below_el3(env)) { 6118 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6119 return 2; 6120 } 6121 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6122 return 0; 6123 } 6124 } 6125 6126 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6127 if (arm_feature(env, ARM_FEATURE_EL3) 6128 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6129 return 3; 6130 } 6131 #endif 6132 return 0; 6133 } 6134 6135 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6136 { 6137 uint32_t end_len; 6138 6139 end_len = start_len &= 0xf; 6140 if (!test_bit(start_len, cpu->sve_vq_map)) { 6141 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6142 assert(end_len < start_len); 6143 } 6144 return end_len; 6145 } 6146 6147 /* 6148 * Given that SVE is enabled, return the vector length for EL. 6149 */ 6150 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6151 { 6152 ARMCPU *cpu = env_archcpu(env); 6153 uint32_t zcr_len = cpu->sve_max_vq - 1; 6154 6155 if (el <= 1) { 6156 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6157 } 6158 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6159 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6160 } 6161 if (arm_feature(env, ARM_FEATURE_EL3)) { 6162 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6163 } 6164 6165 return sve_zcr_get_valid_len(cpu, zcr_len); 6166 } 6167 6168 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6169 uint64_t value) 6170 { 6171 int cur_el = arm_current_el(env); 6172 int old_len = sve_zcr_len_for_el(env, cur_el); 6173 int new_len; 6174 6175 /* Bits other than [3:0] are RAZ/WI. */ 6176 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6177 raw_write(env, ri, value & 0xf); 6178 6179 /* 6180 * Because we arrived here, we know both FP and SVE are enabled; 6181 * otherwise we would have trapped access to the ZCR_ELn register. 6182 */ 6183 new_len = sve_zcr_len_for_el(env, cur_el); 6184 if (new_len < old_len) { 6185 aarch64_sve_narrow_vq(env, new_len + 1); 6186 } 6187 } 6188 6189 static const ARMCPRegInfo zcr_el1_reginfo = { 6190 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6191 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6192 .access = PL1_RW, .type = ARM_CP_SVE, 6193 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6194 .writefn = zcr_write, .raw_writefn = raw_write 6195 }; 6196 6197 static const ARMCPRegInfo zcr_el2_reginfo = { 6198 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6199 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6200 .access = PL2_RW, .type = ARM_CP_SVE, 6201 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6202 .writefn = zcr_write, .raw_writefn = raw_write 6203 }; 6204 6205 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6206 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6207 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6208 .access = PL2_RW, .type = ARM_CP_SVE, 6209 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6210 }; 6211 6212 static const ARMCPRegInfo zcr_el3_reginfo = { 6213 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6214 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6215 .access = PL3_RW, .type = ARM_CP_SVE, 6216 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6217 .writefn = zcr_write, .raw_writefn = raw_write 6218 }; 6219 6220 void hw_watchpoint_update(ARMCPU *cpu, int n) 6221 { 6222 CPUARMState *env = &cpu->env; 6223 vaddr len = 0; 6224 vaddr wvr = env->cp15.dbgwvr[n]; 6225 uint64_t wcr = env->cp15.dbgwcr[n]; 6226 int mask; 6227 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6228 6229 if (env->cpu_watchpoint[n]) { 6230 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6231 env->cpu_watchpoint[n] = NULL; 6232 } 6233 6234 if (!extract64(wcr, 0, 1)) { 6235 /* E bit clear : watchpoint disabled */ 6236 return; 6237 } 6238 6239 switch (extract64(wcr, 3, 2)) { 6240 case 0: 6241 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6242 return; 6243 case 1: 6244 flags |= BP_MEM_READ; 6245 break; 6246 case 2: 6247 flags |= BP_MEM_WRITE; 6248 break; 6249 case 3: 6250 flags |= BP_MEM_ACCESS; 6251 break; 6252 } 6253 6254 /* Attempts to use both MASK and BAS fields simultaneously are 6255 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6256 * thus generating a watchpoint for every byte in the masked region. 6257 */ 6258 mask = extract64(wcr, 24, 4); 6259 if (mask == 1 || mask == 2) { 6260 /* Reserved values of MASK; we must act as if the mask value was 6261 * some non-reserved value, or as if the watchpoint were disabled. 6262 * We choose the latter. 6263 */ 6264 return; 6265 } else if (mask) { 6266 /* Watchpoint covers an aligned area up to 2GB in size */ 6267 len = 1ULL << mask; 6268 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6269 * whether the watchpoint fires when the unmasked bits match; we opt 6270 * to generate the exceptions. 6271 */ 6272 wvr &= ~(len - 1); 6273 } else { 6274 /* Watchpoint covers bytes defined by the byte address select bits */ 6275 int bas = extract64(wcr, 5, 8); 6276 int basstart; 6277 6278 if (extract64(wvr, 2, 1)) { 6279 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6280 * ignored, and BAS[3:0] define which bytes to watch. 6281 */ 6282 bas &= 0xf; 6283 } 6284 6285 if (bas == 0) { 6286 /* This must act as if the watchpoint is disabled */ 6287 return; 6288 } 6289 6290 /* The BAS bits are supposed to be programmed to indicate a contiguous 6291 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6292 * we fire for each byte in the word/doubleword addressed by the WVR. 6293 * We choose to ignore any non-zero bits after the first range of 1s. 6294 */ 6295 basstart = ctz32(bas); 6296 len = cto32(bas >> basstart); 6297 wvr += basstart; 6298 } 6299 6300 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6301 &env->cpu_watchpoint[n]); 6302 } 6303 6304 void hw_watchpoint_update_all(ARMCPU *cpu) 6305 { 6306 int i; 6307 CPUARMState *env = &cpu->env; 6308 6309 /* Completely clear out existing QEMU watchpoints and our array, to 6310 * avoid possible stale entries following migration load. 6311 */ 6312 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6313 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6314 6315 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6316 hw_watchpoint_update(cpu, i); 6317 } 6318 } 6319 6320 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6321 uint64_t value) 6322 { 6323 ARMCPU *cpu = env_archcpu(env); 6324 int i = ri->crm; 6325 6326 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6327 * register reads and behaves as if values written are sign extended. 6328 * Bits [1:0] are RES0. 6329 */ 6330 value = sextract64(value, 0, 49) & ~3ULL; 6331 6332 raw_write(env, ri, value); 6333 hw_watchpoint_update(cpu, i); 6334 } 6335 6336 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6337 uint64_t value) 6338 { 6339 ARMCPU *cpu = env_archcpu(env); 6340 int i = ri->crm; 6341 6342 raw_write(env, ri, value); 6343 hw_watchpoint_update(cpu, i); 6344 } 6345 6346 void hw_breakpoint_update(ARMCPU *cpu, int n) 6347 { 6348 CPUARMState *env = &cpu->env; 6349 uint64_t bvr = env->cp15.dbgbvr[n]; 6350 uint64_t bcr = env->cp15.dbgbcr[n]; 6351 vaddr addr; 6352 int bt; 6353 int flags = BP_CPU; 6354 6355 if (env->cpu_breakpoint[n]) { 6356 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6357 env->cpu_breakpoint[n] = NULL; 6358 } 6359 6360 if (!extract64(bcr, 0, 1)) { 6361 /* E bit clear : watchpoint disabled */ 6362 return; 6363 } 6364 6365 bt = extract64(bcr, 20, 4); 6366 6367 switch (bt) { 6368 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6369 case 5: /* linked address mismatch (reserved if AArch64) */ 6370 qemu_log_mask(LOG_UNIMP, 6371 "arm: address mismatch breakpoint types not implemented\n"); 6372 return; 6373 case 0: /* unlinked address match */ 6374 case 1: /* linked address match */ 6375 { 6376 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6377 * we behave as if the register was sign extended. Bits [1:0] are 6378 * RES0. The BAS field is used to allow setting breakpoints on 16 6379 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6380 * a bp will fire if the addresses covered by the bp and the addresses 6381 * covered by the insn overlap but the insn doesn't start at the 6382 * start of the bp address range. We choose to require the insn and 6383 * the bp to have the same address. The constraints on writing to 6384 * BAS enforced in dbgbcr_write mean we have only four cases: 6385 * 0b0000 => no breakpoint 6386 * 0b0011 => breakpoint on addr 6387 * 0b1100 => breakpoint on addr + 2 6388 * 0b1111 => breakpoint on addr 6389 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6390 */ 6391 int bas = extract64(bcr, 5, 4); 6392 addr = sextract64(bvr, 0, 49) & ~3ULL; 6393 if (bas == 0) { 6394 return; 6395 } 6396 if (bas == 0xc) { 6397 addr += 2; 6398 } 6399 break; 6400 } 6401 case 2: /* unlinked context ID match */ 6402 case 8: /* unlinked VMID match (reserved if no EL2) */ 6403 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6404 qemu_log_mask(LOG_UNIMP, 6405 "arm: unlinked context breakpoint types not implemented\n"); 6406 return; 6407 case 9: /* linked VMID match (reserved if no EL2) */ 6408 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6409 case 3: /* linked context ID match */ 6410 default: 6411 /* We must generate no events for Linked context matches (unless 6412 * they are linked to by some other bp/wp, which is handled in 6413 * updates for the linking bp/wp). We choose to also generate no events 6414 * for reserved values. 6415 */ 6416 return; 6417 } 6418 6419 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6420 } 6421 6422 void hw_breakpoint_update_all(ARMCPU *cpu) 6423 { 6424 int i; 6425 CPUARMState *env = &cpu->env; 6426 6427 /* Completely clear out existing QEMU breakpoints and our array, to 6428 * avoid possible stale entries following migration load. 6429 */ 6430 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6431 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6432 6433 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6434 hw_breakpoint_update(cpu, i); 6435 } 6436 } 6437 6438 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6439 uint64_t value) 6440 { 6441 ARMCPU *cpu = env_archcpu(env); 6442 int i = ri->crm; 6443 6444 raw_write(env, ri, value); 6445 hw_breakpoint_update(cpu, i); 6446 } 6447 6448 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6449 uint64_t value) 6450 { 6451 ARMCPU *cpu = env_archcpu(env); 6452 int i = ri->crm; 6453 6454 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6455 * copy of BAS[0]. 6456 */ 6457 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6458 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6459 6460 raw_write(env, ri, value); 6461 hw_breakpoint_update(cpu, i); 6462 } 6463 6464 static void define_debug_regs(ARMCPU *cpu) 6465 { 6466 /* Define v7 and v8 architectural debug registers. 6467 * These are just dummy implementations for now. 6468 */ 6469 int i; 6470 int wrps, brps, ctx_cmps; 6471 ARMCPRegInfo dbgdidr = { 6472 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 6473 .access = PL0_R, .accessfn = access_tda, 6474 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6475 }; 6476 6477 /* Note that all these register fields hold "number of Xs minus 1". */ 6478 brps = arm_num_brps(cpu); 6479 wrps = arm_num_wrps(cpu); 6480 ctx_cmps = arm_num_ctx_cmps(cpu); 6481 6482 assert(ctx_cmps <= brps); 6483 6484 define_one_arm_cp_reg(cpu, &dbgdidr); 6485 define_arm_cp_regs(cpu, debug_cp_reginfo); 6486 6487 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6488 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6489 } 6490 6491 for (i = 0; i < brps; i++) { 6492 ARMCPRegInfo dbgregs[] = { 6493 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6494 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6495 .access = PL1_RW, .accessfn = access_tda, 6496 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6497 .writefn = dbgbvr_write, .raw_writefn = raw_write 6498 }, 6499 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6500 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6501 .access = PL1_RW, .accessfn = access_tda, 6502 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6503 .writefn = dbgbcr_write, .raw_writefn = raw_write 6504 }, 6505 REGINFO_SENTINEL 6506 }; 6507 define_arm_cp_regs(cpu, dbgregs); 6508 } 6509 6510 for (i = 0; i < wrps; i++) { 6511 ARMCPRegInfo dbgregs[] = { 6512 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6513 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6514 .access = PL1_RW, .accessfn = access_tda, 6515 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6516 .writefn = dbgwvr_write, .raw_writefn = raw_write 6517 }, 6518 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6519 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6520 .access = PL1_RW, .accessfn = access_tda, 6521 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6522 .writefn = dbgwcr_write, .raw_writefn = raw_write 6523 }, 6524 REGINFO_SENTINEL 6525 }; 6526 define_arm_cp_regs(cpu, dbgregs); 6527 } 6528 } 6529 6530 static void define_pmu_regs(ARMCPU *cpu) 6531 { 6532 /* 6533 * v7 performance monitor control register: same implementor 6534 * field as main ID register, and we implement four counters in 6535 * addition to the cycle count register. 6536 */ 6537 unsigned int i, pmcrn = 4; 6538 ARMCPRegInfo pmcr = { 6539 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6540 .access = PL0_RW, 6541 .type = ARM_CP_IO | ARM_CP_ALIAS, 6542 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6543 .accessfn = pmreg_access, .writefn = pmcr_write, 6544 .raw_writefn = raw_write, 6545 }; 6546 ARMCPRegInfo pmcr64 = { 6547 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6548 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6549 .access = PL0_RW, .accessfn = pmreg_access, 6550 .type = ARM_CP_IO, 6551 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6552 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6553 PMCRLC, 6554 .writefn = pmcr_write, .raw_writefn = raw_write, 6555 }; 6556 define_one_arm_cp_reg(cpu, &pmcr); 6557 define_one_arm_cp_reg(cpu, &pmcr64); 6558 for (i = 0; i < pmcrn; i++) { 6559 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6560 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6561 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6562 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6563 ARMCPRegInfo pmev_regs[] = { 6564 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6565 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6566 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6567 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6568 .accessfn = pmreg_access }, 6569 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6570 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6571 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6572 .type = ARM_CP_IO, 6573 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6574 .raw_readfn = pmevcntr_rawread, 6575 .raw_writefn = pmevcntr_rawwrite }, 6576 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6577 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6578 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6579 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6580 .accessfn = pmreg_access }, 6581 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6582 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6583 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6584 .type = ARM_CP_IO, 6585 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6586 .raw_writefn = pmevtyper_rawwrite }, 6587 REGINFO_SENTINEL 6588 }; 6589 define_arm_cp_regs(cpu, pmev_regs); 6590 g_free(pmevcntr_name); 6591 g_free(pmevcntr_el0_name); 6592 g_free(pmevtyper_name); 6593 g_free(pmevtyper_el0_name); 6594 } 6595 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6596 ARMCPRegInfo v81_pmu_regs[] = { 6597 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6598 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6599 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6600 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6601 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6602 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6603 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6604 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6605 REGINFO_SENTINEL 6606 }; 6607 define_arm_cp_regs(cpu, v81_pmu_regs); 6608 } 6609 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6610 static const ARMCPRegInfo v84_pmmir = { 6611 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6612 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6613 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6614 .resetvalue = 0 6615 }; 6616 define_one_arm_cp_reg(cpu, &v84_pmmir); 6617 } 6618 } 6619 6620 /* We don't know until after realize whether there's a GICv3 6621 * attached, and that is what registers the gicv3 sysregs. 6622 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6623 * at runtime. 6624 */ 6625 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6626 { 6627 ARMCPU *cpu = env_archcpu(env); 6628 uint64_t pfr1 = cpu->id_pfr1; 6629 6630 if (env->gicv3state) { 6631 pfr1 |= 1 << 28; 6632 } 6633 return pfr1; 6634 } 6635 6636 #ifndef CONFIG_USER_ONLY 6637 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6638 { 6639 ARMCPU *cpu = env_archcpu(env); 6640 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6641 6642 if (env->gicv3state) { 6643 pfr0 |= 1 << 24; 6644 } 6645 return pfr0; 6646 } 6647 #endif 6648 6649 /* Shared logic between LORID and the rest of the LOR* registers. 6650 * Secure state has already been delt with. 6651 */ 6652 static CPAccessResult access_lor_ns(CPUARMState *env) 6653 { 6654 int el = arm_current_el(env); 6655 6656 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6657 return CP_ACCESS_TRAP_EL2; 6658 } 6659 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6660 return CP_ACCESS_TRAP_EL3; 6661 } 6662 return CP_ACCESS_OK; 6663 } 6664 6665 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, 6666 bool isread) 6667 { 6668 if (arm_is_secure_below_el3(env)) { 6669 /* Access ok in secure mode. */ 6670 return CP_ACCESS_OK; 6671 } 6672 return access_lor_ns(env); 6673 } 6674 6675 static CPAccessResult access_lor_other(CPUARMState *env, 6676 const ARMCPRegInfo *ri, bool isread) 6677 { 6678 if (arm_is_secure_below_el3(env)) { 6679 /* Access denied in secure mode. */ 6680 return CP_ACCESS_TRAP; 6681 } 6682 return access_lor_ns(env); 6683 } 6684 6685 /* 6686 * A trivial implementation of ARMv8.1-LOR leaves all of these 6687 * registers fixed at 0, which indicates that there are zero 6688 * supported Limited Ordering regions. 6689 */ 6690 static const ARMCPRegInfo lor_reginfo[] = { 6691 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6692 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6693 .access = PL1_RW, .accessfn = access_lor_other, 6694 .type = ARM_CP_CONST, .resetvalue = 0 }, 6695 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6696 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6697 .access = PL1_RW, .accessfn = access_lor_other, 6698 .type = ARM_CP_CONST, .resetvalue = 0 }, 6699 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6700 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6701 .access = PL1_RW, .accessfn = access_lor_other, 6702 .type = ARM_CP_CONST, .resetvalue = 0 }, 6703 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6704 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6705 .access = PL1_RW, .accessfn = access_lor_other, 6706 .type = ARM_CP_CONST, .resetvalue = 0 }, 6707 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6708 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6709 .access = PL1_R, .accessfn = access_lorid, 6710 .type = ARM_CP_CONST, .resetvalue = 0 }, 6711 REGINFO_SENTINEL 6712 }; 6713 6714 #ifdef TARGET_AARCH64 6715 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6716 bool isread) 6717 { 6718 int el = arm_current_el(env); 6719 6720 if (el < 2 && 6721 arm_feature(env, ARM_FEATURE_EL2) && 6722 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6723 return CP_ACCESS_TRAP_EL2; 6724 } 6725 if (el < 3 && 6726 arm_feature(env, ARM_FEATURE_EL3) && 6727 !(env->cp15.scr_el3 & SCR_APK)) { 6728 return CP_ACCESS_TRAP_EL3; 6729 } 6730 return CP_ACCESS_OK; 6731 } 6732 6733 static const ARMCPRegInfo pauth_reginfo[] = { 6734 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6735 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6736 .access = PL1_RW, .accessfn = access_pauth, 6737 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6738 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6739 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6740 .access = PL1_RW, .accessfn = access_pauth, 6741 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6742 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6743 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6744 .access = PL1_RW, .accessfn = access_pauth, 6745 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6746 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6747 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6748 .access = PL1_RW, .accessfn = access_pauth, 6749 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6750 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6751 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6752 .access = PL1_RW, .accessfn = access_pauth, 6753 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6754 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6755 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6756 .access = PL1_RW, .accessfn = access_pauth, 6757 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6758 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6759 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6760 .access = PL1_RW, .accessfn = access_pauth, 6761 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6762 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6763 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6764 .access = PL1_RW, .accessfn = access_pauth, 6765 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6766 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6767 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6768 .access = PL1_RW, .accessfn = access_pauth, 6769 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6770 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6771 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6772 .access = PL1_RW, .accessfn = access_pauth, 6773 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6774 REGINFO_SENTINEL 6775 }; 6776 6777 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6778 { 6779 Error *err = NULL; 6780 uint64_t ret; 6781 6782 /* Success sets NZCV = 0000. */ 6783 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6784 6785 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6786 /* 6787 * ??? Failed, for unknown reasons in the crypto subsystem. 6788 * The best we can do is log the reason and return the 6789 * timed-out indication to the guest. There is no reason 6790 * we know to expect this failure to be transitory, so the 6791 * guest may well hang retrying the operation. 6792 */ 6793 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6794 ri->name, error_get_pretty(err)); 6795 error_free(err); 6796 6797 env->ZF = 0; /* NZCF = 0100 */ 6798 return 0; 6799 } 6800 return ret; 6801 } 6802 6803 /* We do not support re-seeding, so the two registers operate the same. */ 6804 static const ARMCPRegInfo rndr_reginfo[] = { 6805 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6806 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6807 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6808 .access = PL0_R, .readfn = rndr_readfn }, 6809 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6810 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6811 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6812 .access = PL0_R, .readfn = rndr_readfn }, 6813 REGINFO_SENTINEL 6814 }; 6815 6816 #ifndef CONFIG_USER_ONLY 6817 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6818 uint64_t value) 6819 { 6820 ARMCPU *cpu = env_archcpu(env); 6821 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6822 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6823 uint64_t vaddr_in = (uint64_t) value; 6824 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6825 void *haddr; 6826 int mem_idx = cpu_mmu_index(env, false); 6827 6828 /* This won't be crossing page boundaries */ 6829 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6830 if (haddr) { 6831 6832 ram_addr_t offset; 6833 MemoryRegion *mr; 6834 6835 /* RCU lock is already being held */ 6836 mr = memory_region_from_host(haddr, &offset); 6837 6838 if (mr) { 6839 memory_region_writeback(mr, offset, dline_size); 6840 } 6841 } 6842 } 6843 6844 static const ARMCPRegInfo dcpop_reg[] = { 6845 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6846 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6847 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6848 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6849 REGINFO_SENTINEL 6850 }; 6851 6852 static const ARMCPRegInfo dcpodp_reg[] = { 6853 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6854 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6855 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6856 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6857 REGINFO_SENTINEL 6858 }; 6859 #endif /*CONFIG_USER_ONLY*/ 6860 6861 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 6862 bool isread) 6863 { 6864 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 6865 return CP_ACCESS_TRAP_EL2; 6866 } 6867 6868 return CP_ACCESS_OK; 6869 } 6870 6871 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 6872 bool isread) 6873 { 6874 int el = arm_current_el(env); 6875 6876 if (el < 2 && 6877 arm_feature(env, ARM_FEATURE_EL2) && 6878 !(arm_hcr_el2_eff(env) & HCR_ATA)) { 6879 return CP_ACCESS_TRAP_EL2; 6880 } 6881 if (el < 3 && 6882 arm_feature(env, ARM_FEATURE_EL3) && 6883 !