xref: /openbmc/qemu/target/arm/helper.c (revision e3a99063)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/tcg.h"
29 #include "qemu/range.h"
30 #include "qapi/qapi-commands-machine-target.h"
31 #include "qapi/error.h"
32 #include "qemu/guest-random.h"
33 #ifdef CONFIG_TCG
34 #include "arm_ldst.h"
35 #include "exec/cpu_ldst.h"
36 #endif
37 
38 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
39 
40 #ifndef CONFIG_USER_ONLY
41 
42 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
43                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
44                                bool s1_is_el0,
45                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
46                                target_ulong *page_size_ptr,
47                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
48 #endif
49 
50 static void switch_mode(CPUARMState *env, int mode);
51 
52 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
53 {
54     ARMCPU *cpu = env_archcpu(env);
55     int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
56 
57     /* VFP data registers are always little-endian.  */
58     if (reg < nregs) {
59         return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
60     }
61     if (arm_feature(env, ARM_FEATURE_NEON)) {
62         /* Aliases for Q regs.  */
63         nregs += 16;
64         if (reg < nregs) {
65             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
66             return gdb_get_reg128(buf, q[0], q[1]);
67         }
68     }
69     switch (reg - nregs) {
70     case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
71     case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
72     case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
73     }
74     return 0;
75 }
76 
77 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
78 {
79     ARMCPU *cpu = env_archcpu(env);
80     int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
81 
82     if (reg < nregs) {
83         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
84         return 8;
85     }
86     if (arm_feature(env, ARM_FEATURE_NEON)) {
87         nregs += 16;
88         if (reg < nregs) {
89             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
90             q[0] = ldq_le_p(buf);
91             q[1] = ldq_le_p(buf + 8);
92             return 16;
93         }
94     }
95     switch (reg - nregs) {
96     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
97     case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
98     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
99     }
100     return 0;
101 }
102 
103 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
104 {
105     switch (reg) {
106     case 0 ... 31:
107     {
108         /* 128 bit FP register - quads are in LE order */
109         uint64_t *q = aa64_vfp_qreg(env, reg);
110         return gdb_get_reg128(buf, q[1], q[0]);
111     }
112     case 32:
113         /* FPSR */
114         return gdb_get_reg32(buf, vfp_get_fpsr(env));
115     case 33:
116         /* FPCR */
117         return gdb_get_reg32(buf,vfp_get_fpcr(env));
118     default:
119         return 0;
120     }
121 }
122 
123 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
124 {
125     switch (reg) {
126     case 0 ... 31:
127         /* 128 bit FP register */
128         {
129             uint64_t *q = aa64_vfp_qreg(env, reg);
130             q[0] = ldq_le_p(buf);
131             q[1] = ldq_le_p(buf + 8);
132             return 16;
133         }
134     case 32:
135         /* FPSR */
136         vfp_set_fpsr(env, ldl_p(buf));
137         return 4;
138     case 33:
139         /* FPCR */
140         vfp_set_fpcr(env, ldl_p(buf));
141         return 4;
142     default:
143         return 0;
144     }
145 }
146 
147 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
148 {
149     assert(ri->fieldoffset);
150     if (cpreg_field_is_64bit(ri)) {
151         return CPREG_FIELD64(env, ri);
152     } else {
153         return CPREG_FIELD32(env, ri);
154     }
155 }
156 
157 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
158                       uint64_t value)
159 {
160     assert(ri->fieldoffset);
161     if (cpreg_field_is_64bit(ri)) {
162         CPREG_FIELD64(env, ri) = value;
163     } else {
164         CPREG_FIELD32(env, ri) = value;
165     }
166 }
167 
168 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
169 {
170     return (char *)env + ri->fieldoffset;
171 }
172 
173 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
174 {
175     /* Raw read of a coprocessor register (as needed for migration, etc). */
176     if (ri->type & ARM_CP_CONST) {
177         return ri->resetvalue;
178     } else if (ri->raw_readfn) {
179         return ri->raw_readfn(env, ri);
180     } else if (ri->readfn) {
181         return ri->readfn(env, ri);
182     } else {
183         return raw_read(env, ri);
184     }
185 }
186 
187 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
188                              uint64_t v)
189 {
190     /* Raw write of a coprocessor register (as needed for migration, etc).
191      * Note that constant registers are treated as write-ignored; the
192      * caller should check for success by whether a readback gives the
193      * value written.
194      */
195     if (ri->type & ARM_CP_CONST) {
196         return;
197     } else if (ri->raw_writefn) {
198         ri->raw_writefn(env, ri, v);
199     } else if (ri->writefn) {
200         ri->writefn(env, ri, v);
201     } else {
202         raw_write(env, ri, v);
203     }
204 }
205 
206 /**
207  * arm_get/set_gdb_*: get/set a gdb register
208  * @env: the CPU state
209  * @buf: a buffer to copy to/from
210  * @reg: register number (offset from start of group)
211  *
212  * We return the number of bytes copied
213  */
214 
215 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
216 {
217     ARMCPU *cpu = env_archcpu(env);
218     const ARMCPRegInfo *ri;
219     uint32_t key;
220 
221     key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
222     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
223     if (ri) {
224         if (cpreg_field_is_64bit(ri)) {
225             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
226         } else {
227             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
228         }
229     }
230     return 0;
231 }
232 
233 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
234 {
235     return 0;
236 }
237 
238 #ifdef TARGET_AARCH64
239 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
240 {
241     ARMCPU *cpu = env_archcpu(env);
242 
243     switch (reg) {
244     /* The first 32 registers are the zregs */
245     case 0 ... 31:
246     {
247         int vq, len = 0;
248         for (vq = 0; vq < cpu->sve_max_vq; vq++) {
249             len += gdb_get_reg128(buf,
250                                   env->vfp.zregs[reg].d[vq * 2 + 1],
251                                   env->vfp.zregs[reg].d[vq * 2]);
252         }
253         return len;
254     }
255     case 32:
256         return gdb_get_reg32(buf, vfp_get_fpsr(env));
257     case 33:
258         return gdb_get_reg32(buf, vfp_get_fpcr(env));
259     /* then 16 predicates and the ffr */
260     case 34 ... 50:
261     {
262         int preg = reg - 34;
263         int vq, len = 0;
264         for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
265             len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
266         }
267         return len;
268     }
269     case 51:
270     {
271         /*
272          * We report in Vector Granules (VG) which is 64bit in a Z reg
273          * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
274          */
275         int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
276         return gdb_get_reg32(buf, vq * 2);
277     }
278     default:
279         /* gdbstub asked for something out our range */
280         qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
281         break;
282     }
283 
284     return 0;
285 }
286 
287 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
288 {
289     ARMCPU *cpu = env_archcpu(env);
290 
291     /* The first 32 registers are the zregs */
292     switch (reg) {
293     /* The first 32 registers are the zregs */
294     case 0 ... 31:
295     {
296         int vq, len = 0;
297         uint64_t *p = (uint64_t *) buf;
298         for (vq = 0; vq < cpu->sve_max_vq; vq++) {
299             env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
300             env->vfp.zregs[reg].d[vq * 2] = *p++;
301             len += 16;
302         }
303         return len;
304     }
305     case 32:
306         vfp_set_fpsr(env, *(uint32_t *)buf);
307         return 4;
308     case 33:
309         vfp_set_fpcr(env, *(uint32_t *)buf);
310         return 4;
311     case 34 ... 50:
312     {
313         int preg = reg - 34;
314         int vq, len = 0;
315         uint64_t *p = (uint64_t *) buf;
316         for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
317             env->vfp.pregs[preg].p[vq / 4] = *p++;
318             len += 8;
319         }
320         return len;
321     }
322     case 51:
323         /* cannot set vg via gdbstub */
324         return 0;
325     default:
326         /* gdbstub asked for something out our range */
327         break;
328     }
329 
330     return 0;
331 }
332 #endif /* TARGET_AARCH64 */
333 
334 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
335 {
336    /* Return true if the regdef would cause an assertion if you called
337     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
338     * program bug for it not to have the NO_RAW flag).
339     * NB that returning false here doesn't necessarily mean that calling
340     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
341     * read/write access functions which are safe for raw use" from "has
342     * read/write access functions which have side effects but has forgotten
343     * to provide raw access functions".
344     * The tests here line up with the conditions in read/write_raw_cp_reg()
345     * and assertions in raw_read()/raw_write().
346     */
347     if ((ri->type & ARM_CP_CONST) ||
348         ri->fieldoffset ||
349         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
350         return false;
351     }
352     return true;
353 }
354 
355 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
356 {
357     /* Write the coprocessor state from cpu->env to the (index,value) list. */
358     int i;
359     bool ok = true;
360 
361     for (i = 0; i < cpu->cpreg_array_len; i++) {
362         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
363         const ARMCPRegInfo *ri;
364         uint64_t newval;
365 
366         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
367         if (!ri) {
368             ok = false;
369             continue;
370         }
371         if (ri->type & ARM_CP_NO_RAW) {
372             continue;
373         }
374 
375         newval = read_raw_cp_reg(&cpu->env, ri);
376         if (kvm_sync) {
377             /*
378              * Only sync if the previous list->cpustate sync succeeded.
379              * Rather than tracking the success/failure state for every
380              * item in the list, we just recheck "does the raw write we must
381              * have made in write_list_to_cpustate() read back OK" here.
382              */
383             uint64_t oldval = cpu->cpreg_values[i];
384 
385             if (oldval == newval) {
386                 continue;
387             }
388 
389             write_raw_cp_reg(&cpu->env, ri, oldval);
390             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
391                 continue;
392             }
393 
394             write_raw_cp_reg(&cpu->env, ri, newval);
395         }
396         cpu->cpreg_values[i] = newval;
397     }
398     return ok;
399 }
400 
401 bool write_list_to_cpustate(ARMCPU *cpu)
402 {
403     int i;
404     bool ok = true;
405 
406     for (i = 0; i < cpu->cpreg_array_len; i++) {
407         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
408         uint64_t v = cpu->cpreg_values[i];
409         const ARMCPRegInfo *ri;
410 
411         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
412         if (!ri) {
413             ok = false;
414             continue;
415         }
416         if (ri->type & ARM_CP_NO_RAW) {
417             continue;
418         }
419         /* Write value and confirm it reads back as written
420          * (to catch read-only registers and partially read-only
421          * registers where the incoming migration value doesn't match)
422          */
423         write_raw_cp_reg(&cpu->env, ri, v);
424         if (read_raw_cp_reg(&cpu->env, ri) != v) {
425             ok = false;
426         }
427     }
428     return ok;
429 }
430 
431 static void add_cpreg_to_list(gpointer key, gpointer opaque)
432 {
433     ARMCPU *cpu = opaque;
434     uint64_t regidx;
435     const ARMCPRegInfo *ri;
436 
437     regidx = *(uint32_t *)key;
438     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
439 
440     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
441         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
442         /* The value array need not be initialized at this point */
443         cpu->cpreg_array_len++;
444     }
445 }
446 
447 static void count_cpreg(gpointer key, gpointer opaque)
448 {
449     ARMCPU *cpu = opaque;
450     uint64_t regidx;
451     const ARMCPRegInfo *ri;
452 
453     regidx = *(uint32_t *)key;
454     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
455 
456     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
457         cpu->cpreg_array_len++;
458     }
459 }
460 
461 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
462 {
463     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
464     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
465 
466     if (aidx > bidx) {
467         return 1;
468     }
469     if (aidx < bidx) {
470         return -1;
471     }
472     return 0;
473 }
474 
475 void init_cpreg_list(ARMCPU *cpu)
476 {
477     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
478      * Note that we require cpreg_tuples[] to be sorted by key ID.
479      */
480     GList *keys;
481     int arraylen;
482 
483     keys = g_hash_table_get_keys(cpu->cp_regs);
484     keys = g_list_sort(keys, cpreg_key_compare);
485 
486     cpu->cpreg_array_len = 0;
487 
488     g_list_foreach(keys, count_cpreg, cpu);
489 
490     arraylen = cpu->cpreg_array_len;
491     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
492     cpu->cpreg_values = g_new(uint64_t, arraylen);
493     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
494     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
495     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
496     cpu->cpreg_array_len = 0;
497 
498     g_list_foreach(keys, add_cpreg_to_list, cpu);
499 
500     assert(cpu->cpreg_array_len == arraylen);
501 
502     g_list_free(keys);
503 }
504 
505 /*
506  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
507  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
508  *
509  * access_el3_aa32ns: Used to check AArch32 register views.
510  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
511  */
512 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
513                                         const ARMCPRegInfo *ri,
514                                         bool isread)
515 {
516     bool secure = arm_is_secure_below_el3(env);
517 
518     assert(!arm_el_is_aa64(env, 3));
519     if (secure) {
520         return CP_ACCESS_TRAP_UNCATEGORIZED;
521     }
522     return CP_ACCESS_OK;
523 }
524 
525 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
526                                                 const ARMCPRegInfo *ri,
527                                                 bool isread)
528 {
529     if (!arm_el_is_aa64(env, 3)) {
530         return access_el3_aa32ns(env, ri, isread);
531     }
532     return CP_ACCESS_OK;
533 }
534 
535 /* Some secure-only AArch32 registers trap to EL3 if used from
536  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
537  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
538  * We assume that the .access field is set to PL1_RW.
539  */
540 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
541                                             const ARMCPRegInfo *ri,
542                                             bool isread)
543 {
544     if (arm_current_el(env) == 3) {
545         return CP_ACCESS_OK;
546     }
547     if (arm_is_secure_below_el3(env)) {
548         return CP_ACCESS_TRAP_EL3;
549     }
550     /* This will be EL1 NS and EL2 NS, which just UNDEF */
551     return CP_ACCESS_TRAP_UNCATEGORIZED;
552 }
553 
554 /* Check for traps to "powerdown debug" registers, which are controlled
555  * by MDCR.TDOSA
556  */
557 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
558                                    bool isread)
559 {
560     int el = arm_current_el(env);
561     bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
562         (env->cp15.mdcr_el2 & MDCR_TDE) ||
563         (arm_hcr_el2_eff(env) & HCR_TGE);
564 
565     if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
566         return CP_ACCESS_TRAP_EL2;
567     }
568     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
569         return CP_ACCESS_TRAP_EL3;
570     }
571     return CP_ACCESS_OK;
572 }
573 
574 /* Check for traps to "debug ROM" registers, which are controlled
575  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
576  */
577 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
578                                   bool isread)
579 {
580     int el = arm_current_el(env);
581     bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
582         (env->cp15.mdcr_el2 & MDCR_TDE) ||
583         (arm_hcr_el2_eff(env) & HCR_TGE);
584 
585     if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
586         return CP_ACCESS_TRAP_EL2;
587     }
588     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
589         return CP_ACCESS_TRAP_EL3;
590     }
591     return CP_ACCESS_OK;
592 }
593 
594 /* Check for traps to general debug registers, which are controlled
595  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
596  */
597 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
598                                   bool isread)
599 {
600     int el = arm_current_el(env);
601     bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
602         (env->cp15.mdcr_el2 & MDCR_TDE) ||
603         (arm_hcr_el2_eff(env) & HCR_TGE);
604 
605     if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
606         return CP_ACCESS_TRAP_EL2;
607     }
608     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
609         return CP_ACCESS_TRAP_EL3;
610     }
611     return CP_ACCESS_OK;
612 }
613 
614 /* Check for traps to performance monitor registers, which are controlled
615  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
616  */
617 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
618                                  bool isread)
619 {
620     int el = arm_current_el(env);
621 
622     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
623         && !arm_is_secure_below_el3(env)) {
624         return CP_ACCESS_TRAP_EL2;
625     }
626     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
627         return CP_ACCESS_TRAP_EL3;
628     }
629     return CP_ACCESS_OK;
630 }
631 
632 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
633 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
634                                       bool isread)
635 {
636     if (arm_current_el(env) == 1) {
637         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
638         if (arm_hcr_el2_eff(env) & trap) {
639             return CP_ACCESS_TRAP_EL2;
640         }
641     }
642     return CP_ACCESS_OK;
643 }
644 
645 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
646 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
647                                  bool isread)
648 {
649     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
650         return CP_ACCESS_TRAP_EL2;
651     }
652     return CP_ACCESS_OK;
653 }
654 
655 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
656 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
657                                   bool isread)
658 {
659     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
660         return CP_ACCESS_TRAP_EL2;
661     }
662     return CP_ACCESS_OK;
663 }
664 
665 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
666 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
667                                   bool isread)
668 {
669     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
670         return CP_ACCESS_TRAP_EL2;
671     }
672     return CP_ACCESS_OK;
673 }
674 
675 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
676 {
677     ARMCPU *cpu = env_archcpu(env);
678 
679     raw_write(env, ri, value);
680     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
681 }
682 
683 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
684 {
685     ARMCPU *cpu = env_archcpu(env);
686 
687     if (raw_read(env, ri) != value) {
688         /* Unlike real hardware the qemu TLB uses virtual addresses,
689          * not modified virtual addresses, so this causes a TLB flush.
690          */
691         tlb_flush(CPU(cpu));
692         raw_write(env, ri, value);
693     }
694 }
695 
696 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
697                              uint64_t value)
698 {
699     ARMCPU *cpu = env_archcpu(env);
700 
701     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
702         && !extended_addresses_enabled(env)) {
703         /* For VMSA (when not using the LPAE long descriptor page table
704          * format) this register includes the ASID, so do a TLB flush.
705          * For PMSA it is purely a process ID and no action is needed.
706          */
707         tlb_flush(CPU(cpu));
708     }
709     raw_write(env, ri, value);
710 }
711 
712 /* IS variants of TLB operations must affect all cores */
713 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
714                              uint64_t value)
715 {
716     CPUState *cs = env_cpu(env);
717 
718     tlb_flush_all_cpus_synced(cs);
719 }
720 
721 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
722                              uint64_t value)
723 {
724     CPUState *cs = env_cpu(env);
725 
726     tlb_flush_all_cpus_synced(cs);
727 }
728 
729 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
730                              uint64_t value)
731 {
732     CPUState *cs = env_cpu(env);
733 
734     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
735 }
736 
737 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
738                              uint64_t value)
739 {
740     CPUState *cs = env_cpu(env);
741 
742     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
743 }
744 
745 /*
746  * Non-IS variants of TLB operations are upgraded to
747  * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
748  * force broadcast of these operations.
749  */
750 static bool tlb_force_broadcast(CPUARMState *env)
751 {
752     return (env->cp15.hcr_el2 & HCR_FB) &&
753         arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
754 }
755 
756 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
757                           uint64_t value)
758 {
759     /* Invalidate all (TLBIALL) */
760     CPUState *cs = env_cpu(env);
761 
762     if (tlb_force_broadcast(env)) {
763         tlb_flush_all_cpus_synced(cs);
764     } else {
765         tlb_flush(cs);
766     }
767 }
768 
769 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
770                           uint64_t value)
771 {
772     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
773     CPUState *cs = env_cpu(env);
774 
775     value &= TARGET_PAGE_MASK;
776     if (tlb_force_broadcast(env)) {
777         tlb_flush_page_all_cpus_synced(cs, value);
778     } else {
779         tlb_flush_page(cs, value);
780     }
781 }
782 
783 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
784                            uint64_t value)
785 {
786     /* Invalidate by ASID (TLBIASID) */
787     CPUState *cs = env_cpu(env);
788 
789     if (tlb_force_broadcast(env)) {
790         tlb_flush_all_cpus_synced(cs);
791     } else {
792         tlb_flush(cs);
793     }
794 }
795 
796 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
797                            uint64_t value)
798 {
799     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
800     CPUState *cs = env_cpu(env);
801 
802     value &= TARGET_PAGE_MASK;
803     if (tlb_force_broadcast(env)) {
804         tlb_flush_page_all_cpus_synced(cs, value);
805     } else {
806         tlb_flush_page(cs, value);
807     }
808 }
809 
810 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
811                                uint64_t value)
812 {
813     CPUState *cs = env_cpu(env);
814 
815     tlb_flush_by_mmuidx(cs,
816                         ARMMMUIdxBit_E10_1 |
817                         ARMMMUIdxBit_E10_1_PAN |
818                         ARMMMUIdxBit_E10_0);
819 }
820 
821 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
822                                   uint64_t value)
823 {
824     CPUState *cs = env_cpu(env);
825 
826     tlb_flush_by_mmuidx_all_cpus_synced(cs,
827                                         ARMMMUIdxBit_E10_1 |
828                                         ARMMMUIdxBit_E10_1_PAN |
829                                         ARMMMUIdxBit_E10_0);
830 }
831 
832 
833 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
834                               uint64_t value)
835 {
836     CPUState *cs = env_cpu(env);
837 
838     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
839 }
840 
841 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
842                                  uint64_t value)
843 {
844     CPUState *cs = env_cpu(env);
845 
846     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
847 }
848 
849 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
850                               uint64_t value)
851 {
852     CPUState *cs = env_cpu(env);
853     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
854 
855     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
856 }
857 
858 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
859                                  uint64_t value)
860 {
861     CPUState *cs = env_cpu(env);
862     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
863 
864     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
865                                              ARMMMUIdxBit_E2);
866 }
867 
868 static const ARMCPRegInfo cp_reginfo[] = {
869     /* Define the secure and non-secure FCSE identifier CP registers
870      * separately because there is no secure bank in V8 (no _EL3).  This allows
871      * the secure register to be properly reset and migrated. There is also no
872      * v8 EL1 version of the register so the non-secure instance stands alone.
873      */
874     { .name = "FCSEIDR",
875       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
876       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
877       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
878       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
879     { .name = "FCSEIDR_S",
880       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
881       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
882       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
883       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
884     /* Define the secure and non-secure context identifier CP registers
885      * separately because there is no secure bank in V8 (no _EL3).  This allows
886      * the secure register to be properly reset and migrated.  In the
887      * non-secure case, the 32-bit register will have reset and migration
888      * disabled during registration as it is handled by the 64-bit instance.
889      */
890     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
891       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
892       .access = PL1_RW, .accessfn = access_tvm_trvm,
893       .secure = ARM_CP_SECSTATE_NS,
894       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
895       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
896     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
897       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
898       .access = PL1_RW, .accessfn = access_tvm_trvm,
899       .secure = ARM_CP_SECSTATE_S,
900       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
901       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
902     REGINFO_SENTINEL
903 };
904 
905 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
906     /* NB: Some of these registers exist in v8 but with more precise
907      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
908      */
909     /* MMU Domain access control / MPU write buffer control */
910     { .name = "DACR",
911       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
912       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
913       .writefn = dacr_write, .raw_writefn = raw_write,
914       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
915                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
916     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
917      * For v6 and v5, these mappings are overly broad.
918      */
919     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
920       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
921     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
922       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
923     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
924       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
925     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
926       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
927     /* Cache maintenance ops; some of this space may be overridden later. */
928     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
929       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
930       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
931     REGINFO_SENTINEL
932 };
933 
934 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
935     /* Not all pre-v6 cores implemented this WFI, so this is slightly
936      * over-broad.
937      */
938     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
939       .access = PL1_W, .type = ARM_CP_WFI },
940     REGINFO_SENTINEL
941 };
942 
943 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
944     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
945      * is UNPREDICTABLE; we choose to NOP as most implementations do).
946      */
947     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
948       .access = PL1_W, .type = ARM_CP_WFI },
949     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
950      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
951      * OMAPCP will override this space.
952      */
953     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
954       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
955       .resetvalue = 0 },
956     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
957       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
958       .resetvalue = 0 },
959     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
960     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
961       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
962       .resetvalue = 0 },
963     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
964      * implementing it as RAZ means the "debug architecture version" bits
965      * will read as a reserved value, which should cause Linux to not try
966      * to use the debug hardware.
967      */
968     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
969       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
970     /* MMU TLB control. Note that the wildcarding means we cover not just
971      * the unified TLB ops but also the dside/iside/inner-shareable variants.
972      */
973     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
974       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
975       .type = ARM_CP_NO_RAW },
976     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
977       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
978       .type = ARM_CP_NO_RAW },
979     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
980       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
981       .type = ARM_CP_NO_RAW },
982     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
983       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
984       .type = ARM_CP_NO_RAW },
985     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
986       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
987     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
988       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
989     REGINFO_SENTINEL
990 };
991 
992 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
993                         uint64_t value)
994 {
995     uint32_t mask = 0;
996 
997     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
998     if (!arm_feature(env, ARM_FEATURE_V8)) {
999         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
1000          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
1001          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
1002          */
1003         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
1004             /* VFP coprocessor: cp10 & cp11 [23:20] */
1005             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
1006 
1007             if (!arm_feature(env, ARM_FEATURE_NEON)) {
1008                 /* ASEDIS [31] bit is RAO/WI */
1009                 value |= (1 << 31);
1010             }
1011 
1012             /* VFPv3 and upwards with NEON implement 32 double precision
1013              * registers (D0-D31).
1014              */
1015             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
1016                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
1017                 value |= (1 << 30);
1018             }
1019         }
1020         value &= mask;
1021     }
1022 
1023     /*
1024      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1025      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1026      */
1027     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1028         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1029         value &= ~(0xf << 20);
1030         value |= env->cp15.cpacr_el1 & (0xf << 20);
1031     }
1032 
1033     env->cp15.cpacr_el1 = value;
1034 }
1035 
1036 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1037 {
1038     /*
1039      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1040      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1041      */
1042     uint64_t value = env->cp15.cpacr_el1;
1043 
1044     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1045         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1046         value &= ~(0xf << 20);
1047     }
1048     return value;
1049 }
1050 
1051 
1052 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1053 {
1054     /* Call cpacr_write() so that we reset with the correct RAO bits set
1055      * for our CPU features.
1056      */
1057     cpacr_write(env, ri, 0);
1058 }
1059 
1060 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1061                                    bool isread)
1062 {
1063     if (arm_feature(env, ARM_FEATURE_V8)) {
1064         /* Check if CPACR accesses are to be trapped to EL2 */
1065         if (arm_current_el(env) == 1 &&
1066             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
1067             return CP_ACCESS_TRAP_EL2;
1068         /* Check if CPACR accesses are to be trapped to EL3 */
1069         } else if (arm_current_el(env) < 3 &&
1070                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1071             return CP_ACCESS_TRAP_EL3;
1072         }
1073     }
1074 
1075     return CP_ACCESS_OK;
1076 }
1077 
1078 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1079                                   bool isread)
1080 {
1081     /* Check if CPTR accesses are set to trap to EL3 */
1082     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1083         return CP_ACCESS_TRAP_EL3;
1084     }
1085 
1086     return CP_ACCESS_OK;
1087 }
1088 
1089 static const ARMCPRegInfo v6_cp_reginfo[] = {
1090     /* prefetch by MVA in v6, NOP in v7 */
1091     { .name = "MVA_prefetch",
1092       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
1093       .access = PL1_W, .type = ARM_CP_NOP },
1094     /* We need to break the TB after ISB to execute self-modifying code
1095      * correctly and also to take any pending interrupts immediately.
1096      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
1097      */
1098     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
1099       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
1100     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
1101       .access = PL0_W, .type = ARM_CP_NOP },
1102     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
1103       .access = PL0_W, .type = ARM_CP_NOP },
1104     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
1105       .access = PL1_RW, .accessfn = access_tvm_trvm,
1106       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1107                              offsetof(CPUARMState, cp15.ifar_ns) },
1108       .resetvalue = 0, },
1109     /* Watchpoint Fault Address Register : should actually only be present
1110      * for 1136, 1176, 11MPCore.
1111      */
1112     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1113       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1114     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1115       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1116       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1117       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1118     REGINFO_SENTINEL
1119 };
1120 
1121 /* Definitions for the PMU registers */
1122 #define PMCRN_MASK  0xf800
1123 #define PMCRN_SHIFT 11
1124 #define PMCRLC  0x40
1125 #define PMCRDP  0x20
1126 #define PMCRX   0x10
1127 #define PMCRD   0x8
1128 #define PMCRC   0x4
1129 #define PMCRP   0x2
1130 #define PMCRE   0x1
1131 /*
1132  * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1133  * which can be written as 1 to trigger behaviour but which stay RAZ).
1134  */
1135 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1136 
1137 #define PMXEVTYPER_P          0x80000000
1138 #define PMXEVTYPER_U          0x40000000
1139 #define PMXEVTYPER_NSK        0x20000000
1140 #define PMXEVTYPER_NSU        0x10000000
1141 #define PMXEVTYPER_NSH        0x08000000
1142 #define PMXEVTYPER_M          0x04000000
1143 #define PMXEVTYPER_MT         0x02000000
1144 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1145 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1146                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1147                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1148                                PMXEVTYPER_EVTCOUNT)
1149 
1150 #define PMCCFILTR             0xf8000000
1151 #define PMCCFILTR_M           PMXEVTYPER_M
1152 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1153 
1154 static inline uint32_t pmu_num_counters(CPUARMState *env)
1155 {
1156   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1157 }
1158 
1159 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1160 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1161 {
1162   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1163 }
1164 
1165 typedef struct pm_event {
1166     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1167     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1168     bool (*supported)(CPUARMState *);
1169     /*
1170      * Retrieve the current count of the underlying event. The programmed
1171      * counters hold a difference from the return value from this function
1172      */
1173     uint64_t (*get_count)(CPUARMState *);
1174     /*
1175      * Return how many nanoseconds it will take (at a minimum) for count events
1176      * to occur. A negative value indicates the counter will never overflow, or
1177      * that the counter has otherwise arranged for the overflow bit to be set
1178      * and the PMU interrupt to be raised on overflow.
1179      */
1180     int64_t (*ns_per_count)(uint64_t);
1181 } pm_event;
1182 
1183 static bool event_always_supported(CPUARMState *env)
1184 {
1185     return true;
1186 }
1187 
1188 static uint64_t swinc_get_count(CPUARMState *env)
1189 {
1190     /*
1191      * SW_INCR events are written directly to the pmevcntr's by writes to
1192      * PMSWINC, so there is no underlying count maintained by the PMU itself
1193      */
1194     return 0;
1195 }
1196 
1197 static int64_t swinc_ns_per(uint64_t ignored)
1198 {
1199     return -1;
1200 }
1201 
1202 /*
1203  * Return the underlying cycle count for the PMU cycle counters. If we're in
1204  * usermode, simply return 0.
1205  */
1206 static uint64_t cycles_get_count(CPUARMState *env)
1207 {
1208 #ifndef CONFIG_USER_ONLY
1209     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1210                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1211 #else
1212     return cpu_get_host_ticks();
1213 #endif
1214 }
1215 
1216 #ifndef CONFIG_USER_ONLY
1217 static int64_t cycles_ns_per(uint64_t cycles)
1218 {
1219     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1220 }
1221 
1222 static bool instructions_supported(CPUARMState *env)
1223 {
1224     return use_icount == 1 /* Precise instruction counting */;
1225 }
1226 
1227 static uint64_t instructions_get_count(CPUARMState *env)
1228 {
1229     return (uint64_t)cpu_get_icount_raw();
1230 }
1231 
1232 static int64_t instructions_ns_per(uint64_t icount)
1233 {
1234     return cpu_icount_to_ns((int64_t)icount);
1235 }
1236 #endif
1237 
1238 static bool pmu_8_1_events_supported(CPUARMState *env)
1239 {
1240     /* For events which are supported in any v8.1 PMU */
1241     return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1242 }
1243 
1244 static bool pmu_8_4_events_supported(CPUARMState *env)
1245 {
1246     /* For events which are supported in any v8.1 PMU */
1247     return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1248 }
1249 
1250 static uint64_t zero_event_get_count(CPUARMState *env)
1251 {
1252     /* For events which on QEMU never fire, so their count is always zero */
1253     return 0;
1254 }
1255 
1256 static int64_t zero_event_ns_per(uint64_t cycles)
1257 {
1258     /* An event which never fires can never overflow */
1259     return -1;
1260 }
1261 
1262 static const pm_event pm_events[] = {
1263     { .number = 0x000, /* SW_INCR */
1264       .supported = event_always_supported,
1265       .get_count = swinc_get_count,
1266       .ns_per_count = swinc_ns_per,
1267     },
1268 #ifndef CONFIG_USER_ONLY
1269     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1270       .supported = instructions_supported,
1271       .get_count = instructions_get_count,
1272       .ns_per_count = instructions_ns_per,
1273     },
1274     { .number = 0x011, /* CPU_CYCLES, Cycle */
1275       .supported = event_always_supported,
1276       .get_count = cycles_get_count,
1277       .ns_per_count = cycles_ns_per,
1278     },
1279 #endif
1280     { .number = 0x023, /* STALL_FRONTEND */
1281       .supported = pmu_8_1_events_supported,
1282       .get_count = zero_event_get_count,
1283       .ns_per_count = zero_event_ns_per,
1284     },
1285     { .number = 0x024, /* STALL_BACKEND */
1286       .supported = pmu_8_1_events_supported,
1287       .get_count = zero_event_get_count,
1288       .ns_per_count = zero_event_ns_per,
1289     },
1290     { .number = 0x03c, /* STALL */
1291       .supported = pmu_8_4_events_supported,
1292       .get_count = zero_event_get_count,
1293       .ns_per_count = zero_event_ns_per,
1294     },
1295 };
1296 
1297 /*
1298  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1299  * events (i.e. the statistical profiling extension), this implementation
1300  * should first be updated to something sparse instead of the current
1301  * supported_event_map[] array.
1302  */
1303 #define MAX_EVENT_ID 0x3c
1304 #define UNSUPPORTED_EVENT UINT16_MAX
1305 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1306 
1307 /*
1308  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1309  * of ARM event numbers to indices in our pm_events array.
1310  *
1311  * Note: Events in the 0x40XX range are not currently supported.
1312  */
1313 void pmu_init(ARMCPU *cpu)
1314 {
1315     unsigned int i;
1316 
1317     /*
1318      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1319      * events to them
1320      */
1321     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1322         supported_event_map[i] = UNSUPPORTED_EVENT;
1323     }
1324     cpu->pmceid0 = 0;
1325     cpu->pmceid1 = 0;
1326 
1327     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1328         const pm_event *cnt = &pm_events[i];
1329         assert(cnt->number <= MAX_EVENT_ID);
1330         /* We do not currently support events in the 0x40xx range */
1331         assert(cnt->number <= 0x3f);
1332 
1333         if (cnt->supported(&cpu->env)) {
1334             supported_event_map[cnt->number] = i;
1335             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1336             if (cnt->number & 0x20) {
1337                 cpu->pmceid1 |= event_mask;
1338             } else {
1339                 cpu->pmceid0 |= event_mask;
1340             }
1341         }
1342     }
1343 }
1344 
1345 /*
1346  * Check at runtime whether a PMU event is supported for the current machine
1347  */
1348 static bool event_supported(uint16_t number)
1349 {
1350     if (number > MAX_EVENT_ID) {
1351         return false;
1352     }
1353     return supported_event_map[number] != UNSUPPORTED_EVENT;
1354 }
1355 
1356 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1357                                    bool isread)
1358 {
1359     /* Performance monitor registers user accessibility is controlled
1360      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1361      * trapping to EL2 or EL3 for other accesses.
1362      */
1363     int el = arm_current_el(env);
1364 
1365     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1366         return CP_ACCESS_TRAP;
1367     }
1368     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1369         && !arm_is_secure_below_el3(env)) {
1370         return CP_ACCESS_TRAP_EL2;
1371     }
1372     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1373         return CP_ACCESS_TRAP_EL3;
1374     }
1375 
1376     return CP_ACCESS_OK;
1377 }
1378 
1379 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1380                                            const ARMCPRegInfo *ri,
1381                                            bool isread)
1382 {
1383     /* ER: event counter read trap control */
1384     if (arm_feature(env, ARM_FEATURE_V8)
1385         && arm_current_el(env) == 0
1386         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1387         && isread) {
1388         return CP_ACCESS_OK;
1389     }
1390 
1391     return pmreg_access(env, ri, isread);
1392 }
1393 
1394 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1395                                          const ARMCPRegInfo *ri,
1396                                          bool isread)
1397 {
1398     /* SW: software increment write trap control */
1399     if (arm_feature(env, ARM_FEATURE_V8)
1400         && arm_current_el(env) == 0
1401         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1402         && !isread) {
1403         return CP_ACCESS_OK;
1404     }
1405 
1406     return pmreg_access(env, ri, isread);
1407 }
1408 
1409 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1410                                         const ARMCPRegInfo *ri,
1411                                         bool isread)
1412 {
1413     /* ER: event counter read trap control */
1414     if (arm_feature(env, ARM_FEATURE_V8)
1415         && arm_current_el(env) == 0
1416         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1417         return CP_ACCESS_OK;
1418     }
1419 
1420     return pmreg_access(env, ri, isread);
1421 }
1422 
1423 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1424                                          const ARMCPRegInfo *ri,
1425                                          bool isread)
1426 {
1427     /* CR: cycle counter read trap control */
1428     if (arm_feature(env, ARM_FEATURE_V8)
1429         && arm_current_el(env) == 0
1430         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1431         && isread) {
1432         return CP_ACCESS_OK;
1433     }
1434 
1435     return pmreg_access(env, ri, isread);
1436 }
1437 
1438 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1439  * the current EL, security state, and register configuration.
1440  */
1441 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1442 {
1443     uint64_t filter;
1444     bool e, p, u, nsk, nsu, nsh, m;
1445     bool enabled, prohibited, filtered;
1446     bool secure = arm_is_secure(env);
1447     int el = arm_current_el(env);
1448     uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1449 
1450     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1451         return false;
1452     }
1453 
1454     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1455             (counter < hpmn || counter == 31)) {
1456         e = env->cp15.c9_pmcr & PMCRE;
1457     } else {
1458         e = env->cp15.mdcr_el2 & MDCR_HPME;
1459     }
1460     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1461 
1462     if (!secure) {
1463         if (el == 2 && (counter < hpmn || counter == 31)) {
1464             prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1465         } else {
1466             prohibited = false;
1467         }
1468     } else {
1469         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1470            (env->cp15.mdcr_el3 & MDCR_SPME);
1471     }
1472 
1473     if (prohibited && counter == 31) {
1474         prohibited = env->cp15.c9_pmcr & PMCRDP;
1475     }
1476 
1477     if (counter == 31) {
1478         filter = env->cp15.pmccfiltr_el0;
1479     } else {
1480         filter = env->cp15.c14_pmevtyper[counter];
1481     }
1482 
1483     p   = filter & PMXEVTYPER_P;
1484     u   = filter & PMXEVTYPER_U;
1485     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1486     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1487     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1488     m   = arm_el_is_aa64(env, 1) &&
1489               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1490 
1491     if (el == 0) {
1492         filtered = secure ? u : u != nsu;
1493     } else if (el == 1) {
1494         filtered = secure ? p : p != nsk;
1495     } else if (el == 2) {
1496         filtered = !nsh;
1497     } else { /* EL3 */
1498         filtered = m != p;
1499     }
1500 
1501     if (counter != 31) {
1502         /*
1503          * If not checking PMCCNTR, ensure the counter is setup to an event we
1504          * support
1505          */
1506         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1507         if (!event_supported(event)) {
1508             return false;
1509         }
1510     }
1511 
1512     return enabled && !prohibited && !filtered;
1513 }
1514 
1515 static void pmu_update_irq(CPUARMState *env)
1516 {
1517     ARMCPU *cpu = env_archcpu(env);
1518     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1519             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1520 }
1521 
1522 /*
1523  * Ensure c15_ccnt is the guest-visible count so that operations such as
1524  * enabling/disabling the counter or filtering, modifying the count itself,
1525  * etc. can be done logically. This is essentially a no-op if the counter is
1526  * not enabled at the time of the call.
1527  */
1528 static void pmccntr_op_start(CPUARMState *env)
1529 {
1530     uint64_t cycles = cycles_get_count(env);
1531 
1532     if (pmu_counter_enabled(env, 31)) {
1533         uint64_t eff_cycles = cycles;
1534         if (env->cp15.c9_pmcr & PMCRD) {
1535             /* Increment once every 64 processor clock cycles */
1536             eff_cycles /= 64;
1537         }
1538 
1539         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1540 
1541         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1542                                  1ull << 63 : 1ull << 31;
1543         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1544             env->cp15.c9_pmovsr |= (1 << 31);
1545             pmu_update_irq(env);
1546         }
1547 
1548         env->cp15.c15_ccnt = new_pmccntr;
1549     }
1550     env->cp15.c15_ccnt_delta = cycles;
1551 }
1552 
1553 /*
1554  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1555  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1556  * pmccntr_op_start.
1557  */
1558 static void pmccntr_op_finish(CPUARMState *env)
1559 {
1560     if (pmu_counter_enabled(env, 31)) {
1561 #ifndef CONFIG_USER_ONLY
1562         /* Calculate when the counter will next overflow */
1563         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1564         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1565             remaining_cycles = (uint32_t)remaining_cycles;
1566         }
1567         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1568 
1569         if (overflow_in > 0) {
1570             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1571                 overflow_in;
1572             ARMCPU *cpu = env_archcpu(env);
1573             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1574         }
1575 #endif
1576 
1577         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1578         if (env->cp15.c9_pmcr & PMCRD) {
1579             /* Increment once every 64 processor clock cycles */
1580             prev_cycles /= 64;
1581         }
1582         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1583     }
1584 }
1585 
1586 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1587 {
1588 
1589     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1590     uint64_t count = 0;
1591     if (event_supported(event)) {
1592         uint16_t event_idx = supported_event_map[event];
1593         count = pm_events[event_idx].get_count(env);
1594     }
1595 
1596     if (pmu_counter_enabled(env, counter)) {
1597         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1598 
1599         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1600             env->cp15.c9_pmovsr |= (1 << counter);
1601             pmu_update_irq(env);
1602         }
1603         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1604     }
1605     env->cp15.c14_pmevcntr_delta[counter] = count;
1606 }
1607 
1608 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1609 {
1610     if (pmu_counter_enabled(env, counter)) {
1611 #ifndef CONFIG_USER_ONLY
1612         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1613         uint16_t event_idx = supported_event_map[event];
1614         uint64_t delta = UINT32_MAX -
1615             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1616         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1617 
1618         if (overflow_in > 0) {
1619             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1620                 overflow_in;
1621             ARMCPU *cpu = env_archcpu(env);
1622             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1623         }
1624 #endif
1625 
1626         env->cp15.c14_pmevcntr_delta[counter] -=
1627             env->cp15.c14_pmevcntr[counter];
1628     }
1629 }
1630 
1631 void pmu_op_start(CPUARMState *env)
1632 {
1633     unsigned int i;
1634     pmccntr_op_start(env);
1635     for (i = 0; i < pmu_num_counters(env); i++) {
1636         pmevcntr_op_start(env, i);
1637     }
1638 }
1639 
1640 void pmu_op_finish(CPUARMState *env)
1641 {
1642     unsigned int i;
1643     pmccntr_op_finish(env);
1644     for (i = 0; i < pmu_num_counters(env); i++) {
1645         pmevcntr_op_finish(env, i);
1646     }
1647 }
1648 
1649 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1650 {
1651     pmu_op_start(&cpu->env);
1652 }
1653 
1654 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1655 {
1656     pmu_op_finish(&cpu->env);
1657 }
1658 
1659 void arm_pmu_timer_cb(void *opaque)
1660 {
1661     ARMCPU *cpu = opaque;
1662 
1663     /*
1664      * Update all the counter values based on the current underlying counts,
1665      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1666      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1667      * counter may expire.
1668      */
1669     pmu_op_start(&cpu->env);
1670     pmu_op_finish(&cpu->env);
1671 }
1672 
1673 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1674                        uint64_t value)
1675 {
1676     pmu_op_start(env);
1677 
1678     if (value & PMCRC) {
1679         /* The counter has been reset */
1680         env->cp15.c15_ccnt = 0;
1681     }
1682 
1683     if (value & PMCRP) {
1684         unsigned int i;
1685         for (i = 0; i < pmu_num_counters(env); i++) {
1686             env->cp15.c14_pmevcntr[i] = 0;
1687         }
1688     }
1689 
1690     env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1691     env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1692 
1693     pmu_op_finish(env);
1694 }
1695 
1696 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1697                           uint64_t value)
1698 {
1699     unsigned int i;
1700     for (i = 0; i < pmu_num_counters(env); i++) {
1701         /* Increment a counter's count iff: */
1702         if ((value & (1 << i)) && /* counter's bit is set */
1703                 /* counter is enabled and not filtered */
1704                 pmu_counter_enabled(env, i) &&
1705                 /* counter is SW_INCR */
1706                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1707             pmevcntr_op_start(env, i);
1708 
1709             /*
1710              * Detect if this write causes an overflow since we can't predict
1711              * PMSWINC overflows like we can for other events
1712              */
1713             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1714 
1715             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1716                 env->cp15.c9_pmovsr |= (1 << i);
1717                 pmu_update_irq(env);
1718             }
1719 
1720             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1721 
1722             pmevcntr_op_finish(env, i);
1723         }
1724     }
1725 }
1726 
1727 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1728 {
1729     uint64_t ret;
1730     pmccntr_op_start(env);
1731     ret = env->cp15.c15_ccnt;
1732     pmccntr_op_finish(env);
1733     return ret;
1734 }
1735 
1736 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1737                          uint64_t value)
1738 {
1739     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1740      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1741      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1742      * accessed.
