1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "cpu-features.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/main-loop.h" 17 #include "qemu/timer.h" 18 #include "qemu/bitops.h" 19 #include "qemu/crc32c.h" 20 #include "qemu/qemu-print.h" 21 #include "exec/exec-all.h" 22 #include <zlib.h> /* For crc32 */ 23 #include "hw/irq.h" 24 #include "sysemu/cpu-timers.h" 25 #include "sysemu/kvm.h" 26 #include "sysemu/tcg.h" 27 #include "qapi/error.h" 28 #include "qemu/guest-random.h" 29 #ifdef CONFIG_TCG 30 #include "semihosting/common-semi.h" 31 #endif 32 #include "cpregs.h" 33 34 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 35 36 static void switch_mode(CPUARMState *env, int mode); 37 38 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 39 { 40 assert(ri->fieldoffset); 41 if (cpreg_field_is_64bit(ri)) { 42 return CPREG_FIELD64(env, ri); 43 } else { 44 return CPREG_FIELD32(env, ri); 45 } 46 } 47 48 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 49 { 50 assert(ri->fieldoffset); 51 if (cpreg_field_is_64bit(ri)) { 52 CPREG_FIELD64(env, ri) = value; 53 } else { 54 CPREG_FIELD32(env, ri) = value; 55 } 56 } 57 58 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 59 { 60 return (char *)env + ri->fieldoffset; 61 } 62 63 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 64 { 65 /* Raw read of a coprocessor register (as needed for migration, etc). */ 66 if (ri->type & ARM_CP_CONST) { 67 return ri->resetvalue; 68 } else if (ri->raw_readfn) { 69 return ri->raw_readfn(env, ri); 70 } else if (ri->readfn) { 71 return ri->readfn(env, ri); 72 } else { 73 return raw_read(env, ri); 74 } 75 } 76 77 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 78 uint64_t v) 79 { 80 /* 81 * Raw write of a coprocessor register (as needed for migration, etc). 82 * Note that constant registers are treated as write-ignored; the 83 * caller should check for success by whether a readback gives the 84 * value written. 85 */ 86 if (ri->type & ARM_CP_CONST) { 87 return; 88 } else if (ri->raw_writefn) { 89 ri->raw_writefn(env, ri, v); 90 } else if (ri->writefn) { 91 ri->writefn(env, ri, v); 92 } else { 93 raw_write(env, ri, v); 94 } 95 } 96 97 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 98 { 99 /* 100 * Return true if the regdef would cause an assertion if you called 101 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 102 * program bug for it not to have the NO_RAW flag). 103 * NB that returning false here doesn't necessarily mean that calling 104 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 105 * read/write access functions which are safe for raw use" from "has 106 * read/write access functions which have side effects but has forgotten 107 * to provide raw access functions". 108 * The tests here line up with the conditions in read/write_raw_cp_reg() 109 * and assertions in raw_read()/raw_write(). 110 */ 111 if ((ri->type & ARM_CP_CONST) || 112 ri->fieldoffset || 113 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 114 return false; 115 } 116 return true; 117 } 118 119 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 120 { 121 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 122 int i; 123 bool ok = true; 124 125 for (i = 0; i < cpu->cpreg_array_len; i++) { 126 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 127 const ARMCPRegInfo *ri; 128 uint64_t newval; 129 130 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 131 if (!ri) { 132 ok = false; 133 continue; 134 } 135 if (ri->type & ARM_CP_NO_RAW) { 136 continue; 137 } 138 139 newval = read_raw_cp_reg(&cpu->env, ri); 140 if (kvm_sync) { 141 /* 142 * Only sync if the previous list->cpustate sync succeeded. 143 * Rather than tracking the success/failure state for every 144 * item in the list, we just recheck "does the raw write we must 145 * have made in write_list_to_cpustate() read back OK" here. 146 */ 147 uint64_t oldval = cpu->cpreg_values[i]; 148 149 if (oldval == newval) { 150 continue; 151 } 152 153 write_raw_cp_reg(&cpu->env, ri, oldval); 154 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 155 continue; 156 } 157 158 write_raw_cp_reg(&cpu->env, ri, newval); 159 } 160 cpu->cpreg_values[i] = newval; 161 } 162 return ok; 163 } 164 165 bool write_list_to_cpustate(ARMCPU *cpu) 166 { 167 int i; 168 bool ok = true; 169 170 for (i = 0; i < cpu->cpreg_array_len; i++) { 171 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 172 uint64_t v = cpu->cpreg_values[i]; 173 const ARMCPRegInfo *ri; 174 175 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 176 if (!ri) { 177 ok = false; 178 continue; 179 } 180 if (ri->type & ARM_CP_NO_RAW) { 181 continue; 182 } 183 /* 184 * Write value and confirm it reads back as written 185 * (to catch read-only registers and partially read-only 186 * registers where the incoming migration value doesn't match) 187 */ 188 write_raw_cp_reg(&cpu->env, ri, v); 189 if (read_raw_cp_reg(&cpu->env, ri) != v) { 190 ok = false; 191 } 192 } 193 return ok; 194 } 195 196 static void add_cpreg_to_list(gpointer key, gpointer opaque) 197 { 198 ARMCPU *cpu = opaque; 199 uint32_t regidx = (uintptr_t)key; 200 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 201 202 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 203 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 204 /* The value array need not be initialized at this point */ 205 cpu->cpreg_array_len++; 206 } 207 } 208 209 static void count_cpreg(gpointer key, gpointer opaque) 210 { 211 ARMCPU *cpu = opaque; 212 const ARMCPRegInfo *ri; 213 214 ri = g_hash_table_lookup(cpu->cp_regs, key); 215 216 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 217 cpu->cpreg_array_len++; 218 } 219 } 220 221 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 222 { 223 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 224 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 225 226 if (aidx > bidx) { 227 return 1; 228 } 229 if (aidx < bidx) { 230 return -1; 231 } 232 return 0; 233 } 234 235 void init_cpreg_list(ARMCPU *cpu) 236 { 237 /* 238 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 239 * Note that we require cpreg_tuples[] to be sorted by key ID. 240 */ 241 GList *keys; 242 int arraylen; 243 244 keys = g_hash_table_get_keys(cpu->cp_regs); 245 keys = g_list_sort(keys, cpreg_key_compare); 246 247 cpu->cpreg_array_len = 0; 248 249 g_list_foreach(keys, count_cpreg, cpu); 250 251 arraylen = cpu->cpreg_array_len; 252 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 253 cpu->cpreg_values = g_new(uint64_t, arraylen); 254 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 257 cpu->cpreg_array_len = 0; 258 259 g_list_foreach(keys, add_cpreg_to_list, cpu); 260 261 assert(cpu->cpreg_array_len == arraylen); 262 263 g_list_free(keys); 264 } 265 266 static bool arm_pan_enabled(CPUARMState *env) 267 { 268 if (is_a64(env)) { 269 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) { 270 return false; 271 } 272 return env->pstate & PSTATE_PAN; 273 } else { 274 return env->uncached_cpsr & CPSR_PAN; 275 } 276 } 277 278 /* 279 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 280 */ 281 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 282 const ARMCPRegInfo *ri, 283 bool isread) 284 { 285 if (!is_a64(env) && arm_current_el(env) == 3 && 286 arm_is_secure_below_el3(env)) { 287 return CP_ACCESS_TRAP_UNCATEGORIZED; 288 } 289 return CP_ACCESS_OK; 290 } 291 292 /* 293 * Some secure-only AArch32 registers trap to EL3 if used from 294 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 295 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 296 * We assume that the .access field is set to PL1_RW. 297 */ 298 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 299 const ARMCPRegInfo *ri, 300 bool isread) 301 { 302 if (arm_current_el(env) == 3) { 303 return CP_ACCESS_OK; 304 } 305 if (arm_is_secure_below_el3(env)) { 306 if (env->cp15.scr_el3 & SCR_EEL2) { 307 return CP_ACCESS_TRAP_EL2; 308 } 309 return CP_ACCESS_TRAP_EL3; 310 } 311 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 312 return CP_ACCESS_TRAP_UNCATEGORIZED; 313 } 314 315 /* 316 * Check for traps to performance monitor registers, which are controlled 317 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 318 */ 319 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 320 bool isread) 321 { 322 int el = arm_current_el(env); 323 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 324 325 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 326 return CP_ACCESS_TRAP_EL2; 327 } 328 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 329 return CP_ACCESS_TRAP_EL3; 330 } 331 return CP_ACCESS_OK; 332 } 333 334 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 335 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 336 bool isread) 337 { 338 if (arm_current_el(env) == 1) { 339 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 340 if (arm_hcr_el2_eff(env) & trap) { 341 return CP_ACCESS_TRAP_EL2; 342 } 343 } 344 return CP_ACCESS_OK; 345 } 346 347 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 348 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 349 bool isread) 350 { 351 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 352 return CP_ACCESS_TRAP_EL2; 353 } 354 return CP_ACCESS_OK; 355 } 356 357 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 358 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 359 bool isread) 360 { 361 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 362 return CP_ACCESS_TRAP_EL2; 363 } 364 return CP_ACCESS_OK; 365 } 366 367 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 368 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 369 bool isread) 370 { 371 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 372 return CP_ACCESS_TRAP_EL2; 373 } 374 return CP_ACCESS_OK; 375 } 376 377 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 378 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 379 bool isread) 380 { 381 if (arm_current_el(env) == 1 && 382 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 383 return CP_ACCESS_TRAP_EL2; 384 } 385 return CP_ACCESS_OK; 386 } 387 388 #ifdef TARGET_AARCH64 389 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 390 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 391 bool isread) 392 { 393 if (arm_current_el(env) == 1 && 394 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 395 return CP_ACCESS_TRAP_EL2; 396 } 397 return CP_ACCESS_OK; 398 } 399 #endif 400 401 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 402 { 403 ARMCPU *cpu = env_archcpu(env); 404 405 raw_write(env, ri, value); 406 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 407 } 408 409 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 410 { 411 ARMCPU *cpu = env_archcpu(env); 412 413 if (raw_read(env, ri) != value) { 414 /* 415 * Unlike real hardware the qemu TLB uses virtual addresses, 416 * not modified virtual addresses, so this causes a TLB flush. 417 */ 418 tlb_flush(CPU(cpu)); 419 raw_write(env, ri, value); 420 } 421 } 422 423 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 424 uint64_t value) 425 { 426 ARMCPU *cpu = env_archcpu(env); 427 428 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 429 && !extended_addresses_enabled(env)) { 430 /* 431 * For VMSA (when not using the LPAE long descriptor page table 432 * format) this register includes the ASID, so do a TLB flush. 433 * For PMSA it is purely a process ID and no action is needed. 434 */ 435 tlb_flush(CPU(cpu)); 436 } 437 raw_write(env, ri, value); 438 } 439 440 static int alle1_tlbmask(CPUARMState *env) 441 { 442 /* 443 * Note that the 'ALL' scope must invalidate both stage 1 and 444 * stage 2 translations, whereas most other scopes only invalidate 445 * stage 1 translations. 446 */ 447 return (ARMMMUIdxBit_E10_1 | 448 ARMMMUIdxBit_E10_1_PAN | 449 ARMMMUIdxBit_E10_0 | 450 ARMMMUIdxBit_Stage2 | 451 ARMMMUIdxBit_Stage2_S); 452 } 453 454 455 /* IS variants of TLB operations must affect all cores */ 456 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 457 uint64_t value) 458 { 459 CPUState *cs = env_cpu(env); 460 461 tlb_flush_all_cpus_synced(cs); 462 } 463 464 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 465 uint64_t value) 466 { 467 CPUState *cs = env_cpu(env); 468 469 tlb_flush_all_cpus_synced(cs); 470 } 471 472 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 473 uint64_t value) 474 { 475 CPUState *cs = env_cpu(env); 476 477 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 478 } 479 480 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 481 uint64_t value) 482 { 483 CPUState *cs = env_cpu(env); 484 485 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 486 } 487 488 /* 489 * Non-IS variants of TLB operations are upgraded to 490 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 491 * force broadcast of these operations. 492 */ 493 static bool tlb_force_broadcast(CPUARMState *env) 494 { 495 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 496 } 497 498 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 499 uint64_t value) 500 { 501 /* Invalidate all (TLBIALL) */ 502 CPUState *cs = env_cpu(env); 503 504 if (tlb_force_broadcast(env)) { 505 tlb_flush_all_cpus_synced(cs); 506 } else { 507 tlb_flush(cs); 508 } 509 } 510 511 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 512 uint64_t value) 513 { 514 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 515 CPUState *cs = env_cpu(env); 516 517 value &= TARGET_PAGE_MASK; 518 if (tlb_force_broadcast(env)) { 519 tlb_flush_page_all_cpus_synced(cs, value); 520 } else { 521 tlb_flush_page(cs, value); 522 } 523 } 524 525 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 526 uint64_t value) 527 { 528 /* Invalidate by ASID (TLBIASID) */ 529 CPUState *cs = env_cpu(env); 530 531 if (tlb_force_broadcast(env)) { 532 tlb_flush_all_cpus_synced(cs); 533 } else { 534 tlb_flush(cs); 535 } 536 } 537 538 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 539 uint64_t value) 540 { 541 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 542 CPUState *cs = env_cpu(env); 543 544 value &= TARGET_PAGE_MASK; 545 if (tlb_force_broadcast(env)) { 546 tlb_flush_page_all_cpus_synced(cs, value); 547 } else { 548 tlb_flush_page(cs, value); 549 } 550 } 551 552 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 553 uint64_t value) 554 { 555 CPUState *cs = env_cpu(env); 556 557 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 558 } 559 560 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 561 uint64_t value) 562 { 563 CPUState *cs = env_cpu(env); 564 565 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 566 } 567 568 569 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 570 uint64_t value) 571 { 572 CPUState *cs = env_cpu(env); 573 574 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 575 } 576 577 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 578 uint64_t value) 579 { 580 CPUState *cs = env_cpu(env); 581 582 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 583 } 584 585 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 586 uint64_t value) 587 { 588 CPUState *cs = env_cpu(env); 589 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 590 591 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 592 } 593 594 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 595 uint64_t value) 596 { 597 CPUState *cs = env_cpu(env); 598 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 599 600 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 601 ARMMMUIdxBit_E2); 602 } 603 604 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 605 uint64_t value) 606 { 607 CPUState *cs = env_cpu(env); 608 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 609 610 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 611 } 612 613 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 614 uint64_t value) 615 { 616 CPUState *cs = env_cpu(env); 617 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 618 619 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 620 } 621 622 static const ARMCPRegInfo cp_reginfo[] = { 623 /* 624 * Define the secure and non-secure FCSE identifier CP registers 625 * separately because there is no secure bank in V8 (no _EL3). This allows 626 * the secure register to be properly reset and migrated. There is also no 627 * v8 EL1 version of the register so the non-secure instance stands alone. 628 */ 629 { .name = "FCSEIDR", 630 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 631 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 632 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 633 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 634 { .name = "FCSEIDR_S", 635 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 636 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 637 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 638 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 639 /* 640 * Define the secure and non-secure context identifier CP registers 641 * separately because there is no secure bank in V8 (no _EL3). This allows 642 * the secure register to be properly reset and migrated. In the 643 * non-secure case, the 32-bit register will have reset and migration 644 * disabled during registration as it is handled by the 64-bit instance. 645 */ 646 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 647 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 648 .access = PL1_RW, .accessfn = access_tvm_trvm, 649 .fgt = FGT_CONTEXTIDR_EL1, 650 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1, 651 .secure = ARM_CP_SECSTATE_NS, 652 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 653 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 654 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 655 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 656 .access = PL1_RW, .accessfn = access_tvm_trvm, 657 .secure = ARM_CP_SECSTATE_S, 658 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 659 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 660 }; 661 662 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 663 /* 664 * NB: Some of these registers exist in v8 but with more precise 665 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 666 */ 667 /* MMU Domain access control / MPU write buffer control */ 668 { .name = "DACR", 669 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 670 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 671 .writefn = dacr_write, .raw_writefn = raw_write, 672 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 673 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 674 /* 675 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 676 * For v6 and v5, these mappings are overly broad. 677 */ 678 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 679 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 680 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 681 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 682 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 683 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 684 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 685 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 686 /* Cache maintenance ops; some of this space may be overridden later. */ 687 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 688 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 689 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 690 }; 691 692 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 693 /* 694 * Not all pre-v6 cores implemented this WFI, so this is slightly 695 * over-broad. 696 */ 697 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 698 .access = PL1_W, .type = ARM_CP_WFI }, 699 }; 700 701 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 702 /* 703 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 704 * is UNPREDICTABLE; we choose to NOP as most implementations do). 705 */ 706 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 707 .access = PL1_W, .type = ARM_CP_WFI }, 708 /* 709 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 710 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 711 * OMAPCP will override this space. 712 */ 713 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 714 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 715 .resetvalue = 0 }, 716 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 717 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 718 .resetvalue = 0 }, 719 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 720 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 721 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 722 .resetvalue = 0 }, 723 /* 724 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 725 * implementing it as RAZ means the "debug architecture version" bits 726 * will read as a reserved value, which should cause Linux to not try 727 * to use the debug hardware. 728 */ 729 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 730 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 731 /* 732 * MMU TLB control. Note that the wildcarding means we cover not just 733 * the unified TLB ops but also the dside/iside/inner-shareable variants. 734 */ 735 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 736 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 737 .type = ARM_CP_NO_RAW }, 738 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 739 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 740 .type = ARM_CP_NO_RAW }, 741 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 742 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 743 .type = ARM_CP_NO_RAW }, 744 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 745 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 746 .type = ARM_CP_NO_RAW }, 747 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 748 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 749 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 750 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 751 }; 752 753 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 754 uint64_t value) 755 { 756 uint32_t mask = 0; 757 758 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 759 if (!arm_feature(env, ARM_FEATURE_V8)) { 760 /* 761 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 762 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 763 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 764 */ 765 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 766 /* VFP coprocessor: cp10 & cp11 [23:20] */ 767 mask |= R_CPACR_ASEDIS_MASK | 768 R_CPACR_D32DIS_MASK | 769 R_CPACR_CP11_MASK | 770 R_CPACR_CP10_MASK; 771 772 if (!arm_feature(env, ARM_FEATURE_NEON)) { 773 /* ASEDIS [31] bit is RAO/WI */ 774 value |= R_CPACR_ASEDIS_MASK; 775 } 776 777 /* 778 * VFPv3 and upwards with NEON implement 32 double precision 779 * registers (D0-D31). 780 */ 781 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 782 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 783 value |= R_CPACR_D32DIS_MASK; 784 } 785 } 786 value &= mask; 787 } 788 789 /* 790 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 791 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 792 */ 793 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 794 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 795 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 796 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 797 } 798 799 env->cp15.cpacr_el1 = value; 800 } 801 802 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 803 { 804 /* 805 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 806 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 807 */ 808 uint64_t value = env->cp15.cpacr_el1; 809 810 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 811 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 812 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 813 } 814 return value; 815 } 816 817 818 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 819 { 820 /* 821 * Call cpacr_write() so that we reset with the correct RAO bits set 822 * for our CPU features. 823 */ 824 cpacr_write(env, ri, 0); 825 } 826 827 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 828 bool isread) 829 { 830 if (arm_feature(env, ARM_FEATURE_V8)) { 831 /* Check if CPACR accesses are to be trapped to EL2 */ 832 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 833 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 834 return CP_ACCESS_TRAP_EL2; 835 /* Check if CPACR accesses are to be trapped to EL3 */ 836 } else if (arm_current_el(env) < 3 && 837 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 838 return CP_ACCESS_TRAP_EL3; 839 } 840 } 841 842 return CP_ACCESS_OK; 843 } 844 845 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 846 bool isread) 847 { 848 /* Check if CPTR accesses are set to trap to EL3 */ 849 if (arm_current_el(env) == 2 && 850 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 851 return CP_ACCESS_TRAP_EL3; 852 } 853 854 return CP_ACCESS_OK; 855 } 856 857 static const ARMCPRegInfo v6_cp_reginfo[] = { 858 /* prefetch by MVA in v6, NOP in v7 */ 859 { .name = "MVA_prefetch", 860 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 861 .access = PL1_W, .type = ARM_CP_NOP }, 862 /* 863 * We need to break the TB after ISB to execute self-modifying code 864 * correctly and also to take any pending interrupts immediately. 865 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 866 */ 867 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 868 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 869 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 870 .access = PL0_W, .type = ARM_CP_NOP }, 871 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 872 .access = PL0_W, .type = ARM_CP_NOP }, 873 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 874 .access = PL1_RW, .accessfn = access_tvm_trvm, 875 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 876 offsetof(CPUARMState, cp15.ifar_ns) }, 877 .resetvalue = 0, }, 878 /* 879 * Watchpoint Fault Address Register : should actually only be present 880 * for 1136, 1176, 11MPCore. 881 */ 882 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 883 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 884 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 885 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 886 .fgt = FGT_CPACR_EL1, 887 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1, 888 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 889 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 890 }; 891 892 typedef struct pm_event { 893 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 894 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 895 bool (*supported)(CPUARMState *); 896 /* 897 * Retrieve the current count of the underlying event. The programmed 898 * counters hold a difference from the return value from this function 899 */ 900 uint64_t (*get_count)(CPUARMState *); 901 /* 902 * Return how many nanoseconds it will take (at a minimum) for count events 903 * to occur. A negative value indicates the counter will never overflow, or 904 * that the counter has otherwise arranged for the overflow bit to be set 905 * and the PMU interrupt to be raised on overflow. 906 */ 907 int64_t (*ns_per_count)(uint64_t); 908 } pm_event; 909 910 static bool event_always_supported(CPUARMState *env) 911 { 912 return true; 913 } 914 915 static uint64_t swinc_get_count(CPUARMState *env) 916 { 917 /* 918 * SW_INCR events are written directly to the pmevcntr's by writes to 919 * PMSWINC, so there is no underlying count maintained by the PMU itself 920 */ 921 return 0; 922 } 923 924 static int64_t swinc_ns_per(uint64_t ignored) 925 { 926 return -1; 927 } 928 929 /* 930 * Return the underlying cycle count for the PMU cycle counters. If we're in 931 * usermode, simply return 0. 932 */ 933 static uint64_t cycles_get_count(CPUARMState *env) 934 { 935 #ifndef CONFIG_USER_ONLY 936 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 937 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 938 #else 939 return cpu_get_host_ticks(); 940 #endif 941 } 942 943 #ifndef CONFIG_USER_ONLY 944 static int64_t cycles_ns_per(uint64_t cycles) 945 { 946 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 947 } 948 949 static bool instructions_supported(CPUARMState *env) 950 { 951 return icount_enabled() == 1; /* Precise instruction counting */ 952 } 953 954 static uint64_t instructions_get_count(CPUARMState *env) 955 { 956 return (uint64_t)icount_get_raw(); 957 } 958 959 static int64_t instructions_ns_per(uint64_t icount) 960 { 961 return icount_to_ns((int64_t)icount); 962 } 963 #endif 964 965 static bool pmuv3p1_events_supported(CPUARMState *env) 966 { 967 /* For events which are supported in any v8.1 PMU */ 968 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 969 } 970 971 static bool pmuv3p4_events_supported(CPUARMState *env) 972 { 973 /* For events which are supported in any v8.1 PMU */ 974 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 975 } 976 977 static uint64_t zero_event_get_count(CPUARMState *env) 978 { 979 /* For events which on QEMU never fire, so their count is always zero */ 980 return 0; 981 } 982 983 static int64_t zero_event_ns_per(uint64_t cycles) 984 { 985 /* An event which never fires can never overflow */ 986 return -1; 987 } 988 989 static const pm_event pm_events[] = { 990 { .number = 0x000, /* SW_INCR */ 991 .supported = event_always_supported, 992 .get_count = swinc_get_count, 993 .ns_per_count = swinc_ns_per, 994 }, 995 #ifndef CONFIG_USER_ONLY 996 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 997 .supported = instructions_supported, 998 .get_count = instructions_get_count, 999 .ns_per_count = instructions_ns_per, 1000 }, 1001 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1002 .supported = event_always_supported, 1003 .get_count = cycles_get_count, 1004 .ns_per_count = cycles_ns_per, 1005 }, 1006 #endif 1007 { .number = 0x023, /* STALL_FRONTEND */ 1008 .supported = pmuv3p1_events_supported, 1009 .get_count = zero_event_get_count, 1010 .ns_per_count = zero_event_ns_per, 1011 }, 1012 { .number = 0x024, /* STALL_BACKEND */ 1013 .supported = pmuv3p1_events_supported, 1014 .get_count = zero_event_get_count, 1015 .ns_per_count = zero_event_ns_per, 1016 }, 1017 { .number = 0x03c, /* STALL */ 1018 .supported = pmuv3p4_events_supported, 1019 .get_count = zero_event_get_count, 1020 .ns_per_count = zero_event_ns_per, 1021 }, 1022 }; 1023 1024 /* 1025 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1026 * events (i.e. the statistical profiling extension), this implementation 1027 * should first be updated to something sparse instead of the current 1028 * supported_event_map[] array. 1029 */ 1030 #define MAX_EVENT_ID 0x3c 1031 #define UNSUPPORTED_EVENT UINT16_MAX 1032 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1033 1034 /* 1035 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1036 * of ARM event numbers to indices in our pm_events array. 1037 * 1038 * Note: Events in the 0x40XX range are not currently supported. 1039 */ 1040 void pmu_init(ARMCPU *cpu) 1041 { 1042 unsigned int i; 1043 1044 /* 1045 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1046 * events to them 1047 */ 1048 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1049 supported_event_map[i] = UNSUPPORTED_EVENT; 1050 } 1051 cpu->pmceid0 = 0; 1052 cpu->pmceid1 = 0; 1053 1054 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1055 const pm_event *cnt = &pm_events[i]; 1056 assert(cnt->number <= MAX_EVENT_ID); 1057 /* We do not currently support events in the 0x40xx range */ 1058 assert(cnt->number <= 0x3f); 1059 1060 if (cnt->supported(&cpu->env)) { 1061 supported_event_map[cnt->number] = i; 1062 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1063 if (cnt->number & 0x20) { 1064 cpu->pmceid1 |= event_mask; 1065 } else { 1066 cpu->pmceid0 |= event_mask; 1067 } 1068 } 1069 } 1070 } 1071 1072 /* 1073 * Check at runtime whether a PMU event is supported for the current machine 1074 */ 1075 static bool event_supported(uint16_t number) 1076 { 1077 if (number > MAX_EVENT_ID) { 1078 return false; 1079 } 1080 return supported_event_map[number] != UNSUPPORTED_EVENT; 1081 } 1082 1083 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1084 bool isread) 1085 { 1086 /* 1087 * Performance monitor registers user accessibility is controlled 1088 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1089 * trapping to EL2 or EL3 for other accesses. 