(env->cp15.scr_el3 & SCR_ATA)) { 6884 return CP_ACCESS_TRAP_EL3; 6885 } 6886 return CP_ACCESS_OK; 6887 } 6888 6889 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 6890 { 6891 return env->pstate & PSTATE_TCO; 6892 } 6893 6894 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6895 { 6896 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 6897 } 6898 6899 static const ARMCPRegInfo mte_reginfo[] = { 6900 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 6901 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 6902 .access = PL1_RW, .accessfn = access_mte, 6903 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 6904 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 6905 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 6906 .access = PL1_RW, .accessfn = access_mte, 6907 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 6908 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 6909 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 6910 .access = PL2_RW, .accessfn = access_mte, 6911 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 6912 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 6913 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 6914 .access = PL3_RW, 6915 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 6916 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 6917 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 6918 .access = PL1_RW, .accessfn = access_mte, 6919 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 6920 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 6921 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 6922 .access = PL1_RW, .accessfn = access_mte, 6923 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 6924 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 6925 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 6926 .access = PL1_R, .accessfn = access_aa64_tid5, 6927 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 6928 { .name = "TCO", .state = ARM_CP_STATE_AA64, 6929 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 6930 .type = ARM_CP_NO_RAW, 6931 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 6932 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 6933 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 6934 .type = ARM_CP_NOP, .access = PL1_W, 6935 .accessfn = aa64_cacheop_poc_access }, 6936 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 6937 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 6938 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6939 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 6940 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 6941 .type = ARM_CP_NOP, .access = PL1_W, 6942 .accessfn = aa64_cacheop_poc_access }, 6943 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 6944 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 6945 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6946 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 6947 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 6948 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6949 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 6950 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 6951 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6952 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 6953 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 6954 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6955 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 6956 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 6957 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6958 REGINFO_SENTINEL 6959 }; 6960 6961 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 6962 { .name = "TCO", .state = ARM_CP_STATE_AA64, 6963 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 6964 .type = ARM_CP_CONST, .access = PL0_RW, }, 6965 REGINFO_SENTINEL 6966 }; 6967 6968 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 6969 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 6970 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 6971 .type = ARM_CP_NOP, .access = PL0_W, 6972 .accessfn = aa64_cacheop_poc_access }, 6973 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 6974 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 6975 .type = ARM_CP_NOP, .access = PL0_W, 6976 .accessfn = aa64_cacheop_poc_access }, 6977 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 6978 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 6979 .type = ARM_CP_NOP, .access = PL0_W, 6980 .accessfn = aa64_cacheop_poc_access }, 6981 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 6982 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 6983 .type = ARM_CP_NOP, .access = PL0_W, 6984 .accessfn = aa64_cacheop_poc_access }, 6985 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 6986 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 6987 .type = ARM_CP_NOP, .access = PL0_W, 6988 .accessfn = aa64_cacheop_poc_access }, 6989 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 6990 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 6991 .type = ARM_CP_NOP, .access = PL0_W, 6992 .accessfn = aa64_cacheop_poc_access }, 6993 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 6994 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 6995 .type = ARM_CP_NOP, .access = PL0_W, 6996 .accessfn = aa64_cacheop_poc_access }, 6997 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 6998 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 6999 .type = ARM_CP_NOP, .access = PL0_W, 7000 .accessfn = aa64_cacheop_poc_access }, 7001 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7002 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7003 .access = PL0_W, .type = ARM_CP_DC_GVA, 7004 #ifndef CONFIG_USER_ONLY 7005 /* Avoid overhead of an access check that always passes in user-mode */ 7006 .accessfn = aa64_zva_access, 7007 #endif 7008 }, 7009 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7010 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7011 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7012 #ifndef CONFIG_USER_ONLY 7013 /* Avoid overhead of an access check that always passes in user-mode */ 7014 .accessfn = aa64_zva_access, 7015 #endif 7016 }, 7017 REGINFO_SENTINEL 7018 }; 7019 7020 #endif 7021 7022 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7023 bool isread) 7024 { 7025 int el = arm_current_el(env); 7026 7027 if (el == 0) { 7028 uint64_t sctlr = arm_sctlr(env, el); 7029 if (!(sctlr & SCTLR_EnRCTX)) { 7030 return CP_ACCESS_TRAP; 7031 } 7032 } else if (el == 1) { 7033 uint64_t hcr = arm_hcr_el2_eff(env); 7034 if (hcr & HCR_NV) { 7035 return CP_ACCESS_TRAP_EL2; 7036 } 7037 } 7038 return CP_ACCESS_OK; 7039 } 7040 7041 static const ARMCPRegInfo predinv_reginfo[] = { 7042 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7043 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7044 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7045 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7046 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7047 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7048 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7049 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7050 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7051 /* 7052 * Note the AArch32 opcodes have a different OPC1. 7053 */ 7054 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7055 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7056 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7057 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7058 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7059 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7060 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7061 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7062 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7063 REGINFO_SENTINEL 7064 }; 7065 7066 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7067 { 7068 /* Read the high 32 bits of the current CCSIDR */ 7069 return extract64(ccsidr_read(env, ri), 32, 32); 7070 } 7071 7072 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7073 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7074 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7075 .access = PL1_R, 7076 .accessfn = access_aa64_tid2, 7077 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7078 REGINFO_SENTINEL 7079 }; 7080 7081 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7082 bool isread) 7083 { 7084 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7085 return CP_ACCESS_TRAP_EL2; 7086 } 7087 7088 return CP_ACCESS_OK; 7089 } 7090 7091 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7092 bool isread) 7093 { 7094 if (arm_feature(env, ARM_FEATURE_V8)) { 7095 return access_aa64_tid3(env, ri, isread); 7096 } 7097 7098 return CP_ACCESS_OK; 7099 } 7100 7101 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7102 bool isread) 7103 { 7104 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7105 return CP_ACCESS_TRAP_EL2; 7106 } 7107 7108 return CP_ACCESS_OK; 7109 } 7110 7111 static const ARMCPRegInfo jazelle_regs[] = { 7112 { .name = "JIDR", 7113 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7114 .access = PL1_R, .accessfn = access_jazelle, 7115 .type = ARM_CP_CONST, .resetvalue = 0 }, 7116 { .name = "JOSCR", 7117 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7118 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7119 { .name = "JMCR", 7120 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7121 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7122 REGINFO_SENTINEL 7123 }; 7124 7125 static const ARMCPRegInfo vhe_reginfo[] = { 7126 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7127 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7128 .access = PL2_RW, 7129 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7130 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7131 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7132 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7133 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7134 #ifndef CONFIG_USER_ONLY 7135 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7136 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7137 .fieldoffset = 7138 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7139 .type = ARM_CP_IO, .access = PL2_RW, 7140 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7141 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7142 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7143 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7144 .resetfn = gt_hv_timer_reset, 7145 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7146 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7147 .type = ARM_CP_IO, 7148 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7149 .access = PL2_RW, 7150 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7151 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7152 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7153 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7154 .type = ARM_CP_IO | ARM_CP_ALIAS, 7155 .access = PL2_RW, .accessfn = e2h_access, 7156 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7157 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7158 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7159 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7160 .type = ARM_CP_IO | ARM_CP_ALIAS, 7161 .access = PL2_RW, .accessfn = e2h_access, 7162 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7163 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7164 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7165 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7166 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7167 .access = PL2_RW, .accessfn = e2h_access, 7168 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7169 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7170 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7171 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7172 .access = PL2_RW, .accessfn = e2h_access, 7173 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7174 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7175 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7176 .type = ARM_CP_IO | ARM_CP_ALIAS, 7177 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7178 .access = PL2_RW, .accessfn = e2h_access, 7179 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7180 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7181 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7182 .type = ARM_CP_IO | ARM_CP_ALIAS, 7183 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7184 .access = PL2_RW, .accessfn = e2h_access, 7185 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7186 #endif 7187 REGINFO_SENTINEL 7188 }; 7189 7190 #ifndef CONFIG_USER_ONLY 7191 static const ARMCPRegInfo ats1e1_reginfo[] = { 7192 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7193 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7194 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7195 .writefn = ats_write64 }, 7196 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7197 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7198 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7199 .writefn = ats_write64 }, 7200 REGINFO_SENTINEL 7201 }; 7202 7203 static const ARMCPRegInfo ats1cp_reginfo[] = { 7204 { .name = "ATS1CPRP", 7205 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7206 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7207 .writefn = ats_write }, 7208 { .name = "ATS1CPWP", 7209 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7210 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7211 .writefn = ats_write }, 7212 REGINFO_SENTINEL 7213 }; 7214 #endif 7215 7216 /* 7217 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7218 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7219 * is non-zero, which is never for ARMv7, optionally in ARMv8 7220 * and mandatorily for ARMv8.2 and up. 7221 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7222 * implementation is RAZ/WI we can ignore this detail, as we 7223 * do for ACTLR. 7224 */ 7225 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7226 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7227 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7228 .access = PL1_RW, .accessfn = access_tacr, 7229 .type = ARM_CP_CONST, .resetvalue = 0 }, 7230 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7231 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7232 .access = PL2_RW, .type = ARM_CP_CONST, 7233 .resetvalue = 0 }, 7234 REGINFO_SENTINEL 7235 }; 7236 7237 void register_cp_regs_for_features(ARMCPU *cpu) 7238 { 7239 /* Register all the coprocessor registers based on feature bits */ 7240 CPUARMState *env = &cpu->env; 7241 if (arm_feature(env, ARM_FEATURE_M)) { 7242 /* M profile has no coprocessor registers */ 7243 return; 7244 } 7245 7246 define_arm_cp_regs(cpu, cp_reginfo); 7247 if (!arm_feature(env, ARM_FEATURE_V8)) { 7248 /* Must go early as it is full of wildcards that may be 7249 * overridden by later definitions. 7250 */ 7251 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7252 } 7253 7254 if (arm_feature(env, ARM_FEATURE_V6)) { 7255 /* The ID registers all have impdef reset values */ 7256 ARMCPRegInfo v6_idregs[] = { 7257 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7258 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7259 .access = PL1_R, .type = ARM_CP_CONST, 7260 .accessfn = access_aa32_tid3, 7261 .resetvalue = cpu->id_pfr0 }, 7262 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7263 * the value of the GIC field until after we define these regs. 7264 */ 7265 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7266 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7267 .access = PL1_R, .type = ARM_CP_NO_RAW, 7268 .accessfn = access_aa32_tid3, 7269 .readfn = id_pfr1_read, 7270 .writefn = arm_cp_write_ignore }, 7271 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7272 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7273 .access = PL1_R, .type = ARM_CP_CONST, 7274 .accessfn = access_aa32_tid3, 7275 .resetvalue = cpu->isar.id_dfr0 }, 7276 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7277 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7278 .access = PL1_R, .type = ARM_CP_CONST, 7279 .accessfn = access_aa32_tid3, 7280 .resetvalue = cpu->id_afr0 }, 7281 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7282 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7283 .access = PL1_R, .type = ARM_CP_CONST, 7284 .accessfn = access_aa32_tid3, 7285 .resetvalue = cpu->isar.id_mmfr0 }, 7286 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7287 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7288 .access = PL1_R, .type = ARM_CP_CONST, 7289 .accessfn = access_aa32_tid3, 7290 .resetvalue = cpu->isar.id_mmfr1 }, 7291 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7292 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7293 .access = PL1_R, .type = ARM_CP_CONST, 7294 .accessfn = access_aa32_tid3, 7295 .resetvalue = cpu->isar.id_mmfr2 }, 7296 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7297 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7298 .access = PL1_R, .type = ARM_CP_CONST, 7299 .accessfn = access_aa32_tid3, 7300 .resetvalue = cpu->isar.id_mmfr3 }, 7301 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7302 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7303 .access = PL1_R, .type = ARM_CP_CONST, 7304 .accessfn = access_aa32_tid3, 7305 .resetvalue = cpu->isar.id_isar0 }, 7306 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7307 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7308 .access = PL1_R, .type = ARM_CP_CONST, 7309 .accessfn = access_aa32_tid3, 7310 .resetvalue = cpu->isar.id_isar1 }, 7311 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7312 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7313 .access = PL1_R, .type = ARM_CP_CONST, 7314 .accessfn = access_aa32_tid3, 7315 .resetvalue = cpu->isar.id_isar2 }, 7316 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7317 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7318 .access = PL1_R, .type = ARM_CP_CONST, 7319 .accessfn = access_aa32_tid3, 7320 .resetvalue = cpu->isar.id_isar3 }, 7321 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7322 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7323 .access = PL1_R, .type = ARM_CP_CONST, 7324 .accessfn = access_aa32_tid3, 7325 .resetvalue = cpu->isar.id_isar4 }, 7326 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7327 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7328 .access = PL1_R, .type = ARM_CP_CONST, 7329 .accessfn = access_aa32_tid3, 7330 .resetvalue = cpu->isar.id_isar5 }, 7331 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7332 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7333 .access = PL1_R, .type = ARM_CP_CONST, 7334 .accessfn = access_aa32_tid3, 7335 .resetvalue = cpu->isar.id_mmfr4 }, 7336 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7337 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7338 .access = PL1_R, .type = ARM_CP_CONST, 7339 .accessfn = access_aa32_tid3, 7340 .resetvalue = cpu->isar.id_isar6 }, 7341 REGINFO_SENTINEL 7342 }; 7343 define_arm_cp_regs(cpu, v6_idregs); 7344 define_arm_cp_regs(cpu, v6_cp_reginfo); 7345 } else { 7346 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7347 } 7348 if (arm_feature(env, ARM_FEATURE_V6K)) { 7349 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7350 } 7351 if (arm_feature(env, ARM_FEATURE_V7MP) && 7352 !arm_feature(env, ARM_FEATURE_PMSA)) { 7353 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7354 } 7355 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7356 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7357 } 7358 if (arm_feature(env, ARM_FEATURE_V7)) { 7359 ARMCPRegInfo clidr = { 7360 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7361 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7362 .access = PL1_R, .type = ARM_CP_CONST, 7363 .accessfn = access_aa64_tid2, 7364 .resetvalue = cpu->clidr 7365 }; 7366 define_one_arm_cp_reg(cpu, &clidr); 7367 define_arm_cp_regs(cpu, v7_cp_reginfo); 7368 define_debug_regs(cpu); 7369 define_pmu_regs(cpu); 7370 } else { 7371 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7372 } 7373 if (arm_feature(env, ARM_FEATURE_V8)) { 7374 /* AArch64 ID registers, which all have impdef reset values. 7375 * Note that within the ID register ranges the unused slots 7376 * must all RAZ, not UNDEF; future architecture versions may 7377 * define new registers here. 7378 */ 7379 ARMCPRegInfo v8_idregs[] = { 7380 /* 7381 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7382 * emulation because we don't know the right value for the 7383 * GIC field until after we define these regs. 7384 */ 7385 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7386 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7387 .access = PL1_R, 7388 #ifdef CONFIG_USER_ONLY 7389 .type = ARM_CP_CONST, 7390 .resetvalue = cpu->isar.id_aa64pfr0 7391 #else 7392 .type = ARM_CP_NO_RAW, 7393 .accessfn = access_aa64_tid3, 7394 .readfn = id_aa64pfr0_read, 7395 .writefn = arm_cp_write_ignore 7396 #endif 7397 }, 7398 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7399 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7400 .access = PL1_R, .type = ARM_CP_CONST, 7401 .accessfn = access_aa64_tid3, 7402 .resetvalue = cpu->isar.id_aa64pfr1}, 7403 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7404 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7405 .access = PL1_R, .type = ARM_CP_CONST, 7406 .accessfn = access_aa64_tid3, 7407 .resetvalue = 0 }, 7408 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7409 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7410 .access = PL1_R, .type = ARM_CP_CONST, 7411 .accessfn = access_aa64_tid3, 7412 .resetvalue = 0 }, 7413 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7414 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7415 .access = PL1_R, .type = ARM_CP_CONST, 7416 .accessfn = access_aa64_tid3, 7417 /* At present, only SVEver == 0 is defined anyway. */ 7418 .resetvalue = 0 }, 7419 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7420 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7421 .access = PL1_R, .type = ARM_CP_CONST, 7422 .accessfn = access_aa64_tid3, 7423 .resetvalue = 0 }, 7424 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7425 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7426 .access = PL1_R, .type = ARM_CP_CONST, 7427 .accessfn = access_aa64_tid3, 7428 .resetvalue = 0 }, 7429 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7430 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7431 .access = PL1_R, .type = ARM_CP_CONST, 7432 .accessfn = access_aa64_tid3, 7433 .resetvalue = 0 }, 7434 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7435 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7436 .access = PL1_R, .type = ARM_CP_CONST, 7437 .accessfn = access_aa64_tid3, 7438 .resetvalue = cpu->isar.id_aa64dfr0 }, 7439 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7440 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7441 .access = PL1_R, .type = ARM_CP_CONST, 7442 .accessfn = access_aa64_tid3, 7443 .resetvalue = cpu->isar.id_aa64dfr1 }, 7444 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7445 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7446 .access = PL1_R, .type = ARM_CP_CONST, 7447 .accessfn = access_aa64_tid3, 7448 .resetvalue = 0 }, 7449 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7450 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7451 .access = PL1_R, .type = ARM_CP_CONST, 7452 .accessfn = access_aa64_tid3, 7453 .resetvalue = 0 }, 7454 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7455 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7456 .access = PL1_R, .type = ARM_CP_CONST, 7457 .accessfn = access_aa64_tid3, 7458 .resetvalue = cpu->id_aa64afr0 }, 7459 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7460 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7461 .access = PL1_R, .type = ARM_CP_CONST, 7462 .accessfn = access_aa64_tid3, 7463 .resetvalue = cpu->id_aa64afr1 }, 7464 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7465 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7466 .access = PL1_R, .type = ARM_CP_CONST, 7467 .accessfn = access_aa64_tid3, 7468 .resetvalue = 0 }, 7469 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7470 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7471 .access = PL1_R, .type = ARM_CP_CONST, 7472 .accessfn = access_aa64_tid3, 7473 .resetvalue = 0 }, 7474 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7475 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7476 .access = PL1_R, .type = ARM_CP_CONST, 7477 .accessfn = access_aa64_tid3, 7478 .resetvalue = cpu->isar.id_aa64isar0 }, 7479 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7480 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7481 .access = PL1_R, .type = ARM_CP_CONST, 7482 .accessfn = access_aa64_tid3, 7483 .resetvalue = cpu->isar.id_aa64isar1 }, 7484 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7485 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7486 .access = PL1_R, .type = ARM_CP_CONST, 7487 .accessfn = access_aa64_tid3, 7488 .resetvalue = 0 }, 7489 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7490 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7491 .access = PL1_R, .type = ARM_CP_CONST, 7492 .accessfn = access_aa64_tid3, 7493 .resetvalue = 0 }, 7494 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7495 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7496 .access = PL1_R, .type = ARM_CP_CONST, 7497 .accessfn = access_aa64_tid3, 7498 .resetvalue = 0 }, 7499 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7500 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7501 .access = PL1_R, .type = ARM_CP_CONST, 7502 .accessfn = access_aa64_tid3, 7503 .resetvalue = 0 }, 7504 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7505 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7506 .access = PL1_R, .type = ARM_CP_CONST, 7507 .accessfn = access_aa64_tid3, 7508 .resetvalue = 0 }, 7509 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7510 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7511 .access = PL1_R, .type = ARM_CP_CONST, 7512 .accessfn = access_aa64_tid3, 7513 .resetvalue = 0 }, 7514 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7515 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7516 .access = PL1_R, .type = ARM_CP_CONST, 7517 .accessfn = access_aa64_tid3, 7518 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7519 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7520 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7521 .access = PL1_R, .type = ARM_CP_CONST, 7522 .accessfn = access_aa64_tid3, 7523 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7524 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7525 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7526 .access = PL1_R, .type = ARM_CP_CONST, 7527 .accessfn = access_aa64_tid3, 7528 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7529 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7530 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7531 .access = PL1_R, .type = ARM_CP_CONST, 7532 .accessfn = access_aa64_tid3, 7533 .resetvalue = 0 }, 7534 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7535 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7536 .access = PL1_R, .type = ARM_CP_CONST, 7537 .accessfn = access_aa64_tid3, 7538 .resetvalue = 0 }, 7539 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7540 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7541 .access = PL1_R, .type = ARM_CP_CONST, 7542 .accessfn = access_aa64_tid3, 7543 .resetvalue = 0 }, 7544 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7545 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7546 .access = PL1_R, .type = ARM_CP_CONST, 7547 .accessfn = access_aa64_tid3, 7548 .resetvalue = 0 }, 7549 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7550 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7551 .access = PL1_R, .type = ARM_CP_CONST, 7552 .accessfn = access_aa64_tid3, 7553 .resetvalue = 0 }, 7554 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7555 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7556 .access = PL1_R, .type = ARM_CP_CONST, 7557 .accessfn = access_aa64_tid3, 7558 .resetvalue = cpu->isar.mvfr0 }, 7559 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7560 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7561 .access = PL1_R, .type = ARM_CP_CONST, 7562 .accessfn = access_aa64_tid3, 7563 .resetvalue = cpu->isar.mvfr1 }, 7564 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7565 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7566 .access = PL1_R, .type = ARM_CP_CONST, 7567 .accessfn = access_aa64_tid3, 7568 .resetvalue = cpu->isar.mvfr2 }, 7569 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7570 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7571 .access = PL1_R, .type = ARM_CP_CONST, 7572 .accessfn = access_aa64_tid3, 7573 .resetvalue = 0 }, 7574 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7575 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7576 .access = PL1_R, .type = ARM_CP_CONST, 7577 .accessfn = access_aa64_tid3, 7578 .resetvalue = 0 }, 7579 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7580 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7581 .access = PL1_R, .type = ARM_CP_CONST, 7582 .accessfn = access_aa64_tid3, 7583 .resetvalue = 0 }, 7584 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7585 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7586 .access = PL1_R, .type = ARM_CP_CONST, 7587 .accessfn = access_aa64_tid3, 7588 .resetvalue = 0 }, 7589 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7590 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7591 .access = PL1_R, .type = ARM_CP_CONST, 7592 .accessfn = access_aa64_tid3, 7593 .resetvalue = 0 }, 7594 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7595 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7596 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7597 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7598 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7599 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7600 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7601 .resetvalue = cpu->pmceid0 }, 7602 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7603 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7604 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7605 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7606 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7607 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7608 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7609 .resetvalue = cpu->pmceid1 }, 7610 REGINFO_SENTINEL 7611 }; 7612 #ifdef CONFIG_USER_ONLY 7613 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7614 { .name = "ID_AA64PFR0_EL1", 7615 .exported_bits = 0x000f000f00ff0000, 7616 .fixed_bits = 0x0000000000000011 }, 7617 { .name = "ID_AA64PFR1_EL1", 7618 .exported_bits = 0x00000000000000f0 }, 7619 { .name = "ID_AA64PFR*_EL1_RESERVED", 7620 .is_glob = true }, 7621 { .name = "ID_AA64ZFR0_EL1" }, 7622 { .name = "ID_AA64MMFR0_EL1", 7623 .fixed_bits = 0x00000000ff000000 }, 7624 { .name = "ID_AA64MMFR1_EL1" }, 7625 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7626 .is_glob = true }, 7627 { .name = "ID_AA64DFR0_EL1", 7628 .fixed_bits = 0x0000000000000006 }, 7629 { .name = "ID_AA64DFR1_EL1" }, 7630 { .name = "ID_AA64DFR*_EL1_RESERVED", 7631 .is_glob = true }, 7632 { .name = "ID_AA64AFR*", 7633 .is_glob = true }, 7634 { .name = "ID_AA64ISAR0_EL1", 7635 .exported_bits = 0x00fffffff0fffff0 }, 7636 { .name = "ID_AA64ISAR1_EL1", 7637 .exported_bits = 0x000000f0ffffffff }, 7638 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7639 .is_glob = true }, 7640 REGUSERINFO_SENTINEL 7641 }; 7642 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7643 #endif 7644 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7645 if (!arm_feature(env, ARM_FEATURE_EL3) && 7646 !arm_feature(env, ARM_FEATURE_EL2)) { 7647 ARMCPRegInfo rvbar = { 7648 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7649 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7650 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 7651 }; 7652 define_one_arm_cp_reg(cpu, &rvbar); 7653 } 7654 define_arm_cp_regs(cpu, v8_idregs); 7655 define_arm_cp_regs(cpu, v8_cp_reginfo); 7656 } 7657 if (arm_feature(env, ARM_FEATURE_EL2)) { 7658 uint64_t vmpidr_def = mpidr_read_val(env); 7659 ARMCPRegInfo vpidr_regs[] = { 7660 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7661 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7662 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7663 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7664 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7665 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7666 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7667 .access = PL2_RW, .resetvalue = cpu->midr, 7668 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7669 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7670 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7671 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7672 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7673 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7674 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7675 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7676 .access = PL2_RW, 7677 .resetvalue = vmpidr_def, 7678 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7679 REGINFO_SENTINEL 7680 }; 7681 define_arm_cp_regs(cpu, vpidr_regs); 7682 define_arm_cp_regs(cpu, el2_cp_reginfo); 7683 if (arm_feature(env, ARM_FEATURE_V8)) { 7684 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7685 } 7686 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7687 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7688 ARMCPRegInfo rvbar = { 7689 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7690 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7691 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 7692 }; 7693 define_one_arm_cp_reg(cpu, &rvbar); 7694 } 7695 } else { 7696 /* If EL2 is missing but higher ELs are enabled, we need to 7697 * register the no_el2 reginfos. 