1743      */
1744     env->cp15.c9_pmselr = value & 0x1f;
1745 }
1746 
1747 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1748                         uint64_t value)
1749 {
1750     pmccntr_op_start(env);
1751     env->cp15.c15_ccnt = value;
1752     pmccntr_op_finish(env);
1753 }
1754 
1755 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1756                             uint64_t value)
1757 {
1758     uint64_t cur_val = pmccntr_read(env, NULL);
1759 
1760     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1761 }
1762 
1763 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1764                             uint64_t value)
1765 {
1766     pmccntr_op_start(env);
1767     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1768     pmccntr_op_finish(env);
1769 }
1770 
1771 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1772                             uint64_t value)
1773 {
1774     pmccntr_op_start(env);
1775     /* M is not accessible from AArch32 */
1776     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1777         (value & PMCCFILTR);
1778     pmccntr_op_finish(env);
1779 }
1780 
1781 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1782 {
1783     /* M is not visible in AArch32 */
1784     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1785 }
1786 
1787 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1788                             uint64_t value)
1789 {
1790     value &= pmu_counter_mask(env);
1791     env->cp15.c9_pmcnten |= value;
1792 }
1793 
1794 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1795                              uint64_t value)
1796 {
1797     value &= pmu_counter_mask(env);
1798     env->cp15.c9_pmcnten &= ~value;
1799 }
1800 
1801 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1802                          uint64_t value)
1803 {
1804     value &= pmu_counter_mask(env);
1805     env->cp15.c9_pmovsr &= ~value;
1806     pmu_update_irq(env);
1807 }
1808 
1809 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1810                          uint64_t value)
1811 {
1812     value &= pmu_counter_mask(env);
1813     env->cp15.c9_pmovsr |= value;
1814     pmu_update_irq(env);
1815 }
1816 
1817 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1818                              uint64_t value, const uint8_t counter)
1819 {
1820     if (counter == 31) {
1821         pmccfiltr_write(env, ri, value);
1822     } else if (counter < pmu_num_counters(env)) {
1823         pmevcntr_op_start(env, counter);
1824 
1825         /*
1826          * If this counter's event type is changing, store the current
1827          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1828          * pmevcntr_op_finish has the correct baseline when it converts back to
1829          * a delta.
1830          */
1831         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1832             PMXEVTYPER_EVTCOUNT;
1833         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1834         if (old_event != new_event) {
1835             uint64_t count = 0;
1836             if (event_supported(new_event)) {
1837                 uint16_t event_idx = supported_event_map[new_event];
1838                 count = pm_events[event_idx].get_count(env);
1839             }
1840             env->cp15.c14_pmevcntr_delta[counter] = count;
1841         }
1842 
1843         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1844         pmevcntr_op_finish(env, counter);
1845     }
1846     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1847      * PMSELR value is equal to or greater than the number of implemented
1848      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1849      */
1850 }
1851 
1852 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1853                                const uint8_t counter)
1854 {
1855     if (counter == 31) {
1856         return env->cp15.pmccfiltr_el0;
1857     } else if (counter < pmu_num_counters(env)) {
1858         return env->cp15.c14_pmevtyper[counter];
1859     } else {
1860       /*
1861        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1862        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1863        */
1864         return 0;
1865     }
1866 }
1867 
1868 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1869                               uint64_t value)
1870 {
1871     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1872     pmevtyper_write(env, ri, value, counter);
1873 }
1874 
1875 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1876                                uint64_t value)
1877 {
1878     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1879     env->cp15.c14_pmevtyper[counter] = value;
1880 
1881     /*
1882      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1883      * pmu_op_finish calls when loading saved state for a migration. Because
1884      * we're potentially updating the type of event here, the value written to
1885      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1886      * different counter type. Therefore, we need to set this value to the
1887      * current count for the counter type we're writing so that pmu_op_finish
1888      * has the correct count for its calculation.
1889      */
1890     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1891     if (event_supported(event)) {
1892         uint16_t event_idx = supported_event_map[event];
1893         env->cp15.c14_pmevcntr_delta[counter] =
1894             pm_events[event_idx].get_count(env);
1895     }
1896 }
1897 
1898 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1899 {
1900     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1901     return pmevtyper_read(env, ri, counter);
1902 }
1903 
1904 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1905                              uint64_t value)
1906 {
1907     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1908 }
1909 
1910 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1911 {
1912     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1913 }
1914 
1915 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1916                              uint64_t value, uint8_t counter)
1917 {
1918     if (counter < pmu_num_counters(env)) {
1919         pmevcntr_op_start(env, counter);
1920         env->cp15.c14_pmevcntr[counter] = value;
1921         pmevcntr_op_finish(env, counter);
1922     }
1923     /*
1924      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1925      * are CONSTRAINED UNPREDICTABLE.
1926      */
1927 }
1928 
1929 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1930                               uint8_t counter)
1931 {
1932     if (counter < pmu_num_counters(env)) {
1933         uint64_t ret;
1934         pmevcntr_op_start(env, counter);
1935         ret = env->cp15.c14_pmevcntr[counter];
1936         pmevcntr_op_finish(env, counter);
1937         return ret;
1938     } else {
1939       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1940        * are CONSTRAINED UNPREDICTABLE. */
1941         return 0;
1942     }
1943 }
1944 
1945 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1946                              uint64_t value)
1947 {
1948     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1949     pmevcntr_write(env, ri, value, counter);
1950 }
1951 
1952 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1953 {
1954     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1955     return pmevcntr_read(env, ri, counter);
1956 }
1957 
1958 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1959                              uint64_t value)
1960 {
1961     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1962     assert(counter < pmu_num_counters(env));
1963     env->cp15.c14_pmevcntr[counter] = value;
1964     pmevcntr_write(env, ri, value, counter);
1965 }
1966 
1967 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1968 {
1969     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1970     assert(counter < pmu_num_counters(env));
1971     return env->cp15.c14_pmevcntr[counter];
1972 }
1973 
1974 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1975                              uint64_t value)
1976 {
1977     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1978 }
1979 
1980 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1981 {
1982     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1983 }
1984 
1985 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1986                             uint64_t value)
1987 {
1988     if (arm_feature(env, ARM_FEATURE_V8)) {
1989         env->cp15.c9_pmuserenr = value & 0xf;
1990     } else {
1991         env->cp15.c9_pmuserenr = value & 1;
1992     }
1993 }
1994 
1995 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1996                              uint64_t value)
1997 {
1998     /* We have no event counters so only the C bit can be changed */
1999     value &= pmu_counter_mask(env);
2000     env->cp15.c9_pminten |= value;
2001     pmu_update_irq(env);
2002 }
2003 
2004 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2005                              uint64_t value)
2006 {
2007     value &= pmu_counter_mask(env);
2008     env->cp15.c9_pminten &= ~value;
2009     pmu_update_irq(env);
2010 }
2011 
2012 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2013                        uint64_t value)
2014 {
2015     /* Note that even though the AArch64 view of this register has bits
2016      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
2017      * architectural requirements for bits which are RES0 only in some
2018      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
2019      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
2020      */
2021     raw_write(env, ri, value & ~0x1FULL);
2022 }
2023 
2024 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2025 {
2026     /* Begin with base v8.0 state.  */
2027     uint32_t valid_mask = 0x3fff;
2028     ARMCPU *cpu = env_archcpu(env);
2029 
2030     if (arm_el_is_aa64(env, 3)) {
2031         value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
2032         valid_mask &= ~SCR_NET;
2033     } else {
2034         valid_mask &= ~(SCR_RW | SCR_ST);
2035     }
2036 
2037     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2038         valid_mask &= ~SCR_HCE;
2039 
2040         /* On ARMv7, SMD (or SCD as it is called in v7) is only
2041          * supported if EL2 exists. The bit is UNK/SBZP when
2042          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
2043          * when EL2 is unavailable.
2044          * On ARMv8, this bit is always available.
2045          */
2046         if (arm_feature(env, ARM_FEATURE_V7) &&
2047             !arm_feature(env, ARM_FEATURE_V8)) {
2048             valid_mask &= ~SCR_SMD;
2049         }
2050     }
2051     if (cpu_isar_feature(aa64_lor, cpu)) {
2052         valid_mask |= SCR_TLOR;
2053     }
2054     if (cpu_isar_feature(aa64_pauth, cpu)) {
2055         valid_mask |= SCR_API | SCR_APK;
2056     }
2057 
2058     /* Clear all-context RES0 bits.  */
2059     value &= valid_mask;
2060     raw_write(env, ri, value);
2061 }
2062 
2063 static CPAccessResult access_aa64_tid2(CPUARMState *env,
2064                                        const ARMCPRegInfo *ri,
2065                                        bool isread)
2066 {
2067     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
2068         return CP_ACCESS_TRAP_EL2;
2069     }
2070 
2071     return CP_ACCESS_OK;
2072 }
2073 
2074 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2075 {
2076     ARMCPU *cpu = env_archcpu(env);
2077 
2078     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
2079      * bank
2080      */
2081     uint32_t index = A32_BANKED_REG_GET(env, csselr,
2082                                         ri->secure & ARM_CP_SECSTATE_S);
2083 
2084     return cpu->ccsidr[index];
2085 }
2086 
2087 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2088                          uint64_t value)
2089 {
2090     raw_write(env, ri, value & 0xf);
2091 }
2092 
2093 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2094 {
2095     CPUState *cs = env_cpu(env);
2096     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
2097     uint64_t ret = 0;
2098     bool allow_virt = (arm_current_el(env) == 1 &&
2099                        (!arm_is_secure_below_el3(env) ||
2100                         (env->cp15.scr_el3 & SCR_EEL2)));
2101 
2102     if (allow_virt && (hcr_el2 & HCR_IMO)) {
2103         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2104             ret |= CPSR_I;
2105         }
2106     } else {
2107         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2108             ret |= CPSR_I;
2109         }
2110     }
2111 
2112     if (allow_virt && (hcr_el2 & HCR_FMO)) {
2113         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2114             ret |= CPSR_F;
2115         }
2116     } else {
2117         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2118             ret |= CPSR_F;
2119         }
2120     }
2121 
2122     /* External aborts are not possible in QEMU so A bit is always clear */
2123     return ret;
2124 }
2125 
2126 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2127                                        bool isread)
2128 {
2129     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2130         return CP_ACCESS_TRAP_EL2;
2131     }
2132 
2133     return CP_ACCESS_OK;
2134 }
2135 
2136 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2137                                        bool isread)
2138 {
2139     if (arm_feature(env, ARM_FEATURE_V8)) {
2140         return access_aa64_tid1(env, ri, isread);
2141     }
2142 
2143     return CP_ACCESS_OK;
2144 }
2145 
2146 static const ARMCPRegInfo v7_cp_reginfo[] = {
2147     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2148     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2149       .access = PL1_W, .type = ARM_CP_NOP },
2150     /* Performance monitors are implementation defined in v7,
2151      * but with an ARM recommended set of registers, which we
2152      * follow.
2153      *
2154      * Performance registers fall into three categories:
2155      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2156      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2157      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2158      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2159      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2160      */
2161     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2162       .access = PL0_RW, .type = ARM_CP_ALIAS,
2163       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2164       .writefn = pmcntenset_write,
2165       .accessfn = pmreg_access,
2166       .raw_writefn = raw_write },
2167     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2168       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2169       .access = PL0_RW, .accessfn = pmreg_access,
2170       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2171       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2172     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2173       .access = PL0_RW,
2174       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2175       .accessfn = pmreg_access,
2176       .writefn = pmcntenclr_write,
2177       .type = ARM_CP_ALIAS },
2178     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2179       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2180       .access = PL0_RW, .accessfn = pmreg_access,
2181       .type = ARM_CP_ALIAS,
2182       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2183       .writefn = pmcntenclr_write },
2184     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2185       .access = PL0_RW, .type = ARM_CP_IO,
2186       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2187       .accessfn = pmreg_access,
2188       .writefn = pmovsr_write,
2189       .raw_writefn = raw_write },
2190     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2191       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2192       .access = PL0_RW, .accessfn = pmreg_access,
2193       .type = ARM_CP_ALIAS | ARM_CP_IO,
2194       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2195       .writefn = pmovsr_write,
2196       .raw_writefn = raw_write },
2197     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2198       .access = PL0_W, .accessfn = pmreg_access_swinc,
2199       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2200       .writefn = pmswinc_write },
2201     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2202       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2203       .access = PL0_W, .accessfn = pmreg_access_swinc,
2204       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2205       .writefn = pmswinc_write },
2206     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2207       .access = PL0_RW, .type = ARM_CP_ALIAS,
2208       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2209       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2210       .raw_writefn = raw_write},
2211     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2212       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2213       .access = PL0_RW, .accessfn = pmreg_access_selr,
2214       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2215       .writefn = pmselr_write, .raw_writefn = raw_write, },
2216     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2217       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2218       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2219       .accessfn = pmreg_access_ccntr },
2220     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2221       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2222       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2223       .type = ARM_CP_IO,
2224       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2225       .readfn = pmccntr_read, .writefn = pmccntr_write,
2226       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2227     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2228       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2229       .access = PL0_RW, .accessfn = pmreg_access,
2230       .type = ARM_CP_ALIAS | ARM_CP_IO,
2231       .resetvalue = 0, },
2232     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2233       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2234       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2235       .access = PL0_RW, .accessfn = pmreg_access,
2236       .type = ARM_CP_IO,
2237       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2238       .resetvalue = 0, },
2239     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2240       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2241       .accessfn = pmreg_access,
2242       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2243     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2244       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2245       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2246       .accessfn = pmreg_access,
2247       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2248     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2249       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2250       .accessfn = pmreg_access_xevcntr,
2251       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2252     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2253       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2254       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2255       .accessfn = pmreg_access_xevcntr,
2256       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2257     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2258       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2259       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2260       .resetvalue = 0,
2261       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2262     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2263       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2264       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2265       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2266       .resetvalue = 0,
2267       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2268     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2269       .access = PL1_RW, .accessfn = access_tpm,
2270       .type = ARM_CP_ALIAS | ARM_CP_IO,
2271       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2272       .resetvalue = 0,
2273       .writefn = pmintenset_write, .raw_writefn = raw_write },
2274     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2275       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2276       .access = PL1_RW, .accessfn = access_tpm,
2277       .type = ARM_CP_IO,
2278       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2279       .writefn = pmintenset_write, .raw_writefn = raw_write,
2280       .resetvalue = 0x0 },
2281     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2282       .access = PL1_RW, .accessfn = access_tpm,
2283       .type = ARM_CP_ALIAS | ARM_CP_IO,
2284       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2285       .writefn = pmintenclr_write, },
2286     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2287       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2288       .access = PL1_RW, .accessfn = access_tpm,
2289       .type = ARM_CP_ALIAS | ARM_CP_IO,
2290       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2291       .writefn = pmintenclr_write },
2292     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2293       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2294       .access = PL1_R,
2295       .accessfn = access_aa64_tid2,
2296       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2297     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2298       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2299       .access = PL1_RW,
2300       .accessfn = access_aa64_tid2,
2301       .writefn = csselr_write, .resetvalue = 0,
2302       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2303                              offsetof(CPUARMState, cp15.csselr_ns) } },
2304     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2305      * just RAZ for all cores:
2306      */
2307     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2308       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2309       .access = PL1_R, .type = ARM_CP_CONST,
2310       .accessfn = access_aa64_tid1,
2311       .resetvalue = 0 },
2312     /* Auxiliary fault status registers: these also are IMPDEF, and we
2313      * choose to RAZ/WI for all cores.
2314      */
2315     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2316       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2317       .access = PL1_RW, .accessfn = access_tvm_trvm,
2318       .type = ARM_CP_CONST, .resetvalue = 0 },
2319     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2320       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2321       .access = PL1_RW, .accessfn = access_tvm_trvm,
2322       .type = ARM_CP_CONST, .resetvalue = 0 },
2323     /* MAIR can just read-as-written because we don't implement caches
2324      * and so don't need to care about memory attributes.
2325      */
2326     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2327       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2328       .access = PL1_RW, .accessfn = access_tvm_trvm,
2329       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2330       .resetvalue = 0 },
2331     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2332       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2333       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2334       .resetvalue = 0 },
2335     /* For non-long-descriptor page tables these are PRRR and NMRR;
2336      * regardless they still act as reads-as-written for QEMU.
2337      */
2338      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2339       * allows them to assign the correct fieldoffset based on the endianness
2340       * handled in the field definitions.
2341       */
2342     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2343       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2344       .access = PL1_RW, .accessfn = access_tvm_trvm,
2345       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2346                              offsetof(CPUARMState, cp15.mair0_ns) },
2347       .resetfn = arm_cp_reset_ignore },
2348     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2349       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2350       .access = PL1_RW, .accessfn = access_tvm_trvm,
2351       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2352                              offsetof(CPUARMState, cp15.mair1_ns) },
2353       .resetfn = arm_cp_reset_ignore },
2354     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2355       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2356       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2357     /* 32 bit ITLB invalidates */
2358     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2359       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2360       .writefn = tlbiall_write },
2361     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2362       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2363       .writefn = tlbimva_write },
2364     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2365       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2366       .writefn = tlbiasid_write },
2367     /* 32 bit DTLB invalidates */
2368     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2369       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2370       .writefn = tlbiall_write },
2371     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2372       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2373       .writefn = tlbimva_write },
2374     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2375       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2376       .writefn = tlbiasid_write },
2377     /* 32 bit TLB invalidates */
2378     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2379       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2380       .writefn = tlbiall_write },
2381     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2382       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2383       .writefn = tlbimva_write },
2384     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2385       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2386       .writefn = tlbiasid_write },
2387     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2388       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2389       .writefn = tlbimvaa_write },
2390     REGINFO_SENTINEL
2391 };
2392 
2393 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2394     /* 32 bit TLB invalidates, Inner Shareable */
2395     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2396       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2397       .writefn = tlbiall_is_write },
2398     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2399       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2400       .writefn = tlbimva_is_write },
2401     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2402       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2403       .writefn = tlbiasid_is_write },
2404     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2405       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2406       .writefn = tlbimvaa_is_write },
2407     REGINFO_SENTINEL
2408 };
2409 
2410 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2411     /* PMOVSSET is not implemented in v7 before v7ve */
2412     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2413       .access = PL0_RW, .accessfn = pmreg_access,
2414       .type = ARM_CP_ALIAS | ARM_CP_IO,
2415       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2416       .writefn = pmovsset_write,
2417       .raw_writefn = raw_write },
2418     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2419       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2420       .access = PL0_RW, .accessfn = pmreg_access,
2421       .type = ARM_CP_ALIAS | ARM_CP_IO,
2422       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2423       .writefn = pmovsset_write,
2424       .raw_writefn = raw_write },
2425     REGINFO_SENTINEL
2426 };
2427 
2428 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2429                         uint64_t value)
2430 {
2431     value &= 1;
2432     env->teecr = value;
2433 }
2434 
2435 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2436                                     bool isread)
2437 {
2438     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2439         return CP_ACCESS_TRAP;
2440     }
2441     return CP_ACCESS_OK;
2442 }
2443 
2444 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2445     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2446       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2447       .resetvalue = 0,
2448       .writefn = teecr_write },
2449     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2450       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2451       .accessfn = teehbr_access, .resetvalue = 0 },
2452     REGINFO_SENTINEL
2453 };
2454 
2455 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2456     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2457       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2458       .access = PL0_RW,
2459       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2460     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2461       .access = PL0_RW,
2462       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2463                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2464       .resetfn = arm_cp_reset_ignore },
2465     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2466       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2467       .access = PL0_R|PL1_W,
2468       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2469       .resetvalue = 0},
2470     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2471       .access = PL0_R|PL1_W,
2472       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2473                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2474       .resetfn = arm_cp_reset_ignore },
2475     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2476       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2477       .access = PL1_RW,
2478       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2479     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2480       .access = PL1_RW,
2481       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2482                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2483       .resetvalue = 0 },
2484     REGINFO_SENTINEL
2485 };
2486 
2487 #ifndef CONFIG_USER_ONLY
2488 
2489 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2490                                        bool isread)
2491 {
2492     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2493      * Writable only at the highest implemented exception level.
2494      */
2495     int el = arm_current_el(env);
2496     uint64_t hcr;
2497     uint32_t cntkctl;
2498 
2499     switch (el) {
2500     case 0:
2501         hcr = arm_hcr_el2_eff(env);
2502         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2503             cntkctl = env->cp15.cnthctl_el2;
2504         } else {
2505             cntkctl = env->cp15.c14_cntkctl;
2506         }
2507         if (!extract32(cntkctl, 0, 2)) {
2508             return CP_ACCESS_TRAP;
2509         }
2510         break;
2511     case 1:
2512         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2513             arm_is_secure_below_el3(env)) {
2514             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2515             return CP_ACCESS_TRAP_UNCATEGORIZED;
2516         }
2517         break;
2518     case 2:
2519     case 3:
2520         break;
2521     }
2522 
2523     if (!isread && el < arm_highest_el(env)) {
2524         return CP_ACCESS_TRAP_UNCATEGORIZED;
2525     }
2526 
2527     return CP_ACCESS_OK;
2528 }
2529 
2530 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2531                                         bool isread)
2532 {
2533     unsigned int cur_el = arm_current_el(env);
2534     bool secure = arm_is_secure(env);
2535     uint64_t hcr = arm_hcr_el2_eff(env);
2536 
2537     switch (cur_el) {
2538     case 0:
2539         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2540         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2541             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2542                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2543         }
2544 
2545         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2546         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2547             return CP_ACCESS_TRAP;
2548         }
2549 
2550         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2551         if (hcr & HCR_E2H) {
2552             if (timeridx == GTIMER_PHYS &&
2553                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2554                 return CP_ACCESS_TRAP_EL2;
2555             }
2556         } else {
2557             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2558             if (arm_feature(env, ARM_FEATURE_EL2) &&
2559                 timeridx == GTIMER_PHYS && !secure &&
2560                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2561                 return CP_ACCESS_TRAP_EL2;
2562             }
2563         }
2564         break;
2565 
2566     case 1:
2567         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2568         if (arm_feature(env, ARM_FEATURE_EL2) &&
2569             timeridx == GTIMER_PHYS && !secure &&
2570             (hcr & HCR_E2H
2571              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2572              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2573             return CP_ACCESS_TRAP_EL2;
2574         }
2575         break;
2576     }
2577     return CP_ACCESS_OK;
2578 }
2579 
2580 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2581                                       bool isread)
2582 {
2583     unsigned int cur_el = arm_current_el(env);
2584     bool secure = arm_is_secure(env);
2585     uint64_t hcr = arm_hcr_el2_eff(env);
2586 
2587     switch (cur_el) {
2588     case 0:
2589         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2590             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2591             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2592                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2593         }
2594 
2595         /*
2596          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2597          * EL0 if EL0[PV]TEN is zero.
2598          */
2599         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2600             return CP_ACCESS_TRAP;
2601         }
2602         /* fall through */
2603 
2604     case 1:
2605         if (arm_feature(env, ARM_FEATURE_EL2) &&
2606             timeridx == GTIMER_PHYS && !secure) {
2607             if (hcr & HCR_E2H) {
2608                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2609                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2610                     return CP_ACCESS_TRAP_EL2;
2611                 }
2612             } else {
2613                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2614                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2615                     return CP_ACCESS_TRAP_EL2;
2616                 }
2617             }
2618         }
2619         break;
2620     }
2621     return CP_ACCESS_OK;
2622 }
2623 
2624 static CPAccessResult gt_pct_access(CPUARMState *env,
2625                                     const ARMCPRegInfo *ri,
2626                                     bool isread)
2627 {
2628     return gt_counter_access(env, GTIMER_PHYS, isread);
2629 }
2630 
2631 static CPAccessResult gt_vct_access(CPUARMState *env,
2632                                     const ARMCPRegInfo *ri,
2633                                     bool isread)
2634 {
2635     return gt_counter_access(env, GTIMER_VIRT, isread);
2636 }
2637 
2638 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2639                                        bool isread)
2640 {
2641     return gt_timer_access(env, GTIMER_PHYS, isread);
2642 }
2643 
2644 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2645                                        bool isread)
2646 {
2647     return gt_timer_access(env, GTIMER_VIRT, isread);
2648 }
2649 
2650 static CPAccessResult gt_stimer_access(CPUARMState *env,
2651                                        const ARMCPRegInfo *ri,
2652                                        bool isread)
2653 {
2654     /* The AArch64 register view of the secure physical timer is
2655      * always accessible from EL3, and configurably accessible from
2656      * Secure EL1.
2657      */
2658     switch (arm_current_el(env)) {
2659     case 1:
2660         if (!arm_is_secure(env)) {
2661             return CP_ACCESS_TRAP;
2662         }
2663         if (!(env->cp15.scr_el3 & SCR_ST)) {
2664             return CP_ACCESS_TRAP_EL3;
2665         }
2666         return CP_ACCESS_OK;
2667     case 0:
2668     case 2:
2669         return CP_ACCESS_TRAP;
2670     case 3:
2671         return CP_ACCESS_OK;
2672     default:
2673         g_assert_not_reached();
2674     }
2675 }
2676 
2677 static uint64_t gt_get_countervalue(CPUARMState *env)
2678 {
2679     ARMCPU *cpu = env_archcpu(env);
2680 
2681     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2682 }
2683 
2684 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2685 {
2686     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2687 
2688     if (gt->ctl & 1) {
2689         /* Timer enabled: calculate and set current ISTATUS, irq, and
2690          * reset timer to when ISTATUS next has to change
2691          */
2692         uint64_t offset = timeridx == GTIMER_VIRT ?
2693                                       cpu->env.cp15.cntvoff_el2 : 0;
2694         uint64_t count = gt_get_countervalue(&cpu->env);
2695         /* Note that this must be unsigned 64 bit arithmetic: */
2696         int istatus = count - offset >= gt->cval;
2697         uint64_t nexttick;
2698         int irqstate;
2699 
2700         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2701 
2702         irqstate = (istatus && !(gt->ctl & 2));
2703         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2704 
2705         if (istatus) {
2706             /* Next transition is when count rolls back over to zero */
2707             nexttick = UINT64_MAX;
2708         } else {
2709             /* Next transition is when we hit cval */
2710             nexttick = gt->cval + offset;
2711         }
2712         /* Note that the desired next expiry time might be beyond the
2713          * signed-64-bit range of a QEMUTimer -- in this case we just
2714          * set the timer for as far in the future as possible. When the
2715          * timer expires we will reset the timer for any remaining period.
2716          */
2717         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2718             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2719         } else {
2720             timer_mod(cpu->gt_timer[timeridx], nexttick);
2721         }
2722         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2723     } else {
2724         /* Timer disabled: ISTATUS and timer output always clear */
2725         gt->ctl &= ~4;
2726         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2727         timer_del(cpu->gt_timer[timeridx]);
2728         trace_arm_gt_recalc_disabled(timeridx);
2729     }
2730 }
2731 
2732 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2733                            int timeridx)
2734 {
2735     ARMCPU *cpu = env_archcpu(env);
2736 
2737     timer_del(cpu->gt_timer[timeridx]);
2738 }
2739 
2740 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2741 {
2742     return gt_get_countervalue(env);
2743 }
2744 
2745 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2746 {
2747     uint64_t hcr;
2748 
2749     switch (arm_current_el(env)) {
2750     case 2:
2751         hcr = arm_hcr_el2_eff(env);
2752         if (hcr & HCR_E2H) {
2753             return 0;
2754         }
2755         break;
2756     case 0:
2757         hcr = arm_hcr_el2_eff(env);
2758         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2759             return 0;
2760         }
2761         break;
2762     }
2763 
2764     return env->cp15.cntvoff_el2;
2765 }
2766 
2767 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2768 {
2769     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2770 }
2771 
2772 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2773                           int timeridx,
2774                           uint64_t value)
2775 {
2776     trace_arm_gt_cval_write(timeridx, value);
2777     env->cp15.c14_timer[timeridx].cval = value;
2778     gt_recalc_timer(env_archcpu(env), timeridx);
2779 }
2780 
2781 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2782                              int timeridx)
2783 {
2784     uint64_t offset = 0;
2785 
2786     switch (timeridx) {
2787     case GTIMER_VIRT:
2788     case GTIMER_HYPVIRT:
2789         offset = gt_virt_cnt_offset(env);
2790         break;
2791     }
2792 
2793     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2794                       (gt_get_countervalue(env) - offset));
2795 }
2796 
2797 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2798                           int timeridx,
2799                           uint64_t value)
2800 {
2801     uint64_t offset = 0;
2802 
2803     switch (timeridx) {
2804     case GTIMER_VIRT:
2805     case GTIMER_HYPVIRT:
2806         offset = gt_virt_cnt_offset(env);
2807         break;
2808     }
2809 
2810     trace_arm_gt_tval_write(timeridx, value);
2811     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2812                                          sextract64(value, 0, 32);
2813     gt_recalc_timer(env_archcpu(env), timeridx);
2814 }
2815 
2816 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2817                          int timeridx,
2818                          uint64_t value)
2819 {
2820     ARMCPU *cpu = env_archcpu(env);
2821     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2822 
2823     trace_arm_gt_ctl_write(timeridx, value);
2824     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2825     if ((oldval ^ value) & 1) {
2826         /* Enable toggled */
2827         gt_recalc_timer(cpu, timeridx);
2828     } else if ((oldval ^ value) & 2) {
2829         /* IMASK toggled: don't need to recalculate,
2830          * just set the interrupt line based on ISTATUS
2831          */
2832         int irqstate = (oldval & 4) && !(value & 2);
2833 
2834         trace_arm_gt_imask_toggle(timeridx, irqstate);
2835         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2836     }
2837 }
2838 
2839 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2840 {
2841     gt_timer_reset(env, ri, GTIMER_PHYS);
2842 }
2843 
2844 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2845                                uint64_t value)
2846 {
2847     gt_cval_write(env, ri, GTIMER_PHYS, value);
2848 }
2849 
2850 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2851 {
2852     return gt_tval_read(env, ri, GTIMER_PHYS);
2853 }
2854 
2855 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856                                uint64_t value)
2857 {
2858     gt_tval_write(env, ri, GTIMER_PHYS, value);
2859 }
2860 
2861 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2862                               uint64_t value)
2863 {
2864     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2865 }
2866 
2867 static int gt_phys_redir_timeridx(CPUARMState *env)
2868 {
2869     switch (arm_mmu_idx(env)) {
2870     case ARMMMUIdx_E20_0:
2871     case ARMMMUIdx_E20_2:
2872     case ARMMMUIdx_E20_2_PAN:
2873         return GTIMER_HYP;
2874     default:
2875         return GTIMER_PHYS;
2876     }
2877 }
2878 
2879 static int gt_virt_redir_timeridx(CPUARMState *env)
2880 {
2881     switch (arm_mmu_idx(env)) {
2882     case ARMMMUIdx_E20_0:
2883     case ARMMMUIdx_E20_2:
2884     case ARMMMUIdx_E20_2_PAN:
2885         return GTIMER_HYPVIRT;
2886     default:
2887         return GTIMER_VIRT;
2888     }
2889 }
2890 
2891 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2892                                         const ARMCPRegInfo *ri)
2893 {
2894     int timeridx = gt_phys_redir_timeridx(env);
2895     return env->cp15.c14_timer[timeridx].cval;
2896 }
2897 
2898 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2899                                      uint64_t value)
2900 {
2901     int timeridx = gt_phys_redir_timeridx(env);
2902     gt_cval_write(env, ri, timeridx, value);
2903 }
2904 
2905 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2906                                         const ARMCPRegInfo *ri)
2907 {
2908     int timeridx = gt_phys_redir_timeridx(env);
2909     return gt_tval_read(env, ri, timeridx);
2910 }
2911 
2912 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2913                                      uint64_t value)
2914 {
2915     int timeridx = gt_phys_redir_timeridx(env);
2916     gt_tval_write(env, ri, timeridx, value);
2917 }
2918 
2919 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2920                                        const ARMCPRegInfo *ri)
2921 {
2922     int timeridx = gt_phys_redir_timeridx(env);
2923     return env->cp15.c14_timer[timeridx].ctl;
2924 }
2925 
2926 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2927                                     uint64_t value)
2928 {
2929     int timeridx = gt_phys_redir_timeridx(env);
2930     gt_ctl_write(env, ri, timeridx, value);
2931 }
2932 
2933 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2934 {
2935     gt_timer_reset(env, ri, GTIMER_VIRT);
2936 }
2937 
2938 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2939                                uint64_t value)
2940 {
2941     gt_cval_write(env, ri, GTIMER_VIRT, value);
2942 }
2943 
2944 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2945 {
2946     return gt_tval_read(env, ri, GTIMER_VIRT);
2947 }
2948 
2949 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2950                                uint64_t value)
2951 {
2952     gt_tval_write(env, ri, GTIMER_VIRT, value);
2953 }
2954 
2955 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2956                               uint64_t value)
2957 {
2958     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2959 }
2960 
2961 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2962                               uint64_t value)
2963 {
2964     ARMCPU *cpu = env_archcpu(env);
2965 
2966     trace_arm_gt_cntvoff_write(value);
2967     raw_write(env, ri, value);
2968     gt_recalc_timer(cpu, GTIMER_VIRT);
2969 }
2970 
2971 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2972                                         const ARMCPRegInfo *ri)
2973 {
2974     int timeridx = gt_virt_redir_timeridx(env);
2975     return env->cp15.c14_timer[timeridx].cval;
2976 }
2977 
2978 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2979                                      uint64_t value)
2980 {
2981     int timeridx = gt_virt_redir_timeridx(env);
2982     gt_cval_write(env, ri, timeridx, value);
2983 }
2984 
2985 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2986                                         const ARMCPRegInfo *ri)
2987 {
2988     int timeridx = gt_virt_redir_timeridx(env);
2989     return gt_tval_read(env, ri, timeridx);
2990 }
2991 
2992 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2993                                      uint64_t value)
2994 {
2995     int timeridx = gt_virt_redir_timeridx(env);
2996     gt_tval_write(env, ri, timeridx, value);
2997 }
2998 
2999 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3000                                        const ARMCPRegInfo *ri)
3001 {
3002     int timeridx = gt_virt_redir_timeridx(env);
3003     return env->cp15.c14_timer[timeridx].ctl;
3004 }
3005 
3006 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3007                                     uint64_t value)
3008 {
3009     int timeridx = gt_virt_redir_timeridx(env);
3010     gt_ctl_write(env, ri, timeridx, value);
3011 }
3012 
3013 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3014 {
3015     gt_timer_reset(env, ri, GTIMER_HYP);
3016 }
3017 
3018 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3019                               uint64_t value)
3020 {
3021     gt_cval_write(env, ri, GTIMER_HYP, value);
3022 }
3023 
3024 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3025 {
3026     return gt_tval_read(env, ri, GTIMER_HYP);
3027 }
3028 
3029 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3030                               uint64_t value)
3031 {
3032     gt_tval_write(env, ri, GTIMER_HYP, value);
3033 }
3034 
3035 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3036                               uint64_t value)
3037 {
3038     gt_ctl_write(env, ri, GTIMER_HYP, value);
3039 }
3040 
3041 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3042 {
3043     gt_timer_reset(env, ri, GTIMER_SEC);
3044 }
3045 
3046 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3047                               uint64_t value)
3048 {
3049     gt_cval_write(env, ri, GTIMER_SEC, value);
3050 }
3051 
3052 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3053 {
3054     return gt_tval_read(env, ri, GTIMER_SEC);
3055 }
3056 
3057 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3058                               uint64_t value)
3059 {
3060     gt_tval_write(env, ri, GTIMER_SEC, value);
3061 }
3062 
3063 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064                               uint64_t value)
3065 {
3066     gt_ctl_write(env, ri, GTIMER_SEC, value);
3067 }
3068 
3069 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3070 {
3071     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3072 }
3073 
3074 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3075                              uint64_t value)
3076 {
3077     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3078 }
3079 
3080 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3081 {
3082     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3083 }
3084 
3085 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3086                              uint64_t value)
3087 {
3088     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3089 }
3090 
3091 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3092                             uint64_t value)
3093 {
3094     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3095 }
3096 
3097 void arm_gt_ptimer_cb(void *opaque)
3098 {
3099     ARMCPU *cpu = opaque;
3100 
3101     gt_recalc_timer(cpu, GTIMER_PHYS);
3102 }
3103 
3104 void arm_gt_vtimer_cb(void *opaque)
3105 {
3106     ARMCPU *cpu = opaque;
3107 
3108     gt_recalc_timer(cpu, GTIMER_VIRT);
3109 }
3110 
3111 void arm_gt_htimer_cb(void *opaque)
3112 {
3113     ARMCPU *cpu = opaque;
3114 
3115     gt_recalc_timer(cpu, GTIMER_HYP);
3116 }
3117 
3118 void arm_gt_stimer_cb(void *opaque)
3119 {
3120     ARMCPU *cpu = opaque;
3121 
3122     gt_recalc_timer(cpu, GTIMER_SEC);
3123 }
3124 
3125 void arm_gt_hvtimer_cb(void *opaque)
3126 {
3127     ARMCPU *cpu = opaque;
3128 
3129     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3130 }
3131 
3132 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3133 {
3134     ARMCPU *cpu = env_archcpu(env);
3135 
3136     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3137 }
3138 
3139 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3140     /* Note that CNTFRQ is purely reads-as-written for the benefit
3141      * of software; writing it doesn't actually change the timer frequency.
3142      * Our reset value matches the fixed frequency we implement the timer at.
3143      */
3144     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3145       .type = ARM_CP_ALIAS,
3146       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3147       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3148     },
3149     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3150       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3151       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3152       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3153       .resetfn = arm_gt_cntfrq_reset,
3154     },
3155     /* overall control: mostly access permissions */
3156     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3157       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3158       .access = PL1_RW,
3159       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3160       .resetvalue = 0,
3161     },
3162     /* per-timer control */
3163     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3164       .secure = ARM_CP_SECSTATE_NS,
3165       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3166       .accessfn = gt_ptimer_access,
3167       .fieldoffset = offsetoflow32(CPUARMState,
3168                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3169       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3170       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3171     },
3172     { .name = "CNTP_CTL_S",
3173       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3174       .secure = ARM_CP_SECSTATE_S,
3175       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3176       .accessfn = gt_ptimer_access,
3177       .fieldoffset = offsetoflow32(CPUARMState,
3178                                    cp15.c14_timer[GTIMER_SEC].ctl),
3179       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3180     },
3181     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3182       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3183       .type = ARM_CP_IO, .access = PL0_RW,
3184       .accessfn = gt_ptimer_access,
3185       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3186       .resetvalue = 0,
3187       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3188       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3189     },
3190     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3191       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3192       .accessfn = gt_vtimer_access,
3193       .fieldoffset = offsetoflow32(CPUARMState,
3194                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3195       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3196       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3197     },
3198     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3199       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3200       .type = ARM_CP_IO, .access = PL0_RW,
3201       .accessfn = gt_vtimer_access,
3202       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3203       .resetvalue = 0,
3204       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3205       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3206     },
3207     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3208     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3209       .secure = ARM_CP_SECSTATE_NS,
3210       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3211       .accessfn = gt_ptimer_access,
3212       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3213     },
3214     { .name = "CNTP_TVAL_S",
3215       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3216       .secure = ARM_CP_SECSTATE_S,
3217       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3218       .accessfn = gt_ptimer_access,
3219       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3220     },
3221     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3222       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3223       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3224       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3225       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3226     },
3227     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3228       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3229       .accessfn = gt_vtimer_access,
3230       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3231     },
3232     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3233       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3234       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3235       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3236       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3237     },
3238     /* The counter itself */
3239     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3240       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3241       .accessfn = gt_pct_access,
3242       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3243     },
3244     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3245       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3246       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3247       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3248     },
3249     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3250       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3251       .accessfn = gt_vct_access,
3252       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3253     },
3254     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3255       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3256       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3257       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3258     },
3259     /* Comparison value, indicating when the timer goes off */
3260     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3261       .secure = ARM_CP_SECSTATE_NS,
3262       .access = PL0_RW,
3263       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3264       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3265       .accessfn = gt_ptimer_access,
3266       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3267       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3268     },
3269     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3270       .secure = ARM_CP_SECSTATE_S,
3271       .access = PL0_RW,
3272       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3273       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3274       .accessfn = gt_ptimer_access,
3275       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3276     },
3277     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3278       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3279       .access = PL0_RW,
3280       .type = ARM_CP_IO,
3281       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3282       .resetvalue = 0, .accessfn = gt_ptimer_access,
3283       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3284       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3285     },
3286     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3287       .access = PL0_RW,
3288       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3289       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3290       .accessfn = gt_vtimer_access,
3291       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3292       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3293     },
3294     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3295       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3296       .access = PL0_RW,
3297       .type = ARM_CP_IO,
3298       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3299       .resetvalue = 0, .accessfn = gt_vtimer_access,
3300       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3301       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3302     },
3303     /* Secure timer -- this is actually restricted to only EL3
3304      * and configurably Secure-EL1 via the accessfn.
3305      */
3306     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3307       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3308       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3309       .accessfn = gt_stimer_access,
3310       .readfn = gt_sec_tval_read,
3311       .writefn = gt_sec_tval_write,
3312       .resetfn = gt_sec_timer_reset,
3313     },
3314     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3315       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3316       .type = ARM_CP_IO, .access = PL1_RW,
3317       .accessfn = gt_stimer_access,
3318       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3319       .resetvalue = 0,
3320       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3321     },
3322     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3323       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3324       .type = ARM_CP_IO, .access = PL1_RW,
3325       .accessfn = gt_stimer_access,
3326       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3327       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3328     },
3329     REGINFO_SENTINEL
3330 };
3331 
3332 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3333                                  bool isread)
3334 {
3335     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3336         return CP_ACCESS_TRAP;
3337     }
3338     return CP_ACCESS_OK;
3339 }
3340 
3341 #else
3342 
3343 /* In user-mode most of the generic timer registers are inaccessible
3344  * however modern kernels (4.12+) allow access to cntvct_el0
3345  */
3346 
3347 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3348 {
3349     ARMCPU *cpu = env_archcpu(env);
3350 
3351     /* Currently we have no support for QEMUTimer in linux-user so we
3352      * can't call gt_get_countervalue(env), instead we directly
3353      * call the lower level functions.
3354      */
3355     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3356 }
3357 
3358 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3359     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3360       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3361       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3362       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3363       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3364     },
3365     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3366       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3367       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3368       .readfn = gt_virt_cnt_read,
3369     },
3370     REGINFO_SENTINEL
3371 };
3372 
3373 #endif
3374 
3375 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3376 {
3377     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3378         raw_write(env, ri, value);
3379     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3380         raw_write(env, ri, value & 0xfffff6ff);
3381     } else {
3382         raw_write(env, ri, value & 0xfffff1ff);
3383     }
3384 }
3385 
3386 #ifndef CONFIG_USER_ONLY
3387 /* get_phys_addr() isn't present for user-mode-only targets */
3388 
3389 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3390                                  bool isread)
3391 {
3392     if (ri->opc2 & 4) {
3393         /* The ATS12NSO* operations must trap to EL3 if executed in
3394          * Secure EL1 (which can only happen if EL3 is AArch64).
3395          * They are simply UNDEF if executed from NS EL1.
3396          * They function normally from EL2 or EL3.
3397          */
3398         if (arm_current_el(env) == 1) {
3399             if (arm_is_secure_below_el3(env)) {
3400                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3401             }
3402             return CP_ACCESS_TRAP_UNCATEGORIZED;
3403         }
3404     }
3405     return CP_ACCESS_OK;
3406 }
3407 
3408 #ifdef CONFIG_TCG
3409 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3410                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
3411 {
3412     hwaddr phys_addr;
3413     target_ulong page_size;
3414     int prot;
3415     bool ret;
3416     uint64_t par64;
3417     bool format64 = false;
3418     MemTxAttrs attrs = {};
3419     ARMMMUFaultInfo fi = {};
3420     ARMCacheAttrs cacheattrs = {};
3421 
3422     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3423                         &prot, &page_size, &fi, &cacheattrs);
3424 
3425     if (ret) {
3426         /*
3427          * Some kinds of translation fault must cause exceptions rather
3428          * than being reported in the PAR.
3429          */
3430         int current_el = arm_current_el(env);
3431         int target_el;
3432         uint32_t syn, fsr, fsc;
3433         bool take_exc = false;
3434 
3435         if (fi.s1ptw && current_el == 1 && !arm_is_secure(env)
3436             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3437             /*
3438              * Synchronous stage 2 fault on an access made as part of the
3439              * translation table walk for AT S1E0* or AT S1E1* insn
3440              * executed from NS EL1. If this is a synchronous external abort
3441              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3442              * to EL3. Otherwise the fault is taken as an exception to EL2,
3443              * and HPFAR_EL2 holds the faulting IPA.
3444              */
3445             if (fi.type == ARMFault_SyncExternalOnWalk &&
3446                 (env->cp15.scr_el3 & SCR_EA)) {
3447                 target_el = 3;
3448             } else {
3449                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3450                 target_el = 2;
3451             }
3452             take_exc = true;
3453         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3454             /*
3455              * Synchronous external aborts during a translation table walk
3456              * are taken as Data Abort exceptions.
3457              */
3458             if (fi.stage2) {
3459                 if (current_el == 3) {
3460                     target_el = 3;
3461                 } else {
3462                     target_el = 2;
3463                 }
3464             } else {
3465                 target_el = exception_target_el(env);
3466             }
3467             take_exc = true;
3468         }
3469 
3470         if (take_exc) {
3471             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3472             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3473                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3474                 fsr = arm_fi_to_lfsc(&fi);
3475                 fsc = extract32(fsr, 0, 6);
3476             } else {
3477                 fsr = arm_fi_to_sfsc(&fi);
3478                 fsc = 0x3f;
3479             }
3480             /*
3481              * Report exception with ESR indicating a fault due to a
3482              * translation table walk for a cache maintenance instruction.
3483              */
3484             syn = syn_data_abort_no_iss(current_el == target_el,
3485                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3486             env->exception.vaddress = value;
3487             env->exception.fsr = fsr;
3488             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3489         }
3490     }
3491 
3492     if (is_a64(env)) {
3493         format64 = true;
3494     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3495         /*
3496          * ATS1Cxx:
3497          * * TTBCR.EAE determines whether the result is returned using the
3498          *   32-bit or the 64-bit PAR format
3499          * * Instructions executed in Hyp mode always use the 64bit format
3500          *
3501          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3502          * * The Non-secure TTBCR.EAE bit is set to 1
3503          * * The implementation includes EL2, and the value of HCR.VM is 1
3504          *
3505          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3506          *
3507          * ATS1Hx always uses the 64bit format.