1090 */ 1091 int el = arm_current_el(env); 1092 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1093 1094 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1095 return CP_ACCESS_TRAP; 1096 } 1097 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1098 return CP_ACCESS_TRAP_EL2; 1099 } 1100 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1101 return CP_ACCESS_TRAP_EL3; 1102 } 1103 1104 return CP_ACCESS_OK; 1105 } 1106 1107 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1108 const ARMCPRegInfo *ri, 1109 bool isread) 1110 { 1111 /* ER: event counter read trap control */ 1112 if (arm_feature(env, ARM_FEATURE_V8) 1113 && arm_current_el(env) == 0 1114 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1115 && isread) { 1116 return CP_ACCESS_OK; 1117 } 1118 1119 return pmreg_access(env, ri, isread); 1120 } 1121 1122 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1123 const ARMCPRegInfo *ri, 1124 bool isread) 1125 { 1126 /* SW: software increment write trap control */ 1127 if (arm_feature(env, ARM_FEATURE_V8) 1128 && arm_current_el(env) == 0 1129 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1130 && !isread) { 1131 return CP_ACCESS_OK; 1132 } 1133 1134 return pmreg_access(env, ri, isread); 1135 } 1136 1137 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1138 const ARMCPRegInfo *ri, 1139 bool isread) 1140 { 1141 /* ER: event counter read trap control */ 1142 if (arm_feature(env, ARM_FEATURE_V8) 1143 && arm_current_el(env) == 0 1144 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1145 return CP_ACCESS_OK; 1146 } 1147 1148 return pmreg_access(env, ri, isread); 1149 } 1150 1151 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1152 const ARMCPRegInfo *ri, 1153 bool isread) 1154 { 1155 /* CR: cycle counter read trap control */ 1156 if (arm_feature(env, ARM_FEATURE_V8) 1157 && arm_current_el(env) == 0 1158 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1159 && isread) { 1160 return CP_ACCESS_OK; 1161 } 1162 1163 return pmreg_access(env, ri, isread); 1164 } 1165 1166 /* 1167 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1168 * We use these to decide whether we need to wrap a write to MDCR_EL2 1169 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1170 */ 1171 #define MDCR_EL2_PMU_ENABLE_BITS \ 1172 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1173 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1174 1175 /* 1176 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1177 * the current EL, security state, and register configuration. 1178 */ 1179 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1180 { 1181 uint64_t filter; 1182 bool e, p, u, nsk, nsu, nsh, m; 1183 bool enabled, prohibited = false, filtered; 1184 bool secure = arm_is_secure(env); 1185 int el = arm_current_el(env); 1186 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1187 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1188 1189 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1190 return false; 1191 } 1192 1193 if (!arm_feature(env, ARM_FEATURE_EL2) || 1194 (counter < hpmn || counter == 31)) { 1195 e = env->cp15.c9_pmcr & PMCRE; 1196 } else { 1197 e = mdcr_el2 & MDCR_HPME; 1198 } 1199 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1200 1201 /* Is event counting prohibited? */ 1202 if (el == 2 && (counter < hpmn || counter == 31)) { 1203 prohibited = mdcr_el2 & MDCR_HPMD; 1204 } 1205 if (secure) { 1206 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1207 } 1208 1209 if (counter == 31) { 1210 /* 1211 * The cycle counter defaults to running. PMCR.DP says "disable 1212 * the cycle counter when event counting is prohibited". 1213 * Some MDCR bits disable the cycle counter specifically. 1214 */ 1215 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1216 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1217 if (secure) { 1218 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1219 } 1220 if (el == 2) { 1221 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1222 } 1223 } 1224 } 1225 1226 if (counter == 31) { 1227 filter = env->cp15.pmccfiltr_el0; 1228 } else { 1229 filter = env->cp15.c14_pmevtyper[counter]; 1230 } 1231 1232 p = filter & PMXEVTYPER_P; 1233 u = filter & PMXEVTYPER_U; 1234 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1235 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1236 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1237 m = arm_el_is_aa64(env, 1) && 1238 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1239 1240 if (el == 0) { 1241 filtered = secure ? u : u != nsu; 1242 } else if (el == 1) { 1243 filtered = secure ? p : p != nsk; 1244 } else if (el == 2) { 1245 filtered = !nsh; 1246 } else { /* EL3 */ 1247 filtered = m != p; 1248 } 1249 1250 if (counter != 31) { 1251 /* 1252 * If not checking PMCCNTR, ensure the counter is setup to an event we 1253 * support 1254 */ 1255 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1256 if (!event_supported(event)) { 1257 return false; 1258 } 1259 } 1260 1261 return enabled && !prohibited && !filtered; 1262 } 1263 1264 static void pmu_update_irq(CPUARMState *env) 1265 { 1266 ARMCPU *cpu = env_archcpu(env); 1267 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1268 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1269 } 1270 1271 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1272 { 1273 /* 1274 * Return true if the clock divider is enabled and the cycle counter 1275 * is supposed to tick only once every 64 clock cycles. This is 1276 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1277 * (64-bit) cycle counter PMCR.D has no effect. 1278 */ 1279 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1280 } 1281 1282 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1283 { 1284 /* Return true if the specified event counter is configured to be 64 bit */ 1285 1286 /* This isn't intended to be used with the cycle counter */ 1287 assert(counter < 31); 1288 1289 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1290 return false; 1291 } 1292 1293 if (arm_feature(env, ARM_FEATURE_EL2)) { 1294 /* 1295 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1296 * current security state, so we don't use arm_mdcr_el2_eff() here. 1297 */ 1298 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1299 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1300 1301 if (counter >= hpmn) { 1302 return hlp; 1303 } 1304 } 1305 return env->cp15.c9_pmcr & PMCRLP; 1306 } 1307 1308 /* 1309 * Ensure c15_ccnt is the guest-visible count so that operations such as 1310 * enabling/disabling the counter or filtering, modifying the count itself, 1311 * etc. can be done logically. This is essentially a no-op if the counter is 1312 * not enabled at the time of the call. 1313 */ 1314 static void pmccntr_op_start(CPUARMState *env) 1315 { 1316 uint64_t cycles = cycles_get_count(env); 1317 1318 if (pmu_counter_enabled(env, 31)) { 1319 uint64_t eff_cycles = cycles; 1320 if (pmccntr_clockdiv_enabled(env)) { 1321 eff_cycles /= 64; 1322 } 1323 1324 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1325 1326 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1327 1ull << 63 : 1ull << 31; 1328 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1329 env->cp15.c9_pmovsr |= (1ULL << 31); 1330 pmu_update_irq(env); 1331 } 1332 1333 env->cp15.c15_ccnt = new_pmccntr; 1334 } 1335 env->cp15.c15_ccnt_delta = cycles; 1336 } 1337 1338 /* 1339 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1340 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1341 * pmccntr_op_start. 1342 */ 1343 static void pmccntr_op_finish(CPUARMState *env) 1344 { 1345 if (pmu_counter_enabled(env, 31)) { 1346 #ifndef CONFIG_USER_ONLY 1347 /* Calculate when the counter will next overflow */ 1348 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1349 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1350 remaining_cycles = (uint32_t)remaining_cycles; 1351 } 1352 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1353 1354 if (overflow_in > 0) { 1355 int64_t overflow_at; 1356 1357 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1358 overflow_in, &overflow_at)) { 1359 ARMCPU *cpu = env_archcpu(env); 1360 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1361 } 1362 } 1363 #endif 1364 1365 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1366 if (pmccntr_clockdiv_enabled(env)) { 1367 prev_cycles /= 64; 1368 } 1369 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1370 } 1371 } 1372 1373 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1374 { 1375 1376 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1377 uint64_t count = 0; 1378 if (event_supported(event)) { 1379 uint16_t event_idx = supported_event_map[event]; 1380 count = pm_events[event_idx].get_count(env); 1381 } 1382 1383 if (pmu_counter_enabled(env, counter)) { 1384 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1385 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1386 1ULL << 63 : 1ULL << 31; 1387 1388 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1389 env->cp15.c9_pmovsr |= (1 << counter); 1390 pmu_update_irq(env); 1391 } 1392 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1393 } 1394 env->cp15.c14_pmevcntr_delta[counter] = count; 1395 } 1396 1397 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1398 { 1399 if (pmu_counter_enabled(env, counter)) { 1400 #ifndef CONFIG_USER_ONLY 1401 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1402 uint16_t event_idx = supported_event_map[event]; 1403 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1404 int64_t overflow_in; 1405 1406 if (!pmevcntr_is_64_bit(env, counter)) { 1407 delta = (uint32_t)delta; 1408 } 1409 overflow_in = pm_events[event_idx].ns_per_count(delta); 1410 1411 if (overflow_in > 0) { 1412 int64_t overflow_at; 1413 1414 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1415 overflow_in, &overflow_at)) { 1416 ARMCPU *cpu = env_archcpu(env); 1417 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1418 } 1419 } 1420 #endif 1421 1422 env->cp15.c14_pmevcntr_delta[counter] -= 1423 env->cp15.c14_pmevcntr[counter]; 1424 } 1425 } 1426 1427 void pmu_op_start(CPUARMState *env) 1428 { 1429 unsigned int i; 1430 pmccntr_op_start(env); 1431 for (i = 0; i < pmu_num_counters(env); i++) { 1432 pmevcntr_op_start(env, i); 1433 } 1434 } 1435 1436 void pmu_op_finish(CPUARMState *env) 1437 { 1438 unsigned int i; 1439 pmccntr_op_finish(env); 1440 for (i = 0; i < pmu_num_counters(env); i++) { 1441 pmevcntr_op_finish(env, i); 1442 } 1443 } 1444 1445 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1446 { 1447 pmu_op_start(&cpu->env); 1448 } 1449 1450 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1451 { 1452 pmu_op_finish(&cpu->env); 1453 } 1454 1455 void arm_pmu_timer_cb(void *opaque) 1456 { 1457 ARMCPU *cpu = opaque; 1458 1459 /* 1460 * Update all the counter values based on the current underlying counts, 1461 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1462 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1463 * counter may expire. 1464 */ 1465 pmu_op_start(&cpu->env); 1466 pmu_op_finish(&cpu->env); 1467 } 1468 1469 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1470 uint64_t value) 1471 { 1472 pmu_op_start(env); 1473 1474 if (value & PMCRC) { 1475 /* The counter has been reset */ 1476 env->cp15.c15_ccnt = 0; 1477 } 1478 1479 if (value & PMCRP) { 1480 unsigned int i; 1481 for (i = 0; i < pmu_num_counters(env); i++) { 1482 env->cp15.c14_pmevcntr[i] = 0; 1483 } 1484 } 1485 1486 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1487 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1488 1489 pmu_op_finish(env); 1490 } 1491 1492 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1493 { 1494 uint64_t pmcr = env->cp15.c9_pmcr; 1495 1496 /* 1497 * If EL2 is implemented and enabled for the current security state, reads 1498 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN. 1499 */ 1500 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) { 1501 pmcr &= ~PMCRN_MASK; 1502 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT; 1503 } 1504 1505 return pmcr; 1506 } 1507 1508 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1509 uint64_t value) 1510 { 1511 unsigned int i; 1512 uint64_t overflow_mask, new_pmswinc; 1513 1514 for (i = 0; i < pmu_num_counters(env); i++) { 1515 /* Increment a counter's count iff: */ 1516 if ((value & (1 << i)) && /* counter's bit is set */ 1517 /* counter is enabled and not filtered */ 1518 pmu_counter_enabled(env, i) && 1519 /* counter is SW_INCR */ 1520 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1521 pmevcntr_op_start(env, i); 1522 1523 /* 1524 * Detect if this write causes an overflow since we can't predict 1525 * PMSWINC overflows like we can for other events 1526 */ 1527 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1528 1529 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1530 1ULL << 63 : 1ULL << 31; 1531 1532 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1533 env->cp15.c9_pmovsr |= (1 << i); 1534 pmu_update_irq(env); 1535 } 1536 1537 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1538 1539 pmevcntr_op_finish(env, i); 1540 } 1541 } 1542 } 1543 1544 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1545 { 1546 uint64_t ret; 1547 pmccntr_op_start(env); 1548 ret = env->cp15.c15_ccnt; 1549 pmccntr_op_finish(env); 1550 return ret; 1551 } 1552 1553 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1554 uint64_t value) 1555 { 1556 /* 1557 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1558 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1559 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1560 * accessed. 1561 */ 1562 env->cp15.c9_pmselr = value & 0x1f; 1563 } 1564 1565 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1566 uint64_t value) 1567 { 1568 pmccntr_op_start(env); 1569 env->cp15.c15_ccnt = value; 1570 pmccntr_op_finish(env); 1571 } 1572 1573 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1574 uint64_t value) 1575 { 1576 uint64_t cur_val = pmccntr_read(env, NULL); 1577 1578 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1579 } 1580 1581 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1582 uint64_t value) 1583 { 1584 pmccntr_op_start(env); 1585 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1586 pmccntr_op_finish(env); 1587 } 1588 1589 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1590 uint64_t value) 1591 { 1592 pmccntr_op_start(env); 1593 /* M is not accessible from AArch32 */ 1594 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1595 (value & PMCCFILTR); 1596 pmccntr_op_finish(env); 1597 } 1598 1599 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1600 { 1601 /* M is not visible in AArch32 */ 1602 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1603 } 1604 1605 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1606 uint64_t value) 1607 { 1608 pmu_op_start(env); 1609 value &= pmu_counter_mask(env); 1610 env->cp15.c9_pmcnten |= value; 1611 pmu_op_finish(env); 1612 } 1613 1614 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1615 uint64_t value) 1616 { 1617 pmu_op_start(env); 1618 value &= pmu_counter_mask(env); 1619 env->cp15.c9_pmcnten &= ~value; 1620 pmu_op_finish(env); 1621 } 1622 1623 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1624 uint64_t value) 1625 { 1626 value &= pmu_counter_mask(env); 1627 env->cp15.c9_pmovsr &= ~value; 1628 pmu_update_irq(env); 1629 } 1630 1631 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1632 uint64_t value) 1633 { 1634 value &= pmu_counter_mask(env); 1635 env->cp15.c9_pmovsr |= value; 1636 pmu_update_irq(env); 1637 } 1638 1639 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1640 uint64_t value, const uint8_t counter) 1641 { 1642 if (counter == 31) { 1643 pmccfiltr_write(env, ri, value); 1644 } else if (counter < pmu_num_counters(env)) { 1645 pmevcntr_op_start(env, counter); 1646 1647 /* 1648 * If this counter's event type is changing, store the current 1649 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1650 * pmevcntr_op_finish has the correct baseline when it converts back to 1651 * a delta. 1652 */ 1653 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1654 PMXEVTYPER_EVTCOUNT; 1655 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1656 if (old_event != new_event) { 1657 uint64_t count = 0; 1658 if (event_supported(new_event)) { 1659 uint16_t event_idx = supported_event_map[new_event]; 1660 count = pm_events[event_idx].get_count(env); 1661 } 1662 env->cp15.c14_pmevcntr_delta[counter] = count; 1663 } 1664 1665 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1666 pmevcntr_op_finish(env, counter); 1667 } 1668 /* 1669 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1670 * PMSELR value is equal to or greater than the number of implemented 1671 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1672 */ 1673 } 1674 1675 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1676 const uint8_t counter) 1677 { 1678 if (counter == 31) { 1679 return env->cp15.pmccfiltr_el0; 1680 } else if (counter < pmu_num_counters(env)) { 1681 return env->cp15.c14_pmevtyper[counter]; 1682 } else { 1683 /* 1684 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1685 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1686 */ 1687 return 0; 1688 } 1689 } 1690 1691 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1692 uint64_t value) 1693 { 1694 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1695 pmevtyper_write(env, ri, value, counter); 1696 } 1697 1698 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1699 uint64_t value) 1700 { 1701 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1702 env->cp15.c14_pmevtyper[counter] = value; 1703 1704 /* 1705 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1706 * pmu_op_finish calls when loading saved state for a migration. Because 1707 * we're potentially updating the type of event here, the value written to 1708 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a 1709 * different counter type. Therefore, we need to set this value to the 1710 * current count for the counter type we're writing so that pmu_op_finish 1711 * has the correct count for its calculation. 1712 */ 1713 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1714 if (event_supported(event)) { 1715 uint16_t event_idx = supported_event_map[event]; 1716 env->cp15.c14_pmevcntr_delta[counter] = 1717 pm_events[event_idx].get_count(env); 1718 } 1719 } 1720 1721 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1722 { 1723 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1724 return pmevtyper_read(env, ri, counter); 1725 } 1726 1727 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1728 uint64_t value) 1729 { 1730 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1731 } 1732 1733 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1734 { 1735 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1736 } 1737 1738 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1739 uint64_t value, uint8_t counter) 1740 { 1741 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1742 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1743 value &= MAKE_64BIT_MASK(0, 32); 1744 } 1745 if (counter < pmu_num_counters(env)) { 1746 pmevcntr_op_start(env, counter); 1747 env->cp15.c14_pmevcntr[counter] = value; 1748 pmevcntr_op_finish(env, counter); 1749 } 1750 /* 1751 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1752 * are CONSTRAINED UNPREDICTABLE. 1753 */ 1754 } 1755 1756 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1757 uint8_t counter) 1758 { 1759 if (counter < pmu_num_counters(env)) { 1760 uint64_t ret; 1761 pmevcntr_op_start(env, counter); 1762 ret = env->cp15.c14_pmevcntr[counter]; 1763 pmevcntr_op_finish(env, counter); 1764 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1765 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1766 ret &= MAKE_64BIT_MASK(0, 32); 1767 } 1768 return ret; 1769 } else { 1770 /* 1771 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1772 * are CONSTRAINED UNPREDICTABLE. 1773 */ 1774 return 0; 1775 } 1776 } 1777 1778 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1779 uint64_t value) 1780 { 1781 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1782 pmevcntr_write(env, ri, value, counter); 1783 } 1784 1785 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1786 { 1787 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1788 return pmevcntr_read(env, ri, counter); 1789 } 1790 1791 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1792 uint64_t value) 1793 { 1794 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1795 assert(counter < pmu_num_counters(env)); 1796 env->cp15.c14_pmevcntr[counter] = value; 1797 pmevcntr_write(env, ri, value, counter); 1798 } 1799 1800 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1801 { 1802 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1803 assert(counter < pmu_num_counters(env)); 1804 return env->cp15.c14_pmevcntr[counter]; 1805 } 1806 1807 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1808 uint64_t value) 1809 { 1810 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1811 } 1812 1813 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1814 { 1815 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1816 } 1817 1818 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1819 uint64_t value) 1820 { 1821 if (arm_feature(env, ARM_FEATURE_V8)) { 1822 env->cp15.c9_pmuserenr = value & 0xf; 1823 } else { 1824 env->cp15.c9_pmuserenr = value & 1; 1825 } 1826 } 1827 1828 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1829 uint64_t value) 1830 { 1831 /* We have no event counters so only the C bit can be changed */ 1832 value &= pmu_counter_mask(env); 1833 env->cp15.c9_pminten |= value; 1834 pmu_update_irq(env); 1835 } 1836 1837 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1838 uint64_t value) 1839 { 1840 value &= pmu_counter_mask(env); 1841 env->cp15.c9_pminten &= ~value; 1842 pmu_update_irq(env); 1843 } 1844 1845 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1846 uint64_t value) 1847 { 1848 /* 1849 * Note that even though the AArch64 view of this register has bits 1850 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1851 * architectural requirements for bits which are RES0 only in some 1852 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1853 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1854 */ 1855 raw_write(env, ri, value & ~0x1FULL); 1856 } 1857 1858 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1859 { 1860 /* Begin with base v8.0 state. */ 1861 uint64_t valid_mask = 0x3fff; 1862 ARMCPU *cpu = env_archcpu(env); 1863 uint64_t changed; 1864 1865 /* 1866 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1867 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1868 * Instead, choose the format based on the mode of EL3. 1869 */ 1870 if (arm_el_is_aa64(env, 3)) { 1871 value |= SCR_FW | SCR_AW; /* RES1 */ 1872 valid_mask &= ~SCR_NET; /* RES0 */ 1873 1874 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1875 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1876 value |= SCR_RW; /* RAO/WI */ 1877 } 1878 if (cpu_isar_feature(aa64_ras, cpu)) { 1879 valid_mask |= SCR_TERR; 1880 } 1881 if (cpu_isar_feature(aa64_lor, cpu)) { 1882 valid_mask |= SCR_TLOR; 1883 } 1884 if (cpu_isar_feature(aa64_pauth, cpu)) { 1885 valid_mask |= SCR_API | SCR_APK; 1886 } 1887 if (cpu_isar_feature(aa64_sel2, cpu)) { 1888 valid_mask |= SCR_EEL2; 1889 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1890 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1891 value |= SCR_NS; 1892 } 1893 if (cpu_isar_feature(aa64_mte, cpu)) { 1894 valid_mask |= SCR_ATA; 1895 } 1896 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1897 valid_mask |= SCR_ENSCXT; 1898 } 1899 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1900 valid_mask |= SCR_EASE | SCR_NMEA; 1901 } 1902 if (cpu_isar_feature(aa64_sme, cpu)) { 1903 valid_mask |= SCR_ENTP2; 1904 } 1905 if (cpu_isar_feature(aa64_hcx, cpu)) { 1906 valid_mask |= SCR_HXEN; 1907 } 1908 if (cpu_isar_feature(aa64_fgt, cpu)) { 1909 valid_mask |= SCR_FGTEN; 1910 } 1911 if (cpu_isar_feature(aa64_rme, cpu)) { 1912 valid_mask |= SCR_NSE | SCR_GPF; 1913 } 1914 } else { 1915 valid_mask &= ~(SCR_RW | SCR_ST); 1916 if (cpu_isar_feature(aa32_ras, cpu)) { 1917 valid_mask |= SCR_TERR; 1918 } 1919 } 1920 1921 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1922 valid_mask &= ~SCR_HCE; 1923 1924 /* 1925 * On ARMv7, SMD (or SCD as it is called in v7) is only 1926 * supported if EL2 exists. The bit is UNK/SBZP when 1927 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1928 * when EL2 is unavailable. 1929 * On ARMv8, this bit is always available. 1930 */ 1931 if (arm_feature(env, ARM_FEATURE_V7) && 1932 !arm_feature(env, ARM_FEATURE_V8)) { 1933 valid_mask &= ~SCR_SMD; 1934 } 1935 } 1936 1937 /* Clear all-context RES0 bits. */ 1938 value &= valid_mask; 1939 changed = env->cp15.scr_el3 ^ value; 1940 env->cp15.scr_el3 = value; 1941 1942 /* 1943 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1944 * we must invalidate all TLBs below EL3. 1945 */ 1946 if (changed & (SCR_NS | SCR_NSE)) { 1947 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1948 ARMMMUIdxBit_E20_0 | 1949 ARMMMUIdxBit_E10_1 | 1950 ARMMMUIdxBit_E20_2 | 1951 ARMMMUIdxBit_E10_1_PAN | 1952 ARMMMUIdxBit_E20_2_PAN | 1953 ARMMMUIdxBit_E2)); 1954 } 1955 } 1956 1957 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1958 { 1959 /* 1960 * scr_write will set the RES1 bits on an AArch64-only CPU. 1961 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1962 */ 1963 scr_write(env, ri, 0); 1964 } 1965 1966 static CPAccessResult access_tid4(CPUARMState *env, 1967 const ARMCPRegInfo *ri, 1968 bool isread) 1969 { 1970 if (arm_current_el(env) == 1 && 1971 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1972 return CP_ACCESS_TRAP_EL2; 1973 } 1974 1975 return CP_ACCESS_OK; 1976 } 1977 1978 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1979 { 1980 ARMCPU *cpu = env_archcpu(env); 1981 1982 /* 1983 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1984 * bank 1985 */ 1986 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1987 ri->secure & ARM_CP_SECSTATE_S); 1988 1989 return cpu->ccsidr[index]; 1990 } 1991 1992 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1993 uint64_t value) 1994 { 1995 raw_write(env, ri, value & 0xf); 1996 } 1997 1998 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1999 { 2000 CPUState *cs = env_cpu(env); 2001 bool el1 = arm_current_el(env) == 1; 2002 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 2003 uint64_t ret = 0; 2004 2005 if (hcr_el2 & HCR_IMO) { 2006 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2007 ret |= CPSR_I; 2008 } 2009 } else { 2010 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2011 ret |= CPSR_I; 2012 } 2013 } 2014 2015 if (hcr_el2 & HCR_FMO) { 2016 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2017 ret |= CPSR_F; 2018 } 2019 } else { 2020 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2021 ret |= CPSR_F; 2022 } 2023 } 2024 2025 if (hcr_el2 & HCR_AMO) { 2026 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 2027 ret |= CPSR_A; 2028 } 2029 } 2030 2031 return ret; 2032 } 2033 2034 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2035 bool isread) 2036 { 2037 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2038 return CP_ACCESS_TRAP_EL2; 2039 } 2040 2041 return CP_ACCESS_OK; 2042 } 2043 2044 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2045 bool isread) 2046 { 2047 if (arm_feature(env, ARM_FEATURE_V8)) { 2048 return access_aa64_tid1(env, ri, isread); 2049 } 2050 2051 return CP_ACCESS_OK; 2052 } 2053 2054 static const ARMCPRegInfo v7_cp_reginfo[] = { 2055 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2056 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2057 .access = PL1_W, .type = ARM_CP_NOP }, 2058 /* 2059 * Performance monitors are implementation defined in v7, 2060 * but with an ARM recommended set of registers, which we 2061 * follow. 