7698 */ 7699 if (arm_feature(env, ARM_FEATURE_EL3)) { 7700 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 7701 * of MIDR_EL1 and MPIDR_EL1. 7702 */ 7703 ARMCPRegInfo vpidr_regs[] = { 7704 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7705 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7706 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7707 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 7708 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7709 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7710 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7711 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7712 .type = ARM_CP_NO_RAW, 7713 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 7714 REGINFO_SENTINEL 7715 }; 7716 define_arm_cp_regs(cpu, vpidr_regs); 7717 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 7718 if (arm_feature(env, ARM_FEATURE_V8)) { 7719 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 7720 } 7721 } 7722 } 7723 if (arm_feature(env, ARM_FEATURE_EL3)) { 7724 define_arm_cp_regs(cpu, el3_cp_reginfo); 7725 ARMCPRegInfo el3_regs[] = { 7726 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7727 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7728 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 7729 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7730 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7731 .access = PL3_RW, 7732 .raw_writefn = raw_write, .writefn = sctlr_write, 7733 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7734 .resetvalue = cpu->reset_sctlr }, 7735 REGINFO_SENTINEL 7736 }; 7737 7738 define_arm_cp_regs(cpu, el3_regs); 7739 } 7740 /* The behaviour of NSACR is sufficiently various that we don't 7741 * try to describe it in a single reginfo: 7742 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7743 * reads as constant 0xc00 from NS EL1 and NS EL2 7744 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7745 * if v7 without EL3, register doesn't exist 7746 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7747 */ 7748 if (arm_feature(env, ARM_FEATURE_EL3)) { 7749 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7750 ARMCPRegInfo nsacr = { 7751 .name = "NSACR", .type = ARM_CP_CONST, 7752 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7753 .access = PL1_RW, .accessfn = nsacr_access, 7754 .resetvalue = 0xc00 7755 }; 7756 define_one_arm_cp_reg(cpu, &nsacr); 7757 } else { 7758 ARMCPRegInfo nsacr = { 7759 .name = "NSACR", 7760 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7761 .access = PL3_RW | PL1_R, 7762 .resetvalue = 0, 7763 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 7764 }; 7765 define_one_arm_cp_reg(cpu, &nsacr); 7766 } 7767 } else { 7768 if (arm_feature(env, ARM_FEATURE_V8)) { 7769 ARMCPRegInfo nsacr = { 7770 .name = "NSACR", .type = ARM_CP_CONST, 7771 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7772 .access = PL1_R, 7773 .resetvalue = 0xc00 7774 }; 7775 define_one_arm_cp_reg(cpu, &nsacr); 7776 } 7777 } 7778 7779 if (arm_feature(env, ARM_FEATURE_PMSA)) { 7780 if (arm_feature(env, ARM_FEATURE_V6)) { 7781 /* PMSAv6 not implemented */ 7782 assert(arm_feature(env, ARM_FEATURE_V7)); 7783 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7784 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 7785 } else { 7786 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 7787 } 7788 } else { 7789 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7790 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 7791 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 7792 if (cpu_isar_feature(aa32_hpd, cpu)) { 7793 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 7794 } 7795 } 7796 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 7797 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 7798 } 7799 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 7800 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 7801 } 7802 if (arm_feature(env, ARM_FEATURE_VAPA)) { 7803 define_arm_cp_regs(cpu, vapa_cp_reginfo); 7804 } 7805 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 7806 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 7807 } 7808 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 7809 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 7810 } 7811 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 7812 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 7813 } 7814 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 7815 define_arm_cp_regs(cpu, omap_cp_reginfo); 7816 } 7817 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 7818 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 7819 } 7820 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7821 define_arm_cp_regs(cpu, xscale_cp_reginfo); 7822 } 7823 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 7824 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 7825 } 7826 if (arm_feature(env, ARM_FEATURE_LPAE)) { 7827 define_arm_cp_regs(cpu, lpae_cp_reginfo); 7828 } 7829 if (cpu_isar_feature(aa32_jazelle, cpu)) { 7830 define_arm_cp_regs(cpu, jazelle_regs); 7831 } 7832 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 7833 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 7834 * be read-only (ie write causes UNDEF exception). 7835 */ 7836 { 7837 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 7838 /* Pre-v8 MIDR space. 7839 * Note that the MIDR isn't a simple constant register because 7840 * of the TI925 behaviour where writes to another register can 7841 * cause the MIDR value to change. 7842 * 7843 * Unimplemented registers in the c15 0 0 0 space default to 7844 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 7845 * and friends override accordingly. 7846 */ 7847 { .name = "MIDR", 7848 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 7849 .access = PL1_R, .resetvalue = cpu->midr, 7850 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 7851 .readfn = midr_read, 7852 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7853 .type = ARM_CP_OVERRIDE }, 7854 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 7855 { .name = "DUMMY", 7856 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 7857 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7858 { .name = "DUMMY", 7859 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 7860 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7861 { .name = "DUMMY", 7862 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 7863 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7864 { .name = "DUMMY", 7865 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 7866 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7867 { .name = "DUMMY", 7868 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 7869 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7870 REGINFO_SENTINEL 7871 }; 7872 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 7873 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 7874 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 7875 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 7876 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7877 .readfn = midr_read }, 7878 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 7879 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7880 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 7881 .access = PL1_R, .resetvalue = cpu->midr }, 7882 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7883 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 7884 .access = PL1_R, .resetvalue = cpu->midr }, 7885 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 7886 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 7887 .access = PL1_R, 7888 .accessfn = access_aa64_tid1, 7889 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 7890 REGINFO_SENTINEL 7891 }; 7892 ARMCPRegInfo id_cp_reginfo[] = { 7893 /* These are common to v8 and pre-v8 */ 7894 { .name = "CTR", 7895 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 7896 .access = PL1_R, .accessfn = ctr_el0_access, 7897 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 7898 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 7899 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 7900 .access = PL0_R, .accessfn = ctr_el0_access, 7901 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 7902 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 7903 { .name = "TCMTR", 7904 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 7905 .access = PL1_R, 7906 .accessfn = access_aa32_tid1, 7907 .type = ARM_CP_CONST, .resetvalue = 0 }, 7908 REGINFO_SENTINEL 7909 }; 7910 /* TLBTR is specific to VMSA */ 7911 ARMCPRegInfo id_tlbtr_reginfo = { 7912 .name = "TLBTR", 7913 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 7914 .access = PL1_R, 7915 .accessfn = access_aa32_tid1, 7916 .type = ARM_CP_CONST, .resetvalue = 0, 7917 }; 7918 /* MPUIR is specific to PMSA V6+ */ 7919 ARMCPRegInfo id_mpuir_reginfo = { 7920 .name = "MPUIR", 7921 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 7922 .access = PL1_R, .type = ARM_CP_CONST, 7923 .resetvalue = cpu->pmsav7_dregion << 8 7924 }; 7925 ARMCPRegInfo crn0_wi_reginfo = { 7926 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 7927 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 7928 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 7929 }; 7930 #ifdef CONFIG_USER_ONLY 7931 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 7932 { .name = "MIDR_EL1", 7933 .exported_bits = 0x00000000ffffffff }, 7934 { .name = "REVIDR_EL1" }, 7935 REGUSERINFO_SENTINEL 7936 }; 7937 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 7938 #endif 7939 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 7940 arm_feature(env, ARM_FEATURE_STRONGARM)) { 7941 ARMCPRegInfo *r; 7942 /* Register the blanket "writes ignored" value first to cover the 7943 * whole space. Then update the specific ID registers to allow write 7944 * access, so that they ignore writes rather than causing them to 7945 * UNDEF. 7946 */ 7947 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 7948 for (r = id_pre_v8_midr_cp_reginfo; 7949 r->type != ARM_CP_SENTINEL; r++) { 7950 r->access = PL1_RW; 7951 } 7952 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 7953 r->access = PL1_RW; 7954 } 7955 id_mpuir_reginfo.access = PL1_RW; 7956 id_tlbtr_reginfo.access = PL1_RW; 7957 } 7958 if (arm_feature(env, ARM_FEATURE_V8)) { 7959 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 7960 } else { 7961 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 7962 } 7963 define_arm_cp_regs(cpu, id_cp_reginfo); 7964 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 7965 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 7966 } else if (arm_feature(env, ARM_FEATURE_V7)) { 7967 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 7968 } 7969 } 7970 7971 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 7972 ARMCPRegInfo mpidr_cp_reginfo[] = { 7973 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 7974 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 7975 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 7976 REGINFO_SENTINEL 7977 }; 7978 #ifdef CONFIG_USER_ONLY 7979 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 7980 { .name = "MPIDR_EL1", 7981 .fixed_bits = 0x0000000080000000 }, 7982 REGUSERINFO_SENTINEL 7983 }; 7984 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 7985 #endif 7986 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 7987 } 7988 7989 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 7990 ARMCPRegInfo auxcr_reginfo[] = { 7991 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 7992 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 7993 .access = PL1_RW, .accessfn = access_tacr, 7994 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 7995 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 7996 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 7997 .access = PL2_RW, .type = ARM_CP_CONST, 7998 .resetvalue = 0 }, 7999 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8000 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8001 .access = PL3_RW, .type = ARM_CP_CONST, 8002 .resetvalue = 0 }, 8003 REGINFO_SENTINEL 8004 }; 8005 define_arm_cp_regs(cpu, auxcr_reginfo); 8006 if (cpu_isar_feature(aa32_ac2, cpu)) { 8007 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8008 } 8009 } 8010 8011 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8012 /* 8013 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8014 * There are two flavours: 8015 * (1) older 32-bit only cores have a simple 32-bit CBAR 8016 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8017 * 32-bit register visible to AArch32 at a different encoding 8018 * to the "flavour 1" register and with the bits rearranged to 8019 * be able to squash a 64-bit address into the 32-bit view. 8020 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8021 * in future if we support AArch32-only configs of some of the 8022 * AArch64 cores we might need to add a specific feature flag 8023 * to indicate cores with "flavour 2" CBAR. 8024 */ 8025 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8026 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8027 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8028 | extract64(cpu->reset_cbar, 32, 12); 8029 ARMCPRegInfo cbar_reginfo[] = { 8030 { .name = "CBAR", 8031 .type = ARM_CP_CONST, 8032 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8033 .access = PL1_R, .resetvalue = cbar32 }, 8034 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8035 .type = ARM_CP_CONST, 8036 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8037 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8038 REGINFO_SENTINEL 8039 }; 8040 /* We don't implement a r/w 64 bit CBAR currently */ 8041 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8042 define_arm_cp_regs(cpu, cbar_reginfo); 8043 } else { 8044 ARMCPRegInfo cbar = { 8045 .name = "CBAR", 8046 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8047 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8048 .fieldoffset = offsetof(CPUARMState, 8049 cp15.c15_config_base_address) 8050 }; 8051 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8052 cbar.access = PL1_R; 8053 cbar.fieldoffset = 0; 8054 cbar.type = ARM_CP_CONST; 8055 } 8056 define_one_arm_cp_reg(cpu, &cbar); 8057 } 8058 } 8059 8060 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8061 ARMCPRegInfo vbar_cp_reginfo[] = { 8062 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8063 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8064 .access = PL1_RW, .writefn = vbar_write, 8065 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8066 offsetof(CPUARMState, cp15.vbar_ns) }, 8067 .resetvalue = 0 }, 8068 REGINFO_SENTINEL 8069 }; 8070 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8071 } 8072 8073 /* Generic registers whose values depend on the implementation */ 8074 { 8075 ARMCPRegInfo sctlr = { 8076 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8077 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8078 .access = PL1_RW, .accessfn = access_tvm_trvm, 8079 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8080 offsetof(CPUARMState, cp15.sctlr_ns) }, 8081 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8082 .raw_writefn = raw_write, 8083 }; 8084 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8085 /* Normally we would always end the TB on an SCTLR write, but Linux 8086 * arch/arm/mach-pxa/sleep.S expects two instructions following 8087 * an MMU enable to execute from cache. Imitate this behaviour. 8088 */ 8089 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8090 } 8091 define_one_arm_cp_reg(cpu, &sctlr); 8092 } 8093 8094 if (cpu_isar_feature(aa64_lor, cpu)) { 8095 define_arm_cp_regs(cpu, lor_reginfo); 8096 } 8097 if (cpu_isar_feature(aa64_pan, cpu)) { 8098 define_one_arm_cp_reg(cpu, &pan_reginfo); 8099 } 8100 #ifndef CONFIG_USER_ONLY 8101 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8102 define_arm_cp_regs(cpu, ats1e1_reginfo); 8103 } 8104 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8105 define_arm_cp_regs(cpu, ats1cp_reginfo); 8106 } 8107 #endif 8108 if (cpu_isar_feature(aa64_uao, cpu)) { 8109 define_one_arm_cp_reg(cpu, &uao_reginfo); 8110 } 8111 8112 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8113 define_arm_cp_regs(cpu, vhe_reginfo); 8114 } 8115 8116 if (cpu_isar_feature(aa64_sve, cpu)) { 8117 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8118 if (arm_feature(env, ARM_FEATURE_EL2)) { 8119 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8120 } else { 8121 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8122 } 8123 if (arm_feature(env, ARM_FEATURE_EL3)) { 8124 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8125 } 8126 } 8127 8128 #ifdef TARGET_AARCH64 8129 if (cpu_isar_feature(aa64_pauth, cpu)) { 8130 define_arm_cp_regs(cpu, pauth_reginfo); 8131 } 8132 if (cpu_isar_feature(aa64_rndr, cpu)) { 8133 define_arm_cp_regs(cpu, rndr_reginfo); 8134 } 8135 #ifndef CONFIG_USER_ONLY 8136 /* Data Cache clean instructions up to PoP */ 8137 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8138 define_one_arm_cp_reg(cpu, dcpop_reg); 8139 8140 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8141 define_one_arm_cp_reg(cpu, dcpodp_reg); 8142 } 8143 } 8144 #endif /*CONFIG_USER_ONLY*/ 8145 8146 /* 8147 * If full MTE is enabled, add all of the system registers. 8148 * If only "instructions available at EL0" are enabled, 8149 * then define only a RAZ/WI version of PSTATE.TCO. 8150 */ 8151 if (cpu_isar_feature(aa64_mte, cpu)) { 8152 define_arm_cp_regs(cpu, mte_reginfo); 8153 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8154 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8155 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8156 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8157 } 8158 #endif 8159 8160 if (cpu_isar_feature(any_predinv, cpu)) { 8161 define_arm_cp_regs(cpu, predinv_reginfo); 8162 } 8163 8164 if (cpu_isar_feature(any_ccidx, cpu)) { 8165 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8166 } 8167 8168 #ifndef CONFIG_USER_ONLY 8169 /* 8170 * Register redirections and aliases must be done last, 8171 * after the registers from the other extensions have been defined. 8172 */ 8173 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8174 define_arm_vh_e2h_redirects_aliases(cpu); 8175 } 8176 #endif 8177 } 8178 8179 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 8180 { 8181 CPUState *cs = CPU(cpu); 8182 CPUARMState *env = &cpu->env; 8183 8184 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8185 /* 8186 * The lower part of each SVE register aliases to the FPU 8187 * registers so we don't need to include both. 8188 */ 8189 #ifdef TARGET_AARCH64 8190 if (isar_feature_aa64_sve(&cpu->isar)) { 8191 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg, 8192 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs), 8193 "sve-registers.xml", 0); 8194 } else 8195 #endif 8196 { 8197 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 8198 aarch64_fpu_gdb_set_reg, 8199 34, "aarch64-fpu.xml", 0); 8200 } 8201 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 8202 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8203 51, "arm-neon.xml", 0); 8204 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { 8205 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8206 35, "arm-vfp3.xml", 0); 8207 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 8208 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8209 19, "arm-vfp.xml", 0); 8210 } 8211 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 8212 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs), 8213 "system-registers.xml", 0); 8214 8215 } 8216 8217 /* Sort alphabetically by type name, except for "any". */ 8218 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8219 { 8220 ObjectClass *class_a = (ObjectClass *)a; 8221 ObjectClass *class_b = (ObjectClass *)b; 8222 const char *name_a, *name_b; 8223 8224 name_a = object_class_get_name(class_a); 8225 name_b = object_class_get_name(class_b); 8226 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8227 return 1; 8228 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8229 return -1; 8230 } else { 8231 return strcmp(name_a, name_b); 8232 } 8233 } 8234 8235 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8236 { 8237 ObjectClass *oc = data; 8238 const char *typename; 8239 char *name; 8240 8241 typename = object_class_get_name(oc); 8242 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8243 qemu_printf(" %s\n", name); 8244 g_free(name); 8245 } 8246 8247 void arm_cpu_list(void) 8248 { 8249 GSList *list; 8250 8251 list = object_class_get_list(TYPE_ARM_CPU, false); 8252 list = g_slist_sort(list, arm_cpu_list_compare); 8253 qemu_printf("Available CPUs:\n"); 8254 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8255 g_slist_free(list); 8256 } 8257 8258 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8259 { 8260 ObjectClass *oc = data; 8261 CpuDefinitionInfoList **cpu_list = user_data; 8262 CpuDefinitionInfoList *entry; 8263 CpuDefinitionInfo *info; 8264 const char *typename; 8265 8266 typename = object_class_get_name(oc); 8267 info = g_malloc0(sizeof(*info)); 8268 info->name = g_strndup(typename, 8269 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8270 info->q_typename = g_strdup(typename); 8271 8272 entry = g_malloc0(sizeof(*entry)); 8273 entry->value = info; 8274 entry->next = *cpu_list; 8275 *cpu_list = entry; 8276 } 8277 8278 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8279 { 8280 CpuDefinitionInfoList *cpu_list = NULL; 8281 GSList *list; 8282 8283 list = object_class_get_list(TYPE_ARM_CPU, false); 8284 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8285 g_slist_free(list); 8286 8287 return cpu_list; 8288 } 8289 8290 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8291 void *opaque, int state, int secstate, 8292 int crm, int opc1, int opc2, 8293 const char *name) 8294 { 8295 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8296 * add a single reginfo struct to the hash table. 8297 */ 8298 uint32_t *key = g_new(uint32_t, 1); 8299 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8300 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8301 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8302 8303 r2->name = g_strdup(name); 8304 /* Reset the secure state to the specific incoming state. This is 8305 * necessary as the register may have been defined with both states. 8306 */ 8307 r2->secure = secstate; 8308 8309 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8310 /* Register is banked (using both entries in array). 8311 * Overwriting fieldoffset as the array is only used to define 8312 * banked registers but later only fieldoffset is used. 8313 */ 8314 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8315 } 8316 8317 if (state == ARM_CP_STATE_AA32) { 8318 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8319 /* If the register is banked then we don't need to migrate or 8320 * reset the 32-bit instance in certain cases: 8321 * 8322 * 1) If the register has both 32-bit and 64-bit instances then we 8323 * can count on the 64-bit instance taking care of the 8324 * non-secure bank. 8325 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8326 * taking care of the secure bank. This requires that separate 8327 * 32 and 64-bit definitions are provided. 8328 */ 8329 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8330 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8331 r2->type |= ARM_CP_ALIAS; 8332 } 8333 } else if ((secstate != r->secure) && !ns) { 8334 /* The register is not banked so we only want to allow migration of 8335 * the non-secure instance. 8336 */ 8337 r2->type |= ARM_CP_ALIAS; 8338 } 8339 8340 if (r->state == ARM_CP_STATE_BOTH) { 8341 /* We assume it is a cp15 register if the .cp field is left unset. 8342 */ 8343 if (r2->cp == 0) { 8344 r2->cp = 15; 8345 } 8346 8347 #ifdef HOST_WORDS_BIGENDIAN 8348 if (r2->fieldoffset) { 8349 r2->fieldoffset += sizeof(uint32_t); 8350 } 8351 #endif 8352 } 8353 } 8354 if (state == ARM_CP_STATE_AA64) { 8355 /* To allow abbreviation of ARMCPRegInfo 8356 * definitions, we treat cp == 0 as equivalent to 8357 * the value for "standard guest-visible sysreg". 8358 * STATE_BOTH definitions are also always "standard 8359 * sysreg" in their AArch64 view (the .cp value may 8360 * be non-zero for the benefit of the AArch32 view). 8361 */ 8362 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8363 r2->cp = CP_REG_ARM64_SYSREG_CP; 8364 } 8365 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8366 r2->opc0, opc1, opc2); 8367 } else { 8368 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8369 } 8370 if (opaque) { 8371 r2->opaque = opaque; 8372 } 8373 /* reginfo passed to helpers is correct for the actual access, 8374 * and is never ARM_CP_STATE_BOTH: 8375 */ 8376 r2->state = state; 8377 /* Make sure reginfo passed to helpers for wildcarded regs 8378 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8379 */ 8380 r2->crm = crm; 8381 r2->opc1 = opc1; 8382 r2->opc2 = opc2; 8383 /* By convention, for wildcarded registers only the first 8384 * entry is used for migration; the others are marked as 8385 * ALIAS so we don't try to transfer the register 8386 * multiple times. Special registers (ie NOP/WFI) are 8387 * never migratable and not even raw-accessible. 8388 */ 8389 if ((r->type & ARM_CP_SPECIAL)) { 8390 r2->type |= ARM_CP_NO_RAW; 8391 } 8392 if (((r->crm == CP_ANY) && crm != 0) || 8393 ((r->opc1 == CP_ANY) && opc1 != 0) || 8394 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8395 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8396 } 8397 8398 /* Check that raw accesses are either forbidden or handled. Note that 8399 * we can't assert this earlier because the setup of fieldoffset for 8400 * banked registers has to be done first. 8401 */ 8402 if (!(r2->type & ARM_CP_NO_RAW)) { 8403 assert(!raw_accessors_invalid(r2)); 8404 } 8405 8406 /* Overriding of an existing definition must be explicitly 8407 * requested. 8408 */ 8409 if (!(r->type & ARM_CP_OVERRIDE)) { 8410 ARMCPRegInfo *oldreg; 8411 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8412 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8413 fprintf(stderr, "Register redefined: cp=%d %d bit " 8414 "crn=%d crm=%d opc1=%d opc2=%d, " 8415 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8416 r2->crn, r2->crm, r2->opc1, r2->opc2, 8417 oldreg->name, r2->name); 8418 g_assert_not_reached(); 8419 } 8420 } 8421 g_hash_table_insert(cpu->cp_regs, key, r2); 8422 } 8423 8424 8425 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8426 const ARMCPRegInfo *r, void *opaque) 8427 { 8428 /* Define implementations of coprocessor registers. 8429 * We store these in a hashtable because typically 8430 * there are less than 150 registers in a space which 8431 * is 16*16*16*8*8 = 262144 in size. 8432 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8433 * If a register is defined twice then the second definition is 8434 * used, so this can be used to define some generic registers and 8435 * then override them with implementation specific variations. 