3508          */
3509         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3510 
3511         if (arm_feature(env, ARM_FEATURE_EL2)) {
3512             if (mmu_idx == ARMMMUIdx_E10_0 ||
3513                 mmu_idx == ARMMMUIdx_E10_1 ||
3514                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3515                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3516             } else {
3517                 format64 |= arm_current_el(env) == 2;
3518             }
3519         }
3520     }
3521 
3522     if (format64) {
3523         /* Create a 64-bit PAR */
3524         par64 = (1 << 11); /* LPAE bit always set */
3525         if (!ret) {
3526             par64 |= phys_addr & ~0xfffULL;
3527             if (!attrs.secure) {
3528                 par64 |= (1 << 9); /* NS */
3529             }
3530             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3531             par64 |= cacheattrs.shareability << 7; /* SH */
3532         } else {
3533             uint32_t fsr = arm_fi_to_lfsc(&fi);
3534 
3535             par64 |= 1; /* F */
3536             par64 |= (fsr & 0x3f) << 1; /* FS */
3537             if (fi.stage2) {
3538                 par64 |= (1 << 9); /* S */
3539             }
3540             if (fi.s1ptw) {
3541                 par64 |= (1 << 8); /* PTW */
3542             }
3543         }
3544     } else {
3545         /* fsr is a DFSR/IFSR value for the short descriptor
3546          * translation table format (with WnR always clear).
3547          * Convert it to a 32-bit PAR.
3548          */
3549         if (!ret) {
3550             /* We do not set any attribute bits in the PAR */
3551             if (page_size == (1 << 24)
3552                 && arm_feature(env, ARM_FEATURE_V7)) {
3553                 par64 = (phys_addr & 0xff000000) | (1 << 1);
3554             } else {
3555                 par64 = phys_addr & 0xfffff000;
3556             }
3557             if (!attrs.secure) {
3558                 par64 |= (1 << 9); /* NS */
3559             }
3560         } else {
3561             uint32_t fsr = arm_fi_to_sfsc(&fi);
3562 
3563             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3564                     ((fsr & 0xf) << 1) | 1;
3565         }
3566     }
3567     return par64;
3568 }
3569 #endif /* CONFIG_TCG */
3570 
3571 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3572 {
3573 #ifdef CONFIG_TCG
3574     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3575     uint64_t par64;
3576     ARMMMUIdx mmu_idx;
3577     int el = arm_current_el(env);
3578     bool secure = arm_is_secure_below_el3(env);
3579 
3580     switch (ri->opc2 & 6) {
3581     case 0:
3582         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3583         switch (el) {
3584         case 3:
3585             mmu_idx = ARMMMUIdx_SE3;
3586             break;
3587         case 2:
3588             g_assert(!secure);  /* TODO: ARMv8.4-SecEL2 */
3589             /* fall through */
3590         case 1:
3591             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3592                 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3593                            : ARMMMUIdx_Stage1_E1_PAN);
3594             } else {
3595                 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3596             }
3597             break;
3598         default:
3599             g_assert_not_reached();
3600         }
3601         break;
3602     case 2:
3603         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3604         switch (el) {
3605         case 3:
3606             mmu_idx = ARMMMUIdx_SE10_0;
3607             break;
3608         case 2:
3609             mmu_idx = ARMMMUIdx_Stage1_E0;
3610             break;
3611         case 1:
3612             mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3613             break;
3614         default:
3615             g_assert_not_reached();
3616         }
3617         break;
3618     case 4:
3619         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3620         mmu_idx = ARMMMUIdx_E10_1;
3621         break;
3622     case 6:
3623         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3624         mmu_idx = ARMMMUIdx_E10_0;
3625         break;
3626     default:
3627         g_assert_not_reached();
3628     }
3629 
3630     par64 = do_ats_write(env, value, access_type, mmu_idx);
3631 
3632     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3633 #else
3634     /* Handled by hardware accelerator. */
3635     g_assert_not_reached();
3636 #endif /* CONFIG_TCG */
3637 }
3638 
3639 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3640                         uint64_t value)
3641 {
3642 #ifdef CONFIG_TCG
3643     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3644     uint64_t par64;
3645 
3646     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3647 
3648     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3649 #else
3650     /* Handled by hardware accelerator. */
3651     g_assert_not_reached();
3652 #endif /* CONFIG_TCG */
3653 }
3654 
3655 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3656                                      bool isread)
3657 {
3658     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3659         return CP_ACCESS_TRAP;
3660     }
3661     return CP_ACCESS_OK;
3662 }
3663 
3664 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3665                         uint64_t value)
3666 {
3667 #ifdef CONFIG_TCG
3668     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3669     ARMMMUIdx mmu_idx;
3670     int secure = arm_is_secure_below_el3(env);
3671 
3672     switch (ri->opc2 & 6) {
3673     case 0:
3674         switch (ri->opc1) {
3675         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3676             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3677                 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3678                            : ARMMMUIdx_Stage1_E1_PAN);
3679             } else {
3680                 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3681             }
3682             break;
3683         case 4: /* AT S1E2R, AT S1E2W */
3684             mmu_idx = ARMMMUIdx_E2;
3685             break;
3686         case 6: /* AT S1E3R, AT S1E3W */
3687             mmu_idx = ARMMMUIdx_SE3;
3688             break;
3689         default:
3690             g_assert_not_reached();
3691         }
3692         break;
3693     case 2: /* AT S1E0R, AT S1E0W */
3694         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3695         break;
3696     case 4: /* AT S12E1R, AT S12E1W */
3697         mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3698         break;
3699     case 6: /* AT S12E0R, AT S12E0W */
3700         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3701         break;
3702     default:
3703         g_assert_not_reached();
3704     }
3705 
3706     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3707 #else
3708     /* Handled by hardware accelerator. */
3709     g_assert_not_reached();
3710 #endif /* CONFIG_TCG */
3711 }
3712 #endif
3713 
3714 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3715     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3716       .access = PL1_RW, .resetvalue = 0,
3717       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3718                              offsetoflow32(CPUARMState, cp15.par_ns) },
3719       .writefn = par_write },
3720 #ifndef CONFIG_USER_ONLY
3721     /* This underdecoding is safe because the reginfo is NO_RAW. */
3722     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3723       .access = PL1_W, .accessfn = ats_access,
3724       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3725 #endif
3726     REGINFO_SENTINEL
3727 };
3728 
3729 /* Return basic MPU access permission bits.  */
3730 static uint32_t simple_mpu_ap_bits(uint32_t val)
3731 {
3732     uint32_t ret;
3733     uint32_t mask;
3734     int i;
3735     ret = 0;
3736     mask = 3;
3737     for (i = 0; i < 16; i += 2) {
3738         ret |= (val >> i) & mask;
3739         mask <<= 2;
3740     }
3741     return ret;
3742 }
3743 
3744 /* Pad basic MPU access permission bits to extended format.  */
3745 static uint32_t extended_mpu_ap_bits(uint32_t val)
3746 {
3747     uint32_t ret;
3748     uint32_t mask;
3749     int i;
3750     ret = 0;
3751     mask = 3;
3752     for (i = 0; i < 16; i += 2) {
3753         ret |= (val & mask) << i;
3754         mask <<= 2;
3755     }
3756     return ret;
3757 }
3758 
3759 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3760                                  uint64_t value)
3761 {
3762     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3763 }
3764 
3765 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3766 {
3767     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3768 }
3769 
3770 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3771                                  uint64_t value)
3772 {
3773     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3774 }
3775 
3776 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3777 {
3778     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3779 }
3780 
3781 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3782 {
3783     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3784 
3785     if (!u32p) {
3786         return 0;
3787     }
3788 
3789     u32p += env->pmsav7.rnr[M_REG_NS];
3790     return *u32p;
3791 }
3792 
3793 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3794                          uint64_t value)
3795 {
3796     ARMCPU *cpu = env_archcpu(env);
3797     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3798 
3799     if (!u32p) {
3800         return;
3801     }
3802 
3803     u32p += env->pmsav7.rnr[M_REG_NS];
3804     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3805     *u32p = value;
3806 }
3807 
3808 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3809                               uint64_t value)
3810 {
3811     ARMCPU *cpu = env_archcpu(env);
3812     uint32_t nrgs = cpu->pmsav7_dregion;
3813 
3814     if (value >= nrgs) {
3815         qemu_log_mask(LOG_GUEST_ERROR,
3816                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3817                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3818         return;
3819     }
3820 
3821     raw_write(env, ri, value);
3822 }
3823 
3824 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3825     /* Reset for all these registers is handled in arm_cpu_reset(),
3826      * because the PMSAv7 is also used by M-profile CPUs, which do
3827      * not register cpregs but still need the state to be reset.
3828      */
3829     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3830       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3831       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3832       .readfn = pmsav7_read, .writefn = pmsav7_write,
3833       .resetfn = arm_cp_reset_ignore },
3834     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3835       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3836       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3837       .readfn = pmsav7_read, .writefn = pmsav7_write,
3838       .resetfn = arm_cp_reset_ignore },
3839     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3840       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3841       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3842       .readfn = pmsav7_read, .writefn = pmsav7_write,
3843       .resetfn = arm_cp_reset_ignore },
3844     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3845       .access = PL1_RW,
3846       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3847       .writefn = pmsav7_rgnr_write,
3848       .resetfn = arm_cp_reset_ignore },
3849     REGINFO_SENTINEL
3850 };
3851 
3852 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3853     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3854       .access = PL1_RW, .type = ARM_CP_ALIAS,
3855       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3856       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3857     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3858       .access = PL1_RW, .type = ARM_CP_ALIAS,
3859       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3860       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3861     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3862       .access = PL1_RW,
3863       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3864       .resetvalue = 0, },
3865     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3866       .access = PL1_RW,
3867       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3868       .resetvalue = 0, },
3869     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3870       .access = PL1_RW,
3871       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3872     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3873       .access = PL1_RW,
3874       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3875     /* Protection region base and size registers */
3876     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3877       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3878       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3879     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3880       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3881       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3882     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3883       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3884       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3885     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3886       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3887       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3888     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3889       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3890       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3891     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3892       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3893       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3894     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3895       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3896       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3897     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3898       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3899       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3900     REGINFO_SENTINEL
3901 };
3902 
3903 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3904                                  uint64_t value)
3905 {
3906     TCR *tcr = raw_ptr(env, ri);
3907     int maskshift = extract32(value, 0, 3);
3908 
3909     if (!arm_feature(env, ARM_FEATURE_V8)) {
3910         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3911             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3912              * using Long-desciptor translation table format */
3913             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3914         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3915             /* In an implementation that includes the Security Extensions
3916              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3917              * Short-descriptor translation table format.
3918              */
3919             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3920         } else {
3921             value &= TTBCR_N;
3922         }
3923     }
3924 
3925     /* Update the masks corresponding to the TCR bank being written
3926      * Note that we always calculate mask and base_mask, but
3927      * they are only used for short-descriptor tables (ie if EAE is 0);
3928      * for long-descriptor tables the TCR fields are used differently
3929      * and the mask and base_mask values are meaningless.
3930      */
3931     tcr->raw_tcr = value;
3932     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3933     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3934 }
3935 
3936 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3937                              uint64_t value)
3938 {
3939     ARMCPU *cpu = env_archcpu(env);
3940     TCR *tcr = raw_ptr(env, ri);
3941 
3942     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3943         /* With LPAE the TTBCR could result in a change of ASID
3944          * via the TTBCR.A1 bit, so do a TLB flush.
3945          */
3946         tlb_flush(CPU(cpu));
3947     }
3948     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3949     value = deposit64(tcr->raw_tcr, 0, 32, value);
3950     vmsa_ttbcr_raw_write(env, ri, value);
3951 }
3952 
3953 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3954 {
3955     TCR *tcr = raw_ptr(env, ri);
3956 
3957     /* Reset both the TCR as well as the masks corresponding to the bank of
3958      * the TCR being reset.
3959      */
3960     tcr->raw_tcr = 0;
3961     tcr->mask = 0;
3962     tcr->base_mask = 0xffffc000u;
3963 }
3964 
3965 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3966                                uint64_t value)
3967 {
3968     ARMCPU *cpu = env_archcpu(env);
3969     TCR *tcr = raw_ptr(env, ri);
3970 
3971     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3972     tlb_flush(CPU(cpu));
3973     tcr->raw_tcr = value;
3974 }
3975 
3976 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3977                             uint64_t value)
3978 {
3979     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3980     if (cpreg_field_is_64bit(ri) &&
3981         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3982         ARMCPU *cpu = env_archcpu(env);
3983         tlb_flush(CPU(cpu));
3984     }
3985     raw_write(env, ri, value);
3986 }
3987 
3988 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3989                                     uint64_t value)
3990 {
3991     /*
3992      * If we are running with E2&0 regime, then an ASID is active.
3993      * Flush if that might be changing.  Note we're not checking
3994      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3995      * holds the active ASID, only checking the field that might.
3996      */
3997     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3998         (arm_hcr_el2_eff(env) & HCR_E2H)) {
3999         tlb_flush_by_mmuidx(env_cpu(env),
4000                             ARMMMUIdxBit_E20_2 |
4001                             ARMMMUIdxBit_E20_2_PAN |
4002                             ARMMMUIdxBit_E20_0);
4003     }
4004     raw_write(env, ri, value);
4005 }
4006 
4007 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4008                         uint64_t value)
4009 {
4010     ARMCPU *cpu = env_archcpu(env);
4011     CPUState *cs = CPU(cpu);
4012 
4013     /*
4014      * A change in VMID to the stage2 page table (Stage2) invalidates
4015      * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
4016      */
4017     if (raw_read(env, ri) != value) {
4018         tlb_flush_by_mmuidx(cs,
4019                             ARMMMUIdxBit_E10_1 |
4020                             ARMMMUIdxBit_E10_1_PAN |
4021                             ARMMMUIdxBit_E10_0);
4022         raw_write(env, ri, value);
4023     }
4024 }
4025 
4026 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4027     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4028       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4029       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4030                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4031     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4032       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4033       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4034                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4035     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4036       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4037       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4038                              offsetof(CPUARMState, cp15.dfar_ns) } },
4039     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4040       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4041       .access = PL1_RW, .accessfn = access_tvm_trvm,
4042       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4043       .resetvalue = 0, },
4044     REGINFO_SENTINEL
4045 };
4046 
4047 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4048     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4049       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4050       .access = PL1_RW, .accessfn = access_tvm_trvm,
4051       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4052     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4053       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4054       .access = PL1_RW, .accessfn = access_tvm_trvm,
4055       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4056       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4057                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4058     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4059       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4060       .access = PL1_RW, .accessfn = access_tvm_trvm,
4061       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4062       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4063                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4064     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4065       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4066       .access = PL1_RW, .accessfn = access_tvm_trvm,
4067       .writefn = vmsa_tcr_el12_write,
4068       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
4069       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4070     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4071       .access = PL1_RW, .accessfn = access_tvm_trvm,
4072       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4073       .raw_writefn = vmsa_ttbcr_raw_write,
4074       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4075                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4076     REGINFO_SENTINEL
4077 };
4078 
4079 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4080  * qemu tlbs nor adjusting cached masks.
4081  */
4082 static const ARMCPRegInfo ttbcr2_reginfo = {
4083     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4084     .access = PL1_RW, .accessfn = access_tvm_trvm,
4085     .type = ARM_CP_ALIAS,
4086     .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4087                            offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
4088 };
4089 
4090 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4091                                 uint64_t value)
4092 {
4093     env->cp15.c15_ticonfig = value & 0xe7;
4094     /* The OS_TYPE bit in this register changes the reported CPUID! */
4095     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4096         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4097 }
4098 
4099 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4100                                 uint64_t value)
4101 {
4102     env->cp15.c15_threadid = value & 0xffff;
4103 }
4104 
4105 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4106                            uint64_t value)
4107 {
4108     /* Wait-for-interrupt (deprecated) */
4109     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4110 }
4111 
4112 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4113                                   uint64_t value)
4114 {
4115     /* On OMAP there are registers indicating the max/min index of dcache lines
4116      * containing a dirty line; cache flush operations have to reset these.
4117      */
4118     env->cp15.c15_i_max = 0x000;
4119     env->cp15.c15_i_min = 0xff0;
4120 }
4121 
4122 static const ARMCPRegInfo omap_cp_reginfo[] = {
4123     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4124       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4125       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4126       .resetvalue = 0, },
4127     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4128       .access = PL1_RW, .type = ARM_CP_NOP },
4129     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4130       .access = PL1_RW,
4131       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4132       .writefn = omap_ticonfig_write },
4133     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4134       .access = PL1_RW,
4135       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4136     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4137       .access = PL1_RW, .resetvalue = 0xff0,
4138       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4139     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4140       .access = PL1_RW,
4141       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4142       .writefn = omap_threadid_write },
4143     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4144       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4145       .type = ARM_CP_NO_RAW,
4146       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4147     /* TODO: Peripheral port remap register:
4148      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4149      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4150      * when MMU is off.
4151      */
4152     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4153       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4154       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4155       .writefn = omap_cachemaint_write },
4156     { .name = "C9", .cp = 15, .crn = 9,
4157       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4158       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4159     REGINFO_SENTINEL
4160 };
4161 
4162 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4163                               uint64_t value)
4164 {
4165     env->cp15.c15_cpar = value & 0x3fff;
4166 }
4167 
4168 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4169     { .name = "XSCALE_CPAR",
4170       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4171       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4172       .writefn = xscale_cpar_write, },
4173     { .name = "XSCALE_AUXCR",
4174       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4175       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4176       .resetvalue = 0, },
4177     /* XScale specific cache-lockdown: since we have no cache we NOP these
4178      * and hope the guest does not really rely on cache behaviour.
4179      */
4180     { .name = "XSCALE_LOCK_ICACHE_LINE",
4181       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4182       .access = PL1_W, .type = ARM_CP_NOP },
4183     { .name = "XSCALE_UNLOCK_ICACHE",
4184       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4185       .access = PL1_W, .type = ARM_CP_NOP },
4186     { .name = "XSCALE_DCACHE_LOCK",
4187       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4188       .access = PL1_RW, .type = ARM_CP_NOP },
4189     { .name = "XSCALE_UNLOCK_DCACHE",
4190       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4191       .access = PL1_W, .type = ARM_CP_NOP },
4192     REGINFO_SENTINEL
4193 };
4194 
4195 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4196     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4197      * implementation of this implementation-defined space.
4198      * Ideally this should eventually disappear in favour of actually
4199      * implementing the correct behaviour for all cores.
4200      */
4201     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4202       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4203       .access = PL1_RW,
4204       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4205       .resetvalue = 0 },
4206     REGINFO_SENTINEL
4207 };
4208 
4209 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4210     /* Cache status: RAZ because we have no cache so it's always clean */
4211     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4212       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4213       .resetvalue = 0 },
4214     REGINFO_SENTINEL
4215 };
4216 
4217 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4218     /* We never have a a block transfer operation in progress */
4219     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4220       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4221       .resetvalue = 0 },
4222     /* The cache ops themselves: these all NOP for QEMU */
4223     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4224       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4225     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4226       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4227     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4228       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4229     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4230       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4231     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4232       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4233     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4234       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4235     REGINFO_SENTINEL
4236 };
4237 
4238 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4239     /* The cache test-and-clean instructions always return (1 << 30)
4240      * to indicate that there are no dirty cache lines.
4241      */
4242     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4243       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4244       .resetvalue = (1 << 30) },
4245     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4246       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4247       .resetvalue = (1 << 30) },
4248     REGINFO_SENTINEL
4249 };
4250 
4251 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4252     /* Ignore ReadBuffer accesses */
4253     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4254       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4255       .access = PL1_RW, .resetvalue = 0,
4256       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4257     REGINFO_SENTINEL
4258 };
4259 
4260 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4261 {
4262     ARMCPU *cpu = env_archcpu(env);
4263     unsigned int cur_el = arm_current_el(env);
4264     bool secure = arm_is_secure(env);
4265 
4266     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4267         return env->cp15.vpidr_el2;
4268     }
4269     return raw_read(env, ri);
4270 }
4271 
4272 static uint64_t mpidr_read_val(CPUARMState *env)
4273 {
4274     ARMCPU *cpu = env_archcpu(env);
4275     uint64_t mpidr = cpu->mp_affinity;
4276 
4277     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4278         mpidr |= (1U << 31);
4279         /* Cores which are uniprocessor (non-coherent)
4280          * but still implement the MP extensions set
4281          * bit 30. (For instance, Cortex-R5).
4282          */
4283         if (cpu->mp_is_up) {
4284             mpidr |= (1u << 30);
4285         }
4286     }
4287     return mpidr;
4288 }
4289 
4290 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4291 {
4292     unsigned int cur_el = arm_current_el(env);
4293     bool secure = arm_is_secure(env);
4294 
4295     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4296         return env->cp15.vmpidr_el2;
4297     }
4298     return mpidr_read_val(env);
4299 }
4300 
4301 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4302     /* NOP AMAIR0/1 */
4303     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4304       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4305       .access = PL1_RW, .accessfn = access_tvm_trvm,
4306       .type = ARM_CP_CONST, .resetvalue = 0 },
4307     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4308     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4309       .access = PL1_RW, .accessfn = access_tvm_trvm,
4310       .type = ARM_CP_CONST, .resetvalue = 0 },
4311     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4312       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4313       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4314                              offsetof(CPUARMState, cp15.par_ns)} },
4315     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4316       .access = PL1_RW, .accessfn = access_tvm_trvm,
4317       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4318       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4319                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4320       .writefn = vmsa_ttbr_write, },
4321     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4322       .access = PL1_RW, .accessfn = access_tvm_trvm,
4323       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4324       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4325                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4326       .writefn = vmsa_ttbr_write, },
4327     REGINFO_SENTINEL
4328 };
4329 
4330 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4331 {
4332     return vfp_get_fpcr(env);
4333 }
4334 
4335 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4336                             uint64_t value)
4337 {
4338     vfp_set_fpcr(env, value);
4339 }
4340 
4341 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4342 {
4343     return vfp_get_fpsr(env);
4344 }
4345 
4346 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4347                             uint64_t value)
4348 {
4349     vfp_set_fpsr(env, value);
4350 }
4351 
4352 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4353                                        bool isread)
4354 {
4355     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4356         return CP_ACCESS_TRAP;
4357     }
4358     return CP_ACCESS_OK;
4359 }
4360 
4361 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4362                             uint64_t value)
4363 {
4364     env->daif = value & PSTATE_DAIF;
4365 }
4366 
4367 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4368 {
4369     return env->pstate & PSTATE_PAN;
4370 }
4371 
4372 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4373                            uint64_t value)
4374 {
4375     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4376 }
4377 
4378 static const ARMCPRegInfo pan_reginfo = {
4379     .name = "PAN", .state = ARM_CP_STATE_AA64,
4380     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4381     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4382     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4383 };
4384 
4385 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4386 {
4387     return env->pstate & PSTATE_UAO;
4388 }
4389 
4390 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4391                            uint64_t value)
4392 {
4393     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4394 }
4395 
4396 static const ARMCPRegInfo uao_reginfo = {
4397     .name = "UAO", .state = ARM_CP_STATE_AA64,
4398     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4399     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4400     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4401 };
4402 
4403 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4404                                               const ARMCPRegInfo *ri,
4405                                               bool isread)
4406 {
4407     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4408     switch (arm_current_el(env)) {
4409     case 0:
4410         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4411         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4412             return CP_ACCESS_TRAP;
4413         }
4414         /* fall through */
4415     case 1:
4416         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4417         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4418             return CP_ACCESS_TRAP_EL2;
4419         }
4420         break;
4421     }
4422     return CP_ACCESS_OK;
4423 }
4424 
4425 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4426                                               const ARMCPRegInfo *ri,
4427                                               bool isread)
4428 {
4429     /* Cache invalidate/clean to Point of Unification... */
4430     switch (arm_current_el(env)) {
4431     case 0:
4432         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4433         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4434             return CP_ACCESS_TRAP;
4435         }
4436         /* fall through */
4437     case 1:
4438         /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set.  */
4439         if (arm_hcr_el2_eff(env) & HCR_TPU) {
4440             return CP_ACCESS_TRAP_EL2;
4441         }
4442         break;
4443     }
4444     return CP_ACCESS_OK;
4445 }
4446 
4447 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4448  * Page D4-1736 (DDI0487A.b)
4449  */
4450 
4451 static int vae1_tlbmask(CPUARMState *env)
4452 {
4453     /* Since we exclude secure first, we may read HCR_EL2 directly. */
4454     if (arm_is_secure_below_el3(env)) {
4455         return ARMMMUIdxBit_SE10_1 |
4456                ARMMMUIdxBit_SE10_1_PAN |
4457                ARMMMUIdxBit_SE10_0;
4458     } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE))
4459                == (HCR_E2H | HCR_TGE)) {
4460         return ARMMMUIdxBit_E20_2 |
4461                ARMMMUIdxBit_E20_2_PAN |
4462                ARMMMUIdxBit_E20_0;
4463     } else {
4464         return ARMMMUIdxBit_E10_1 |
4465                ARMMMUIdxBit_E10_1_PAN |
4466                ARMMMUIdxBit_E10_0;
4467     }
4468 }
4469 
4470 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4471                                       uint64_t value)
4472 {
4473     CPUState *cs = env_cpu(env);
4474     int mask = vae1_tlbmask(env);
4475 
4476     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4477 }
4478 
4479 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4480                                     uint64_t value)
4481 {
4482     CPUState *cs = env_cpu(env);
4483     int mask = vae1_tlbmask(env);
4484 
4485     if (tlb_force_broadcast(env)) {
4486         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4487     } else {
4488         tlb_flush_by_mmuidx(cs, mask);
4489     }
4490 }
4491 
4492 static int alle1_tlbmask(CPUARMState *env)
4493 {
4494     /*
4495      * Note that the 'ALL' scope must invalidate both stage 1 and
4496      * stage 2 translations, whereas most other scopes only invalidate
4497      * stage 1 translations.
4498      */
4499     if (arm_is_secure_below_el3(env)) {
4500         return ARMMMUIdxBit_SE10_1 |
4501                ARMMMUIdxBit_SE10_1_PAN |
4502                ARMMMUIdxBit_SE10_0;
4503     } else {
4504         return ARMMMUIdxBit_E10_1 |
4505                ARMMMUIdxBit_E10_1_PAN |
4506                ARMMMUIdxBit_E10_0;
4507     }
4508 }
4509 
4510 static int e2_tlbmask(CPUARMState *env)
4511 {
4512     /* TODO: ARMv8.4-SecEL2 */
4513     return ARMMMUIdxBit_E20_0 |
4514            ARMMMUIdxBit_E20_2 |
4515            ARMMMUIdxBit_E20_2_PAN |
4516            ARMMMUIdxBit_E2;
4517 }
4518 
4519 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4520                                   uint64_t value)
4521 {
4522     CPUState *cs = env_cpu(env);
4523     int mask = alle1_tlbmask(env);
4524 
4525     tlb_flush_by_mmuidx(cs, mask);
4526 }
4527 
4528 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4529                                   uint64_t value)
4530 {
4531     CPUState *cs = env_cpu(env);
4532     int mask = e2_tlbmask(env);
4533 
4534     tlb_flush_by_mmuidx(cs, mask);
4535 }
4536 
4537 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4538                                   uint64_t value)
4539 {
4540     ARMCPU *cpu = env_archcpu(env);
4541     CPUState *cs = CPU(cpu);
4542 
4543     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4544 }
4545 
4546 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4547                                     uint64_t value)
4548 {
4549     CPUState *cs = env_cpu(env);
4550     int mask = alle1_tlbmask(env);
4551 
4552     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4553 }
4554 
4555 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4556                                     uint64_t value)
4557 {
4558     CPUState *cs = env_cpu(env);
4559     int mask = e2_tlbmask(env);
4560 
4561     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4562 }
4563 
4564 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4565                                     uint64_t value)
4566 {
4567     CPUState *cs = env_cpu(env);
4568 
4569     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4570 }
4571 
4572 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4573                                  uint64_t value)
4574 {
4575     /* Invalidate by VA, EL2
4576      * Currently handles both VAE2 and VALE2, since we don't support
4577      * flush-last-level-only.
4578      */
4579     CPUState *cs = env_cpu(env);
4580     int mask = e2_tlbmask(env);
4581     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4582 
4583     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4584 }
4585 
4586 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4587                                  uint64_t value)
4588 {
4589     /* Invalidate by VA, EL3
4590      * Currently handles both VAE3 and VALE3, since we don't support
4591      * flush-last-level-only.
4592      */
4593     ARMCPU *cpu = env_archcpu(env);
4594     CPUState *cs = CPU(cpu);
4595     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4596 
4597     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4598 }
4599 
4600 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4601                                    uint64_t value)
4602 {
4603     CPUState *cs = env_cpu(env);
4604     int mask = vae1_tlbmask(env);
4605     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4606 
4607     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4608 }
4609 
4610 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4611                                  uint64_t value)
4612 {
4613     /* Invalidate by VA, EL1&0 (AArch64 version).
4614      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4615      * since we don't support flush-for-specific-ASID-only or
4616      * flush-last-level-only.
4617      */
4618     CPUState *cs = env_cpu(env);
4619     int mask = vae1_tlbmask(env);
4620     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4621 
4622     if (tlb_force_broadcast(env)) {
4623         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4624     } else {
4625         tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4626     }
4627 }
4628 
4629 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4630                                    uint64_t value)
4631 {
4632     CPUState *cs = env_cpu(env);
4633     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4634 
4635     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4636                                              ARMMMUIdxBit_E2);
4637 }
4638 
4639 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4640                                    uint64_t value)
4641 {
4642     CPUState *cs = env_cpu(env);
4643     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4644 
4645     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4646                                              ARMMMUIdxBit_SE3);
4647 }
4648 
4649 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4650                                       bool isread)
4651 {
4652     int cur_el = arm_current_el(env);
4653 
4654     if (cur_el < 2) {
4655         uint64_t hcr = arm_hcr_el2_eff(env);
4656 
4657         if (cur_el == 0) {
4658             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4659                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4660                     return CP_ACCESS_TRAP_EL2;
4661                 }
4662             } else {
4663                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4664                     return CP_ACCESS_TRAP;
4665                 }
4666                 if (hcr & HCR_TDZ) {
4667                     return CP_ACCESS_TRAP_EL2;
4668                 }
4669             }
4670         } else if (hcr & HCR_TDZ) {
4671             return CP_ACCESS_TRAP_EL2;
4672         }
4673     }
4674     return CP_ACCESS_OK;
4675 }
4676 
4677 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4678 {
4679     ARMCPU *cpu = env_archcpu(env);
4680     int dzp_bit = 1 << 4;
4681 
4682     /* DZP indicates whether DC ZVA access is allowed */
4683     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4684         dzp_bit = 0;
4685     }
4686     return cpu->dcz_blocksize | dzp_bit;
4687 }
4688 
4689 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4690                                     bool isread)
4691 {
4692     if (!(env->pstate & PSTATE_SP)) {
4693         /* Access to SP_EL0 is undefined if it's being used as
4694          * the stack pointer.
4695          */
4696         return CP_ACCESS_TRAP_UNCATEGORIZED;
4697     }
4698     return CP_ACCESS_OK;
4699 }
4700 
4701 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4702 {
4703     return env->pstate & PSTATE_SP;
4704 }
4705 
4706 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4707 {
4708     update_spsel(env, val);
4709 }
4710 
4711 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4712                         uint64_t value)
4713 {
4714     ARMCPU *cpu = env_archcpu(env);
4715 
4716     if (raw_read(env, ri) == value) {
4717         /* Skip the TLB flush if nothing actually changed; Linux likes
4718          * to do a lot of pointless SCTLR writes.
4719          */
4720         return;
4721     }
4722 
4723     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4724         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4725         value &= ~SCTLR_M;
4726     }
4727 
4728     raw_write(env, ri, value);
4729     /* ??? Lots of these bits are not implemented.  */
4730     /* This may enable/disable the MMU, so do a TLB flush.  */
4731     tlb_flush(CPU(cpu));
4732 
4733     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4734         /*
4735          * Normally we would always end the TB on an SCTLR write; see the
4736          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4737          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4738          * of hflags from the translator, so do it here.
4739          */
4740         arm_rebuild_hflags(env);
4741     }
4742 }
4743 
4744 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4745                                      bool isread)
4746 {
4747     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4748         return CP_ACCESS_TRAP_FP_EL2;
4749     }
4750     if (env->cp15.cptr_el[3] & CPTR_TFP) {
4751         return CP_ACCESS_TRAP_FP_EL3;
4752     }
4753     return CP_ACCESS_OK;
4754 }
4755 
4756 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4757                        uint64_t value)
4758 {
4759     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4760 }
4761 
4762 static const ARMCPRegInfo v8_cp_reginfo[] = {
4763     /* Minimal set of EL0-visible registers. This will need to be expanded
4764      * significantly for system emulation of AArch64 CPUs.
4765      */
4766     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4767       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4768       .access = PL0_RW, .type = ARM_CP_NZCV },
4769     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4770       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4771       .type = ARM_CP_NO_RAW,
4772       .access = PL0_RW, .accessfn = aa64_daif_access,
4773       .fieldoffset = offsetof(CPUARMState, daif),
4774       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4775     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4776       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4777       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4778       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4779     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4780       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4781       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4782       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4783     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4784       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4785       .access = PL0_R, .type = ARM_CP_NO_RAW,
4786       .readfn = aa64_dczid_read },
4787     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4788       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4789       .access = PL0_W, .type = ARM_CP_DC_ZVA,
4790 #ifndef CONFIG_USER_ONLY
4791       /* Avoid overhead of an access check that always passes in user-mode */
4792       .accessfn = aa64_zva_access,
4793 #endif
4794     },
4795     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4796       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4797       .access = PL1_R, .type = ARM_CP_CURRENTEL },
4798     /* Cache ops: all NOPs since we don't emulate caches */
4799     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4800       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4801       .access = PL1_W, .type = ARM_CP_NOP,
4802       .accessfn = aa64_cacheop_pou_access },
4803     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4804       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4805       .access = PL1_W, .type = ARM_CP_NOP,
4806       .accessfn = aa64_cacheop_pou_access },
4807     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4808       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4809       .access = PL0_W, .type = ARM_CP_NOP,
4810       .accessfn = aa64_cacheop_pou_access },
4811     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4812       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4813       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4814       .type = ARM_CP_NOP },
4815     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4816       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4817       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4818     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4819       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4820       .access = PL0_W, .type = ARM_CP_NOP,
4821       .accessfn = aa64_cacheop_poc_access },
4822     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4823       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4824       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4825     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4826       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4827       .access = PL0_W, .type = ARM_CP_NOP,
4828       .accessfn = aa64_cacheop_pou_access },
4829     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4830       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4831       .access = PL0_W, .type = ARM_CP_NOP,
4832       .accessfn = aa64_cacheop_poc_access },
4833     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4834       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4835       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4836     /* TLBI operations */
4837     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4838       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4839       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4840       .writefn = tlbi_aa64_vmalle1is_write },
4841     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4842       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4843       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4844       .writefn = tlbi_aa64_vae1is_write },
4845     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4846       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4847       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4848       .writefn = tlbi_aa64_vmalle1is_write },
4849     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4850       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4851       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4852       .writefn = tlbi_aa64_vae1is_write },
4853     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4854       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4855       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4856       .writefn = tlbi_aa64_vae1is_write },
4857     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4858       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4859       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4860       .writefn = tlbi_aa64_vae1is_write },
4861     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4862       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4863       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4864       .writefn = tlbi_aa64_vmalle1_write },
4865     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4866       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4867       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4868       .writefn = tlbi_aa64_vae1_write },
4869     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4870       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4871       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4872       .writefn = tlbi_aa64_vmalle1_write },
4873     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4874       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4875       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4876       .writefn = tlbi_aa64_vae1_write },
4877     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4878       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4879       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4880       .writefn = tlbi_aa64_vae1_write },
4881     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4882       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4883       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4884       .writefn = tlbi_aa64_vae1_write },
4885     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4886       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4887       .access = PL2_W, .type = ARM_CP_NOP },
4888     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4889       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4890       .access = PL2_W, .type = ARM_CP_NOP },
4891     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4892       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4893       .access = PL2_W, .type = ARM_CP_NO_RAW,
4894       .writefn = tlbi_aa64_alle1is_write },
4895     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4896       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4897       .access = PL2_W, .type = ARM_CP_NO_RAW,
4898       .writefn = tlbi_aa64_alle1is_write },
4899     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4900       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4901       .access = PL2_W, .type = ARM_CP_NOP },
4902     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4903       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4904       .access = PL2_W, .type = ARM_CP_NOP },
4905     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4906       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4907       .access = PL2_W, .type = ARM_CP_NO_RAW,
4908       .writefn = tlbi_aa64_alle1_write },
4909     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4910       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4911       .access = PL2_W, .type = ARM_CP_NO_RAW,
4912       .writefn = tlbi_aa64_alle1is_write },
4913 #ifndef CONFIG_USER_ONLY
4914     /* 64 bit address translation operations */
4915     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4916       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4917       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4918       .writefn = ats_write64 },
4919     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4920       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4921       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4922       .writefn = ats_write64 },
4923     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4924       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4925       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4926       .writefn = ats_write64 },
4927     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4928       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4929       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4930       .writefn = ats_write64 },
4931     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4932       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4933       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4934       .writefn = ats_write64 },
4935     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4936       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4937       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4938       .writefn = ats_write64 },
4939     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4940       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4941       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4942       .writefn = ats_write64 },
4943     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4944       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4945       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4946       .writefn = ats_write64 },
4947     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4948     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4949       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4950       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4951       .writefn = ats_write64 },
4952     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4953       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4954       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4955       .writefn = ats_write64 },
4956     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4957       .type = ARM_CP_ALIAS,
4958       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4959       .access = PL1_RW, .resetvalue = 0,
4960       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4961       .writefn = par_write },
4962 #endif
4963     /* TLB invalidate last level of translation table walk */
4964     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4965       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4966       .writefn = tlbimva_is_write },
4967     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4968       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4969       .writefn = tlbimvaa_is_write },
4970     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4971       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4972       .writefn = tlbimva_write },
4973     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4974       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4975       .writefn = tlbimvaa_write },
4976     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4977       .type = ARM_CP_NO_RAW, .access = PL2_W,
4978       .writefn = tlbimva_hyp_write },
4979     { .name = "TLBIMVALHIS",
4980       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4981       .type = ARM_CP_NO_RAW, .access = PL2_W,
4982       .writefn = tlbimva_hyp_is_write },
4983     { .name = "TLBIIPAS2",
4984       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4985       .type = ARM_CP_NOP, .access = PL2_W },
4986     { .name = "TLBIIPAS2IS",
4987       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4988       .type = ARM_CP_NOP, .access = PL2_W },
4989     { .name = "TLBIIPAS2L",
4990       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4991       .type = ARM_CP_NOP, .access = PL2_W },
4992     { .name = "TLBIIPAS2LIS",
4993       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4994       .type = ARM_CP_NOP, .access = PL2_W },
4995     /* 32 bit cache operations */
4996     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4997       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
4998     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4999       .type = ARM_CP_NOP, .access = PL1_W },
5000     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5001       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5002     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5003       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5004     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5005       .type = ARM_CP_NOP, .access = PL1_W },
5006     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5007       .type = ARM_CP_NOP, .access = PL1_W },
5008     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5009       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5010     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5011       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5012     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5013       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5014     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5015       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5016     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5017       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5018     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5019       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5020     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5021       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5022     /* MMU Domain access control / MPU write buffer control */
5023     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5024       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5025       .writefn = dacr_write, .raw_writefn = raw_write,
5026       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5027                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5028     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5029       .type = ARM_CP_ALIAS,
5030       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5031       .access = PL1_RW,
5032       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5033     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5034       .type = ARM_CP_ALIAS,
5035       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5036       .access = PL1_RW,
5037       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5038     /* We rely on the access checks not allowing the guest to write to the
5039      * state field when SPSel indicates that it's being used as the stack
5040      * pointer.
5041      */
5042     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5043       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5044       .access = PL1_RW, .accessfn = sp_el0_access,
5045       .type = ARM_CP_ALIAS,
5046       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5047     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5048       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5049       .access = PL2_RW, .type = ARM_CP_ALIAS,
5050       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5051     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5052       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5053       .type = ARM_CP_NO_RAW,
5054       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5055     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5056       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5057       .type = ARM_CP_ALIAS,
5058       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5059       .access = PL2_RW, .accessfn = fpexc32_access },
5060     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5061       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5062       .access = PL2_RW, .resetvalue = 0,
5063       .writefn = dacr_write, .raw_writefn = raw_write,
5064       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5065     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5066       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5067       .access = PL2_RW, .resetvalue = 0,
5068       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5069     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5070       .type = ARM_CP_ALIAS,
5071       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5072       .access = PL2_RW,
5073       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5074     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5075       .type = ARM_CP_ALIAS,
5076       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5077       .access = PL2_RW,
5078       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5079     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5080       .type = ARM_CP_ALIAS,
5081       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5082       .access = PL2_RW,
5083       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5084     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5085       .type = ARM_CP_ALIAS,
5086       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5087       .access = PL2_RW,
5088       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5089     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5090       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5091       .resetvalue = 0,
5092       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5093     { .name = "SDCR", .type = ARM_CP_ALIAS,
5094       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5095       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5096       .writefn = sdcr_write,
5097       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5098     REGINFO_SENTINEL
5099 };
5100 
5101 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
5102 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5103     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5104       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5105       .access = PL2_RW,
5106       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5107     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5108       .type = ARM_CP_NO_RAW,
5109       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5110       .access = PL2_RW,
5111       .type = ARM_CP_CONST, .resetvalue = 0 },
5112     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5113       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5114       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5115     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5116       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5117       .access = PL2_RW,
5118       .type = ARM_CP_CONST, .resetvalue = 0 },
5119     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5120       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5121       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5122     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5123       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5124       .access = PL2_RW, .type = ARM_CP_CONST,
5125       .resetvalue = 0 },
5126     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5127       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5128       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5129     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5130       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5131       .access = PL2_RW, .type = ARM_CP_CONST,
5132       .resetvalue = 0 },
5133     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5134       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5135       .access = PL2_RW, .type = ARM_CP_CONST,
5136       .resetvalue = 0 },
5137     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5138       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5139       .access = PL2_RW, .type = ARM_CP_CONST,
5140       .resetvalue = 0 },
5141     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5142       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5143       .access = PL2_RW, .type = ARM_CP_CONST,
5144       .resetvalue = 0 },
5145     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5146       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5147       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5148     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5149       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5150       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5151       .type = ARM_CP_CONST, .resetvalue = 0 },
5152     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5153       .cp = 15, .opc1 = 6, .crm = 2,
5154       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5155       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5156     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5157       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5158       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5159     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5160       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5161       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5162     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5163       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5164       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5165     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5166       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5167       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5168     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5169       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5170       .resetvalue = 0 },
5171     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5172       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5173       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5174     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5175       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5176       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5177     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5178       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5179       .resetvalue = 0 },
5180     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5181       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5182       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5183     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5184       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5185       .resetvalue = 0 },
5186     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5187       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5188       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5189     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5190       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5191       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5192     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5193       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5194       .access = PL2_RW, .accessfn = access_tda,
5195       .type = ARM_CP_CONST, .resetvalue = 0 },
5196     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5197       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5198       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5199       .type = ARM_CP_CONST, .resetvalue = 0 },
5200     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5201       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5202       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5203     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5204       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5205       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5206     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5207       .type = ARM_CP_CONST,
5208       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5209       .access = PL2_RW, .resetvalue = 0 },
5210     REGINFO_SENTINEL
5211 };
5212 
5213 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5214 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5215     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5216       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5217       .access = PL2_RW,
5218       .type = ARM_CP_CONST, .resetvalue = 0 },
5219     REGINFO_SENTINEL
5220 };
5221 
5222 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5223 {
5224     ARMCPU *cpu = env_archcpu(env);
5225 
5226     if (arm_feature(env, ARM_FEATURE_V8)) {
5227         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5228     } else {
5229         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5230     }
5231 
5232     if (arm_feature(env, ARM_FEATURE_EL3)) {
5233         valid_mask &= ~HCR_HCD;
5234     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5235         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5236          * However, if we're using the SMC PSCI conduit then QEMU is
5237          * effectively acting like EL3 firmware and so the guest at
5238          * EL2 should retain the ability to prevent EL1 from being
5239          * able to make SMC calls into the ersatz firmware, so in
5240          * that case HCR.TSC should be read/write.
5241          */
5242         valid_mask &= ~HCR_TSC;
5243     }
5244 
5245     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5246         if (cpu_isar_feature(aa64_vh, cpu)) {
5247             valid_mask |= HCR_E2H;
5248         }
5249         if (cpu_isar_feature(aa64_lor, cpu)) {
5250             valid_mask |= HCR_TLOR;
5251         }
5252         if (cpu_isar_feature(aa64_pauth, cpu)) {
5253             valid_mask |= HCR_API | HCR_APK;
5254         }
5255     }
5256 
5257     /* Clear RES0 bits.  */
5258     value &= valid_mask;
5259 
5260     /* These bits change the MMU setup:
5261      * HCR_VM enables stage 2 translation
5262      * HCR_PTW forbids certain page-table setups
5263      * HCR_DC Disables stage1 and enables stage2 translation
5264      */
5265     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
5266         tlb_flush(CPU(cpu));
5267     }
5268     env->cp15.hcr_el2 = value;
5269 
5270     /*
5271      * Updates to VI and VF require us to update the status of
5272      * virtual interrupts, which are the logical OR of these bits
5273      * and the state of the input lines from the GIC. (This requires
5274      * that we have the iothread lock, which is done by marking the
5275      * reginfo structs as ARM_CP_IO.)
5276      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5277      * possible for it to be taken immediately, because VIRQ and
5278      * VFIQ are masked unless running at EL0 or EL1, and HCR
5279      * can only be written at EL2.