2062 * 2063 * Performance registers fall into three categories: 2064 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2065 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2066 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2067 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2068 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2069 */ 2070 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2071 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2072 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2073 .writefn = pmcntenset_write, 2074 .accessfn = pmreg_access, 2075 .fgt = FGT_PMCNTEN, 2076 .raw_writefn = raw_write }, 2077 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2078 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2079 .access = PL0_RW, .accessfn = pmreg_access, 2080 .fgt = FGT_PMCNTEN, 2081 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2082 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2083 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2084 .access = PL0_RW, 2085 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2086 .accessfn = pmreg_access, 2087 .fgt = FGT_PMCNTEN, 2088 .writefn = pmcntenclr_write, 2089 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2090 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2091 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2092 .access = PL0_RW, .accessfn = pmreg_access, 2093 .fgt = FGT_PMCNTEN, 2094 .type = ARM_CP_ALIAS | ARM_CP_IO, 2095 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2096 .writefn = pmcntenclr_write }, 2097 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2098 .access = PL0_RW, .type = ARM_CP_IO, 2099 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2100 .accessfn = pmreg_access, 2101 .fgt = FGT_PMOVS, 2102 .writefn = pmovsr_write, 2103 .raw_writefn = raw_write }, 2104 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2105 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2106 .access = PL0_RW, .accessfn = pmreg_access, 2107 .fgt = FGT_PMOVS, 2108 .type = ARM_CP_ALIAS | ARM_CP_IO, 2109 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2110 .writefn = pmovsr_write, 2111 .raw_writefn = raw_write }, 2112 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2113 .access = PL0_W, .accessfn = pmreg_access_swinc, 2114 .fgt = FGT_PMSWINC_EL0, 2115 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2116 .writefn = pmswinc_write }, 2117 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2118 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2119 .access = PL0_W, .accessfn = pmreg_access_swinc, 2120 .fgt = FGT_PMSWINC_EL0, 2121 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2122 .writefn = pmswinc_write }, 2123 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2124 .access = PL0_RW, .type = ARM_CP_ALIAS, 2125 .fgt = FGT_PMSELR_EL0, 2126 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2127 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2128 .raw_writefn = raw_write}, 2129 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2130 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2131 .access = PL0_RW, .accessfn = pmreg_access_selr, 2132 .fgt = FGT_PMSELR_EL0, 2133 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2134 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2135 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2136 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2137 .fgt = FGT_PMCCNTR_EL0, 2138 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2139 .accessfn = pmreg_access_ccntr }, 2140 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2141 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2142 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2143 .fgt = FGT_PMCCNTR_EL0, 2144 .type = ARM_CP_IO, 2145 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2146 .readfn = pmccntr_read, .writefn = pmccntr_write, 2147 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2148 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2149 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2150 .access = PL0_RW, .accessfn = pmreg_access, 2151 .fgt = FGT_PMCCFILTR_EL0, 2152 .type = ARM_CP_ALIAS | ARM_CP_IO, 2153 .resetvalue = 0, }, 2154 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2155 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2156 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2157 .access = PL0_RW, .accessfn = pmreg_access, 2158 .fgt = FGT_PMCCFILTR_EL0, 2159 .type = ARM_CP_IO, 2160 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2161 .resetvalue = 0, }, 2162 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2163 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2164 .accessfn = pmreg_access, 2165 .fgt = FGT_PMEVTYPERN_EL0, 2166 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2167 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2168 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2169 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2170 .accessfn = pmreg_access, 2171 .fgt = FGT_PMEVTYPERN_EL0, 2172 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2173 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2174 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2175 .accessfn = pmreg_access_xevcntr, 2176 .fgt = FGT_PMEVCNTRN_EL0, 2177 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2178 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2179 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2180 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2181 .accessfn = pmreg_access_xevcntr, 2182 .fgt = FGT_PMEVCNTRN_EL0, 2183 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2184 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2185 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2186 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2187 .resetvalue = 0, 2188 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2189 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2190 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2191 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2192 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2193 .resetvalue = 0, 2194 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2195 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2196 .access = PL1_RW, .accessfn = access_tpm, 2197 .fgt = FGT_PMINTEN, 2198 .type = ARM_CP_ALIAS | ARM_CP_IO, 2199 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2200 .resetvalue = 0, 2201 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2202 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2203 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2204 .access = PL1_RW, .accessfn = access_tpm, 2205 .fgt = FGT_PMINTEN, 2206 .type = ARM_CP_IO, 2207 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2208 .writefn = pmintenset_write, .raw_writefn = raw_write, 2209 .resetvalue = 0x0 }, 2210 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2211 .access = PL1_RW, .accessfn = access_tpm, 2212 .fgt = FGT_PMINTEN, 2213 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2214 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2215 .writefn = pmintenclr_write, }, 2216 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2217 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2218 .access = PL1_RW, .accessfn = access_tpm, 2219 .fgt = FGT_PMINTEN, 2220 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2221 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2222 .writefn = pmintenclr_write }, 2223 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2224 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2225 .access = PL1_R, 2226 .accessfn = access_tid4, 2227 .fgt = FGT_CCSIDR_EL1, 2228 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2229 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2230 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2231 .access = PL1_RW, 2232 .accessfn = access_tid4, 2233 .fgt = FGT_CSSELR_EL1, 2234 .writefn = csselr_write, .resetvalue = 0, 2235 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2236 offsetof(CPUARMState, cp15.csselr_ns) } }, 2237 /* 2238 * Auxiliary ID register: this actually has an IMPDEF value but for now 2239 * just RAZ for all cores: 2240 */ 2241 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2242 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2243 .access = PL1_R, .type = ARM_CP_CONST, 2244 .accessfn = access_aa64_tid1, 2245 .fgt = FGT_AIDR_EL1, 2246 .resetvalue = 0 }, 2247 /* 2248 * Auxiliary fault status registers: these also are IMPDEF, and we 2249 * choose to RAZ/WI for all cores. 2250 */ 2251 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2252 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2253 .access = PL1_RW, .accessfn = access_tvm_trvm, 2254 .fgt = FGT_AFSR0_EL1, 2255 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1, 2256 .type = ARM_CP_CONST, .resetvalue = 0 }, 2257 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2258 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2259 .access = PL1_RW, .accessfn = access_tvm_trvm, 2260 .fgt = FGT_AFSR1_EL1, 2261 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1, 2262 .type = ARM_CP_CONST, .resetvalue = 0 }, 2263 /* 2264 * MAIR can just read-as-written because we don't implement caches 2265 * and so don't need to care about memory attributes. 2266 */ 2267 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2268 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2269 .access = PL1_RW, .accessfn = access_tvm_trvm, 2270 .fgt = FGT_MAIR_EL1, 2271 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1, 2272 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2273 .resetvalue = 0 }, 2274 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2275 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2276 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2277 .resetvalue = 0 }, 2278 /* 2279 * For non-long-descriptor page tables these are PRRR and NMRR; 2280 * regardless they still act as reads-as-written for QEMU. 2281 */ 2282 /* 2283 * MAIR0/1 are defined separately from their 64-bit counterpart which 2284 * allows them to assign the correct fieldoffset based on the endianness 2285 * handled in the field definitions. 2286 */ 2287 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2288 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2289 .access = PL1_RW, .accessfn = access_tvm_trvm, 2290 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2291 offsetof(CPUARMState, cp15.mair0_ns) }, 2292 .resetfn = arm_cp_reset_ignore }, 2293 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2294 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2295 .access = PL1_RW, .accessfn = access_tvm_trvm, 2296 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2297 offsetof(CPUARMState, cp15.mair1_ns) }, 2298 .resetfn = arm_cp_reset_ignore }, 2299 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2300 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2301 .fgt = FGT_ISR_EL1, 2302 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2303 /* 32 bit ITLB invalidates */ 2304 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2305 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2306 .writefn = tlbiall_write }, 2307 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2308 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2309 .writefn = tlbimva_write }, 2310 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2311 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2312 .writefn = tlbiasid_write }, 2313 /* 32 bit DTLB invalidates */ 2314 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2315 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2316 .writefn = tlbiall_write }, 2317 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2318 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2319 .writefn = tlbimva_write }, 2320 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2321 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2322 .writefn = tlbiasid_write }, 2323 /* 32 bit TLB invalidates */ 2324 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2325 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2326 .writefn = tlbiall_write }, 2327 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2328 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2329 .writefn = tlbimva_write }, 2330 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2331 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2332 .writefn = tlbiasid_write }, 2333 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2334 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2335 .writefn = tlbimvaa_write }, 2336 }; 2337 2338 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2339 /* 32 bit TLB invalidates, Inner Shareable */ 2340 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2341 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2342 .writefn = tlbiall_is_write }, 2343 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2344 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2345 .writefn = tlbimva_is_write }, 2346 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2347 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2348 .writefn = tlbiasid_is_write }, 2349 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2350 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2351 .writefn = tlbimvaa_is_write }, 2352 }; 2353 2354 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2355 /* PMOVSSET is not implemented in v7 before v7ve */ 2356 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2357 .access = PL0_RW, .accessfn = pmreg_access, 2358 .fgt = FGT_PMOVS, 2359 .type = ARM_CP_ALIAS | ARM_CP_IO, 2360 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2361 .writefn = pmovsset_write, 2362 .raw_writefn = raw_write }, 2363 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2364 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2365 .access = PL0_RW, .accessfn = pmreg_access, 2366 .fgt = FGT_PMOVS, 2367 .type = ARM_CP_ALIAS | ARM_CP_IO, 2368 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2369 .writefn = pmovsset_write, 2370 .raw_writefn = raw_write }, 2371 }; 2372 2373 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2374 uint64_t value) 2375 { 2376 value &= 1; 2377 env->teecr = value; 2378 } 2379 2380 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2381 bool isread) 2382 { 2383 /* 2384 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2385 * at all, so we don't need to check whether we're v8A. 2386 */ 2387 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2388 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2389 return CP_ACCESS_TRAP_EL2; 2390 } 2391 return CP_ACCESS_OK; 2392 } 2393 2394 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2395 bool isread) 2396 { 2397 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2398 return CP_ACCESS_TRAP; 2399 } 2400 return teecr_access(env, ri, isread); 2401 } 2402 2403 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2404 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2405 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2406 .resetvalue = 0, 2407 .writefn = teecr_write, .accessfn = teecr_access }, 2408 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2409 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2410 .accessfn = teehbr_access, .resetvalue = 0 }, 2411 }; 2412 2413 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2414 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2415 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2416 .access = PL0_RW, 2417 .fgt = FGT_TPIDR_EL0, 2418 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2419 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2420 .access = PL0_RW, 2421 .fgt = FGT_TPIDR_EL0, 2422 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2423 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2424 .resetfn = arm_cp_reset_ignore }, 2425 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2426 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2427 .access = PL0_R | PL1_W, 2428 .fgt = FGT_TPIDRRO_EL0, 2429 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2430 .resetvalue = 0}, 2431 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2432 .access = PL0_R | PL1_W, 2433 .fgt = FGT_TPIDRRO_EL0, 2434 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2435 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2436 .resetfn = arm_cp_reset_ignore }, 2437 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2438 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2439 .access = PL1_RW, 2440 .fgt = FGT_TPIDR_EL1, 2441 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2442 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2443 .access = PL1_RW, 2444 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2445 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2446 .resetvalue = 0 }, 2447 }; 2448 2449 #ifndef CONFIG_USER_ONLY 2450 2451 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2452 bool isread) 2453 { 2454 /* 2455 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2456 * Writable only at the highest implemented exception level. 2457 */ 2458 int el = arm_current_el(env); 2459 uint64_t hcr; 2460 uint32_t cntkctl; 2461 2462 switch (el) { 2463 case 0: 2464 hcr = arm_hcr_el2_eff(env); 2465 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2466 cntkctl = env->cp15.cnthctl_el2; 2467 } else { 2468 cntkctl = env->cp15.c14_cntkctl; 2469 } 2470 if (!extract32(cntkctl, 0, 2)) { 2471 return CP_ACCESS_TRAP; 2472 } 2473 break; 2474 case 1: 2475 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2476 arm_is_secure_below_el3(env)) { 2477 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2478 return CP_ACCESS_TRAP_UNCATEGORIZED; 2479 } 2480 break; 2481 case 2: 2482 case 3: 2483 break; 2484 } 2485 2486 if (!isread && el < arm_highest_el(env)) { 2487 return CP_ACCESS_TRAP_UNCATEGORIZED; 2488 } 2489 2490 return CP_ACCESS_OK; 2491 } 2492 2493 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2494 bool isread) 2495 { 2496 unsigned int cur_el = arm_current_el(env); 2497 bool has_el2 = arm_is_el2_enabled(env); 2498 uint64_t hcr = arm_hcr_el2_eff(env); 2499 2500 switch (cur_el) { 2501 case 0: 2502 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2503 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2504 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2505 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2506 } 2507 2508 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2509 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2510 return CP_ACCESS_TRAP; 2511 } 2512 /* fall through */ 2513 case 1: 2514 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2515 if (has_el2 && timeridx == GTIMER_PHYS && 2516 (hcr & HCR_E2H 2517 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2518 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2519 return CP_ACCESS_TRAP_EL2; 2520 } 2521 break; 2522 } 2523 return CP_ACCESS_OK; 2524 } 2525 2526 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2527 bool isread) 2528 { 2529 unsigned int cur_el = arm_current_el(env); 2530 bool has_el2 = arm_is_el2_enabled(env); 2531 uint64_t hcr = arm_hcr_el2_eff(env); 2532 2533 switch (cur_el) { 2534 case 0: 2535 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2536 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2537 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2538 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2539 } 2540 2541 /* 2542 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2543 * EL0 if EL0[PV]TEN is zero. 2544 */ 2545 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2546 return CP_ACCESS_TRAP; 2547 } 2548 /* fall through */ 2549 2550 case 1: 2551 if (has_el2 && timeridx == GTIMER_PHYS) { 2552 if (hcr & HCR_E2H) { 2553 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2554 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2555 return CP_ACCESS_TRAP_EL2; 2556 } 2557 } else { 2558 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2559 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2560 return CP_ACCESS_TRAP_EL2; 2561 } 2562 } 2563 } 2564 break; 2565 } 2566 return CP_ACCESS_OK; 2567 } 2568 2569 static CPAccessResult gt_pct_access(CPUARMState *env, 2570 const ARMCPRegInfo *ri, 2571 bool isread) 2572 { 2573 return gt_counter_access(env, GTIMER_PHYS, isread); 2574 } 2575 2576 static CPAccessResult gt_vct_access(CPUARMState *env, 2577 const ARMCPRegInfo *ri, 2578 bool isread) 2579 { 2580 return gt_counter_access(env, GTIMER_VIRT, isread); 2581 } 2582 2583 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2584 bool isread) 2585 { 2586 return gt_timer_access(env, GTIMER_PHYS, isread); 2587 } 2588 2589 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2590 bool isread) 2591 { 2592 return gt_timer_access(env, GTIMER_VIRT, isread); 2593 } 2594 2595 static CPAccessResult gt_stimer_access(CPUARMState *env, 2596 const ARMCPRegInfo *ri, 2597 bool isread) 2598 { 2599 /* 2600 * The AArch64 register view of the secure physical timer is 2601 * always accessible from EL3, and configurably accessible from 2602 * Secure EL1. 2603 */ 2604 switch (arm_current_el(env)) { 2605 case 1: 2606 if (!arm_is_secure(env)) { 2607 return CP_ACCESS_TRAP; 2608 } 2609 if (!(env->cp15.scr_el3 & SCR_ST)) { 2610 return CP_ACCESS_TRAP_EL3; 2611 } 2612 return CP_ACCESS_OK; 2613 case 0: 2614 case 2: 2615 return CP_ACCESS_TRAP; 2616 case 3: 2617 return CP_ACCESS_OK; 2618 default: 2619 g_assert_not_reached(); 2620 } 2621 } 2622 2623 static uint64_t gt_get_countervalue(CPUARMState *env) 2624 { 2625 ARMCPU *cpu = env_archcpu(env); 2626 2627 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2628 } 2629 2630 static void gt_update_irq(ARMCPU *cpu, int timeridx) 2631 { 2632 CPUARMState *env = &cpu->env; 2633 uint64_t cnthctl = env->cp15.cnthctl_el2; 2634 ARMSecuritySpace ss = arm_security_space(env); 2635 /* ISTATUS && !IMASK */ 2636 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4; 2637 2638 /* 2639 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK. 2640 * It is RES0 in Secure and NonSecure state. 2641 */ 2642 if ((ss == ARMSS_Root || ss == ARMSS_Realm) && 2643 ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) || 2644 (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) { 2645 irqstate = 0; 2646 } 2647 2648 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2649 trace_arm_gt_update_irq(timeridx, irqstate); 2650 } 2651 2652 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored) 2653 { 2654 /* 2655 * Changing security state between Root and Secure/NonSecure, which may 2656 * happen when switching EL, can change the effective value of CNTHCTL_EL2 2657 * mask bits. Update the IRQ state accordingly. 2658 */ 2659 gt_update_irq(cpu, GTIMER_VIRT); 2660 gt_update_irq(cpu, GTIMER_PHYS); 2661 } 2662 2663 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2664 { 2665 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2666 2667 if (gt->ctl & 1) { 2668 /* 2669 * Timer enabled: calculate and set current ISTATUS, irq, and 2670 * reset timer to when ISTATUS next has to change 2671 */ 2672 uint64_t offset = timeridx == GTIMER_VIRT ? 2673 cpu->env.cp15.cntvoff_el2 : 0; 2674 uint64_t count = gt_get_countervalue(&cpu->env); 2675 /* Note that this must be unsigned 64 bit arithmetic: */ 2676 int istatus = count - offset >= gt->cval; 2677 uint64_t nexttick; 2678 2679 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2680 2681 if (istatus) { 2682 /* 2683 * Next transition is when (count - offset) rolls back over to 0. 2684 * If offset > count then this is when count == offset; 2685 * if offset <= count then this is when count == offset + 2^64 2686 * For the latter case we set nexttick to an "as far in future 2687 * as possible" value and let the code below handle it. 2688 */ 2689 if (offset > count) { 2690 nexttick = offset; 2691 } else { 2692 nexttick = UINT64_MAX; 2693 } 2694 } else { 2695 /* 2696 * Next transition is when (count - offset) == cval, i.e. 2697 * when count == (cval + offset). 2698 * If that would overflow, then again we set up the next interrupt 2699 * for "as far in the future as possible" for the code below. 2700 */ 2701 if (uadd64_overflow(gt->cval, offset, &nexttick)) { 2702 nexttick = UINT64_MAX; 2703 } 2704 } 2705 /* 2706 * Note that the desired next expiry time might be beyond the 2707 * signed-64-bit range of a QEMUTimer -- in this case we just 2708 * set the timer for as far in the future as possible. When the 2709 * timer expires we will reset the timer for any remaining period. 2710 */ 2711 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2712 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2713 } else { 2714 timer_mod(cpu->gt_timer[timeridx], nexttick); 2715 } 2716 trace_arm_gt_recalc(timeridx, nexttick); 2717 } else { 2718 /* Timer disabled: ISTATUS and timer output always clear */ 2719 gt->ctl &= ~4; 2720 timer_del(cpu->gt_timer[timeridx]); 2721 trace_arm_gt_recalc_disabled(timeridx); 2722 } 2723 gt_update_irq(cpu, timeridx); 2724 } 2725 2726 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2727 int timeridx) 2728 { 2729 ARMCPU *cpu = env_archcpu(env); 2730 2731 timer_del(cpu->gt_timer[timeridx]); 2732 } 2733 2734 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2735 { 2736 return gt_get_countervalue(env); 2737 } 2738 2739 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2740 { 2741 uint64_t hcr; 2742 2743 switch (arm_current_el(env)) { 2744 case 2: 2745 hcr = arm_hcr_el2_eff(env); 2746 if (hcr & HCR_E2H) { 2747 return 0; 2748 } 2749 break; 2750 case 0: 2751 hcr = arm_hcr_el2_eff(env); 2752 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2753 return 0; 2754 } 2755 break; 2756 } 2757 2758 return env->cp15.cntvoff_el2; 2759 } 2760 2761 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2762 { 2763 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2764 } 2765 2766 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2767 int timeridx, 2768 uint64_t value) 2769 { 2770 trace_arm_gt_cval_write(timeridx, value); 2771 env->cp15.c14_timer[timeridx].cval = value; 2772 gt_recalc_timer(env_archcpu(env), timeridx); 2773 } 2774 2775 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2776 int timeridx) 2777 { 2778 uint64_t offset = 0; 2779 2780 switch (timeridx) { 2781 case GTIMER_VIRT: 2782 case GTIMER_HYPVIRT: 2783 offset = gt_virt_cnt_offset(env); 2784 break; 2785 } 2786 2787 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2788 (gt_get_countervalue(env) - offset)); 2789 } 2790 2791 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2792 int timeridx, 2793 uint64_t value) 2794 { 2795 uint64_t offset = 0; 2796 2797 switch (timeridx) { 2798 case GTIMER_VIRT: 2799 case GTIMER_HYPVIRT: 2800 offset = gt_virt_cnt_offset(env); 2801 break; 2802 } 2803 2804 trace_arm_gt_tval_write(timeridx, value); 2805 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2806 sextract64(value, 0, 32); 2807 gt_recalc_timer(env_archcpu(env), timeridx); 2808 } 2809 2810 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2811 int timeridx, 2812 uint64_t value) 2813 { 2814 ARMCPU *cpu = env_archcpu(env); 2815 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2816 2817 trace_arm_gt_ctl_write(timeridx, value); 2818 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2819 if ((oldval ^ value) & 1) { 2820 /* Enable toggled */ 2821 gt_recalc_timer(cpu, timeridx); 2822 } else if ((oldval ^ value) & 2) { 2823 /* 2824 * IMASK toggled: don't need to recalculate, 2825 * just set the interrupt line based on ISTATUS 2826 */ 2827 trace_arm_gt_imask_toggle(timeridx); 2828 gt_update_irq(cpu, timeridx); 2829 } 2830 } 2831 2832 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2833 { 2834 gt_timer_reset(env, ri, GTIMER_PHYS); 2835 } 2836 2837 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2838 uint64_t value) 2839 { 2840 gt_cval_write(env, ri, GTIMER_PHYS, value); 2841 } 2842 2843 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2844 { 2845 return gt_tval_read(env, ri, GTIMER_PHYS); 2846 } 2847 2848 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2849 uint64_t value) 2850 { 2851 gt_tval_write(env, ri, GTIMER_PHYS, value); 2852 } 2853 2854 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2855 uint64_t value) 2856 { 2857 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2858 } 2859 2860 static int gt_phys_redir_timeridx(CPUARMState *env) 2861 { 2862 switch (arm_mmu_idx(env)) { 2863 case ARMMMUIdx_E20_0: 2864 case ARMMMUIdx_E20_2: 2865 case ARMMMUIdx_E20_2_PAN: 2866 return GTIMER_HYP; 2867 default: 2868 return GTIMER_PHYS; 2869 } 2870 } 2871 2872 static int gt_virt_redir_timeridx(CPUARMState *env) 2873 { 2874 switch (arm_mmu_idx(env)) { 2875 case ARMMMUIdx_E20_0: 2876 case ARMMMUIdx_E20_2: 2877 case ARMMMUIdx_E20_2_PAN: 2878 return GTIMER_HYPVIRT; 2879 default: 2880 return GTIMER_VIRT; 2881 } 2882 } 2883 2884 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2885 const ARMCPRegInfo *ri) 2886 { 2887 int timeridx = gt_phys_redir_timeridx(env); 2888 return env->cp15.c14_timer[timeridx].cval; 2889 } 2890 2891 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2892 uint64_t value) 2893 { 2894 int timeridx = gt_phys_redir_timeridx(env); 2895 gt_cval_write(env, ri, timeridx, value); 2896 } 2897 2898 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2899 const ARMCPRegInfo *ri) 2900 { 2901 int timeridx = gt_phys_redir_timeridx(env); 2902 return gt_tval_read(env, ri, timeridx); 2903 } 2904 2905 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2906 uint64_t value) 2907 { 2908 int timeridx = gt_phys_redir_timeridx(env); 2909 gt_tval_write(env, ri, timeridx, value); 2910 } 2911 2912 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2913 const ARMCPRegInfo *ri) 2914 { 2915 int timeridx = gt_phys_redir_timeridx(env); 2916 return env->cp15.c14_timer[timeridx].ctl; 2917 } 2918 2919 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2920 uint64_t value) 2921 { 2922 int timeridx = gt_phys_redir_timeridx(env); 2923 gt_ctl_write(env, ri, timeridx, value); 2924 } 2925 2926 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2927 { 2928 gt_timer_reset(env, ri, GTIMER_VIRT); 2929 } 2930 2931 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2932 uint64_t value) 2933 { 2934 gt_cval_write(env, ri, GTIMER_VIRT, value); 2935 } 2936 2937 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2938 { 2939 return gt_tval_read(env, ri, GTIMER_VIRT); 2940 } 2941 2942 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2943 uint64_t value) 2944 { 2945 gt_tval_write(env, ri, GTIMER_VIRT, value); 2946 } 2947 2948 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2949 uint64_t value) 2950 { 2951 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2952 } 2953 2954 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2955 uint64_t value) 2956 { 2957 ARMCPU *cpu = env_archcpu(env); 2958 uint32_t oldval = env->cp15.cnthctl_el2; 2959 2960 raw_write(env, ri, value); 2961 2962 if ((oldval ^ value) & CNTHCTL_CNTVMASK) { 2963 gt_update_irq(cpu, GTIMER_VIRT); 2964 } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) { 2965 gt_update_irq(cpu, GTIMER_PHYS); 2966 } 2967 } 2968 2969 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2970 uint64_t value) 2971 { 2972 ARMCPU *cpu = env_archcpu(env); 2973 2974 trace_arm_gt_cntvoff_write(value); 2975 raw_write(env, ri, value); 2976 gt_recalc_timer(cpu, GTIMER_VIRT); 2977 } 2978 2979 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2980 const ARMCPRegInfo *ri) 2981 { 2982 int timeridx = gt_virt_redir_timeridx(env); 2983 return env->cp15.c14_timer[timeridx].cval; 2984 } 2985 2986 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2987 uint64_t value) 2988 { 2989 int timeridx = gt_virt_redir_timeridx(env); 2990 gt_cval_write(env, ri, timeridx, value); 2991 } 2992 2993 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2994 const ARMCPRegInfo *ri) 2995 { 2996 int timeridx = gt_virt_redir_timeridx(env); 2997 return gt_tval_read(env, ri, timeridx); 2998 } 2999 3000 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3001 uint64_t value) 3002 { 3003 int timeridx = gt_virt_redir_timeridx(env); 3004 gt_tval_write(env, ri, timeridx, value); 3005 } 3006 3007 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 3008 const ARMCPRegInfo *ri) 3009 { 3010 int timeridx = gt_virt_redir_timeridx(env); 3011 return env->cp15.c14_timer[timeridx].ctl; 3012 } 3013 3014 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3015 uint64_t value) 3016 { 3017 int timeridx = gt_virt_redir_timeridx(env); 3018 gt_ctl_write(env, ri, timeridx, value); 3019 } 3020 3021 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3022 { 3023 gt_timer_reset(env, ri, GTIMER_HYP); 3024 } 3025 3026 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3027 uint64_t value) 3028 { 3029 gt_cval_write(env, ri, GTIMER_HYP, value); 3030 } 3031 3032 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3033 { 3034 return gt_tval_read(env, ri, GTIMER_HYP); 3035 } 3036 3037 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3038 uint64_t value) 3039 { 3040 gt_tval_write(env, ri, GTIMER_HYP, value); 3041 } 3042 3043 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3044 uint64_t value) 3045 { 3046 gt_ctl_write(env, ri, GTIMER_HYP, value); 3047 } 3048 3049 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3050 { 3051 gt_timer_reset(env, ri, GTIMER_SEC); 3052 } 3053 3054 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3055 uint64_t value) 3056 { 3057 gt_cval_write(env, ri, GTIMER_SEC, value); 3058 } 3059 3060 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3061 { 3062 return gt_tval_read(env, ri, GTIMER_SEC); 3063 } 3064 3065 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3066 uint64_t value) 3067 { 3068 gt_tval_write(env, ri, GTIMER_SEC, value); 3069 } 3070 3071 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3072 uint64_t value) 3073 { 3074 gt_ctl_write(env, ri, GTIMER_SEC, value); 3075 } 3076 3077 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3078 { 3079 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3080 } 3081 3082 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3083 uint64_t value) 3084 { 3085 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3086 } 3087 3088 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3089 { 3090 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3091 } 3092 3093 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3094 uint64_t value) 3095 { 3096 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3097 } 3098 3099 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3100 uint64_t value) 3101 { 3102 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3103 } 3104 3105 void arm_gt_ptimer_cb(void *opaque) 3106 { 3107 ARMCPU *cpu = opaque; 3108 3109 gt_recalc_timer(cpu, GTIMER_PHYS); 3110 } 3111 3112 void arm_gt_vtimer_cb(void *opaque) 3113 { 3114 ARMCPU *cpu = opaque; 3115 3116 gt_recalc_timer(cpu, GTIMER_VIRT); 3117 } 3118 3119 void arm_gt_htimer_cb(void *opaque) 3120 { 3121 ARMCPU *cpu = opaque; 3122 3123 gt_recalc_timer(cpu, GTIMER_HYP); 3124 } 3125 3126 void arm_gt_stimer_cb(void *opaque) 3127 { 3128 ARMCPU *cpu = opaque; 3129 3130 gt_recalc_timer(cpu, GTIMER_SEC); 3131 } 3132 3133 void arm_gt_hvtimer_cb(void *opaque) 3134 { 3135 ARMCPU *cpu = opaque; 3136 3137 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3138 } 3139 3140 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3141 { 3142 ARMCPU *cpu = env_archcpu(env); 3143 3144 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3145 } 3146 3147 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3148 /* 3149 * Note that CNTFRQ is purely reads-as-written for the benefit 3150 * of software; writing it doesn't actually change the timer frequency. 