8436 * At least one of the original and the second definition should 8437 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8438 * against accidental use. 8439 * 8440 * The state field defines whether the register is to be 8441 * visible in the AArch32 or AArch64 execution state. If the 8442 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8443 * reginfo structure for the AArch32 view, which sees the lower 8444 * 32 bits of the 64 bit register. 8445 * 8446 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8447 * be wildcarded. AArch64 registers are always considered to be 64 8448 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8449 * the register, if any. 8450 */ 8451 int crm, opc1, opc2, state; 8452 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8453 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8454 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8455 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8456 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8457 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8458 /* 64 bit registers have only CRm and Opc1 fields */ 8459 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8460 /* op0 only exists in the AArch64 encodings */ 8461 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8462 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8463 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8464 /* 8465 * This API is only for Arm's system coprocessors (14 and 15) or 8466 * (M-profile or v7A-and-earlier only) for implementation defined 8467 * coprocessors in the range 0..7. Our decode assumes this, since 8468 * 8..13 can be used for other insns including VFP and Neon. See 8469 * valid_cp() in translate.c. Assert here that we haven't tried 8470 * to use an invalid coprocessor number. 8471 */ 8472 switch (r->state) { 8473 case ARM_CP_STATE_BOTH: 8474 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8475 if (r->cp == 0) { 8476 break; 8477 } 8478 /* fall through */ 8479 case ARM_CP_STATE_AA32: 8480 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8481 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8482 assert(r->cp >= 14 && r->cp <= 15); 8483 } else { 8484 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8485 } 8486 break; 8487 case ARM_CP_STATE_AA64: 8488 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8489 break; 8490 default: 8491 g_assert_not_reached(); 8492 } 8493 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8494 * encodes a minimum access level for the register. We roll this 8495 * runtime check into our general permission check code, so check 8496 * here that the reginfo's specified permissions are strict enough 8497 * to encompass the generic architectural permission check. 8498 */ 8499 if (r->state != ARM_CP_STATE_AA32) { 8500 int mask = 0; 8501 switch (r->opc1) { 8502 case 0: 8503 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8504 mask = PL0U_R | PL1_RW; 8505 break; 8506 case 1: case 2: 8507 /* min_EL EL1 */ 8508 mask = PL1_RW; 8509 break; 8510 case 3: 8511 /* min_EL EL0 */ 8512 mask = PL0_RW; 8513 break; 8514 case 4: 8515 case 5: 8516 /* min_EL EL2 */ 8517 mask = PL2_RW; 8518 break; 8519 case 6: 8520 /* min_EL EL3 */ 8521 mask = PL3_RW; 8522 break; 8523 case 7: 8524 /* min_EL EL1, secure mode only (we don't check the latter) */ 8525 mask = PL1_RW; 8526 break; 8527 default: 8528 /* broken reginfo with out-of-range opc1 */ 8529 assert(false); 8530 break; 8531 } 8532 /* assert our permissions are not too lax (stricter is fine) */ 8533 assert((r->access & ~mask) == 0); 8534 } 8535 8536 /* Check that the register definition has enough info to handle 8537 * reads and writes if they are permitted. 8538 */ 8539 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8540 if (r->access & PL3_R) { 8541 assert((r->fieldoffset || 8542 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8543 r->readfn); 8544 } 8545 if (r->access & PL3_W) { 8546 assert((r->fieldoffset || 8547 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8548 r->writefn); 8549 } 8550 } 8551 /* Bad type field probably means missing sentinel at end of reg list */ 8552 assert(cptype_valid(r->type)); 8553 for (crm = crmmin; crm <= crmmax; crm++) { 8554 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8555 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8556 for (state = ARM_CP_STATE_AA32; 8557 state <= ARM_CP_STATE_AA64; state++) { 8558 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8559 continue; 8560 } 8561 if (state == ARM_CP_STATE_AA32) { 8562 /* Under AArch32 CP registers can be common 8563 * (same for secure and non-secure world) or banked. 8564 */ 8565 char *name; 8566 8567 switch (r->secure) { 8568 case ARM_CP_SECSTATE_S: 8569 case ARM_CP_SECSTATE_NS: 8570 add_cpreg_to_hashtable(cpu, r, opaque, state, 8571 r->secure, crm, opc1, opc2, 8572 r->name); 8573 break; 8574 default: 8575 name = g_strdup_printf("%s_S", r->name); 8576 add_cpreg_to_hashtable(cpu, r, opaque, state, 8577 ARM_CP_SECSTATE_S, 8578 crm, opc1, opc2, name); 8579 g_free(name); 8580 add_cpreg_to_hashtable(cpu, r, opaque, state, 8581 ARM_CP_SECSTATE_NS, 8582 crm, opc1, opc2, r->name); 8583 break; 8584 } 8585 } else { 8586 /* AArch64 registers get mapped to non-secure instance 8587 * of AArch32 */ 8588 add_cpreg_to_hashtable(cpu, r, opaque, state, 8589 ARM_CP_SECSTATE_NS, 8590 crm, opc1, opc2, r->name); 8591 } 8592 } 8593 } 8594 } 8595 } 8596 } 8597 8598 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8599 const ARMCPRegInfo *regs, void *opaque) 8600 { 8601 /* Define a whole list of registers */ 8602 const ARMCPRegInfo *r; 8603 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8604 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8605 } 8606 } 8607 8608 /* 8609 * Modify ARMCPRegInfo for access from userspace. 8610 * 8611 * This is a data driven modification directed by 8612 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8613 * user-space cannot alter any values and dynamic values pertaining to 8614 * execution state are hidden from user space view anyway. 8615 */ 8616 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8617 { 8618 const ARMCPRegUserSpaceInfo *m; 8619 ARMCPRegInfo *r; 8620 8621 for (m = mods; m->name; m++) { 8622 GPatternSpec *pat = NULL; 8623 if (m->is_glob) { 8624 pat = g_pattern_spec_new(m->name); 8625 } 8626 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8627 if (pat && g_pattern_match_string(pat, r->name)) { 8628 r->type = ARM_CP_CONST; 8629 r->access = PL0U_R; 8630 r->resetvalue = 0; 8631 /* continue */ 8632 } else if (strcmp(r->name, m->name) == 0) { 8633 r->type = ARM_CP_CONST; 8634 r->access = PL0U_R; 8635 r->resetvalue &= m->exported_bits; 8636 r->resetvalue |= m->fixed_bits; 8637 break; 8638 } 8639 } 8640 if (pat) { 8641 g_pattern_spec_free(pat); 8642 } 8643 } 8644 } 8645 8646 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8647 { 8648 return g_hash_table_lookup(cpregs, &encoded_cp); 8649 } 8650 8651 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8652 uint64_t value) 8653 { 8654 /* Helper coprocessor write function for write-ignore registers */ 8655 } 8656 8657 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8658 { 8659 /* Helper coprocessor write function for read-as-zero registers */ 8660 return 0; 8661 } 8662 8663 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8664 { 8665 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8666 } 8667 8668 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8669 { 8670 /* Return true if it is not valid for us to switch to 8671 * this CPU mode (ie all the UNPREDICTABLE cases in 8672 * the ARM ARM CPSRWriteByInstr pseudocode). 8673 */ 8674 8675 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8676 if (write_type == CPSRWriteByInstr && 8677 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8678 mode == ARM_CPU_MODE_HYP)) { 8679 return 1; 8680 } 8681 8682 switch (mode) { 8683 case ARM_CPU_MODE_USR: 8684 return 0; 8685 case ARM_CPU_MODE_SYS: 8686 case ARM_CPU_MODE_SVC: 8687 case ARM_CPU_MODE_ABT: 8688 case ARM_CPU_MODE_UND: 8689 case ARM_CPU_MODE_IRQ: 8690 case ARM_CPU_MODE_FIQ: 8691 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8692 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8693 */ 8694 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8695 * and CPS are treated as illegal mode changes. 8696 */ 8697 if (write_type == CPSRWriteByInstr && 8698 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8699 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8700 return 1; 8701 } 8702 return 0; 8703 case ARM_CPU_MODE_HYP: 8704 return !arm_feature(env, ARM_FEATURE_EL2) 8705 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); 8706 case ARM_CPU_MODE_MON: 8707 return arm_current_el(env) < 3; 8708 default: 8709 return 1; 8710 } 8711 } 8712 8713 uint32_t cpsr_read(CPUARMState *env) 8714 { 8715 int ZF; 8716 ZF = (env->ZF == 0); 8717 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8718 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8719 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8720 | ((env->condexec_bits & 0xfc) << 8) 8721 | (env->GE << 16) | (env->daif & CPSR_AIF); 8722 } 8723 8724 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8725 CPSRWriteType write_type) 8726 { 8727 uint32_t changed_daif; 8728 8729 if (mask & CPSR_NZCV) { 8730 env->ZF = (~val) & CPSR_Z; 8731 env->NF = val; 8732 env->CF = (val >> 29) & 1; 8733 env->VF = (val << 3) & 0x80000000; 8734 } 8735 if (mask & CPSR_Q) 8736 env->QF = ((val & CPSR_Q) != 0); 8737 if (mask & CPSR_T) 8738 env->thumb = ((val & CPSR_T) != 0); 8739 if (mask & CPSR_IT_0_1) { 8740 env->condexec_bits &= ~3; 8741 env->condexec_bits |= (val >> 25) & 3; 8742 } 8743 if (mask & CPSR_IT_2_7) { 8744 env->condexec_bits &= 3; 8745 env->condexec_bits |= (val >> 8) & 0xfc; 8746 } 8747 if (mask & CPSR_GE) { 8748 env->GE = (val >> 16) & 0xf; 8749 } 8750 8751 /* In a V7 implementation that includes the security extensions but does 8752 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 8753 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 8754 * bits respectively. 8755 * 8756 * In a V8 implementation, it is permitted for privileged software to 8757 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 8758 */ 8759 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 8760 arm_feature(env, ARM_FEATURE_EL3) && 8761 !arm_feature(env, ARM_FEATURE_EL2) && 8762 !arm_is_secure(env)) { 8763 8764 changed_daif = (env->daif ^ val) & mask; 8765 8766 if (changed_daif & CPSR_A) { 8767 /* Check to see if we are allowed to change the masking of async 8768 * abort exceptions from a non-secure state. 8769 */ 8770 if (!(env->cp15.scr_el3 & SCR_AW)) { 8771 qemu_log_mask(LOG_GUEST_ERROR, 8772 "Ignoring attempt to switch CPSR_A flag from " 8773 "non-secure world with SCR.AW bit clear\n"); 8774 mask &= ~CPSR_A; 8775 } 8776 } 8777 8778 if (changed_daif & CPSR_F) { 8779 /* Check to see if we are allowed to change the masking of FIQ 8780 * exceptions from a non-secure state. 8781 */ 8782 if (!(env->cp15.scr_el3 & SCR_FW)) { 8783 qemu_log_mask(LOG_GUEST_ERROR, 8784 "Ignoring attempt to switch CPSR_F flag from " 8785 "non-secure world with SCR.FW bit clear\n"); 8786 mask &= ~CPSR_F; 8787 } 8788 8789 /* Check whether non-maskable FIQ (NMFI) support is enabled. 8790 * If this bit is set software is not allowed to mask 8791 * FIQs, but is allowed to set CPSR_F to 0. 8792 */ 8793 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 8794 (val & CPSR_F)) { 8795 qemu_log_mask(LOG_GUEST_ERROR, 8796 "Ignoring attempt to enable CPSR_F flag " 8797 "(non-maskable FIQ [NMFI] support enabled)\n"); 8798 mask &= ~CPSR_F; 8799 } 8800 } 8801 } 8802 8803 env->daif &= ~(CPSR_AIF & mask); 8804 env->daif |= val & CPSR_AIF & mask; 8805 8806 if (write_type != CPSRWriteRaw && 8807 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 8808 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 8809 /* Note that we can only get here in USR mode if this is a 8810 * gdb stub write; for this case we follow the architectural 8811 * behaviour for guest writes in USR mode of ignoring an attempt 8812 * to switch mode. (Those are caught by translate.c for writes 8813 * triggered by guest instructions.) 8814 */ 8815 mask &= ~CPSR_M; 8816 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 8817 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 8818 * v7, and has defined behaviour in v8: 8819 * + leave CPSR.M untouched 8820 * + allow changes to the other CPSR fields 8821 * + set PSTATE.IL 8822 * For user changes via the GDB stub, we don't set PSTATE.IL, 8823 * as this would be unnecessarily harsh for a user error. 8824 */ 8825 mask &= ~CPSR_M; 8826 if (write_type != CPSRWriteByGDBStub && 8827 arm_feature(env, ARM_FEATURE_V8)) { 8828 mask |= CPSR_IL; 8829 val |= CPSR_IL; 8830 } 8831 qemu_log_mask(LOG_GUEST_ERROR, 8832 "Illegal AArch32 mode switch attempt from %s to %s\n", 8833 aarch32_mode_name(env->uncached_cpsr), 8834 aarch32_mode_name(val)); 8835 } else { 8836 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 8837 write_type == CPSRWriteExceptionReturn ? 8838 "Exception return from AArch32" : 8839 "AArch32 mode switch from", 8840 aarch32_mode_name(env->uncached_cpsr), 8841 aarch32_mode_name(val), env->regs[15]); 8842 switch_mode(env, val & CPSR_M); 8843 } 8844 } 8845 mask &= ~CACHED_CPSR_BITS; 8846 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 8847 } 8848 8849 /* Sign/zero extend */ 8850 uint32_t HELPER(sxtb16)(uint32_t x) 8851 { 8852 uint32_t res; 8853 res = (uint16_t)(int8_t)x; 8854 res |= (uint32_t)(int8_t)(x >> 16) << 16; 8855 return res; 8856 } 8857 8858 uint32_t HELPER(uxtb16)(uint32_t x) 8859 { 8860 uint32_t res; 8861 res = (uint16_t)(uint8_t)x; 8862 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 8863 return res; 8864 } 8865 8866 int32_t HELPER(sdiv)(int32_t num, int32_t den) 8867 { 8868 if (den == 0) 8869 return 0; 8870 if (num == INT_MIN && den == -1) 8871 return INT_MIN; 8872 return num / den; 8873 } 8874 8875 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 8876 { 8877 if (den == 0) 8878 return 0; 8879 return num / den; 8880 } 8881 8882 uint32_t HELPER(rbit)(uint32_t x) 8883 { 8884 return revbit32(x); 8885 } 8886 8887 #ifdef CONFIG_USER_ONLY 8888 8889 static void switch_mode(CPUARMState *env, int mode) 8890 { 8891 ARMCPU *cpu = env_archcpu(env); 8892 8893 if (mode != ARM_CPU_MODE_USR) { 8894 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 8895 } 8896 } 8897 8898 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 8899 uint32_t cur_el, bool secure) 8900 { 8901 return 1; 8902 } 8903 8904 void aarch64_sync_64_to_32(CPUARMState *env) 8905 { 8906 g_assert_not_reached(); 8907 } 8908 8909 #else 8910 8911 static void switch_mode(CPUARMState *env, int mode) 8912 { 8913 int old_mode; 8914 int i; 8915 8916 old_mode = env->uncached_cpsr & CPSR_M; 8917 if (mode == old_mode) 8918 return; 8919 8920 if (old_mode == ARM_CPU_MODE_FIQ) { 8921 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 8922 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 8923 } else if (mode == ARM_CPU_MODE_FIQ) { 8924 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 8925 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 8926 } 8927 8928 i = bank_number(old_mode); 8929 env->banked_r13[i] = env->regs[13]; 8930 env->banked_spsr[i] = env->spsr; 8931 8932 i = bank_number(mode); 8933 env->regs[13] = env->banked_r13[i]; 8934 env->spsr = env->banked_spsr[i]; 8935 8936 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 8937 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 8938 } 8939 8940 /* Physical Interrupt Target EL Lookup Table 8941 * 8942 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 8943 * 8944 * The below multi-dimensional table is used for looking up the target 8945 * exception level given numerous condition criteria. Specifically, the 8946 * target EL is based on SCR and HCR routing controls as well as the 8947 * currently executing EL and secure state. 8948 * 8949 * Dimensions: 8950 * target_el_table[2][2][2][2][2][4] 8951 * | | | | | +--- Current EL 8952 * | | | | +------ Non-secure(0)/Secure(1) 8953 * | | | +--------- HCR mask override 8954 * | | +------------ SCR exec state control 8955 * | +--------------- SCR mask override 8956 * +------------------ 32-bit(0)/64-bit(1) EL3 8957 * 8958 * The table values are as such: 8959 * 0-3 = EL0-EL3 8960 * -1 = Cannot occur 8961 * 8962 * The ARM ARM target EL table includes entries indicating that an "exception 8963 * is not taken". The two cases where this is applicable are: 8964 * 1) An exception is taken from EL3 but the SCR does not have the exception 8965 * routed to EL3. 8966 * 2) An exception is taken from EL2 but the HCR does not have the exception 8967 * routed to EL2. 8968 * In these two cases, the below table contain a target of EL1. This value is 8969 * returned as it is expected that the consumer of the table data will check 8970 * for "target EL >= current EL" to ensure the exception is not taken. 8971 * 8972 * SCR HCR 8973 * 64 EA AMO From 8974 * BIT IRQ IMO Non-secure Secure 8975 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 8976 */ 8977 static const int8_t target_el_table[2][2][2][2][2][4] = { 8978 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 8979 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 8980 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 8981 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 8982 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 8983 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 8984 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 8985 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 8986 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 8987 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 8988 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 8989 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 8990 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 8991 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 8992 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 8993 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 8994 }; 8995 8996 /* 8997 * Determine the target EL for physical exceptions 8998 */ 8999 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9000 uint32_t cur_el, bool secure) 9001 { 9002 CPUARMState *env = cs->env_ptr; 9003 bool rw; 9004 bool scr; 9005 bool hcr; 9006 int target_el; 9007 /* Is the highest EL AArch64? */ 9008 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9009 uint64_t hcr_el2; 9010 9011 if (arm_feature(env, ARM_FEATURE_EL3)) { 9012 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9013 } else { 9014 /* Either EL2 is the highest EL (and so the EL2 register width 9015 * is given by is64); or there is no EL2 or EL3, in which case 9016 * the value of 'rw' does not affect the table lookup anyway. 9017 */ 9018 rw = is64; 9019 } 9020 9021 hcr_el2 = arm_hcr_el2_eff(env); 9022 switch (excp_idx) { 9023 case EXCP_IRQ: 9024 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9025 hcr = hcr_el2 & HCR_IMO; 9026 break; 9027 case EXCP_FIQ: 9028 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9029 hcr = hcr_el2 & HCR_FMO; 9030 break; 9031 default: 9032 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9033 hcr = hcr_el2 & HCR_AMO; 9034 break; 9035 }; 9036 9037 /* 9038 * For these purposes, TGE and AMO/IMO/FMO both force the 9039 * interrupt to EL2. Fold TGE into the bit extracted above. 9040 */ 9041 hcr |= (hcr_el2 & HCR_TGE) != 0; 9042 9043 /* Perform a table-lookup for the target EL given the current state */ 9044 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9045 9046 assert(target_el > 0); 9047 9048 return target_el; 9049 } 9050 9051 void arm_log_exception(int idx) 9052 { 9053 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9054 const char *exc = NULL; 9055 static const char * const excnames[] = { 9056 [EXCP_UDEF] = "Undefined Instruction", 9057 [EXCP_SWI] = "SVC", 9058 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9059 [EXCP_DATA_ABORT] = "Data Abort", 9060 [EXCP_IRQ] = "IRQ", 9061 [EXCP_FIQ] = "FIQ", 9062 [EXCP_BKPT] = "Breakpoint", 9063 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9064 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9065 [EXCP_HVC] = "Hypervisor Call", 9066 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9067 [EXCP_SMC] = "Secure Monitor Call", 9068 [EXCP_VIRQ] = "Virtual IRQ", 9069 [EXCP_VFIQ] = "Virtual FIQ", 9070 [EXCP_SEMIHOST] = "Semihosting call", 9071 [EXCP_NOCP] = "v7M NOCP UsageFault", 9072 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9073 [EXCP_STKOF] = "v8M STKOF UsageFault", 9074 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9075 [EXCP_LSERR] = "v8M LSERR UsageFault", 9076 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9077 }; 9078 9079 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9080 exc = excnames[idx]; 9081 } 9082 if (!exc) { 9083 exc = "unknown"; 9084 } 9085 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 9086 } 9087 } 9088 9089 /* 9090 * Function used to synchronize QEMU's AArch64 register set with AArch32 9091 * register set. This is necessary when switching between AArch32 and AArch64 9092 * execution state. 9093 */ 9094 void aarch64_sync_32_to_64(CPUARMState *env) 9095 { 9096 int i; 9097 uint32_t mode = env->uncached_cpsr & CPSR_M; 9098 9099 /* We can blanket copy R[0:7] to X[0:7] */ 9100 for (i = 0; i < 8; i++) { 9101 env->xregs[i] = env->regs[i]; 9102 } 9103 9104 /* 9105 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9106 * Otherwise, they come from the banked user regs. 9107 */ 9108 if (mode == ARM_CPU_MODE_FIQ) { 9109 for (i = 8; i < 13; i++) { 9110 env->xregs[i] = env->usr_regs[i - 8]; 9111 } 9112 } else { 9113 for (i = 8; i < 13; i++) { 9114 env->xregs[i] = env->regs[i]; 9115 } 9116 } 9117 9118 /* 9119 * Registers x13-x23 are the various mode SP and FP registers. Registers 9120 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9121 * from the mode banked register. 9122 */ 9123 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9124 env->xregs[13] = env->regs[13]; 9125 env->xregs[14] = env->regs[14]; 9126 } else { 9127 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9128 /* HYP is an exception in that it is copied from r14 */ 9129 if (mode == ARM_CPU_MODE_HYP) { 9130 env->xregs[14] = env->regs[14]; 9131 } else { 9132 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9133 } 9134 } 9135 9136 if (mode == ARM_CPU_MODE_HYP) { 9137 env->xregs[15] = env->regs[13]; 9138 } else { 9139 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9140 } 9141 9142 if (mode == ARM_CPU_MODE_IRQ) { 9143 env->xregs[16] = env->regs[14]; 9144 env->xregs[17] = env->regs[13]; 9145 } else { 9146 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9147 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9148 } 9149 9150 if (mode == ARM_CPU_MODE_SVC) { 9151 env->xregs[18] = env->regs[14]; 9152 env->xregs[19] = env->regs[13]; 9153 } else { 9154 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9155 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9156 } 9157 9158 if (mode == ARM_CPU_MODE_ABT) { 9159 env->xregs[20] = env->regs[14]; 9160 env->xregs[21] = env->regs[13]; 9161 } else { 9162 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9163 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9164 } 9165 9166 if (mode == ARM_CPU_MODE_UND) { 9167 env->xregs[22] = env->regs[14]; 9168 env->xregs[23] = env->regs[13]; 9169 } else { 9170 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9171 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9172 } 9173 9174 /* 9175 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9176 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9177 * FIQ bank for r8-r14. 9178 */ 9179 if (mode == ARM_CPU_MODE_FIQ) { 9180 for (i = 24; i < 31; i++) { 9181 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9182 } 9183 } else { 9184 for (i = 24; i < 29; i++) { 9185 env->xregs[i] = env->fiq_regs[i - 24]; 9186 } 9187 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9188 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9189 } 9190 9191 env->pc = env->regs[15]; 9192 } 9193 9194 /* 9195 * Function used to synchronize QEMU's AArch32 register set with AArch64 9196 * register set. This is necessary when switching between AArch32 and AArch64 9197 * execution state. 9198 */ 9199 void aarch64_sync_64_to_32(CPUARMState *env) 9200 { 9201 int i; 9202 uint32_t mode = env->uncached_cpsr & CPSR_M; 9203 9204 /* We can blanket copy X[0:7] to R[0:7] */ 9205 for (i = 0; i < 8; i++) { 9206 env->regs[i] = env->xregs[i]; 9207 } 9208 9209 /* 9210 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9211 * Otherwise, we copy x8-x12 into the banked user regs. 9212 */ 9213 if (mode == ARM_CPU_MODE_FIQ) { 9214 for (i = 8; i < 13; i++) { 9215 env->usr_regs[i - 8] = env->xregs[i]; 9216 } 9217 } else { 9218 for (i = 8; i < 13; i++) { 9219 env->regs[i] = env->xregs[i]; 9220 } 9221 } 9222 9223 /* 9224 * Registers r13 & r14 depend on the current mode. 9225 * If we are in a given mode, we copy the corresponding x registers to r13 9226 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9227 * for the mode. 9228 */ 9229 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9230 env->regs[13] = env->xregs[13]; 9231 env->regs[14] = env->xregs[14]; 9232 } else { 9233 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9234 9235 /* 9236 * HYP is an exception in that it does not have its own banked r14 but 9237 * shares the USR r14 9238 */ 9239 if (mode == ARM_CPU_MODE_HYP) { 9240 env->regs[14] = env->xregs[14]; 9241 } else { 9242 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9243 } 9244 } 9245 9246 if (mode == ARM_CPU_MODE_HYP) { 9247 env->regs[13] = env->xregs[15]; 9248 } else { 9249 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9250 } 9251 9252 if (mode == ARM_CPU_MODE_IRQ) { 9253 env->regs[14] = env->xregs[16]; 9254 env->regs[13] = env->xregs[17]; 9255 } else { 9256 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9257 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9258 } 9259 9260 if (mode == ARM_CPU_MODE_SVC) { 9261 env->regs[14] = env->xregs[18]; 9262 env->regs[13] = env->xregs[19]; 9263 } else { 9264 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9265 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9266 } 9267 9268 if (mode == ARM_CPU_MODE_ABT) { 9269 env->regs[14] = env->xregs[20]; 9270 env->regs[13] = env->xregs[21]; 9271 } else { 9272 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9273 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9274 } 9275 9276 if (mode == ARM_CPU_MODE_UND) { 9277 env->regs[14] = env->xregs[22]; 9278 env->regs[13] = env->xregs[23]; 9279 } else { 9280 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9281 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9282 } 9283 9284 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9285 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9286 * FIQ bank for r8-r14. 9287 */ 9288 if (mode == ARM_CPU_MODE_FIQ) { 9289 for (i = 24; i < 31; i++) { 9290 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9291 } 9292 } else { 9293 for (i = 24; i < 29; i++) { 9294 env->fiq_regs[i - 24] = env->xregs[i]; 9295 } 9296 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9297 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9298 } 9299 9300 env->regs[15] = env->pc; 9301 } 9302 9303 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9304 uint32_t mask, uint32_t offset, 9305 uint32_t newpc) 9306 { 9307 int new_el; 9308 9309 /* Change the CPU state so as to actually take the exception. */ 9310 switch_mode(env, new_mode); 9311 9312 /* 9313 * For exceptions taken to AArch32 we must clear the SS bit in both 9314 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9315 */ 9316 env->uncached_cpsr &= ~PSTATE_SS; 9317 env->spsr = cpsr_read(env); 9318 /* Clear IT bits. */ 9319 env->condexec_bits = 0; 9320 /* Switch to the new mode, and to the correct instruction set. */ 9321 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9322 9323 /* This must be after mode switching. */ 9324 new_el = arm_current_el(env); 9325 9326 /* Set new mode endianness */ 9327 env->uncached_cpsr &= ~CPSR_E; 9328 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9329 env->uncached_cpsr |= CPSR_E; 9330 } 9331 /* J and IL must always be cleared for exception entry */ 9332 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9333 env->daif |= mask; 9334 9335 if (new_mode == ARM_CPU_MODE_HYP) { 9336 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9337 env->elr_el[2] = env->regs[15]; 9338 } else { 9339 /* CPSR.PAN is normally preserved preserved unless... */ 9340 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9341 switch (new_el) { 9342 case 3: 9343 if (!arm_is_secure_below_el3(env)) { 9344 /* ... the target is EL3, from non-secure state. */ 9345 env->uncached_cpsr &= ~CPSR_PAN; 9346 break; 9347 } 9348 /* ... the target is EL3, from secure state ... */ 9349 /* fall through */ 9350 case 1: 9351 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9352 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9353 env->uncached_cpsr |= CPSR_PAN; 9354 } 9355 break; 9356 } 9357 } 9358 /* 9359 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9360 * and we should just guard the thumb mode on V4 9361 */ 9362 if (arm_feature(env, ARM_FEATURE_V4T)) { 9363 env->thumb = 9364 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9365 } 9366 env->regs[14] = env->regs[15] + offset; 9367 } 9368 env->regs[15] = newpc; 9369 arm_rebuild_hflags(env); 9370 } 9371 9372 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9373 { 9374 /* 9375 * Handle exception entry to Hyp mode; this is sufficiently 9376 * different to entry to other AArch32 modes that we handle it 9377 * separately here. 9378 * 9379 * The vector table entry used is always the 0x14 Hyp mode entry point, 9380 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 9381 * The offset applied to the preferred return address is always zero 9382 * (see DDI0487C.a section G1.12.3). 