5280      */
5281     g_assert(qemu_mutex_iothread_locked());
5282     arm_cpu_update_virq(cpu);
5283     arm_cpu_update_vfiq(cpu);
5284 }
5285 
5286 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5287 {
5288     do_hcr_write(env, value, 0);
5289 }
5290 
5291 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5292                           uint64_t value)
5293 {
5294     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5295     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5296     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5297 }
5298 
5299 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5300                          uint64_t value)
5301 {
5302     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5303     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5304     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5305 }
5306 
5307 /*
5308  * Return the effective value of HCR_EL2.
5309  * Bits that are not included here:
5310  * RW       (read from SCR_EL3.RW as needed)
5311  */
5312 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5313 {
5314     uint64_t ret = env->cp15.hcr_el2;
5315 
5316     if (arm_is_secure_below_el3(env)) {
5317         /*
5318          * "This register has no effect if EL2 is not enabled in the
5319          * current Security state".  This is ARMv8.4-SecEL2 speak for
5320          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5321          *
5322          * Prior to that, the language was "In an implementation that
5323          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5324          * as if this field is 0 for all purposes other than a direct
5325          * read or write access of HCR_EL2".  With lots of enumeration
5326          * on a per-field basis.  In current QEMU, this is condition
5327          * is arm_is_secure_below_el3.
5328          *
5329          * Since the v8.4 language applies to the entire register, and
5330          * appears to be backward compatible, use that.
5331          */
5332         return 0;
5333     }
5334 
5335     /*
5336      * For a cpu that supports both aarch64 and aarch32, we can set bits
5337      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5338      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5339      */
5340     if (!arm_el_is_aa64(env, 2)) {
5341         uint64_t aa32_valid;
5342 
5343         /*
5344          * These bits are up-to-date as of ARMv8.6.
5345          * For HCR, it's easiest to list just the 2 bits that are invalid.
5346          * For HCR2, list those that are valid.
5347          */
5348         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5349         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5350                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5351         ret &= aa32_valid;
5352     }
5353 
5354     if (ret & HCR_TGE) {
5355         /* These bits are up-to-date as of ARMv8.6.  */
5356         if (ret & HCR_E2H) {
5357             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5358                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5359                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5360                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5361                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5362                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5363         } else {
5364             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5365         }
5366         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5367                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5368                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5369                  HCR_TLOR);
5370     }
5371 
5372     return ret;
5373 }
5374 
5375 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5376                            uint64_t value)
5377 {
5378     /*
5379      * For A-profile AArch32 EL3, if NSACR.CP10
5380      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5381      */
5382     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5383         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5384         value &= ~(0x3 << 10);
5385         value |= env->cp15.cptr_el[2] & (0x3 << 10);
5386     }
5387     env->cp15.cptr_el[2] = value;
5388 }
5389 
5390 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5391 {
5392     /*
5393      * For A-profile AArch32 EL3, if NSACR.CP10
5394      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5395      */
5396     uint64_t value = env->cp15.cptr_el[2];
5397 
5398     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5399         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5400         value |= 0x3 << 10;
5401     }
5402     return value;
5403 }
5404 
5405 static const ARMCPRegInfo el2_cp_reginfo[] = {
5406     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5407       .type = ARM_CP_IO,
5408       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5409       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5410       .writefn = hcr_write },
5411     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5412       .type = ARM_CP_ALIAS | ARM_CP_IO,
5413       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5414       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5415       .writefn = hcr_writelow },
5416     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5417       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5418       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5419     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5420       .type = ARM_CP_ALIAS,
5421       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5422       .access = PL2_RW,
5423       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5424     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5425       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5426       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5427     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5428       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5429       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5430     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5431       .type = ARM_CP_ALIAS,
5432       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5433       .access = PL2_RW,
5434       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5435     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5436       .type = ARM_CP_ALIAS,
5437       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5438       .access = PL2_RW,
5439       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5440     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5441       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5442       .access = PL2_RW, .writefn = vbar_write,
5443       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5444       .resetvalue = 0 },
5445     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5446       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5447       .access = PL3_RW, .type = ARM_CP_ALIAS,
5448       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5449     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5450       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5451       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5452       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5453       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5454     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5455       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5456       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5457       .resetvalue = 0 },
5458     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5459       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5460       .access = PL2_RW, .type = ARM_CP_ALIAS,
5461       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5462     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5463       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5464       .access = PL2_RW, .type = ARM_CP_CONST,
5465       .resetvalue = 0 },
5466     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5467     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5468       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5469       .access = PL2_RW, .type = ARM_CP_CONST,
5470       .resetvalue = 0 },
5471     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5472       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5473       .access = PL2_RW, .type = ARM_CP_CONST,
5474       .resetvalue = 0 },
5475     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5476       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5477       .access = PL2_RW, .type = ARM_CP_CONST,
5478       .resetvalue = 0 },
5479     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5480       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5481       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5482       /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5483       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5484     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5485       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5486       .type = ARM_CP_ALIAS,
5487       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5488       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5489     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5490       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5491       .access = PL2_RW,
5492       /* no .writefn needed as this can't cause an ASID change;
5493        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5494        */
5495       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5496     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5497       .cp = 15, .opc1 = 6, .crm = 2,
5498       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5499       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5500       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5501       .writefn = vttbr_write },
5502     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5503       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5504       .access = PL2_RW, .writefn = vttbr_write,
5505       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5506     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5507       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5508       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5509       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5510     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5511       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5512       .access = PL2_RW, .resetvalue = 0,
5513       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5514     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5515       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5516       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5517       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5518     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5519       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5520       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5521     { .name = "TLBIALLNSNH",
5522       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5523       .type = ARM_CP_NO_RAW, .access = PL2_W,
5524       .writefn = tlbiall_nsnh_write },
5525     { .name = "TLBIALLNSNHIS",
5526       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5527       .type = ARM_CP_NO_RAW, .access = PL2_W,
5528       .writefn = tlbiall_nsnh_is_write },
5529     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5530       .type = ARM_CP_NO_RAW, .access = PL2_W,
5531       .writefn = tlbiall_hyp_write },
5532     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5533       .type = ARM_CP_NO_RAW, .access = PL2_W,
5534       .writefn = tlbiall_hyp_is_write },
5535     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5536       .type = ARM_CP_NO_RAW, .access = PL2_W,
5537       .writefn = tlbimva_hyp_write },
5538     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5539       .type = ARM_CP_NO_RAW, .access = PL2_W,
5540       .writefn = tlbimva_hyp_is_write },
5541     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5542       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5543       .type = ARM_CP_NO_RAW, .access = PL2_W,
5544       .writefn = tlbi_aa64_alle2_write },
5545     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5546       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5547       .type = ARM_CP_NO_RAW, .access = PL2_W,
5548       .writefn = tlbi_aa64_vae2_write },
5549     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5550       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5551       .access = PL2_W, .type = ARM_CP_NO_RAW,
5552       .writefn = tlbi_aa64_vae2_write },
5553     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5554       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5555       .access = PL2_W, .type = ARM_CP_NO_RAW,
5556       .writefn = tlbi_aa64_alle2is_write },
5557     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5558       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5559       .type = ARM_CP_NO_RAW, .access = PL2_W,
5560       .writefn = tlbi_aa64_vae2is_write },
5561     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5562       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5563       .access = PL2_W, .type = ARM_CP_NO_RAW,
5564       .writefn = tlbi_aa64_vae2is_write },
5565 #ifndef CONFIG_USER_ONLY
5566     /* Unlike the other EL2-related AT operations, these must
5567      * UNDEF from EL3 if EL2 is not implemented, which is why we
5568      * define them here rather than with the rest of the AT ops.
5569      */
5570     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5571       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5572       .access = PL2_W, .accessfn = at_s1e2_access,
5573       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5574     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5575       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5576       .access = PL2_W, .accessfn = at_s1e2_access,
5577       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5578     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5579      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5580      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5581      * to behave as if SCR.NS was 1.
5582      */
5583     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5584       .access = PL2_W,
5585       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5586     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5587       .access = PL2_W,
5588       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5589     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5590       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5591       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5592        * reset values as IMPDEF. We choose to reset to 3 to comply with
5593        * both ARMv7 and ARMv8.
5594        */
5595       .access = PL2_RW, .resetvalue = 3,
5596       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5597     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5598       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5599       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5600       .writefn = gt_cntvoff_write,
5601       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5602     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5603       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5604       .writefn = gt_cntvoff_write,
5605       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5606     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5607       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5608       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5609       .type = ARM_CP_IO, .access = PL2_RW,
5610       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5611     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5612       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5613       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5614       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5615     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5616       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5617       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5618       .resetfn = gt_hyp_timer_reset,
5619       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5620     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5621       .type = ARM_CP_IO,
5622       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5623       .access = PL2_RW,
5624       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5625       .resetvalue = 0,
5626       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5627 #endif
5628     /* The only field of MDCR_EL2 that has a defined architectural reset value
5629      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5630      * don't implement any PMU event counters, so using zero as a reset
5631      * value for MDCR_EL2 is okay
5632      */
5633     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5634       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5635       .access = PL2_RW, .resetvalue = 0,
5636       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5637     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5638       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5639       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5640       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5641     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5642       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5643       .access = PL2_RW,
5644       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5645     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5646       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5647       .access = PL2_RW,
5648       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5649     REGINFO_SENTINEL
5650 };
5651 
5652 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5653     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5654       .type = ARM_CP_ALIAS | ARM_CP_IO,
5655       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5656       .access = PL2_RW,
5657       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5658       .writefn = hcr_writehigh },
5659     REGINFO_SENTINEL
5660 };
5661 
5662 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5663                                    bool isread)
5664 {
5665     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5666      * At Secure EL1 it traps to EL3.
5667      */
5668     if (arm_current_el(env) == 3) {
5669         return CP_ACCESS_OK;
5670     }
5671     if (arm_is_secure_below_el3(env)) {
5672         return CP_ACCESS_TRAP_EL3;
5673     }
5674     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5675     if (isread) {
5676         return CP_ACCESS_OK;
5677     }
5678     return CP_ACCESS_TRAP_UNCATEGORIZED;
5679 }
5680 
5681 static const ARMCPRegInfo el3_cp_reginfo[] = {
5682     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5683       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5684       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5685       .resetvalue = 0, .writefn = scr_write },
5686     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5687       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5688       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5689       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5690       .writefn = scr_write },
5691     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5692       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5693       .access = PL3_RW, .resetvalue = 0,
5694       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5695     { .name = "SDER",
5696       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5697       .access = PL3_RW, .resetvalue = 0,
5698       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5699     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5700       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5701       .writefn = vbar_write, .resetvalue = 0,
5702       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5703     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5704       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5705       .access = PL3_RW, .resetvalue = 0,
5706       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5707     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5708       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5709       .access = PL3_RW,
5710       /* no .writefn needed as this can't cause an ASID change;
5711        * we must provide a .raw_writefn and .resetfn because we handle
5712        * reset and migration for the AArch32 TTBCR(S), which might be
5713        * using mask and base_mask.
5714        */
5715       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5716       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5717     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5718       .type = ARM_CP_ALIAS,
5719       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5720       .access = PL3_RW,
5721       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5722     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5723       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5724       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5725     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5726       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5727       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5728     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5729       .type = ARM_CP_ALIAS,
5730       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5731       .access = PL3_RW,
5732       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5733     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5734       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5735       .access = PL3_RW, .writefn = vbar_write,
5736       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5737       .resetvalue = 0 },
5738     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5739       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5740       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5741       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5742     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5743       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5744       .access = PL3_RW, .resetvalue = 0,
5745       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5746     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5747       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5748       .access = PL3_RW, .type = ARM_CP_CONST,
5749       .resetvalue = 0 },
5750     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5751       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5752       .access = PL3_RW, .type = ARM_CP_CONST,
5753       .resetvalue = 0 },
5754     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5755       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5756       .access = PL3_RW, .type = ARM_CP_CONST,
5757       .resetvalue = 0 },
5758     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5759       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5760       .access = PL3_W, .type = ARM_CP_NO_RAW,
5761       .writefn = tlbi_aa64_alle3is_write },
5762     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5763       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5764       .access = PL3_W, .type = ARM_CP_NO_RAW,
5765       .writefn = tlbi_aa64_vae3is_write },
5766     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5767       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5768       .access = PL3_W, .type = ARM_CP_NO_RAW,
5769       .writefn = tlbi_aa64_vae3is_write },
5770     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5771       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5772       .access = PL3_W, .type = ARM_CP_NO_RAW,
5773       .writefn = tlbi_aa64_alle3_write },
5774     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5775       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5776       .access = PL3_W, .type = ARM_CP_NO_RAW,
5777       .writefn = tlbi_aa64_vae3_write },
5778     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5779       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5780       .access = PL3_W, .type = ARM_CP_NO_RAW,
5781       .writefn = tlbi_aa64_vae3_write },
5782     REGINFO_SENTINEL
5783 };
5784 
5785 #ifndef CONFIG_USER_ONLY
5786 /* Test if system register redirection is to occur in the current state.  */
5787 static bool redirect_for_e2h(CPUARMState *env)
5788 {
5789     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5790 }
5791 
5792 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5793 {
5794     CPReadFn *readfn;
5795 
5796     if (redirect_for_e2h(env)) {
5797         /* Switch to the saved EL2 version of the register.  */
5798         ri = ri->opaque;
5799         readfn = ri->readfn;
5800     } else {
5801         readfn = ri->orig_readfn;
5802     }
5803     if (readfn == NULL) {
5804         readfn = raw_read;
5805     }
5806     return readfn(env, ri);
5807 }
5808 
5809 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5810                           uint64_t value)
5811 {
5812     CPWriteFn *writefn;
5813 
5814     if (redirect_for_e2h(env)) {
5815         /* Switch to the saved EL2 version of the register.  */
5816         ri = ri->opaque;
5817         writefn = ri->writefn;
5818     } else {
5819         writefn = ri->orig_writefn;
5820     }
5821     if (writefn == NULL) {
5822         writefn = raw_write;
5823     }
5824     writefn(env, ri, value);
5825 }
5826 
5827 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5828 {
5829     struct E2HAlias {
5830         uint32_t src_key, dst_key, new_key;
5831         const char *src_name, *dst_name, *new_name;
5832         bool (*feature)(const ARMISARegisters *id);
5833     };
5834 
5835 #define K(op0, op1, crn, crm, op2) \
5836     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5837 
5838     static const struct E2HAlias aliases[] = {
5839         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
5840           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5841         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
5842           "CPACR", "CPTR_EL2", "CPACR_EL12" },
5843         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
5844           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5845         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
5846           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5847         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
5848           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5849         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
5850           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5851         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
5852           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5853         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
5854           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5855         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
5856           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5857         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
5858           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5859         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
5860           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5861         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5862           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5863         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5864           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5865         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5866           "VBAR", "VBAR_EL2", "VBAR_EL12" },
5867         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5868           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5869         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5870           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5871 
5872         /*
5873          * Note that redirection of ZCR is mentioned in the description
5874          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5875          * not in the summary table.
5876          */
5877         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
5878           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5879 
5880         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5881         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5882     };
5883 #undef K
5884 
5885     size_t i;
5886 
5887     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5888         const struct E2HAlias *a = &aliases[i];
5889         ARMCPRegInfo *src_reg, *dst_reg;
5890 
5891         if (a->feature && !a->feature(&cpu->isar)) {
5892             continue;
5893         }
5894 
5895         src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
5896         dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
5897         g_assert(src_reg != NULL);
5898         g_assert(dst_reg != NULL);
5899 
5900         /* Cross-compare names to detect typos in the keys.  */
5901         g_assert(strcmp(src_reg->name, a->src_name) == 0);
5902         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5903 
5904         /* None of the core system registers use opaque; we will.  */
5905         g_assert(src_reg->opaque == NULL);
5906 
5907         /* Create alias before redirection so we dup the right data. */
5908         if (a->new_key) {
5909             ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5910             uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
5911             bool ok;
5912 
5913             new_reg->name = a->new_name;
5914             new_reg->type |= ARM_CP_ALIAS;
5915             /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
5916             new_reg->access &= PL2_RW | PL3_RW;
5917 
5918             ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
5919             g_assert(ok);
5920         }
5921 
5922         src_reg->opaque = dst_reg;
5923         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5924         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5925         if (!src_reg->raw_readfn) {
5926             src_reg->raw_readfn = raw_read;
5927         }
5928         if (!src_reg->raw_writefn) {
5929             src_reg->raw_writefn = raw_write;
5930         }
5931         src_reg->readfn = el2_e2h_read;
5932         src_reg->writefn = el2_e2h_write;
5933     }
5934 }
5935 #endif
5936 
5937 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5938                                      bool isread)
5939 {
5940     int cur_el = arm_current_el(env);
5941 
5942     if (cur_el < 2) {
5943         uint64_t hcr = arm_hcr_el2_eff(env);
5944 
5945         if (cur_el == 0) {
5946             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5947                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
5948                     return CP_ACCESS_TRAP_EL2;
5949                 }
5950             } else {
5951                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5952                     return CP_ACCESS_TRAP;
5953                 }
5954                 if (hcr & HCR_TID2) {
5955                     return CP_ACCESS_TRAP_EL2;
5956                 }
5957             }
5958         } else if (hcr & HCR_TID2) {
5959             return CP_ACCESS_TRAP_EL2;
5960         }
5961     }
5962 
5963     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
5964         return CP_ACCESS_TRAP_EL2;
5965     }
5966 
5967     return CP_ACCESS_OK;
5968 }
5969 
5970 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5971                         uint64_t value)
5972 {
5973     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5974      * read via a bit in OSLSR_EL1.
5975      */
5976     int oslock;
5977 
5978     if (ri->state == ARM_CP_STATE_AA32) {
5979         oslock = (value == 0xC5ACCE55);
5980     } else {
5981         oslock = value & 1;
5982     }
5983 
5984     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5985 }
5986 
5987 static const ARMCPRegInfo debug_cp_reginfo[] = {
5988     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5989      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5990      * unlike DBGDRAR it is never accessible from EL0.
5991      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5992      * accessor.
5993      */
5994     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5995       .access = PL0_R, .accessfn = access_tdra,
5996       .type = ARM_CP_CONST, .resetvalue = 0 },
5997     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5998       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5999       .access = PL1_R, .accessfn = access_tdra,
6000       .type = ARM_CP_CONST, .resetvalue = 0 },
6001     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6002       .access = PL0_R, .accessfn = access_tdra,
6003       .type = ARM_CP_CONST, .resetvalue = 0 },
6004     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6005     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6006       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6007       .access = PL1_RW, .accessfn = access_tda,
6008       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6009       .resetvalue = 0 },
6010     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
6011      * We don't implement the configurable EL0 access.
6012      */
6013     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
6014       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6015       .type = ARM_CP_ALIAS,
6016       .access = PL1_R, .accessfn = access_tda,
6017       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6018     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6019       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6020       .access = PL1_W, .type = ARM_CP_NO_RAW,
6021       .accessfn = access_tdosa,
6022       .writefn = oslar_write },
6023     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6024       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6025       .access = PL1_R, .resetvalue = 10,
6026       .accessfn = access_tdosa,
6027       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6028     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6029     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6030       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6031       .access = PL1_RW, .accessfn = access_tdosa,
6032       .type = ARM_CP_NOP },
6033     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6034      * implement vector catch debug events yet.
6035      */
6036     { .name = "DBGVCR",
6037       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6038       .access = PL1_RW, .accessfn = access_tda,
6039       .type = ARM_CP_NOP },
6040     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6041      * to save and restore a 32-bit guest's DBGVCR)
6042      */
6043     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6044       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6045       .access = PL2_RW, .accessfn = access_tda,
6046       .type = ARM_CP_NOP },
6047     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6048      * Channel but Linux may try to access this register. The 32-bit
6049      * alias is DBGDCCINT.
6050      */
6051     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6052       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6053       .access = PL1_RW, .accessfn = access_tda,
6054       .type = ARM_CP_NOP },
6055     REGINFO_SENTINEL
6056 };
6057 
6058 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6059     /* 64 bit access versions of the (dummy) debug registers */
6060     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6061       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6062     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6063       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6064     REGINFO_SENTINEL
6065 };
6066 
6067 /* Return the exception level to which exceptions should be taken
6068  * via SVEAccessTrap.  If an exception should be routed through
6069  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6070  * take care of raising that exception.
6071  * C.f. the ARM pseudocode function CheckSVEEnabled.
6072  */
6073 int sve_exception_el(CPUARMState *env, int el)
6074 {
6075 #ifndef CONFIG_USER_ONLY
6076     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6077 
6078     if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6079         bool disabled = false;
6080 
6081         /* The CPACR.ZEN controls traps to EL1:
6082          * 0, 2 : trap EL0 and EL1 accesses
6083          * 1    : trap only EL0 accesses
6084          * 3    : trap no accesses
6085          */
6086         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6087             disabled = true;
6088         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6089             disabled = el == 0;
6090         }
6091         if (disabled) {
6092             /* route_to_el2 */
6093             return hcr_el2 & HCR_TGE ? 2 : 1;
6094         }
6095 
6096         /* Check CPACR.FPEN.  */
6097         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6098             disabled = true;
6099         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6100             disabled = el == 0;
6101         }
6102         if (disabled) {
6103             return 0;
6104         }
6105     }
6106 
6107     /* CPTR_EL2.  Since TZ and TFP are positive,
6108      * they will be zero when EL2 is not present.
6109      */
6110     if (el <= 2 && !arm_is_secure_below_el3(env)) {
6111         if (env->cp15.cptr_el[2] & CPTR_TZ) {
6112             return 2;
6113         }
6114         if (env->cp15.cptr_el[2] & CPTR_TFP) {
6115             return 0;
6116         }
6117     }
6118 
6119     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6120     if (arm_feature(env, ARM_FEATURE_EL3)
6121         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6122         return 3;
6123     }
6124 #endif
6125     return 0;
6126 }
6127 
6128 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6129 {
6130     uint32_t end_len;
6131 
6132     end_len = start_len &= 0xf;
6133     if (!test_bit(start_len, cpu->sve_vq_map)) {
6134         end_len = find_last_bit(cpu->sve_vq_map, start_len);
6135         assert(end_len < start_len);
6136     }
6137     return end_len;
6138 }
6139 
6140 /*
6141  * Given that SVE is enabled, return the vector length for EL.
6142  */
6143 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6144 {
6145     ARMCPU *cpu = env_archcpu(env);
6146     uint32_t zcr_len = cpu->sve_max_vq - 1;
6147 
6148     if (el <= 1) {
6149         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6150     }
6151     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6152         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6153     }
6154     if (arm_feature(env, ARM_FEATURE_EL3)) {
6155         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6156     }
6157 
6158     return sve_zcr_get_valid_len(cpu, zcr_len);
6159 }
6160 
6161 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6162                       uint64_t value)
6163 {
6164     int cur_el = arm_current_el(env);
6165     int old_len = sve_zcr_len_for_el(env, cur_el);
6166     int new_len;
6167 
6168     /* Bits other than [3:0] are RAZ/WI.  */
6169     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6170     raw_write(env, ri, value & 0xf);
6171 
6172     /*
6173      * Because we arrived here, we know both FP and SVE are enabled;
6174      * otherwise we would have trapped access to the ZCR_ELn register.
6175      */
6176     new_len = sve_zcr_len_for_el(env, cur_el);
6177     if (new_len < old_len) {
6178         aarch64_sve_narrow_vq(env, new_len + 1);
6179     }
6180 }
6181 
6182 static const ARMCPRegInfo zcr_el1_reginfo = {
6183     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6184     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6185     .access = PL1_RW, .type = ARM_CP_SVE,
6186     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6187     .writefn = zcr_write, .raw_writefn = raw_write
6188 };
6189 
6190 static const ARMCPRegInfo zcr_el2_reginfo = {
6191     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6192     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6193     .access = PL2_RW, .type = ARM_CP_SVE,
6194     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6195     .writefn = zcr_write, .raw_writefn = raw_write
6196 };
6197 
6198 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6199     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6200     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6201     .access = PL2_RW, .type = ARM_CP_SVE,
6202     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6203 };
6204 
6205 static const ARMCPRegInfo zcr_el3_reginfo = {
6206     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6207     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6208     .access = PL3_RW, .type = ARM_CP_SVE,
6209     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6210     .writefn = zcr_write, .raw_writefn = raw_write
6211 };
6212 
6213 void hw_watchpoint_update(ARMCPU *cpu, int n)
6214 {
6215     CPUARMState *env = &cpu->env;
6216     vaddr len = 0;
6217     vaddr wvr = env->cp15.dbgwvr[n];
6218     uint64_t wcr = env->cp15.dbgwcr[n];
6219     int mask;
6220     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6221 
6222     if (env->cpu_watchpoint[n]) {
6223         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6224         env->cpu_watchpoint[n] = NULL;
6225     }
6226 
6227     if (!extract64(wcr, 0, 1)) {
6228         /* E bit clear : watchpoint disabled */
6229         return;
6230     }
6231 
6232     switch (extract64(wcr, 3, 2)) {
6233     case 0:
6234         /* LSC 00 is reserved and must behave as if the wp is disabled */
6235         return;
6236     case 1:
6237         flags |= BP_MEM_READ;
6238         break;
6239     case 2:
6240         flags |= BP_MEM_WRITE;
6241         break;
6242     case 3:
6243         flags |= BP_MEM_ACCESS;
6244         break;
6245     }
6246 
6247     /* Attempts to use both MASK and BAS fields simultaneously are
6248      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6249      * thus generating a watchpoint for every byte in the masked region.
6250      */
6251     mask = extract64(wcr, 24, 4);
6252     if (mask == 1 || mask == 2) {
6253         /* Reserved values of MASK; we must act as if the mask value was
6254          * some non-reserved value, or as if the watchpoint were disabled.
6255          * We choose the latter.
6256          */
6257         return;
6258     } else if (mask) {
6259         /* Watchpoint covers an aligned area up to 2GB in size */
6260         len = 1ULL << mask;
6261         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6262          * whether the watchpoint fires when the unmasked bits match; we opt
6263          * to generate the exceptions.
6264          */
6265         wvr &= ~(len - 1);
6266     } else {
6267         /* Watchpoint covers bytes defined by the byte address select bits */
6268         int bas = extract64(wcr, 5, 8);
6269         int basstart;
6270 
6271         if (extract64(wvr, 2, 1)) {
6272             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6273              * ignored, and BAS[3:0] define which bytes to watch.
6274              */
6275             bas &= 0xf;
6276         }
6277 
6278         if (bas == 0) {
6279             /* This must act as if the watchpoint is disabled */
6280             return;
6281         }
6282 
6283         /* The BAS bits are supposed to be programmed to indicate a contiguous
6284          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6285          * we fire for each byte in the word/doubleword addressed by the WVR.
6286          * We choose to ignore any non-zero bits after the first range of 1s.
6287          */
6288         basstart = ctz32(bas);
6289         len = cto32(bas >> basstart);
6290         wvr += basstart;
6291     }
6292 
6293     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6294                           &env->cpu_watchpoint[n]);
6295 }
6296 
6297 void hw_watchpoint_update_all(ARMCPU *cpu)
6298 {
6299     int i;
6300     CPUARMState *env = &cpu->env;
6301 
6302     /* Completely clear out existing QEMU watchpoints and our array, to
6303      * avoid possible stale entries following migration load.
6304      */
6305     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6306     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6307 
6308     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6309         hw_watchpoint_update(cpu, i);
6310     }
6311 }
6312 
6313 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6314                          uint64_t value)
6315 {
6316     ARMCPU *cpu = env_archcpu(env);
6317     int i = ri->crm;
6318 
6319     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6320      * register reads and behaves as if values written are sign extended.
6321      * Bits [1:0] are RES0.
6322      */
6323     value = sextract64(value, 0, 49) & ~3ULL;
6324 
6325     raw_write(env, ri, value);
6326     hw_watchpoint_update(cpu, i);
6327 }
6328 
6329 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6330                          uint64_t value)
6331 {
6332     ARMCPU *cpu = env_archcpu(env);
6333     int i = ri->crm;
6334 
6335     raw_write(env, ri, value);
6336     hw_watchpoint_update(cpu, i);
6337 }
6338 
6339 void hw_breakpoint_update(ARMCPU *cpu, int n)
6340 {
6341     CPUARMState *env = &cpu->env;
6342     uint64_t bvr = env->cp15.dbgbvr[n];
6343     uint64_t bcr = env->cp15.dbgbcr[n];
6344     vaddr addr;
6345     int bt;
6346     int flags = BP_CPU;
6347 
6348     if (env->cpu_breakpoint[n]) {
6349         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6350         env->cpu_breakpoint[n] = NULL;
6351     }
6352 
6353     if (!extract64(bcr, 0, 1)) {
6354         /* E bit clear : watchpoint disabled */
6355         return;
6356     }
6357 
6358     bt = extract64(bcr, 20, 4);
6359 
6360     switch (bt) {
6361     case 4: /* unlinked address mismatch (reserved if AArch64) */
6362     case 5: /* linked address mismatch (reserved if AArch64) */
6363         qemu_log_mask(LOG_UNIMP,
6364                       "arm: address mismatch breakpoint types not implemented\n");
6365         return;
6366     case 0: /* unlinked address match */
6367     case 1: /* linked address match */
6368     {
6369         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6370          * we behave as if the register was sign extended. Bits [1:0] are
6371          * RES0. The BAS field is used to allow setting breakpoints on 16
6372          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6373          * a bp will fire if the addresses covered by the bp and the addresses
6374          * covered by the insn overlap but the insn doesn't start at the
6375          * start of the bp address range. We choose to require the insn and
6376          * the bp to have the same address. The constraints on writing to
6377          * BAS enforced in dbgbcr_write mean we have only four cases:
6378          *  0b0000  => no breakpoint
6379          *  0b0011  => breakpoint on addr
6380          *  0b1100  => breakpoint on addr + 2
6381          *  0b1111  => breakpoint on addr
6382          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6383          */
6384         int bas = extract64(bcr, 5, 4);
6385         addr = sextract64(bvr, 0, 49) & ~3ULL;
6386         if (bas == 0) {
6387             return;
6388         }
6389         if (bas == 0xc) {
6390             addr += 2;
6391         }
6392         break;
6393     }
6394     case 2: /* unlinked context ID match */
6395     case 8: /* unlinked VMID match (reserved if no EL2) */
6396     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6397         qemu_log_mask(LOG_UNIMP,
6398                       "arm: unlinked context breakpoint types not implemented\n");
6399         return;
6400     case 9: /* linked VMID match (reserved if no EL2) */
6401     case 11: /* linked context ID and VMID match (reserved if no EL2) */
6402     case 3: /* linked context ID match */
6403     default:
6404         /* We must generate no events for Linked context matches (unless
6405          * they are linked to by some other bp/wp, which is handled in
6406          * updates for the linking bp/wp). We choose to also generate no events
6407          * for reserved values.
6408          */
6409         return;
6410     }
6411 
6412     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6413 }
6414 
6415 void hw_breakpoint_update_all(ARMCPU *cpu)
6416 {
6417     int i;
6418     CPUARMState *env = &cpu->env;
6419 
6420     /* Completely clear out existing QEMU breakpoints and our array, to
6421      * avoid possible stale entries following migration load.
6422      */
6423     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6424     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6425 
6426     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6427         hw_breakpoint_update(cpu, i);
6428     }
6429 }
6430 
6431 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6432                          uint64_t value)
6433 {
6434     ARMCPU *cpu = env_archcpu(env);
6435     int i = ri->crm;
6436 
6437     raw_write(env, ri, value);
6438     hw_breakpoint_update(cpu, i);
6439 }
6440 
6441 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6442                          uint64_t value)
6443 {
6444     ARMCPU *cpu = env_archcpu(env);
6445     int i = ri->crm;
6446 
6447     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6448      * copy of BAS[0].
6449      */
6450     value = deposit64(value, 6, 1, extract64(value, 5, 1));
6451     value = deposit64(value, 8, 1, extract64(value, 7, 1));
6452 
6453     raw_write(env, ri, value);
6454     hw_breakpoint_update(cpu, i);
6455 }
6456 
6457 static void define_debug_regs(ARMCPU *cpu)
6458 {
6459     /* Define v7 and v8 architectural debug registers.
6460      * These are just dummy implementations for now.
6461      */
6462     int i;
6463     int wrps, brps, ctx_cmps;
6464     ARMCPRegInfo dbgdidr = {
6465         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
6466         .access = PL0_R, .accessfn = access_tda,
6467         .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6468     };
6469 
6470     /* Note that all these register fields hold "number of Xs minus 1". */
6471     brps = arm_num_brps(cpu);
6472     wrps = arm_num_wrps(cpu);
6473     ctx_cmps = arm_num_ctx_cmps(cpu);
6474 
6475     assert(ctx_cmps <= brps);
6476 
6477     define_one_arm_cp_reg(cpu, &dbgdidr);
6478     define_arm_cp_regs(cpu, debug_cp_reginfo);
6479 
6480     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6481         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6482     }
6483 
6484     for (i = 0; i < brps; i++) {
6485         ARMCPRegInfo dbgregs[] = {
6486             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6487               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6488               .access = PL1_RW, .accessfn = access_tda,
6489               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6490               .writefn = dbgbvr_write, .raw_writefn = raw_write
6491             },
6492             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6493               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6494               .access = PL1_RW, .accessfn = access_tda,
6495               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6496               .writefn = dbgbcr_write, .raw_writefn = raw_write
6497             },
6498             REGINFO_SENTINEL
6499         };
6500         define_arm_cp_regs(cpu, dbgregs);
6501     }
6502 
6503     for (i = 0; i < wrps; i++) {
6504         ARMCPRegInfo dbgregs[] = {
6505             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6506               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6507               .access = PL1_RW, .accessfn = access_tda,
6508               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6509               .writefn = dbgwvr_write, .raw_writefn = raw_write
6510             },
6511             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6512               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6513               .access = PL1_RW, .accessfn = access_tda,
6514               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6515               .writefn = dbgwcr_write, .raw_writefn = raw_write
6516             },
6517             REGINFO_SENTINEL
6518         };
6519         define_arm_cp_regs(cpu, dbgregs);
6520     }
6521 }
6522 
6523 static void define_pmu_regs(ARMCPU *cpu)
6524 {
6525     /*
6526      * v7 performance monitor control register: same implementor
6527      * field as main ID register, and we implement four counters in
6528      * addition to the cycle count register.
6529      */
6530     unsigned int i, pmcrn = 4;
6531     ARMCPRegInfo pmcr = {
6532         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6533         .access = PL0_RW,
6534         .type = ARM_CP_IO | ARM_CP_ALIAS,
6535         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6536         .accessfn = pmreg_access, .writefn = pmcr_write,
6537         .raw_writefn = raw_write,
6538     };
6539     ARMCPRegInfo pmcr64 = {
6540         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6541         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6542         .access = PL0_RW, .accessfn = pmreg_access,
6543         .type = ARM_CP_IO,
6544         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6545         .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6546                       PMCRLC,
6547         .writefn = pmcr_write, .raw_writefn = raw_write,
6548     };
6549     define_one_arm_cp_reg(cpu, &pmcr);
6550     define_one_arm_cp_reg(cpu, &pmcr64);
6551     for (i = 0; i < pmcrn; i++) {
6552         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6553         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6554         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6555         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6556         ARMCPRegInfo pmev_regs[] = {
6557             { .name = pmevcntr_name, .cp = 15, .crn = 14,
6558               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6559               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6560               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6561               .accessfn = pmreg_access },
6562             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6563               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6564               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6565               .type = ARM_CP_IO,
6566               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6567               .raw_readfn = pmevcntr_rawread,
6568               .raw_writefn = pmevcntr_rawwrite },
6569             { .name = pmevtyper_name, .cp = 15, .crn = 14,
6570               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6571               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6572               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6573               .accessfn = pmreg_access },
6574             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6575               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6576               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6577               .type = ARM_CP_IO,
6578               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6579               .raw_writefn = pmevtyper_rawwrite },
6580             REGINFO_SENTINEL
6581         };
6582         define_arm_cp_regs(cpu, pmev_regs);
6583         g_free(pmevcntr_name);
6584         g_free(pmevcntr_el0_name);
6585         g_free(pmevtyper_name);
6586         g_free(pmevtyper_el0_name);
6587     }
6588     if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6589         ARMCPRegInfo v81_pmu_regs[] = {
6590             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6591               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6592               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6593               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6594             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6595               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6596               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6597               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6598             REGINFO_SENTINEL
6599         };
6600         define_arm_cp_regs(cpu, v81_pmu_regs);
6601     }
6602     if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6603         static const ARMCPRegInfo v84_pmmir = {
6604             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6605             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6606             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6607             .resetvalue = 0
6608         };
6609         define_one_arm_cp_reg(cpu, &v84_pmmir);
6610     }
6611 }
6612 
6613 /* We don't know until after realize whether there's a GICv3
6614  * attached, and that is what registers the gicv3 sysregs.
6615  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6616  * at runtime.
6617  */
6618 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6619 {
6620     ARMCPU *cpu = env_archcpu(env);
6621     uint64_t pfr1 = cpu->id_pfr1;
6622 
6623     if (env->gicv3state) {
6624         pfr1 |= 1 << 28;
6625     }
6626     return pfr1;
6627 }
6628 
6629 #ifndef CONFIG_USER_ONLY
6630 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6631 {
6632     ARMCPU *cpu = env_archcpu(env);
6633     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6634 
6635     if (env->gicv3state) {
6636         pfr0 |= 1 << 24;
6637     }
6638     return pfr0;
6639 }
6640 #endif
6641 
6642 /* Shared logic between LORID and the rest of the LOR* registers.
6643  * Secure state has already been delt with.
6644  */
6645 static CPAccessResult access_lor_ns(CPUARMState *env)
6646 {
6647     int el = arm_current_el(env);
6648 
6649     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6650         return CP_ACCESS_TRAP_EL2;
6651     }
6652     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6653         return CP_ACCESS_TRAP_EL3;
6654     }
6655     return CP_ACCESS_OK;
6656 }
6657 
6658 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
6659                                    bool isread)
6660 {
6661     if (arm_is_secure_below_el3(env)) {
6662         /* Access ok in secure mode.  */
6663         return CP_ACCESS_OK;
6664     }
6665     return access_lor_ns(env);
6666 }
6667 
6668 static CPAccessResult access_lor_other(CPUARMState *env,
6669                                        const ARMCPRegInfo *ri, bool isread)
6670 {
6671     if (arm_is_secure_below_el3(env)) {
6672         /* Access denied in secure mode.  */
6673         return CP_ACCESS_TRAP;
6674     }
6675     return access_lor_ns(env);
6676 }
6677 
6678 /*
6679  * A trivial implementation of ARMv8.1-LOR leaves all of these
6680  * registers fixed at 0, which indicates that there are zero
6681  * supported Limited Ordering regions.
6682  */
6683 static const ARMCPRegInfo lor_reginfo[] = {
6684     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6685       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6686       .access = PL1_RW, .accessfn = access_lor_other,
6687       .type = ARM_CP_CONST, .resetvalue = 0 },
6688     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6689       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6690       .access = PL1_RW, .accessfn = access_lor_other,
6691       .type = ARM_CP_CONST, .resetvalue = 0 },
6692     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6693       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6694       .access = PL1_RW, .accessfn = access_lor_other,
6695       .type = ARM_CP_CONST, .resetvalue = 0 },
6696     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6697       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6698       .access = PL1_RW, .accessfn = access_lor_other,
6699       .type = ARM_CP_CONST, .resetvalue = 0 },
6700     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6701       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6702       .access = PL1_R, .accessfn = access_lorid,
6703       .type = ARM_CP_CONST, .resetvalue = 0 },
6704     REGINFO_SENTINEL
6705 };
6706 
6707 #ifdef TARGET_AARCH64
6708 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6709                                    bool isread)
6710 {
6711     int el = arm_current_el(env);
6712 
6713     if (el < 2 &&
6714         arm_feature(env, ARM_FEATURE_EL2) &&
6715         !(arm_hcr_el2_eff(env) & HCR_APK)) {
6716         return CP_ACCESS_TRAP_EL2;
6717     }
6718     if (el < 3 &&
6719         arm_feature(env, ARM_FEATURE_EL3) &&
6720         !(env->cp15.scr_el3 & SCR_APK)) {
6721         return CP_ACCESS_TRAP_EL3;
6722     }
6723     return CP_ACCESS_OK;
6724 }
6725 
6726 static const ARMCPRegInfo pauth_reginfo[] = {
6727     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6728       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6729       .access = PL1_RW, .accessfn = access_pauth,
6730       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6731     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6732       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6733       .access = PL1_RW, .accessfn = access_pauth,
6734       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6735     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6736       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6737       .access = PL1_RW, .accessfn = access_pauth,
6738       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6739     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6740       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6741       .access = PL1_RW, .accessfn = access_pauth,
6742       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6743     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6744       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6745       .access = PL1_RW, .accessfn = access_pauth,
6746       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6747     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6748       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6749       .access = PL1_RW, .accessfn = access_pauth,
6750       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6751     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6752       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6753       .access = PL1_RW, .accessfn = access_pauth,
6754       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6755     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6756       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6757       .access = PL1_RW, .accessfn = access_pauth,
6758       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6759     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6760       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6761       .access = PL1_RW, .accessfn = access_pauth,
6762       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6763     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6764       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6765       .access = PL1_RW, .accessfn = access_pauth,
6766       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6767     REGINFO_SENTINEL
6768 };
6769 
6770 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6771 {
6772     Error *err = NULL;
6773     uint64_t ret;
6774 
6775     /* Success sets NZCV = 0000.  */
6776     env->NF = env->CF = env->VF = 0, env->ZF = 1;
6777 
6778     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
6779         /*
6780          * ??? Failed, for unknown reasons in the crypto subsystem.
6781          * The best we can do is log the reason and return the
6782          * timed-out indication to the guest.  There is no reason
6783          * we know to expect this failure to be transitory, so the
6784          * guest may well hang retrying the operation.
6785          */
6786         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
6787                       ri->name, error_get_pretty(err));
6788         error_free(err);
6789 
6790         env->ZF = 0; /* NZCF = 0100 */
6791         return 0;
6792     }
6793     return ret;
6794 }
6795 
6796 /* We do not support re-seeding, so the two registers operate the same.  */
6797 static const ARMCPRegInfo rndr_reginfo[] = {
6798     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
6799       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6800       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
6801       .access = PL0_R, .readfn = rndr_readfn },
6802     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
6803       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6804       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
6805       .access = PL0_R, .readfn = rndr_readfn },
6806     REGINFO_SENTINEL
6807 };
6808 
6809 #ifndef CONFIG_USER_ONLY
6810 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
6811                           uint64_t value)
6812 {
6813     ARMCPU *cpu = env_archcpu(env);
6814     /* CTR_EL0 System register -> DminLine, bits [19:16] */
6815     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6816     uint64_t vaddr_in = (uint64_t) value;
6817     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6818     void *haddr;
6819     int mem_idx = cpu_mmu_index(env, false);
6820 
6821     /* This won't be crossing page boundaries */
6822     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6823     if (haddr) {
6824 
6825         ram_addr_t offset;
6826         MemoryRegion *mr;
6827 
6828         /* RCU lock is already being held */
6829         mr = memory_region_from_host(haddr, &offset);
6830 
6831         if (mr) {
6832             memory_region_do_writeback(mr, offset, dline_size);
6833         }
6834     }
6835 }
6836 
6837 static const ARMCPRegInfo dcpop_reg[] = {
6838     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6839       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6840       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6841       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6842     REGINFO_SENTINEL
6843 };
6844 
6845 static const ARMCPRegInfo dcpodp_reg[] = {
6846     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
6847       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
6848       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6849       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6850     REGINFO_SENTINEL
6851 };
6852 #endif /*CONFIG_USER_ONLY*/
6853 
6854 #endif
6855 
6856 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
6857                                      bool isread)
6858 {
6859     int el = arm_current_el(env);
6860 
6861     if (el == 0) {
6862         uint64_t sctlr = arm_sctlr(env, el);
6863         if (!(sctlr & SCTLR_EnRCTX)) {
6864             return CP_ACCESS_TRAP;
6865         }
6866     } else if (el == 1) {
6867         uint64_t hcr = arm_hcr_el2_eff(env);
6868         if (hcr & HCR_NV) {
6869             return CP_ACCESS_TRAP_EL2;
6870         }
6871     }
6872     return CP_ACCESS_OK;
6873 }
6874 
6875 static const ARMCPRegInfo predinv_reginfo[] = {
6876     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
6877       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
6878       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6879     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
6880       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
6881       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6882     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
6883       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
6884       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6885     /*
6886      * Note the AArch32 opcodes have a different OPC1.