3151 * Our reset value matches the fixed frequency we implement the timer at. 3152 */ 3153 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3154 .type = ARM_CP_ALIAS, 3155 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3156 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3157 }, 3158 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3159 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3160 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3161 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3162 .resetfn = arm_gt_cntfrq_reset, 3163 }, 3164 /* overall control: mostly access permissions */ 3165 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3166 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3167 .access = PL1_RW, 3168 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3169 .resetvalue = 0, 3170 }, 3171 /* per-timer control */ 3172 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3173 .secure = ARM_CP_SECSTATE_NS, 3174 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3175 .accessfn = gt_ptimer_access, 3176 .fieldoffset = offsetoflow32(CPUARMState, 3177 cp15.c14_timer[GTIMER_PHYS].ctl), 3178 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3179 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3180 }, 3181 { .name = "CNTP_CTL_S", 3182 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3183 .secure = ARM_CP_SECSTATE_S, 3184 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3185 .accessfn = gt_ptimer_access, 3186 .fieldoffset = offsetoflow32(CPUARMState, 3187 cp15.c14_timer[GTIMER_SEC].ctl), 3188 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3189 }, 3190 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3191 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3192 .type = ARM_CP_IO, .access = PL0_RW, 3193 .accessfn = gt_ptimer_access, 3194 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1, 3195 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3196 .resetvalue = 0, 3197 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3198 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3199 }, 3200 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3201 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3202 .accessfn = gt_vtimer_access, 3203 .fieldoffset = offsetoflow32(CPUARMState, 3204 cp15.c14_timer[GTIMER_VIRT].ctl), 3205 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3206 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3207 }, 3208 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3209 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3210 .type = ARM_CP_IO, .access = PL0_RW, 3211 .accessfn = gt_vtimer_access, 3212 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1, 3213 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3214 .resetvalue = 0, 3215 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3216 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3217 }, 3218 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3219 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3220 .secure = ARM_CP_SECSTATE_NS, 3221 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3222 .accessfn = gt_ptimer_access, 3223 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3224 }, 3225 { .name = "CNTP_TVAL_S", 3226 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3227 .secure = ARM_CP_SECSTATE_S, 3228 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3229 .accessfn = gt_ptimer_access, 3230 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3231 }, 3232 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3233 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3234 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3235 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3236 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3237 }, 3238 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3239 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3240 .accessfn = gt_vtimer_access, 3241 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3242 }, 3243 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3244 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3245 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3246 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3247 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3248 }, 3249 /* The counter itself */ 3250 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3251 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3252 .accessfn = gt_pct_access, 3253 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3254 }, 3255 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3256 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3257 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3258 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3259 }, 3260 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3261 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3262 .accessfn = gt_vct_access, 3263 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3264 }, 3265 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3266 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3267 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3268 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3269 }, 3270 /* Comparison value, indicating when the timer goes off */ 3271 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3272 .secure = ARM_CP_SECSTATE_NS, 3273 .access = PL0_RW, 3274 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3275 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3276 .accessfn = gt_ptimer_access, 3277 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3278 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3279 }, 3280 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3281 .secure = ARM_CP_SECSTATE_S, 3282 .access = PL0_RW, 3283 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3284 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3285 .accessfn = gt_ptimer_access, 3286 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3287 }, 3288 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3289 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3290 .access = PL0_RW, 3291 .type = ARM_CP_IO, 3292 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1, 3293 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3294 .resetvalue = 0, .accessfn = gt_ptimer_access, 3295 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3296 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3297 }, 3298 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3299 .access = PL0_RW, 3300 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3301 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3302 .accessfn = gt_vtimer_access, 3303 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3304 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3305 }, 3306 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3307 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3308 .access = PL0_RW, 3309 .type = ARM_CP_IO, 3310 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1, 3311 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3312 .resetvalue = 0, .accessfn = gt_vtimer_access, 3313 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3314 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3315 }, 3316 /* 3317 * Secure timer -- this is actually restricted to only EL3 3318 * and configurably Secure-EL1 via the accessfn. 3319 */ 3320 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3321 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3322 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3323 .accessfn = gt_stimer_access, 3324 .readfn = gt_sec_tval_read, 3325 .writefn = gt_sec_tval_write, 3326 .resetfn = gt_sec_timer_reset, 3327 }, 3328 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3329 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3330 .type = ARM_CP_IO, .access = PL1_RW, 3331 .accessfn = gt_stimer_access, 3332 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3333 .resetvalue = 0, 3334 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3335 }, 3336 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3337 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3338 .type = ARM_CP_IO, .access = PL1_RW, 3339 .accessfn = gt_stimer_access, 3340 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3341 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3342 }, 3343 }; 3344 3345 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3346 bool isread) 3347 { 3348 if (arm_current_el(env) == 1) { 3349 /* This must be a FEAT_NV access */ 3350 /* TODO: FEAT_ECV will need to check CNTHCTL_EL2 here */ 3351 return CP_ACCESS_OK; 3352 } 3353 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3354 return CP_ACCESS_TRAP; 3355 } 3356 return CP_ACCESS_OK; 3357 } 3358 3359 #else 3360 3361 /* 3362 * In user-mode most of the generic timer registers are inaccessible 3363 * however modern kernels (4.12+) allow access to cntvct_el0 3364 */ 3365 3366 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3367 { 3368 ARMCPU *cpu = env_archcpu(env); 3369 3370 /* 3371 * Currently we have no support for QEMUTimer in linux-user so we 3372 * can't call gt_get_countervalue(env), instead we directly 3373 * call the lower level functions. 3374 */ 3375 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3376 } 3377 3378 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3379 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3380 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3381 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3382 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3383 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3384 }, 3385 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3386 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3387 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3388 .readfn = gt_virt_cnt_read, 3389 }, 3390 }; 3391 3392 #endif 3393 3394 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3395 { 3396 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3397 raw_write(env, ri, value); 3398 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3399 raw_write(env, ri, value & 0xfffff6ff); 3400 } else { 3401 raw_write(env, ri, value & 0xfffff1ff); 3402 } 3403 } 3404 3405 #ifndef CONFIG_USER_ONLY 3406 /* get_phys_addr() isn't present for user-mode-only targets */ 3407 3408 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3409 bool isread) 3410 { 3411 if (ri->opc2 & 4) { 3412 /* 3413 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3414 * Secure EL1 (which can only happen if EL3 is AArch64). 3415 * They are simply UNDEF if executed from NS EL1. 3416 * They function normally from EL2 or EL3. 3417 */ 3418 if (arm_current_el(env) == 1) { 3419 if (arm_is_secure_below_el3(env)) { 3420 if (env->cp15.scr_el3 & SCR_EEL2) { 3421 return CP_ACCESS_TRAP_EL2; 3422 } 3423 return CP_ACCESS_TRAP_EL3; 3424 } 3425 return CP_ACCESS_TRAP_UNCATEGORIZED; 3426 } 3427 } 3428 return CP_ACCESS_OK; 3429 } 3430 3431 #ifdef CONFIG_TCG 3432 static int par_el1_shareability(GetPhysAddrResult *res) 3433 { 3434 /* 3435 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC 3436 * memory -- see pseudocode PAREncodeShareability(). 3437 */ 3438 if (((res->cacheattrs.attrs & 0xf0) == 0) || 3439 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) { 3440 return 2; 3441 } 3442 return res->cacheattrs.shareability; 3443 } 3444 3445 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3446 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3447 ARMSecuritySpace ss) 3448 { 3449 bool ret; 3450 uint64_t par64; 3451 bool format64 = false; 3452 ARMMMUFaultInfo fi = {}; 3453 GetPhysAddrResult res = {}; 3454 3455 /* 3456 * I_MXTJT: Granule protection checks are not performed on the final address 3457 * of a successful translation. 3458 */ 3459 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss, 3460 &res, &fi); 3461 3462 /* 3463 * ATS operations only do S1 or S1+S2 translations, so we never 3464 * have to deal with the ARMCacheAttrs format for S2 only. 3465 */ 3466 assert(!res.cacheattrs.is_s2_format); 3467 3468 if (ret) { 3469 /* 3470 * Some kinds of translation fault must cause exceptions rather 3471 * than being reported in the PAR. 3472 */ 3473 int current_el = arm_current_el(env); 3474 int target_el; 3475 uint32_t syn, fsr, fsc; 3476 bool take_exc = false; 3477 3478 if (fi.s1ptw && current_el == 1 3479 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3480 /* 3481 * Synchronous stage 2 fault on an access made as part of the 3482 * translation table walk for AT S1E0* or AT S1E1* insn 3483 * executed from NS EL1. If this is a synchronous external abort 3484 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3485 * to EL3. Otherwise the fault is taken as an exception to EL2, 3486 * and HPFAR_EL2 holds the faulting IPA. 3487 */ 3488 if (fi.type == ARMFault_SyncExternalOnWalk && 3489 (env->cp15.scr_el3 & SCR_EA)) { 3490 target_el = 3; 3491 } else { 3492 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3493 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3494 env->cp15.hpfar_el2 |= HPFAR_NS; 3495 } 3496 target_el = 2; 3497 } 3498 take_exc = true; 3499 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3500 /* 3501 * Synchronous external aborts during a translation table walk 3502 * are taken as Data Abort exceptions. 3503 */ 3504 if (fi.stage2) { 3505 if (current_el == 3) { 3506 target_el = 3; 3507 } else { 3508 target_el = 2; 3509 } 3510 } else { 3511 target_el = exception_target_el(env); 3512 } 3513 take_exc = true; 3514 } 3515 3516 if (take_exc) { 3517 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3518 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3519 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3520 fsr = arm_fi_to_lfsc(&fi); 3521 fsc = extract32(fsr, 0, 6); 3522 } else { 3523 fsr = arm_fi_to_sfsc(&fi); 3524 fsc = 0x3f; 3525 } 3526 /* 3527 * Report exception with ESR indicating a fault due to a 3528 * translation table walk for a cache maintenance instruction. 3529 */ 3530 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3531 fi.ea, 1, fi.s1ptw, 1, fsc); 3532 env->exception.vaddress = value; 3533 env->exception.fsr = fsr; 3534 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3535 } 3536 } 3537 3538 if (is_a64(env)) { 3539 format64 = true; 3540 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3541 /* 3542 * ATS1Cxx: 3543 * * TTBCR.EAE determines whether the result is returned using the 3544 * 32-bit or the 64-bit PAR format 3545 * * Instructions executed in Hyp mode always use the 64bit format 3546 * 3547 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3548 * * The Non-secure TTBCR.EAE bit is set to 1 3549 * * The implementation includes EL2, and the value of HCR.VM is 1 3550 * 3551 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3552 * 3553 * ATS1Hx always uses the 64bit format. 3554 */ 3555 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3556 3557 if (arm_feature(env, ARM_FEATURE_EL2)) { 3558 if (mmu_idx == ARMMMUIdx_E10_0 || 3559 mmu_idx == ARMMMUIdx_E10_1 || 3560 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3561 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3562 } else { 3563 format64 |= arm_current_el(env) == 2; 3564 } 3565 } 3566 } 3567 3568 if (format64) { 3569 /* Create a 64-bit PAR */ 3570 par64 = (1 << 11); /* LPAE bit always set */ 3571 if (!ret) { 3572 par64 |= res.f.phys_addr & ~0xfffULL; 3573 if (!res.f.attrs.secure) { 3574 par64 |= (1 << 9); /* NS */ 3575 } 3576 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3577 par64 |= par_el1_shareability(&res) << 7; /* SH */ 3578 } else { 3579 uint32_t fsr = arm_fi_to_lfsc(&fi); 3580 3581 par64 |= 1; /* F */ 3582 par64 |= (fsr & 0x3f) << 1; /* FS */ 3583 if (fi.stage2) { 3584 par64 |= (1 << 9); /* S */ 3585 } 3586 if (fi.s1ptw) { 3587 par64 |= (1 << 8); /* PTW */ 3588 } 3589 } 3590 } else { 3591 /* 3592 * fsr is a DFSR/IFSR value for the short descriptor 3593 * translation table format (with WnR always clear). 3594 * Convert it to a 32-bit PAR. 3595 */ 3596 if (!ret) { 3597 /* We do not set any attribute bits in the PAR */ 3598 if (res.f.lg_page_size == 24 3599 && arm_feature(env, ARM_FEATURE_V7)) { 3600 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3601 } else { 3602 par64 = res.f.phys_addr & 0xfffff000; 3603 } 3604 if (!res.f.attrs.secure) { 3605 par64 |= (1 << 9); /* NS */ 3606 } 3607 } else { 3608 uint32_t fsr = arm_fi_to_sfsc(&fi); 3609 3610 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3611 ((fsr & 0xf) << 1) | 1; 3612 } 3613 } 3614 return par64; 3615 } 3616 #endif /* CONFIG_TCG */ 3617 3618 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3619 { 3620 #ifdef CONFIG_TCG 3621 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3622 uint64_t par64; 3623 ARMMMUIdx mmu_idx; 3624 int el = arm_current_el(env); 3625 ARMSecuritySpace ss = arm_security_space(env); 3626 3627 switch (ri->opc2 & 6) { 3628 case 0: 3629 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3630 switch (el) { 3631 case 3: 3632 mmu_idx = ARMMMUIdx_E3; 3633 break; 3634 case 2: 3635 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3636 /* fall through */ 3637 case 1: 3638 if (ri->crm == 9 && arm_pan_enabled(env)) { 3639 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3640 } else { 3641 mmu_idx = ARMMMUIdx_Stage1_E1; 3642 } 3643 break; 3644 default: 3645 g_assert_not_reached(); 3646 } 3647 break; 3648 case 2: 3649 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3650 switch (el) { 3651 case 3: 3652 mmu_idx = ARMMMUIdx_E10_0; 3653 break; 3654 case 2: 3655 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3656 mmu_idx = ARMMMUIdx_Stage1_E0; 3657 break; 3658 case 1: 3659 mmu_idx = ARMMMUIdx_Stage1_E0; 3660 break; 3661 default: 3662 g_assert_not_reached(); 3663 } 3664 break; 3665 case 4: 3666 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3667 mmu_idx = ARMMMUIdx_E10_1; 3668 ss = ARMSS_NonSecure; 3669 break; 3670 case 6: 3671 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3672 mmu_idx = ARMMMUIdx_E10_0; 3673 ss = ARMSS_NonSecure; 3674 break; 3675 default: 3676 g_assert_not_reached(); 3677 } 3678 3679 par64 = do_ats_write(env, value, access_type, mmu_idx, ss); 3680 3681 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3682 #else 3683 /* Handled by hardware accelerator. */ 3684 g_assert_not_reached(); 3685 #endif /* CONFIG_TCG */ 3686 } 3687 3688 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3689 uint64_t value) 3690 { 3691 #ifdef CONFIG_TCG 3692 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3693 uint64_t par64; 3694 3695 /* There is no SecureEL2 for AArch32. */ 3696 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, 3697 ARMSS_NonSecure); 3698 3699 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3700 #else 3701 /* Handled by hardware accelerator. */ 3702 g_assert_not_reached(); 3703 #endif /* CONFIG_TCG */ 3704 } 3705 3706 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri, 3707 bool isread) 3708 { 3709 /* 3710 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level 3711 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can 3712 * only happen when executing at EL3 because that combination also causes an 3713 * illegal exception return. We don't need to check FEAT_RME either, because 3714 * scr_write() ensures that the NSE bit is not set otherwise. 3715 */ 3716 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) { 3717 return CP_ACCESS_TRAP; 3718 } 3719 return CP_ACCESS_OK; 3720 } 3721 3722 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3723 bool isread) 3724 { 3725 if (arm_current_el(env) == 3 && 3726 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3727 return CP_ACCESS_TRAP; 3728 } 3729 return at_e012_access(env, ri, isread); 3730 } 3731 3732 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri, 3733 bool isread) 3734 { 3735 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) { 3736 return CP_ACCESS_TRAP_EL2; 3737 } 3738 return at_e012_access(env, ri, isread); 3739 } 3740 3741 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3742 uint64_t value) 3743 { 3744 #ifdef CONFIG_TCG 3745 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3746 ARMMMUIdx mmu_idx; 3747 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3748 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3749 3750 switch (ri->opc2 & 6) { 3751 case 0: 3752 switch (ri->opc1) { 3753 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3754 if (ri->crm == 9 && arm_pan_enabled(env)) { 3755 mmu_idx = regime_e20 ? 3756 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3757 } else { 3758 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3759 } 3760 break; 3761 case 4: /* AT S1E2R, AT S1E2W */ 3762 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3763 break; 3764 case 6: /* AT S1E3R, AT S1E3W */ 3765 mmu_idx = ARMMMUIdx_E3; 3766 break; 3767 default: 3768 g_assert_not_reached(); 3769 } 3770 break; 3771 case 2: /* AT S1E0R, AT S1E0W */ 3772 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3773 break; 3774 case 4: /* AT S12E1R, AT S12E1W */ 3775 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3776 break; 3777 case 6: /* AT S12E0R, AT S12E0W */ 3778 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3779 break; 3780 default: 3781 g_assert_not_reached(); 3782 } 3783 3784 env->cp15.par_el[1] = do_ats_write(env, value, access_type, 3785 mmu_idx, arm_security_space(env)); 3786 #else 3787 /* Handled by hardware accelerator. */ 3788 g_assert_not_reached(); 3789 #endif /* CONFIG_TCG */ 3790 } 3791 #endif 3792 3793 /* Return basic MPU access permission bits. */ 3794 static uint32_t simple_mpu_ap_bits(uint32_t val) 3795 { 3796 uint32_t ret; 3797 uint32_t mask; 3798 int i; 3799 ret = 0; 3800 mask = 3; 3801 for (i = 0; i < 16; i += 2) { 3802 ret |= (val >> i) & mask; 3803 mask <<= 2; 3804 } 3805 return ret; 3806 } 3807 3808 /* Pad basic MPU access permission bits to extended format. */ 3809 static uint32_t extended_mpu_ap_bits(uint32_t val) 3810 { 3811 uint32_t ret; 3812 uint32_t mask; 3813 int i; 3814 ret = 0; 3815 mask = 3; 3816 for (i = 0; i < 16; i += 2) { 3817 ret |= (val & mask) << i; 3818 mask <<= 2; 3819 } 3820 return ret; 3821 } 3822 3823 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3824 uint64_t value) 3825 { 3826 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3827 } 3828 3829 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3830 { 3831 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3832 } 3833 3834 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3835 uint64_t value) 3836 { 3837 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3838 } 3839 3840 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3841 { 3842 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3843 } 3844 3845 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3846 { 3847 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3848 3849 if (!u32p) { 3850 return 0; 3851 } 3852 3853 u32p += env->pmsav7.rnr[M_REG_NS]; 3854 return *u32p; 3855 } 3856 3857 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3858 uint64_t value) 3859 { 3860 ARMCPU *cpu = env_archcpu(env); 3861 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3862 3863 if (!u32p) { 3864 return; 3865 } 3866 3867 u32p += env->pmsav7.rnr[M_REG_NS]; 3868 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3869 *u32p = value; 3870 } 3871 3872 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3873 uint64_t value) 3874 { 3875 ARMCPU *cpu = env_archcpu(env); 3876 uint32_t nrgs = cpu->pmsav7_dregion; 3877 3878 if (value >= nrgs) { 3879 qemu_log_mask(LOG_GUEST_ERROR, 3880 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3881 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3882 return; 3883 } 3884 3885 raw_write(env, ri, value); 3886 } 3887 3888 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3889 uint64_t value) 3890 { 3891 ARMCPU *cpu = env_archcpu(env); 3892 3893 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3894 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3895 } 3896 3897 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3898 { 3899 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3900 } 3901 3902 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3903 uint64_t value) 3904 { 3905 ARMCPU *cpu = env_archcpu(env); 3906 3907 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3908 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3909 } 3910 3911 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3912 { 3913 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3914 } 3915 3916 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3917 uint64_t value) 3918 { 3919 ARMCPU *cpu = env_archcpu(env); 3920 3921 /* 3922 * Ignore writes that would select not implemented region. 3923 * This is architecturally UNPREDICTABLE. 3924 */ 3925 if (value >= cpu->pmsav7_dregion) { 3926 return; 3927 } 3928 3929 env->pmsav7.rnr[M_REG_NS] = value; 3930 } 3931 3932 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3933 uint64_t value) 3934 { 3935 ARMCPU *cpu = env_archcpu(env); 3936 3937 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3938 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3939 } 3940 3941 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3942 { 3943 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3944 } 3945 3946 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3947 uint64_t value) 3948 { 3949 ARMCPU *cpu = env_archcpu(env); 3950 3951 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3952 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 3953 } 3954 3955 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3956 { 3957 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 3958 } 3959 3960 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3961 uint64_t value) 3962 { 3963 uint32_t n; 3964 uint32_t bit; 3965 ARMCPU *cpu = env_archcpu(env); 3966 3967 /* Ignore writes to unimplemented regions */ 3968 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 3969 value &= MAKE_64BIT_MASK(0, rmax); 3970 3971 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3972 3973 /* Register alias is only valid for first 32 indexes */ 3974 for (n = 0; n < rmax; ++n) { 3975 bit = extract32(value, n, 1); 3976 env->pmsav8.hprlar[n] = deposit32( 3977 env->pmsav8.hprlar[n], 0, 1, bit); 3978 } 3979 } 3980 3981 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3982 { 3983 uint32_t n; 3984 uint32_t result = 0x0; 3985 ARMCPU *cpu = env_archcpu(env); 3986 3987 /* Register alias is only valid for first 32 indexes */ 3988 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 3989 if (env->pmsav8.hprlar[n] & 0x1) { 3990 result |= (0x1 << n); 3991 } 3992 } 3993 return result; 3994 } 3995 3996 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3997 uint64_t value) 3998 { 3999 ARMCPU *cpu = env_archcpu(env); 4000 4001 /* 4002 * Ignore writes that would select not implemented region. 4003 * This is architecturally UNPREDICTABLE. 4004 */ 4005 if (value >= cpu->pmsav8r_hdregion) { 4006 return; 4007 } 4008 4009 env->pmsav8.hprselr = value; 4010 } 4011 4012 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 4013 uint64_t value) 4014 { 4015 ARMCPU *cpu = env_archcpu(env); 4016 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4017 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4018 4019 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4020 4021 if (ri->opc1 & 4) { 4022 if (index >= cpu->pmsav8r_hdregion) { 4023 return; 4024 } 4025 if (ri->opc2 & 0x1) { 4026 env->pmsav8.hprlar[index] = value; 4027 } else { 4028 env->pmsav8.hprbar[index] = value; 4029 } 4030 } else { 4031 if (index >= cpu->pmsav7_dregion) { 4032 return; 4033 } 4034 if (ri->opc2 & 0x1) { 4035 env->pmsav8.rlar[M_REG_NS][index] = value; 4036 } else { 4037 env->pmsav8.rbar[M_REG_NS][index] = value; 4038 } 4039 } 4040 } 4041 4042 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 4043 { 4044 ARMCPU *cpu = env_archcpu(env); 4045 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4046 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4047 4048 if (ri->opc1 & 4) { 4049 if (index >= cpu->pmsav8r_hdregion) { 4050 return 0x0; 4051 } 4052 if (ri->opc2 & 0x1) { 4053 return env->pmsav8.hprlar[index]; 4054 } else { 4055 return env->pmsav8.hprbar[index]; 4056 } 4057 } else { 4058 if (index >= cpu->pmsav7_dregion) { 4059 return 0x0; 4060 } 4061 if (ri->opc2 & 0x1) { 4062 return env->pmsav8.rlar[M_REG_NS][index]; 4063 } else { 4064 return env->pmsav8.rbar[M_REG_NS][index]; 4065 } 4066 } 4067 } 4068 4069 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 4070 { .name = "PRBAR", 4071 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 4072 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4073 .accessfn = access_tvm_trvm, 4074 .readfn = prbar_read, .writefn = prbar_write }, 4075 { .name = "PRLAR", 4076 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 4077 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4078 .accessfn = access_tvm_trvm, 4079 .readfn = prlar_read, .writefn = prlar_write }, 4080 { .name = "PRSELR", .resetvalue = 0, 4081 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 4082 .access = PL1_RW, .accessfn = access_tvm_trvm, 4083 .writefn = prselr_write, 4084 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 4085 { .name = "HPRBAR", .resetvalue = 0, 4086 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 4087 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4088 .readfn = hprbar_read, .writefn = hprbar_write }, 4089 { .name = "HPRLAR", 4090 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 4091 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4092 .readfn = hprlar_read, .writefn = hprlar_write }, 4093 { .name = "HPRSELR", .resetvalue = 0, 4094 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 4095 .access = PL2_RW, 4096 .writefn = hprselr_write, 4097 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 4098 { .name = "HPRENR", 4099 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 4100 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4101 .readfn = hprenr_read, .writefn = hprenr_write }, 4102 }; 4103 4104 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 4105 /* 4106 * Reset for all these registers is handled in arm_cpu_reset(), 4107 * because the PMSAv7 is also used by M-profile CPUs, which do 4108 * not register cpregs but still need the state to be reset. 