9383 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9384 */ 9385 uint32_t addr, mask; 9386 ARMCPU *cpu = ARM_CPU(cs); 9387 CPUARMState *env = &cpu->env; 9388 9389 switch (cs->exception_index) { 9390 case EXCP_UDEF: 9391 addr = 0x04; 9392 break; 9393 case EXCP_SWI: 9394 addr = 0x14; 9395 break; 9396 case EXCP_BKPT: 9397 /* Fall through to prefetch abort. */ 9398 case EXCP_PREFETCH_ABORT: 9399 env->cp15.ifar_s = env->exception.vaddress; 9400 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9401 (uint32_t)env->exception.vaddress); 9402 addr = 0x0c; 9403 break; 9404 case EXCP_DATA_ABORT: 9405 env->cp15.dfar_s = env->exception.vaddress; 9406 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9407 (uint32_t)env->exception.vaddress); 9408 addr = 0x10; 9409 break; 9410 case EXCP_IRQ: 9411 addr = 0x18; 9412 break; 9413 case EXCP_FIQ: 9414 addr = 0x1c; 9415 break; 9416 case EXCP_HVC: 9417 addr = 0x08; 9418 break; 9419 case EXCP_HYP_TRAP: 9420 addr = 0x14; 9421 break; 9422 default: 9423 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9424 } 9425 9426 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9427 if (!arm_feature(env, ARM_FEATURE_V8)) { 9428 /* 9429 * QEMU syndrome values are v8-style. v7 has the IL bit 9430 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9431 * If this is a v7 CPU, squash the IL bit in those cases. 9432 */ 9433 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9434 (cs->exception_index == EXCP_DATA_ABORT && 9435 !(env->exception.syndrome & ARM_EL_ISV)) || 9436 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9437 env->exception.syndrome &= ~ARM_EL_IL; 9438 } 9439 } 9440 env->cp15.esr_el[2] = env->exception.syndrome; 9441 } 9442 9443 if (arm_current_el(env) != 2 && addr < 0x14) { 9444 addr = 0x14; 9445 } 9446 9447 mask = 0; 9448 if (!(env->cp15.scr_el3 & SCR_EA)) { 9449 mask |= CPSR_A; 9450 } 9451 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9452 mask |= CPSR_I; 9453 } 9454 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9455 mask |= CPSR_F; 9456 } 9457 9458 addr += env->cp15.hvbar; 9459 9460 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9461 } 9462 9463 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9464 { 9465 ARMCPU *cpu = ARM_CPU(cs); 9466 CPUARMState *env = &cpu->env; 9467 uint32_t addr; 9468 uint32_t mask; 9469 int new_mode; 9470 uint32_t offset; 9471 uint32_t moe; 9472 9473 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9474 switch (syn_get_ec(env->exception.syndrome)) { 9475 case EC_BREAKPOINT: 9476 case EC_BREAKPOINT_SAME_EL: 9477 moe = 1; 9478 break; 9479 case EC_WATCHPOINT: 9480 case EC_WATCHPOINT_SAME_EL: 9481 moe = 10; 9482 break; 9483 case EC_AA32_BKPT: 9484 moe = 3; 9485 break; 9486 case EC_VECTORCATCH: 9487 moe = 5; 9488 break; 9489 default: 9490 moe = 0; 9491 break; 9492 } 9493 9494 if (moe) { 9495 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9496 } 9497 9498 if (env->exception.target_el == 2) { 9499 arm_cpu_do_interrupt_aarch32_hyp(cs); 9500 return; 9501 } 9502 9503 switch (cs->exception_index) { 9504 case EXCP_UDEF: 9505 new_mode = ARM_CPU_MODE_UND; 9506 addr = 0x04; 9507 mask = CPSR_I; 9508 if (env->thumb) 9509 offset = 2; 9510 else 9511 offset = 4; 9512 break; 9513 case EXCP_SWI: 9514 new_mode = ARM_CPU_MODE_SVC; 9515 addr = 0x08; 9516 mask = CPSR_I; 9517 /* The PC already points to the next instruction. */ 9518 offset = 0; 9519 break; 9520 case EXCP_BKPT: 9521 /* Fall through to prefetch abort. */ 9522 case EXCP_PREFETCH_ABORT: 9523 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9524 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9525 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9526 env->exception.fsr, (uint32_t)env->exception.vaddress); 9527 new_mode = ARM_CPU_MODE_ABT; 9528 addr = 0x0c; 9529 mask = CPSR_A | CPSR_I; 9530 offset = 4; 9531 break; 9532 case EXCP_DATA_ABORT: 9533 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9534 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9535 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9536 env->exception.fsr, 9537 (uint32_t)env->exception.vaddress); 9538 new_mode = ARM_CPU_MODE_ABT; 9539 addr = 0x10; 9540 mask = CPSR_A | CPSR_I; 9541 offset = 8; 9542 break; 9543 case EXCP_IRQ: 9544 new_mode = ARM_CPU_MODE_IRQ; 9545 addr = 0x18; 9546 /* Disable IRQ and imprecise data aborts. */ 9547 mask = CPSR_A | CPSR_I; 9548 offset = 4; 9549 if (env->cp15.scr_el3 & SCR_IRQ) { 9550 /* IRQ routed to monitor mode */ 9551 new_mode = ARM_CPU_MODE_MON; 9552 mask |= CPSR_F; 9553 } 9554 break; 9555 case EXCP_FIQ: 9556 new_mode = ARM_CPU_MODE_FIQ; 9557 addr = 0x1c; 9558 /* Disable FIQ, IRQ and imprecise data aborts. */ 9559 mask = CPSR_A | CPSR_I | CPSR_F; 9560 if (env->cp15.scr_el3 & SCR_FIQ) { 9561 /* FIQ routed to monitor mode */ 9562 new_mode = ARM_CPU_MODE_MON; 9563 } 9564 offset = 4; 9565 break; 9566 case EXCP_VIRQ: 9567 new_mode = ARM_CPU_MODE_IRQ; 9568 addr = 0x18; 9569 /* Disable IRQ and imprecise data aborts. */ 9570 mask = CPSR_A | CPSR_I; 9571 offset = 4; 9572 break; 9573 case EXCP_VFIQ: 9574 new_mode = ARM_CPU_MODE_FIQ; 9575 addr = 0x1c; 9576 /* Disable FIQ, IRQ and imprecise data aborts. */ 9577 mask = CPSR_A | CPSR_I | CPSR_F; 9578 offset = 4; 9579 break; 9580 case EXCP_SMC: 9581 new_mode = ARM_CPU_MODE_MON; 9582 addr = 0x08; 9583 mask = CPSR_A | CPSR_I | CPSR_F; 9584 offset = 0; 9585 break; 9586 default: 9587 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9588 return; /* Never happens. Keep compiler happy. */ 9589 } 9590 9591 if (new_mode == ARM_CPU_MODE_MON) { 9592 addr += env->cp15.mvbar; 9593 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9594 /* High vectors. When enabled, base address cannot be remapped. */ 9595 addr += 0xffff0000; 9596 } else { 9597 /* ARM v7 architectures provide a vector base address register to remap 9598 * the interrupt vector table. 9599 * This register is only followed in non-monitor mode, and is banked. 9600 * Note: only bits 31:5 are valid. 9601 */ 9602 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9603 } 9604 9605 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9606 env->cp15.scr_el3 &= ~SCR_NS; 9607 } 9608 9609 take_aarch32_exception(env, new_mode, mask, offset, addr); 9610 } 9611 9612 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9613 { 9614 /* 9615 * Return the register number of the AArch64 view of the AArch32 9616 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9617 * be that of the AArch32 mode the exception came from. 9618 */ 9619 int mode = env->uncached_cpsr & CPSR_M; 9620 9621 switch (aarch32_reg) { 9622 case 0 ... 7: 9623 return aarch32_reg; 9624 case 8 ... 12: 9625 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9626 case 13: 9627 switch (mode) { 9628 case ARM_CPU_MODE_USR: 9629 case ARM_CPU_MODE_SYS: 9630 return 13; 9631 case ARM_CPU_MODE_HYP: 9632 return 15; 9633 case ARM_CPU_MODE_IRQ: 9634 return 17; 9635 case ARM_CPU_MODE_SVC: 9636 return 19; 9637 case ARM_CPU_MODE_ABT: 9638 return 21; 9639 case ARM_CPU_MODE_UND: 9640 return 23; 9641 case ARM_CPU_MODE_FIQ: 9642 return 29; 9643 default: 9644 g_assert_not_reached(); 9645 } 9646 case 14: 9647 switch (mode) { 9648 case ARM_CPU_MODE_USR: 9649 case ARM_CPU_MODE_SYS: 9650 case ARM_CPU_MODE_HYP: 9651 return 14; 9652 case ARM_CPU_MODE_IRQ: 9653 return 16; 9654 case ARM_CPU_MODE_SVC: 9655 return 18; 9656 case ARM_CPU_MODE_ABT: 9657 return 20; 9658 case ARM_CPU_MODE_UND: 9659 return 22; 9660 case ARM_CPU_MODE_FIQ: 9661 return 30; 9662 default: 9663 g_assert_not_reached(); 9664 } 9665 case 15: 9666 return 31; 9667 default: 9668 g_assert_not_reached(); 9669 } 9670 } 9671 9672 /* Handle exception entry to a target EL which is using AArch64 */ 9673 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9674 { 9675 ARMCPU *cpu = ARM_CPU(cs); 9676 CPUARMState *env = &cpu->env; 9677 unsigned int new_el = env->exception.target_el; 9678 target_ulong addr = env->cp15.vbar_el[new_el]; 9679 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9680 unsigned int old_mode; 9681 unsigned int cur_el = arm_current_el(env); 9682 int rt; 9683 9684 /* 9685 * Note that new_el can never be 0. If cur_el is 0, then 9686 * el0_a64 is is_a64(), else el0_a64 is ignored. 9687 */ 9688 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9689 9690 if (cur_el < new_el) { 9691 /* Entry vector offset depends on whether the implemented EL 9692 * immediately lower than the target level is using AArch32 or AArch64 9693 */ 9694 bool is_aa64; 9695 uint64_t hcr; 9696 9697 switch (new_el) { 9698 case 3: 9699 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 9700 break; 9701 case 2: 9702 hcr = arm_hcr_el2_eff(env); 9703 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 9704 is_aa64 = (hcr & HCR_RW) != 0; 9705 break; 9706 } 9707 /* fall through */ 9708 case 1: 9709 is_aa64 = is_a64(env); 9710 break; 9711 default: 9712 g_assert_not_reached(); 9713 } 9714 9715 if (is_aa64) { 9716 addr += 0x400; 9717 } else { 9718 addr += 0x600; 9719 } 9720 } else if (pstate_read(env) & PSTATE_SP) { 9721 addr += 0x200; 9722 } 9723 9724 switch (cs->exception_index) { 9725 case EXCP_PREFETCH_ABORT: 9726 case EXCP_DATA_ABORT: 9727 env->cp15.far_el[new_el] = env->exception.vaddress; 9728 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 9729 env->cp15.far_el[new_el]); 9730 /* fall through */ 9731 case EXCP_BKPT: 9732 case EXCP_UDEF: 9733 case EXCP_SWI: 9734 case EXCP_HVC: 9735 case EXCP_HYP_TRAP: 9736 case EXCP_SMC: 9737 switch (syn_get_ec(env->exception.syndrome)) { 9738 case EC_ADVSIMDFPACCESSTRAP: 9739 /* 9740 * QEMU internal FP/SIMD syndromes from AArch32 include the 9741 * TA and coproc fields which are only exposed if the exception 9742 * is taken to AArch32 Hyp mode. Mask them out to get a valid 9743 * AArch64 format syndrome. 9744 */ 9745 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 9746 break; 9747 case EC_CP14RTTRAP: 9748 case EC_CP15RTTRAP: 9749 case EC_CP14DTTRAP: 9750 /* 9751 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 9752 * the raw register field from the insn; when taking this to 9753 * AArch64 we must convert it to the AArch64 view of the register 9754 * number. Notice that we read a 4-bit AArch32 register number and 9755 * write back a 5-bit AArch64 one. 9756 */ 9757 rt = extract32(env->exception.syndrome, 5, 4); 9758 rt = aarch64_regnum(env, rt); 9759 env->exception.syndrome = deposit32(env->exception.syndrome, 9760 5, 5, rt); 9761 break; 9762 case EC_CP15RRTTRAP: 9763 case EC_CP14RRTTRAP: 9764 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 9765 rt = extract32(env->exception.syndrome, 5, 4); 9766 rt = aarch64_regnum(env, rt); 9767 env->exception.syndrome = deposit32(env->exception.syndrome, 9768 5, 5, rt); 9769 rt = extract32(env->exception.syndrome, 10, 4); 9770 rt = aarch64_regnum(env, rt); 9771 env->exception.syndrome = deposit32(env->exception.syndrome, 9772 10, 5, rt); 9773 break; 9774 } 9775 env->cp15.esr_el[new_el] = env->exception.syndrome; 9776 break; 9777 case EXCP_IRQ: 9778 case EXCP_VIRQ: 9779 addr += 0x80; 9780 break; 9781 case EXCP_FIQ: 9782 case EXCP_VFIQ: 9783 addr += 0x100; 9784 break; 9785 default: 9786 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9787 } 9788 9789 if (is_a64(env)) { 9790 old_mode = pstate_read(env); 9791 aarch64_save_sp(env, arm_current_el(env)); 9792 env->elr_el[new_el] = env->pc; 9793 } else { 9794 old_mode = cpsr_read(env); 9795 env->elr_el[new_el] = env->regs[15]; 9796 9797 aarch64_sync_32_to_64(env); 9798 9799 env->condexec_bits = 0; 9800 } 9801 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 9802 9803 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 9804 env->elr_el[new_el]); 9805 9806 if (cpu_isar_feature(aa64_pan, cpu)) { 9807 /* The value of PSTATE.PAN is normally preserved, except when ... */ 9808 new_mode |= old_mode & PSTATE_PAN; 9809 switch (new_el) { 9810 case 2: 9811 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 9812 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 9813 != (HCR_E2H | HCR_TGE)) { 9814 break; 9815 } 9816 /* fall through */ 9817 case 1: 9818 /* ... the target is EL1 ... */ 9819 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 9820 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 9821 new_mode |= PSTATE_PAN; 9822 } 9823 break; 9824 } 9825 } 9826 if (cpu_isar_feature(aa64_mte, cpu)) { 9827 new_mode |= PSTATE_TCO; 9828 } 9829 9830 pstate_write(env, PSTATE_DAIF | new_mode); 9831 env->aarch64 = 1; 9832 aarch64_restore_sp(env, new_el); 9833 helper_rebuild_hflags_a64(env, new_el); 9834 9835 env->pc = addr; 9836 9837 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 9838 new_el, env->pc, pstate_read(env)); 9839 } 9840 9841 /* 9842 * Do semihosting call and set the appropriate return value. All the 9843 * permission and validity checks have been done at translate time. 9844 * 9845 * We only see semihosting exceptions in TCG only as they are not 9846 * trapped to the hypervisor in KVM. 9847 */ 9848 #ifdef CONFIG_TCG 9849 static void handle_semihosting(CPUState *cs) 9850 { 9851 ARMCPU *cpu = ARM_CPU(cs); 9852 CPUARMState *env = &cpu->env; 9853 9854 if (is_a64(env)) { 9855 qemu_log_mask(CPU_LOG_INT, 9856 "...handling as semihosting call 0x%" PRIx64 "\n", 9857 env->xregs[0]); 9858 env->xregs[0] = do_arm_semihosting(env); 9859 env->pc += 4; 9860 } else { 9861 qemu_log_mask(CPU_LOG_INT, 9862 "...handling as semihosting call 0x%x\n", 9863 env->regs[0]); 9864 env->regs[0] = do_arm_semihosting(env); 9865 env->regs[15] += env->thumb ? 2 : 4; 9866 } 9867 } 9868 #endif 9869 9870 /* Handle a CPU exception for A and R profile CPUs. 9871 * Do any appropriate logging, handle PSCI calls, and then hand off 9872 * to the AArch64-entry or AArch32-entry function depending on the 9873 * target exception level's register width. 9874 */ 9875 void arm_cpu_do_interrupt(CPUState *cs) 9876 { 9877 ARMCPU *cpu = ARM_CPU(cs); 9878 CPUARMState *env = &cpu->env; 9879 unsigned int new_el = env->exception.target_el; 9880 9881 assert(!arm_feature(env, ARM_FEATURE_M)); 9882 9883 arm_log_exception(cs->exception_index); 9884 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 9885 new_el); 9886 if (qemu_loglevel_mask(CPU_LOG_INT) 9887 && !excp_is_internal(cs->exception_index)) { 9888 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 9889 syn_get_ec(env->exception.syndrome), 9890 env->exception.syndrome); 9891 } 9892 9893 if (arm_is_psci_call(cpu, cs->exception_index)) { 9894 arm_handle_psci_call(cpu); 9895 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 9896 return; 9897 } 9898 9899 /* 9900 * Semihosting semantics depend on the register width of the code 9901 * that caused the exception, not the target exception level, so 9902 * must be handled here. 9903 */ 9904 #ifdef CONFIG_TCG 9905 if (cs->exception_index == EXCP_SEMIHOST) { 9906 handle_semihosting(cs); 9907 return; 9908 } 9909 #endif 9910 9911 /* Hooks may change global state so BQL should be held, also the 9912 * BQL needs to be held for any modification of 9913 * cs->interrupt_request. 9914 */ 9915 g_assert(qemu_mutex_iothread_locked()); 9916 9917 arm_call_pre_el_change_hook(cpu); 9918 9919 assert(!excp_is_internal(cs->exception_index)); 9920 if (arm_el_is_aa64(env, new_el)) { 9921 arm_cpu_do_interrupt_aarch64(cs); 9922 } else { 9923 arm_cpu_do_interrupt_aarch32(cs); 9924 } 9925 9926 arm_call_el_change_hook(cpu); 9927 9928 if (!kvm_enabled()) { 9929 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 9930 } 9931 } 9932 #endif /* !CONFIG_USER_ONLY */ 9933 9934 uint64_t arm_sctlr(CPUARMState *env, int el) 9935 { 9936 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 9937 if (el == 0) { 9938 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 9939 el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1); 9940 } 9941 return env->cp15.sctlr_el[el]; 9942 } 9943 9944 /* Return the SCTLR value which controls this address translation regime */ 9945 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 9946 { 9947 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 9948 } 9949 9950 #ifndef CONFIG_USER_ONLY 9951 9952 /* Return true if the specified stage of address translation is disabled */ 9953 static inline bool regime_translation_disabled(CPUARMState *env, 9954 ARMMMUIdx mmu_idx) 9955 { 9956 if (arm_feature(env, ARM_FEATURE_M)) { 9957 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 9958 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 9959 case R_V7M_MPU_CTRL_ENABLE_MASK: 9960 /* Enabled, but not for HardFault and NMI */ 9961 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 9962 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 9963 /* Enabled for all cases */ 9964 return false; 9965 case 0: 9966 default: 9967 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 9968 * we warned about that in armv7m_nvic.c when the guest set it. 9969 */ 9970 return true; 9971 } 9972 } 9973 9974 if (mmu_idx == ARMMMUIdx_Stage2) { 9975 /* HCR.DC means HCR.VM behaves as 1 */ 9976 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 9977 } 9978 9979 if (env->cp15.hcr_el2 & HCR_TGE) { 9980 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 9981 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 9982 return true; 9983 } 9984 } 9985 9986 if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 9987 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 9988 return true; 9989 } 9990 9991 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 9992 } 9993 9994 static inline bool regime_translation_big_endian(CPUARMState *env, 9995 ARMMMUIdx mmu_idx) 9996 { 9997 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 9998 } 9999 10000 /* Return the TTBR associated with this translation regime */ 10001 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10002 int ttbrn) 10003 { 10004 if (mmu_idx == ARMMMUIdx_Stage2) { 10005 return env->cp15.vttbr_el2; 10006 } 10007 if (ttbrn == 0) { 10008 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10009 } else { 10010 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10011 } 10012 } 10013 10014 #endif /* !CONFIG_USER_ONLY */ 10015 10016 /* Convert a possible stage1+2 MMU index into the appropriate 10017 * stage 1 MMU index 10018 */ 10019 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10020 { 10021 switch (mmu_idx) { 10022 case ARMMMUIdx_E10_0: 10023 return ARMMMUIdx_Stage1_E0; 10024 case ARMMMUIdx_E10_1: 10025 return ARMMMUIdx_Stage1_E1; 10026 case ARMMMUIdx_E10_1_PAN: 10027 return ARMMMUIdx_Stage1_E1_PAN; 10028 default: 10029 return mmu_idx; 10030 } 10031 } 10032 10033 /* Return true if the translation regime is using LPAE format page tables */ 10034 static inline bool regime_using_lpae_format(CPUARMState *env, 10035 ARMMMUIdx mmu_idx) 10036 { 10037 int el = regime_el(env, mmu_idx); 10038 if (el == 2 || arm_el_is_aa64(env, el)) { 10039 return true; 10040 } 10041 if (arm_feature(env, ARM_FEATURE_LPAE) 10042 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10043 return true; 10044 } 10045 return false; 10046 } 10047 10048 /* Returns true if the stage 1 translation regime is using LPAE format page 10049 * tables. Used when raising alignment exceptions, whose FSR changes depending 10050 * on whether the long or short descriptor format is in use. */ 10051 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10052 { 10053 mmu_idx = stage_1_mmu_idx(mmu_idx); 10054 10055 return regime_using_lpae_format(env, mmu_idx); 10056 } 10057 10058 #ifndef CONFIG_USER_ONLY 10059 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10060 { 10061 switch (mmu_idx) { 10062 case ARMMMUIdx_SE10_0: 10063 case ARMMMUIdx_E20_0: 10064 case ARMMMUIdx_Stage1_E0: 10065 case ARMMMUIdx_MUser: 10066 case ARMMMUIdx_MSUser: 10067 case ARMMMUIdx_MUserNegPri: 10068 case ARMMMUIdx_MSUserNegPri: 10069 return true; 10070 default: 10071 return false; 10072 case ARMMMUIdx_E10_0: 10073 case ARMMMUIdx_E10_1: 10074 case ARMMMUIdx_E10_1_PAN: 10075 g_assert_not_reached(); 10076 } 10077 } 10078 10079 /* Translate section/page access permissions to page 10080 * R/W protection flags 10081 * 10082 * @env: CPUARMState 10083 * @mmu_idx: MMU index indicating required translation regime 10084 * @ap: The 3-bit access permissions (AP[2:0]) 10085 * @domain_prot: The 2-bit domain access permissions 10086 */ 10087 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10088 int ap, int domain_prot) 10089 { 10090 bool is_user = regime_is_user(env, mmu_idx); 10091 10092 if (domain_prot == 3) { 10093 return PAGE_READ | PAGE_WRITE; 10094 } 10095 10096 switch (ap) { 10097 case 0: 10098 if (arm_feature(env, ARM_FEATURE_V7)) { 10099 return 0; 10100 } 10101 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10102 case SCTLR_S: 10103 return is_user ? 0 : PAGE_READ; 10104 case SCTLR_R: 10105 return PAGE_READ; 10106 default: 10107 return 0; 10108 } 10109 case 1: 10110 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10111 case 2: 10112 if (is_user) { 10113 return PAGE_READ; 10114 } else { 10115 return PAGE_READ | PAGE_WRITE; 10116 } 10117 case 3: 10118 return PAGE_READ | PAGE_WRITE; 10119 case 4: /* Reserved. */ 10120 return 0; 10121 case 5: 10122 return is_user ? 0 : PAGE_READ; 10123 case 6: 10124 return PAGE_READ; 10125 case 7: 10126 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10127 return 0; 10128 } 10129 return PAGE_READ; 10130 default: 10131 g_assert_not_reached(); 10132 } 10133 } 10134 10135 /* Translate section/page access permissions to page 10136 * R/W protection flags. 10137 * 10138 * @ap: The 2-bit simple AP (AP[2:1]) 10139 * @is_user: TRUE if accessing from PL0 10140 */ 10141 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10142 { 10143 switch (ap) { 10144 case 0: 10145 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10146 case 1: 10147 return PAGE_READ | PAGE_WRITE; 10148 case 2: 10149 return is_user ? 0 : PAGE_READ; 10150 case 3: 10151 return PAGE_READ; 10152 default: 10153 g_assert_not_reached(); 10154 } 10155 } 10156 10157 static inline int 10158 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10159 { 10160 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10161 } 10162 10163 /* Translate S2 section/page access permissions to protection flags 10164 * 10165 * @env: CPUARMState 10166 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10167 * @xn: XN (execute-never) bits 10168 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10169 */ 10170 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10171 { 10172 int prot = 0; 10173 10174 if (s2ap & 1) { 10175 prot |= PAGE_READ; 10176 } 10177 if (s2ap & 2) { 10178 prot |= PAGE_WRITE; 10179 } 10180 10181 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10182 switch (xn) { 10183 case 0: 10184 prot |= PAGE_EXEC; 10185 break; 10186 case 1: 10187 if (s1_is_el0) { 10188 prot |= PAGE_EXEC; 10189 } 10190 break; 10191 case 2: 10192 break; 10193 case 3: 10194 if (!s1_is_el0) { 10195 prot |= PAGE_EXEC; 10196 } 10197 break; 10198 default: 10199 g_assert_not_reached(); 10200 } 10201 } else { 10202 if (!extract32(xn, 1, 1)) { 10203 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10204 prot |= PAGE_EXEC; 10205 } 10206 } 10207 } 10208 return prot; 10209 } 10210 10211 /* Translate section/page access permissions to protection flags 10212 * 10213 * @env: CPUARMState 10214 * @mmu_idx: MMU index indicating required translation regime 10215 * @is_aa64: TRUE if AArch64 10216 * @ap: The 2-bit simple AP (AP[2:1]) 10217 * @ns: NS (non-secure) bit 10218 * @xn: XN (execute-never) bit 10219 * @pxn: PXN (privileged execute-never) bit 10220 */ 10221 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10222 int ap, int ns, int xn, int pxn) 10223 { 10224 bool is_user = regime_is_user(env, mmu_idx); 10225 int prot_rw, user_rw; 10226 bool have_wxn; 10227 int wxn = 0; 10228 10229 assert(mmu_idx != ARMMMUIdx_Stage2); 10230 10231 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10232 if (is_user) { 10233 prot_rw = user_rw; 10234 } else { 10235 if (user_rw && regime_is_pan(env, mmu_idx)) { 10236 /* PAN forbids data accesses but doesn't affect insn fetch */ 10237 prot_rw = 0; 10238 } else { 10239 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10240 } 10241 } 10242 10243 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10244 return prot_rw; 10245 } 10246 10247 /* TODO have_wxn should be replaced with 10248 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10249 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10250 * compatible processors have EL2, which is required for [U]WXN. 10251 */ 10252 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10253 10254 if (have_wxn) { 10255 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10256 } 10257 10258 if (is_aa64) { 10259 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10260 xn = pxn || (user_rw & PAGE_WRITE); 10261 } 10262 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10263 switch (regime_el(env, mmu_idx)) { 10264 case 1: 10265 case 3: 10266 if (is_user) { 10267 xn = xn || !(user_rw & PAGE_READ); 10268 } else { 10269 int uwxn = 0; 10270 if (have_wxn) { 10271 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10272 } 10273 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10274 (uwxn && (user_rw & PAGE_WRITE)); 10275 } 10276 break; 10277 case 2: 10278 break; 10279 } 10280 } else { 10281 xn = wxn = 0; 10282 } 10283 10284 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10285 return prot_rw; 10286 } 10287 return prot_rw | PAGE_EXEC; 10288 } 10289 10290 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10291 uint32_t *table, uint32_t address) 10292 { 10293 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10294 TCR *tcr = regime_tcr(env, mmu_idx); 10295 10296 if (address & tcr->mask) { 10297 if (tcr->raw_tcr & TTBCR_PD1) { 10298 /* Translation table walk disabled for TTBR1 */ 10299 return false; 10300 } 10301 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10302 } else { 10303 if (tcr->raw_tcr & TTBCR_PD0) { 10304 /* Translation table walk disabled for TTBR0 */ 10305 return false; 10306 } 10307 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10308 } 10309 *table |= (address >> 18) & 0x3ffc; 10310 return true; 10311 } 10312 10313 /* Translate a S1 pagetable walk through S2 if needed. */ 10314 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10315 hwaddr addr, MemTxAttrs txattrs, 10316 ARMMMUFaultInfo *fi) 10317 { 10318 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10319 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10320 target_ulong s2size; 10321 hwaddr s2pa; 10322 int s2prot; 10323 int ret; 10324 ARMCacheAttrs cacheattrs = {}; 10325 10326 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, ARMMMUIdx_Stage2, 10327 false, 10328 &s2pa, &txattrs, &s2prot, &s2size, fi, 10329 &cacheattrs); 10330 if (ret) { 10331 assert(fi->type != ARMFault_None); 10332 fi->s2addr = addr; 10333 fi->stage2 = true; 10334 fi->s1ptw = true; 10335 return ~0; 10336 } 10337 if ((env->cp15.hcr_el2 & HCR_PTW) && (cacheattrs.attrs & 0xf0) == 0) { 10338 /* 10339 * PTW set and S1 walk touched S2 Device memory: 10340 * generate Permission fault. 