6887      */
6888     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
6889       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
6890       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6891     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
6892       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
6893       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6894     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
6895       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
6896       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6897     REGINFO_SENTINEL
6898 };
6899 
6900 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6901 {
6902     /* Read the high 32 bits of the current CCSIDR */
6903     return extract64(ccsidr_read(env, ri), 32, 32);
6904 }
6905 
6906 static const ARMCPRegInfo ccsidr2_reginfo[] = {
6907     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
6908       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
6909       .access = PL1_R,
6910       .accessfn = access_aa64_tid2,
6911       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
6912     REGINFO_SENTINEL
6913 };
6914 
6915 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
6916                                        bool isread)
6917 {
6918     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
6919         return CP_ACCESS_TRAP_EL2;
6920     }
6921 
6922     return CP_ACCESS_OK;
6923 }
6924 
6925 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
6926                                        bool isread)
6927 {
6928     if (arm_feature(env, ARM_FEATURE_V8)) {
6929         return access_aa64_tid3(env, ri, isread);
6930     }
6931 
6932     return CP_ACCESS_OK;
6933 }
6934 
6935 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
6936                                      bool isread)
6937 {
6938     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
6939         return CP_ACCESS_TRAP_EL2;
6940     }
6941 
6942     return CP_ACCESS_OK;
6943 }
6944 
6945 static const ARMCPRegInfo jazelle_regs[] = {
6946     { .name = "JIDR",
6947       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
6948       .access = PL1_R, .accessfn = access_jazelle,
6949       .type = ARM_CP_CONST, .resetvalue = 0 },
6950     { .name = "JOSCR",
6951       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
6952       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6953     { .name = "JMCR",
6954       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
6955       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6956     REGINFO_SENTINEL
6957 };
6958 
6959 static const ARMCPRegInfo vhe_reginfo[] = {
6960     { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
6961       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
6962       .access = PL2_RW,
6963       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
6964     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
6965       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
6966       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
6967       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
6968 #ifndef CONFIG_USER_ONLY
6969     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6970       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
6971       .fieldoffset =
6972         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
6973       .type = ARM_CP_IO, .access = PL2_RW,
6974       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
6975     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6976       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
6977       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6978       .resetfn = gt_hv_timer_reset,
6979       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
6980     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6981       .type = ARM_CP_IO,
6982       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
6983       .access = PL2_RW,
6984       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
6985       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
6986     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
6987       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
6988       .type = ARM_CP_IO | ARM_CP_ALIAS,
6989       .access = PL2_RW, .accessfn = e2h_access,
6990       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
6991       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
6992     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
6993       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
6994       .type = ARM_CP_IO | ARM_CP_ALIAS,
6995       .access = PL2_RW, .accessfn = e2h_access,
6996       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
6997       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
6998     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
6999       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7000       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7001       .access = PL2_RW, .accessfn = e2h_access,
7002       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7003     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7004       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7005       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7006       .access = PL2_RW, .accessfn = e2h_access,
7007       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7008     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7009       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7010       .type = ARM_CP_IO | ARM_CP_ALIAS,
7011       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7012       .access = PL2_RW, .accessfn = e2h_access,
7013       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7014     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7015       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7016       .type = ARM_CP_IO | ARM_CP_ALIAS,
7017       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7018       .access = PL2_RW, .accessfn = e2h_access,
7019       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7020 #endif
7021     REGINFO_SENTINEL
7022 };
7023 
7024 #ifndef CONFIG_USER_ONLY
7025 static const ARMCPRegInfo ats1e1_reginfo[] = {
7026     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7027       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7028       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7029       .writefn = ats_write64 },
7030     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7031       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7032       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7033       .writefn = ats_write64 },
7034     REGINFO_SENTINEL
7035 };
7036 
7037 static const ARMCPRegInfo ats1cp_reginfo[] = {
7038     { .name = "ATS1CPRP",
7039       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7040       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7041       .writefn = ats_write },
7042     { .name = "ATS1CPWP",
7043       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7044       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7045       .writefn = ats_write },
7046     REGINFO_SENTINEL
7047 };
7048 #endif
7049 
7050 /*
7051  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7052  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7053  * is non-zero, which is never for ARMv7, optionally in ARMv8
7054  * and mandatorily for ARMv8.2 and up.
7055  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7056  * implementation is RAZ/WI we can ignore this detail, as we
7057  * do for ACTLR.
7058  */
7059 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7060     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7061       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7062       .access = PL1_RW, .accessfn = access_tacr,
7063       .type = ARM_CP_CONST, .resetvalue = 0 },
7064     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7065       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7066       .access = PL2_RW, .type = ARM_CP_CONST,
7067       .resetvalue = 0 },
7068     REGINFO_SENTINEL
7069 };
7070 
7071 void register_cp_regs_for_features(ARMCPU *cpu)
7072 {
7073     /* Register all the coprocessor registers based on feature bits */
7074     CPUARMState *env = &cpu->env;
7075     if (arm_feature(env, ARM_FEATURE_M)) {
7076         /* M profile has no coprocessor registers */
7077         return;
7078     }
7079 
7080     define_arm_cp_regs(cpu, cp_reginfo);
7081     if (!arm_feature(env, ARM_FEATURE_V8)) {
7082         /* Must go early as it is full of wildcards that may be
7083          * overridden by later definitions.
7084          */
7085         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7086     }
7087 
7088     if (arm_feature(env, ARM_FEATURE_V6)) {
7089         /* The ID registers all have impdef reset values */
7090         ARMCPRegInfo v6_idregs[] = {
7091             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7092               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7093               .access = PL1_R, .type = ARM_CP_CONST,
7094               .accessfn = access_aa32_tid3,
7095               .resetvalue = cpu->id_pfr0 },
7096             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7097              * the value of the GIC field until after we define these regs.
7098              */
7099             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7100               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7101               .access = PL1_R, .type = ARM_CP_NO_RAW,
7102               .accessfn = access_aa32_tid3,
7103               .readfn = id_pfr1_read,
7104               .writefn = arm_cp_write_ignore },
7105             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7106               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7107               .access = PL1_R, .type = ARM_CP_CONST,
7108               .accessfn = access_aa32_tid3,
7109               .resetvalue = cpu->isar.id_dfr0 },
7110             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7111               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7112               .access = PL1_R, .type = ARM_CP_CONST,
7113               .accessfn = access_aa32_tid3,
7114               .resetvalue = cpu->id_afr0 },
7115             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7116               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7117               .access = PL1_R, .type = ARM_CP_CONST,
7118               .accessfn = access_aa32_tid3,
7119               .resetvalue = cpu->isar.id_mmfr0 },
7120             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7121               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7122               .access = PL1_R, .type = ARM_CP_CONST,
7123               .accessfn = access_aa32_tid3,
7124               .resetvalue = cpu->isar.id_mmfr1 },
7125             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7126               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7127               .access = PL1_R, .type = ARM_CP_CONST,
7128               .accessfn = access_aa32_tid3,
7129               .resetvalue = cpu->isar.id_mmfr2 },
7130             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7131               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7132               .access = PL1_R, .type = ARM_CP_CONST,
7133               .accessfn = access_aa32_tid3,
7134               .resetvalue = cpu->isar.id_mmfr3 },
7135             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7136               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7137               .access = PL1_R, .type = ARM_CP_CONST,
7138               .accessfn = access_aa32_tid3,
7139               .resetvalue = cpu->isar.id_isar0 },
7140             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7141               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7142               .access = PL1_R, .type = ARM_CP_CONST,
7143               .accessfn = access_aa32_tid3,
7144               .resetvalue = cpu->isar.id_isar1 },
7145             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7146               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7147               .access = PL1_R, .type = ARM_CP_CONST,
7148               .accessfn = access_aa32_tid3,
7149               .resetvalue = cpu->isar.id_isar2 },
7150             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7151               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7152               .access = PL1_R, .type = ARM_CP_CONST,
7153               .accessfn = access_aa32_tid3,
7154               .resetvalue = cpu->isar.id_isar3 },
7155             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7156               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7157               .access = PL1_R, .type = ARM_CP_CONST,
7158               .accessfn = access_aa32_tid3,
7159               .resetvalue = cpu->isar.id_isar4 },
7160             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7161               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7162               .access = PL1_R, .type = ARM_CP_CONST,
7163               .accessfn = access_aa32_tid3,
7164               .resetvalue = cpu->isar.id_isar5 },
7165             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7166               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7167               .access = PL1_R, .type = ARM_CP_CONST,
7168               .accessfn = access_aa32_tid3,
7169               .resetvalue = cpu->isar.id_mmfr4 },
7170             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7171               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7172               .access = PL1_R, .type = ARM_CP_CONST,
7173               .accessfn = access_aa32_tid3,
7174               .resetvalue = cpu->isar.id_isar6 },
7175             REGINFO_SENTINEL
7176         };
7177         define_arm_cp_regs(cpu, v6_idregs);
7178         define_arm_cp_regs(cpu, v6_cp_reginfo);
7179     } else {
7180         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7181     }
7182     if (arm_feature(env, ARM_FEATURE_V6K)) {
7183         define_arm_cp_regs(cpu, v6k_cp_reginfo);
7184     }
7185     if (arm_feature(env, ARM_FEATURE_V7MP) &&
7186         !arm_feature(env, ARM_FEATURE_PMSA)) {
7187         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7188     }
7189     if (arm_feature(env, ARM_FEATURE_V7VE)) {
7190         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7191     }
7192     if (arm_feature(env, ARM_FEATURE_V7)) {
7193         ARMCPRegInfo clidr = {
7194             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7195             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7196             .access = PL1_R, .type = ARM_CP_CONST,
7197             .accessfn = access_aa64_tid2,
7198             .resetvalue = cpu->clidr
7199         };
7200         define_one_arm_cp_reg(cpu, &clidr);
7201         define_arm_cp_regs(cpu, v7_cp_reginfo);
7202         define_debug_regs(cpu);
7203         define_pmu_regs(cpu);
7204     } else {
7205         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7206     }
7207     if (arm_feature(env, ARM_FEATURE_V8)) {
7208         /* AArch64 ID registers, which all have impdef reset values.
7209          * Note that within the ID register ranges the unused slots
7210          * must all RAZ, not UNDEF; future architecture versions may
7211          * define new registers here.
7212          */
7213         ARMCPRegInfo v8_idregs[] = {
7214             /*
7215              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7216              * emulation because we don't know the right value for the
7217              * GIC field until after we define these regs.
7218              */
7219             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7220               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7221               .access = PL1_R,
7222 #ifdef CONFIG_USER_ONLY
7223               .type = ARM_CP_CONST,
7224               .resetvalue = cpu->isar.id_aa64pfr0
7225 #else
7226               .type = ARM_CP_NO_RAW,
7227               .accessfn = access_aa64_tid3,
7228               .readfn = id_aa64pfr0_read,
7229               .writefn = arm_cp_write_ignore
7230 #endif
7231             },
7232             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7233               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7234               .access = PL1_R, .type = ARM_CP_CONST,
7235               .accessfn = access_aa64_tid3,
7236               .resetvalue = cpu->isar.id_aa64pfr1},
7237             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7238               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7239               .access = PL1_R, .type = ARM_CP_CONST,
7240               .accessfn = access_aa64_tid3,
7241               .resetvalue = 0 },
7242             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7243               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7244               .access = PL1_R, .type = ARM_CP_CONST,
7245               .accessfn = access_aa64_tid3,
7246               .resetvalue = 0 },
7247             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7248               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7249               .access = PL1_R, .type = ARM_CP_CONST,
7250               .accessfn = access_aa64_tid3,
7251               /* At present, only SVEver == 0 is defined anyway.  */
7252               .resetvalue = 0 },
7253             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7254               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7255               .access = PL1_R, .type = ARM_CP_CONST,
7256               .accessfn = access_aa64_tid3,
7257               .resetvalue = 0 },
7258             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7259               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7260               .access = PL1_R, .type = ARM_CP_CONST,
7261               .accessfn = access_aa64_tid3,
7262               .resetvalue = 0 },
7263             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7264               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7265               .access = PL1_R, .type = ARM_CP_CONST,
7266               .accessfn = access_aa64_tid3,
7267               .resetvalue = 0 },
7268             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7269               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7270               .access = PL1_R, .type = ARM_CP_CONST,
7271               .accessfn = access_aa64_tid3,
7272               .resetvalue = cpu->isar.id_aa64dfr0 },
7273             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7274               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7275               .access = PL1_R, .type = ARM_CP_CONST,
7276               .accessfn = access_aa64_tid3,
7277               .resetvalue = cpu->isar.id_aa64dfr1 },
7278             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7279               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7280               .access = PL1_R, .type = ARM_CP_CONST,
7281               .accessfn = access_aa64_tid3,
7282               .resetvalue = 0 },
7283             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7284               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7285               .access = PL1_R, .type = ARM_CP_CONST,
7286               .accessfn = access_aa64_tid3,
7287               .resetvalue = 0 },
7288             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7289               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7290               .access = PL1_R, .type = ARM_CP_CONST,
7291               .accessfn = access_aa64_tid3,
7292               .resetvalue = cpu->id_aa64afr0 },
7293             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7294               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7295               .access = PL1_R, .type = ARM_CP_CONST,
7296               .accessfn = access_aa64_tid3,
7297               .resetvalue = cpu->id_aa64afr1 },
7298             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7299               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7300               .access = PL1_R, .type = ARM_CP_CONST,
7301               .accessfn = access_aa64_tid3,
7302               .resetvalue = 0 },
7303             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7304               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7305               .access = PL1_R, .type = ARM_CP_CONST,
7306               .accessfn = access_aa64_tid3,
7307               .resetvalue = 0 },
7308             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7309               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7310               .access = PL1_R, .type = ARM_CP_CONST,
7311               .accessfn = access_aa64_tid3,
7312               .resetvalue = cpu->isar.id_aa64isar0 },
7313             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7314               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7315               .access = PL1_R, .type = ARM_CP_CONST,
7316               .accessfn = access_aa64_tid3,
7317               .resetvalue = cpu->isar.id_aa64isar1 },
7318             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7319               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7320               .access = PL1_R, .type = ARM_CP_CONST,
7321               .accessfn = access_aa64_tid3,
7322               .resetvalue = 0 },
7323             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7324               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7325               .access = PL1_R, .type = ARM_CP_CONST,
7326               .accessfn = access_aa64_tid3,
7327               .resetvalue = 0 },
7328             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7329               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7330               .access = PL1_R, .type = ARM_CP_CONST,
7331               .accessfn = access_aa64_tid3,
7332               .resetvalue = 0 },
7333             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7334               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7335               .access = PL1_R, .type = ARM_CP_CONST,
7336               .accessfn = access_aa64_tid3,
7337               .resetvalue = 0 },
7338             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7339               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7340               .access = PL1_R, .type = ARM_CP_CONST,
7341               .accessfn = access_aa64_tid3,
7342               .resetvalue = 0 },
7343             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7344               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7345               .access = PL1_R, .type = ARM_CP_CONST,
7346               .accessfn = access_aa64_tid3,
7347               .resetvalue = 0 },
7348             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7349               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7350               .access = PL1_R, .type = ARM_CP_CONST,
7351               .accessfn = access_aa64_tid3,
7352               .resetvalue = cpu->isar.id_aa64mmfr0 },
7353             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7354               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7355               .access = PL1_R, .type = ARM_CP_CONST,
7356               .accessfn = access_aa64_tid3,
7357               .resetvalue = cpu->isar.id_aa64mmfr1 },
7358             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7359               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7360               .access = PL1_R, .type = ARM_CP_CONST,
7361               .accessfn = access_aa64_tid3,
7362               .resetvalue = cpu->isar.id_aa64mmfr2 },
7363             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7364               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7365               .access = PL1_R, .type = ARM_CP_CONST,
7366               .accessfn = access_aa64_tid3,
7367               .resetvalue = 0 },
7368             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7369               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7370               .access = PL1_R, .type = ARM_CP_CONST,
7371               .accessfn = access_aa64_tid3,
7372               .resetvalue = 0 },
7373             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7374               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7375               .access = PL1_R, .type = ARM_CP_CONST,
7376               .accessfn = access_aa64_tid3,
7377               .resetvalue = 0 },
7378             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7379               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7380               .access = PL1_R, .type = ARM_CP_CONST,
7381               .accessfn = access_aa64_tid3,
7382               .resetvalue = 0 },
7383             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7384               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7385               .access = PL1_R, .type = ARM_CP_CONST,
7386               .accessfn = access_aa64_tid3,
7387               .resetvalue = 0 },
7388             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7389               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7390               .access = PL1_R, .type = ARM_CP_CONST,
7391               .accessfn = access_aa64_tid3,
7392               .resetvalue = cpu->isar.mvfr0 },
7393             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7394               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7395               .access = PL1_R, .type = ARM_CP_CONST,
7396               .accessfn = access_aa64_tid3,
7397               .resetvalue = cpu->isar.mvfr1 },
7398             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7399               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7400               .access = PL1_R, .type = ARM_CP_CONST,
7401               .accessfn = access_aa64_tid3,
7402               .resetvalue = cpu->isar.mvfr2 },
7403             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7404               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7405               .access = PL1_R, .type = ARM_CP_CONST,
7406               .accessfn = access_aa64_tid3,
7407               .resetvalue = 0 },
7408             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7409               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7410               .access = PL1_R, .type = ARM_CP_CONST,
7411               .accessfn = access_aa64_tid3,
7412               .resetvalue = 0 },
7413             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7414               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7415               .access = PL1_R, .type = ARM_CP_CONST,
7416               .accessfn = access_aa64_tid3,
7417               .resetvalue = 0 },
7418             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7419               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7420               .access = PL1_R, .type = ARM_CP_CONST,
7421               .accessfn = access_aa64_tid3,
7422               .resetvalue = 0 },
7423             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7424               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7425               .access = PL1_R, .type = ARM_CP_CONST,
7426               .accessfn = access_aa64_tid3,
7427               .resetvalue = 0 },
7428             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7429               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7430               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7431               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7432             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7433               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7434               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7435               .resetvalue = cpu->pmceid0 },
7436             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7437               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7438               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7439               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7440             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7441               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7442               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7443               .resetvalue = cpu->pmceid1 },
7444             REGINFO_SENTINEL
7445         };
7446 #ifdef CONFIG_USER_ONLY
7447         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7448             { .name = "ID_AA64PFR0_EL1",
7449               .exported_bits = 0x000f000f00ff0000,
7450               .fixed_bits    = 0x0000000000000011 },
7451             { .name = "ID_AA64PFR1_EL1",
7452               .exported_bits = 0x00000000000000f0 },
7453             { .name = "ID_AA64PFR*_EL1_RESERVED",
7454               .is_glob = true                     },
7455             { .name = "ID_AA64ZFR0_EL1"           },
7456             { .name = "ID_AA64MMFR0_EL1",
7457               .fixed_bits    = 0x00000000ff000000 },
7458             { .name = "ID_AA64MMFR1_EL1"          },
7459             { .name = "ID_AA64MMFR*_EL1_RESERVED",
7460               .is_glob = true                     },
7461             { .name = "ID_AA64DFR0_EL1",
7462               .fixed_bits    = 0x0000000000000006 },
7463             { .name = "ID_AA64DFR1_EL1"           },
7464             { .name = "ID_AA64DFR*_EL1_RESERVED",
7465               .is_glob = true                     },
7466             { .name = "ID_AA64AFR*",
7467               .is_glob = true                     },
7468             { .name = "ID_AA64ISAR0_EL1",
7469               .exported_bits = 0x00fffffff0fffff0 },
7470             { .name = "ID_AA64ISAR1_EL1",
7471               .exported_bits = 0x000000f0ffffffff },
7472             { .name = "ID_AA64ISAR*_EL1_RESERVED",
7473               .is_glob = true                     },
7474             REGUSERINFO_SENTINEL
7475         };
7476         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7477 #endif
7478         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7479         if (!arm_feature(env, ARM_FEATURE_EL3) &&
7480             !arm_feature(env, ARM_FEATURE_EL2)) {
7481             ARMCPRegInfo rvbar = {
7482                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7483                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7484                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
7485             };
7486             define_one_arm_cp_reg(cpu, &rvbar);
7487         }
7488         define_arm_cp_regs(cpu, v8_idregs);
7489         define_arm_cp_regs(cpu, v8_cp_reginfo);
7490     }
7491     if (arm_feature(env, ARM_FEATURE_EL2)) {
7492         uint64_t vmpidr_def = mpidr_read_val(env);
7493         ARMCPRegInfo vpidr_regs[] = {
7494             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7495               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7496               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7497               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7498               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7499             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7500               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7501               .access = PL2_RW, .resetvalue = cpu->midr,
7502               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7503             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7504               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7505               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7506               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7507               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7508             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7509               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7510               .access = PL2_RW,
7511               .resetvalue = vmpidr_def,
7512               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7513             REGINFO_SENTINEL
7514         };
7515         define_arm_cp_regs(cpu, vpidr_regs);
7516         define_arm_cp_regs(cpu, el2_cp_reginfo);
7517         if (arm_feature(env, ARM_FEATURE_V8)) {
7518             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7519         }
7520         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7521         if (!arm_feature(env, ARM_FEATURE_EL3)) {
7522             ARMCPRegInfo rvbar = {
7523                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7524                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7525                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
7526             };
7527             define_one_arm_cp_reg(cpu, &rvbar);
7528         }
7529     } else {
7530         /* If EL2 is missing but higher ELs are enabled, we need to
7531          * register the no_el2 reginfos.
7532          */
7533         if (arm_feature(env, ARM_FEATURE_EL3)) {
7534             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
7535              * of MIDR_EL1 and MPIDR_EL1.
7536              */
7537             ARMCPRegInfo vpidr_regs[] = {
7538                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7539                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7540                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
7541                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
7542                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7543                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7544                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7545                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
7546                   .type = ARM_CP_NO_RAW,
7547                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
7548                 REGINFO_SENTINEL
7549             };
7550             define_arm_cp_regs(cpu, vpidr_regs);
7551             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
7552             if (arm_feature(env, ARM_FEATURE_V8)) {
7553                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
7554             }
7555         }
7556     }
7557     if (arm_feature(env, ARM_FEATURE_EL3)) {
7558         define_arm_cp_regs(cpu, el3_cp_reginfo);
7559         ARMCPRegInfo el3_regs[] = {
7560             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7561               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7562               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
7563             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7564               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7565               .access = PL3_RW,
7566               .raw_writefn = raw_write, .writefn = sctlr_write,
7567               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7568               .resetvalue = cpu->reset_sctlr },
7569             REGINFO_SENTINEL
7570         };
7571 
7572         define_arm_cp_regs(cpu, el3_regs);
7573     }
7574     /* The behaviour of NSACR is sufficiently various that we don't
7575      * try to describe it in a single reginfo:
7576      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
7577      *     reads as constant 0xc00 from NS EL1 and NS EL2
7578      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7579      *  if v7 without EL3, register doesn't exist
7580      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7581      */
7582     if (arm_feature(env, ARM_FEATURE_EL3)) {
7583         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7584             ARMCPRegInfo nsacr = {
7585                 .name = "NSACR", .type = ARM_CP_CONST,
7586                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7587                 .access = PL1_RW, .accessfn = nsacr_access,
7588                 .resetvalue = 0xc00
7589             };
7590             define_one_arm_cp_reg(cpu, &nsacr);
7591         } else {
7592             ARMCPRegInfo nsacr = {
7593                 .name = "NSACR",
7594                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7595                 .access = PL3_RW | PL1_R,
7596                 .resetvalue = 0,
7597                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
7598             };
7599             define_one_arm_cp_reg(cpu, &nsacr);
7600         }
7601     } else {
7602         if (arm_feature(env, ARM_FEATURE_V8)) {
7603             ARMCPRegInfo nsacr = {
7604                 .name = "NSACR", .type = ARM_CP_CONST,
7605                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7606                 .access = PL1_R,
7607                 .resetvalue = 0xc00
7608             };
7609             define_one_arm_cp_reg(cpu, &nsacr);
7610         }
7611     }
7612 
7613     if (arm_feature(env, ARM_FEATURE_PMSA)) {
7614         if (arm_feature(env, ARM_FEATURE_V6)) {
7615             /* PMSAv6 not implemented */
7616             assert(arm_feature(env, ARM_FEATURE_V7));
7617             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7618             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
7619         } else {
7620             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
7621         }
7622     } else {
7623         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7624         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
7625         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
7626         if (cpu_isar_feature(aa32_hpd, cpu)) {
7627             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
7628         }
7629     }
7630     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
7631         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
7632     }
7633     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
7634         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
7635     }
7636     if (arm_feature(env, ARM_FEATURE_VAPA)) {
7637         define_arm_cp_regs(cpu, vapa_cp_reginfo);
7638     }
7639     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
7640         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
7641     }
7642     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
7643         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
7644     }
7645     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
7646         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
7647     }
7648     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
7649         define_arm_cp_regs(cpu, omap_cp_reginfo);
7650     }
7651     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
7652         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
7653     }
7654     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7655         define_arm_cp_regs(cpu, xscale_cp_reginfo);
7656     }
7657     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
7658         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
7659     }
7660     if (arm_feature(env, ARM_FEATURE_LPAE)) {
7661         define_arm_cp_regs(cpu, lpae_cp_reginfo);
7662     }
7663     if (cpu_isar_feature(aa32_jazelle, cpu)) {
7664         define_arm_cp_regs(cpu, jazelle_regs);
7665     }
7666     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
7667      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
7668      * be read-only (ie write causes UNDEF exception).
7669      */
7670     {
7671         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
7672             /* Pre-v8 MIDR space.
7673              * Note that the MIDR isn't a simple constant register because
7674              * of the TI925 behaviour where writes to another register can
7675              * cause the MIDR value to change.
7676              *
7677              * Unimplemented registers in the c15 0 0 0 space default to
7678              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
7679              * and friends override accordingly.
7680              */
7681             { .name = "MIDR",
7682               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7683               .access = PL1_R, .resetvalue = cpu->midr,
7684               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
7685               .readfn = midr_read,
7686               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7687               .type = ARM_CP_OVERRIDE },
7688             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
7689             { .name = "DUMMY",
7690               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
7691               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7692             { .name = "DUMMY",
7693               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
7694               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7695             { .name = "DUMMY",
7696               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
7697               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7698             { .name = "DUMMY",
7699               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
7700               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7701             { .name = "DUMMY",
7702               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
7703               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7704             REGINFO_SENTINEL
7705         };
7706         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
7707             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
7708               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
7709               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
7710               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7711               .readfn = midr_read },
7712             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
7713             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7714               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7715               .access = PL1_R, .resetvalue = cpu->midr },
7716             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7717               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
7718               .access = PL1_R, .resetvalue = cpu->midr },
7719             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
7720               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
7721               .access = PL1_R,
7722               .accessfn = access_aa64_tid1,
7723               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
7724             REGINFO_SENTINEL
7725         };
7726         ARMCPRegInfo id_cp_reginfo[] = {
7727             /* These are common to v8 and pre-v8 */
7728             { .name = "CTR",
7729               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
7730               .access = PL1_R, .accessfn = ctr_el0_access,
7731               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7732             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
7733               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
7734               .access = PL0_R, .accessfn = ctr_el0_access,
7735               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7736             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
7737             { .name = "TCMTR",
7738               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
7739               .access = PL1_R,
7740               .accessfn = access_aa32_tid1,
7741               .type = ARM_CP_CONST, .resetvalue = 0 },
7742             REGINFO_SENTINEL
7743         };
7744         /* TLBTR is specific to VMSA */
7745         ARMCPRegInfo id_tlbtr_reginfo = {
7746               .name = "TLBTR",
7747               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
7748               .access = PL1_R,
7749               .accessfn = access_aa32_tid1,
7750               .type = ARM_CP_CONST, .resetvalue = 0,
7751         };
7752         /* MPUIR is specific to PMSA V6+ */
7753         ARMCPRegInfo id_mpuir_reginfo = {
7754               .name = "MPUIR",
7755               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7756               .access = PL1_R, .type = ARM_CP_CONST,
7757               .resetvalue = cpu->pmsav7_dregion << 8
7758         };
7759         ARMCPRegInfo crn0_wi_reginfo = {
7760             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
7761             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
7762             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
7763         };
7764 #ifdef CONFIG_USER_ONLY
7765         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
7766             { .name = "MIDR_EL1",
7767               .exported_bits = 0x00000000ffffffff },
7768             { .name = "REVIDR_EL1"                },
7769             REGUSERINFO_SENTINEL
7770         };
7771         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
7772 #endif
7773         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
7774             arm_feature(env, ARM_FEATURE_STRONGARM)) {
7775             ARMCPRegInfo *r;
7776             /* Register the blanket "writes ignored" value first to cover the
7777              * whole space. Then update the specific ID registers to allow write
7778              * access, so that they ignore writes rather than causing them to
7779              * UNDEF.
7780              */
7781             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
7782             for (r = id_pre_v8_midr_cp_reginfo;
7783                  r->type != ARM_CP_SENTINEL; r++) {
7784                 r->access = PL1_RW;
7785             }
7786             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
7787                 r->access = PL1_RW;
7788             }
7789             id_mpuir_reginfo.access = PL1_RW;
7790             id_tlbtr_reginfo.access = PL1_RW;
7791         }
7792         if (arm_feature(env, ARM_FEATURE_V8)) {
7793             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
7794         } else {
7795             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
7796         }
7797         define_arm_cp_regs(cpu, id_cp_reginfo);
7798         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
7799             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
7800         } else if (arm_feature(env, ARM_FEATURE_V7)) {
7801             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
7802         }
7803     }
7804 
7805     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
7806         ARMCPRegInfo mpidr_cp_reginfo[] = {
7807             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
7808               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7809               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
7810             REGINFO_SENTINEL
7811         };
7812 #ifdef CONFIG_USER_ONLY
7813         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
7814             { .name = "MPIDR_EL1",
7815               .fixed_bits = 0x0000000080000000 },
7816             REGUSERINFO_SENTINEL
7817         };
7818         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
7819 #endif
7820         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
7821     }
7822 
7823     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
7824         ARMCPRegInfo auxcr_reginfo[] = {
7825             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
7826               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
7827               .access = PL1_RW, .accessfn = access_tacr,
7828               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
7829             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
7830               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
7831               .access = PL2_RW, .type = ARM_CP_CONST,
7832               .resetvalue = 0 },
7833             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
7834               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
7835               .access = PL3_RW, .type = ARM_CP_CONST,
7836               .resetvalue = 0 },
7837             REGINFO_SENTINEL
7838         };
7839         define_arm_cp_regs(cpu, auxcr_reginfo);
7840         if (cpu_isar_feature(aa32_ac2, cpu)) {
7841             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
7842         }
7843     }
7844 
7845     if (arm_feature(env, ARM_FEATURE_CBAR)) {
7846         /*
7847          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
7848          * There are two flavours:
7849          *  (1) older 32-bit only cores have a simple 32-bit CBAR
7850          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
7851          *      32-bit register visible to AArch32 at a different encoding
7852          *      to the "flavour 1" register and with the bits rearranged to
7853          *      be able to squash a 64-bit address into the 32-bit view.
7854          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
7855          * in future if we support AArch32-only configs of some of the
7856          * AArch64 cores we might need to add a specific feature flag
7857          * to indicate cores with "flavour 2" CBAR.
7858          */
7859         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7860             /* 32 bit view is [31:18] 0...0 [43:32]. */
7861             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
7862                 | extract64(cpu->reset_cbar, 32, 12);
7863             ARMCPRegInfo cbar_reginfo[] = {
7864                 { .name = "CBAR",
7865                   .type = ARM_CP_CONST,
7866                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
7867                   .access = PL1_R, .resetvalue = cbar32 },
7868                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
7869                   .type = ARM_CP_CONST,
7870                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
7871                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
7872                 REGINFO_SENTINEL
7873             };
7874             /* We don't implement a r/w 64 bit CBAR currently */
7875             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
7876             define_arm_cp_regs(cpu, cbar_reginfo);
7877         } else {
7878             ARMCPRegInfo cbar = {
7879                 .name = "CBAR",
7880                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
7881                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
7882                 .fieldoffset = offsetof(CPUARMState,
7883                                         cp15.c15_config_base_address)
7884             };
7885             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
7886                 cbar.access = PL1_R;
7887                 cbar.fieldoffset = 0;
7888                 cbar.type = ARM_CP_CONST;
7889             }
7890             define_one_arm_cp_reg(cpu, &cbar);
7891         }
7892     }
7893 
7894     if (arm_feature(env, ARM_FEATURE_VBAR)) {
7895         ARMCPRegInfo vbar_cp_reginfo[] = {
7896             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
7897               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
7898               .access = PL1_RW, .writefn = vbar_write,
7899               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
7900                                      offsetof(CPUARMState, cp15.vbar_ns) },
7901               .resetvalue = 0 },
7902             REGINFO_SENTINEL
7903         };
7904         define_arm_cp_regs(cpu, vbar_cp_reginfo);
7905     }
7906 
7907     /* Generic registers whose values depend on the implementation */
7908     {
7909         ARMCPRegInfo sctlr = {
7910             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
7911             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
7912             .access = PL1_RW, .accessfn = access_tvm_trvm,
7913             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
7914                                    offsetof(CPUARMState, cp15.sctlr_ns) },
7915             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
7916             .raw_writefn = raw_write,
7917         };
7918         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7919             /* Normally we would always end the TB on an SCTLR write, but Linux
7920              * arch/arm/mach-pxa/sleep.S expects two instructions following
7921              * an MMU enable to execute from cache.  Imitate this behaviour.
7922              */
7923             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
7924         }
7925         define_one_arm_cp_reg(cpu, &sctlr);
7926     }
7927 
7928     if (cpu_isar_feature(aa64_lor, cpu)) {
7929         define_arm_cp_regs(cpu, lor_reginfo);
7930     }
7931     if (cpu_isar_feature(aa64_pan, cpu)) {
7932         define_one_arm_cp_reg(cpu, &pan_reginfo);
7933     }
7934 #ifndef CONFIG_USER_ONLY
7935     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
7936         define_arm_cp_regs(cpu, ats1e1_reginfo);
7937     }
7938     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
7939         define_arm_cp_regs(cpu, ats1cp_reginfo);
7940     }
7941 #endif
7942     if (cpu_isar_feature(aa64_uao, cpu)) {
7943         define_one_arm_cp_reg(cpu, &uao_reginfo);
7944     }
7945 
7946     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
7947         define_arm_cp_regs(cpu, vhe_reginfo);
7948     }
7949 
7950     if (cpu_isar_feature(aa64_sve, cpu)) {
7951         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
7952         if (arm_feature(env, ARM_FEATURE_EL2)) {
7953             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
7954         } else {
7955             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
7956         }
7957         if (arm_feature(env, ARM_FEATURE_EL3)) {
7958             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
7959         }
7960     }
7961 
7962 #ifdef TARGET_AARCH64
7963     if (cpu_isar_feature(aa64_pauth, cpu)) {
7964         define_arm_cp_regs(cpu, pauth_reginfo);
7965     }
7966     if (cpu_isar_feature(aa64_rndr, cpu)) {
7967         define_arm_cp_regs(cpu, rndr_reginfo);
7968     }
7969 #ifndef CONFIG_USER_ONLY
7970     /* Data Cache clean instructions up to PoP */
7971     if (cpu_isar_feature(aa64_dcpop, cpu)) {
7972         define_one_arm_cp_reg(cpu, dcpop_reg);
7973 
7974         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
7975             define_one_arm_cp_reg(cpu, dcpodp_reg);
7976         }
7977     }
7978 #endif /*CONFIG_USER_ONLY*/
7979 #endif
7980 
7981     if (cpu_isar_feature(any_predinv, cpu)) {
7982         define_arm_cp_regs(cpu, predinv_reginfo);
7983     }
7984 
7985     if (cpu_isar_feature(any_ccidx, cpu)) {
7986         define_arm_cp_regs(cpu, ccsidr2_reginfo);
7987     }
7988 
7989 #ifndef CONFIG_USER_ONLY
7990     /*
7991      * Register redirections and aliases must be done last,
7992      * after the registers from the other extensions have been defined.
7993      */
7994     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
7995         define_arm_vh_e2h_redirects_aliases(cpu);
7996     }
7997 #endif
7998 }
7999 
8000 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
8001 {
8002     CPUState *cs = CPU(cpu);
8003     CPUARMState *env = &cpu->env;
8004 
8005     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8006         /*
8007          * The lower part of each SVE register aliases to the FPU
8008          * registers so we don't need to include both.
8009          */
8010 #ifdef TARGET_AARCH64
8011         if (isar_feature_aa64_sve(&cpu->isar)) {
8012             gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
8013                                      arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
8014                                      "sve-registers.xml", 0);
8015         } else
8016 #endif
8017         {
8018             gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
8019                                      aarch64_fpu_gdb_set_reg,
8020                                      34, "aarch64-fpu.xml", 0);
8021         }
8022     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
8023         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8024                                  51, "arm-neon.xml", 0);
8025     } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
8026         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8027                                  35, "arm-vfp3.xml", 0);
8028     } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
8029         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8030                                  19, "arm-vfp.xml", 0);
8031     }
8032     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
8033                              arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
8034                              "system-registers.xml", 0);
8035 
8036 }
8037 
8038 /* Sort alphabetically by type name, except for "any". */
8039 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8040 {
8041     ObjectClass *class_a = (ObjectClass *)a;
8042     ObjectClass *class_b = (ObjectClass *)b;
8043     const char *name_a, *name_b;
8044 
8045     name_a = object_class_get_name(class_a);
8046     name_b = object_class_get_name(class_b);
8047     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8048         return 1;
8049     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8050         return -1;
8051     } else {
8052         return strcmp(name_a, name_b);
8053     }
8054 }
8055 
8056 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8057 {
8058     ObjectClass *oc = data;
8059     const char *typename;
8060     char *name;
8061 
8062     typename = object_class_get_name(oc);
8063     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8064     qemu_printf("  %s\n", name);
8065     g_free(name);
8066 }
8067 
8068 void arm_cpu_list(void)
8069 {
8070     GSList *list;
8071 
8072     list = object_class_get_list(TYPE_ARM_CPU, false);
8073     list = g_slist_sort(list, arm_cpu_list_compare);
8074     qemu_printf("Available CPUs:\n");
8075     g_slist_foreach(list, arm_cpu_list_entry, NULL);
8076     g_slist_free(list);
8077 }
8078 
8079 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8080 {
8081     ObjectClass *oc = data;
8082     CpuDefinitionInfoList **cpu_list = user_data;
8083     CpuDefinitionInfoList *entry;
8084     CpuDefinitionInfo *info;
8085     const char *typename;
8086 
8087     typename = object_class_get_name(oc);
8088     info = g_malloc0(sizeof(*info));
8089     info->name = g_strndup(typename,
8090                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
8091     info->q_typename = g_strdup(typename);
8092 
8093     entry = g_malloc0(sizeof(*entry));
8094     entry->value = info;
8095     entry->next = *cpu_list;
8096     *cpu_list = entry;
8097 }
8098 
8099 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8100 {
8101     CpuDefinitionInfoList *cpu_list = NULL;
8102     GSList *list;
8103 
8104     list = object_class_get_list(TYPE_ARM_CPU, false);
8105     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8106     g_slist_free(list);
8107 
8108     return cpu_list;
8109 }
8110 
8111 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8112                                    void *opaque, int state, int secstate,
8113                                    int crm, int opc1, int opc2,
8114                                    const char *name)
8115 {
8116     /* Private utility function for define_one_arm_cp_reg_with_opaque():
8117      * add a single reginfo struct to the hash table.
8118      */
8119     uint32_t *key = g_new(uint32_t, 1);
8120     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8121     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8122     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8123 
8124     r2->name = g_strdup(name);
8125     /* Reset the secure state to the specific incoming state.  This is
8126      * necessary as the register may have been defined with both states.
8127      */
8128     r2->secure = secstate;
8129 
8130     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8131         /* Register is banked (using both entries in array).
8132          * Overwriting fieldoffset as the array is only used to define
8133          * banked registers but later only fieldoffset is used.
8134          */
8135         r2->fieldoffset = r->bank_fieldoffsets[ns];
8136     }
8137 
8138     if (state == ARM_CP_STATE_AA32) {
8139         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8140             /* If the register is banked then we don't need to migrate or
8141              * reset the 32-bit instance in certain cases:
8142              *
8143              * 1) If the register has both 32-bit and 64-bit instances then we
8144              *    can count on the 64-bit instance taking care of the
8145              *    non-secure bank.
8146              * 2) If ARMv8 is enabled then we can count on a 64-bit version
8147              *    taking care of the secure bank.  This requires that separate
8148              *    32 and 64-bit definitions are provided.
8149              */
8150             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8151                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8152                 r2->type |= ARM_CP_ALIAS;
8153             }
8154         } else if ((secstate != r->secure) && !ns) {
8155             /* The register is not banked so we only want to allow migration of
8156              * the non-secure instance.
8157              */
8158             r2->type |= ARM_CP_ALIAS;
8159         }
8160 
8161         if (r->state == ARM_CP_STATE_BOTH) {
8162             /* We assume it is a cp15 register if the .cp field is left unset.
8163              */
8164             if (r2->cp == 0) {
8165                 r2->cp = 15;
8166             }
8167 
8168 #ifdef HOST_WORDS_BIGENDIAN
8169             if (r2->fieldoffset) {
8170                 r2->fieldoffset += sizeof(uint32_t);
8171             }
8172 #endif
8173         }
8174     }
8175     if (state == ARM_CP_STATE_AA64) {
8176         /* To allow abbreviation of ARMCPRegInfo
8177          * definitions, we treat cp == 0 as equivalent to
8178          * the value for "standard guest-visible sysreg".
8179          * STATE_BOTH definitions are also always "standard
8180          * sysreg" in their AArch64 view (the .cp value may
8181          * be non-zero for the benefit of the AArch32 view).
8182          */
8183         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8184             r2->cp = CP_REG_ARM64_SYSREG_CP;
8185         }
8186         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8187                                   r2->opc0, opc1, opc2);
8188     } else {
8189         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8190     }
8191     if (opaque) {
8192         r2->opaque = opaque;
8193     }
8194     /* reginfo passed to helpers is correct for the actual access,
8195      * and is never ARM_CP_STATE_BOTH:
8196      */
8197     r2->state = state;
8198     /* Make sure reginfo passed to helpers for wildcarded regs
8199      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8200      */
8201     r2->crm = crm;
8202     r2->opc1 = opc1;
8203     r2->opc2 = opc2;
8204     /* By convention, for wildcarded registers only the first
8205      * entry is used for migration; the others are marked as
8206      * ALIAS so we don't try to transfer the register
8207      * multiple times. Special registers (ie NOP/WFI) are
8208      * never migratable and not even raw-accessible.
8209      */
8210     if ((r->type & ARM_CP_SPECIAL)) {
8211         r2->type |= ARM_CP_NO_RAW;
8212     }
8213     if (((r->crm == CP_ANY) && crm != 0) ||
8214         ((r->opc1 == CP_ANY) && opc1 != 0) ||
8215         ((r->opc2 == CP_ANY) && opc2 != 0)) {
8216         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8217     }
8218 
8219     /* Check that raw accesses are either forbidden or handled. Note that
8220      * we can't assert this earlier because the setup of fieldoffset for
8221      * banked registers has to be done first.
8222      */
8223     if (!(r2->type & ARM_CP_NO_RAW)) {
8224         assert(!raw_accessors_invalid(r2));
8225     }
8226 
8227     /* Overriding of an existing definition must be explicitly
8228      * requested.
8229      */
8230     if (!(r->type & ARM_CP_OVERRIDE)) {
8231         ARMCPRegInfo *oldreg;
8232         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8233         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8234             fprintf(stderr, "Register redefined: cp=%d %d bit "
8235                     "crn=%d crm=%d opc1=%d opc2=%d, "
8236                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8237                     r2->crn, r2->crm, r2->opc1, r2->opc2,
8238                     oldreg->name, r2->name);
8239             g_assert_not_reached();
8240         }
8241     }
8242     g_hash_table_insert(cpu->cp_regs, key, r2);
8243 }
8244 
8245 
8246 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8247                                        const ARMCPRegInfo *r, void *opaque)
8248 {
8249     /* Define implementations of coprocessor registers.
8250      * We store these in a hashtable because typically
8251      * there are less than 150 registers in a space which
8252      * is 16*16*16*8*8 = 262144 in size.
8253      * Wildcarding is supported for the crm, opc1 and opc2 fields.
8254      * If a register is defined twice then the second definition is
8255      * used, so this can be used to define some generic registers and
8256      * then override them with implementation specific variations.
8257      * At least one of the original and the second definition should
8258      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8259      * against accidental use.
8260      *
8261      * The state field defines whether the register is to be
8262      * visible in the AArch32 or AArch64 execution state. If the
8263      * state is set to ARM_CP_STATE_BOTH then we synthesise a
8264      * reginfo structure for the AArch32 view, which sees the lower
8265      * 32 bits of the 64 bit register.
8266      *
8267      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8268      * be wildcarded. AArch64 registers are always considered to be 64
8269      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8270      * the register, if any.
8271      */
8272     int crm, opc1, opc2, state;
8273     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8274     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8275     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8276     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8277     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8278     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8279     /* 64 bit registers have only CRm and Opc1 fields */
8280     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8281     /* op0 only exists in the AArch64 encodings */
8282     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8283     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8284     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8285     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8286      * encodes a minimum access level for the register. We roll this
8287      * runtime check into our general permission check code, so check
8288      * here that the reginfo's specified permissions are strict enough
8289      * to encompass the generic architectural permission check.
8290      */
8291     if (r->state != ARM_CP_STATE_AA32) {
8292         int mask = 0;
8293         switch (r->opc1) {
8294         case 0:
8295             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8296             mask = PL0U_R | PL1_RW;
8297             break;
8298         case 1: case 2:
8299             /* min_EL EL1 */
8300             mask = PL1_RW;
8301             break;
8302         case 3:
8303             /* min_EL EL0 */
8304             mask = PL0_RW;
8305             break;
8306         case 4:
8307         case 5:
8308             /* min_EL EL2 */
8309             mask = PL2_RW;
8310             break;
8311         case 6:
8312             /* min_EL EL3 */
8313             mask = PL3_RW;
8314             break;
8315         case 7:
8316             /* min_EL EL1, secure mode only (we don't check the latter) */
8317             mask = PL1_RW;
8318             break;
8319         default:
8320             /* broken reginfo with out-of-range opc1 */
8321             assert(false);
8322             break;
8323         }
8324         /* assert our permissions are not too lax (stricter is fine) */
8325         assert((r->access & ~mask) == 0);
8326     }
8327 
8328     /* Check that the register definition has enough info to handle
8329      * reads and writes if they are permitted.
8330      */
8331     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8332         if (r->access & PL3_R) {
8333             assert((r->fieldoffset ||
8334                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8335                    r->readfn);
8336         }
8337         if (r->access & PL3_W) {
8338             assert((r->fieldoffset ||
8339                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8340                    r->writefn);
8341         }
8342     }
8343     /* Bad type field probably means missing sentinel at end of reg list */
8344     assert(cptype_valid(r->type));
8345     for (crm = crmmin; crm <= crmmax; crm++) {
8346         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8347             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8348                 for (state = ARM_CP_STATE_AA32;
8349                      state <= ARM_CP_STATE_AA64; state++) {
8350                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8351                         continue;
8352                     }
8353                     if (state == ARM_CP_STATE_AA32) {
8354                         /* Under AArch32 CP registers can be common
8355                          * (same for secure and non-secure world) or banked.