4109 */ 4110 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 4111 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4112 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4113 .readfn = pmsav7_read, .writefn = pmsav7_write, 4114 .resetfn = arm_cp_reset_ignore }, 4115 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4116 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4117 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4118 .readfn = pmsav7_read, .writefn = pmsav7_write, 4119 .resetfn = arm_cp_reset_ignore }, 4120 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4121 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4122 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4123 .readfn = pmsav7_read, .writefn = pmsav7_write, 4124 .resetfn = arm_cp_reset_ignore }, 4125 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4126 .access = PL1_RW, 4127 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4128 .writefn = pmsav7_rgnr_write, 4129 .resetfn = arm_cp_reset_ignore }, 4130 }; 4131 4132 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4133 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4134 .access = PL1_RW, .type = ARM_CP_ALIAS, 4135 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4136 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4137 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4138 .access = PL1_RW, .type = ARM_CP_ALIAS, 4139 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4140 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4141 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4142 .access = PL1_RW, 4143 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4144 .resetvalue = 0, }, 4145 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4146 .access = PL1_RW, 4147 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4148 .resetvalue = 0, }, 4149 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4150 .access = PL1_RW, 4151 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4152 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4153 .access = PL1_RW, 4154 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4155 /* Protection region base and size registers */ 4156 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4157 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4158 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4159 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4160 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4161 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4162 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4163 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4164 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4165 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4166 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4167 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4168 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4169 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4170 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4171 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4172 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4173 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4174 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4175 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4176 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4177 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4178 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4179 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4180 }; 4181 4182 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4183 uint64_t value) 4184 { 4185 ARMCPU *cpu = env_archcpu(env); 4186 4187 if (!arm_feature(env, ARM_FEATURE_V8)) { 4188 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4189 /* 4190 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4191 * using Long-descriptor translation table format 4192 */ 4193 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4194 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4195 /* 4196 * In an implementation that includes the Security Extensions 4197 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4198 * Short-descriptor translation table format. 4199 */ 4200 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4201 } else { 4202 value &= TTBCR_N; 4203 } 4204 } 4205 4206 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4207 /* 4208 * With LPAE the TTBCR could result in a change of ASID 4209 * via the TTBCR.A1 bit, so do a TLB flush. 4210 */ 4211 tlb_flush(CPU(cpu)); 4212 } 4213 raw_write(env, ri, value); 4214 } 4215 4216 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4217 uint64_t value) 4218 { 4219 ARMCPU *cpu = env_archcpu(env); 4220 4221 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4222 tlb_flush(CPU(cpu)); 4223 raw_write(env, ri, value); 4224 } 4225 4226 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4227 uint64_t value) 4228 { 4229 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4230 if (cpreg_field_is_64bit(ri) && 4231 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4232 ARMCPU *cpu = env_archcpu(env); 4233 tlb_flush(CPU(cpu)); 4234 } 4235 raw_write(env, ri, value); 4236 } 4237 4238 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4239 uint64_t value) 4240 { 4241 /* 4242 * If we are running with E2&0 regime, then an ASID is active. 4243 * Flush if that might be changing. Note we're not checking 4244 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4245 * holds the active ASID, only checking the field that might. 4246 */ 4247 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4248 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4249 uint16_t mask = ARMMMUIdxBit_E20_2 | 4250 ARMMMUIdxBit_E20_2_PAN | 4251 ARMMMUIdxBit_E20_0; 4252 tlb_flush_by_mmuidx(env_cpu(env), mask); 4253 } 4254 raw_write(env, ri, value); 4255 } 4256 4257 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4258 uint64_t value) 4259 { 4260 ARMCPU *cpu = env_archcpu(env); 4261 CPUState *cs = CPU(cpu); 4262 4263 /* 4264 * A change in VMID to the stage2 page table (Stage2) invalidates 4265 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4266 */ 4267 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4268 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4269 } 4270 raw_write(env, ri, value); 4271 } 4272 4273 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4274 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4275 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4276 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4277 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4278 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4279 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4280 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4281 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4282 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4283 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4284 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4285 offsetof(CPUARMState, cp15.dfar_ns) } }, 4286 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4287 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4288 .access = PL1_RW, .accessfn = access_tvm_trvm, 4289 .fgt = FGT_FAR_EL1, 4290 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1, 4291 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4292 .resetvalue = 0, }, 4293 }; 4294 4295 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4296 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4297 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4298 .access = PL1_RW, .accessfn = access_tvm_trvm, 4299 .fgt = FGT_ESR_EL1, 4300 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1, 4301 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4302 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4303 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4304 .access = PL1_RW, .accessfn = access_tvm_trvm, 4305 .fgt = FGT_TTBR0_EL1, 4306 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1, 4307 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4308 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4309 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4310 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4311 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4312 .access = PL1_RW, .accessfn = access_tvm_trvm, 4313 .fgt = FGT_TTBR1_EL1, 4314 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1, 4315 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4316 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4317 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4318 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4319 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4320 .access = PL1_RW, .accessfn = access_tvm_trvm, 4321 .fgt = FGT_TCR_EL1, 4322 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1, 4323 .writefn = vmsa_tcr_el12_write, 4324 .raw_writefn = raw_write, 4325 .resetvalue = 0, 4326 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4327 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4328 .access = PL1_RW, .accessfn = access_tvm_trvm, 4329 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4330 .raw_writefn = raw_write, 4331 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4332 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4333 }; 4334 4335 /* 4336 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4337 * qemu tlbs nor adjusting cached masks. 4338 */ 4339 static const ARMCPRegInfo ttbcr2_reginfo = { 4340 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4341 .access = PL1_RW, .accessfn = access_tvm_trvm, 4342 .type = ARM_CP_ALIAS, 4343 .bank_fieldoffsets = { 4344 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4345 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4346 }, 4347 }; 4348 4349 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4350 uint64_t value) 4351 { 4352 env->cp15.c15_ticonfig = value & 0xe7; 4353 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4354 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4355 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4356 } 4357 4358 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4359 uint64_t value) 4360 { 4361 env->cp15.c15_threadid = value & 0xffff; 4362 } 4363 4364 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4365 uint64_t value) 4366 { 4367 /* Wait-for-interrupt (deprecated) */ 4368 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4369 } 4370 4371 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4372 uint64_t value) 4373 { 4374 /* 4375 * On OMAP there are registers indicating the max/min index of dcache lines 4376 * containing a dirty line; cache flush operations have to reset these. 4377 */ 4378 env->cp15.c15_i_max = 0x000; 4379 env->cp15.c15_i_min = 0xff0; 4380 } 4381 4382 static const ARMCPRegInfo omap_cp_reginfo[] = { 4383 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4384 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4385 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4386 .resetvalue = 0, }, 4387 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4388 .access = PL1_RW, .type = ARM_CP_NOP }, 4389 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4390 .access = PL1_RW, 4391 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4392 .writefn = omap_ticonfig_write }, 4393 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4394 .access = PL1_RW, 4395 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4396 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4397 .access = PL1_RW, .resetvalue = 0xff0, 4398 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4399 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4400 .access = PL1_RW, 4401 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4402 .writefn = omap_threadid_write }, 4403 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4404 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4405 .type = ARM_CP_NO_RAW, 4406 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4407 /* 4408 * TODO: Peripheral port remap register: 4409 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4410 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4411 * when MMU is off. 4412 */ 4413 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4414 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4415 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4416 .writefn = omap_cachemaint_write }, 4417 { .name = "C9", .cp = 15, .crn = 9, 4418 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4419 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4420 }; 4421 4422 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4423 uint64_t value) 4424 { 4425 env->cp15.c15_cpar = value & 0x3fff; 4426 } 4427 4428 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4429 { .name = "XSCALE_CPAR", 4430 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4431 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4432 .writefn = xscale_cpar_write, }, 4433 { .name = "XSCALE_AUXCR", 4434 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4435 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4436 .resetvalue = 0, }, 4437 /* 4438 * XScale specific cache-lockdown: since we have no cache we NOP these 4439 * and hope the guest does not really rely on cache behaviour. 4440 */ 4441 { .name = "XSCALE_LOCK_ICACHE_LINE", 4442 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4443 .access = PL1_W, .type = ARM_CP_NOP }, 4444 { .name = "XSCALE_UNLOCK_ICACHE", 4445 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4446 .access = PL1_W, .type = ARM_CP_NOP }, 4447 { .name = "XSCALE_DCACHE_LOCK", 4448 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4449 .access = PL1_RW, .type = ARM_CP_NOP }, 4450 { .name = "XSCALE_UNLOCK_DCACHE", 4451 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4452 .access = PL1_W, .type = ARM_CP_NOP }, 4453 }; 4454 4455 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4456 /* 4457 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4458 * implementation of this implementation-defined space. 4459 * Ideally this should eventually disappear in favour of actually 4460 * implementing the correct behaviour for all cores. 4461 */ 4462 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4463 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4464 .access = PL1_RW, 4465 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4466 .resetvalue = 0 }, 4467 }; 4468 4469 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4470 /* Cache status: RAZ because we have no cache so it's always clean */ 4471 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4472 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4473 .resetvalue = 0 }, 4474 }; 4475 4476 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4477 /* We never have a block transfer operation in progress */ 4478 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4479 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4480 .resetvalue = 0 }, 4481 /* The cache ops themselves: these all NOP for QEMU */ 4482 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4483 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4484 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4485 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4486 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4487 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4488 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4489 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4490 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4491 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4492 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4493 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4494 }; 4495 4496 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4497 /* 4498 * The cache test-and-clean instructions always return (1 << 30) 4499 * to indicate that there are no dirty cache lines. 4500 */ 4501 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4502 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4503 .resetvalue = (1 << 30) }, 4504 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4505 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4506 .resetvalue = (1 << 30) }, 4507 }; 4508 4509 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4510 /* Ignore ReadBuffer accesses */ 4511 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4512 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4513 .access = PL1_RW, .resetvalue = 0, 4514 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4515 }; 4516 4517 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4518 { 4519 unsigned int cur_el = arm_current_el(env); 4520 4521 if (arm_is_el2_enabled(env) && cur_el == 1) { 4522 return env->cp15.vpidr_el2; 4523 } 4524 return raw_read(env, ri); 4525 } 4526 4527 static uint64_t mpidr_read_val(CPUARMState *env) 4528 { 4529 ARMCPU *cpu = env_archcpu(env); 4530 uint64_t mpidr = cpu->mp_affinity; 4531 4532 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4533 mpidr |= (1U << 31); 4534 /* 4535 * Cores which are uniprocessor (non-coherent) 4536 * but still implement the MP extensions set 4537 * bit 30. (For instance, Cortex-R5). 4538 */ 4539 if (cpu->mp_is_up) { 4540 mpidr |= (1u << 30); 4541 } 4542 } 4543 return mpidr; 4544 } 4545 4546 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4547 { 4548 unsigned int cur_el = arm_current_el(env); 4549 4550 if (arm_is_el2_enabled(env) && cur_el == 1) { 4551 return env->cp15.vmpidr_el2; 4552 } 4553 return mpidr_read_val(env); 4554 } 4555 4556 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4557 /* NOP AMAIR0/1 */ 4558 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4559 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4560 .access = PL1_RW, .accessfn = access_tvm_trvm, 4561 .fgt = FGT_AMAIR_EL1, 4562 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1, 4563 .type = ARM_CP_CONST, .resetvalue = 0 }, 4564 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4565 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4566 .access = PL1_RW, .accessfn = access_tvm_trvm, 4567 .type = ARM_CP_CONST, .resetvalue = 0 }, 4568 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4569 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4570 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4571 offsetof(CPUARMState, cp15.par_ns)} }, 4572 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4573 .access = PL1_RW, .accessfn = access_tvm_trvm, 4574 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4575 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4576 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4577 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4578 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4579 .access = PL1_RW, .accessfn = access_tvm_trvm, 4580 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4581 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4582 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4583 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4584 }; 4585 4586 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4587 { 4588 return vfp_get_fpcr(env); 4589 } 4590 4591 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4592 uint64_t value) 4593 { 4594 vfp_set_fpcr(env, value); 4595 } 4596 4597 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4598 { 4599 return vfp_get_fpsr(env); 4600 } 4601 4602 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4603 uint64_t value) 4604 { 4605 vfp_set_fpsr(env, value); 4606 } 4607 4608 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4609 bool isread) 4610 { 4611 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4612 return CP_ACCESS_TRAP; 4613 } 4614 return CP_ACCESS_OK; 4615 } 4616 4617 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4618 uint64_t value) 4619 { 4620 env->daif = value & PSTATE_DAIF; 4621 } 4622 4623 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4624 { 4625 return env->pstate & PSTATE_PAN; 4626 } 4627 4628 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4629 uint64_t value) 4630 { 4631 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4632 } 4633 4634 static const ARMCPRegInfo pan_reginfo = { 4635 .name = "PAN", .state = ARM_CP_STATE_AA64, 4636 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4637 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4638 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4639 }; 4640 4641 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4642 { 4643 return env->pstate & PSTATE_UAO; 4644 } 4645 4646 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4647 uint64_t value) 4648 { 4649 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4650 } 4651 4652 static const ARMCPRegInfo uao_reginfo = { 4653 .name = "UAO", .state = ARM_CP_STATE_AA64, 4654 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4655 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4656 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4657 }; 4658 4659 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4660 { 4661 return env->pstate & PSTATE_DIT; 4662 } 4663 4664 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4665 uint64_t value) 4666 { 4667 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4668 } 4669 4670 static const ARMCPRegInfo dit_reginfo = { 4671 .name = "DIT", .state = ARM_CP_STATE_AA64, 4672 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4673 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4674 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4675 }; 4676 4677 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4678 { 4679 return env->pstate & PSTATE_SSBS; 4680 } 4681 4682 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4683 uint64_t value) 4684 { 4685 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4686 } 4687 4688 static const ARMCPRegInfo ssbs_reginfo = { 4689 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4690 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4691 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4692 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4693 }; 4694 4695 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4696 const ARMCPRegInfo *ri, 4697 bool isread) 4698 { 4699 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4700 switch (arm_current_el(env)) { 4701 case 0: 4702 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4703 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4704 return CP_ACCESS_TRAP; 4705 } 4706 /* fall through */ 4707 case 1: 4708 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4709 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4710 return CP_ACCESS_TRAP_EL2; 4711 } 4712 break; 4713 } 4714 return CP_ACCESS_OK; 4715 } 4716 4717 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4718 { 4719 /* Cache invalidate/clean to Point of Unification... */ 4720 switch (arm_current_el(env)) { 4721 case 0: 4722 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4723 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4724 return CP_ACCESS_TRAP; 4725 } 4726 /* fall through */ 4727 case 1: 4728 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4729 if (arm_hcr_el2_eff(env) & hcrflags) { 4730 return CP_ACCESS_TRAP_EL2; 4731 } 4732 break; 4733 } 4734 return CP_ACCESS_OK; 4735 } 4736 4737 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4738 bool isread) 4739 { 4740 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4741 } 4742 4743 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4744 bool isread) 4745 { 4746 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4747 } 4748 4749 /* 4750 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4751 * Page D4-1736 (DDI0487A.b) 4752 */ 4753 4754 static int vae1_tlbmask(CPUARMState *env) 4755 { 4756 uint64_t hcr = arm_hcr_el2_eff(env); 4757 uint16_t mask; 4758 4759 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4760 mask = ARMMMUIdxBit_E20_2 | 4761 ARMMMUIdxBit_E20_2_PAN | 4762 ARMMMUIdxBit_E20_0; 4763 } else { 4764 mask = ARMMMUIdxBit_E10_1 | 4765 ARMMMUIdxBit_E10_1_PAN | 4766 ARMMMUIdxBit_E10_0; 4767 } 4768 return mask; 4769 } 4770 4771 static int vae2_tlbmask(CPUARMState *env) 4772 { 4773 uint64_t hcr = arm_hcr_el2_eff(env); 4774 uint16_t mask; 4775 4776 if (hcr & HCR_E2H) { 4777 mask = ARMMMUIdxBit_E20_2 | 4778 ARMMMUIdxBit_E20_2_PAN | 4779 ARMMMUIdxBit_E20_0; 4780 } else { 4781 mask = ARMMMUIdxBit_E2; 4782 } 4783 return mask; 4784 } 4785 4786 /* Return 56 if TBI is enabled, 64 otherwise. */ 4787 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4788 uint64_t addr) 4789 { 4790 uint64_t tcr = regime_tcr(env, mmu_idx); 4791 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4792 int select = extract64(addr, 55, 1); 4793 4794 return (tbi >> select) & 1 ? 56 : 64; 4795 } 4796 4797 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4798 { 4799 uint64_t hcr = arm_hcr_el2_eff(env); 4800 ARMMMUIdx mmu_idx; 4801 4802 /* Only the regime of the mmu_idx below is significant. */ 4803 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4804 mmu_idx = ARMMMUIdx_E20_0; 4805 } else { 4806 mmu_idx = ARMMMUIdx_E10_0; 4807 } 4808 4809 return tlbbits_for_regime(env, mmu_idx, addr); 4810 } 4811 4812 static int vae2_tlbbits(CPUARMState *env, uint64_t addr) 4813 { 4814 uint64_t hcr = arm_hcr_el2_eff(env); 4815 ARMMMUIdx mmu_idx; 4816 4817 /* 4818 * Only the regime of the mmu_idx below is significant. 4819 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2 4820 * only has one. 4821 */ 4822 if (hcr & HCR_E2H) { 4823 mmu_idx = ARMMMUIdx_E20_2; 4824 } else { 4825 mmu_idx = ARMMMUIdx_E2; 4826 } 4827 4828 return tlbbits_for_regime(env, mmu_idx, addr); 4829 } 4830 4831 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4832 uint64_t value) 4833 { 4834 CPUState *cs = env_cpu(env); 4835 int mask = vae1_tlbmask(env); 4836 4837 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4838 } 4839 4840 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4841 uint64_t value) 4842 { 4843 CPUState *cs = env_cpu(env); 4844 int mask = vae1_tlbmask(env); 4845 4846 if (tlb_force_broadcast(env)) { 4847 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4848 } else { 4849 tlb_flush_by_mmuidx(cs, mask); 4850 } 4851 } 4852 4853 static int e2_tlbmask(CPUARMState *env) 4854 { 4855 return (ARMMMUIdxBit_E20_0 | 4856 ARMMMUIdxBit_E20_2 | 4857 ARMMMUIdxBit_E20_2_PAN | 4858 ARMMMUIdxBit_E2); 4859 } 4860 4861 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4862 uint64_t value) 4863 { 4864 CPUState *cs = env_cpu(env); 4865 int mask = alle1_tlbmask(env); 4866 4867 tlb_flush_by_mmuidx(cs, mask); 4868 } 4869 4870 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4871 uint64_t value) 4872 { 4873 CPUState *cs = env_cpu(env); 4874 int mask = e2_tlbmask(env); 4875 4876 tlb_flush_by_mmuidx(cs, mask); 4877 } 4878 4879 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4880 uint64_t value) 4881 { 4882 ARMCPU *cpu = env_archcpu(env); 4883 CPUState *cs = CPU(cpu); 4884 4885 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 4886 } 4887 4888 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4889 uint64_t value) 4890 { 4891 CPUState *cs = env_cpu(env); 4892 int mask = alle1_tlbmask(env); 4893 4894 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4895 } 4896 4897 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4898 uint64_t value) 4899 { 4900 CPUState *cs = env_cpu(env); 4901 int mask = e2_tlbmask(env); 4902 4903 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4904 } 4905 4906 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4907 uint64_t value) 4908 { 4909 CPUState *cs = env_cpu(env); 4910 4911 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 4912 } 4913 4914 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4915 uint64_t value) 4916 { 4917 /* 4918 * Invalidate by VA, EL2 4919 * Currently handles both VAE2 and VALE2, since we don't support 4920 * flush-last-level-only. 4921 */ 4922 CPUState *cs = env_cpu(env); 4923 int mask = vae2_tlbmask(env); 4924 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4925 int bits = vae2_tlbbits(env, pageaddr); 4926 4927 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4928 } 4929 4930 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4931 uint64_t value) 4932 { 4933 /* 4934 * Invalidate by VA, EL3 4935 * Currently handles both VAE3 and VALE3, since we don't support 4936 * flush-last-level-only. 4937 */ 4938 ARMCPU *cpu = env_archcpu(env); 4939 CPUState *cs = CPU(cpu); 4940 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4941 4942 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 4943 } 4944 4945 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4946 uint64_t value) 4947 { 4948 CPUState *cs = env_cpu(env); 4949 int mask = vae1_tlbmask(env); 4950 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4951 int bits = vae1_tlbbits(env, pageaddr); 4952 4953 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4954 } 4955 4956 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4957 uint64_t value) 4958 { 4959 /* 4960 * Invalidate by VA, EL1&0 (AArch64 version). 4961 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4962 * since we don't support flush-for-specific-ASID-only or 4963 * flush-last-level-only. 4964 */ 4965 CPUState *cs = env_cpu(env); 4966 int mask = vae1_tlbmask(env); 4967 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4968 int bits = vae1_tlbbits(env, pageaddr); 4969 4970 if (tlb_force_broadcast(env)) { 4971 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4972 } else { 4973 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4974 } 4975 } 4976 4977 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4978 uint64_t value) 4979 { 4980 CPUState *cs = env_cpu(env); 4981 int mask = vae2_tlbmask(env); 4982 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4983 int bits = vae2_tlbbits(env, pageaddr); 4984 4985 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4986 } 4987 4988 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4989 uint64_t value) 4990 { 4991 CPUState *cs = env_cpu(env); 4992 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4993 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 4994 4995 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4996 ARMMMUIdxBit_E3, bits); 4997 } 4998 4999 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 5000 { 5001 /* 5002 * The MSB of value is the NS field, which only applies if SEL2 5003 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 5004 */ 5005 return (value >= 0 5006 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 5007 && arm_is_secure_below_el3(env) 5008 ? ARMMMUIdxBit_Stage2_S 5009 : ARMMMUIdxBit_Stage2); 5010 } 5011 5012 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5013 uint64_t value) 5014 { 5015 CPUState *cs = env_cpu(env); 5016 int mask = ipas2e1_tlbmask(env, value); 5017 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5018 5019 if (tlb_force_broadcast(env)) { 5020 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 5021 } else { 5022 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 5023 } 5024 } 5025 5026 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5027 uint64_t value) 5028 { 5029 CPUState *cs = env_cpu(env); 5030 int mask = ipas2e1_tlbmask(env, value); 5031 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5032 5033 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 5034 } 5035 5036 #ifdef TARGET_AARCH64 5037 typedef struct { 5038 uint64_t base; 5039 uint64_t length; 5040 } TLBIRange; 5041 5042 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 5043 { 5044 /* 5045 * Note that the TLBI range TG field encoding differs from both 5046 * TG0 and TG1 encodings. 