10341 */ 10342 fi->type = ARMFault_Permission; 10343 fi->s2addr = addr; 10344 fi->stage2 = true; 10345 fi->s1ptw = true; 10346 return ~0; 10347 } 10348 addr = s2pa; 10349 } 10350 return addr; 10351 } 10352 10353 /* All loads done in the course of a page table walk go through here. */ 10354 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10355 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10356 { 10357 ARMCPU *cpu = ARM_CPU(cs); 10358 CPUARMState *env = &cpu->env; 10359 MemTxAttrs attrs = {}; 10360 MemTxResult result = MEMTX_OK; 10361 AddressSpace *as; 10362 uint32_t data; 10363 10364 attrs.secure = is_secure; 10365 as = arm_addressspace(cs, attrs); 10366 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10367 if (fi->s1ptw) { 10368 return 0; 10369 } 10370 if (regime_translation_big_endian(env, mmu_idx)) { 10371 data = address_space_ldl_be(as, addr, attrs, &result); 10372 } else { 10373 data = address_space_ldl_le(as, addr, attrs, &result); 10374 } 10375 if (result == MEMTX_OK) { 10376 return data; 10377 } 10378 fi->type = ARMFault_SyncExternalOnWalk; 10379 fi->ea = arm_extabort_type(result); 10380 return 0; 10381 } 10382 10383 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10384 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10385 { 10386 ARMCPU *cpu = ARM_CPU(cs); 10387 CPUARMState *env = &cpu->env; 10388 MemTxAttrs attrs = {}; 10389 MemTxResult result = MEMTX_OK; 10390 AddressSpace *as; 10391 uint64_t data; 10392 10393 attrs.secure = is_secure; 10394 as = arm_addressspace(cs, attrs); 10395 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10396 if (fi->s1ptw) { 10397 return 0; 10398 } 10399 if (regime_translation_big_endian(env, mmu_idx)) { 10400 data = address_space_ldq_be(as, addr, attrs, &result); 10401 } else { 10402 data = address_space_ldq_le(as, addr, attrs, &result); 10403 } 10404 if (result == MEMTX_OK) { 10405 return data; 10406 } 10407 fi->type = ARMFault_SyncExternalOnWalk; 10408 fi->ea = arm_extabort_type(result); 10409 return 0; 10410 } 10411 10412 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10413 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10414 hwaddr *phys_ptr, int *prot, 10415 target_ulong *page_size, 10416 ARMMMUFaultInfo *fi) 10417 { 10418 CPUState *cs = env_cpu(env); 10419 int level = 1; 10420 uint32_t table; 10421 uint32_t desc; 10422 int type; 10423 int ap; 10424 int domain = 0; 10425 int domain_prot; 10426 hwaddr phys_addr; 10427 uint32_t dacr; 10428 10429 /* Pagetable walk. */ 10430 /* Lookup l1 descriptor. */ 10431 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10432 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10433 fi->type = ARMFault_Translation; 10434 goto do_fault; 10435 } 10436 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10437 mmu_idx, fi); 10438 if (fi->type != ARMFault_None) { 10439 goto do_fault; 10440 } 10441 type = (desc & 3); 10442 domain = (desc >> 5) & 0x0f; 10443 if (regime_el(env, mmu_idx) == 1) { 10444 dacr = env->cp15.dacr_ns; 10445 } else { 10446 dacr = env->cp15.dacr_s; 10447 } 10448 domain_prot = (dacr >> (domain * 2)) & 3; 10449 if (type == 0) { 10450 /* Section translation fault. */ 10451 fi->type = ARMFault_Translation; 10452 goto do_fault; 10453 } 10454 if (type != 2) { 10455 level = 2; 10456 } 10457 if (domain_prot == 0 || domain_prot == 2) { 10458 fi->type = ARMFault_Domain; 10459 goto do_fault; 10460 } 10461 if (type == 2) { 10462 /* 1Mb section. */ 10463 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10464 ap = (desc >> 10) & 3; 10465 *page_size = 1024 * 1024; 10466 } else { 10467 /* Lookup l2 entry. */ 10468 if (type == 1) { 10469 /* Coarse pagetable. */ 10470 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10471 } else { 10472 /* Fine pagetable. */ 10473 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10474 } 10475 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10476 mmu_idx, fi); 10477 if (fi->type != ARMFault_None) { 10478 goto do_fault; 10479 } 10480 switch (desc & 3) { 10481 case 0: /* Page translation fault. */ 10482 fi->type = ARMFault_Translation; 10483 goto do_fault; 10484 case 1: /* 64k page. */ 10485 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10486 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10487 *page_size = 0x10000; 10488 break; 10489 case 2: /* 4k page. */ 10490 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10491 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10492 *page_size = 0x1000; 10493 break; 10494 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10495 if (type == 1) { 10496 /* ARMv6/XScale extended small page format */ 10497 if (arm_feature(env, ARM_FEATURE_XSCALE) 10498 || arm_feature(env, ARM_FEATURE_V6)) { 10499 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10500 *page_size = 0x1000; 10501 } else { 10502 /* UNPREDICTABLE in ARMv5; we choose to take a 10503 * page translation fault. 10504 */ 10505 fi->type = ARMFault_Translation; 10506 goto do_fault; 10507 } 10508 } else { 10509 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10510 *page_size = 0x400; 10511 } 10512 ap = (desc >> 4) & 3; 10513 break; 10514 default: 10515 /* Never happens, but compiler isn't smart enough to tell. */ 10516 abort(); 10517 } 10518 } 10519 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10520 *prot |= *prot ? PAGE_EXEC : 0; 10521 if (!(*prot & (1 << access_type))) { 10522 /* Access permission fault. */ 10523 fi->type = ARMFault_Permission; 10524 goto do_fault; 10525 } 10526 *phys_ptr = phys_addr; 10527 return false; 10528 do_fault: 10529 fi->domain = domain; 10530 fi->level = level; 10531 return true; 10532 } 10533 10534 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10535 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10536 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10537 target_ulong *page_size, ARMMMUFaultInfo *fi) 10538 { 10539 CPUState *cs = env_cpu(env); 10540 int level = 1; 10541 uint32_t table; 10542 uint32_t desc; 10543 uint32_t xn; 10544 uint32_t pxn = 0; 10545 int type; 10546 int ap; 10547 int domain = 0; 10548 int domain_prot; 10549 hwaddr phys_addr; 10550 uint32_t dacr; 10551 bool ns; 10552 10553 /* Pagetable walk. */ 10554 /* Lookup l1 descriptor. */ 10555 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10556 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10557 fi->type = ARMFault_Translation; 10558 goto do_fault; 10559 } 10560 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10561 mmu_idx, fi); 10562 if (fi->type != ARMFault_None) { 10563 goto do_fault; 10564 } 10565 type = (desc & 3); 10566 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 10567 /* Section translation fault, or attempt to use the encoding 10568 * which is Reserved on implementations without PXN. 10569 */ 10570 fi->type = ARMFault_Translation; 10571 goto do_fault; 10572 } 10573 if ((type == 1) || !(desc & (1 << 18))) { 10574 /* Page or Section. */ 10575 domain = (desc >> 5) & 0x0f; 10576 } 10577 if (regime_el(env, mmu_idx) == 1) { 10578 dacr = env->cp15.dacr_ns; 10579 } else { 10580 dacr = env->cp15.dacr_s; 10581 } 10582 if (type == 1) { 10583 level = 2; 10584 } 10585 domain_prot = (dacr >> (domain * 2)) & 3; 10586 if (domain_prot == 0 || domain_prot == 2) { 10587 /* Section or Page domain fault */ 10588 fi->type = ARMFault_Domain; 10589 goto do_fault; 10590 } 10591 if (type != 1) { 10592 if (desc & (1 << 18)) { 10593 /* Supersection. */ 10594 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10595 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10596 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10597 *page_size = 0x1000000; 10598 } else { 10599 /* Section. */ 10600 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10601 *page_size = 0x100000; 10602 } 10603 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10604 xn = desc & (1 << 4); 10605 pxn = desc & 1; 10606 ns = extract32(desc, 19, 1); 10607 } else { 10608 if (arm_feature(env, ARM_FEATURE_PXN)) { 10609 pxn = (desc >> 2) & 1; 10610 } 10611 ns = extract32(desc, 3, 1); 10612 /* Lookup l2 entry. */ 10613 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10614 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10615 mmu_idx, fi); 10616 if (fi->type != ARMFault_None) { 10617 goto do_fault; 10618 } 10619 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10620 switch (desc & 3) { 10621 case 0: /* Page translation fault. */ 10622 fi->type = ARMFault_Translation; 10623 goto do_fault; 10624 case 1: /* 64k page. */ 10625 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10626 xn = desc & (1 << 15); 10627 *page_size = 0x10000; 10628 break; 10629 case 2: case 3: /* 4k page. */ 10630 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10631 xn = desc & 1; 10632 *page_size = 0x1000; 10633 break; 10634 default: 10635 /* Never happens, but compiler isn't smart enough to tell. */ 10636 abort(); 10637 } 10638 } 10639 if (domain_prot == 3) { 10640 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10641 } else { 10642 if (pxn && !regime_is_user(env, mmu_idx)) { 10643 xn = 1; 10644 } 10645 if (xn && access_type == MMU_INST_FETCH) { 10646 fi->type = ARMFault_Permission; 10647 goto do_fault; 10648 } 10649 10650 if (arm_feature(env, ARM_FEATURE_V6K) && 10651 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 10652 /* The simplified model uses AP[0] as an access control bit. */ 10653 if ((ap & 1) == 0) { 10654 /* Access flag fault. */ 10655 fi->type = ARMFault_AccessFlag; 10656 goto do_fault; 10657 } 10658 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 10659 } else { 10660 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10661 } 10662 if (*prot && !xn) { 10663 *prot |= PAGE_EXEC; 10664 } 10665 if (!(*prot & (1 << access_type))) { 10666 /* Access permission fault. */ 10667 fi->type = ARMFault_Permission; 10668 goto do_fault; 10669 } 10670 } 10671 if (ns) { 10672 /* The NS bit will (as required by the architecture) have no effect if 10673 * the CPU doesn't support TZ or this is a non-secure translation 10674 * regime, because the attribute will already be non-secure. 10675 */ 10676 attrs->secure = false; 10677 } 10678 *phys_ptr = phys_addr; 10679 return false; 10680 do_fault: 10681 fi->domain = domain; 10682 fi->level = level; 10683 return true; 10684 } 10685 10686 /* 10687 * check_s2_mmu_setup 10688 * @cpu: ARMCPU 10689 * @is_aa64: True if the translation regime is in AArch64 state 10690 * @startlevel: Suggested starting level 10691 * @inputsize: Bitsize of IPAs 10692 * @stride: Page-table stride (See the ARM ARM) 10693 * 10694 * Returns true if the suggested S2 translation parameters are OK and 10695 * false otherwise. 10696 */ 10697 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 10698 int inputsize, int stride) 10699 { 10700 const int grainsize = stride + 3; 10701 int startsizecheck; 10702 10703 /* Negative levels are never allowed. */ 10704 if (level < 0) { 10705 return false; 10706 } 10707 10708 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 10709 if (startsizecheck < 1 || startsizecheck > stride + 4) { 10710 return false; 10711 } 10712 10713 if (is_aa64) { 10714 CPUARMState *env = &cpu->env; 10715 unsigned int pamax = arm_pamax(cpu); 10716 10717 switch (stride) { 10718 case 13: /* 64KB Pages. */ 10719 if (level == 0 || (level == 1 && pamax <= 42)) { 10720 return false; 10721 } 10722 break; 10723 case 11: /* 16KB Pages. */ 10724 if (level == 0 || (level == 1 && pamax <= 40)) { 10725 return false; 10726 } 10727 break; 10728 case 9: /* 4KB Pages. */ 10729 if (level == 0 && pamax <= 42) { 10730 return false; 10731 } 10732 break; 10733 default: 10734 g_assert_not_reached(); 10735 } 10736 10737 /* Inputsize checks. */ 10738 if (inputsize > pamax && 10739 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 10740 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 10741 return false; 10742 } 10743 } else { 10744 /* AArch32 only supports 4KB pages. Assert on that. */ 10745 assert(stride == 9); 10746 10747 if (level == 0) { 10748 return false; 10749 } 10750 } 10751 return true; 10752 } 10753 10754 /* Translate from the 4-bit stage 2 representation of 10755 * memory attributes (without cache-allocation hints) to 10756 * the 8-bit representation of the stage 1 MAIR registers 10757 * (which includes allocation hints). 10758 * 10759 * ref: shared/translation/attrs/S2AttrDecode() 10760 * .../S2ConvertAttrsHints() 10761 */ 10762 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 10763 { 10764 uint8_t hiattr = extract32(s2attrs, 2, 2); 10765 uint8_t loattr = extract32(s2attrs, 0, 2); 10766 uint8_t hihint = 0, lohint = 0; 10767 10768 if (hiattr != 0) { /* normal memory */ 10769 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 10770 hiattr = loattr = 1; /* non-cacheable */ 10771 } else { 10772 if (hiattr != 1) { /* Write-through or write-back */ 10773 hihint = 3; /* RW allocate */ 10774 } 10775 if (loattr != 1) { /* Write-through or write-back */ 10776 lohint = 3; /* RW allocate */ 10777 } 10778 } 10779 } 10780 10781 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 10782 } 10783 #endif /* !CONFIG_USER_ONLY */ 10784 10785 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10786 { 10787 if (regime_has_2_ranges(mmu_idx)) { 10788 return extract64(tcr, 37, 2); 10789 } else if (mmu_idx == ARMMMUIdx_Stage2) { 10790 return 0; /* VTCR_EL2 */ 10791 } else { 10792 /* Replicate the single TBI bit so we always have 2 bits. */ 10793 return extract32(tcr, 20, 1) * 3; 10794 } 10795 } 10796 10797 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10798 { 10799 if (regime_has_2_ranges(mmu_idx)) { 10800 return extract64(tcr, 51, 2); 10801 } else if (mmu_idx == ARMMMUIdx_Stage2) { 10802 return 0; /* VTCR_EL2 */ 10803 } else { 10804 /* Replicate the single TBID bit so we always have 2 bits. */ 10805 return extract32(tcr, 29, 1) * 3; 10806 } 10807 } 10808 10809 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10810 { 10811 if (regime_has_2_ranges(mmu_idx)) { 10812 return extract64(tcr, 57, 2); 10813 } else { 10814 /* Replicate the single TCMA bit so we always have 2 bits. */ 10815 return extract32(tcr, 30, 1) * 3; 10816 } 10817 } 10818 10819 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10820 ARMMMUIdx mmu_idx, bool data) 10821 { 10822 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10823 bool epd, hpd, using16k, using64k; 10824 int select, tsz, tbi; 10825 10826 if (!regime_has_2_ranges(mmu_idx)) { 10827 select = 0; 10828 tsz = extract32(tcr, 0, 6); 10829 using64k = extract32(tcr, 14, 1); 10830 using16k = extract32(tcr, 15, 1); 10831 if (mmu_idx == ARMMMUIdx_Stage2) { 10832 /* VTCR_EL2 */ 10833 hpd = false; 10834 } else { 10835 hpd = extract32(tcr, 24, 1); 10836 } 10837 epd = false; 10838 } else { 10839 /* 10840 * Bit 55 is always between the two regions, and is canonical for 10841 * determining if address tagging is enabled. 10842 */ 10843 select = extract64(va, 55, 1); 10844 if (!select) { 10845 tsz = extract32(tcr, 0, 6); 10846 epd = extract32(tcr, 7, 1); 10847 using64k = extract32(tcr, 14, 1); 10848 using16k = extract32(tcr, 15, 1); 10849 hpd = extract64(tcr, 41, 1); 10850 } else { 10851 int tg = extract32(tcr, 30, 2); 10852 using16k = tg == 1; 10853 using64k = tg == 3; 10854 tsz = extract32(tcr, 16, 6); 10855 epd = extract32(tcr, 23, 1); 10856 hpd = extract64(tcr, 42, 1); 10857 } 10858 } 10859 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ 10860 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 10861 10862 /* Present TBI as a composite with TBID. */ 10863 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 10864 if (!data) { 10865 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 10866 } 10867 tbi = (tbi >> select) & 1; 10868 10869 return (ARMVAParameters) { 10870 .tsz = tsz, 10871 .select = select, 10872 .tbi = tbi, 10873 .epd = epd, 10874 .hpd = hpd, 10875 .using16k = using16k, 10876 .using64k = using64k, 10877 }; 10878 } 10879 10880 #ifndef CONFIG_USER_ONLY 10881 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 10882 ARMMMUIdx mmu_idx) 10883 { 10884 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10885 uint32_t el = regime_el(env, mmu_idx); 10886 int select, tsz; 10887 bool epd, hpd; 10888 10889 if (mmu_idx == ARMMMUIdx_Stage2) { 10890 /* VTCR */ 10891 bool sext = extract32(tcr, 4, 1); 10892 bool sign = extract32(tcr, 3, 1); 10893 10894 /* 10895 * If the sign-extend bit is not the same as t0sz[3], the result 10896 * is unpredictable. Flag this as a guest error. 10897 */ 10898 if (sign != sext) { 10899 qemu_log_mask(LOG_GUEST_ERROR, 10900 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 10901 } 10902 tsz = sextract32(tcr, 0, 4) + 8; 10903 select = 0; 10904 hpd = false; 10905 epd = false; 10906 } else if (el == 2) { 10907 /* HTCR */ 10908 tsz = extract32(tcr, 0, 3); 10909 select = 0; 10910 hpd = extract64(tcr, 24, 1); 10911 epd = false; 10912 } else { 10913 int t0sz = extract32(tcr, 0, 3); 10914 int t1sz = extract32(tcr, 16, 3); 10915 10916 if (t1sz == 0) { 10917 select = va > (0xffffffffu >> t0sz); 10918 } else { 10919 /* Note that we will detect errors later. */ 10920 select = va >= ~(0xffffffffu >> t1sz); 10921 } 10922 if (!select) { 10923 tsz = t0sz; 10924 epd = extract32(tcr, 7, 1); 10925 hpd = extract64(tcr, 41, 1); 10926 } else { 10927 tsz = t1sz; 10928 epd = extract32(tcr, 23, 1); 10929 hpd = extract64(tcr, 42, 1); 10930 } 10931 /* For aarch32, hpd0 is not enabled without t2e as well. */ 10932 hpd &= extract32(tcr, 6, 1); 10933 } 10934 10935 return (ARMVAParameters) { 10936 .tsz = tsz, 10937 .select = select, 10938 .epd = epd, 10939 .hpd = hpd, 10940 }; 10941 } 10942 10943 /** 10944 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 10945 * 10946 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10947 * prot and page_size may not be filled in, and the populated fsr value provides 10948 * information on why the translation aborted, in the format of a long-format 10949 * DFSR/IFSR fault register, with the following caveats: 10950 * * the WnR bit is never set (the caller must do this). 10951 * 10952 * @env: CPUARMState 10953 * @address: virtual address to get physical address for 10954 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 10955 * @mmu_idx: MMU index indicating required translation regime 10956 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 10957 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 10958 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 10959 * @phys_ptr: set to the physical address corresponding to the virtual address 10960 * @attrs: set to the memory transaction attributes to use 10961 * @prot: set to the permissions for the page containing phys_ptr 10962 * @page_size_ptr: set to the size of the page containing phys_ptr 10963 * @fi: set to fault info if the translation fails 10964 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 10965 */ 10966 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 10967 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10968 bool s1_is_el0, 10969 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 10970 target_ulong *page_size_ptr, 10971 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10972 { 10973 ARMCPU *cpu = env_archcpu(env); 10974 CPUState *cs = CPU(cpu); 10975 /* Read an LPAE long-descriptor translation table. */ 10976 ARMFaultType fault_type = ARMFault_Translation; 10977 uint32_t level; 10978 ARMVAParameters param; 10979 uint64_t ttbr; 10980 hwaddr descaddr, indexmask, indexmask_grainsize; 10981 uint32_t tableattrs; 10982 target_ulong page_size; 10983 uint32_t attrs; 10984 int32_t stride; 10985 int addrsize, inputsize; 10986 TCR *tcr = regime_tcr(env, mmu_idx); 10987 int ap, ns, xn, pxn; 10988 uint32_t el = regime_el(env, mmu_idx); 10989 uint64_t descaddrmask; 10990 bool aarch64 = arm_el_is_aa64(env, el); 10991 bool guarded = false; 10992 10993 /* TODO: This code does not support shareability levels. */ 10994 if (aarch64) { 10995 param = aa64_va_parameters(env, address, mmu_idx, 10996 access_type != MMU_INST_FETCH); 10997 level = 0; 10998 addrsize = 64 - 8 * param.tbi; 10999 inputsize = 64 - param.tsz; 11000 } else { 11001 param = aa32_va_parameters(env, address, mmu_idx); 11002 level = 1; 11003 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11004 inputsize = addrsize - param.tsz; 11005 } 11006 11007 /* 11008 * We determined the region when collecting the parameters, but we 11009 * have not yet validated that the address is valid for the region. 11010 * Extract the top bits and verify that they all match select. 11011 * 11012 * For aa32, if inputsize == addrsize, then we have selected the 11013 * region by exclusion in aa32_va_parameters and there is no more 11014 * validation to do here. 11015 */ 11016 if (inputsize < addrsize) { 11017 target_ulong top_bits = sextract64(address, inputsize, 11018 addrsize - inputsize); 11019 if (-top_bits != param.select) { 11020 /* The gap between the two regions is a Translation fault */ 11021 fault_type = ARMFault_Translation; 11022 goto do_fault; 11023 } 11024 } 11025 11026 if (param.using64k) { 11027 stride = 13; 11028 } else if (param.using16k) { 11029 stride = 11; 11030 } else { 11031 stride = 9; 11032 } 11033 11034 /* Note that QEMU ignores shareability and cacheability attributes, 11035 * so we don't need to do anything with the SH, ORGN, IRGN fields 11036 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11037 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11038 * implement any ASID-like capability so we can ignore it (instead 11039 * we will always flush the TLB any time the ASID is changed). 11040 */ 11041 ttbr = regime_ttbr(env, mmu_idx, param.select); 11042 11043 /* Here we should have set up all the parameters for the translation: 11044 * inputsize, ttbr, epd, stride, tbi 11045 */ 11046 11047 if (param.epd) { 11048 /* Translation table walk disabled => Translation fault on TLB miss 11049 * Note: This is always 0 on 64-bit EL2 and EL3. 11050 */ 11051 goto do_fault; 11052 } 11053 11054 if (mmu_idx != ARMMMUIdx_Stage2) { 11055 /* The starting level depends on the virtual address size (which can 11056 * be up to 48 bits) and the translation granule size. It indicates 11057 * the number of strides (stride bits at a time) needed to 11058 * consume the bits of the input address. In the pseudocode this is: 11059 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11060 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11061 * our 'stride + 3' and 'stride' is our 'stride'. 11062 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11063 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11064 * = 4 - (inputsize - 4) / stride; 11065 */ 11066 level = 4 - (inputsize - 4) / stride; 11067 } else { 11068 /* For stage 2 translations the starting level is specified by the 11069 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11070 */ 11071 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11072 uint32_t startlevel; 11073 bool ok; 11074 11075 if (!aarch64 || stride == 9) { 11076 /* AArch32 or 4KB pages */ 11077 startlevel = 2 - sl0; 11078 } else { 11079 /* 16KB or 64KB pages */ 11080 startlevel = 3 - sl0; 11081 } 11082 11083 /* Check that the starting level is valid. */ 11084 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11085 inputsize, stride); 11086 if (!ok) { 11087 fault_type = ARMFault_Translation; 11088 goto do_fault; 11089 } 11090 level = startlevel; 11091 } 11092 11093 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 11094 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 11095 11096 /* Now we can extract the actual base address from the TTBR */ 11097 descaddr = extract64(ttbr, 0, 48); 11098 /* 11099 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11100 * and also to mask out CnP (bit 0) which could validly be non-zero. 11101 */ 11102 descaddr &= ~indexmask; 11103 11104 /* The address field in the descriptor goes up to bit 39 for ARMv7 11105 * but up to bit 47 for ARMv8, but we use the descaddrmask 11106 * up to bit 39 for AArch32, because we don't need other bits in that case 11107 * to construct next descriptor address (anyway they should be all zeroes). 11108 */ 11109 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 11110 ~indexmask_grainsize; 11111 11112 /* Secure accesses start with the page table in secure memory and 11113 * can be downgraded to non-secure at any step. Non-secure accesses 11114 * remain non-secure. We implement this by just ORing in the NSTable/NS 11115 * bits at each step. 11116 */ 11117 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11118 for (;;) { 11119 uint64_t descriptor; 11120 bool nstable; 11121 11122 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11123 descaddr &= ~7ULL; 11124 nstable = extract32(tableattrs, 4, 1); 11125 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11126 if (fi->type != ARMFault_None) { 11127 goto do_fault; 11128 } 11129 11130 if (!(descriptor & 1) || 11131 (!(descriptor & 2) && (level == 3))) { 11132 /* Invalid, or the Reserved level 3 encoding */ 11133 goto do_fault; 11134 } 11135 descaddr = descriptor & descaddrmask; 11136 11137 if ((descriptor & 2) && (level < 3)) { 11138 /* Table entry. The top five bits are attributes which may 11139 * propagate down through lower levels of the table (and 11140 * which are all arranged so that 0 means "no effect", so 11141 * we can gather them up by ORing in the bits at each level). 11142 */ 11143 tableattrs |= extract64(descriptor, 59, 5); 11144 level++; 11145 indexmask = indexmask_grainsize; 11146 continue; 11147 } 11148 /* Block entry at level 1 or 2, or page entry at level 3. 11149 * These are basically the same thing, although the number 11150 * of bits we pull in from the vaddr varies. 11151 */ 11152 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11153 descaddr |= (address & (page_size - 1)); 11154 /* Extract attributes from the descriptor */ 11155 attrs = extract64(descriptor, 2, 10) 11156 | (extract64(descriptor, 52, 12) << 10); 11157 11158 if (mmu_idx == ARMMMUIdx_Stage2) { 11159 /* Stage 2 table descriptors do not include any attribute fields */ 11160 break; 11161 } 11162 /* Merge in attributes from table descriptors */ 11163 attrs |= nstable << 3; /* NS */ 11164 guarded = extract64(descriptor, 50, 1); /* GP */ 11165 if (param.hpd) { 11166 /* HPD disables all the table attributes except NSTable. */ 11167 break; 11168 } 11169 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11170 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11171 * means "force PL1 access only", which means forcing AP[1] to 0. 11172 */ 11173 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11174 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11175 break; 11176 } 11177 /* Here descaddr is the final physical address, and attributes 11178 * are all in attrs. 11179 */ 11180 fault_type = ARMFault_AccessFlag; 11181 if ((attrs & (1 << 8)) == 0) { 11182 /* Access flag */ 11183 goto do_fault; 11184 } 11185 11186 ap = extract32(attrs, 4, 2); 11187 11188 if (mmu_idx == ARMMMUIdx_Stage2) { 11189 ns = true; 11190 xn = extract32(attrs, 11, 2); 11191 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11192 } else { 11193 ns = extract32(attrs, 3, 1); 11194 xn = extract32(attrs, 12, 1); 11195 pxn = extract32(attrs, 11, 1); 11196 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11197 } 11198 11199 fault_type = ARMFault_Permission; 11200 if (!(*prot & (1 << access_type))) { 11201 goto do_fault; 11202 } 11203 11204 if (ns) { 11205 /* The NS bit will (as required by the architecture) have no effect if 11206 * the CPU doesn't support TZ or this is a non-secure translation 11207 * regime, because the attribute will already be non-secure. 11208 */ 11209 txattrs->secure = false; 11210 } 11211 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11212 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11213 arm_tlb_bti_gp(txattrs) = true; 11214 } 11215 11216 if (mmu_idx == ARMMMUIdx_Stage2) { 11217 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11218 } else { 11219 /* Index into MAIR registers for cache attributes */ 11220 uint8_t attrindx = extract32(attrs, 0, 3); 11221 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11222 assert(attrindx <= 7); 11223 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11224 } 11225 cacheattrs->shareability = extract32(attrs, 6, 2); 11226 11227 *phys_ptr = descaddr; 11228 *page_size_ptr = page_size; 11229 return false; 11230 11231 do_fault: 11232 fi->type = fault_type; 11233 fi->level = level; 11234 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11235 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2); 11236 return true; 11237 } 11238 11239 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11240 ARMMMUIdx mmu_idx, 11241 int32_t address, int *prot) 11242 { 11243 if (!arm_feature(env, ARM_FEATURE_M)) { 11244 *prot = PAGE_READ | PAGE_WRITE; 11245 switch (address) { 11246 case 0xF0000000 ... 0xFFFFFFFF: 11247 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11248 /* hivecs execing is ok */ 11249 *prot |= PAGE_EXEC; 11250 } 11251 break; 11252 case 0x00000000 ... 0x7FFFFFFF: 11253 *prot |= PAGE_EXEC; 11254 break; 11255 } 11256 } else { 11257 /* Default system address map for M profile cores. 11258 * The architecture specifies which regions are execute-never; 11259 * at the MPU level no other checks are defined. 11260 */ 11261 switch (address) { 11262 case 0x00000000 ... 0x1fffffff: /* ROM */ 11263 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11264 case 0x60000000 ... 0x7fffffff: /* RAM */ 11265 case 0x80000000 ... 0x9fffffff: /* RAM */ 11266 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11267 break; 11268 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11269 case 0xa0000000 ... 0xbfffffff: /* Device */ 11270 case 0xc0000000 ... 0xdfffffff: /* Device */ 11271 case 0xe0000000 ... 0xffffffff: /* System */ 11272 *prot = PAGE_READ | PAGE_WRITE; 11273 break; 11274 default: 11275 g_assert_not_reached(); 11276 } 11277 } 11278 } 11279 11280 static bool pmsav7_use_background_region(ARMCPU *cpu, 11281 ARMMMUIdx mmu_idx, bool is_user) 11282 { 11283 /* Return true if we should use the default memory map as a 11284 * "background" region if there are no hits against any MPU regions. 