8356                          */
8357                         char *name;
8358 
8359                         switch (r->secure) {
8360                         case ARM_CP_SECSTATE_S:
8361                         case ARM_CP_SECSTATE_NS:
8362                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8363                                                    r->secure, crm, opc1, opc2,
8364                                                    r->name);
8365                             break;
8366                         default:
8367                             name = g_strdup_printf("%s_S", r->name);
8368                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8369                                                    ARM_CP_SECSTATE_S,
8370                                                    crm, opc1, opc2, name);
8371                             g_free(name);
8372                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8373                                                    ARM_CP_SECSTATE_NS,
8374                                                    crm, opc1, opc2, r->name);
8375                             break;
8376                         }
8377                     } else {
8378                         /* AArch64 registers get mapped to non-secure instance
8379                          * of AArch32 */
8380                         add_cpreg_to_hashtable(cpu, r, opaque, state,
8381                                                ARM_CP_SECSTATE_NS,
8382                                                crm, opc1, opc2, r->name);
8383                     }
8384                 }
8385             }
8386         }
8387     }
8388 }
8389 
8390 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8391                                     const ARMCPRegInfo *regs, void *opaque)
8392 {
8393     /* Define a whole list of registers */
8394     const ARMCPRegInfo *r;
8395     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8396         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8397     }
8398 }
8399 
8400 /*
8401  * Modify ARMCPRegInfo for access from userspace.
8402  *
8403  * This is a data driven modification directed by
8404  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8405  * user-space cannot alter any values and dynamic values pertaining to
8406  * execution state are hidden from user space view anyway.
8407  */
8408 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8409 {
8410     const ARMCPRegUserSpaceInfo *m;
8411     ARMCPRegInfo *r;
8412 
8413     for (m = mods; m->name; m++) {
8414         GPatternSpec *pat = NULL;
8415         if (m->is_glob) {
8416             pat = g_pattern_spec_new(m->name);
8417         }
8418         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8419             if (pat && g_pattern_match_string(pat, r->name)) {
8420                 r->type = ARM_CP_CONST;
8421                 r->access = PL0U_R;
8422                 r->resetvalue = 0;
8423                 /* continue */
8424             } else if (strcmp(r->name, m->name) == 0) {
8425                 r->type = ARM_CP_CONST;
8426                 r->access = PL0U_R;
8427                 r->resetvalue &= m->exported_bits;
8428                 r->resetvalue |= m->fixed_bits;
8429                 break;
8430             }
8431         }
8432         if (pat) {
8433             g_pattern_spec_free(pat);
8434         }
8435     }
8436 }
8437 
8438 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8439 {
8440     return g_hash_table_lookup(cpregs, &encoded_cp);
8441 }
8442 
8443 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8444                          uint64_t value)
8445 {
8446     /* Helper coprocessor write function for write-ignore registers */
8447 }
8448 
8449 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8450 {
8451     /* Helper coprocessor write function for read-as-zero registers */
8452     return 0;
8453 }
8454 
8455 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8456 {
8457     /* Helper coprocessor reset function for do-nothing-on-reset registers */
8458 }
8459 
8460 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8461 {
8462     /* Return true if it is not valid for us to switch to
8463      * this CPU mode (ie all the UNPREDICTABLE cases in
8464      * the ARM ARM CPSRWriteByInstr pseudocode).
8465      */
8466 
8467     /* Changes to or from Hyp via MSR and CPS are illegal. */
8468     if (write_type == CPSRWriteByInstr &&
8469         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8470          mode == ARM_CPU_MODE_HYP)) {
8471         return 1;
8472     }
8473 
8474     switch (mode) {
8475     case ARM_CPU_MODE_USR:
8476         return 0;
8477     case ARM_CPU_MODE_SYS:
8478     case ARM_CPU_MODE_SVC:
8479     case ARM_CPU_MODE_ABT:
8480     case ARM_CPU_MODE_UND:
8481     case ARM_CPU_MODE_IRQ:
8482     case ARM_CPU_MODE_FIQ:
8483         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8484          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8485          */
8486         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8487          * and CPS are treated as illegal mode changes.
8488          */
8489         if (write_type == CPSRWriteByInstr &&
8490             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8491             (arm_hcr_el2_eff(env) & HCR_TGE)) {
8492             return 1;
8493         }
8494         return 0;
8495     case ARM_CPU_MODE_HYP:
8496         return !arm_feature(env, ARM_FEATURE_EL2)
8497             || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
8498     case ARM_CPU_MODE_MON:
8499         return arm_current_el(env) < 3;
8500     default:
8501         return 1;
8502     }
8503 }
8504 
8505 uint32_t cpsr_read(CPUARMState *env)
8506 {
8507     int ZF;
8508     ZF = (env->ZF == 0);
8509     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8510         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8511         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8512         | ((env->condexec_bits & 0xfc) << 8)
8513         | (env->GE << 16) | (env->daif & CPSR_AIF);
8514 }
8515 
8516 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8517                 CPSRWriteType write_type)
8518 {
8519     uint32_t changed_daif;
8520 
8521     if (mask & CPSR_NZCV) {
8522         env->ZF = (~val) & CPSR_Z;
8523         env->NF = val;
8524         env->CF = (val >> 29) & 1;
8525         env->VF = (val << 3) & 0x80000000;
8526     }
8527     if (mask & CPSR_Q)
8528         env->QF = ((val & CPSR_Q) != 0);
8529     if (mask & CPSR_T)
8530         env->thumb = ((val & CPSR_T) != 0);
8531     if (mask & CPSR_IT_0_1) {
8532         env->condexec_bits &= ~3;
8533         env->condexec_bits |= (val >> 25) & 3;
8534     }
8535     if (mask & CPSR_IT_2_7) {
8536         env->condexec_bits &= 3;
8537         env->condexec_bits |= (val >> 8) & 0xfc;
8538     }
8539     if (mask & CPSR_GE) {
8540         env->GE = (val >> 16) & 0xf;
8541     }
8542 
8543     /* In a V7 implementation that includes the security extensions but does
8544      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8545      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8546      * bits respectively.
8547      *
8548      * In a V8 implementation, it is permitted for privileged software to
8549      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8550      */
8551     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8552         arm_feature(env, ARM_FEATURE_EL3) &&
8553         !arm_feature(env, ARM_FEATURE_EL2) &&
8554         !arm_is_secure(env)) {
8555 
8556         changed_daif = (env->daif ^ val) & mask;
8557 
8558         if (changed_daif & CPSR_A) {
8559             /* Check to see if we are allowed to change the masking of async
8560              * abort exceptions from a non-secure state.
8561              */
8562             if (!(env->cp15.scr_el3 & SCR_AW)) {
8563                 qemu_log_mask(LOG_GUEST_ERROR,
8564                               "Ignoring attempt to switch CPSR_A flag from "
8565                               "non-secure world with SCR.AW bit clear\n");
8566                 mask &= ~CPSR_A;
8567             }
8568         }
8569 
8570         if (changed_daif & CPSR_F) {
8571             /* Check to see if we are allowed to change the masking of FIQ
8572              * exceptions from a non-secure state.
8573              */
8574             if (!(env->cp15.scr_el3 & SCR_FW)) {
8575                 qemu_log_mask(LOG_GUEST_ERROR,
8576                               "Ignoring attempt to switch CPSR_F flag from "
8577                               "non-secure world with SCR.FW bit clear\n");
8578                 mask &= ~CPSR_F;
8579             }
8580 
8581             /* Check whether non-maskable FIQ (NMFI) support is enabled.
8582              * If this bit is set software is not allowed to mask
8583              * FIQs, but is allowed to set CPSR_F to 0.
8584              */
8585             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
8586                 (val & CPSR_F)) {
8587                 qemu_log_mask(LOG_GUEST_ERROR,
8588                               "Ignoring attempt to enable CPSR_F flag "
8589                               "(non-maskable FIQ [NMFI] support enabled)\n");
8590                 mask &= ~CPSR_F;
8591             }
8592         }
8593     }
8594 
8595     env->daif &= ~(CPSR_AIF & mask);
8596     env->daif |= val & CPSR_AIF & mask;
8597 
8598     if (write_type != CPSRWriteRaw &&
8599         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8600         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
8601             /* Note that we can only get here in USR mode if this is a
8602              * gdb stub write; for this case we follow the architectural
8603              * behaviour for guest writes in USR mode of ignoring an attempt
8604              * to switch mode. (Those are caught by translate.c for writes
8605              * triggered by guest instructions.)
8606              */
8607             mask &= ~CPSR_M;
8608         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
8609             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
8610              * v7, and has defined behaviour in v8:
8611              *  + leave CPSR.M untouched
8612              *  + allow changes to the other CPSR fields
8613              *  + set PSTATE.IL
8614              * For user changes via the GDB stub, we don't set PSTATE.IL,
8615              * as this would be unnecessarily harsh for a user error.
8616              */
8617             mask &= ~CPSR_M;
8618             if (write_type != CPSRWriteByGDBStub &&
8619                 arm_feature(env, ARM_FEATURE_V8)) {
8620                 mask |= CPSR_IL;
8621                 val |= CPSR_IL;
8622             }
8623             qemu_log_mask(LOG_GUEST_ERROR,
8624                           "Illegal AArch32 mode switch attempt from %s to %s\n",
8625                           aarch32_mode_name(env->uncached_cpsr),
8626                           aarch32_mode_name(val));
8627         } else {
8628             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
8629                           write_type == CPSRWriteExceptionReturn ?
8630                           "Exception return from AArch32" :
8631                           "AArch32 mode switch from",
8632                           aarch32_mode_name(env->uncached_cpsr),
8633                           aarch32_mode_name(val), env->regs[15]);
8634             switch_mode(env, val & CPSR_M);
8635         }
8636     }
8637     mask &= ~CACHED_CPSR_BITS;
8638     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
8639 }
8640 
8641 /* Sign/zero extend */
8642 uint32_t HELPER(sxtb16)(uint32_t x)
8643 {
8644     uint32_t res;
8645     res = (uint16_t)(int8_t)x;
8646     res |= (uint32_t)(int8_t)(x >> 16) << 16;
8647     return res;
8648 }
8649 
8650 uint32_t HELPER(uxtb16)(uint32_t x)
8651 {
8652     uint32_t res;
8653     res = (uint16_t)(uint8_t)x;
8654     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
8655     return res;
8656 }
8657 
8658 int32_t HELPER(sdiv)(int32_t num, int32_t den)
8659 {
8660     if (den == 0)
8661       return 0;
8662     if (num == INT_MIN && den == -1)
8663       return INT_MIN;
8664     return num / den;
8665 }
8666 
8667 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
8668 {
8669     if (den == 0)
8670       return 0;
8671     return num / den;
8672 }
8673 
8674 uint32_t HELPER(rbit)(uint32_t x)
8675 {
8676     return revbit32(x);
8677 }
8678 
8679 #ifdef CONFIG_USER_ONLY
8680 
8681 static void switch_mode(CPUARMState *env, int mode)
8682 {
8683     ARMCPU *cpu = env_archcpu(env);
8684 
8685     if (mode != ARM_CPU_MODE_USR) {
8686         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
8687     }
8688 }
8689 
8690 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8691                                  uint32_t cur_el, bool secure)
8692 {
8693     return 1;
8694 }
8695 
8696 void aarch64_sync_64_to_32(CPUARMState *env)
8697 {
8698     g_assert_not_reached();
8699 }
8700 
8701 #else
8702 
8703 static void switch_mode(CPUARMState *env, int mode)
8704 {
8705     int old_mode;
8706     int i;
8707 
8708     old_mode = env->uncached_cpsr & CPSR_M;
8709     if (mode == old_mode)
8710         return;
8711 
8712     if (old_mode == ARM_CPU_MODE_FIQ) {
8713         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8714         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
8715     } else if (mode == ARM_CPU_MODE_FIQ) {
8716         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8717         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
8718     }
8719 
8720     i = bank_number(old_mode);
8721     env->banked_r13[i] = env->regs[13];
8722     env->banked_spsr[i] = env->spsr;
8723 
8724     i = bank_number(mode);
8725     env->regs[13] = env->banked_r13[i];
8726     env->spsr = env->banked_spsr[i];
8727 
8728     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
8729     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
8730 }
8731 
8732 /* Physical Interrupt Target EL Lookup Table
8733  *
8734  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
8735  *
8736  * The below multi-dimensional table is used for looking up the target
8737  * exception level given numerous condition criteria.  Specifically, the
8738  * target EL is based on SCR and HCR routing controls as well as the
8739  * currently executing EL and secure state.
8740  *
8741  *    Dimensions:
8742  *    target_el_table[2][2][2][2][2][4]
8743  *                    |  |  |  |  |  +--- Current EL
8744  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
8745  *                    |  |  |  +--------- HCR mask override
8746  *                    |  |  +------------ SCR exec state control
8747  *                    |  +--------------- SCR mask override
8748  *                    +------------------ 32-bit(0)/64-bit(1) EL3
8749  *
8750  *    The table values are as such:
8751  *    0-3 = EL0-EL3
8752  *     -1 = Cannot occur
8753  *
8754  * The ARM ARM target EL table includes entries indicating that an "exception
8755  * is not taken".  The two cases where this is applicable are:
8756  *    1) An exception is taken from EL3 but the SCR does not have the exception
8757  *    routed to EL3.
8758  *    2) An exception is taken from EL2 but the HCR does not have the exception
8759  *    routed to EL2.
8760  * In these two cases, the below table contain a target of EL1.  This value is
8761  * returned as it is expected that the consumer of the table data will check
8762  * for "target EL >= current EL" to ensure the exception is not taken.
8763  *
8764  *            SCR     HCR
8765  *         64  EA     AMO                 From
8766  *        BIT IRQ     IMO      Non-secure         Secure
8767  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
8768  */
8769 static const int8_t target_el_table[2][2][2][2][2][4] = {
8770     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
8771        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
8772       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
8773        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
8774      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
8775        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
8776       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
8777        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
8778     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
8779        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
8780       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
8781        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
8782      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
8783        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
8784       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
8785        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
8786 };
8787 
8788 /*
8789  * Determine the target EL for physical exceptions
8790  */
8791 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8792                                  uint32_t cur_el, bool secure)
8793 {
8794     CPUARMState *env = cs->env_ptr;
8795     bool rw;
8796     bool scr;
8797     bool hcr;
8798     int target_el;
8799     /* Is the highest EL AArch64? */
8800     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
8801     uint64_t hcr_el2;
8802 
8803     if (arm_feature(env, ARM_FEATURE_EL3)) {
8804         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
8805     } else {
8806         /* Either EL2 is the highest EL (and so the EL2 register width
8807          * is given by is64); or there is no EL2 or EL3, in which case
8808          * the value of 'rw' does not affect the table lookup anyway.
8809          */
8810         rw = is64;
8811     }
8812 
8813     hcr_el2 = arm_hcr_el2_eff(env);
8814     switch (excp_idx) {
8815     case EXCP_IRQ:
8816         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
8817         hcr = hcr_el2 & HCR_IMO;
8818         break;
8819     case EXCP_FIQ:
8820         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
8821         hcr = hcr_el2 & HCR_FMO;
8822         break;
8823     default:
8824         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
8825         hcr = hcr_el2 & HCR_AMO;
8826         break;
8827     };
8828 
8829     /*
8830      * For these purposes, TGE and AMO/IMO/FMO both force the
8831      * interrupt to EL2.  Fold TGE into the bit extracted above.
8832      */
8833     hcr |= (hcr_el2 & HCR_TGE) != 0;
8834 
8835     /* Perform a table-lookup for the target EL given the current state */
8836     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
8837 
8838     assert(target_el > 0);
8839 
8840     return target_el;
8841 }
8842 
8843 void arm_log_exception(int idx)
8844 {
8845     if (qemu_loglevel_mask(CPU_LOG_INT)) {
8846         const char *exc = NULL;
8847         static const char * const excnames[] = {
8848             [EXCP_UDEF] = "Undefined Instruction",
8849             [EXCP_SWI] = "SVC",
8850             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
8851             [EXCP_DATA_ABORT] = "Data Abort",
8852             [EXCP_IRQ] = "IRQ",
8853             [EXCP_FIQ] = "FIQ",
8854             [EXCP_BKPT] = "Breakpoint",
8855             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
8856             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
8857             [EXCP_HVC] = "Hypervisor Call",
8858             [EXCP_HYP_TRAP] = "Hypervisor Trap",
8859             [EXCP_SMC] = "Secure Monitor Call",
8860             [EXCP_VIRQ] = "Virtual IRQ",
8861             [EXCP_VFIQ] = "Virtual FIQ",
8862             [EXCP_SEMIHOST] = "Semihosting call",
8863             [EXCP_NOCP] = "v7M NOCP UsageFault",
8864             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
8865             [EXCP_STKOF] = "v8M STKOF UsageFault",
8866             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
8867             [EXCP_LSERR] = "v8M LSERR UsageFault",
8868             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
8869         };
8870 
8871         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
8872             exc = excnames[idx];
8873         }
8874         if (!exc) {
8875             exc = "unknown";
8876         }
8877         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
8878     }
8879 }
8880 
8881 /*
8882  * Function used to synchronize QEMU's AArch64 register set with AArch32
8883  * register set.  This is necessary when switching between AArch32 and AArch64
8884  * execution state.
8885  */
8886 void aarch64_sync_32_to_64(CPUARMState *env)
8887 {
8888     int i;
8889     uint32_t mode = env->uncached_cpsr & CPSR_M;
8890 
8891     /* We can blanket copy R[0:7] to X[0:7] */
8892     for (i = 0; i < 8; i++) {
8893         env->xregs[i] = env->regs[i];
8894     }
8895 
8896     /*
8897      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
8898      * Otherwise, they come from the banked user regs.
8899      */
8900     if (mode == ARM_CPU_MODE_FIQ) {
8901         for (i = 8; i < 13; i++) {
8902             env->xregs[i] = env->usr_regs[i - 8];
8903         }
8904     } else {
8905         for (i = 8; i < 13; i++) {
8906             env->xregs[i] = env->regs[i];
8907         }
8908     }
8909 
8910     /*
8911      * Registers x13-x23 are the various mode SP and FP registers. Registers
8912      * r13 and r14 are only copied if we are in that mode, otherwise we copy
8913      * from the mode banked register.
8914      */
8915     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8916         env->xregs[13] = env->regs[13];
8917         env->xregs[14] = env->regs[14];
8918     } else {
8919         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
8920         /* HYP is an exception in that it is copied from r14 */
8921         if (mode == ARM_CPU_MODE_HYP) {
8922             env->xregs[14] = env->regs[14];
8923         } else {
8924             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
8925         }
8926     }
8927 
8928     if (mode == ARM_CPU_MODE_HYP) {
8929         env->xregs[15] = env->regs[13];
8930     } else {
8931         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
8932     }
8933 
8934     if (mode == ARM_CPU_MODE_IRQ) {
8935         env->xregs[16] = env->regs[14];
8936         env->xregs[17] = env->regs[13];
8937     } else {
8938         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
8939         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
8940     }
8941 
8942     if (mode == ARM_CPU_MODE_SVC) {
8943         env->xregs[18] = env->regs[14];
8944         env->xregs[19] = env->regs[13];
8945     } else {
8946         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
8947         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
8948     }
8949 
8950     if (mode == ARM_CPU_MODE_ABT) {
8951         env->xregs[20] = env->regs[14];
8952         env->xregs[21] = env->regs[13];
8953     } else {
8954         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
8955         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
8956     }
8957 
8958     if (mode == ARM_CPU_MODE_UND) {
8959         env->xregs[22] = env->regs[14];
8960         env->xregs[23] = env->regs[13];
8961     } else {
8962         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
8963         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
8964     }
8965 
8966     /*
8967      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
8968      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
8969      * FIQ bank for r8-r14.
8970      */
8971     if (mode == ARM_CPU_MODE_FIQ) {
8972         for (i = 24; i < 31; i++) {
8973             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
8974         }
8975     } else {
8976         for (i = 24; i < 29; i++) {
8977             env->xregs[i] = env->fiq_regs[i - 24];
8978         }
8979         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
8980         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
8981     }
8982 
8983     env->pc = env->regs[15];
8984 }
8985 
8986 /*
8987  * Function used to synchronize QEMU's AArch32 register set with AArch64
8988  * register set.  This is necessary when switching between AArch32 and AArch64
8989  * execution state.
8990  */
8991 void aarch64_sync_64_to_32(CPUARMState *env)
8992 {
8993     int i;
8994     uint32_t mode = env->uncached_cpsr & CPSR_M;
8995 
8996     /* We can blanket copy X[0:7] to R[0:7] */
8997     for (i = 0; i < 8; i++) {
8998         env->regs[i] = env->xregs[i];
8999     }
9000 
9001     /*
9002      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9003      * Otherwise, we copy x8-x12 into the banked user regs.
9004      */
9005     if (mode == ARM_CPU_MODE_FIQ) {
9006         for (i = 8; i < 13; i++) {
9007             env->usr_regs[i - 8] = env->xregs[i];
9008         }
9009     } else {
9010         for (i = 8; i < 13; i++) {
9011             env->regs[i] = env->xregs[i];
9012         }
9013     }
9014 
9015     /*
9016      * Registers r13 & r14 depend on the current mode.
9017      * If we are in a given mode, we copy the corresponding x registers to r13
9018      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9019      * for the mode.
9020      */
9021     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9022         env->regs[13] = env->xregs[13];
9023         env->regs[14] = env->xregs[14];
9024     } else {
9025         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9026 
9027         /*
9028          * HYP is an exception in that it does not have its own banked r14 but
9029          * shares the USR r14
9030          */
9031         if (mode == ARM_CPU_MODE_HYP) {
9032             env->regs[14] = env->xregs[14];
9033         } else {
9034             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9035         }
9036     }
9037 
9038     if (mode == ARM_CPU_MODE_HYP) {
9039         env->regs[13] = env->xregs[15];
9040     } else {
9041         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9042     }
9043 
9044     if (mode == ARM_CPU_MODE_IRQ) {
9045         env->regs[14] = env->xregs[16];
9046         env->regs[13] = env->xregs[17];
9047     } else {
9048         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9049         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9050     }
9051 
9052     if (mode == ARM_CPU_MODE_SVC) {
9053         env->regs[14] = env->xregs[18];
9054         env->regs[13] = env->xregs[19];
9055     } else {
9056         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9057         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9058     }
9059 
9060     if (mode == ARM_CPU_MODE_ABT) {
9061         env->regs[14] = env->xregs[20];
9062         env->regs[13] = env->xregs[21];
9063     } else {
9064         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9065         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9066     }
9067 
9068     if (mode == ARM_CPU_MODE_UND) {
9069         env->regs[14] = env->xregs[22];
9070         env->regs[13] = env->xregs[23];
9071     } else {
9072         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9073         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9074     }
9075 
9076     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9077      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9078      * FIQ bank for r8-r14.
9079      */
9080     if (mode == ARM_CPU_MODE_FIQ) {
9081         for (i = 24; i < 31; i++) {
9082             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9083         }
9084     } else {
9085         for (i = 24; i < 29; i++) {
9086             env->fiq_regs[i - 24] = env->xregs[i];
9087         }
9088         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9089         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9090     }
9091 
9092     env->regs[15] = env->pc;
9093 }
9094 
9095 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9096                                    uint32_t mask, uint32_t offset,
9097                                    uint32_t newpc)
9098 {
9099     int new_el;
9100 
9101     /* Change the CPU state so as to actually take the exception. */
9102     switch_mode(env, new_mode);
9103 
9104     /*
9105      * For exceptions taken to AArch32 we must clear the SS bit in both
9106      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9107      */
9108     env->uncached_cpsr &= ~PSTATE_SS;
9109     env->spsr = cpsr_read(env);
9110     /* Clear IT bits.  */
9111     env->condexec_bits = 0;
9112     /* Switch to the new mode, and to the correct instruction set.  */
9113     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9114 
9115     /* This must be after mode switching. */
9116     new_el = arm_current_el(env);
9117 
9118     /* Set new mode endianness */
9119     env->uncached_cpsr &= ~CPSR_E;
9120     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9121         env->uncached_cpsr |= CPSR_E;
9122     }
9123     /* J and IL must always be cleared for exception entry */
9124     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9125     env->daif |= mask;
9126 
9127     if (new_mode == ARM_CPU_MODE_HYP) {
9128         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9129         env->elr_el[2] = env->regs[15];
9130     } else {
9131         /* CPSR.PAN is normally preserved preserved unless...  */
9132         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9133             switch (new_el) {
9134             case 3:
9135                 if (!arm_is_secure_below_el3(env)) {
9136                     /* ... the target is EL3, from non-secure state.  */
9137                     env->uncached_cpsr &= ~CPSR_PAN;
9138                     break;
9139                 }
9140                 /* ... the target is EL3, from secure state ... */
9141                 /* fall through */
9142             case 1:
9143                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
9144                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9145                     env->uncached_cpsr |= CPSR_PAN;
9146                 }
9147                 break;
9148             }
9149         }
9150         /*
9151          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9152          * and we should just guard the thumb mode on V4
9153          */
9154         if (arm_feature(env, ARM_FEATURE_V4T)) {
9155             env->thumb =
9156                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9157         }
9158         env->regs[14] = env->regs[15] + offset;
9159     }
9160     env->regs[15] = newpc;
9161     arm_rebuild_hflags(env);
9162 }
9163 
9164 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9165 {
9166     /*
9167      * Handle exception entry to Hyp mode; this is sufficiently
9168      * different to entry to other AArch32 modes that we handle it
9169      * separately here.
9170      *
9171      * The vector table entry used is always the 0x14 Hyp mode entry point,
9172      * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9173      * The offset applied to the preferred return address is always zero
9174      * (see DDI0487C.a section G1.12.3).
9175      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9176      */
9177     uint32_t addr, mask;
9178     ARMCPU *cpu = ARM_CPU(cs);
9179     CPUARMState *env = &cpu->env;
9180 
9181     switch (cs->exception_index) {
9182     case EXCP_UDEF:
9183         addr = 0x04;
9184         break;
9185     case EXCP_SWI:
9186         addr = 0x14;
9187         break;
9188     case EXCP_BKPT:
9189         /* Fall through to prefetch abort.  */
9190     case EXCP_PREFETCH_ABORT:
9191         env->cp15.ifar_s = env->exception.vaddress;
9192         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9193                       (uint32_t)env->exception.vaddress);
9194         addr = 0x0c;
9195         break;
9196     case EXCP_DATA_ABORT:
9197         env->cp15.dfar_s = env->exception.vaddress;
9198         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9199                       (uint32_t)env->exception.vaddress);
9200         addr = 0x10;
9201         break;
9202     case EXCP_IRQ:
9203         addr = 0x18;
9204         break;
9205     case EXCP_FIQ:
9206         addr = 0x1c;
9207         break;
9208     case EXCP_HVC:
9209         addr = 0x08;
9210         break;
9211     case EXCP_HYP_TRAP:
9212         addr = 0x14;
9213         break;
9214     default:
9215         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9216     }
9217 
9218     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9219         if (!arm_feature(env, ARM_FEATURE_V8)) {
9220             /*
9221              * QEMU syndrome values are v8-style. v7 has the IL bit
9222              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9223              * If this is a v7 CPU, squash the IL bit in those cases.
9224              */
9225             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9226                 (cs->exception_index == EXCP_DATA_ABORT &&
9227                  !(env->exception.syndrome & ARM_EL_ISV)) ||
9228                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9229                 env->exception.syndrome &= ~ARM_EL_IL;
9230             }
9231         }
9232         env->cp15.esr_el[2] = env->exception.syndrome;
9233     }
9234 
9235     if (arm_current_el(env) != 2 && addr < 0x14) {
9236         addr = 0x14;
9237     }
9238 
9239     mask = 0;
9240     if (!(env->cp15.scr_el3 & SCR_EA)) {
9241         mask |= CPSR_A;
9242     }
9243     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9244         mask |= CPSR_I;
9245     }
9246     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9247         mask |= CPSR_F;
9248     }
9249 
9250     addr += env->cp15.hvbar;
9251 
9252     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9253 }
9254 
9255 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9256 {
9257     ARMCPU *cpu = ARM_CPU(cs);
9258     CPUARMState *env = &cpu->env;
9259     uint32_t addr;
9260     uint32_t mask;
9261     int new_mode;
9262     uint32_t offset;
9263     uint32_t moe;
9264 
9265     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9266     switch (syn_get_ec(env->exception.syndrome)) {
9267     case EC_BREAKPOINT:
9268     case EC_BREAKPOINT_SAME_EL:
9269         moe = 1;
9270         break;
9271     case EC_WATCHPOINT:
9272     case EC_WATCHPOINT_SAME_EL:
9273         moe = 10;
9274         break;
9275     case EC_AA32_BKPT:
9276         moe = 3;
9277         break;
9278     case EC_VECTORCATCH:
9279         moe = 5;
9280         break;
9281     default:
9282         moe = 0;
9283         break;
9284     }
9285 
9286     if (moe) {
9287         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9288     }
9289 
9290     if (env->exception.target_el == 2) {
9291         arm_cpu_do_interrupt_aarch32_hyp(cs);
9292         return;
9293     }
9294 
9295     switch (cs->exception_index) {
9296     case EXCP_UDEF:
9297         new_mode = ARM_CPU_MODE_UND;
9298         addr = 0x04;
9299         mask = CPSR_I;
9300         if (env->thumb)
9301             offset = 2;
9302         else
9303             offset = 4;
9304         break;
9305     case EXCP_SWI:
9306         new_mode = ARM_CPU_MODE_SVC;
9307         addr = 0x08;
9308         mask = CPSR_I;
9309         /* The PC already points to the next instruction.  */
9310         offset = 0;
9311         break;
9312     case EXCP_BKPT:
9313         /* Fall through to prefetch abort.  */
9314     case EXCP_PREFETCH_ABORT:
9315         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9316         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9317         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9318                       env->exception.fsr, (uint32_t)env->exception.vaddress);
9319         new_mode = ARM_CPU_MODE_ABT;
9320         addr = 0x0c;
9321         mask = CPSR_A | CPSR_I;
9322         offset = 4;
9323         break;
9324     case EXCP_DATA_ABORT:
9325         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9326         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9327         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9328                       env->exception.fsr,
9329                       (uint32_t)env->exception.vaddress);
9330         new_mode = ARM_CPU_MODE_ABT;
9331         addr = 0x10;
9332         mask = CPSR_A | CPSR_I;
9333         offset = 8;
9334         break;
9335     case EXCP_IRQ:
9336         new_mode = ARM_CPU_MODE_IRQ;
9337         addr = 0x18;
9338         /* Disable IRQ and imprecise data aborts.  */
9339         mask = CPSR_A | CPSR_I;
9340         offset = 4;
9341         if (env->cp15.scr_el3 & SCR_IRQ) {
9342             /* IRQ routed to monitor mode */
9343             new_mode = ARM_CPU_MODE_MON;
9344             mask |= CPSR_F;
9345         }
9346         break;
9347     case EXCP_FIQ:
9348         new_mode = ARM_CPU_MODE_FIQ;
9349         addr = 0x1c;
9350         /* Disable FIQ, IRQ and imprecise data aborts.  */
9351         mask = CPSR_A | CPSR_I | CPSR_F;
9352         if (env->cp15.scr_el3 & SCR_FIQ) {
9353             /* FIQ routed to monitor mode */
9354             new_mode = ARM_CPU_MODE_MON;
9355         }
9356         offset = 4;
9357         break;
9358     case EXCP_VIRQ:
9359         new_mode = ARM_CPU_MODE_IRQ;
9360         addr = 0x18;
9361         /* Disable IRQ and imprecise data aborts.  */
9362         mask = CPSR_A | CPSR_I;
9363         offset = 4;
9364         break;
9365     case EXCP_VFIQ:
9366         new_mode = ARM_CPU_MODE_FIQ;
9367         addr = 0x1c;
9368         /* Disable FIQ, IRQ and imprecise data aborts.  */
9369         mask = CPSR_A | CPSR_I | CPSR_F;
9370         offset = 4;
9371         break;
9372     case EXCP_SMC:
9373         new_mode = ARM_CPU_MODE_MON;
9374         addr = 0x08;
9375         mask = CPSR_A | CPSR_I | CPSR_F;
9376         offset = 0;
9377         break;
9378     default:
9379         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9380         return; /* Never happens.  Keep compiler happy.  */
9381     }
9382 
9383     if (new_mode == ARM_CPU_MODE_MON) {
9384         addr += env->cp15.mvbar;
9385     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9386         /* High vectors. When enabled, base address cannot be remapped. */
9387         addr += 0xffff0000;
9388     } else {
9389         /* ARM v7 architectures provide a vector base address register to remap
9390          * the interrupt vector table.
9391          * This register is only followed in non-monitor mode, and is banked.
9392          * Note: only bits 31:5 are valid.
9393          */
9394         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9395     }
9396 
9397     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9398         env->cp15.scr_el3 &= ~SCR_NS;
9399     }
9400 
9401     take_aarch32_exception(env, new_mode, mask, offset, addr);
9402 }
9403 
9404 /* Handle exception entry to a target EL which is using AArch64 */
9405 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9406 {
9407     ARMCPU *cpu = ARM_CPU(cs);
9408     CPUARMState *env = &cpu->env;
9409     unsigned int new_el = env->exception.target_el;
9410     target_ulong addr = env->cp15.vbar_el[new_el];
9411     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9412     unsigned int old_mode;
9413     unsigned int cur_el = arm_current_el(env);
9414 
9415     /*
9416      * Note that new_el can never be 0.  If cur_el is 0, then
9417      * el0_a64 is is_a64(), else el0_a64 is ignored.
9418      */
9419     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9420 
9421     if (cur_el < new_el) {
9422         /* Entry vector offset depends on whether the implemented EL
9423          * immediately lower than the target level is using AArch32 or AArch64
9424          */
9425         bool is_aa64;
9426         uint64_t hcr;
9427 
9428         switch (new_el) {
9429         case 3:
9430             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9431             break;
9432         case 2:
9433             hcr = arm_hcr_el2_eff(env);
9434             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9435                 is_aa64 = (hcr & HCR_RW) != 0;
9436                 break;
9437             }
9438             /* fall through */
9439         case 1:
9440             is_aa64 = is_a64(env);
9441             break;
9442         default:
9443             g_assert_not_reached();
9444         }
9445 
9446         if (is_aa64) {
9447             addr += 0x400;
9448         } else {
9449             addr += 0x600;
9450         }
9451     } else if (pstate_read(env) & PSTATE_SP) {
9452         addr += 0x200;
9453     }
9454 
9455     switch (cs->exception_index) {
9456     case EXCP_PREFETCH_ABORT:
9457     case EXCP_DATA_ABORT:
9458         env->cp15.far_el[new_el] = env->exception.vaddress;
9459         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9460                       env->cp15.far_el[new_el]);
9461         /* fall through */
9462     case EXCP_BKPT:
9463     case EXCP_UDEF:
9464     case EXCP_SWI:
9465     case EXCP_HVC:
9466     case EXCP_HYP_TRAP:
9467     case EXCP_SMC:
9468         if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
9469             /*
9470              * QEMU internal FP/SIMD syndromes from AArch32 include the
9471              * TA and coproc fields which are only exposed if the exception
9472              * is taken to AArch32 Hyp mode. Mask them out to get a valid
9473              * AArch64 format syndrome.
9474              */
9475             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9476         }
9477         env->cp15.esr_el[new_el] = env->exception.syndrome;
9478         break;
9479     case EXCP_IRQ:
9480     case EXCP_VIRQ:
9481         addr += 0x80;
9482         break;
9483     case EXCP_FIQ:
9484     case EXCP_VFIQ:
9485         addr += 0x100;
9486         break;
9487     default:
9488         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9489     }
9490 
9491     if (is_a64(env)) {
9492         old_mode = pstate_read(env);
9493         aarch64_save_sp(env, arm_current_el(env));
9494         env->elr_el[new_el] = env->pc;
9495     } else {
9496         old_mode = cpsr_read(env);
9497         env->elr_el[new_el] = env->regs[15];
9498 
9499         aarch64_sync_32_to_64(env);
9500 
9501         env->condexec_bits = 0;
9502     }
9503     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
9504 
9505     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9506                   env->elr_el[new_el]);
9507 
9508     if (cpu_isar_feature(aa64_pan, cpu)) {
9509         /* The value of PSTATE.PAN is normally preserved, except when ... */
9510         new_mode |= old_mode & PSTATE_PAN;
9511         switch (new_el) {
9512         case 2:
9513             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
9514             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
9515                 != (HCR_E2H | HCR_TGE)) {
9516                 break;
9517             }
9518             /* fall through */
9519         case 1:
9520             /* ... the target is EL1 ... */
9521             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
9522             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
9523                 new_mode |= PSTATE_PAN;
9524             }
9525             break;
9526         }
9527     }
9528 
9529     pstate_write(env, PSTATE_DAIF | new_mode);
9530     env->aarch64 = 1;
9531     aarch64_restore_sp(env, new_el);
9532     helper_rebuild_hflags_a64(env, new_el);
9533 
9534     env->pc = addr;
9535 
9536     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9537                   new_el, env->pc, pstate_read(env));
9538 }
9539 
9540 /*
9541  * Do semihosting call and set the appropriate return value. All the
9542  * permission and validity checks have been done at translate time.
9543  *
9544  * We only see semihosting exceptions in TCG only as they are not
9545  * trapped to the hypervisor in KVM.
9546  */
9547 #ifdef CONFIG_TCG
9548 static void handle_semihosting(CPUState *cs)
9549 {
9550     ARMCPU *cpu = ARM_CPU(cs);
9551     CPUARMState *env = &cpu->env;
9552 
9553     if (is_a64(env)) {
9554         qemu_log_mask(CPU_LOG_INT,
9555                       "...handling as semihosting call 0x%" PRIx64 "\n",
9556                       env->xregs[0]);
9557         env->xregs[0] = do_arm_semihosting(env);
9558         env->pc += 4;
9559     } else {
9560         qemu_log_mask(CPU_LOG_INT,
9561                       "...handling as semihosting call 0x%x\n",
9562                       env->regs[0]);
9563         env->regs[0] = do_arm_semihosting(env);
9564         env->regs[15] += env->thumb ? 2 : 4;
9565     }
9566 }
9567 #endif
9568 
9569 /* Handle a CPU exception for A and R profile CPUs.
9570  * Do any appropriate logging, handle PSCI calls, and then hand off
9571  * to the AArch64-entry or AArch32-entry function depending on the
9572  * target exception level's register width.
9573  */
9574 void arm_cpu_do_interrupt(CPUState *cs)
9575 {
9576     ARMCPU *cpu = ARM_CPU(cs);
9577     CPUARMState *env = &cpu->env;
9578     unsigned int new_el = env->exception.target_el;
9579 
9580     assert(!arm_feature(env, ARM_FEATURE_M));
9581 
9582     arm_log_exception(cs->exception_index);
9583     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9584                   new_el);
9585     if (qemu_loglevel_mask(CPU_LOG_INT)
9586         && !excp_is_internal(cs->exception_index)) {
9587         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9588                       syn_get_ec(env->exception.syndrome),
9589                       env->exception.syndrome);
9590     }
9591 
9592     if (arm_is_psci_call(cpu, cs->exception_index)) {
9593         arm_handle_psci_call(cpu);
9594         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9595         return;
9596     }
9597 
9598     /*
9599      * Semihosting semantics depend on the register width of the code
9600      * that caused the exception, not the target exception level, so
9601      * must be handled here.
9602      */
9603 #ifdef CONFIG_TCG
9604     if (cs->exception_index == EXCP_SEMIHOST) {
9605         handle_semihosting(cs);
9606         return;
9607     }
9608 #endif
9609 
9610     /* Hooks may change global state so BQL should be held, also the
9611      * BQL needs to be held for any modification of
9612      * cs->interrupt_request.
9613      */
9614     g_assert(qemu_mutex_iothread_locked());
9615 
9616     arm_call_pre_el_change_hook(cpu);
9617 
9618     assert(!excp_is_internal(cs->exception_index));
9619     if (arm_el_is_aa64(env, new_el)) {
9620         arm_cpu_do_interrupt_aarch64(cs);
9621     } else {
9622         arm_cpu_do_interrupt_aarch32(cs);
9623     }
9624 
9625     arm_call_el_change_hook(cpu);
9626 
9627     if (!kvm_enabled()) {
9628         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9629     }
9630 }
9631 #endif /* !CONFIG_USER_ONLY */
9632 
9633 /* Return the exception level which controls this address translation regime */
9634 static uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
9635 {
9636     switch (mmu_idx) {
9637     case ARMMMUIdx_E20_0:
9638     case ARMMMUIdx_E20_2:
9639     case ARMMMUIdx_E20_2_PAN:
9640     case ARMMMUIdx_Stage2:
9641     case ARMMMUIdx_E2:
9642         return 2;
9643     case ARMMMUIdx_SE3:
9644         return 3;
9645     case ARMMMUIdx_SE10_0:
9646         return arm_el_is_aa64(env, 3) ? 1 : 3;
9647     case ARMMMUIdx_SE10_1:
9648     case ARMMMUIdx_SE10_1_PAN:
9649     case ARMMMUIdx_Stage1_E0:
9650     case ARMMMUIdx_Stage1_E1:
9651     case ARMMMUIdx_Stage1_E1_PAN:
9652     case ARMMMUIdx_E10_0:
9653     case ARMMMUIdx_E10_1:
9654     case ARMMMUIdx_E10_1_PAN:
9655     case ARMMMUIdx_MPrivNegPri:
9656     case ARMMMUIdx_MUserNegPri:
9657     case ARMMMUIdx_MPriv:
9658     case ARMMMUIdx_MUser:
9659     case ARMMMUIdx_MSPrivNegPri:
9660     case ARMMMUIdx_MSUserNegPri:
9661     case ARMMMUIdx_MSPriv:
9662     case ARMMMUIdx_MSUser:
9663         return 1;
9664     default:
9665         g_assert_not_reached();
9666     }
9667 }
9668 
9669 uint64_t arm_sctlr(CPUARMState *env, int el)
9670 {
9671     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
9672     if (el == 0) {
9673         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
9674         el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1);
9675     }
9676     return env->cp15.sctlr_el[el];
9677 }
9678 
9679 /* Return the SCTLR value which controls this address translation regime */
9680 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
9681 {
9682     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
9683 }
9684 
9685 #ifndef CONFIG_USER_ONLY
9686 
9687 /* Return true if the specified stage of address translation is disabled */
9688 static inline bool regime_translation_disabled(CPUARMState *env,
9689                                                ARMMMUIdx mmu_idx)
9690 {
9691     if (arm_feature(env, ARM_FEATURE_M)) {
9692         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
9693                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
9694         case R_V7M_MPU_CTRL_ENABLE_MASK:
9695             /* Enabled, but not for HardFault and NMI */
9696             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
9697         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
9698             /* Enabled for all cases */
9699             return false;
9700         case 0:
9701         default:
9702             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
9703              * we warned about that in armv7m_nvic.c when the guest set it.
9704              */
9705             return true;
9706         }
9707     }
9708 
9709     if (mmu_idx == ARMMMUIdx_Stage2) {
9710         /* HCR.DC means HCR.VM behaves as 1 */
9711         return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
9712     }
9713 
9714     if (env->cp15.hcr_el2 & HCR_TGE) {
9715         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
9716         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
9717             return true;
9718         }
9719     }
9720 
9721     if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
9722         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
9723         return true;
9724     }
9725 
9726     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
9727 }
9728 
9729 static inline bool regime_translation_big_endian(CPUARMState *env,
9730                                                  ARMMMUIdx mmu_idx)
9731 {
9732     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
9733 }
9734 
9735 /* Return the TTBR associated with this translation regime */
9736 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
9737                                    int ttbrn)
9738 {
9739     if (mmu_idx == ARMMMUIdx_Stage2) {
9740         return env->cp15.vttbr_el2;
9741     }
9742     if (ttbrn == 0) {
9743         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
9744     } else {
9745         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
9746     }
9747 }
9748 
9749 #endif /* !CONFIG_USER_ONLY */
9750 
9751 /* Return the TCR controlling this translation regime */
9752 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
9753 {
9754     if (mmu_idx == ARMMMUIdx_Stage2) {
9755         return &env->cp15.vtcr_el2;
9756     }
9757     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
9758 }
9759 
9760 /* Convert a possible stage1+2 MMU index into the appropriate
9761  * stage 1 MMU index
9762  */
9763 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
9764 {
9765     switch (mmu_idx) {
9766     case ARMMMUIdx_E10_0:
9767         return ARMMMUIdx_Stage1_E0;
9768     case ARMMMUIdx_E10_1:
9769         return ARMMMUIdx_Stage1_E1;
9770     case ARMMMUIdx_E10_1_PAN:
9771         return ARMMMUIdx_Stage1_E1_PAN;
9772     default:
9773         return mmu_idx;
9774     }
9775 }
9776 
9777 /* Return true if the translation regime is using LPAE format page tables */
9778 static inline bool regime_using_lpae_format(CPUARMState *env,
9779                                             ARMMMUIdx mmu_idx)
9780 {
9781     int el = regime_el(env, mmu_idx);
9782     if (el == 2 || arm_el_is_aa64(env, el)) {
9783         return true;
9784     }
9785     if (arm_feature(env, ARM_FEATURE_LPAE)
9786         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
9787         return true;
9788     }
9789     return false;
9790 }
9791 
9792 /* Returns true if the stage 1 translation regime is using LPAE format page
9793  * tables. Used when raising alignment exceptions, whose FSR changes depending
9794  * on whether the long or short descriptor format is in use. */
9795 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
9796 {
9797     mmu_idx = stage_1_mmu_idx(mmu_idx);
9798 
9799     return regime_using_lpae_format(env, mmu_idx);
9800 }
9801 
9802 #ifndef CONFIG_USER_ONLY
9803 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
9804 {
9805     switch (mmu_idx) {
9806     case ARMMMUIdx_SE10_0:
9807     case ARMMMUIdx_E20_0:
9808     case ARMMMUIdx_Stage1_E0:
9809     case ARMMMUIdx_MUser:
9810     case ARMMMUIdx_MSUser:
9811     case ARMMMUIdx_MUserNegPri:
9812     case ARMMMUIdx_MSUserNegPri:
9813         return true;
9814     default:
9815         return false;
9816     case ARMMMUIdx_E10_0:
9817     case ARMMMUIdx_E10_1:
9818     case ARMMMUIdx_E10_1_PAN:
9819         g_assert_not_reached();
9820     }
9821 }
9822 
9823 /* Translate section/page access permissions to page
9824  * R/W protection flags
9825  *
9826  * @env:         CPUARMState
9827  * @mmu_idx:     MMU index indicating required translation regime
9828  * @ap:          The 3-bit access permissions (AP[2:0])
9829  * @domain_prot: The 2-bit domain access permissions
9830  */
9831 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
9832                                 int ap, int domain_prot)
9833 {
9834     bool is_user = regime_is_user(env, mmu_idx);
9835 
9836     if (domain_prot == 3) {
9837         return PAGE_READ | PAGE_WRITE;
9838     }
9839 
9840     switch (ap) {
9841     case 0:
9842         if (arm_feature(env, ARM_FEATURE_V7)) {
9843             return 0;
9844         }
9845         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
9846         case SCTLR_S:
9847             return is_user ? 0 : PAGE_READ;
9848         case SCTLR_R:
9849             return PAGE_READ;
9850         default:
9851             return 0;
9852         }
9853     case 1:
9854         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9855     case 2:
9856         if (is_user) {
9857             return PAGE_READ;
9858         } else {
9859             return PAGE_READ | PAGE_WRITE;
9860         }
9861     case 3:
9862         return PAGE_READ | PAGE_WRITE;
9863     case 4: /* Reserved.  */
9864         return 0;
9865     case 5:
9866         return is_user ? 0 : PAGE_READ;
9867     case 6:
9868         return PAGE_READ;
9869     case 7:
9870         if (!arm_feature(env, ARM_FEATURE_V6K)) {
9871             return 0;
9872         }
9873         return PAGE_READ;
9874     default:
9875         g_assert_not_reached();
9876     }
9877 }
9878 
9879 /* Translate section/page access permissions to page
9880  * R/W protection flags.