5047 */ 5048 switch (tg) { 5049 case 1: 5050 return Gran4K; 5051 case 2: 5052 return Gran16K; 5053 case 3: 5054 return Gran64K; 5055 default: 5056 return GranInvalid; 5057 } 5058 } 5059 5060 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 5061 uint64_t value) 5062 { 5063 unsigned int page_size_granule, page_shift, num, scale, exponent; 5064 /* Extract one bit to represent the va selector in use. */ 5065 uint64_t select = sextract64(value, 36, 1); 5066 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false); 5067 TLBIRange ret = { }; 5068 ARMGranuleSize gran; 5069 5070 page_size_granule = extract64(value, 46, 2); 5071 gran = tlbi_range_tg_to_gran_size(page_size_granule); 5072 5073 /* The granule encoded in value must match the granule in use. */ 5074 if (gran != param.gran) { 5075 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 5076 page_size_granule); 5077 return ret; 5078 } 5079 5080 page_shift = arm_granule_bits(gran); 5081 num = extract64(value, 39, 5); 5082 scale = extract64(value, 44, 2); 5083 exponent = (5 * scale) + 1; 5084 5085 ret.length = (num + 1) << (exponent + page_shift); 5086 5087 if (param.select) { 5088 ret.base = sextract64(value, 0, 37); 5089 } else { 5090 ret.base = extract64(value, 0, 37); 5091 } 5092 if (param.ds) { 5093 /* 5094 * With DS=1, BaseADDR is always shifted 16 so that it is able 5095 * to address all 52 va bits. The input address is perforce 5096 * aligned on a 64k boundary regardless of translation granule. 5097 */ 5098 page_shift = 16; 5099 } 5100 ret.base <<= page_shift; 5101 5102 return ret; 5103 } 5104 5105 static void do_rvae_write(CPUARMState *env, uint64_t value, 5106 int idxmap, bool synced) 5107 { 5108 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 5109 TLBIRange range; 5110 int bits; 5111 5112 range = tlbi_aa64_get_range(env, one_idx, value); 5113 bits = tlbbits_for_regime(env, one_idx, range.base); 5114 5115 if (synced) { 5116 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 5117 range.base, 5118 range.length, 5119 idxmap, 5120 bits); 5121 } else { 5122 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 5123 range.length, idxmap, bits); 5124 } 5125 } 5126 5127 static void tlbi_aa64_rvae1_write(CPUARMState *env, 5128 const ARMCPRegInfo *ri, 5129 uint64_t value) 5130 { 5131 /* 5132 * Invalidate by VA range, EL1&0. 5133 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 5134 * since we don't support flush-for-specific-ASID-only or 5135 * flush-last-level-only. 5136 */ 5137 5138 do_rvae_write(env, value, vae1_tlbmask(env), 5139 tlb_force_broadcast(env)); 5140 } 5141 5142 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 5143 const ARMCPRegInfo *ri, 5144 uint64_t value) 5145 { 5146 /* 5147 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 5148 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 5149 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 5150 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 5151 * shareable specific flushes. 5152 */ 5153 5154 do_rvae_write(env, value, vae1_tlbmask(env), true); 5155 } 5156 5157 static void tlbi_aa64_rvae2_write(CPUARMState *env, 5158 const ARMCPRegInfo *ri, 5159 uint64_t value) 5160 { 5161 /* 5162 * Invalidate by VA range, EL2. 5163 * Currently handles all of RVAE2 and RVALE2, 5164 * since we don't support flush-for-specific-ASID-only or 5165 * flush-last-level-only. 5166 */ 5167 5168 do_rvae_write(env, value, vae2_tlbmask(env), 5169 tlb_force_broadcast(env)); 5170 5171 5172 } 5173 5174 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 5175 const ARMCPRegInfo *ri, 5176 uint64_t value) 5177 { 5178 /* 5179 * Invalidate by VA range, Inner/Outer Shareable, EL2. 5180 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 5181 * since we don't support flush-for-specific-ASID-only, 5182 * flush-last-level-only or inner/outer shareable specific flushes. 5183 */ 5184 5185 do_rvae_write(env, value, vae2_tlbmask(env), true); 5186 5187 } 5188 5189 static void tlbi_aa64_rvae3_write(CPUARMState *env, 5190 const ARMCPRegInfo *ri, 5191 uint64_t value) 5192 { 5193 /* 5194 * Invalidate by VA range, EL3. 5195 * Currently handles all of RVAE3 and RVALE3, 5196 * since we don't support flush-for-specific-ASID-only or 5197 * flush-last-level-only. 5198 */ 5199 5200 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5201 } 5202 5203 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5204 const ARMCPRegInfo *ri, 5205 uint64_t value) 5206 { 5207 /* 5208 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5209 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5210 * since we don't support flush-for-specific-ASID-only, 5211 * flush-last-level-only or inner/outer specific flushes. 5212 */ 5213 5214 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5215 } 5216 5217 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5218 uint64_t value) 5219 { 5220 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5221 tlb_force_broadcast(env)); 5222 } 5223 5224 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5225 const ARMCPRegInfo *ri, 5226 uint64_t value) 5227 { 5228 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5229 } 5230 #endif 5231 5232 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5233 bool isread) 5234 { 5235 int cur_el = arm_current_el(env); 5236 5237 if (cur_el < 2) { 5238 uint64_t hcr = arm_hcr_el2_eff(env); 5239 5240 if (cur_el == 0) { 5241 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5242 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5243 return CP_ACCESS_TRAP_EL2; 5244 } 5245 } else { 5246 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5247 return CP_ACCESS_TRAP; 5248 } 5249 if (hcr & HCR_TDZ) { 5250 return CP_ACCESS_TRAP_EL2; 5251 } 5252 } 5253 } else if (hcr & HCR_TDZ) { 5254 return CP_ACCESS_TRAP_EL2; 5255 } 5256 } 5257 return CP_ACCESS_OK; 5258 } 5259 5260 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5261 { 5262 ARMCPU *cpu = env_archcpu(env); 5263 int dzp_bit = 1 << 4; 5264 5265 /* DZP indicates whether DC ZVA access is allowed */ 5266 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5267 dzp_bit = 0; 5268 } 5269 return cpu->dcz_blocksize | dzp_bit; 5270 } 5271 5272 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5273 bool isread) 5274 { 5275 if (!(env->pstate & PSTATE_SP)) { 5276 /* 5277 * Access to SP_EL0 is undefined if it's being used as 5278 * the stack pointer. 5279 */ 5280 return CP_ACCESS_TRAP_UNCATEGORIZED; 5281 } 5282 return CP_ACCESS_OK; 5283 } 5284 5285 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5286 { 5287 return env->pstate & PSTATE_SP; 5288 } 5289 5290 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5291 { 5292 update_spsel(env, val); 5293 } 5294 5295 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5296 uint64_t value) 5297 { 5298 ARMCPU *cpu = env_archcpu(env); 5299 5300 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5301 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5302 value &= ~SCTLR_M; 5303 } 5304 5305 /* ??? Lots of these bits are not implemented. */ 5306 5307 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5308 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5309 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5310 } else { 5311 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5312 SCTLR_ATA0 | SCTLR_ATA); 5313 } 5314 } 5315 5316 if (raw_read(env, ri) == value) { 5317 /* 5318 * Skip the TLB flush if nothing actually changed; Linux likes 5319 * to do a lot of pointless SCTLR writes. 5320 */ 5321 return; 5322 } 5323 5324 raw_write(env, ri, value); 5325 5326 /* This may enable/disable the MMU, so do a TLB flush. */ 5327 tlb_flush(CPU(cpu)); 5328 5329 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 5330 /* 5331 * Normally we would always end the TB on an SCTLR write; see the 5332 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5333 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5334 * of hflags from the translator, so do it here. 5335 */ 5336 arm_rebuild_hflags(env); 5337 } 5338 } 5339 5340 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5341 uint64_t value) 5342 { 5343 /* 5344 * Some MDCR_EL3 bits affect whether PMU counters are running: 5345 * if we are trying to change any of those then we must 5346 * bracket this update with PMU start/finish calls. 5347 */ 5348 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5349 5350 if (pmu_op) { 5351 pmu_op_start(env); 5352 } 5353 env->cp15.mdcr_el3 = value; 5354 if (pmu_op) { 5355 pmu_op_finish(env); 5356 } 5357 } 5358 5359 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5360 uint64_t value) 5361 { 5362 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5363 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5364 } 5365 5366 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5367 uint64_t value) 5368 { 5369 /* 5370 * Some MDCR_EL2 bits affect whether PMU counters are running: 5371 * if we are trying to change any of those then we must 5372 * bracket this update with PMU start/finish calls. 5373 */ 5374 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5375 5376 if (pmu_op) { 5377 pmu_op_start(env); 5378 } 5379 env->cp15.mdcr_el2 = value; 5380 if (pmu_op) { 5381 pmu_op_finish(env); 5382 } 5383 } 5384 5385 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri, 5386 bool isread) 5387 { 5388 if (arm_current_el(env) == 1) { 5389 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2); 5390 5391 if (hcr_nv == (HCR_NV | HCR_NV1)) { 5392 return CP_ACCESS_TRAP_EL2; 5393 } 5394 } 5395 return CP_ACCESS_OK; 5396 } 5397 5398 #ifdef CONFIG_USER_ONLY 5399 /* 5400 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their 5401 * code to get around W^X restrictions, where one region is writable and the 5402 * other is executable. 5403 * 5404 * Since the executable region is never written to we cannot detect code 5405 * changes when running in user mode, and rely on the emulated JIT telling us 5406 * that the code has changed by executing this instruction. 5407 */ 5408 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri, 5409 uint64_t value) 5410 { 5411 uint64_t icache_line_mask, start_address, end_address; 5412 const ARMCPU *cpu; 5413 5414 cpu = env_archcpu(env); 5415 5416 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1; 5417 start_address = value & ~icache_line_mask; 5418 end_address = value | icache_line_mask; 5419 5420 mmap_lock(); 5421 5422 tb_invalidate_phys_range(start_address, end_address); 5423 5424 mmap_unlock(); 5425 } 5426 #endif 5427 5428 static const ARMCPRegInfo v8_cp_reginfo[] = { 5429 /* 5430 * Minimal set of EL0-visible registers. This will need to be expanded 5431 * significantly for system emulation of AArch64 CPUs. 5432 */ 5433 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5434 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5435 .access = PL0_RW, .type = ARM_CP_NZCV }, 5436 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5437 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5438 .type = ARM_CP_NO_RAW, 5439 .access = PL0_RW, .accessfn = aa64_daif_access, 5440 .fieldoffset = offsetof(CPUARMState, daif), 5441 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5442 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5443 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5444 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5445 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5446 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5447 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5448 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5449 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5450 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5451 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5452 .access = PL0_R, .type = ARM_CP_NO_RAW, 5453 .fgt = FGT_DCZID_EL0, 5454 .readfn = aa64_dczid_read }, 5455 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5456 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5457 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5458 #ifndef CONFIG_USER_ONLY 5459 /* Avoid overhead of an access check that always passes in user-mode */ 5460 .accessfn = aa64_zva_access, 5461 .fgt = FGT_DCZVA, 5462 #endif 5463 }, 5464 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5465 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5466 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5467 /* 5468 * Instruction cache ops. All of these except `IC IVAU` NOP because we 5469 * don't emulate caches. 5470 */ 5471 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5472 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5473 .access = PL1_W, .type = ARM_CP_NOP, 5474 .fgt = FGT_ICIALLUIS, 5475 .accessfn = access_ticab }, 5476 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5477 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5478 .access = PL1_W, .type = ARM_CP_NOP, 5479 .fgt = FGT_ICIALLU, 5480 .accessfn = access_tocu }, 5481 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5482 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5483 .access = PL0_W, 5484 .fgt = FGT_ICIVAU, 5485 .accessfn = access_tocu, 5486 #ifdef CONFIG_USER_ONLY 5487 .type = ARM_CP_NO_RAW, 5488 .writefn = ic_ivau_write 5489 #else 5490 .type = ARM_CP_NOP 5491 #endif 5492 }, 5493 /* Cache ops: all NOPs since we don't emulate caches */ 5494 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5495 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5496 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5497 .fgt = FGT_DCIVAC, 5498 .type = ARM_CP_NOP }, 5499 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5500 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5501 .fgt = FGT_DCISW, 5502 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5503 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5504 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5505 .access = PL0_W, .type = ARM_CP_NOP, 5506 .fgt = FGT_DCCVAC, 5507 .accessfn = aa64_cacheop_poc_access }, 5508 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5509 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5510 .fgt = FGT_DCCSW, 5511 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5512 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5513 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5514 .access = PL0_W, .type = ARM_CP_NOP, 5515 .fgt = FGT_DCCVAU, 5516 .accessfn = access_tocu }, 5517 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5518 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5519 .access = PL0_W, .type = ARM_CP_NOP, 5520 .fgt = FGT_DCCIVAC, 5521 .accessfn = aa64_cacheop_poc_access }, 5522 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5523 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5524 .fgt = FGT_DCCISW, 5525 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5526 /* TLBI operations */ 5527 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5528 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5529 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5530 .fgt = FGT_TLBIVMALLE1IS, 5531 .writefn = tlbi_aa64_vmalle1is_write }, 5532 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5533 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5534 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5535 .fgt = FGT_TLBIVAE1IS, 5536 .writefn = tlbi_aa64_vae1is_write }, 5537 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5538 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5539 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5540 .fgt = FGT_TLBIASIDE1IS, 5541 .writefn = tlbi_aa64_vmalle1is_write }, 5542 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5543 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5544 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5545 .fgt = FGT_TLBIVAAE1IS, 5546 .writefn = tlbi_aa64_vae1is_write }, 5547 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5548 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5549 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5550 .fgt = FGT_TLBIVALE1IS, 5551 .writefn = tlbi_aa64_vae1is_write }, 5552 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5553 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5554 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5555 .fgt = FGT_TLBIVAALE1IS, 5556 .writefn = tlbi_aa64_vae1is_write }, 5557 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5558 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5559 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5560 .fgt = FGT_TLBIVMALLE1, 5561 .writefn = tlbi_aa64_vmalle1_write }, 5562 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5563 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5564 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5565 .fgt = FGT_TLBIVAE1, 5566 .writefn = tlbi_aa64_vae1_write }, 5567 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5568 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5569 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5570 .fgt = FGT_TLBIASIDE1, 5571 .writefn = tlbi_aa64_vmalle1_write }, 5572 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5573 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5574 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5575 .fgt = FGT_TLBIVAAE1, 5576 .writefn = tlbi_aa64_vae1_write }, 5577 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5578 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5579 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5580 .fgt = FGT_TLBIVALE1, 5581 .writefn = tlbi_aa64_vae1_write }, 5582 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5583 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5584 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5585 .fgt = FGT_TLBIVAALE1, 5586 .writefn = tlbi_aa64_vae1_write }, 5587 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5588 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5589 .access = PL2_W, .type = ARM_CP_NO_RAW, 5590 .writefn = tlbi_aa64_ipas2e1is_write }, 5591 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5592 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5593 .access = PL2_W, .type = ARM_CP_NO_RAW, 5594 .writefn = tlbi_aa64_ipas2e1is_write }, 5595 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5596 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5597 .access = PL2_W, .type = ARM_CP_NO_RAW, 5598 .writefn = tlbi_aa64_alle1is_write }, 5599 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5600 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5601 .access = PL2_W, .type = ARM_CP_NO_RAW, 5602 .writefn = tlbi_aa64_alle1is_write }, 5603 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5604 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5605 .access = PL2_W, .type = ARM_CP_NO_RAW, 5606 .writefn = tlbi_aa64_ipas2e1_write }, 5607 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5608 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5609 .access = PL2_W, .type = ARM_CP_NO_RAW, 5610 .writefn = tlbi_aa64_ipas2e1_write }, 5611 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5612 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5613 .access = PL2_W, .type = ARM_CP_NO_RAW, 5614 .writefn = tlbi_aa64_alle1_write }, 5615 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5616 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5617 .access = PL2_W, .type = ARM_CP_NO_RAW, 5618 .writefn = tlbi_aa64_alle1is_write }, 5619 #ifndef CONFIG_USER_ONLY 5620 /* 64 bit address translation operations */ 5621 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5622 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5623 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5624 .fgt = FGT_ATS1E1R, 5625 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5626 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5627 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5628 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5629 .fgt = FGT_ATS1E1W, 5630 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5631 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5632 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5633 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5634 .fgt = FGT_ATS1E0R, 5635 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5636 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5637 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5638 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5639 .fgt = FGT_ATS1E0W, 5640 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5641 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5642 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5643 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5644 .accessfn = at_e012_access, .writefn = ats_write64 }, 5645 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5646 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5647 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5648 .accessfn = at_e012_access, .writefn = ats_write64 }, 5649 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5650 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5651 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5652 .accessfn = at_e012_access, .writefn = ats_write64 }, 5653 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5654 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5655 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5656 .accessfn = at_e012_access, .writefn = ats_write64 }, 5657 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5658 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5659 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5660 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5661 .writefn = ats_write64 }, 5662 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5663 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5664 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5665 .writefn = ats_write64 }, 5666 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5667 .type = ARM_CP_ALIAS, 5668 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5669 .access = PL1_RW, .resetvalue = 0, 5670 .fgt = FGT_PAR_EL1, 5671 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5672 .writefn = par_write }, 5673 #endif 5674 /* TLB invalidate last level of translation table walk */ 5675 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5676 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5677 .writefn = tlbimva_is_write }, 5678 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5679 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5680 .writefn = tlbimvaa_is_write }, 5681 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5682 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5683 .writefn = tlbimva_write }, 5684 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5685 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5686 .writefn = tlbimvaa_write }, 5687 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5688 .type = ARM_CP_NO_RAW, .access = PL2_W, 5689 .writefn = tlbimva_hyp_write }, 5690 { .name = "TLBIMVALHIS", 5691 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5692 .type = ARM_CP_NO_RAW, .access = PL2_W, 5693 .writefn = tlbimva_hyp_is_write }, 5694 { .name = "TLBIIPAS2", 5695 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5696 .type = ARM_CP_NO_RAW, .access = PL2_W, 5697 .writefn = tlbiipas2_hyp_write }, 5698 { .name = "TLBIIPAS2IS", 5699 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5700 .type = ARM_CP_NO_RAW, .access = PL2_W, 5701 .writefn = tlbiipas2is_hyp_write }, 5702 { .name = "TLBIIPAS2L", 5703 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5704 .type = ARM_CP_NO_RAW, .access = PL2_W, 5705 .writefn = tlbiipas2_hyp_write }, 5706 { .name = "TLBIIPAS2LIS", 5707 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5708 .type = ARM_CP_NO_RAW, .access = PL2_W, 5709 .writefn = tlbiipas2is_hyp_write }, 5710 /* 32 bit cache operations */ 5711 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5712 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5713 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5714 .type = ARM_CP_NOP, .access = PL1_W }, 5715 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5716 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5717 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5718 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5719 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5720 .type = ARM_CP_NOP, .access = PL1_W }, 5721 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5722 .type = ARM_CP_NOP, .access = PL1_W }, 5723 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5724 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5725 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5726 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5727 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5728 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5729 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5730 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5731 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5732 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5733 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5734 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5735 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5736 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5737 /* MMU Domain access control / MPU write buffer control */ 5738 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5739 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5740 .writefn = dacr_write, .raw_writefn = raw_write, 5741 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5742 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5743 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5744 .type = ARM_CP_ALIAS, 5745 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5746 .access = PL1_RW, .accessfn = access_nv1, 5747 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1, 5748 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5749 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5750 .type = ARM_CP_ALIAS, 5751 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5752 .access = PL1_RW, .accessfn = access_nv1, 5753 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1, 5754 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5755 /* 5756 * We rely on the access checks not allowing the guest to write to the 5757 * state field when SPSel indicates that it's being used as the stack 5758 * pointer. 5759 */ 5760 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5761 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5762 .access = PL1_RW, .accessfn = sp_el0_access, 5763 .type = ARM_CP_ALIAS, 5764 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5765 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5766 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5767 .nv2_redirect_offset = 0x240, 5768 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5769 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5770 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5771 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5772 .type = ARM_CP_NO_RAW, 5773 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5774 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5775 .type = ARM_CP_ALIAS, 5776 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5777 .access = PL2_RW, 5778 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5779 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5780 .type = ARM_CP_ALIAS, 5781 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5782 .access = PL2_RW, 5783 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5784 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5785 .type = ARM_CP_ALIAS, 5786 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5787 .access = PL2_RW, 5788 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5789 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5790 .type = ARM_CP_ALIAS, 5791 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5792 .access = PL2_RW, 5793 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5794 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5795 .type = ARM_CP_IO, 5796 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5797 .resetvalue = 0, 5798 .access = PL3_RW, 5799 .writefn = mdcr_el3_write, 5800 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5801 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5802 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5803 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5804 .writefn = sdcr_write, 5805 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5806 }; 5807 5808 /* These are present only when EL1 supports AArch32 */ 5809 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = { 5810 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5811 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5812 .access = PL2_RW, 5813 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5814 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5815 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5816 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5817 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5818 .writefn = dacr_write, .raw_writefn = raw_write, 5819 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5820 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5821 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5822 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5823 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5824 }; 5825 5826 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5827 { 5828 ARMCPU *cpu = env_archcpu(env); 5829 5830 if (arm_feature(env, ARM_FEATURE_V8)) { 5831 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5832 } else { 5833 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5834 } 5835 5836 if (arm_feature(env, ARM_FEATURE_EL3)) { 5837 valid_mask &= ~HCR_HCD; 5838 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5839 /* 5840 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5841 * However, if we're using the SMC PSCI conduit then QEMU is 5842 * effectively acting like EL3 firmware and so the guest at 5843 * EL2 should retain the ability to prevent EL1 from being 5844 * able to make SMC calls into the ersatz firmware, so in 5845 * that case HCR.TSC should be read/write. 5846 */ 5847 valid_mask &= ~HCR_TSC; 5848 } 5849 5850 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5851 if (cpu_isar_feature(aa64_vh, cpu)) { 5852 valid_mask |= HCR_E2H; 5853 } 5854 if (cpu_isar_feature(aa64_ras, cpu)) { 5855 valid_mask |= HCR_TERR | HCR_TEA; 5856 } 5857 if (cpu_isar_feature(aa64_lor, cpu)) { 5858 valid_mask |= HCR_TLOR; 5859 } 5860 if (cpu_isar_feature(aa64_pauth, cpu)) { 5861 valid_mask |= HCR_API | HCR_APK; 5862 } 5863 if (cpu_isar_feature(aa64_mte, cpu)) { 5864 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5865 } 5866 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5867 valid_mask |= HCR_ENSCXT; 5868 } 5869 if (cpu_isar_feature(aa64_fwb, cpu)) { 5870 valid_mask |= HCR_FWB; 5871 } 5872 if (cpu_isar_feature(aa64_rme, cpu)) { 5873 valid_mask |= HCR_GPF; 5874 } 5875 if (cpu_isar_feature(aa64_nv, cpu)) { 5876 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT; 5877 } 5878 if (cpu_isar_feature(aa64_nv2, cpu)) { 5879 valid_mask |= HCR_NV2; 5880 } 5881 } 5882 5883 if (cpu_isar_feature(any_evt, cpu)) { 5884 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5885 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5886 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5887 } 5888 5889 /* Clear RES0 bits. */ 5890 value &= valid_mask; 5891 5892 /* 5893 * These bits change the MMU setup: 5894 * HCR_VM enables stage 2 translation 5895 * HCR_PTW forbids certain page-table setups 5896 * HCR_DC disables stage1 and enables stage2 translation 5897 * HCR_DCT enables tagging on (disabled) stage1 translation 5898 * HCR_FWB changes the interpretation of stage2 descriptor bits 5899 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits 5900 */ 5901 if ((env->cp15.hcr_el2 ^ value) & 5902 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) { 5903 tlb_flush(CPU(cpu)); 5904 } 5905 env->cp15.hcr_el2 = value; 5906 5907 /* 5908 * Updates to VI and VF require us to update the status of 5909 * virtual interrupts, which are the logical OR of these bits 5910 * and the state of the input lines from the GIC. (This requires 5911 * that we have the BQL, which is done by marking the 5912 * reginfo structs as ARM_CP_IO.) 5913 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5914 * possible for it to be taken immediately, because VIRQ and 5915 * VFIQ are masked unless running at EL0 or EL1, and HCR 5916 * can only be written at EL2. 