11285 */ 11286 CPUARMState *env = &cpu->env; 11287 11288 if (is_user) { 11289 return false; 11290 } 11291 11292 if (arm_feature(env, ARM_FEATURE_M)) { 11293 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11294 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11295 } else { 11296 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11297 } 11298 } 11299 11300 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11301 { 11302 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11303 return arm_feature(env, ARM_FEATURE_M) && 11304 extract32(address, 20, 12) == 0xe00; 11305 } 11306 11307 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11308 { 11309 /* True if address is in the M profile system region 11310 * 0xe0000000 - 0xffffffff 11311 */ 11312 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11313 } 11314 11315 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11316 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11317 hwaddr *phys_ptr, int *prot, 11318 target_ulong *page_size, 11319 ARMMMUFaultInfo *fi) 11320 { 11321 ARMCPU *cpu = env_archcpu(env); 11322 int n; 11323 bool is_user = regime_is_user(env, mmu_idx); 11324 11325 *phys_ptr = address; 11326 *page_size = TARGET_PAGE_SIZE; 11327 *prot = 0; 11328 11329 if (regime_translation_disabled(env, mmu_idx) || 11330 m_is_ppb_region(env, address)) { 11331 /* MPU disabled or M profile PPB access: use default memory map. 11332 * The other case which uses the default memory map in the 11333 * v7M ARM ARM pseudocode is exception vector reads from the vector 11334 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11335 * which always does a direct read using address_space_ldl(), rather 11336 * than going via this function, so we don't need to check that here. 11337 */ 11338 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11339 } else { /* MPU enabled */ 11340 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11341 /* region search */ 11342 uint32_t base = env->pmsav7.drbar[n]; 11343 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11344 uint32_t rmask; 11345 bool srdis = false; 11346 11347 if (!(env->pmsav7.drsr[n] & 0x1)) { 11348 continue; 11349 } 11350 11351 if (!rsize) { 11352 qemu_log_mask(LOG_GUEST_ERROR, 11353 "DRSR[%d]: Rsize field cannot be 0\n", n); 11354 continue; 11355 } 11356 rsize++; 11357 rmask = (1ull << rsize) - 1; 11358 11359 if (base & rmask) { 11360 qemu_log_mask(LOG_GUEST_ERROR, 11361 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11362 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11363 n, base, rmask); 11364 continue; 11365 } 11366 11367 if (address < base || address > base + rmask) { 11368 /* 11369 * Address not in this region. We must check whether the 11370 * region covers addresses in the same page as our address. 11371 * In that case we must not report a size that covers the 11372 * whole page for a subsequent hit against a different MPU 11373 * region or the background region, because it would result in 11374 * incorrect TLB hits for subsequent accesses to addresses that 11375 * are in this MPU region. 11376 */ 11377 if (ranges_overlap(base, rmask, 11378 address & TARGET_PAGE_MASK, 11379 TARGET_PAGE_SIZE)) { 11380 *page_size = 1; 11381 } 11382 continue; 11383 } 11384 11385 /* Region matched */ 11386 11387 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11388 int i, snd; 11389 uint32_t srdis_mask; 11390 11391 rsize -= 3; /* sub region size (power of 2) */ 11392 snd = ((address - base) >> rsize) & 0x7; 11393 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11394 11395 srdis_mask = srdis ? 0x3 : 0x0; 11396 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11397 /* This will check in groups of 2, 4 and then 8, whether 11398 * the subregion bits are consistent. rsize is incremented 11399 * back up to give the region size, considering consistent 11400 * adjacent subregions as one region. Stop testing if rsize 11401 * is already big enough for an entire QEMU page. 11402 */ 11403 int snd_rounded = snd & ~(i - 1); 11404 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11405 snd_rounded + 8, i); 11406 if (srdis_mask ^ srdis_multi) { 11407 break; 11408 } 11409 srdis_mask = (srdis_mask << i) | srdis_mask; 11410 rsize++; 11411 } 11412 } 11413 if (srdis) { 11414 continue; 11415 } 11416 if (rsize < TARGET_PAGE_BITS) { 11417 *page_size = 1 << rsize; 11418 } 11419 break; 11420 } 11421 11422 if (n == -1) { /* no hits */ 11423 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11424 /* background fault */ 11425 fi->type = ARMFault_Background; 11426 return true; 11427 } 11428 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11429 } else { /* a MPU hit! */ 11430 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11431 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11432 11433 if (m_is_system_region(env, address)) { 11434 /* System space is always execute never */ 11435 xn = 1; 11436 } 11437 11438 if (is_user) { /* User mode AP bit decoding */ 11439 switch (ap) { 11440 case 0: 11441 case 1: 11442 case 5: 11443 break; /* no access */ 11444 case 3: 11445 *prot |= PAGE_WRITE; 11446 /* fall through */ 11447 case 2: 11448 case 6: 11449 *prot |= PAGE_READ | PAGE_EXEC; 11450 break; 11451 case 7: 11452 /* for v7M, same as 6; for R profile a reserved value */ 11453 if (arm_feature(env, ARM_FEATURE_M)) { 11454 *prot |= PAGE_READ | PAGE_EXEC; 11455 break; 11456 } 11457 /* fall through */ 11458 default: 11459 qemu_log_mask(LOG_GUEST_ERROR, 11460 "DRACR[%d]: Bad value for AP bits: 0x%" 11461 PRIx32 "\n", n, ap); 11462 } 11463 } else { /* Priv. mode AP bits decoding */ 11464 switch (ap) { 11465 case 0: 11466 break; /* no access */ 11467 case 1: 11468 case 2: 11469 case 3: 11470 *prot |= PAGE_WRITE; 11471 /* fall through */ 11472 case 5: 11473 case 6: 11474 *prot |= PAGE_READ | PAGE_EXEC; 11475 break; 11476 case 7: 11477 /* for v7M, same as 6; for R profile a reserved value */ 11478 if (arm_feature(env, ARM_FEATURE_M)) { 11479 *prot |= PAGE_READ | PAGE_EXEC; 11480 break; 11481 } 11482 /* fall through */ 11483 default: 11484 qemu_log_mask(LOG_GUEST_ERROR, 11485 "DRACR[%d]: Bad value for AP bits: 0x%" 11486 PRIx32 "\n", n, ap); 11487 } 11488 } 11489 11490 /* execute never */ 11491 if (xn) { 11492 *prot &= ~PAGE_EXEC; 11493 } 11494 } 11495 } 11496 11497 fi->type = ARMFault_Permission; 11498 fi->level = 1; 11499 return !(*prot & (1 << access_type)); 11500 } 11501 11502 static bool v8m_is_sau_exempt(CPUARMState *env, 11503 uint32_t address, MMUAccessType access_type) 11504 { 11505 /* The architecture specifies that certain address ranges are 11506 * exempt from v8M SAU/IDAU checks. 11507 */ 11508 return 11509 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 11510 (address >= 0xe0000000 && address <= 0xe0002fff) || 11511 (address >= 0xe000e000 && address <= 0xe000efff) || 11512 (address >= 0xe002e000 && address <= 0xe002efff) || 11513 (address >= 0xe0040000 && address <= 0xe0041fff) || 11514 (address >= 0xe00ff000 && address <= 0xe00fffff); 11515 } 11516 11517 void v8m_security_lookup(CPUARMState *env, uint32_t address, 11518 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11519 V8M_SAttributes *sattrs) 11520 { 11521 /* Look up the security attributes for this address. Compare the 11522 * pseudocode SecurityCheck() function. 11523 * We assume the caller has zero-initialized *sattrs. 11524 */ 11525 ARMCPU *cpu = env_archcpu(env); 11526 int r; 11527 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 11528 int idau_region = IREGION_NOTVALID; 11529 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11530 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11531 11532 if (cpu->idau) { 11533 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 11534 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 11535 11536 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 11537 &idau_nsc); 11538 } 11539 11540 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 11541 /* 0xf0000000..0xffffffff is always S for insn fetches */ 11542 return; 11543 } 11544 11545 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 11546 sattrs->ns = !regime_is_secure(env, mmu_idx); 11547 return; 11548 } 11549 11550 if (idau_region != IREGION_NOTVALID) { 11551 sattrs->irvalid = true; 11552 sattrs->iregion = idau_region; 11553 } 11554 11555 switch (env->sau.ctrl & 3) { 11556 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 11557 break; 11558 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 11559 sattrs->ns = true; 11560 break; 11561 default: /* SAU.ENABLE == 1 */ 11562 for (r = 0; r < cpu->sau_sregion; r++) { 11563 if (env->sau.rlar[r] & 1) { 11564 uint32_t base = env->sau.rbar[r] & ~0x1f; 11565 uint32_t limit = env->sau.rlar[r] | 0x1f; 11566 11567 if (base <= address && limit >= address) { 11568 if (base > addr_page_base || limit < addr_page_limit) { 11569 sattrs->subpage = true; 11570 } 11571 if (sattrs->srvalid) { 11572 /* If we hit in more than one region then we must report 11573 * as Secure, not NS-Callable, with no valid region 11574 * number info. 11575 */ 11576 sattrs->ns = false; 11577 sattrs->nsc = false; 11578 sattrs->sregion = 0; 11579 sattrs->srvalid = false; 11580 break; 11581 } else { 11582 if (env->sau.rlar[r] & 2) { 11583 sattrs->nsc = true; 11584 } else { 11585 sattrs->ns = true; 11586 } 11587 sattrs->srvalid = true; 11588 sattrs->sregion = r; 11589 } 11590 } else { 11591 /* 11592 * Address not in this region. We must check whether the 11593 * region covers addresses in the same page as our address. 11594 * In that case we must not report a size that covers the 11595 * whole page for a subsequent hit against a different MPU 11596 * region or the background region, because it would result 11597 * in incorrect TLB hits for subsequent accesses to 11598 * addresses that are in this MPU region. 11599 */ 11600 if (limit >= base && 11601 ranges_overlap(base, limit - base + 1, 11602 addr_page_base, 11603 TARGET_PAGE_SIZE)) { 11604 sattrs->subpage = true; 11605 } 11606 } 11607 } 11608 } 11609 break; 11610 } 11611 11612 /* 11613 * The IDAU will override the SAU lookup results if it specifies 11614 * higher security than the SAU does. 11615 */ 11616 if (!idau_ns) { 11617 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 11618 sattrs->ns = false; 11619 sattrs->nsc = idau_nsc; 11620 } 11621 } 11622 } 11623 11624 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 11625 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11626 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11627 int *prot, bool *is_subpage, 11628 ARMMMUFaultInfo *fi, uint32_t *mregion) 11629 { 11630 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 11631 * that a full phys-to-virt translation does). 11632 * mregion is (if not NULL) set to the region number which matched, 11633 * or -1 if no region number is returned (MPU off, address did not 11634 * hit a region, address hit in multiple regions). 11635 * We set is_subpage to true if the region hit doesn't cover the 11636 * entire TARGET_PAGE the address is within. 11637 */ 11638 ARMCPU *cpu = env_archcpu(env); 11639 bool is_user = regime_is_user(env, mmu_idx); 11640 uint32_t secure = regime_is_secure(env, mmu_idx); 11641 int n; 11642 int matchregion = -1; 11643 bool hit = false; 11644 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11645 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11646 11647 *is_subpage = false; 11648 *phys_ptr = address; 11649 *prot = 0; 11650 if (mregion) { 11651 *mregion = -1; 11652 } 11653 11654 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 11655 * was an exception vector read from the vector table (which is always 11656 * done using the default system address map), because those accesses 11657 * are done in arm_v7m_load_vector(), which always does a direct 11658 * read using address_space_ldl(), rather than going via this function. 11659 */ 11660 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 11661 hit = true; 11662 } else if (m_is_ppb_region(env, address)) { 11663 hit = true; 11664 } else { 11665 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11666 hit = true; 11667 } 11668 11669 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11670 /* region search */ 11671 /* Note that the base address is bits [31:5] from the register 11672 * with bits [4:0] all zeroes, but the limit address is bits 11673 * [31:5] from the register with bits [4:0] all ones. 11674 */ 11675 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 11676 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 11677 11678 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 11679 /* Region disabled */ 11680 continue; 11681 } 11682 11683 if (address < base || address > limit) { 11684 /* 11685 * Address not in this region. We must check whether the 11686 * region covers addresses in the same page as our address. 11687 * In that case we must not report a size that covers the 11688 * whole page for a subsequent hit against a different MPU 11689 * region or the background region, because it would result in 11690 * incorrect TLB hits for subsequent accesses to addresses that 11691 * are in this MPU region. 11692 */ 11693 if (limit >= base && 11694 ranges_overlap(base, limit - base + 1, 11695 addr_page_base, 11696 TARGET_PAGE_SIZE)) { 11697 *is_subpage = true; 11698 } 11699 continue; 11700 } 11701 11702 if (base > addr_page_base || limit < addr_page_limit) { 11703 *is_subpage = true; 11704 } 11705 11706 if (matchregion != -1) { 11707 /* Multiple regions match -- always a failure (unlike 11708 * PMSAv7 where highest-numbered-region wins) 11709 */ 11710 fi->type = ARMFault_Permission; 11711 fi->level = 1; 11712 return true; 11713 } 11714 11715 matchregion = n; 11716 hit = true; 11717 } 11718 } 11719 11720 if (!hit) { 11721 /* background fault */ 11722 fi->type = ARMFault_Background; 11723 return true; 11724 } 11725 11726 if (matchregion == -1) { 11727 /* hit using the background region */ 11728 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11729 } else { 11730 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 11731 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 11732 11733 if (m_is_system_region(env, address)) { 11734 /* System space is always execute never */ 11735 xn = 1; 11736 } 11737 11738 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 11739 if (*prot && !xn) { 11740 *prot |= PAGE_EXEC; 11741 } 11742 /* We don't need to look the attribute up in the MAIR0/MAIR1 11743 * registers because that only tells us about cacheability. 11744 */ 11745 if (mregion) { 11746 *mregion = matchregion; 11747 } 11748 } 11749 11750 fi->type = ARMFault_Permission; 11751 fi->level = 1; 11752 return !(*prot & (1 << access_type)); 11753 } 11754 11755 11756 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 11757 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11758 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11759 int *prot, target_ulong *page_size, 11760 ARMMMUFaultInfo *fi) 11761 { 11762 uint32_t secure = regime_is_secure(env, mmu_idx); 11763 V8M_SAttributes sattrs = {}; 11764 bool ret; 11765 bool mpu_is_subpage; 11766 11767 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 11768 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 11769 if (access_type == MMU_INST_FETCH) { 11770 /* Instruction fetches always use the MMU bank and the 11771 * transaction attribute determined by the fetch address, 11772 * regardless of CPU state. This is painful for QEMU 11773 * to handle, because it would mean we need to encode 11774 * into the mmu_idx not just the (user, negpri) information 11775 * for the current security state but also that for the 11776 * other security state, which would balloon the number 11777 * of mmu_idx values needed alarmingly. 11778 * Fortunately we can avoid this because it's not actually 11779 * possible to arbitrarily execute code from memory with 11780 * the wrong security attribute: it will always generate 11781 * an exception of some kind or another, apart from the 11782 * special case of an NS CPU executing an SG instruction 11783 * in S&NSC memory. So we always just fail the translation 11784 * here and sort things out in the exception handler 11785 * (including possibly emulating an SG instruction). 11786 */ 11787 if (sattrs.ns != !secure) { 11788 if (sattrs.nsc) { 11789 fi->type = ARMFault_QEMU_NSCExec; 11790 } else { 11791 fi->type = ARMFault_QEMU_SFault; 11792 } 11793 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11794 *phys_ptr = address; 11795 *prot = 0; 11796 return true; 11797 } 11798 } else { 11799 /* For data accesses we always use the MMU bank indicated 11800 * by the current CPU state, but the security attributes 11801 * might downgrade a secure access to nonsecure. 11802 */ 11803 if (sattrs.ns) { 11804 txattrs->secure = false; 11805 } else if (!secure) { 11806 /* NS access to S memory must fault. 11807 * Architecturally we should first check whether the 11808 * MPU information for this address indicates that we 11809 * are doing an unaligned access to Device memory, which 11810 * should generate a UsageFault instead. QEMU does not 11811 * currently check for that kind of unaligned access though. 11812 * If we added it we would need to do so as a special case 11813 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 11814 */ 11815 fi->type = ARMFault_QEMU_SFault; 11816 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11817 *phys_ptr = address; 11818 *prot = 0; 11819 return true; 11820 } 11821 } 11822 } 11823 11824 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 11825 txattrs, prot, &mpu_is_subpage, fi, NULL); 11826 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 11827 return ret; 11828 } 11829 11830 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 11831 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11832 hwaddr *phys_ptr, int *prot, 11833 ARMMMUFaultInfo *fi) 11834 { 11835 int n; 11836 uint32_t mask; 11837 uint32_t base; 11838 bool is_user = regime_is_user(env, mmu_idx); 11839 11840 if (regime_translation_disabled(env, mmu_idx)) { 11841 /* MPU disabled. */ 11842 *phys_ptr = address; 11843 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11844 return false; 11845 } 11846 11847 *phys_ptr = address; 11848 for (n = 7; n >= 0; n--) { 11849 base = env->cp15.c6_region[n]; 11850 if ((base & 1) == 0) { 11851 continue; 11852 } 11853 mask = 1 << ((base >> 1) & 0x1f); 11854 /* Keep this shift separate from the above to avoid an 11855 (undefined) << 32. */ 11856 mask = (mask << 1) - 1; 11857 if (((base ^ address) & ~mask) == 0) { 11858 break; 11859 } 11860 } 11861 if (n < 0) { 11862 fi->type = ARMFault_Background; 11863 return true; 11864 } 11865 11866 if (access_type == MMU_INST_FETCH) { 11867 mask = env->cp15.pmsav5_insn_ap; 11868 } else { 11869 mask = env->cp15.pmsav5_data_ap; 11870 } 11871 mask = (mask >> (n * 4)) & 0xf; 11872 switch (mask) { 11873 case 0: 11874 fi->type = ARMFault_Permission; 11875 fi->level = 1; 11876 return true; 11877 case 1: 11878 if (is_user) { 11879 fi->type = ARMFault_Permission; 11880 fi->level = 1; 11881 return true; 11882 } 11883 *prot = PAGE_READ | PAGE_WRITE; 11884 break; 11885 case 2: 11886 *prot = PAGE_READ; 11887 if (!is_user) { 11888 *prot |= PAGE_WRITE; 11889 } 11890 break; 11891 case 3: 11892 *prot = PAGE_READ | PAGE_WRITE; 11893 break; 11894 case 5: 11895 if (is_user) { 11896 fi->type = ARMFault_Permission; 11897 fi->level = 1; 11898 return true; 11899 } 11900 *prot = PAGE_READ; 11901 break; 11902 case 6: 11903 *prot = PAGE_READ; 11904 break; 11905 default: 11906 /* Bad permission. */ 11907 fi->type = ARMFault_Permission; 11908 fi->level = 1; 11909 return true; 11910 } 11911 *prot |= PAGE_EXEC; 11912 return false; 11913 } 11914 11915 /* Combine either inner or outer cacheability attributes for normal 11916 * memory, according to table D4-42 and pseudocode procedure 11917 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 11918 * 11919 * NB: only stage 1 includes allocation hints (RW bits), leading to 11920 * some asymmetry. 11921 */ 11922 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 11923 { 11924 if (s1 == 4 || s2 == 4) { 11925 /* non-cacheable has precedence */ 11926 return 4; 11927 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 11928 /* stage 1 write-through takes precedence */ 11929 return s1; 11930 } else if (extract32(s2, 2, 2) == 2) { 11931 /* stage 2 write-through takes precedence, but the allocation hint 11932 * is still taken from stage 1 11933 */ 11934 return (2 << 2) | extract32(s1, 0, 2); 11935 } else { /* write-back */ 11936 return s1; 11937 } 11938 } 11939 11940 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 11941 * and CombineS1S2Desc() 11942 * 11943 * @s1: Attributes from stage 1 walk 11944 * @s2: Attributes from stage 2 walk 11945 */ 11946 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 11947 { 11948 uint8_t s1lo, s2lo, s1hi, s2hi; 11949 ARMCacheAttrs ret; 11950 bool tagged = false; 11951 11952 if (s1.attrs == 0xf0) { 11953 tagged = true; 11954 s1.attrs = 0xff; 11955 } 11956 11957 s1lo = extract32(s1.attrs, 0, 4); 11958 s2lo = extract32(s2.attrs, 0, 4); 11959 s1hi = extract32(s1.attrs, 4, 4); 11960 s2hi = extract32(s2.attrs, 4, 4); 11961 11962 /* Combine shareability attributes (table D4-43) */ 11963 if (s1.shareability == 2 || s2.shareability == 2) { 11964 /* if either are outer-shareable, the result is outer-shareable */ 11965 ret.shareability = 2; 11966 } else if (s1.shareability == 3 || s2.shareability == 3) { 11967 /* if either are inner-shareable, the result is inner-shareable */ 11968 ret.shareability = 3; 11969 } else { 11970 /* both non-shareable */ 11971 ret.shareability = 0; 11972 } 11973 11974 /* Combine memory type and cacheability attributes */ 11975 if (s1hi == 0 || s2hi == 0) { 11976 /* Device has precedence over normal */ 11977 if (s1lo == 0 || s2lo == 0) { 11978 /* nGnRnE has precedence over anything */ 11979 ret.attrs = 0; 11980 } else if (s1lo == 4 || s2lo == 4) { 11981 /* non-Reordering has precedence over Reordering */ 11982 ret.attrs = 4; /* nGnRE */ 11983 } else if (s1lo == 8 || s2lo == 8) { 11984 /* non-Gathering has precedence over Gathering */ 11985 ret.attrs = 8; /* nGRE */ 11986 } else { 11987 ret.attrs = 0xc; /* GRE */ 11988 } 11989 11990 /* Any location for which the resultant memory type is any 11991 * type of Device memory is always treated as Outer Shareable. 11992 */ 11993 ret.shareability = 2; 11994 } else { /* Normal memory */ 11995 /* Outer/inner cacheability combine independently */ 11996 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 11997 | combine_cacheattr_nibble(s1lo, s2lo); 11998 11999 if (ret.attrs == 0x44) { 12000 /* Any location for which the resultant memory type is Normal 12001 * Inner Non-cacheable, Outer Non-cacheable is always treated 12002 * as Outer Shareable. 12003 */ 12004 ret.shareability = 2; 12005 } 12006 } 12007 12008 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12009 if (tagged && ret.attrs == 0xff) { 12010 ret.attrs = 0xf0; 12011 } 12012 12013 return ret; 12014 } 12015 12016 12017 /* get_phys_addr - get the physical address for this virtual address 12018 * 12019 * Find the physical address corresponding to the given virtual address, 12020 * by doing a translation table walk on MMU based systems or using the 12021 * MPU state on MPU based systems. 12022 * 12023 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12024 * prot and page_size may not be filled in, and the populated fsr value provides 12025 * information on why the translation aborted, in the format of a 12026 * DFSR/IFSR fault register, with the following caveats: 12027 * * we honour the short vs long DFSR format differences. 12028 * * the WnR bit is never set (the caller must do this). 12029 * * for PSMAv5 based systems we don't bother to return a full FSR format 12030 * value. 12031 * 12032 * @env: CPUARMState 12033 * @address: virtual address to get physical address for 12034 * @access_type: 0 for read, 1 for write, 2 for execute 12035 * @mmu_idx: MMU index indicating required translation regime 12036 * @phys_ptr: set to the physical address corresponding to the virtual address 12037 * @attrs: set to the memory transaction attributes to use 12038 * @prot: set to the permissions for the page containing phys_ptr 12039 * @page_size: set to the size of the page containing phys_ptr 12040 * @fi: set to fault info if the translation fails 12041 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12042 */ 12043 bool get_phys_addr(CPUARMState *env, target_ulong address, 12044 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12045 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12046 target_ulong *page_size, 12047 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12048 { 12049 if (mmu_idx == ARMMMUIdx_E10_0 || 12050 mmu_idx == ARMMMUIdx_E10_1 || 12051 mmu_idx == ARMMMUIdx_E10_1_PAN) { 12052 /* Call ourselves recursively to do the stage 1 and then stage 2 12053 * translations. 12054 */ 12055 if (arm_feature(env, ARM_FEATURE_EL2)) { 12056 hwaddr ipa; 12057 int s2_prot; 12058 int ret; 12059 ARMCacheAttrs cacheattrs2 = {}; 12060 12061 ret = get_phys_addr(env, address, access_type, 12062 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 12063 prot, page_size, fi, cacheattrs); 12064 12065 /* If S1 fails or S2 is disabled, return early. */ 12066 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12067 *phys_ptr = ipa; 12068 return ret; 12069 } 12070 12071 /* S1 is done. Now do S2 translation. */ 12072 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2, 12073 mmu_idx == ARMMMUIdx_E10_0, 12074 phys_ptr, attrs, &s2_prot, 12075 page_size, fi, &cacheattrs2); 12076 fi->s2addr = ipa; 12077 /* Combine the S1 and S2 perms. */ 12078 *prot &= s2_prot; 12079 12080 /* If S2 fails, return early. */ 12081 if (ret) { 12082 return ret; 12083 } 12084 12085 /* Combine the S1 and S2 cache attributes. */ 12086 if (env->cp15.hcr_el2 & HCR_DC) { 12087 /* 12088 * HCR.DC forces the first stage attributes to 12089 * Normal Non-Shareable, 12090 * Inner Write-Back Read-Allocate Write-Allocate, 12091 * Outer Write-Back Read-Allocate Write-Allocate. 12092 * Do not overwrite Tagged within attrs. 12093 */ 12094 if (cacheattrs->attrs != 0xf0) { 12095 cacheattrs->attrs = 0xff; 12096 } 12097 cacheattrs->shareability = 0; 12098 } 12099 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12100 return 0; 12101 } else { 12102 /* 12103 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12104 */ 12105 mmu_idx = stage_1_mmu_idx(mmu_idx); 12106 } 12107 } 12108 12109 /* The page table entries may downgrade secure to non-secure, but 12110 * cannot upgrade an non-secure translation regime's attributes 12111 * to secure. 12112 */ 12113 attrs->secure = regime_is_secure(env, mmu_idx); 12114 attrs->user = regime_is_user(env, mmu_idx); 12115 12116 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12117 * In v7 and earlier it affects all stage 1 translations. 12118 */ 12119 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12120 && !arm_feature(env, ARM_FEATURE_V8)) { 12121 if (regime_el(env, mmu_idx) == 3) { 12122 address += env->cp15.fcseidr_s; 12123 } else { 12124 address += env->cp15.fcseidr_ns; 12125 } 12126 } 12127 12128 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12129 bool ret; 12130 *page_size = TARGET_PAGE_SIZE; 12131 12132 if (arm_feature(env, ARM_FEATURE_V8)) { 12133 /* PMSAv8 */ 12134 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12135 phys_ptr, attrs, prot, page_size, fi); 12136 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12137 /* PMSAv7 */ 12138 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12139 phys_ptr, prot, page_size, fi); 12140 } else { 12141 /* Pre-v7 MPU */ 12142 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12143 phys_ptr, prot, fi); 12144 } 12145 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12146 " mmu_idx %u -> %s (prot %c%c%c)\n", 12147 access_type == MMU_DATA_LOAD ? "reading" : 12148 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12149 (uint32_t)address, mmu_idx, 12150 ret ? "Miss" : "Hit", 12151 *prot & PAGE_READ ? 'r' : '-', 12152 *prot & PAGE_WRITE ? 'w' : '-', 12153 *prot & PAGE_EXEC ? 'x' : '-'); 12154 12155 return ret; 12156 } 12157 12158 /* Definitely a real MMU, not an MPU */ 12159 12160 if (regime_translation_disabled(env, mmu_idx)) { 12161 uint64_t hcr; 12162 uint8_t memattr; 12163 12164 /* 12165 * MMU disabled. S1 addresses within aa64 translation regimes are 12166 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12167 */ 12168 if (mmu_idx != ARMMMUIdx_Stage2) { 12169 int r_el = regime_el(env, mmu_idx); 12170 if (arm_el_is_aa64(env, r_el)) { 12171 int pamax = arm_pamax(env_archcpu(env)); 12172 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12173 int addrtop, tbi; 12174 12175 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12176 if (access_type == MMU_INST_FETCH) { 12177 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12178 } 12179 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12180 addrtop = (tbi ? 55 : 63); 12181 12182 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12183 fi->type = ARMFault_AddressSize; 12184 fi->level = 0; 12185 fi->stage2 = false; 12186 return 1; 12187 } 12188 12189 /* 12190 * When TBI is disabled, we've just validated that all of the 12191 * bits above PAMax are zero, so logically we only need to 12192 * clear the top byte for TBI. But it's clearer to follow 12193 * the pseudocode set of addrdesc.paddress. 