9881  *
9882  * @ap:      The 2-bit simple AP (AP[2:1])
9883  * @is_user: TRUE if accessing from PL0
9884  */
9885 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
9886 {
9887     switch (ap) {
9888     case 0:
9889         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9890     case 1:
9891         return PAGE_READ | PAGE_WRITE;
9892     case 2:
9893         return is_user ? 0 : PAGE_READ;
9894     case 3:
9895         return PAGE_READ;
9896     default:
9897         g_assert_not_reached();
9898     }
9899 }
9900 
9901 static inline int
9902 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
9903 {
9904     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
9905 }
9906 
9907 /* Translate S2 section/page access permissions to protection flags
9908  *
9909  * @env:     CPUARMState
9910  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
9911  * @xn:      XN (execute-never) bits
9912  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
9913  */
9914 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
9915 {
9916     int prot = 0;
9917 
9918     if (s2ap & 1) {
9919         prot |= PAGE_READ;
9920     }
9921     if (s2ap & 2) {
9922         prot |= PAGE_WRITE;
9923     }
9924 
9925     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
9926         switch (xn) {
9927         case 0:
9928             prot |= PAGE_EXEC;
9929             break;
9930         case 1:
9931             if (s1_is_el0) {
9932                 prot |= PAGE_EXEC;
9933             }
9934             break;
9935         case 2:
9936             break;
9937         case 3:
9938             if (!s1_is_el0) {
9939                 prot |= PAGE_EXEC;
9940             }
9941             break;
9942         default:
9943             g_assert_not_reached();
9944         }
9945     } else {
9946         if (!extract32(xn, 1, 1)) {
9947             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
9948                 prot |= PAGE_EXEC;
9949             }
9950         }
9951     }
9952     return prot;
9953 }
9954 
9955 /* Translate section/page access permissions to protection flags
9956  *
9957  * @env:     CPUARMState
9958  * @mmu_idx: MMU index indicating required translation regime
9959  * @is_aa64: TRUE if AArch64
9960  * @ap:      The 2-bit simple AP (AP[2:1])
9961  * @ns:      NS (non-secure) bit
9962  * @xn:      XN (execute-never) bit
9963  * @pxn:     PXN (privileged execute-never) bit
9964  */
9965 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
9966                       int ap, int ns, int xn, int pxn)
9967 {
9968     bool is_user = regime_is_user(env, mmu_idx);
9969     int prot_rw, user_rw;
9970     bool have_wxn;
9971     int wxn = 0;
9972 
9973     assert(mmu_idx != ARMMMUIdx_Stage2);
9974 
9975     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
9976     if (is_user) {
9977         prot_rw = user_rw;
9978     } else {
9979         if (user_rw && regime_is_pan(env, mmu_idx)) {
9980             /* PAN forbids data accesses but doesn't affect insn fetch */
9981             prot_rw = 0;
9982         } else {
9983             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
9984         }
9985     }
9986 
9987     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
9988         return prot_rw;
9989     }
9990 
9991     /* TODO have_wxn should be replaced with
9992      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
9993      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
9994      * compatible processors have EL2, which is required for [U]WXN.
9995      */
9996     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
9997 
9998     if (have_wxn) {
9999         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10000     }
10001 
10002     if (is_aa64) {
10003         if (regime_has_2_ranges(mmu_idx) && !is_user) {
10004             xn = pxn || (user_rw & PAGE_WRITE);
10005         }
10006     } else if (arm_feature(env, ARM_FEATURE_V7)) {
10007         switch (regime_el(env, mmu_idx)) {
10008         case 1:
10009         case 3:
10010             if (is_user) {
10011                 xn = xn || !(user_rw & PAGE_READ);
10012             } else {
10013                 int uwxn = 0;
10014                 if (have_wxn) {
10015                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10016                 }
10017                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10018                      (uwxn && (user_rw & PAGE_WRITE));
10019             }
10020             break;
10021         case 2:
10022             break;
10023         }
10024     } else {
10025         xn = wxn = 0;
10026     }
10027 
10028     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10029         return prot_rw;
10030     }
10031     return prot_rw | PAGE_EXEC;
10032 }
10033 
10034 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10035                                      uint32_t *table, uint32_t address)
10036 {
10037     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10038     TCR *tcr = regime_tcr(env, mmu_idx);
10039 
10040     if (address & tcr->mask) {
10041         if (tcr->raw_tcr & TTBCR_PD1) {
10042             /* Translation table walk disabled for TTBR1 */
10043             return false;
10044         }
10045         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10046     } else {
10047         if (tcr->raw_tcr & TTBCR_PD0) {
10048             /* Translation table walk disabled for TTBR0 */
10049             return false;
10050         }
10051         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10052     }
10053     *table |= (address >> 18) & 0x3ffc;
10054     return true;
10055 }
10056 
10057 /* Translate a S1 pagetable walk through S2 if needed.  */
10058 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10059                                hwaddr addr, MemTxAttrs txattrs,
10060                                ARMMMUFaultInfo *fi)
10061 {
10062     if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10063         !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10064         target_ulong s2size;
10065         hwaddr s2pa;
10066         int s2prot;
10067         int ret;
10068         ARMCacheAttrs cacheattrs = {};
10069         ARMCacheAttrs *pcacheattrs = NULL;
10070 
10071         if (env->cp15.hcr_el2 & HCR_PTW) {
10072             /*
10073              * PTW means we must fault if this S1 walk touches S2 Device
10074              * memory; otherwise we don't care about the attributes and can
10075              * save the S2 translation the effort of computing them.
10076              */
10077             pcacheattrs = &cacheattrs;
10078         }
10079 
10080         ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, ARMMMUIdx_Stage2,
10081                                  false,
10082                                  &s2pa, &txattrs, &s2prot, &s2size, fi,
10083                                  pcacheattrs);
10084         if (ret) {
10085             assert(fi->type != ARMFault_None);
10086             fi->s2addr = addr;
10087             fi->stage2 = true;
10088             fi->s1ptw = true;
10089             return ~0;
10090         }
10091         if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
10092             /* Access was to Device memory: generate Permission fault */
10093             fi->type = ARMFault_Permission;
10094             fi->s2addr = addr;
10095             fi->stage2 = true;
10096             fi->s1ptw = true;
10097             return ~0;
10098         }
10099         addr = s2pa;
10100     }
10101     return addr;
10102 }
10103 
10104 /* All loads done in the course of a page table walk go through here. */
10105 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10106                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10107 {
10108     ARMCPU *cpu = ARM_CPU(cs);
10109     CPUARMState *env = &cpu->env;
10110     MemTxAttrs attrs = {};
10111     MemTxResult result = MEMTX_OK;
10112     AddressSpace *as;
10113     uint32_t data;
10114 
10115     attrs.secure = is_secure;
10116     as = arm_addressspace(cs, attrs);
10117     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10118     if (fi->s1ptw) {
10119         return 0;
10120     }
10121     if (regime_translation_big_endian(env, mmu_idx)) {
10122         data = address_space_ldl_be(as, addr, attrs, &result);
10123     } else {
10124         data = address_space_ldl_le(as, addr, attrs, &result);
10125     }
10126     if (result == MEMTX_OK) {
10127         return data;
10128     }
10129     fi->type = ARMFault_SyncExternalOnWalk;
10130     fi->ea = arm_extabort_type(result);
10131     return 0;
10132 }
10133 
10134 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10135                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10136 {
10137     ARMCPU *cpu = ARM_CPU(cs);
10138     CPUARMState *env = &cpu->env;
10139     MemTxAttrs attrs = {};
10140     MemTxResult result = MEMTX_OK;
10141     AddressSpace *as;
10142     uint64_t data;
10143 
10144     attrs.secure = is_secure;
10145     as = arm_addressspace(cs, attrs);
10146     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10147     if (fi->s1ptw) {
10148         return 0;
10149     }
10150     if (regime_translation_big_endian(env, mmu_idx)) {
10151         data = address_space_ldq_be(as, addr, attrs, &result);
10152     } else {
10153         data = address_space_ldq_le(as, addr, attrs, &result);
10154     }
10155     if (result == MEMTX_OK) {
10156         return data;
10157     }
10158     fi->type = ARMFault_SyncExternalOnWalk;
10159     fi->ea = arm_extabort_type(result);
10160     return 0;
10161 }
10162 
10163 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10164                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10165                              hwaddr *phys_ptr, int *prot,
10166                              target_ulong *page_size,
10167                              ARMMMUFaultInfo *fi)
10168 {
10169     CPUState *cs = env_cpu(env);
10170     int level = 1;
10171     uint32_t table;
10172     uint32_t desc;
10173     int type;
10174     int ap;
10175     int domain = 0;
10176     int domain_prot;
10177     hwaddr phys_addr;
10178     uint32_t dacr;
10179 
10180     /* Pagetable walk.  */
10181     /* Lookup l1 descriptor.  */
10182     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10183         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10184         fi->type = ARMFault_Translation;
10185         goto do_fault;
10186     }
10187     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10188                        mmu_idx, fi);
10189     if (fi->type != ARMFault_None) {
10190         goto do_fault;
10191     }
10192     type = (desc & 3);
10193     domain = (desc >> 5) & 0x0f;
10194     if (regime_el(env, mmu_idx) == 1) {
10195         dacr = env->cp15.dacr_ns;
10196     } else {
10197         dacr = env->cp15.dacr_s;
10198     }
10199     domain_prot = (dacr >> (domain * 2)) & 3;
10200     if (type == 0) {
10201         /* Section translation fault.  */
10202         fi->type = ARMFault_Translation;
10203         goto do_fault;
10204     }
10205     if (type != 2) {
10206         level = 2;
10207     }
10208     if (domain_prot == 0 || domain_prot == 2) {
10209         fi->type = ARMFault_Domain;
10210         goto do_fault;
10211     }
10212     if (type == 2) {
10213         /* 1Mb section.  */
10214         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10215         ap = (desc >> 10) & 3;
10216         *page_size = 1024 * 1024;
10217     } else {
10218         /* Lookup l2 entry.  */
10219         if (type == 1) {
10220             /* Coarse pagetable.  */
10221             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10222         } else {
10223             /* Fine pagetable.  */
10224             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10225         }
10226         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10227                            mmu_idx, fi);
10228         if (fi->type != ARMFault_None) {
10229             goto do_fault;
10230         }
10231         switch (desc & 3) {
10232         case 0: /* Page translation fault.  */
10233             fi->type = ARMFault_Translation;
10234             goto do_fault;
10235         case 1: /* 64k page.  */
10236             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10237             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10238             *page_size = 0x10000;
10239             break;
10240         case 2: /* 4k page.  */
10241             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10242             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10243             *page_size = 0x1000;
10244             break;
10245         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10246             if (type == 1) {
10247                 /* ARMv6/XScale extended small page format */
10248                 if (arm_feature(env, ARM_FEATURE_XSCALE)
10249                     || arm_feature(env, ARM_FEATURE_V6)) {
10250                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10251                     *page_size = 0x1000;
10252                 } else {
10253                     /* UNPREDICTABLE in ARMv5; we choose to take a
10254                      * page translation fault.
10255                      */
10256                     fi->type = ARMFault_Translation;
10257                     goto do_fault;
10258                 }
10259             } else {
10260                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10261                 *page_size = 0x400;
10262             }
10263             ap = (desc >> 4) & 3;
10264             break;
10265         default:
10266             /* Never happens, but compiler isn't smart enough to tell.  */
10267             abort();
10268         }
10269     }
10270     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10271     *prot |= *prot ? PAGE_EXEC : 0;
10272     if (!(*prot & (1 << access_type))) {
10273         /* Access permission fault.  */
10274         fi->type = ARMFault_Permission;
10275         goto do_fault;
10276     }
10277     *phys_ptr = phys_addr;
10278     return false;
10279 do_fault:
10280     fi->domain = domain;
10281     fi->level = level;
10282     return true;
10283 }
10284 
10285 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10286                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10287                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10288                              target_ulong *page_size, ARMMMUFaultInfo *fi)
10289 {
10290     CPUState *cs = env_cpu(env);
10291     int level = 1;
10292     uint32_t table;
10293     uint32_t desc;
10294     uint32_t xn;
10295     uint32_t pxn = 0;
10296     int type;
10297     int ap;
10298     int domain = 0;
10299     int domain_prot;
10300     hwaddr phys_addr;
10301     uint32_t dacr;
10302     bool ns;
10303 
10304     /* Pagetable walk.  */
10305     /* Lookup l1 descriptor.  */
10306     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10307         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10308         fi->type = ARMFault_Translation;
10309         goto do_fault;
10310     }
10311     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10312                        mmu_idx, fi);
10313     if (fi->type != ARMFault_None) {
10314         goto do_fault;
10315     }
10316     type = (desc & 3);
10317     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
10318         /* Section translation fault, or attempt to use the encoding
10319          * which is Reserved on implementations without PXN.
10320          */
10321         fi->type = ARMFault_Translation;
10322         goto do_fault;
10323     }
10324     if ((type == 1) || !(desc & (1 << 18))) {
10325         /* Page or Section.  */
10326         domain = (desc >> 5) & 0x0f;
10327     }
10328     if (regime_el(env, mmu_idx) == 1) {
10329         dacr = env->cp15.dacr_ns;
10330     } else {
10331         dacr = env->cp15.dacr_s;
10332     }
10333     if (type == 1) {
10334         level = 2;
10335     }
10336     domain_prot = (dacr >> (domain * 2)) & 3;
10337     if (domain_prot == 0 || domain_prot == 2) {
10338         /* Section or Page domain fault */
10339         fi->type = ARMFault_Domain;
10340         goto do_fault;
10341     }
10342     if (type != 1) {
10343         if (desc & (1 << 18)) {
10344             /* Supersection.  */
10345             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10346             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10347             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10348             *page_size = 0x1000000;
10349         } else {
10350             /* Section.  */
10351             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10352             *page_size = 0x100000;
10353         }
10354         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10355         xn = desc & (1 << 4);
10356         pxn = desc & 1;
10357         ns = extract32(desc, 19, 1);
10358     } else {
10359         if (arm_feature(env, ARM_FEATURE_PXN)) {
10360             pxn = (desc >> 2) & 1;
10361         }
10362         ns = extract32(desc, 3, 1);
10363         /* Lookup l2 entry.  */
10364         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10365         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10366                            mmu_idx, fi);
10367         if (fi->type != ARMFault_None) {
10368             goto do_fault;
10369         }
10370         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10371         switch (desc & 3) {
10372         case 0: /* Page translation fault.  */
10373             fi->type = ARMFault_Translation;
10374             goto do_fault;
10375         case 1: /* 64k page.  */
10376             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10377             xn = desc & (1 << 15);
10378             *page_size = 0x10000;
10379             break;
10380         case 2: case 3: /* 4k page.  */
10381             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10382             xn = desc & 1;
10383             *page_size = 0x1000;
10384             break;
10385         default:
10386             /* Never happens, but compiler isn't smart enough to tell.  */
10387             abort();
10388         }
10389     }
10390     if (domain_prot == 3) {
10391         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10392     } else {
10393         if (pxn && !regime_is_user(env, mmu_idx)) {
10394             xn = 1;
10395         }
10396         if (xn && access_type == MMU_INST_FETCH) {
10397             fi->type = ARMFault_Permission;
10398             goto do_fault;
10399         }
10400 
10401         if (arm_feature(env, ARM_FEATURE_V6K) &&
10402                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10403             /* The simplified model uses AP[0] as an access control bit.  */
10404             if ((ap & 1) == 0) {
10405                 /* Access flag fault.  */
10406                 fi->type = ARMFault_AccessFlag;
10407                 goto do_fault;
10408             }
10409             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10410         } else {
10411             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10412         }
10413         if (*prot && !xn) {
10414             *prot |= PAGE_EXEC;
10415         }
10416         if (!(*prot & (1 << access_type))) {
10417             /* Access permission fault.  */
10418             fi->type = ARMFault_Permission;
10419             goto do_fault;
10420         }
10421     }
10422     if (ns) {
10423         /* The NS bit will (as required by the architecture) have no effect if
10424          * the CPU doesn't support TZ or this is a non-secure translation
10425          * regime, because the attribute will already be non-secure.
10426          */
10427         attrs->secure = false;
10428     }
10429     *phys_ptr = phys_addr;
10430     return false;
10431 do_fault:
10432     fi->domain = domain;
10433     fi->level = level;
10434     return true;
10435 }
10436 
10437 /*
10438  * check_s2_mmu_setup
10439  * @cpu:        ARMCPU
10440  * @is_aa64:    True if the translation regime is in AArch64 state
10441  * @startlevel: Suggested starting level
10442  * @inputsize:  Bitsize of IPAs
10443  * @stride:     Page-table stride (See the ARM ARM)
10444  *
10445  * Returns true if the suggested S2 translation parameters are OK and
10446  * false otherwise.
10447  */
10448 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10449                                int inputsize, int stride)
10450 {
10451     const int grainsize = stride + 3;
10452     int startsizecheck;
10453 
10454     /* Negative levels are never allowed.  */
10455     if (level < 0) {
10456         return false;
10457     }
10458 
10459     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10460     if (startsizecheck < 1 || startsizecheck > stride + 4) {
10461         return false;
10462     }
10463 
10464     if (is_aa64) {
10465         CPUARMState *env = &cpu->env;
10466         unsigned int pamax = arm_pamax(cpu);
10467 
10468         switch (stride) {
10469         case 13: /* 64KB Pages.  */
10470             if (level == 0 || (level == 1 && pamax <= 42)) {
10471                 return false;
10472             }
10473             break;
10474         case 11: /* 16KB Pages.  */
10475             if (level == 0 || (level == 1 && pamax <= 40)) {
10476                 return false;
10477             }
10478             break;
10479         case 9: /* 4KB Pages.  */
10480             if (level == 0 && pamax <= 42) {
10481                 return false;
10482             }
10483             break;
10484         default:
10485             g_assert_not_reached();
10486         }
10487 
10488         /* Inputsize checks.  */
10489         if (inputsize > pamax &&
10490             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10491             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
10492             return false;
10493         }
10494     } else {
10495         /* AArch32 only supports 4KB pages. Assert on that.  */
10496         assert(stride == 9);
10497 
10498         if (level == 0) {
10499             return false;
10500         }
10501     }
10502     return true;
10503 }
10504 
10505 /* Translate from the 4-bit stage 2 representation of
10506  * memory attributes (without cache-allocation hints) to
10507  * the 8-bit representation of the stage 1 MAIR registers
10508  * (which includes allocation hints).
10509  *
10510  * ref: shared/translation/attrs/S2AttrDecode()
10511  *      .../S2ConvertAttrsHints()
10512  */
10513 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10514 {
10515     uint8_t hiattr = extract32(s2attrs, 2, 2);
10516     uint8_t loattr = extract32(s2attrs, 0, 2);
10517     uint8_t hihint = 0, lohint = 0;
10518 
10519     if (hiattr != 0) { /* normal memory */
10520         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
10521             hiattr = loattr = 1; /* non-cacheable */
10522         } else {
10523             if (hiattr != 1) { /* Write-through or write-back */
10524                 hihint = 3; /* RW allocate */
10525             }
10526             if (loattr != 1) { /* Write-through or write-back */
10527                 lohint = 3; /* RW allocate */
10528             }
10529         }
10530     }
10531 
10532     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10533 }
10534 #endif /* !CONFIG_USER_ONLY */
10535 
10536 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
10537 {
10538     if (regime_has_2_ranges(mmu_idx)) {
10539         return extract64(tcr, 37, 2);
10540     } else if (mmu_idx == ARMMMUIdx_Stage2) {
10541         return 0; /* VTCR_EL2 */
10542     } else {
10543         /* Replicate the single TBI bit so we always have 2 bits.  */
10544         return extract32(tcr, 20, 1) * 3;
10545     }
10546 }
10547 
10548 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
10549 {
10550     if (regime_has_2_ranges(mmu_idx)) {
10551         return extract64(tcr, 51, 2);
10552     } else if (mmu_idx == ARMMMUIdx_Stage2) {
10553         return 0; /* VTCR_EL2 */
10554     } else {
10555         /* Replicate the single TBID bit so we always have 2 bits.  */
10556         return extract32(tcr, 29, 1) * 3;
10557     }
10558 }
10559 
10560 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10561                                    ARMMMUIdx mmu_idx, bool data)
10562 {
10563     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10564     bool epd, hpd, using16k, using64k;
10565     int select, tsz, tbi;
10566 
10567     if (!regime_has_2_ranges(mmu_idx)) {
10568         select = 0;
10569         tsz = extract32(tcr, 0, 6);
10570         using64k = extract32(tcr, 14, 1);
10571         using16k = extract32(tcr, 15, 1);
10572         if (mmu_idx == ARMMMUIdx_Stage2) {
10573             /* VTCR_EL2 */
10574             hpd = false;
10575         } else {
10576             hpd = extract32(tcr, 24, 1);
10577         }
10578         epd = false;
10579     } else {
10580         /*
10581          * Bit 55 is always between the two regions, and is canonical for
10582          * determining if address tagging is enabled.
10583          */
10584         select = extract64(va, 55, 1);
10585         if (!select) {
10586             tsz = extract32(tcr, 0, 6);
10587             epd = extract32(tcr, 7, 1);
10588             using64k = extract32(tcr, 14, 1);
10589             using16k = extract32(tcr, 15, 1);
10590             hpd = extract64(tcr, 41, 1);
10591         } else {
10592             int tg = extract32(tcr, 30, 2);
10593             using16k = tg == 1;
10594             using64k = tg == 3;
10595             tsz = extract32(tcr, 16, 6);
10596             epd = extract32(tcr, 23, 1);
10597             hpd = extract64(tcr, 42, 1);
10598         }
10599     }
10600     tsz = MIN(tsz, 39);  /* TODO: ARMv8.4-TTST */
10601     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
10602 
10603     /* Present TBI as a composite with TBID.  */
10604     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
10605     if (!data) {
10606         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
10607     }
10608     tbi = (tbi >> select) & 1;
10609 
10610     return (ARMVAParameters) {
10611         .tsz = tsz,
10612         .select = select,
10613         .tbi = tbi,
10614         .epd = epd,
10615         .hpd = hpd,
10616         .using16k = using16k,
10617         .using64k = using64k,
10618     };
10619 }
10620 
10621 #ifndef CONFIG_USER_ONLY
10622 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
10623                                           ARMMMUIdx mmu_idx)
10624 {
10625     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10626     uint32_t el = regime_el(env, mmu_idx);
10627     int select, tsz;
10628     bool epd, hpd;
10629 
10630     if (mmu_idx == ARMMMUIdx_Stage2) {
10631         /* VTCR */
10632         bool sext = extract32(tcr, 4, 1);
10633         bool sign = extract32(tcr, 3, 1);
10634 
10635         /*
10636          * If the sign-extend bit is not the same as t0sz[3], the result
10637          * is unpredictable. Flag this as a guest error.
10638          */
10639         if (sign != sext) {
10640             qemu_log_mask(LOG_GUEST_ERROR,
10641                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10642         }
10643         tsz = sextract32(tcr, 0, 4) + 8;
10644         select = 0;
10645         hpd = false;
10646         epd = false;
10647     } else if (el == 2) {
10648         /* HTCR */
10649         tsz = extract32(tcr, 0, 3);
10650         select = 0;
10651         hpd = extract64(tcr, 24, 1);
10652         epd = false;
10653     } else {
10654         int t0sz = extract32(tcr, 0, 3);
10655         int t1sz = extract32(tcr, 16, 3);
10656 
10657         if (t1sz == 0) {
10658             select = va > (0xffffffffu >> t0sz);
10659         } else {
10660             /* Note that we will detect errors later.  */
10661             select = va >= ~(0xffffffffu >> t1sz);
10662         }
10663         if (!select) {
10664             tsz = t0sz;
10665             epd = extract32(tcr, 7, 1);
10666             hpd = extract64(tcr, 41, 1);
10667         } else {
10668             tsz = t1sz;
10669             epd = extract32(tcr, 23, 1);
10670             hpd = extract64(tcr, 42, 1);
10671         }
10672         /* For aarch32, hpd0 is not enabled without t2e as well.  */
10673         hpd &= extract32(tcr, 6, 1);
10674     }
10675 
10676     return (ARMVAParameters) {
10677         .tsz = tsz,
10678         .select = select,
10679         .epd = epd,
10680         .hpd = hpd,
10681     };
10682 }
10683 
10684 /**
10685  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
10686  *
10687  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10688  * prot and page_size may not be filled in, and the populated fsr value provides
10689  * information on why the translation aborted, in the format of a long-format
10690  * DFSR/IFSR fault register, with the following caveats:
10691  *  * the WnR bit is never set (the caller must do this).
10692  *
10693  * @env: CPUARMState
10694  * @address: virtual address to get physical address for
10695  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
10696  * @mmu_idx: MMU index indicating required translation regime
10697  * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
10698  *             walk), must be true if this is stage 2 of a stage 1+2 walk for an
10699  *             EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
10700  * @phys_ptr: set to the physical address corresponding to the virtual address
10701  * @attrs: set to the memory transaction attributes to use
10702  * @prot: set to the permissions for the page containing phys_ptr
10703  * @page_size_ptr: set to the size of the page containing phys_ptr
10704  * @fi: set to fault info if the translation fails
10705  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10706  */
10707 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
10708                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
10709                                bool s1_is_el0,
10710                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
10711                                target_ulong *page_size_ptr,
10712                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10713 {
10714     ARMCPU *cpu = env_archcpu(env);
10715     CPUState *cs = CPU(cpu);
10716     /* Read an LPAE long-descriptor translation table. */
10717     ARMFaultType fault_type = ARMFault_Translation;
10718     uint32_t level;
10719     ARMVAParameters param;
10720     uint64_t ttbr;
10721     hwaddr descaddr, indexmask, indexmask_grainsize;
10722     uint32_t tableattrs;
10723     target_ulong page_size;
10724     uint32_t attrs;
10725     int32_t stride;
10726     int addrsize, inputsize;
10727     TCR *tcr = regime_tcr(env, mmu_idx);
10728     int ap, ns, xn, pxn;
10729     uint32_t el = regime_el(env, mmu_idx);
10730     uint64_t descaddrmask;
10731     bool aarch64 = arm_el_is_aa64(env, el);
10732     bool guarded = false;
10733 
10734     /* TODO: This code does not support shareability levels. */
10735     if (aarch64) {
10736         param = aa64_va_parameters(env, address, mmu_idx,
10737                                    access_type != MMU_INST_FETCH);
10738         level = 0;
10739         addrsize = 64 - 8 * param.tbi;
10740         inputsize = 64 - param.tsz;
10741     } else {
10742         param = aa32_va_parameters(env, address, mmu_idx);
10743         level = 1;
10744         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
10745         inputsize = addrsize - param.tsz;
10746     }
10747 
10748     /*
10749      * We determined the region when collecting the parameters, but we
10750      * have not yet validated that the address is valid for the region.
10751      * Extract the top bits and verify that they all match select.
10752      *
10753      * For aa32, if inputsize == addrsize, then we have selected the
10754      * region by exclusion in aa32_va_parameters and there is no more
10755      * validation to do here.
10756      */
10757     if (inputsize < addrsize) {
10758         target_ulong top_bits = sextract64(address, inputsize,
10759                                            addrsize - inputsize);
10760         if (-top_bits != param.select) {
10761             /* The gap between the two regions is a Translation fault */
10762             fault_type = ARMFault_Translation;
10763             goto do_fault;
10764         }
10765     }
10766 
10767     if (param.using64k) {
10768         stride = 13;
10769     } else if (param.using16k) {
10770         stride = 11;
10771     } else {
10772         stride = 9;
10773     }
10774 
10775     /* Note that QEMU ignores shareability and cacheability attributes,
10776      * so we don't need to do anything with the SH, ORGN, IRGN fields
10777      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
10778      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
10779      * implement any ASID-like capability so we can ignore it (instead
10780      * we will always flush the TLB any time the ASID is changed).
10781      */
10782     ttbr = regime_ttbr(env, mmu_idx, param.select);
10783 
10784     /* Here we should have set up all the parameters for the translation:
10785      * inputsize, ttbr, epd, stride, tbi
10786      */
10787 
10788     if (param.epd) {
10789         /* Translation table walk disabled => Translation fault on TLB miss
10790          * Note: This is always 0 on 64-bit EL2 and EL3.
10791          */
10792         goto do_fault;
10793     }
10794 
10795     if (mmu_idx != ARMMMUIdx_Stage2) {
10796         /* The starting level depends on the virtual address size (which can
10797          * be up to 48 bits) and the translation granule size. It indicates
10798          * the number of strides (stride bits at a time) needed to
10799          * consume the bits of the input address. In the pseudocode this is:
10800          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
10801          * where their 'inputsize' is our 'inputsize', 'grainsize' is
10802          * our 'stride + 3' and 'stride' is our 'stride'.
10803          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
10804          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
10805          * = 4 - (inputsize - 4) / stride;
10806          */
10807         level = 4 - (inputsize - 4) / stride;
10808     } else {
10809         /* For stage 2 translations the starting level is specified by the
10810          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
10811          */
10812         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
10813         uint32_t startlevel;
10814         bool ok;
10815 
10816         if (!aarch64 || stride == 9) {
10817             /* AArch32 or 4KB pages */
10818             startlevel = 2 - sl0;
10819         } else {
10820             /* 16KB or 64KB pages */
10821             startlevel = 3 - sl0;
10822         }
10823 
10824         /* Check that the starting level is valid. */
10825         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
10826                                 inputsize, stride);
10827         if (!ok) {
10828             fault_type = ARMFault_Translation;
10829             goto do_fault;
10830         }
10831         level = startlevel;
10832     }
10833 
10834     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
10835     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
10836 
10837     /* Now we can extract the actual base address from the TTBR */
10838     descaddr = extract64(ttbr, 0, 48);
10839     /*
10840      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
10841      * and also to mask out CnP (bit 0) which could validly be non-zero.
10842      */
10843     descaddr &= ~indexmask;
10844 
10845     /* The address field in the descriptor goes up to bit 39 for ARMv7
10846      * but up to bit 47 for ARMv8, but we use the descaddrmask
10847      * up to bit 39 for AArch32, because we don't need other bits in that case
10848      * to construct next descriptor address (anyway they should be all zeroes).
10849      */
10850     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
10851                    ~indexmask_grainsize;
10852 
10853     /* Secure accesses start with the page table in secure memory and
10854      * can be downgraded to non-secure at any step. Non-secure accesses
10855      * remain non-secure. We implement this by just ORing in the NSTable/NS
10856      * bits at each step.
10857      */
10858     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
10859     for (;;) {
10860         uint64_t descriptor;
10861         bool nstable;
10862 
10863         descaddr |= (address >> (stride * (4 - level))) & indexmask;
10864         descaddr &= ~7ULL;
10865         nstable = extract32(tableattrs, 4, 1);
10866         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
10867         if (fi->type != ARMFault_None) {
10868             goto do_fault;
10869         }
10870 
10871         if (!(descriptor & 1) ||
10872             (!(descriptor & 2) && (level == 3))) {
10873             /* Invalid, or the Reserved level 3 encoding */
10874             goto do_fault;
10875         }
10876         descaddr = descriptor & descaddrmask;
10877 
10878         if ((descriptor & 2) && (level < 3)) {
10879             /* Table entry. The top five bits are attributes which may
10880              * propagate down through lower levels of the table (and
10881              * which are all arranged so that 0 means "no effect", so
10882              * we can gather them up by ORing in the bits at each level).
10883              */
10884             tableattrs |= extract64(descriptor, 59, 5);
10885             level++;
10886             indexmask = indexmask_grainsize;
10887             continue;
10888         }
10889         /* Block entry at level 1 or 2, or page entry at level 3.
10890          * These are basically the same thing, although the number
10891          * of bits we pull in from the vaddr varies.
10892          */
10893         page_size = (1ULL << ((stride * (4 - level)) + 3));
10894         descaddr |= (address & (page_size - 1));
10895         /* Extract attributes from the descriptor */
10896         attrs = extract64(descriptor, 2, 10)
10897             | (extract64(descriptor, 52, 12) << 10);
10898 
10899         if (mmu_idx == ARMMMUIdx_Stage2) {
10900             /* Stage 2 table descriptors do not include any attribute fields */
10901             break;
10902         }
10903         /* Merge in attributes from table descriptors */
10904         attrs |= nstable << 3; /* NS */
10905         guarded = extract64(descriptor, 50, 1);  /* GP */
10906         if (param.hpd) {
10907             /* HPD disables all the table attributes except NSTable.  */
10908             break;
10909         }
10910         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
10911         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
10912          * means "force PL1 access only", which means forcing AP[1] to 0.
10913          */
10914         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
10915         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
10916         break;
10917     }
10918     /* Here descaddr is the final physical address, and attributes
10919      * are all in attrs.
10920      */
10921     fault_type = ARMFault_AccessFlag;
10922     if ((attrs & (1 << 8)) == 0) {
10923         /* Access flag */
10924         goto do_fault;
10925     }
10926 
10927     ap = extract32(attrs, 4, 2);
10928 
10929     if (mmu_idx == ARMMMUIdx_Stage2) {
10930         ns = true;
10931         xn = extract32(attrs, 11, 2);
10932         *prot = get_S2prot(env, ap, xn, s1_is_el0);
10933     } else {
10934         ns = extract32(attrs, 3, 1);
10935         xn = extract32(attrs, 12, 1);
10936         pxn = extract32(attrs, 11, 1);
10937         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
10938     }
10939 
10940     fault_type = ARMFault_Permission;
10941     if (!(*prot & (1 << access_type))) {
10942         goto do_fault;
10943     }
10944 
10945     if (ns) {
10946         /* The NS bit will (as required by the architecture) have no effect if
10947          * the CPU doesn't support TZ or this is a non-secure translation
10948          * regime, because the attribute will already be non-secure.
10949          */
10950         txattrs->secure = false;
10951     }
10952     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
10953     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
10954         txattrs->target_tlb_bit0 = true;
10955     }
10956 
10957     if (cacheattrs != NULL) {
10958         if (mmu_idx == ARMMMUIdx_Stage2) {
10959             cacheattrs->attrs = convert_stage2_attrs(env,
10960                                                      extract32(attrs, 0, 4));
10961         } else {
10962             /* Index into MAIR registers for cache attributes */
10963             uint8_t attrindx = extract32(attrs, 0, 3);
10964             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
10965             assert(attrindx <= 7);
10966             cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
10967         }
10968         cacheattrs->shareability = extract32(attrs, 6, 2);
10969     }
10970 
10971     *phys_ptr = descaddr;
10972     *page_size_ptr = page_size;
10973     return false;
10974 
10975 do_fault:
10976     fi->type = fault_type;
10977     fi->level = level;
10978     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
10979     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2);
10980     return true;
10981 }
10982 
10983 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
10984                                                 ARMMMUIdx mmu_idx,
10985                                                 int32_t address, int *prot)
10986 {
10987     if (!arm_feature(env, ARM_FEATURE_M)) {
10988         *prot = PAGE_READ | PAGE_WRITE;
10989         switch (address) {
10990         case 0xF0000000 ... 0xFFFFFFFF:
10991             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
10992                 /* hivecs execing is ok */
10993                 *prot |= PAGE_EXEC;
10994             }
10995             break;
10996         case 0x00000000 ... 0x7FFFFFFF:
10997             *prot |= PAGE_EXEC;
10998             break;
10999         }
11000     } else {
11001         /* Default system address map for M profile cores.
11002          * The architecture specifies which regions are execute-never;
11003          * at the MPU level no other checks are defined.
11004          */
11005         switch (address) {
11006         case 0x00000000 ... 0x1fffffff: /* ROM */
11007         case 0x20000000 ... 0x3fffffff: /* SRAM */
11008         case 0x60000000 ... 0x7fffffff: /* RAM */
11009         case 0x80000000 ... 0x9fffffff: /* RAM */
11010             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11011             break;
11012         case 0x40000000 ... 0x5fffffff: /* Peripheral */
11013         case 0xa0000000 ... 0xbfffffff: /* Device */
11014         case 0xc0000000 ... 0xdfffffff: /* Device */
11015         case 0xe0000000 ... 0xffffffff: /* System */
11016             *prot = PAGE_READ | PAGE_WRITE;
11017             break;
11018         default:
11019             g_assert_not_reached();
11020         }
11021     }
11022 }
11023 
11024 static bool pmsav7_use_background_region(ARMCPU *cpu,
11025                                          ARMMMUIdx mmu_idx, bool is_user)
11026 {
11027     /* Return true if we should use the default memory map as a
11028      * "background" region if there are no hits against any MPU regions.
11029      */
11030     CPUARMState *env = &cpu->env;
11031 
11032     if (is_user) {
11033         return false;
11034     }
11035 
11036     if (arm_feature(env, ARM_FEATURE_M)) {
11037         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11038             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11039     } else {
11040         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11041     }
11042 }
11043 
11044 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11045 {
11046     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11047     return arm_feature(env, ARM_FEATURE_M) &&
11048         extract32(address, 20, 12) == 0xe00;
11049 }
11050 
11051 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11052 {
11053     /* True if address is in the M profile system region
11054      * 0xe0000000 - 0xffffffff
11055      */
11056     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11057 }
11058 
11059 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11060                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11061                                  hwaddr *phys_ptr, int *prot,
11062                                  target_ulong *page_size,
11063                                  ARMMMUFaultInfo *fi)
11064 {
11065     ARMCPU *cpu = env_archcpu(env);
11066     int n;
11067     bool is_user = regime_is_user(env, mmu_idx);
11068 
11069     *phys_ptr = address;
11070     *page_size = TARGET_PAGE_SIZE;
11071     *prot = 0;
11072 
11073     if (regime_translation_disabled(env, mmu_idx) ||
11074         m_is_ppb_region(env, address)) {
11075         /* MPU disabled or M profile PPB access: use default memory map.
11076          * The other case which uses the default memory map in the
11077          * v7M ARM ARM pseudocode is exception vector reads from the vector
11078          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11079          * which always does a direct read using address_space_ldl(), rather
11080          * than going via this function, so we don't need to check that here.
11081          */
11082         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11083     } else { /* MPU enabled */
11084         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11085             /* region search */
11086             uint32_t base = env->pmsav7.drbar[n];
11087             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11088             uint32_t rmask;
11089             bool srdis = false;
11090 
11091             if (!(env->pmsav7.drsr[n] & 0x1)) {
11092                 continue;
11093             }
11094 
11095             if (!rsize) {
11096                 qemu_log_mask(LOG_GUEST_ERROR,
11097                               "DRSR[%d]: Rsize field cannot be 0\n", n);
11098                 continue;
11099             }
11100             rsize++;
11101             rmask = (1ull << rsize) - 1;
11102 
11103             if (base & rmask) {
11104                 qemu_log_mask(LOG_GUEST_ERROR,
11105                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11106                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
11107                               n, base, rmask);
11108                 continue;
11109             }
11110 
11111             if (address < base || address > base + rmask) {
11112                 /*
11113                  * Address not in this region. We must check whether the
11114                  * region covers addresses in the same page as our address.
11115                  * In that case we must not report a size that covers the
11116                  * whole page for a subsequent hit against a different MPU
11117                  * region or the background region, because it would result in
11118                  * incorrect TLB hits for subsequent accesses to addresses that
11119                  * are in this MPU region.
11120                  */
11121                 if (ranges_overlap(base, rmask,
11122                                    address & TARGET_PAGE_MASK,
11123                                    TARGET_PAGE_SIZE)) {
11124                     *page_size = 1;
11125                 }
11126                 continue;
11127             }
11128 
11129             /* Region matched */
11130 
11131             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11132                 int i, snd;
11133                 uint32_t srdis_mask;
11134 
11135                 rsize -= 3; /* sub region size (power of 2) */
11136                 snd = ((address - base) >> rsize) & 0x7;
11137                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11138 
11139                 srdis_mask = srdis ? 0x3 : 0x0;
11140                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11141                     /* This will check in groups of 2, 4 and then 8, whether
11142                      * the subregion bits are consistent. rsize is incremented
11143                      * back up to give the region size, considering consistent
11144                      * adjacent subregions as one region. Stop testing if rsize
11145                      * is already big enough for an entire QEMU page.
11146                      */
11147                     int snd_rounded = snd & ~(i - 1);
11148                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11149                                                      snd_rounded + 8, i);
11150                     if (srdis_mask ^ srdis_multi) {
11151                         break;
11152                     }
11153                     srdis_mask = (srdis_mask << i) | srdis_mask;
11154                     rsize++;
11155                 }
11156             }
11157             if (srdis) {
11158                 continue;
11159             }
11160             if (rsize < TARGET_PAGE_BITS) {
11161                 *page_size = 1 << rsize;
11162             }
11163             break;
11164         }
11165 
11166         if (n == -1) { /* no hits */
11167             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11168                 /* background fault */
11169                 fi->type = ARMFault_Background;
11170                 return true;
11171             }
11172             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11173         } else { /* a MPU hit! */
11174             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11175             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11176 
11177             if (m_is_system_region(env, address)) {
11178                 /* System space is always execute never */
11179                 xn = 1;
11180             }
11181 
11182             if (is_user) { /* User mode AP bit decoding */
11183                 switch (ap) {
11184                 case 0:
11185                 case 1:
11186                 case 5:
11187                     break; /* no access */
11188                 case 3:
11189                     *prot |= PAGE_WRITE;
11190                     /* fall through */
11191                 case 2:
11192                 case 6:
11193                     *prot |= PAGE_READ | PAGE_EXEC;
11194                     break;
11195                 case 7:
11196                     /* for v7M, same as 6; for R profile a reserved value */
11197                     if (arm_feature(env, ARM_FEATURE_M)) {
11198                         *prot |= PAGE_READ | PAGE_EXEC;
11199                         break;
11200                     }
11201                     /* fall through */
11202                 default:
11203                     qemu_log_mask(LOG_GUEST_ERROR,
11204                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11205                                   PRIx32 "\n", n, ap);
11206                 }
11207             } else { /* Priv. mode AP bits decoding */
11208                 switch (ap) {
11209                 case 0:
11210                     break; /* no access */
11211                 case 1:
11212                 case 2:
11213                 case 3:
11214                     *prot |= PAGE_WRITE;
11215                     /* fall through */
11216                 case 5:
11217                 case 6:
11218                     *prot |= PAGE_READ | PAGE_EXEC;
11219                     break;
11220                 case 7:
11221                     /* for v7M, same as 6; for R profile a reserved value */
11222                     if (arm_feature(env, ARM_FEATURE_M)) {
11223                         *prot |= PAGE_READ | PAGE_EXEC;
11224                         break;
11225                     }
11226                     /* fall through */
11227                 default:
11228                     qemu_log_mask(LOG_GUEST_ERROR,
11229                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11230                                   PRIx32 "\n", n, ap);
11231                 }
11232             }
11233 
11234             /* execute never */
11235             if (xn) {
11236                 *prot &= ~PAGE_EXEC;
11237             }
11238         }
11239     }
11240 
11241     fi->type = ARMFault_Permission;
11242     fi->level = 1;
11243     return !(*prot & (1 << access_type));
11244 }
11245 
11246 static bool v8m_is_sau_exempt(CPUARMState *env,
11247                               uint32_t address, MMUAccessType access_type)
11248 {
11249     /* The architecture specifies that certain address ranges are
11250      * exempt from v8M SAU/IDAU checks.
11251      */
11252     return
11253         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11254         (address >= 0xe0000000 && address <= 0xe0002fff) ||
11255         (address >= 0xe000e000 && address <= 0xe000efff) ||
11256         (address >= 0xe002e000 && address <= 0xe002efff) ||
11257         (address >= 0xe0040000 && address <= 0xe0041fff) ||
11258         (address >= 0xe00ff000 && address <= 0xe00fffff);
11259 }
11260 
11261 void v8m_security_lookup(CPUARMState *env, uint32_t address,
11262                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11263                                 V8M_SAttributes *sattrs)
11264 {
11265     /* Look up the security attributes for this address. Compare the
11266      * pseudocode SecurityCheck() function.