5917 */ 5918 g_assert(bql_locked()); 5919 arm_cpu_update_virq(cpu); 5920 arm_cpu_update_vfiq(cpu); 5921 arm_cpu_update_vserr(cpu); 5922 } 5923 5924 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5925 { 5926 do_hcr_write(env, value, 0); 5927 } 5928 5929 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5930 uint64_t value) 5931 { 5932 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5933 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5934 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5935 } 5936 5937 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5938 uint64_t value) 5939 { 5940 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5941 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5942 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5943 } 5944 5945 /* 5946 * Return the effective value of HCR_EL2, at the given security state. 5947 * Bits that are not included here: 5948 * RW (read from SCR_EL3.RW as needed) 5949 */ 5950 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space) 5951 { 5952 uint64_t ret = env->cp15.hcr_el2; 5953 5954 assert(space != ARMSS_Root); 5955 5956 if (!arm_is_el2_enabled_secstate(env, space)) { 5957 /* 5958 * "This register has no effect if EL2 is not enabled in the 5959 * current Security state". This is ARMv8.4-SecEL2 speak for 5960 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5961 * 5962 * Prior to that, the language was "In an implementation that 5963 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5964 * as if this field is 0 for all purposes other than a direct 5965 * read or write access of HCR_EL2". With lots of enumeration 5966 * on a per-field basis. In current QEMU, this is condition 5967 * is arm_is_secure_below_el3. 5968 * 5969 * Since the v8.4 language applies to the entire register, and 5970 * appears to be backward compatible, use that. 5971 */ 5972 return 0; 5973 } 5974 5975 /* 5976 * For a cpu that supports both aarch64 and aarch32, we can set bits 5977 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5978 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5979 */ 5980 if (!arm_el_is_aa64(env, 2)) { 5981 uint64_t aa32_valid; 5982 5983 /* 5984 * These bits are up-to-date as of ARMv8.6. 5985 * For HCR, it's easiest to list just the 2 bits that are invalid. 5986 * For HCR2, list those that are valid. 5987 */ 5988 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5989 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5990 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5991 ret &= aa32_valid; 5992 } 5993 5994 if (ret & HCR_TGE) { 5995 /* These bits are up-to-date as of ARMv8.6. */ 5996 if (ret & HCR_E2H) { 5997 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5998 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5999 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 6000 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 6001 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 6002 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 6003 } else { 6004 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 6005 } 6006 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 6007 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 6008 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 6009 HCR_TLOR); 6010 } 6011 6012 return ret; 6013 } 6014 6015 uint64_t arm_hcr_el2_eff(CPUARMState *env) 6016 { 6017 if (arm_feature(env, ARM_FEATURE_M)) { 6018 return 0; 6019 } 6020 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env)); 6021 } 6022 6023 /* 6024 * Corresponds to ARM pseudocode function ELIsInHost(). 6025 */ 6026 bool el_is_in_host(CPUARMState *env, int el) 6027 { 6028 uint64_t mask; 6029 6030 /* 6031 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 6032 * Perform the simplest bit tests first, and validate EL2 afterward. 6033 */ 6034 if (el & 1) { 6035 return false; /* EL1 or EL3 */ 6036 } 6037 6038 /* 6039 * Note that hcr_write() checks isar_feature_aa64_vh(), 6040 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 6041 */ 6042 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 6043 if ((env->cp15.hcr_el2 & mask) != mask) { 6044 return false; 6045 } 6046 6047 /* TGE and/or E2H set: double check those bits are currently legal. */ 6048 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 6049 } 6050 6051 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 6052 uint64_t value) 6053 { 6054 uint64_t valid_mask = 0; 6055 6056 /* FEAT_MOPS adds MSCEn and MCE2 */ 6057 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 6058 valid_mask |= HCRX_MSCEN | HCRX_MCE2; 6059 } 6060 6061 /* Clear RES0 bits. */ 6062 env->cp15.hcrx_el2 = value & valid_mask; 6063 } 6064 6065 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 6066 bool isread) 6067 { 6068 if (arm_current_el(env) == 2 6069 && arm_feature(env, ARM_FEATURE_EL3) 6070 && !(env->cp15.scr_el3 & SCR_HXEN)) { 6071 return CP_ACCESS_TRAP_EL3; 6072 } 6073 return CP_ACCESS_OK; 6074 } 6075 6076 static const ARMCPRegInfo hcrx_el2_reginfo = { 6077 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 6078 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 6079 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 6080 .nv2_redirect_offset = 0xa0, 6081 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 6082 }; 6083 6084 /* Return the effective value of HCRX_EL2. */ 6085 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 6086 { 6087 /* 6088 * The bits in this register behave as 0 for all purposes other than 6089 * direct reads of the register if SCR_EL3.HXEn is 0. 6090 * If EL2 is not enabled in the current security state, then the 6091 * bit may behave as if 0, or as if 1, depending on the bit. 6092 * For the moment, we treat the EL2-disabled case as taking 6093 * priority over the HXEn-disabled case. This is true for the only 6094 * bit for a feature which we implement where the answer is different 6095 * for the two cases (MSCEn for FEAT_MOPS). 6096 * This may need to be revisited for future bits. 6097 */ 6098 if (!arm_is_el2_enabled(env)) { 6099 uint64_t hcrx = 0; 6100 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 6101 /* MSCEn behaves as 1 if EL2 is not enabled */ 6102 hcrx |= HCRX_MSCEN; 6103 } 6104 return hcrx; 6105 } 6106 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) { 6107 return 0; 6108 } 6109 return env->cp15.hcrx_el2; 6110 } 6111 6112 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 6113 uint64_t value) 6114 { 6115 /* 6116 * For A-profile AArch32 EL3, if NSACR.CP10 6117 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6118 */ 6119 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6120 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6121 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6122 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 6123 } 6124 env->cp15.cptr_el[2] = value; 6125 } 6126 6127 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 6128 { 6129 /* 6130 * For A-profile AArch32 EL3, if NSACR.CP10 6131 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6132 */ 6133 uint64_t value = env->cp15.cptr_el[2]; 6134 6135 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6136 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6137 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6138 } 6139 return value; 6140 } 6141 6142 static const ARMCPRegInfo el2_cp_reginfo[] = { 6143 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 6144 .type = ARM_CP_IO, 6145 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6146 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6147 .nv2_redirect_offset = 0x78, 6148 .writefn = hcr_write, .raw_writefn = raw_write }, 6149 { .name = "HCR", .state = ARM_CP_STATE_AA32, 6150 .type = ARM_CP_ALIAS | ARM_CP_IO, 6151 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6152 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6153 .writefn = hcr_writelow }, 6154 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 6155 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 6156 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6157 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 6158 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 6159 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 6160 .access = PL2_RW, 6161 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 6162 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 6163 .type = ARM_CP_NV2_REDIRECT, 6164 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 6165 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 6166 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 6167 .type = ARM_CP_NV2_REDIRECT, 6168 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 6169 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 6170 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 6171 .type = ARM_CP_ALIAS, 6172 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 6173 .access = PL2_RW, 6174 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 6175 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 6176 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 6177 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 6178 .access = PL2_RW, 6179 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 6180 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 6181 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 6182 .access = PL2_RW, .writefn = vbar_write, 6183 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 6184 .resetvalue = 0 }, 6185 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 6186 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 6187 .access = PL3_RW, .type = ARM_CP_ALIAS, 6188 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 6189 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 6190 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 6191 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 6192 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 6193 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 6194 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 6195 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 6196 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 6197 .resetvalue = 0 }, 6198 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 6199 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 6200 .access = PL2_RW, .type = ARM_CP_ALIAS, 6201 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 6202 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 6203 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 6204 .access = PL2_RW, .type = ARM_CP_CONST, 6205 .resetvalue = 0 }, 6206 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 6207 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 6208 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 6209 .access = PL2_RW, .type = ARM_CP_CONST, 6210 .resetvalue = 0 }, 6211 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 6212 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 6213 .access = PL2_RW, .type = ARM_CP_CONST, 6214 .resetvalue = 0 }, 6215 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 6216 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 6217 .access = PL2_RW, .type = ARM_CP_CONST, 6218 .resetvalue = 0 }, 6219 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 6220 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 6221 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 6222 .raw_writefn = raw_write, 6223 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 6224 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 6225 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6226 .type = ARM_CP_ALIAS, 6227 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6228 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 6229 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 6230 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6231 .access = PL2_RW, 6232 .nv2_redirect_offset = 0x40, 6233 /* no .writefn needed as this can't cause an ASID change */ 6234 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 6235 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 6236 .cp = 15, .opc1 = 6, .crm = 2, 6237 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6238 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6239 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 6240 .writefn = vttbr_write, .raw_writefn = raw_write }, 6241 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 6242 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 6243 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write, 6244 .nv2_redirect_offset = 0x20, 6245 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 6246 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 6247 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 6248 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 6249 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 6250 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6251 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 6252 .access = PL2_RW, .resetvalue = 0, 6253 .nv2_redirect_offset = 0x90, 6254 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 6255 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 6256 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 6257 .access = PL2_RW, .resetvalue = 0, 6258 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write, 6259 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6260 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 6261 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6262 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6263 { .name = "TLBIALLNSNH", 6264 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 6265 .type = ARM_CP_NO_RAW, .access = PL2_W, 6266 .writefn = tlbiall_nsnh_write }, 6267 { .name = "TLBIALLNSNHIS", 6268 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 6269 .type = ARM_CP_NO_RAW, .access = PL2_W, 6270 .writefn = tlbiall_nsnh_is_write }, 6271 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6272 .type = ARM_CP_NO_RAW, .access = PL2_W, 6273 .writefn = tlbiall_hyp_write }, 6274 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6275 .type = ARM_CP_NO_RAW, .access = PL2_W, 6276 .writefn = tlbiall_hyp_is_write }, 6277 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6278 .type = ARM_CP_NO_RAW, .access = PL2_W, 6279 .writefn = tlbimva_hyp_write }, 6280 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6281 .type = ARM_CP_NO_RAW, .access = PL2_W, 6282 .writefn = tlbimva_hyp_is_write }, 6283 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 6284 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6285 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6286 .writefn = tlbi_aa64_alle2_write }, 6287 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 6288 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6289 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6290 .writefn = tlbi_aa64_vae2_write }, 6291 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 6292 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 6293 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6294 .writefn = tlbi_aa64_vae2_write }, 6295 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 6296 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6297 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6298 .writefn = tlbi_aa64_alle2is_write }, 6299 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 6300 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6301 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6302 .writefn = tlbi_aa64_vae2is_write }, 6303 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 6304 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 6305 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6306 .writefn = tlbi_aa64_vae2is_write }, 6307 #ifndef CONFIG_USER_ONLY 6308 /* 6309 * Unlike the other EL2-related AT operations, these must 6310 * UNDEF from EL3 if EL2 is not implemented, which is why we 6311 * define them here rather than with the rest of the AT ops. 6312 */ 6313 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 6314 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6315 .access = PL2_W, .accessfn = at_s1e2_access, 6316 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6317 .writefn = ats_write64 }, 6318 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 6319 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6320 .access = PL2_W, .accessfn = at_s1e2_access, 6321 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6322 .writefn = ats_write64 }, 6323 /* 6324 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 6325 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 6326 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 6327 * to behave as if SCR.NS was 1. 6328 */ 6329 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6330 .access = PL2_W, 6331 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6332 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6333 .access = PL2_W, 6334 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6335 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6336 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6337 /* 6338 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6339 * reset values as IMPDEF. We choose to reset to 3 to comply with 6340 * both ARMv7 and ARMv8. 6341 */ 6342 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3, 6343 .writefn = gt_cnthctl_write, .raw_writefn = raw_write, 6344 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6345 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6346 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6347 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6348 .writefn = gt_cntvoff_write, 6349 .nv2_redirect_offset = 0x60, 6350 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6351 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6352 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6353 .writefn = gt_cntvoff_write, 6354 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6355 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6356 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6357 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6358 .type = ARM_CP_IO, .access = PL2_RW, 6359 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6360 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6361 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6362 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6363 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6364 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6365 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6366 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6367 .resetfn = gt_hyp_timer_reset, 6368 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6369 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6370 .type = ARM_CP_IO, 6371 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6372 .access = PL2_RW, 6373 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6374 .resetvalue = 0, 6375 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6376 #endif 6377 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6378 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6379 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6380 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6381 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6382 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6383 .access = PL2_RW, 6384 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6385 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6386 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6387 .access = PL2_RW, 6388 .nv2_redirect_offset = 0x80, 6389 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6390 }; 6391 6392 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6393 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6394 .type = ARM_CP_ALIAS | ARM_CP_IO, 6395 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6396 .access = PL2_RW, 6397 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6398 .writefn = hcr_writehigh }, 6399 }; 6400 6401 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6402 bool isread) 6403 { 6404 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6405 return CP_ACCESS_OK; 6406 } 6407 return CP_ACCESS_TRAP_UNCATEGORIZED; 6408 } 6409 6410 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6411 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6412 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6413 .access = PL2_RW, .accessfn = sel2_access, 6414 .nv2_redirect_offset = 0x30, 6415 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6416 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6417 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6418 .access = PL2_RW, .accessfn = sel2_access, 6419 .nv2_redirect_offset = 0x48, 6420 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6421 }; 6422 6423 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6424 bool isread) 6425 { 6426 /* 6427 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6428 * At Secure EL1 it traps to EL3 or EL2. 6429 */ 6430 if (arm_current_el(env) == 3) { 6431 return CP_ACCESS_OK; 6432 } 6433 if (arm_is_secure_below_el3(env)) { 6434 if (env->cp15.scr_el3 & SCR_EEL2) { 6435 return CP_ACCESS_TRAP_EL2; 6436 } 6437 return CP_ACCESS_TRAP_EL3; 6438 } 6439 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6440 if (isread) { 6441 return CP_ACCESS_OK; 6442 } 6443 return CP_ACCESS_TRAP_UNCATEGORIZED; 6444 } 6445 6446 static const ARMCPRegInfo el3_cp_reginfo[] = { 6447 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6448 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6449 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6450 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write }, 6451 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6452 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6453 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6454 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6455 .writefn = scr_write, .raw_writefn = raw_write }, 6456 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6457 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6458 .access = PL3_RW, .resetvalue = 0, 6459 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6460 { .name = "SDER", 6461 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6462 .access = PL3_RW, .resetvalue = 0, 6463 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6464 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6465 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6466 .writefn = vbar_write, .resetvalue = 0, 6467 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6468 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6469 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6470 .access = PL3_RW, .resetvalue = 0, 6471 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6472 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6473 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6474 .access = PL3_RW, 6475 /* no .writefn needed as this can't cause an ASID change */ 6476 .resetvalue = 0, 6477 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6478 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6479 .type = ARM_CP_ALIAS, 6480 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6481 .access = PL3_RW, 6482 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6483 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6484 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6485 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6486 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6487 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6488 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6489 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6490 .type = ARM_CP_ALIAS, 6491 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6492 .access = PL3_RW, 6493 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6494 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6495 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6496 .access = PL3_RW, .writefn = vbar_write, 6497 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6498 .resetvalue = 0 }, 6499 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6500 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6501 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6502 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6503 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6504 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6505 .access = PL3_RW, .resetvalue = 0, 6506 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6507 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6508 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6509 .access = PL3_RW, .type = ARM_CP_CONST, 6510 .resetvalue = 0 }, 6511 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6512 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6513 .access = PL3_RW, .type = ARM_CP_CONST, 6514 .resetvalue = 0 }, 6515 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6516 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6517 .access = PL3_RW, .type = ARM_CP_CONST, 6518 .resetvalue = 0 }, 6519 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6520 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6521 .access = PL3_W, .type = ARM_CP_NO_RAW, 6522 .writefn = tlbi_aa64_alle3is_write }, 6523 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6524 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6525 .access = PL3_W, .type = ARM_CP_NO_RAW, 6526 .writefn = tlbi_aa64_vae3is_write }, 6527 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6528 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6529 .access = PL3_W, .type = ARM_CP_NO_RAW, 6530 .writefn = tlbi_aa64_vae3is_write }, 6531 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6532 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6533 .access = PL3_W, .type = ARM_CP_NO_RAW, 6534 .writefn = tlbi_aa64_alle3_write }, 6535 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6536 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6537 .access = PL3_W, .type = ARM_CP_NO_RAW, 6538 .writefn = tlbi_aa64_vae3_write }, 6539 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6540 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6541 .access = PL3_W, .type = ARM_CP_NO_RAW, 6542 .writefn = tlbi_aa64_vae3_write }, 6543 }; 6544 6545 #ifndef CONFIG_USER_ONLY 6546 /* Test if system register redirection is to occur in the current state. */ 6547 static bool redirect_for_e2h(CPUARMState *env) 6548 { 6549 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6550 } 6551 6552 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6553 { 6554 CPReadFn *readfn; 6555 6556 if (redirect_for_e2h(env)) { 6557 /* Switch to the saved EL2 version of the register. */ 6558 ri = ri->opaque; 6559 readfn = ri->readfn; 6560 } else { 6561 readfn = ri->orig_readfn; 6562 } 6563 if (readfn == NULL) { 6564 readfn = raw_read; 6565 } 6566 return readfn(env, ri); 6567 } 6568 6569 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6570 uint64_t value) 6571 { 6572 CPWriteFn *writefn; 6573 6574 if (redirect_for_e2h(env)) { 6575 /* Switch to the saved EL2 version of the register. */ 6576 ri = ri->opaque; 6577 writefn = ri->writefn; 6578 } else { 6579 writefn = ri->orig_writefn; 6580 } 6581 if (writefn == NULL) { 6582 writefn = raw_write; 6583 } 6584 writefn(env, ri, value); 6585 } 6586 6587 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri) 6588 { 6589 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6590 return ri->orig_readfn(env, ri->opaque); 6591 } 6592 6593 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri, 6594 uint64_t value) 6595 { 6596 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6597 return ri->orig_writefn(env, ri->opaque, value); 6598 } 6599 6600 static CPAccessResult el2_e2h_e12_access(CPUARMState *env, 6601 const ARMCPRegInfo *ri, 6602 bool isread) 6603 { 6604 if (arm_current_el(env) == 1) { 6605 /* 6606 * This must be a FEAT_NV access (will either trap or redirect 6607 * to memory). None of the registers with _EL12 aliases want to 6608 * apply their trap controls for this kind of access, so don't 6609 * call the orig_accessfn or do the "UNDEF when E2H is 0" check. 6610 */ 6611 return CP_ACCESS_OK; 6612 } 6613 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */ 6614 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6615 return CP_ACCESS_TRAP_UNCATEGORIZED; 6616 } 6617 if (ri->orig_accessfn) { 6618 return ri->orig_accessfn(env, ri->opaque, isread); 6619 } 6620 return CP_ACCESS_OK; 6621 } 6622 6623 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6624 { 6625 struct E2HAlias { 6626 uint32_t src_key, dst_key, new_key; 6627 const char *src_name, *dst_name, *new_name; 6628 bool (*feature)(const ARMISARegisters *id); 6629 }; 6630 6631 #define K(op0, op1, crn, crm, op2) \ 6632 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6633 6634 static const struct E2HAlias aliases[] = { 6635 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6636 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6637 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6638 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6639 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6640 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6641 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6642 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6643 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6644 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6645 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6646 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6647 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6648 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6649 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6650 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6651 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6652 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6653 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6654 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6655 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6656 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6657 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6658 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6659 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6660 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6661 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6662 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6663 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6664 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6665 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6666 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6667 6668 /* 6669 * Note that redirection of ZCR is mentioned in the description 6670 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6671 * not in the summary table. 