12194 */ 12195 address = extract64(address, 0, 52); 12196 } 12197 } 12198 *phys_ptr = address; 12199 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12200 *page_size = TARGET_PAGE_SIZE; 12201 12202 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12203 hcr = arm_hcr_el2_eff(env); 12204 cacheattrs->shareability = 0; 12205 if (hcr & HCR_DC) { 12206 if (hcr & HCR_DCT) { 12207 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12208 } else { 12209 memattr = 0xff; /* Normal, WB, RWA */ 12210 } 12211 } else if (access_type == MMU_INST_FETCH) { 12212 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12213 memattr = 0xee; /* Normal, WT, RA, NT */ 12214 } else { 12215 memattr = 0x44; /* Normal, NC, No */ 12216 } 12217 cacheattrs->shareability = 2; /* outer sharable */ 12218 } else { 12219 memattr = 0x00; /* Device, nGnRnE */ 12220 } 12221 cacheattrs->attrs = memattr; 12222 return 0; 12223 } 12224 12225 if (regime_using_lpae_format(env, mmu_idx)) { 12226 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12227 phys_ptr, attrs, prot, page_size, 12228 fi, cacheattrs); 12229 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12230 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12231 phys_ptr, attrs, prot, page_size, fi); 12232 } else { 12233 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12234 phys_ptr, prot, page_size, fi); 12235 } 12236 } 12237 12238 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12239 MemTxAttrs *attrs) 12240 { 12241 ARMCPU *cpu = ARM_CPU(cs); 12242 CPUARMState *env = &cpu->env; 12243 hwaddr phys_addr; 12244 target_ulong page_size; 12245 int prot; 12246 bool ret; 12247 ARMMMUFaultInfo fi = {}; 12248 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12249 ARMCacheAttrs cacheattrs = {}; 12250 12251 *attrs = (MemTxAttrs) {}; 12252 12253 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 12254 attrs, &prot, &page_size, &fi, &cacheattrs); 12255 12256 if (ret) { 12257 return -1; 12258 } 12259 return phys_addr; 12260 } 12261 12262 #endif 12263 12264 /* Note that signed overflow is undefined in C. The following routines are 12265 careful to use unsigned types where modulo arithmetic is required. 12266 Failure to do so _will_ break on newer gcc. */ 12267 12268 /* Signed saturating arithmetic. */ 12269 12270 /* Perform 16-bit signed saturating addition. */ 12271 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12272 { 12273 uint16_t res; 12274 12275 res = a + b; 12276 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12277 if (a & 0x8000) 12278 res = 0x8000; 12279 else 12280 res = 0x7fff; 12281 } 12282 return res; 12283 } 12284 12285 /* Perform 8-bit signed saturating addition. */ 12286 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12287 { 12288 uint8_t res; 12289 12290 res = a + b; 12291 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12292 if (a & 0x80) 12293 res = 0x80; 12294 else 12295 res = 0x7f; 12296 } 12297 return res; 12298 } 12299 12300 /* Perform 16-bit signed saturating subtraction. */ 12301 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12302 { 12303 uint16_t res; 12304 12305 res = a - b; 12306 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12307 if (a & 0x8000) 12308 res = 0x8000; 12309 else 12310 res = 0x7fff; 12311 } 12312 return res; 12313 } 12314 12315 /* Perform 8-bit signed saturating subtraction. */ 12316 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12317 { 12318 uint8_t res; 12319 12320 res = a - b; 12321 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12322 if (a & 0x80) 12323 res = 0x80; 12324 else 12325 res = 0x7f; 12326 } 12327 return res; 12328 } 12329 12330 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12331 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12332 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12333 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12334 #define PFX q 12335 12336 #include "op_addsub.h" 12337 12338 /* Unsigned saturating arithmetic. */ 12339 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12340 { 12341 uint16_t res; 12342 res = a + b; 12343 if (res < a) 12344 res = 0xffff; 12345 return res; 12346 } 12347 12348 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12349 { 12350 if (a > b) 12351 return a - b; 12352 else 12353 return 0; 12354 } 12355 12356 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12357 { 12358 uint8_t res; 12359 res = a + b; 12360 if (res < a) 12361 res = 0xff; 12362 return res; 12363 } 12364 12365 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12366 { 12367 if (a > b) 12368 return a - b; 12369 else 12370 return 0; 12371 } 12372 12373 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12374 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12375 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12376 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12377 #define PFX uq 12378 12379 #include "op_addsub.h" 12380 12381 /* Signed modulo arithmetic. */ 12382 #define SARITH16(a, b, n, op) do { \ 12383 int32_t sum; \ 12384 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12385 RESULT(sum, n, 16); \ 12386 if (sum >= 0) \ 12387 ge |= 3 << (n * 2); \ 12388 } while(0) 12389 12390 #define SARITH8(a, b, n, op) do { \ 12391 int32_t sum; \ 12392 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12393 RESULT(sum, n, 8); \ 12394 if (sum >= 0) \ 12395 ge |= 1 << n; \ 12396 } while(0) 12397 12398 12399 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12400 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12401 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12402 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12403 #define PFX s 12404 #define ARITH_GE 12405 12406 #include "op_addsub.h" 12407 12408 /* Unsigned modulo arithmetic. */ 12409 #define ADD16(a, b, n) do { \ 12410 uint32_t sum; \ 12411 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12412 RESULT(sum, n, 16); \ 12413 if ((sum >> 16) == 1) \ 12414 ge |= 3 << (n * 2); \ 12415 } while(0) 12416 12417 #define ADD8(a, b, n) do { \ 12418 uint32_t sum; \ 12419 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12420 RESULT(sum, n, 8); \ 12421 if ((sum >> 8) == 1) \ 12422 ge |= 1 << n; \ 12423 } while(0) 12424 12425 #define SUB16(a, b, n) do { \ 12426 uint32_t sum; \ 12427 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12428 RESULT(sum, n, 16); \ 12429 if ((sum >> 16) == 0) \ 12430 ge |= 3 << (n * 2); \ 12431 } while(0) 12432 12433 #define SUB8(a, b, n) do { \ 12434 uint32_t sum; \ 12435 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12436 RESULT(sum, n, 8); \ 12437 if ((sum >> 8) == 0) \ 12438 ge |= 1 << n; \ 12439 } while(0) 12440 12441 #define PFX u 12442 #define ARITH_GE 12443 12444 #include "op_addsub.h" 12445 12446 /* Halved signed arithmetic. */ 12447 #define ADD16(a, b, n) \ 12448 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12449 #define SUB16(a, b, n) \ 12450 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12451 #define ADD8(a, b, n) \ 12452 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12453 #define SUB8(a, b, n) \ 12454 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12455 #define PFX sh 12456 12457 #include "op_addsub.h" 12458 12459 /* Halved unsigned arithmetic. */ 12460 #define ADD16(a, b, n) \ 12461 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12462 #define SUB16(a, b, n) \ 12463 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12464 #define ADD8(a, b, n) \ 12465 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12466 #define SUB8(a, b, n) \ 12467 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12468 #define PFX uh 12469 12470 #include "op_addsub.h" 12471 12472 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12473 { 12474 if (a > b) 12475 return a - b; 12476 else 12477 return b - a; 12478 } 12479 12480 /* Unsigned sum of absolute byte differences. */ 12481 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12482 { 12483 uint32_t sum; 12484 sum = do_usad(a, b); 12485 sum += do_usad(a >> 8, b >> 8); 12486 sum += do_usad(a >> 16, b >>16); 12487 sum += do_usad(a >> 24, b >> 24); 12488 return sum; 12489 } 12490 12491 /* For ARMv6 SEL instruction. */ 12492 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12493 { 12494 uint32_t mask; 12495 12496 mask = 0; 12497 if (flags & 1) 12498 mask |= 0xff; 12499 if (flags & 2) 12500 mask |= 0xff00; 12501 if (flags & 4) 12502 mask |= 0xff0000; 12503 if (flags & 8) 12504 mask |= 0xff000000; 12505 return (a & mask) | (b & ~mask); 12506 } 12507 12508 /* CRC helpers. 12509 * The upper bytes of val (above the number specified by 'bytes') must have 12510 * been zeroed out by the caller. 12511 */ 12512 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12513 { 12514 uint8_t buf[4]; 12515 12516 stl_le_p(buf, val); 12517 12518 /* zlib crc32 converts the accumulator and output to one's complement. */ 12519 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12520 } 12521 12522 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12523 { 12524 uint8_t buf[4]; 12525 12526 stl_le_p(buf, val); 12527 12528 /* Linux crc32c converts the output to one's complement. */ 12529 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12530 } 12531 12532 /* Return the exception level to which FP-disabled exceptions should 12533 * be taken, or 0 if FP is enabled. 12534 */ 12535 int fp_exception_el(CPUARMState *env, int cur_el) 12536 { 12537 #ifndef CONFIG_USER_ONLY 12538 /* CPACR and the CPTR registers don't exist before v6, so FP is 12539 * always accessible 12540 */ 12541 if (!arm_feature(env, ARM_FEATURE_V6)) { 12542 return 0; 12543 } 12544 12545 if (arm_feature(env, ARM_FEATURE_M)) { 12546 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12547 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12548 return 1; 12549 } 12550 12551 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12552 if (!extract32(env->v7m.nsacr, 10, 1)) { 12553 /* FP insns cause a NOCP UsageFault taken to Secure */ 12554 return 3; 12555 } 12556 } 12557 12558 return 0; 12559 } 12560 12561 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12562 * 0, 2 : trap EL0 and EL1/PL1 accesses 12563 * 1 : trap only EL0 accesses 12564 * 3 : trap no accesses 12565 * This register is ignored if E2H+TGE are both set. 12566 */ 12567 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12568 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12569 12570 switch (fpen) { 12571 case 0: 12572 case 2: 12573 if (cur_el == 0 || cur_el == 1) { 12574 /* Trap to PL1, which might be EL1 or EL3 */ 12575 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12576 return 3; 12577 } 12578 return 1; 12579 } 12580 if (cur_el == 3 && !is_a64(env)) { 12581 /* Secure PL1 running at EL3 */ 12582 return 3; 12583 } 12584 break; 12585 case 1: 12586 if (cur_el == 0) { 12587 return 1; 12588 } 12589 break; 12590 case 3: 12591 break; 12592 } 12593 } 12594 12595 /* 12596 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12597 * to control non-secure access to the FPU. It doesn't have any 12598 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12599 */ 12600 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12601 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12602 if (!extract32(env->cp15.nsacr, 10, 1)) { 12603 /* FP insns act as UNDEF */ 12604 return cur_el == 2 ? 2 : 1; 12605 } 12606 } 12607 12608 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12609 * check because zero bits in the registers mean "don't trap". 12610 */ 12611 12612 /* CPTR_EL2 : present in v7VE or v8 */ 12613 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12614 && !arm_is_secure_below_el3(env)) { 12615 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12616 return 2; 12617 } 12618 12619 /* CPTR_EL3 : present in v8 */ 12620 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12621 /* Trap all FP ops to EL3 */ 12622 return 3; 12623 } 12624 #endif 12625 return 0; 12626 } 12627 12628 /* Return the exception level we're running at if this is our mmu_idx */ 12629 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12630 { 12631 if (mmu_idx & ARM_MMU_IDX_M) { 12632 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12633 } 12634 12635 switch (mmu_idx) { 12636 case ARMMMUIdx_E10_0: 12637 case ARMMMUIdx_E20_0: 12638 case ARMMMUIdx_SE10_0: 12639 return 0; 12640 case ARMMMUIdx_E10_1: 12641 case ARMMMUIdx_E10_1_PAN: 12642 case ARMMMUIdx_SE10_1: 12643 case ARMMMUIdx_SE10_1_PAN: 12644 return 1; 12645 case ARMMMUIdx_E2: 12646 case ARMMMUIdx_E20_2: 12647 case ARMMMUIdx_E20_2_PAN: 12648 return 2; 12649 case ARMMMUIdx_SE3: 12650 return 3; 12651 default: 12652 g_assert_not_reached(); 12653 } 12654 } 12655 12656 #ifndef CONFIG_TCG 12657 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12658 { 12659 g_assert_not_reached(); 12660 } 12661 #endif 12662 12663 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12664 { 12665 if (arm_feature(env, ARM_FEATURE_M)) { 12666 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12667 } 12668 12669 /* See ARM pseudo-function ELIsInHost. */ 12670 switch (el) { 12671 case 0: 12672 if (arm_is_secure_below_el3(env)) { 12673 return ARMMMUIdx_SE10_0; 12674 } 12675 if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE) 12676 && arm_el_is_aa64(env, 2)) { 12677 return ARMMMUIdx_E20_0; 12678 } 12679 return ARMMMUIdx_E10_0; 12680 case 1: 12681 if (arm_is_secure_below_el3(env)) { 12682 if (env->pstate & PSTATE_PAN) { 12683 return ARMMMUIdx_SE10_1_PAN; 12684 } 12685 return ARMMMUIdx_SE10_1; 12686 } 12687 if (env->pstate & PSTATE_PAN) { 12688 return ARMMMUIdx_E10_1_PAN; 12689 } 12690 return ARMMMUIdx_E10_1; 12691 case 2: 12692 /* TODO: ARMv8.4-SecEL2 */ 12693 /* Note that TGE does not apply at EL2. */ 12694 if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) { 12695 if (env->pstate & PSTATE_PAN) { 12696 return ARMMMUIdx_E20_2_PAN; 12697 } 12698 return ARMMMUIdx_E20_2; 12699 } 12700 return ARMMMUIdx_E2; 12701 case 3: 12702 return ARMMMUIdx_SE3; 12703 default: 12704 g_assert_not_reached(); 12705 } 12706 } 12707 12708 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12709 { 12710 return arm_mmu_idx_el(env, arm_current_el(env)); 12711 } 12712 12713 #ifndef CONFIG_USER_ONLY 12714 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 12715 { 12716 return stage_1_mmu_idx(arm_mmu_idx(env)); 12717 } 12718 #endif 12719 12720 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, 12721 ARMMMUIdx mmu_idx, uint32_t flags) 12722 { 12723 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 12724 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, 12725 arm_to_core_mmu_idx(mmu_idx)); 12726 12727 if (arm_singlestep_active(env)) { 12728 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 12729 } 12730 return flags; 12731 } 12732 12733 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, 12734 ARMMMUIdx mmu_idx, uint32_t flags) 12735 { 12736 bool sctlr_b = arm_sctlr_b(env); 12737 12738 if (sctlr_b) { 12739 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); 12740 } 12741 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 12742 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12743 } 12744 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 12745 12746 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12747 } 12748 12749 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, 12750 ARMMMUIdx mmu_idx) 12751 { 12752 uint32_t flags = 0; 12753 12754 if (arm_v7m_is_handler_mode(env)) { 12755 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1); 12756 } 12757 12758 /* 12759 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 12760 * is suppressing them because the requested execution priority 12761 * is less than 0. 12762 */ 12763 if (arm_feature(env, ARM_FEATURE_V8) && 12764 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 12765 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 12766 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1); 12767 } 12768 12769 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 12770 } 12771 12772 static uint32_t rebuild_hflags_aprofile(CPUARMState *env) 12773 { 12774 int flags = 0; 12775 12776 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, 12777 arm_debug_target_el(env)); 12778 return flags; 12779 } 12780 12781 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, 12782 ARMMMUIdx mmu_idx) 12783 { 12784 uint32_t flags = rebuild_hflags_aprofile(env); 12785 12786 if (arm_el_is_aa64(env, 1)) { 12787 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 12788 } 12789 12790 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 && 12791 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12792 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1); 12793 } 12794 12795 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 12796 } 12797 12798 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 12799 ARMMMUIdx mmu_idx) 12800 { 12801 uint32_t flags = rebuild_hflags_aprofile(env); 12802 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 12803 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 12804 uint64_t sctlr; 12805 int tbii, tbid; 12806 12807 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 12808 12809 /* Get control bits for tagged addresses. */ 12810 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 12811 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 12812 12813 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 12814 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 12815 12816 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 12817 int sve_el = sve_exception_el(env, el); 12818 uint32_t zcr_len; 12819 12820 /* 12821 * If SVE is disabled, but FP is enabled, 12822 * then the effective len is 0. 12823 */ 12824 if (sve_el != 0 && fp_el == 0) { 12825 zcr_len = 0; 12826 } else { 12827 zcr_len = sve_zcr_len_for_el(env, el); 12828 } 12829 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 12830 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 12831 } 12832 12833 sctlr = regime_sctlr(env, stage1); 12834 12835 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 12836 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12837 } 12838 12839 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 12840 /* 12841 * In order to save space in flags, we record only whether 12842 * pauth is "inactive", meaning all insns are implemented as 12843 * a nop, or "active" when some action must be performed. 12844 * The decision of which action to take is left to a helper. 12845 */ 12846 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 12847 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 12848 } 12849 } 12850 12851 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12852 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 12853 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 12854 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 12855 } 12856 } 12857 12858 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 12859 if (!(env->pstate & PSTATE_UAO)) { 12860 switch (mmu_idx) { 12861 case ARMMMUIdx_E10_1: 12862 case ARMMMUIdx_E10_1_PAN: 12863 case ARMMMUIdx_SE10_1: 12864 case ARMMMUIdx_SE10_1_PAN: 12865 /* TODO: ARMv8.3-NV */ 12866 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 12867 break; 12868 case ARMMMUIdx_E20_2: 12869 case ARMMMUIdx_E20_2_PAN: 12870 /* TODO: ARMv8.4-SecEL2 */ 12871 /* 12872 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 12873 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 12874 */ 12875 if (env->cp15.hcr_el2 & HCR_TGE) { 12876 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 12877 } 12878 break; 12879 default: 12880 break; 12881 } 12882 } 12883 12884 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 12885 /* 12886 * Set MTE_ACTIVE if any access may be Checked, and leave clear 12887 * if all accesses must be Unchecked: 12888 * 1) If no TBI, then there are no tags in the address to check, 12889 * 2) If Tag Check Override, then all accesses are Unchecked, 12890 * 3) If Tag Check Fail == 0, then Checked access have no effect, 12891 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 12892 */ 12893 if (allocation_tag_access_enabled(env, el, sctlr)) { 12894 flags = FIELD_DP32(flags, TBFLAG_A64, ATA, 1); 12895 if (tbid 12896 && !(env->pstate & PSTATE_TCO) 12897 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 12898 flags = FIELD_DP32(flags, TBFLAG_A64, MTE_ACTIVE, 1); 12899 } 12900 } 12901 /* And again for unprivileged accesses, if required. */ 12902 if (FIELD_EX32(flags, TBFLAG_A64, UNPRIV) 12903 && tbid 12904 && !(env->pstate & PSTATE_TCO) 12905 && (sctlr & SCTLR_TCF0) 12906 && allocation_tag_access_enabled(env, 0, sctlr)) { 12907 flags = FIELD_DP32(flags, TBFLAG_A64, MTE0_ACTIVE, 1); 12908 } 12909 /* Cache TCMA as well as TBI. */ 12910 flags = FIELD_DP32(flags, TBFLAG_A64, TCMA, 12911 aa64_va_parameter_tcma(tcr, mmu_idx)); 12912 } 12913 12914 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12915 } 12916 12917 static uint32_t rebuild_hflags_internal(CPUARMState *env) 12918 { 12919 int el = arm_current_el(env); 12920 int fp_el = fp_exception_el(env, el); 12921 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12922 12923 if (is_a64(env)) { 12924 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12925 } else if (arm_feature(env, ARM_FEATURE_M)) { 12926 return rebuild_hflags_m32(env, fp_el, mmu_idx); 12927 } else { 12928 return rebuild_hflags_a32(env, fp_el, mmu_idx); 12929 } 12930 } 12931 12932 void arm_rebuild_hflags(CPUARMState *env) 12933 { 12934 env->hflags = rebuild_hflags_internal(env); 12935 } 12936 12937 /* 12938 * If we have triggered a EL state change we can't rely on the 12939 * translator having passed it to us, we need to recompute. 12940 */ 12941 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 12942 { 12943 int el = arm_current_el(env); 12944 int fp_el = fp_exception_el(env, el); 12945 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12946 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12947 } 12948 12949 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 12950 { 12951 int fp_el = fp_exception_el(env, el); 12952 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12953 12954 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12955 } 12956 12957 /* 12958 * If we have triggered a EL state change we can't rely on the 12959 * translator having passed it to us, we need to recompute. 12960 */ 12961 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 12962 { 12963 int el = arm_current_el(env); 12964 int fp_el = fp_exception_el(env, el); 12965 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12966 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 12967 } 12968 12969 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 12970 { 12971 int fp_el = fp_exception_el(env, el); 12972 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12973 12974 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 12975 } 12976 12977 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 12978 { 12979 int fp_el = fp_exception_el(env, el); 12980 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12981 12982 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12983 } 12984 12985 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 12986 { 12987 #ifdef CONFIG_DEBUG_TCG 12988 uint32_t env_flags_current = env->hflags; 12989 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env); 12990 12991 if (unlikely(env_flags_current != env_flags_rebuilt)) { 12992 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n", 12993 env_flags_current, env_flags_rebuilt); 12994 abort(); 12995 } 12996 #endif 12997 } 12998 12999 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13000 target_ulong *cs_base, uint32_t *pflags) 13001 { 13002 uint32_t flags = env->hflags; 13003 uint32_t pstate_for_ss; 13004 13005 *cs_base = 0; 13006 assert_hflags_rebuild_correctly(env); 13007 13008 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { 13009 *pc = env->pc; 13010 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13011 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 13012 } 13013 pstate_for_ss = env->pstate; 13014 } else { 13015 *pc = env->regs[15]; 13016 13017 if (arm_feature(env, ARM_FEATURE_M)) { 13018 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13019 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13020 != env->v7m.secure) { 13021 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1); 13022 } 13023 13024 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13025 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13026 (env->v7m.secure && 13027 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13028 /* 13029 * ASPEN is set, but FPCA/SFPA indicate that there is no 13030 * active FP context; we must create a new FP context before 13031 * executing any FP insn. 13032 */ 13033 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1); 13034 } 13035 13036 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13037 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13038 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1); 13039 } 13040 } else { 13041 /* 13042 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13043 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13044 */ 13045 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13046 flags = FIELD_DP32(flags, TBFLAG_A32, 13047 XSCALE_CPAR, env->cp15.c15_cpar); 13048 } else { 13049 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, 13050 env->vfp.vec_len); 13051 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, 13052 env->vfp.vec_stride); 13053 } 13054 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13055 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 13056 } 13057 } 13058 13059 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb); 13060 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits); 13061 pstate_for_ss = env->uncached_cpsr; 13062 } 13063 13064 /* 13065 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13066 * states defined in the ARM ARM for software singlestep: 13067 * SS_ACTIVE PSTATE.SS State 13068 * 0 x Inactive (the TB flag for SS is always 0) 13069 * 1 0 Active-pending 13070 * 1 1 Active-not-pending 13071 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. 13072 */ 13073 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && 13074 (pstate_for_ss & PSTATE_SS)) { 13075 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 13076 } 13077 13078 *pflags = flags; 13079 } 13080 13081 #ifdef TARGET_AARCH64 13082 /* 13083 * The manual says that when SVE is enabled and VQ is widened the 13084 * implementation is allowed to zero the previously inaccessible 13085 * portion of the registers. The corollary to that is that when 13086 * SVE is enabled and VQ is narrowed we are also allowed to zero 13087 * the now inaccessible portion of the registers. 13088 * 13089 * The intent of this is that no predicate bit beyond VQ is ever set. 13090 * Which means that some operations on predicate registers themselves 13091 * may operate on full uint64_t or even unrolled across the maximum 13092 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13093 * may well be cheaper than conditionals to restrict the operation 13094 * to the relevant portion of a uint16_t[16]. 13095 */ 13096 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13097 { 13098 int i, j; 13099 uint64_t pmask; 13100 13101 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13102 assert(vq <= env_archcpu(env)->sve_max_vq); 13103 13104 /* Zap the high bits of the zregs. */ 13105 for (i = 0; i < 32; i++) { 13106 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13107 } 13108 13109 /* Zap the high bits of the pregs and ffr. */ 13110 pmask = 0; 13111 if (vq & 3) { 13112 pmask = ~(-1ULL << (16 * (vq & 3))); 13113 } 13114 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13115 for (i = 0; i < 17; ++i) { 13116 env->vfp.pregs[i].p[j] &= pmask; 13117 } 13118 pmask = 0; 13119 } 13120 } 13121 13122 /* 13123 * Notice a change in SVE vector size when changing EL. 13124 */ 13125 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13126 int new_el, bool el0_a64) 13127 { 13128 ARMCPU *cpu = env_archcpu(env); 13129 int old_len, new_len; 13130 bool old_a64, new_a64; 13131 13132 /* Nothing to do if no SVE. */ 13133 if (!cpu_isar_feature(aa64_sve, cpu)) { 13134 return; 13135 } 13136 13137 /* Nothing to do if FP is disabled in either EL. */ 13138 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13139 return; 13140 } 13141 13142 /* 13143 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13144 * at ELx, or not available because the EL is in AArch32 state, then 13145 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13146 * has an effective value of 0". 13147 * 13148 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13149 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13150 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13151 * we already have the correct register contents when encountering the 13152 * vq0->vq0 transition between EL0->EL1. 13153 */ 13154 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13155 old_len = (old_a64 && !sve_exception_el(env, old_el) 13156 ? sve_zcr_len_for_el(env, old_el) : 0); 13157 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13158 new_len = (new_a64 && !sve_exception_el(env, new_el) 13159 ? sve_zcr_len_for_el(env, new_el) : 0); 13160 13161 /* When changing vector length, clear inaccessible state. */ 13162 if (new_len < old_len) { 13163 aarch64_sve_narrow_vq(env, new_len + 1); 13164 } 13165 } 13166 #endif 13167