11267      * We assume the caller has zero-initialized *sattrs.
11268      */
11269     ARMCPU *cpu = env_archcpu(env);
11270     int r;
11271     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11272     int idau_region = IREGION_NOTVALID;
11273     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11274     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11275 
11276     if (cpu->idau) {
11277         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11278         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11279 
11280         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11281                    &idau_nsc);
11282     }
11283 
11284     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11285         /* 0xf0000000..0xffffffff is always S for insn fetches */
11286         return;
11287     }
11288 
11289     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11290         sattrs->ns = !regime_is_secure(env, mmu_idx);
11291         return;
11292     }
11293 
11294     if (idau_region != IREGION_NOTVALID) {
11295         sattrs->irvalid = true;
11296         sattrs->iregion = idau_region;
11297     }
11298 
11299     switch (env->sau.ctrl & 3) {
11300     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11301         break;
11302     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11303         sattrs->ns = true;
11304         break;
11305     default: /* SAU.ENABLE == 1 */
11306         for (r = 0; r < cpu->sau_sregion; r++) {
11307             if (env->sau.rlar[r] & 1) {
11308                 uint32_t base = env->sau.rbar[r] & ~0x1f;
11309                 uint32_t limit = env->sau.rlar[r] | 0x1f;
11310 
11311                 if (base <= address && limit >= address) {
11312                     if (base > addr_page_base || limit < addr_page_limit) {
11313                         sattrs->subpage = true;
11314                     }
11315                     if (sattrs->srvalid) {
11316                         /* If we hit in more than one region then we must report
11317                          * as Secure, not NS-Callable, with no valid region
11318                          * number info.
11319                          */
11320                         sattrs->ns = false;
11321                         sattrs->nsc = false;
11322                         sattrs->sregion = 0;
11323                         sattrs->srvalid = false;
11324                         break;
11325                     } else {
11326                         if (env->sau.rlar[r] & 2) {
11327                             sattrs->nsc = true;
11328                         } else {
11329                             sattrs->ns = true;
11330                         }
11331                         sattrs->srvalid = true;
11332                         sattrs->sregion = r;
11333                     }
11334                 } else {
11335                     /*
11336                      * Address not in this region. We must check whether the
11337                      * region covers addresses in the same page as our address.
11338                      * In that case we must not report a size that covers the
11339                      * whole page for a subsequent hit against a different MPU
11340                      * region or the background region, because it would result
11341                      * in incorrect TLB hits for subsequent accesses to
11342                      * addresses that are in this MPU region.
11343                      */
11344                     if (limit >= base &&
11345                         ranges_overlap(base, limit - base + 1,
11346                                        addr_page_base,
11347                                        TARGET_PAGE_SIZE)) {
11348                         sattrs->subpage = true;
11349                     }
11350                 }
11351             }
11352         }
11353         break;
11354     }
11355 
11356     /*
11357      * The IDAU will override the SAU lookup results if it specifies
11358      * higher security than the SAU does.
11359      */
11360     if (!idau_ns) {
11361         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11362             sattrs->ns = false;
11363             sattrs->nsc = idau_nsc;
11364         }
11365     }
11366 }
11367 
11368 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11369                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
11370                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
11371                               int *prot, bool *is_subpage,
11372                               ARMMMUFaultInfo *fi, uint32_t *mregion)
11373 {
11374     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11375      * that a full phys-to-virt translation does).
11376      * mregion is (if not NULL) set to the region number which matched,
11377      * or -1 if no region number is returned (MPU off, address did not
11378      * hit a region, address hit in multiple regions).
11379      * We set is_subpage to true if the region hit doesn't cover the
11380      * entire TARGET_PAGE the address is within.
11381      */
11382     ARMCPU *cpu = env_archcpu(env);
11383     bool is_user = regime_is_user(env, mmu_idx);
11384     uint32_t secure = regime_is_secure(env, mmu_idx);
11385     int n;
11386     int matchregion = -1;
11387     bool hit = false;
11388     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11389     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11390 
11391     *is_subpage = false;
11392     *phys_ptr = address;
11393     *prot = 0;
11394     if (mregion) {
11395         *mregion = -1;
11396     }
11397 
11398     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11399      * was an exception vector read from the vector table (which is always
11400      * done using the default system address map), because those accesses
11401      * are done in arm_v7m_load_vector(), which always does a direct
11402      * read using address_space_ldl(), rather than going via this function.
11403      */
11404     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11405         hit = true;
11406     } else if (m_is_ppb_region(env, address)) {
11407         hit = true;
11408     } else {
11409         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11410             hit = true;
11411         }
11412 
11413         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11414             /* region search */
11415             /* Note that the base address is bits [31:5] from the register
11416              * with bits [4:0] all zeroes, but the limit address is bits
11417              * [31:5] from the register with bits [4:0] all ones.
11418              */
11419             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11420             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11421 
11422             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11423                 /* Region disabled */
11424                 continue;
11425             }
11426 
11427             if (address < base || address > limit) {
11428                 /*
11429                  * Address not in this region. We must check whether the
11430                  * region covers addresses in the same page as our address.
11431                  * In that case we must not report a size that covers the
11432                  * whole page for a subsequent hit against a different MPU
11433                  * region or the background region, because it would result in
11434                  * incorrect TLB hits for subsequent accesses to addresses that
11435                  * are in this MPU region.
11436                  */
11437                 if (limit >= base &&
11438                     ranges_overlap(base, limit - base + 1,
11439                                    addr_page_base,
11440                                    TARGET_PAGE_SIZE)) {
11441                     *is_subpage = true;
11442                 }
11443                 continue;
11444             }
11445 
11446             if (base > addr_page_base || limit < addr_page_limit) {
11447                 *is_subpage = true;
11448             }
11449 
11450             if (matchregion != -1) {
11451                 /* Multiple regions match -- always a failure (unlike
11452                  * PMSAv7 where highest-numbered-region wins)
11453                  */
11454                 fi->type = ARMFault_Permission;
11455                 fi->level = 1;
11456                 return true;
11457             }
11458 
11459             matchregion = n;
11460             hit = true;
11461         }
11462     }
11463 
11464     if (!hit) {
11465         /* background fault */
11466         fi->type = ARMFault_Background;
11467         return true;
11468     }
11469 
11470     if (matchregion == -1) {
11471         /* hit using the background region */
11472         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11473     } else {
11474         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11475         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11476 
11477         if (m_is_system_region(env, address)) {
11478             /* System space is always execute never */
11479             xn = 1;
11480         }
11481 
11482         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11483         if (*prot && !xn) {
11484             *prot |= PAGE_EXEC;
11485         }
11486         /* We don't need to look the attribute up in the MAIR0/MAIR1
11487          * registers because that only tells us about cacheability.
11488          */
11489         if (mregion) {
11490             *mregion = matchregion;
11491         }
11492     }
11493 
11494     fi->type = ARMFault_Permission;
11495     fi->level = 1;
11496     return !(*prot & (1 << access_type));
11497 }
11498 
11499 
11500 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11501                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11502                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
11503                                  int *prot, target_ulong *page_size,
11504                                  ARMMMUFaultInfo *fi)
11505 {
11506     uint32_t secure = regime_is_secure(env, mmu_idx);
11507     V8M_SAttributes sattrs = {};
11508     bool ret;
11509     bool mpu_is_subpage;
11510 
11511     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11512         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11513         if (access_type == MMU_INST_FETCH) {
11514             /* Instruction fetches always use the MMU bank and the
11515              * transaction attribute determined by the fetch address,
11516              * regardless of CPU state. This is painful for QEMU
11517              * to handle, because it would mean we need to encode
11518              * into the mmu_idx not just the (user, negpri) information
11519              * for the current security state but also that for the
11520              * other security state, which would balloon the number
11521              * of mmu_idx values needed alarmingly.
11522              * Fortunately we can avoid this because it's not actually
11523              * possible to arbitrarily execute code from memory with
11524              * the wrong security attribute: it will always generate
11525              * an exception of some kind or another, apart from the
11526              * special case of an NS CPU executing an SG instruction
11527              * in S&NSC memory. So we always just fail the translation
11528              * here and sort things out in the exception handler
11529              * (including possibly emulating an SG instruction).
11530              */
11531             if (sattrs.ns != !secure) {
11532                 if (sattrs.nsc) {
11533                     fi->type = ARMFault_QEMU_NSCExec;
11534                 } else {
11535                     fi->type = ARMFault_QEMU_SFault;
11536                 }
11537                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11538                 *phys_ptr = address;
11539                 *prot = 0;
11540                 return true;
11541             }
11542         } else {
11543             /* For data accesses we always use the MMU bank indicated
11544              * by the current CPU state, but the security attributes
11545              * might downgrade a secure access to nonsecure.
11546              */
11547             if (sattrs.ns) {
11548                 txattrs->secure = false;
11549             } else if (!secure) {
11550                 /* NS access to S memory must fault.
11551                  * Architecturally we should first check whether the
11552                  * MPU information for this address indicates that we
11553                  * are doing an unaligned access to Device memory, which
11554                  * should generate a UsageFault instead. QEMU does not
11555                  * currently check for that kind of unaligned access though.
11556                  * If we added it we would need to do so as a special case
11557                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11558                  */
11559                 fi->type = ARMFault_QEMU_SFault;
11560                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11561                 *phys_ptr = address;
11562                 *prot = 0;
11563                 return true;
11564             }
11565         }
11566     }
11567 
11568     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11569                             txattrs, prot, &mpu_is_subpage, fi, NULL);
11570     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11571     return ret;
11572 }
11573 
11574 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
11575                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11576                                  hwaddr *phys_ptr, int *prot,
11577                                  ARMMMUFaultInfo *fi)
11578 {
11579     int n;
11580     uint32_t mask;
11581     uint32_t base;
11582     bool is_user = regime_is_user(env, mmu_idx);
11583 
11584     if (regime_translation_disabled(env, mmu_idx)) {
11585         /* MPU disabled.  */
11586         *phys_ptr = address;
11587         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11588         return false;
11589     }
11590 
11591     *phys_ptr = address;
11592     for (n = 7; n >= 0; n--) {
11593         base = env->cp15.c6_region[n];
11594         if ((base & 1) == 0) {
11595             continue;
11596         }
11597         mask = 1 << ((base >> 1) & 0x1f);
11598         /* Keep this shift separate from the above to avoid an
11599            (undefined) << 32.  */
11600         mask = (mask << 1) - 1;
11601         if (((base ^ address) & ~mask) == 0) {
11602             break;
11603         }
11604     }
11605     if (n < 0) {
11606         fi->type = ARMFault_Background;
11607         return true;
11608     }
11609 
11610     if (access_type == MMU_INST_FETCH) {
11611         mask = env->cp15.pmsav5_insn_ap;
11612     } else {
11613         mask = env->cp15.pmsav5_data_ap;
11614     }
11615     mask = (mask >> (n * 4)) & 0xf;
11616     switch (mask) {
11617     case 0:
11618         fi->type = ARMFault_Permission;
11619         fi->level = 1;
11620         return true;
11621     case 1:
11622         if (is_user) {
11623             fi->type = ARMFault_Permission;
11624             fi->level = 1;
11625             return true;
11626         }
11627         *prot = PAGE_READ | PAGE_WRITE;
11628         break;
11629     case 2:
11630         *prot = PAGE_READ;
11631         if (!is_user) {
11632             *prot |= PAGE_WRITE;
11633         }
11634         break;
11635     case 3:
11636         *prot = PAGE_READ | PAGE_WRITE;
11637         break;
11638     case 5:
11639         if (is_user) {
11640             fi->type = ARMFault_Permission;
11641             fi->level = 1;
11642             return true;
11643         }
11644         *prot = PAGE_READ;
11645         break;
11646     case 6:
11647         *prot = PAGE_READ;
11648         break;
11649     default:
11650         /* Bad permission.  */
11651         fi->type = ARMFault_Permission;
11652         fi->level = 1;
11653         return true;
11654     }
11655     *prot |= PAGE_EXEC;
11656     return false;
11657 }
11658 
11659 /* Combine either inner or outer cacheability attributes for normal
11660  * memory, according to table D4-42 and pseudocode procedure
11661  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11662  *
11663  * NB: only stage 1 includes allocation hints (RW bits), leading to
11664  * some asymmetry.
11665  */
11666 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
11667 {
11668     if (s1 == 4 || s2 == 4) {
11669         /* non-cacheable has precedence */
11670         return 4;
11671     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
11672         /* stage 1 write-through takes precedence */
11673         return s1;
11674     } else if (extract32(s2, 2, 2) == 2) {
11675         /* stage 2 write-through takes precedence, but the allocation hint
11676          * is still taken from stage 1
11677          */
11678         return (2 << 2) | extract32(s1, 0, 2);
11679     } else { /* write-back */
11680         return s1;
11681     }
11682 }
11683 
11684 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11685  * and CombineS1S2Desc()
11686  *
11687  * @s1:      Attributes from stage 1 walk
11688  * @s2:      Attributes from stage 2 walk
11689  */
11690 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
11691 {
11692     uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
11693     uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
11694     ARMCacheAttrs ret;
11695 
11696     /* Combine shareability attributes (table D4-43) */
11697     if (s1.shareability == 2 || s2.shareability == 2) {
11698         /* if either are outer-shareable, the result is outer-shareable */
11699         ret.shareability = 2;
11700     } else if (s1.shareability == 3 || s2.shareability == 3) {
11701         /* if either are inner-shareable, the result is inner-shareable */
11702         ret.shareability = 3;
11703     } else {
11704         /* both non-shareable */
11705         ret.shareability = 0;
11706     }
11707 
11708     /* Combine memory type and cacheability attributes */
11709     if (s1hi == 0 || s2hi == 0) {
11710         /* Device has precedence over normal */
11711         if (s1lo == 0 || s2lo == 0) {
11712             /* nGnRnE has precedence over anything */
11713             ret.attrs = 0;
11714         } else if (s1lo == 4 || s2lo == 4) {
11715             /* non-Reordering has precedence over Reordering */
11716             ret.attrs = 4;  /* nGnRE */
11717         } else if (s1lo == 8 || s2lo == 8) {
11718             /* non-Gathering has precedence over Gathering */
11719             ret.attrs = 8;  /* nGRE */
11720         } else {
11721             ret.attrs = 0xc; /* GRE */
11722         }
11723 
11724         /* Any location for which the resultant memory type is any
11725          * type of Device memory is always treated as Outer Shareable.
11726          */
11727         ret.shareability = 2;
11728     } else { /* Normal memory */
11729         /* Outer/inner cacheability combine independently */
11730         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
11731                   | combine_cacheattr_nibble(s1lo, s2lo);
11732 
11733         if (ret.attrs == 0x44) {
11734             /* Any location for which the resultant memory type is Normal
11735              * Inner Non-cacheable, Outer Non-cacheable is always treated
11736              * as Outer Shareable.
11737              */
11738             ret.shareability = 2;
11739         }
11740     }
11741 
11742     return ret;
11743 }
11744 
11745 
11746 /* get_phys_addr - get the physical address for this virtual address
11747  *
11748  * Find the physical address corresponding to the given virtual address,
11749  * by doing a translation table walk on MMU based systems or using the
11750  * MPU state on MPU based systems.
11751  *
11752  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11753  * prot and page_size may not be filled in, and the populated fsr value provides
11754  * information on why the translation aborted, in the format of a
11755  * DFSR/IFSR fault register, with the following caveats:
11756  *  * we honour the short vs long DFSR format differences.
11757  *  * the WnR bit is never set (the caller must do this).
11758  *  * for PSMAv5 based systems we don't bother to return a full FSR format
11759  *    value.
11760  *
11761  * @env: CPUARMState
11762  * @address: virtual address to get physical address for
11763  * @access_type: 0 for read, 1 for write, 2 for execute
11764  * @mmu_idx: MMU index indicating required translation regime
11765  * @phys_ptr: set to the physical address corresponding to the virtual address
11766  * @attrs: set to the memory transaction attributes to use
11767  * @prot: set to the permissions for the page containing phys_ptr
11768  * @page_size: set to the size of the page containing phys_ptr
11769  * @fi: set to fault info if the translation fails
11770  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11771  */
11772 bool get_phys_addr(CPUARMState *env, target_ulong address,
11773                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
11774                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11775                    target_ulong *page_size,
11776                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11777 {
11778     if (mmu_idx == ARMMMUIdx_E10_0 ||
11779         mmu_idx == ARMMMUIdx_E10_1 ||
11780         mmu_idx == ARMMMUIdx_E10_1_PAN) {
11781         /* Call ourselves recursively to do the stage 1 and then stage 2
11782          * translations.
11783          */
11784         if (arm_feature(env, ARM_FEATURE_EL2)) {
11785             hwaddr ipa;
11786             int s2_prot;
11787             int ret;
11788             ARMCacheAttrs cacheattrs2 = {};
11789 
11790             ret = get_phys_addr(env, address, access_type,
11791                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
11792                                 prot, page_size, fi, cacheattrs);
11793 
11794             /* If S1 fails or S2 is disabled, return early.  */
11795             if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
11796                 *phys_ptr = ipa;
11797                 return ret;
11798             }
11799 
11800             /* S1 is done. Now do S2 translation.  */
11801             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2,
11802                                      mmu_idx == ARMMMUIdx_E10_0,
11803                                      phys_ptr, attrs, &s2_prot,
11804                                      page_size, fi,
11805                                      cacheattrs != NULL ? &cacheattrs2 : NULL);
11806             fi->s2addr = ipa;
11807             /* Combine the S1 and S2 perms.  */
11808             *prot &= s2_prot;
11809 
11810             /* Combine the S1 and S2 cache attributes, if needed */
11811             if (!ret && cacheattrs != NULL) {
11812                 if (env->cp15.hcr_el2 & HCR_DC) {
11813                     /*
11814                      * HCR.DC forces the first stage attributes to
11815                      *  Normal Non-Shareable,
11816                      *  Inner Write-Back Read-Allocate Write-Allocate,
11817                      *  Outer Write-Back Read-Allocate Write-Allocate.
11818                      */
11819                     cacheattrs->attrs = 0xff;
11820                     cacheattrs->shareability = 0;
11821                 }
11822                 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
11823             }
11824 
11825             return ret;
11826         } else {
11827             /*
11828              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
11829              */
11830             mmu_idx = stage_1_mmu_idx(mmu_idx);
11831         }
11832     }
11833 
11834     /* The page table entries may downgrade secure to non-secure, but
11835      * cannot upgrade an non-secure translation regime's attributes
11836      * to secure.
11837      */
11838     attrs->secure = regime_is_secure(env, mmu_idx);
11839     attrs->user = regime_is_user(env, mmu_idx);
11840 
11841     /* Fast Context Switch Extension. This doesn't exist at all in v8.
11842      * In v7 and earlier it affects all stage 1 translations.
11843      */
11844     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
11845         && !arm_feature(env, ARM_FEATURE_V8)) {
11846         if (regime_el(env, mmu_idx) == 3) {
11847             address += env->cp15.fcseidr_s;
11848         } else {
11849             address += env->cp15.fcseidr_ns;
11850         }
11851     }
11852 
11853     if (arm_feature(env, ARM_FEATURE_PMSA)) {
11854         bool ret;
11855         *page_size = TARGET_PAGE_SIZE;
11856 
11857         if (arm_feature(env, ARM_FEATURE_V8)) {
11858             /* PMSAv8 */
11859             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
11860                                        phys_ptr, attrs, prot, page_size, fi);
11861         } else if (arm_feature(env, ARM_FEATURE_V7)) {
11862             /* PMSAv7 */
11863             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
11864                                        phys_ptr, prot, page_size, fi);
11865         } else {
11866             /* Pre-v7 MPU */
11867             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
11868                                        phys_ptr, prot, fi);
11869         }
11870         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
11871                       " mmu_idx %u -> %s (prot %c%c%c)\n",
11872                       access_type == MMU_DATA_LOAD ? "reading" :
11873                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
11874                       (uint32_t)address, mmu_idx,
11875                       ret ? "Miss" : "Hit",
11876                       *prot & PAGE_READ ? 'r' : '-',
11877                       *prot & PAGE_WRITE ? 'w' : '-',
11878                       *prot & PAGE_EXEC ? 'x' : '-');
11879 
11880         return ret;
11881     }
11882 
11883     /* Definitely a real MMU, not an MPU */
11884 
11885     if (regime_translation_disabled(env, mmu_idx)) {
11886         /*
11887          * MMU disabled.  S1 addresses within aa64 translation regimes are
11888          * still checked for bounds -- see AArch64.TranslateAddressS1Off.
11889          */
11890         if (mmu_idx != ARMMMUIdx_Stage2) {
11891             int r_el = regime_el(env, mmu_idx);
11892             if (arm_el_is_aa64(env, r_el)) {
11893                 int pamax = arm_pamax(env_archcpu(env));
11894                 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
11895                 int addrtop, tbi;
11896 
11897                 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11898                 if (access_type == MMU_INST_FETCH) {
11899                     tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11900                 }
11901                 tbi = (tbi >> extract64(address, 55, 1)) & 1;
11902                 addrtop = (tbi ? 55 : 63);
11903 
11904                 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
11905                     fi->type = ARMFault_AddressSize;
11906                     fi->level = 0;
11907                     fi->stage2 = false;
11908                     return 1;
11909                 }
11910 
11911                 /*
11912                  * When TBI is disabled, we've just validated that all of the
11913                  * bits above PAMax are zero, so logically we only need to
11914                  * clear the top byte for TBI.  But it's clearer to follow
11915                  * the pseudocode set of addrdesc.paddress.
11916                  */
11917                 address = extract64(address, 0, 52);
11918             }
11919         }
11920         *phys_ptr = address;
11921         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11922         *page_size = TARGET_PAGE_SIZE;
11923         return 0;
11924     }
11925 
11926     if (regime_using_lpae_format(env, mmu_idx)) {
11927         return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
11928                                   phys_ptr, attrs, prot, page_size,
11929                                   fi, cacheattrs);
11930     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
11931         return get_phys_addr_v6(env, address, access_type, mmu_idx,
11932                                 phys_ptr, attrs, prot, page_size, fi);
11933     } else {
11934         return get_phys_addr_v5(env, address, access_type, mmu_idx,
11935                                     phys_ptr, prot, page_size, fi);
11936     }
11937 }
11938 
11939 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
11940                                          MemTxAttrs *attrs)
11941 {
11942     ARMCPU *cpu = ARM_CPU(cs);
11943     CPUARMState *env = &cpu->env;
11944     hwaddr phys_addr;
11945     target_ulong page_size;
11946     int prot;
11947     bool ret;
11948     ARMMMUFaultInfo fi = {};
11949     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
11950 
11951     *attrs = (MemTxAttrs) {};
11952 
11953     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
11954                         attrs, &prot, &page_size, &fi, NULL);
11955 
11956     if (ret) {
11957         return -1;
11958     }
11959     return phys_addr;
11960 }
11961 
11962 #endif
11963 
11964 /* Note that signed overflow is undefined in C.  The following routines are
11965    careful to use unsigned types where modulo arithmetic is required.
11966    Failure to do so _will_ break on newer gcc.  */
11967 
11968 /* Signed saturating arithmetic.  */
11969 
11970 /* Perform 16-bit signed saturating addition.  */
11971 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11972 {
11973     uint16_t res;
11974 
11975     res = a + b;
11976     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11977         if (a & 0x8000)
11978             res = 0x8000;
11979         else
11980             res = 0x7fff;
11981     }
11982     return res;
11983 }
11984 
11985 /* Perform 8-bit signed saturating addition.  */
11986 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11987 {
11988     uint8_t res;
11989 
11990     res = a + b;
11991     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11992         if (a & 0x80)
11993             res = 0x80;
11994         else
11995             res = 0x7f;
11996     }
11997     return res;
11998 }
11999 
12000 /* Perform 16-bit signed saturating subtraction.  */
12001 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12002 {
12003     uint16_t res;
12004 
12005     res = a - b;
12006     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12007         if (a & 0x8000)
12008             res = 0x8000;
12009         else
12010             res = 0x7fff;
12011     }
12012     return res;
12013 }
12014 
12015 /* Perform 8-bit signed saturating subtraction.  */
12016 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12017 {
12018     uint8_t res;
12019 
12020     res = a - b;
12021     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12022         if (a & 0x80)
12023             res = 0x80;
12024         else
12025             res = 0x7f;
12026     }
12027     return res;
12028 }
12029 
12030 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12031 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12032 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12033 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12034 #define PFX q
12035 
12036 #include "op_addsub.h"
12037 
12038 /* Unsigned saturating arithmetic.  */
12039 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12040 {
12041     uint16_t res;
12042     res = a + b;
12043     if (res < a)
12044         res = 0xffff;
12045     return res;
12046 }
12047 
12048 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12049 {
12050     if (a > b)
12051         return a - b;
12052     else
12053         return 0;
12054 }
12055 
12056 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12057 {
12058     uint8_t res;
12059     res = a + b;
12060     if (res < a)
12061         res = 0xff;
12062     return res;
12063 }
12064 
12065 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12066 {
12067     if (a > b)
12068         return a - b;
12069     else
12070         return 0;
12071 }
12072 
12073 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12074 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12075 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12076 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12077 #define PFX uq
12078 
12079 #include "op_addsub.h"
12080 
12081 /* Signed modulo arithmetic.  */
12082 #define SARITH16(a, b, n, op) do { \
12083     int32_t sum; \
12084     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12085     RESULT(sum, n, 16); \
12086     if (sum >= 0) \
12087         ge |= 3 << (n * 2); \
12088     } while(0)
12089 
12090 #define SARITH8(a, b, n, op) do { \
12091     int32_t sum; \
12092     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12093     RESULT(sum, n, 8); \
12094     if (sum >= 0) \
12095         ge |= 1 << n; \
12096     } while(0)
12097 
12098 
12099 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12100 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12101 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
12102 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
12103 #define PFX s
12104 #define ARITH_GE
12105 
12106 #include "op_addsub.h"
12107 
12108 /* Unsigned modulo arithmetic.  */
12109 #define ADD16(a, b, n) do { \
12110     uint32_t sum; \
12111     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12112     RESULT(sum, n, 16); \
12113     if ((sum >> 16) == 1) \
12114         ge |= 3 << (n * 2); \
12115     } while(0)
12116 
12117 #define ADD8(a, b, n) do { \
12118     uint32_t sum; \
12119     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12120     RESULT(sum, n, 8); \
12121     if ((sum >> 8) == 1) \
12122         ge |= 1 << n; \
12123     } while(0)
12124 
12125 #define SUB16(a, b, n) do { \
12126     uint32_t sum; \
12127     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12128     RESULT(sum, n, 16); \
12129     if ((sum >> 16) == 0) \
12130         ge |= 3 << (n * 2); \
12131     } while(0)
12132 
12133 #define SUB8(a, b, n) do { \
12134     uint32_t sum; \
12135     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12136     RESULT(sum, n, 8); \
12137     if ((sum >> 8) == 0) \
12138         ge |= 1 << n; \
12139     } while(0)
12140 
12141 #define PFX u
12142 #define ARITH_GE
12143 
12144 #include "op_addsub.h"
12145 
12146 /* Halved signed arithmetic.  */
12147 #define ADD16(a, b, n) \
12148   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12149 #define SUB16(a, b, n) \
12150   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12151 #define ADD8(a, b, n) \
12152   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12153 #define SUB8(a, b, n) \
12154   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12155 #define PFX sh
12156 
12157 #include "op_addsub.h"
12158 
12159 /* Halved unsigned arithmetic.  */
12160 #define ADD16(a, b, n) \
12161   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12162 #define SUB16(a, b, n) \
12163   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12164 #define ADD8(a, b, n) \
12165   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12166 #define SUB8(a, b, n) \
12167   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12168 #define PFX uh
12169 
12170 #include "op_addsub.h"
12171 
12172 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12173 {
12174     if (a > b)
12175         return a - b;
12176     else
12177         return b - a;
12178 }
12179 
12180 /* Unsigned sum of absolute byte differences.  */
12181 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12182 {
12183     uint32_t sum;
12184     sum = do_usad(a, b);
12185     sum += do_usad(a >> 8, b >> 8);
12186     sum += do_usad(a >> 16, b >>16);
12187     sum += do_usad(a >> 24, b >> 24);
12188     return sum;
12189 }
12190 
12191 /* For ARMv6 SEL instruction.  */
12192 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12193 {
12194     uint32_t mask;
12195 
12196     mask = 0;
12197     if (flags & 1)
12198         mask |= 0xff;
12199     if (flags & 2)
12200         mask |= 0xff00;
12201     if (flags & 4)
12202         mask |= 0xff0000;
12203     if (flags & 8)
12204         mask |= 0xff000000;
12205     return (a & mask) | (b & ~mask);
12206 }
12207 
12208 /* CRC helpers.
12209  * The upper bytes of val (above the number specified by 'bytes') must have
12210  * been zeroed out by the caller.
12211  */
12212 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12213 {
12214     uint8_t buf[4];
12215 
12216     stl_le_p(buf, val);
12217 
12218     /* zlib crc32 converts the accumulator and output to one's complement.  */
12219     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12220 }
12221 
12222 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12223 {
12224     uint8_t buf[4];
12225 
12226     stl_le_p(buf, val);
12227 
12228     /* Linux crc32c converts the output to one's complement.  */
12229     return crc32c(acc, buf, bytes) ^ 0xffffffff;
12230 }
12231 
12232 /* Return the exception level to which FP-disabled exceptions should
12233  * be taken, or 0 if FP is enabled.
12234  */
12235 int fp_exception_el(CPUARMState *env, int cur_el)
12236 {
12237 #ifndef CONFIG_USER_ONLY
12238     /* CPACR and the CPTR registers don't exist before v6, so FP is
12239      * always accessible
12240      */
12241     if (!arm_feature(env, ARM_FEATURE_V6)) {
12242         return 0;
12243     }
12244 
12245     if (arm_feature(env, ARM_FEATURE_M)) {
12246         /* CPACR can cause a NOCP UsageFault taken to current security state */
12247         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12248             return 1;
12249         }
12250 
12251         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12252             if (!extract32(env->v7m.nsacr, 10, 1)) {
12253                 /* FP insns cause a NOCP UsageFault taken to Secure */
12254                 return 3;
12255             }
12256         }
12257 
12258         return 0;
12259     }
12260 
12261     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12262      * 0, 2 : trap EL0 and EL1/PL1 accesses
12263      * 1    : trap only EL0 accesses
12264      * 3    : trap no accesses
12265      * This register is ignored if E2H+TGE are both set.
12266      */
12267     if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12268         int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12269 
12270         switch (fpen) {
12271         case 0:
12272         case 2:
12273             if (cur_el == 0 || cur_el == 1) {
12274                 /* Trap to PL1, which might be EL1 or EL3 */
12275                 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12276                     return 3;
12277                 }
12278                 return 1;
12279             }
12280             if (cur_el == 3 && !is_a64(env)) {
12281                 /* Secure PL1 running at EL3 */
12282                 return 3;
12283             }
12284             break;
12285         case 1:
12286             if (cur_el == 0) {
12287                 return 1;
12288             }
12289             break;
12290         case 3:
12291             break;
12292         }
12293     }
12294 
12295     /*
12296      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12297      * to control non-secure access to the FPU. It doesn't have any
12298      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12299      */
12300     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12301          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12302         if (!extract32(env->cp15.nsacr, 10, 1)) {
12303             /* FP insns act as UNDEF */
12304             return cur_el == 2 ? 2 : 1;
12305         }
12306     }
12307 
12308     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12309      * check because zero bits in the registers mean "don't trap".
12310      */
12311 
12312     /* CPTR_EL2 : present in v7VE or v8 */
12313     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12314         && !arm_is_secure_below_el3(env)) {
12315         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12316         return 2;
12317     }
12318 
12319     /* CPTR_EL3 : present in v8 */
12320     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12321         /* Trap all FP ops to EL3 */
12322         return 3;
12323     }
12324 #endif
12325     return 0;
12326 }
12327 
12328 /* Return the exception level we're running at if this is our mmu_idx */
12329 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12330 {
12331     if (mmu_idx & ARM_MMU_IDX_M) {
12332         return mmu_idx & ARM_MMU_IDX_M_PRIV;
12333     }
12334 
12335     switch (mmu_idx) {
12336     case ARMMMUIdx_E10_0:
12337     case ARMMMUIdx_E20_0:
12338     case ARMMMUIdx_SE10_0:
12339         return 0;
12340     case ARMMMUIdx_E10_1:
12341     case ARMMMUIdx_E10_1_PAN:
12342     case ARMMMUIdx_SE10_1:
12343     case ARMMMUIdx_SE10_1_PAN:
12344         return 1;
12345     case ARMMMUIdx_E2:
12346     case ARMMMUIdx_E20_2:
12347     case ARMMMUIdx_E20_2_PAN:
12348         return 2;
12349     case ARMMMUIdx_SE3:
12350         return 3;
12351     default:
12352         g_assert_not_reached();
12353     }
12354 }
12355 
12356 #ifndef CONFIG_TCG
12357 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12358 {
12359     g_assert_not_reached();
12360 }
12361 #endif
12362 
12363 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12364 {
12365     if (arm_feature(env, ARM_FEATURE_M)) {
12366         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12367     }
12368 
12369     /* See ARM pseudo-function ELIsInHost.  */
12370     switch (el) {
12371     case 0:
12372         if (arm_is_secure_below_el3(env)) {
12373             return ARMMMUIdx_SE10_0;
12374         }
12375         if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)
12376             && arm_el_is_aa64(env, 2)) {
12377             return ARMMMUIdx_E20_0;
12378         }
12379         return ARMMMUIdx_E10_0;
12380     case 1:
12381         if (arm_is_secure_below_el3(env)) {
12382             if (env->pstate & PSTATE_PAN) {
12383                 return ARMMMUIdx_SE10_1_PAN;
12384             }
12385             return ARMMMUIdx_SE10_1;
12386         }
12387         if (env->pstate & PSTATE_PAN) {
12388             return ARMMMUIdx_E10_1_PAN;
12389         }
12390         return ARMMMUIdx_E10_1;
12391     case 2:
12392         /* TODO: ARMv8.4-SecEL2 */
12393         /* Note that TGE does not apply at EL2.  */
12394         if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) {
12395             if (env->pstate & PSTATE_PAN) {
12396                 return ARMMMUIdx_E20_2_PAN;
12397             }
12398             return ARMMMUIdx_E20_2;
12399         }
12400         return ARMMMUIdx_E2;
12401     case 3:
12402         return ARMMMUIdx_SE3;
12403     default:
12404         g_assert_not_reached();
12405     }
12406 }
12407 
12408 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12409 {
12410     return arm_mmu_idx_el(env, arm_current_el(env));
12411 }
12412 
12413 #ifndef CONFIG_USER_ONLY
12414 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
12415 {
12416     return stage_1_mmu_idx(arm_mmu_idx(env));
12417 }
12418 #endif
12419 
12420 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
12421                                       ARMMMUIdx mmu_idx, uint32_t flags)
12422 {
12423     flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
12424     flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
12425                        arm_to_core_mmu_idx(mmu_idx));
12426 
12427     if (arm_singlestep_active(env)) {
12428         flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
12429     }
12430     return flags;
12431 }
12432 
12433 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
12434                                          ARMMMUIdx mmu_idx, uint32_t flags)
12435 {
12436     bool sctlr_b = arm_sctlr_b(env);
12437 
12438     if (sctlr_b) {
12439         flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
12440     }
12441     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
12442         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12443     }
12444     flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
12445 
12446     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12447 }
12448 
12449 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
12450                                    ARMMMUIdx mmu_idx)
12451 {
12452     uint32_t flags = 0;
12453 
12454     if (arm_v7m_is_handler_mode(env)) {
12455         flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1);
12456     }
12457 
12458     /*
12459      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
12460      * is suppressing them because the requested execution priority
12461      * is less than 0.
12462      */
12463     if (arm_feature(env, ARM_FEATURE_V8) &&
12464         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
12465           (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
12466         flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1);
12467     }
12468 
12469     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12470 }
12471 
12472 static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
12473 {
12474     int flags = 0;
12475 
12476     flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
12477                        arm_debug_target_el(env));
12478     return flags;
12479 }
12480 
12481 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
12482                                    ARMMMUIdx mmu_idx)
12483 {
12484     uint32_t flags = rebuild_hflags_aprofile(env);
12485 
12486     if (arm_el_is_aa64(env, 1)) {
12487         flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12488     }
12489 
12490     if (arm_current_el(env) < 2 && env->cp15.hstr_el2 &&
12491         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12492         flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1);
12493     }
12494 
12495     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12496 }
12497 
12498 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
12499                                    ARMMMUIdx mmu_idx)
12500 {
12501     uint32_t flags = rebuild_hflags_aprofile(env);
12502     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
12503     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
12504     uint64_t sctlr;
12505     int tbii, tbid;
12506 
12507     flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
12508 
12509     /* Get control bits for tagged addresses.  */
12510     tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
12511     tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
12512 
12513     flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
12514     flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
12515 
12516     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
12517         int sve_el = sve_exception_el(env, el);
12518         uint32_t zcr_len;
12519 
12520         /*
12521          * If SVE is disabled, but FP is enabled,
12522          * then the effective len is 0.
12523          */
12524         if (sve_el != 0 && fp_el == 0) {
12525             zcr_len = 0;
12526         } else {
12527             zcr_len = sve_zcr_len_for_el(env, el);
12528         }
12529         flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
12530         flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
12531     }
12532 
12533     sctlr = regime_sctlr(env, stage1);
12534 
12535     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
12536         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12537     }
12538 
12539     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
12540         /*
12541          * In order to save space in flags, we record only whether
12542          * pauth is "inactive", meaning all insns are implemented as
12543          * a nop, or "active" when some action must be performed.
12544          * The decision of which action to take is left to a helper.
12545          */
12546         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
12547             flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
12548         }
12549     }
12550 
12551     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12552         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
12553         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
12554             flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
12555         }
12556     }
12557 
12558     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
12559     if (!(env->pstate & PSTATE_UAO)) {
12560         switch (mmu_idx) {
12561         case ARMMMUIdx_E10_1:
12562         case ARMMMUIdx_E10_1_PAN:
12563         case ARMMMUIdx_SE10_1:
12564         case ARMMMUIdx_SE10_1_PAN:
12565             /* TODO: ARMv8.3-NV */
12566             flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12567             break;
12568         case ARMMMUIdx_E20_2:
12569         case ARMMMUIdx_E20_2_PAN:
12570             /* TODO: ARMv8.4-SecEL2 */
12571             /*
12572              * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
12573              * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
12574              */
12575             if (env->cp15.hcr_el2 & HCR_TGE) {
12576                 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12577             }
12578             break;
12579         default:
12580             break;
12581         }
12582     }
12583 
12584     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12585 }
12586 
12587 static uint32_t rebuild_hflags_internal(CPUARMState *env)
12588 {
12589     int el = arm_current_el(env);
12590     int fp_el = fp_exception_el(env, el);
12591     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12592 
12593     if (is_a64(env)) {
12594         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12595     } else if (arm_feature(env, ARM_FEATURE_M)) {
12596         return rebuild_hflags_m32(env, fp_el, mmu_idx);
12597     } else {
12598         return rebuild_hflags_a32(env, fp_el, mmu_idx);
12599     }
12600 }
12601 
12602 void arm_rebuild_hflags(CPUARMState *env)
12603 {
12604     env->hflags = rebuild_hflags_internal(env);
12605 }
12606 
12607 /*
12608  * If we have triggered a EL state change we can't rely on the
12609  * translator having passed it to us, we need to recompute.
12610  */
12611 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
12612 {
12613     int el = arm_current_el(env);
12614     int fp_el = fp_exception_el(env, el);
12615     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12616     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12617 }
12618 
12619 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
12620 {
12621     int fp_el = fp_exception_el(env, el);
12622     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12623 
12624     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12625 }
12626 
12627 /*
12628  * If we have triggered a EL state change we can't rely on the
12629  * translator having passed it to us, we need to recompute.
12630  */
12631 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
12632 {
12633     int el = arm_current_el(env);
12634     int fp_el = fp_exception_el(env, el);
12635     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12636     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12637 }
12638 
12639 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
12640 {
12641     int fp_el = fp_exception_el(env, el);
12642     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12643 
12644     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12645 }
12646 
12647 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
12648 {
12649     int fp_el = fp_exception_el(env, el);
12650     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12651 
12652     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12653 }
12654 
12655 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
12656 {
12657 #ifdef CONFIG_DEBUG_TCG
12658     uint32_t env_flags_current = env->hflags;
12659     uint32_t env_flags_rebuilt = rebuild_hflags_internal(env);
12660 
12661     if (unlikely(env_flags_current != env_flags_rebuilt)) {
12662         fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
12663                 env_flags_current, env_flags_rebuilt);
12664         abort();
12665     }
12666 #endif
12667 }
12668 
12669 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12670                           target_ulong *cs_base, uint32_t *pflags)
12671 {
12672     uint32_t flags = env->hflags;
12673     uint32_t pstate_for_ss;
12674 
12675     *cs_base = 0;
12676     assert_hflags_rebuild_correctly(env);
12677 
12678     if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
12679         *pc = env->pc;
12680         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12681             flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
12682         }
12683         pstate_for_ss = env->pstate;
12684     } else {
12685         *pc = env->regs[15];
12686 
12687         if (arm_feature(env, ARM_FEATURE_M)) {
12688             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12689                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12690                 != env->v7m.secure) {
12691                 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1);
12692             }
12693 
12694             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12695                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12696                  (env->v7m.secure &&
12697                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12698                 /*
12699                  * ASPEN is set, but FPCA/SFPA indicate that there is no
12700                  * active FP context; we must create a new FP context before
12701                  * executing any FP insn.
12702                  */
12703                 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1);
12704             }
12705 
12706             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12707             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12708                 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1);
12709             }
12710         } else {
12711             /*
12712              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12713              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12714              */
12715             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12716                 flags = FIELD_DP32(flags, TBFLAG_A32,
12717                                    XSCALE_CPAR, env->cp15.c15_cpar);
12718             } else {
12719                 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
12720                                    env->vfp.vec_len);
12721                 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
12722                                    env->vfp.vec_stride);
12723             }
12724             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12725                 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12726             }
12727         }
12728 
12729         flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb);
12730         flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits);
12731         pstate_for_ss = env->uncached_cpsr;
12732     }
12733 
12734     /*
12735      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12736      * states defined in the ARM ARM for software singlestep:
12737      *  SS_ACTIVE   PSTATE.SS   State
12738      *     0            x       Inactive (the TB flag for SS is always 0)
12739      *     1            0       Active-pending
12740      *     1            1       Active-not-pending
12741      * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
12742      */
12743     if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
12744         (pstate_for_ss & PSTATE_SS)) {
12745         flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
12746     }
12747 
12748     *pflags = flags;
12749 }
12750 
12751 #ifdef TARGET_AARCH64
12752 /*
12753  * The manual says that when SVE is enabled and VQ is widened the
12754  * implementation is allowed to zero the previously inaccessible
12755  * portion of the registers.  The corollary to that is that when
12756  * SVE is enabled and VQ is narrowed we are also allowed to zero
12757  * the now inaccessible portion of the registers.
12758  *
12759  * The intent of this is that no predicate bit beyond VQ is ever set.
12760  * Which means that some operations on predicate registers themselves
12761  * may operate on full uint64_t or even unrolled across the maximum
12762  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
12763  * may well be cheaper than conditionals to restrict the operation
12764  * to the relevant portion of a uint16_t[16].
12765  */
12766 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12767 {
12768     int i, j;
12769     uint64_t pmask;
12770 
12771     assert(vq >= 1 && vq <= ARM_MAX_VQ);
12772     assert(vq <= env_archcpu(env)->sve_max_vq);
12773 
12774     /* Zap the high bits of the zregs.  */
12775     for (i = 0; i < 32; i++) {
12776         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12777     }
12778 
12779     /* Zap the high bits of the pregs and ffr.  */
12780     pmask = 0;
12781     if (vq & 3) {
12782         pmask = ~(-1ULL << (16 * (vq & 3)));
12783     }
12784     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12785         for (i = 0; i < 17; ++i) {
12786             env->vfp.pregs[i].p[j] &= pmask;
12787         }
12788         pmask = 0;
12789     }
12790 }
12791 
12792 /*
12793  * Notice a change in SVE vector size when changing EL.
12794  */
12795 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12796                            int new_el, bool el0_a64)
12797 {
12798     ARMCPU *cpu = env_archcpu(env);
12799     int old_len, new_len;
12800     bool old_a64, new_a64;
12801 
12802     /* Nothing to do if no SVE.  */
12803     if (!cpu_isar_feature(aa64_sve, cpu)) {
12804         return;
12805     }
12806 
12807     /* Nothing to do if FP is disabled in either EL.  */
12808     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12809         return;
12810     }
12811 
12812     /*
12813      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12814      * at ELx, or not available because the EL is in AArch32 state, then
12815      * for all purposes other than a direct read, the ZCR_ELx.LEN field
12816      * has an effective value of 0".
12817      *
12818      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12819      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12820      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
12821      * we already have the correct register contents when encountering the
12822      * vq0->vq0 transition between EL0->EL1.
12823      */
12824     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12825     old_len = (old_a64 && !sve_exception_el(env, old_el)
12826                ? sve_zcr_len_for_el(env, old_el) : 0);
12827     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12828     new_len = (new_a64 && !sve_exception_el(env, new_el)
12829                ? sve_zcr_len_for_el(env, new_el) : 0);
12830 
12831     /* When changing vector length, clear inaccessible state.  */
12832     if (new_len < old_len) {
12833         aarch64_sve_narrow_vq(env, new_len + 1);
12834     }
12835 }
12836 #endif
12837