6672 */ 6673 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6674 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6675 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6676 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6677 6678 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6679 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6680 6681 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6682 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6683 isar_feature_aa64_scxtnum }, 6684 6685 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6686 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6687 }; 6688 #undef K 6689 6690 size_t i; 6691 6692 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6693 const struct E2HAlias *a = &aliases[i]; 6694 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6695 bool ok; 6696 6697 if (a->feature && !a->feature(&cpu->isar)) { 6698 continue; 6699 } 6700 6701 src_reg = g_hash_table_lookup(cpu->cp_regs, 6702 (gpointer)(uintptr_t)a->src_key); 6703 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6704 (gpointer)(uintptr_t)a->dst_key); 6705 g_assert(src_reg != NULL); 6706 g_assert(dst_reg != NULL); 6707 6708 /* Cross-compare names to detect typos in the keys. */ 6709 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6710 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6711 6712 /* None of the core system registers use opaque; we will. */ 6713 g_assert(src_reg->opaque == NULL); 6714 6715 /* Create alias before redirection so we dup the right data. */ 6716 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6717 6718 new_reg->name = a->new_name; 6719 new_reg->type |= ARM_CP_ALIAS; 6720 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6721 new_reg->access &= PL2_RW | PL3_RW; 6722 /* The new_reg op fields are as per new_key, not the target reg */ 6723 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK) 6724 >> CP_REG_ARM64_SYSREG_CRN_SHIFT; 6725 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK) 6726 >> CP_REG_ARM64_SYSREG_CRM_SHIFT; 6727 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK) 6728 >> CP_REG_ARM64_SYSREG_OP0_SHIFT; 6729 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK) 6730 >> CP_REG_ARM64_SYSREG_OP1_SHIFT; 6731 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK) 6732 >> CP_REG_ARM64_SYSREG_OP2_SHIFT; 6733 new_reg->opaque = src_reg; 6734 new_reg->orig_readfn = src_reg->readfn ?: raw_read; 6735 new_reg->orig_writefn = src_reg->writefn ?: raw_write; 6736 new_reg->orig_accessfn = src_reg->accessfn; 6737 if (!new_reg->raw_readfn) { 6738 new_reg->raw_readfn = raw_read; 6739 } 6740 if (!new_reg->raw_writefn) { 6741 new_reg->raw_writefn = raw_write; 6742 } 6743 new_reg->readfn = el2_e2h_e12_read; 6744 new_reg->writefn = el2_e2h_e12_write; 6745 new_reg->accessfn = el2_e2h_e12_access; 6746 6747 /* 6748 * If the _EL1 register is redirected to memory by FEAT_NV2, 6749 * then it shares the offset with the _EL12 register, 6750 * and which one is redirected depends on HCR_EL2.NV1. 6751 */ 6752 if (new_reg->nv2_redirect_offset) { 6753 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1); 6754 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1; 6755 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1; 6756 } 6757 6758 ok = g_hash_table_insert(cpu->cp_regs, 6759 (gpointer)(uintptr_t)a->new_key, new_reg); 6760 g_assert(ok); 6761 6762 src_reg->opaque = dst_reg; 6763 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6764 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6765 if (!src_reg->raw_readfn) { 6766 src_reg->raw_readfn = raw_read; 6767 } 6768 if (!src_reg->raw_writefn) { 6769 src_reg->raw_writefn = raw_write; 6770 } 6771 src_reg->readfn = el2_e2h_read; 6772 src_reg->writefn = el2_e2h_write; 6773 } 6774 } 6775 #endif 6776 6777 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6778 bool isread) 6779 { 6780 int cur_el = arm_current_el(env); 6781 6782 if (cur_el < 2) { 6783 uint64_t hcr = arm_hcr_el2_eff(env); 6784 6785 if (cur_el == 0) { 6786 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6787 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6788 return CP_ACCESS_TRAP_EL2; 6789 } 6790 } else { 6791 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6792 return CP_ACCESS_TRAP; 6793 } 6794 if (hcr & HCR_TID2) { 6795 return CP_ACCESS_TRAP_EL2; 6796 } 6797 } 6798 } else if (hcr & HCR_TID2) { 6799 return CP_ACCESS_TRAP_EL2; 6800 } 6801 } 6802 6803 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6804 return CP_ACCESS_TRAP_EL2; 6805 } 6806 6807 return CP_ACCESS_OK; 6808 } 6809 6810 /* 6811 * Check for traps to RAS registers, which are controlled 6812 * by HCR_EL2.TERR and SCR_EL3.TERR. 6813 */ 6814 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6815 bool isread) 6816 { 6817 int el = arm_current_el(env); 6818 6819 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6820 return CP_ACCESS_TRAP_EL2; 6821 } 6822 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6823 return CP_ACCESS_TRAP_EL3; 6824 } 6825 return CP_ACCESS_OK; 6826 } 6827 6828 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6829 { 6830 int el = arm_current_el(env); 6831 6832 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6833 return env->cp15.vdisr_el2; 6834 } 6835 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6836 return 0; /* RAZ/WI */ 6837 } 6838 return env->cp15.disr_el1; 6839 } 6840 6841 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6842 { 6843 int el = arm_current_el(env); 6844 6845 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6846 env->cp15.vdisr_el2 = val; 6847 return; 6848 } 6849 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6850 return; /* RAZ/WI */ 6851 } 6852 env->cp15.disr_el1 = val; 6853 } 6854 6855 /* 6856 * Minimal RAS implementation with no Error Records. 6857 * Which means that all of the Error Record registers: 6858 * ERXADDR_EL1 6859 * ERXCTLR_EL1 6860 * ERXFR_EL1 6861 * ERXMISC0_EL1 6862 * ERXMISC1_EL1 6863 * ERXMISC2_EL1 6864 * ERXMISC3_EL1 6865 * ERXPFGCDN_EL1 (RASv1p1) 6866 * ERXPFGCTL_EL1 (RASv1p1) 6867 * ERXPFGF_EL1 (RASv1p1) 6868 * ERXSTATUS_EL1 6869 * and 6870 * ERRSELR_EL1 6871 * may generate UNDEFINED, which is the effect we get by not 6872 * listing them at all. 6873 * 6874 * These registers have fine-grained trap bits, but UNDEF-to-EL1 6875 * is higher priority than FGT-to-EL2 so we do not need to list them 6876 * in order to check for an FGT. 6877 */ 6878 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6879 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6880 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6881 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6882 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6883 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6884 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6885 .access = PL1_R, .accessfn = access_terr, 6886 .fgt = FGT_ERRIDR_EL1, 6887 .type = ARM_CP_CONST, .resetvalue = 0 }, 6888 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6889 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6890 .nv2_redirect_offset = 0x500, 6891 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6892 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6893 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6894 .nv2_redirect_offset = 0x508, 6895 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6896 }; 6897 6898 /* 6899 * Return the exception level to which exceptions should be taken 6900 * via SVEAccessTrap. This excludes the check for whether the exception 6901 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6902 * be found by testing 0 < fp_exception_el < sve_exception_el. 6903 * 6904 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6905 * pseudocode does *not* separate out the FP trap checks, but has them 6906 * all in one function. 6907 */ 6908 int sve_exception_el(CPUARMState *env, int el) 6909 { 6910 #ifndef CONFIG_USER_ONLY 6911 if (el <= 1 && !el_is_in_host(env, el)) { 6912 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6913 case 1: 6914 if (el != 0) { 6915 break; 6916 } 6917 /* fall through */ 6918 case 0: 6919 case 2: 6920 return 1; 6921 } 6922 } 6923 6924 if (el <= 2 && arm_is_el2_enabled(env)) { 6925 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6926 if (env->cp15.hcr_el2 & HCR_E2H) { 6927 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6928 case 1: 6929 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6930 break; 6931 } 6932 /* fall through */ 6933 case 0: 6934 case 2: 6935 return 2; 6936 } 6937 } else { 6938 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6939 return 2; 6940 } 6941 } 6942 } 6943 6944 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6945 if (arm_feature(env, ARM_FEATURE_EL3) 6946 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6947 return 3; 6948 } 6949 #endif 6950 return 0; 6951 } 6952 6953 /* 6954 * Return the exception level to which exceptions should be taken for SME. 6955 * C.f. the ARM pseudocode function CheckSMEAccess. 6956 */ 6957 int sme_exception_el(CPUARMState *env, int el) 6958 { 6959 #ifndef CONFIG_USER_ONLY 6960 if (el <= 1 && !el_is_in_host(env, el)) { 6961 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6962 case 1: 6963 if (el != 0) { 6964 break; 6965 } 6966 /* fall through */ 6967 case 0: 6968 case 2: 6969 return 1; 6970 } 6971 } 6972 6973 if (el <= 2 && arm_is_el2_enabled(env)) { 6974 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6975 if (env->cp15.hcr_el2 & HCR_E2H) { 6976 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6977 case 1: 6978 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6979 break; 6980 } 6981 /* fall through */ 6982 case 0: 6983 case 2: 6984 return 2; 6985 } 6986 } else { 6987 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6988 return 2; 6989 } 6990 } 6991 } 6992 6993 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6994 if (arm_feature(env, ARM_FEATURE_EL3) 6995 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6996 return 3; 6997 } 6998 #endif 6999 return 0; 7000 } 7001 7002 /* 7003 * Given that SVE is enabled, return the vector length for EL. 7004 */ 7005 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 7006 { 7007 ARMCPU *cpu = env_archcpu(env); 7008 uint64_t *cr = env->vfp.zcr_el; 7009 uint32_t map = cpu->sve_vq.map; 7010 uint32_t len = ARM_MAX_VQ - 1; 7011 7012 if (sm) { 7013 cr = env->vfp.smcr_el; 7014 map = cpu->sme_vq.map; 7015 } 7016 7017 if (el <= 1 && !el_is_in_host(env, el)) { 7018 len = MIN(len, 0xf & (uint32_t)cr[1]); 7019 } 7020 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 7021 len = MIN(len, 0xf & (uint32_t)cr[2]); 7022 } 7023 if (arm_feature(env, ARM_FEATURE_EL3)) { 7024 len = MIN(len, 0xf & (uint32_t)cr[3]); 7025 } 7026 7027 map &= MAKE_64BIT_MASK(0, len + 1); 7028 if (map != 0) { 7029 return 31 - clz32(map); 7030 } 7031 7032 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 7033 assert(sm); 7034 return ctz32(cpu->sme_vq.map); 7035 } 7036 7037 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 7038 { 7039 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 7040 } 7041 7042 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7043 uint64_t value) 7044 { 7045 int cur_el = arm_current_el(env); 7046 int old_len = sve_vqm1_for_el(env, cur_el); 7047 int new_len; 7048 7049 /* Bits other than [3:0] are RAZ/WI. */ 7050 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 7051 raw_write(env, ri, value & 0xf); 7052 7053 /* 7054 * Because we arrived here, we know both FP and SVE are enabled; 7055 * otherwise we would have trapped access to the ZCR_ELn register. 7056 */ 7057 new_len = sve_vqm1_for_el(env, cur_el); 7058 if (new_len < old_len) { 7059 aarch64_sve_narrow_vq(env, new_len + 1); 7060 } 7061 } 7062 7063 static const ARMCPRegInfo zcr_reginfo[] = { 7064 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 7065 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 7066 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1, 7067 .access = PL1_RW, .type = ARM_CP_SVE, 7068 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 7069 .writefn = zcr_write, .raw_writefn = raw_write }, 7070 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 7071 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 7072 .access = PL2_RW, .type = ARM_CP_SVE, 7073 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 7074 .writefn = zcr_write, .raw_writefn = raw_write }, 7075 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 7076 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 7077 .access = PL3_RW, .type = ARM_CP_SVE, 7078 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 7079 .writefn = zcr_write, .raw_writefn = raw_write }, 7080 }; 7081 7082 #ifdef TARGET_AARCH64 7083 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 7084 bool isread) 7085 { 7086 int el = arm_current_el(env); 7087 7088 if (el == 0) { 7089 uint64_t sctlr = arm_sctlr(env, el); 7090 if (!(sctlr & SCTLR_EnTP2)) { 7091 return CP_ACCESS_TRAP; 7092 } 7093 } 7094 /* TODO: FEAT_FGT */ 7095 if (el < 3 7096 && arm_feature(env, ARM_FEATURE_EL3) 7097 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 7098 return CP_ACCESS_TRAP_EL3; 7099 } 7100 return CP_ACCESS_OK; 7101 } 7102 7103 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri, 7104 bool isread) 7105 { 7106 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */ 7107 if (arm_current_el(env) == 2 7108 && arm_feature(env, ARM_FEATURE_EL3) 7109 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7110 return CP_ACCESS_TRAP_EL3; 7111 } 7112 return CP_ACCESS_OK; 7113 } 7114 7115 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri, 7116 bool isread) 7117 { 7118 if (arm_current_el(env) < 3 7119 && arm_feature(env, ARM_FEATURE_EL3) 7120 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7121 return CP_ACCESS_TRAP_EL3; 7122 } 7123 return CP_ACCESS_OK; 7124 } 7125 7126 /* ResetSVEState */ 7127 static void arm_reset_sve_state(CPUARMState *env) 7128 { 7129 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 7130 /* Recall that FFR is stored as pregs[16]. */ 7131 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 7132 vfp_set_fpcr(env, 0x0800009f); 7133 } 7134 7135 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 7136 { 7137 uint64_t change = (env->svcr ^ new) & mask; 7138 7139 if (change == 0) { 7140 return; 7141 } 7142 env->svcr ^= change; 7143 7144 if (change & R_SVCR_SM_MASK) { 7145 arm_reset_sve_state(env); 7146 } 7147 7148 /* 7149 * ResetSMEState. 7150 * 7151 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 7152 * on enable: while disabled, the storage is inaccessible and the 7153 * value does not matter. We're not saving the storage in vmstate 7154 * when disabled either. 7155 */ 7156 if (change & new & R_SVCR_ZA_MASK) { 7157 memset(env->zarray, 0, sizeof(env->zarray)); 7158 } 7159 7160 if (tcg_enabled()) { 7161 arm_rebuild_hflags(env); 7162 } 7163 } 7164 7165 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7166 uint64_t value) 7167 { 7168 aarch64_set_svcr(env, value, -1); 7169 } 7170 7171 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7172 uint64_t value) 7173 { 7174 int cur_el = arm_current_el(env); 7175 int old_len = sve_vqm1_for_el(env, cur_el); 7176 int new_len; 7177 7178 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 7179 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 7180 raw_write(env, ri, value); 7181 7182 /* 7183 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 7184 * when SVL is widened (old values kept, or zeros). Choose to keep the 7185 * current values for simplicity. But for QEMU internals, we must still 7186 * apply the narrower SVL to the Zregs and Pregs -- see the comment 7187 * above aarch64_sve_narrow_vq. 7188 */ 7189 new_len = sve_vqm1_for_el(env, cur_el); 7190 if (new_len < old_len) { 7191 aarch64_sve_narrow_vq(env, new_len + 1); 7192 } 7193 } 7194 7195 static const ARMCPRegInfo sme_reginfo[] = { 7196 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 7197 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 7198 .access = PL0_RW, .accessfn = access_tpidr2, 7199 .fgt = FGT_NTPIDR2_EL0, 7200 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 7201 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 7202 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 7203 .access = PL0_RW, .type = ARM_CP_SME, 7204 .fieldoffset = offsetof(CPUARMState, svcr), 7205 .writefn = svcr_write, .raw_writefn = raw_write }, 7206 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 7207 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 7208 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1, 7209 .access = PL1_RW, .type = ARM_CP_SME, 7210 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 7211 .writefn = smcr_write, .raw_writefn = raw_write }, 7212 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 7213 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 7214 .access = PL2_RW, .type = ARM_CP_SME, 7215 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 7216 .writefn = smcr_write, .raw_writefn = raw_write }, 7217 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 7218 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 7219 .access = PL3_RW, .type = ARM_CP_SME, 7220 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 7221 .writefn = smcr_write, .raw_writefn = raw_write }, 7222 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 7223 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 7224 .access = PL1_R, .accessfn = access_aa64_tid1, 7225 /* 7226 * IMPLEMENTOR = 0 (software) 7227 * REVISION = 0 (implementation defined) 7228 * SMPS = 0 (no streaming execution priority in QEMU) 7229 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 7230 */ 7231 .type = ARM_CP_CONST, .resetvalue = 0, }, 7232 /* 7233 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 7234 */ 7235 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 7236 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 7237 .access = PL1_RW, .accessfn = access_smpri, 7238 .fgt = FGT_NSMPRI_EL1, 7239 .type = ARM_CP_CONST, .resetvalue = 0 }, 7240 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 7241 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 7242 .nv2_redirect_offset = 0x1f8, 7243 .access = PL2_RW, .accessfn = access_smprimap, 7244 .type = ARM_CP_CONST, .resetvalue = 0 }, 7245 }; 7246 7247 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri, 7248 uint64_t value) 7249 { 7250 CPUState *cs = env_cpu(env); 7251 7252 tlb_flush(cs); 7253 } 7254 7255 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7256 uint64_t value) 7257 { 7258 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 7259 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 7260 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 7261 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 7262 7263 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 7264 } 7265 7266 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 7267 { 7268 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 7269 env_archcpu(env)->reset_l0gptsz); 7270 } 7271 7272 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri, 7273 uint64_t value) 7274 { 7275 CPUState *cs = env_cpu(env); 7276 7277 tlb_flush_all_cpus_synced(cs); 7278 } 7279 7280 static const ARMCPRegInfo rme_reginfo[] = { 7281 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 7282 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 7283 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 7284 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 7285 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 7286 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 7287 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 7288 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 7289 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 7290 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 7291 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64, 7292 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4, 7293 .access = PL3_W, .type = ARM_CP_NO_RAW, 7294 .writefn = tlbi_aa64_paall_write }, 7295 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64, 7296 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4, 7297 .access = PL3_W, .type = ARM_CP_NO_RAW, 7298 .writefn = tlbi_aa64_paallos_write }, 7299 /* 7300 * QEMU does not have a way to invalidate by physical address, thus 7301 * invalidating a range of physical addresses is accomplished by 7302 * flushing all tlb entries in the outer shareable domain, 7303 * just like PAALLOS. 7304 */ 7305 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64, 7306 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7, 7307 .access = PL3_W, .type = ARM_CP_NO_RAW, 7308 .writefn = tlbi_aa64_paallos_write }, 7309 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64, 7310 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3, 7311 .access = PL3_W, .type = ARM_CP_NO_RAW, 7312 .writefn = tlbi_aa64_paallos_write }, 7313 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 7314 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 7315 .access = PL3_W, .type = ARM_CP_NOP }, 7316 }; 7317 7318 static const ARMCPRegInfo rme_mte_reginfo[] = { 7319 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 7320 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 7321 .access = PL3_W, .type = ARM_CP_NOP }, 7322 }; 7323 #endif /* TARGET_AARCH64 */ 7324 7325 static void define_pmu_regs(ARMCPU *cpu) 7326 { 7327 /* 7328 * v7 performance monitor control register: same implementor 7329 * field as main ID register, and we implement four counters in 7330 * addition to the cycle count register. 7331 */ 7332 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 7333 ARMCPRegInfo pmcr = { 7334 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 7335 .access = PL0_RW, 7336 .fgt = FGT_PMCR_EL0, 7337 .type = ARM_CP_IO | ARM_CP_ALIAS, 7338 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 7339 .accessfn = pmreg_access, 7340 .readfn = pmcr_read, .raw_readfn = raw_read, 7341 .writefn = pmcr_write, .raw_writefn = raw_write, 7342 }; 7343 ARMCPRegInfo pmcr64 = { 7344 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 7345 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 7346 .access = PL0_RW, .accessfn = pmreg_access, 7347 .fgt = FGT_PMCR_EL0, 7348 .type = ARM_CP_IO, 7349 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 7350 .resetvalue = cpu->isar.reset_pmcr_el0, 7351 .readfn = pmcr_read, .raw_readfn = raw_read, 7352 .writefn = pmcr_write, .raw_writefn = raw_write, 7353 }; 7354 7355 define_one_arm_cp_reg(cpu, &pmcr); 7356 define_one_arm_cp_reg(cpu, &pmcr64); 7357 for (i = 0; i < pmcrn; i++) { 7358 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 7359 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 7360 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 7361 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 7362 ARMCPRegInfo pmev_regs[] = { 7363 { .name = pmevcntr_name, .cp = 15, .crn = 14, 7364 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7365 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7366 .fgt = FGT_PMEVCNTRN_EL0, 7367 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7368 .accessfn = pmreg_access_xevcntr }, 7369 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 7370 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 7371 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 7372 .type = ARM_CP_IO, 7373 .fgt = FGT_PMEVCNTRN_EL0, 7374 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7375 .raw_readfn = pmevcntr_rawread, 7376 .raw_writefn = pmevcntr_rawwrite }, 7377 { .name = pmevtyper_name, .cp = 15, .crn = 14, 7378 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7379 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7380 .fgt = FGT_PMEVTYPERN_EL0, 7381 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7382 .accessfn = pmreg_access }, 7383 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 7384 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 7385 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 7386 .fgt = FGT_PMEVTYPERN_EL0, 7387 .type = ARM_CP_IO, 7388 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7389 .raw_writefn = pmevtyper_rawwrite }, 7390 }; 7391 define_arm_cp_regs(cpu, pmev_regs); 7392 g_free(pmevcntr_name); 7393 g_free(pmevcntr_el0_name); 7394 g_free(pmevtyper_name); 7395 g_free(pmevtyper_el0_name); 7396 } 7397 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 7398 ARMCPRegInfo v81_pmu_regs[] = { 7399 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 7400 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 7401 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7402 .fgt = FGT_PMCEIDN_EL0, 7403 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 7404 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 7405 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 7406 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7407 .fgt = FGT_PMCEIDN_EL0, 7408 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 7409 }; 7410 define_arm_cp_regs(cpu, v81_pmu_regs); 7411 } 7412 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 7413 static const ARMCPRegInfo v84_pmmir = { 7414 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 7415 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 7416 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7417 .fgt = FGT_PMMIR_EL1, 7418 .resetvalue = 0 7419 }; 7420 define_one_arm_cp_reg(cpu, &v84_pmmir); 7421 } 7422 } 7423 7424 #ifndef CONFIG_USER_ONLY 7425 /* 7426 * We don't know until after realize whether there's a GICv3 7427 * attached, and that is what registers the gicv3 sysregs. 7428 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 7429 * at runtime. 7430 */ 7431 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 7432 { 7433 ARMCPU *cpu = env_archcpu(env); 7434 uint64_t pfr1 = cpu->isar.id_pfr1; 7435 7436 if (env->gicv3state) { 7437 pfr1 |= 1 << 28; 7438 } 7439 return pfr1; 7440 } 7441 7442 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 7443 { 7444 ARMCPU *cpu = env_archcpu(env); 7445 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 7446 7447 if (env->gicv3state) { 7448 pfr0 |= 1 << 24; 7449 } 7450 return pfr0; 7451 } 7452 #endif 7453 7454 /* 7455 * Shared logic between LORID and the rest of the LOR* registers. 7456 * Secure state exclusion has already been dealt with. 7457 */ 7458 static CPAccessResult access_lor_ns(CPUARMState *env, 7459 const ARMCPRegInfo *ri, bool isread) 7460 { 7461 int el = arm_current_el(env); 7462 7463 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 7464 return CP_ACCESS_TRAP_EL2; 7465 } 7466 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 7467 return CP_ACCESS_TRAP_EL3; 7468 } 7469 return CP_ACCESS_OK; 7470 } 7471 7472 static CPAccessResult access_lor_other(CPUARMState *env, 7473 const ARMCPRegInfo *ri, bool isread) 7474 { 7475 if (arm_is_secure_below_el3(env)) { 7476 /* Access denied in secure mode. */ 7477 return CP_ACCESS_TRAP; 7478 } 7479 return access_lor_ns(env, ri, isread); 7480 } 7481 7482 /* 7483 * A trivial implementation of ARMv8.1-LOR leaves all of these 7484 * registers fixed at 0, which indicates that there are zero 7485 * supported Limited Ordering regions. 7486 */ 7487 static const ARMCPRegInfo lor_reginfo[] = { 7488 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7489 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7490 .access = PL1_RW, .accessfn = access_lor_other, 7491 .fgt = FGT_LORSA_EL1, 7492 .type = ARM_CP_CONST, .resetvalue = 0 }, 7493 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7494 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7495 .access = PL1_RW, .accessfn = access_lor_other, 7496 .fgt = FGT_LOREA_EL1, 7497 .type = ARM_CP_CONST, .resetvalue = 0 }, 7498 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7499 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7500 .access = PL1_RW, .accessfn = access_lor_other, 7501 .fgt = FGT_LORN_EL1, 7502 .type = ARM_CP_CONST, .resetvalue = 0 }, 7503 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7504 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7505 .access = PL1_RW, .accessfn = access_lor_other, 7506 .fgt = FGT_LORC_EL1, 7507 .type = ARM_CP_CONST, .resetvalue = 0 }, 7508 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7509 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7510 .access = PL1_R, .accessfn = access_lor_ns, 7511 .fgt = FGT_LORID_EL1, 7512 .type = ARM_CP_CONST, .resetvalue = 0 }, 7513 }; 7514 7515 #ifdef TARGET_AARCH64 7516 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7517 bool isread) 7518 { 7519 int el = arm_current_el(env); 7520 7521 if (el < 2 && 7522 arm_is_el2_enabled(env) && 7523 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7524 return CP_ACCESS_TRAP_EL2; 7525 } 7526 if (el < 3 && 7527 arm_feature(env, ARM_FEATURE_EL3) && 7528 !(env->cp15.scr_el3 & SCR_APK)) { 7529 return CP_ACCESS_TRAP_EL3; 7530 } 7531 return CP_ACCESS_OK; 7532 } 7533 7534 static const ARMCPRegInfo pauth_reginfo[] = { 7535 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7536 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7537 .access = PL1_RW, .accessfn = access_pauth, 7538 .fgt = FGT_APDAKEY, 7539 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7540 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7541 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7542 .access = PL1_RW, .accessfn = access_pauth, 7543 .fgt = FGT_APDAKEY, 7544 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7545 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7546 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7547 .access = PL1_RW, .accessfn = access_pauth, 7548 .fgt = FGT_APDBKEY, 7549 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7550 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7551 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7552 .access = PL1_RW, .accessfn = access_pauth, 7553 .fgt = FGT_APDBKEY, 7554 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7555 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7556 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7557 .access = PL1_RW, .accessfn = access_pauth, 7558 .fgt = FGT_APGAKEY, 7559 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7560 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7561 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7562 .access = PL1_RW, .accessfn = access_pauth, 7563 .fgt = FGT_APGAKEY, 7564 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7565 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7566 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7567 .access = PL1_RW, .accessfn = access_pauth, 7568 .fgt = FGT_APIAKEY, 7569 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7570 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7571 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7572 .access = PL1_RW, .accessfn = access_pauth, 7573 .fgt = FGT_APIAKEY, 7574 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7575 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7576 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7577 .access = PL1_RW, .accessfn = access_pauth, 7578 .fgt = FGT_APIBKEY, 7579 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7580 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7581 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7582 .access = PL1_RW, .accessfn = access_pauth, 7583 .fgt = FGT_APIBKEY, 7584 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7585 }; 7586 7587 static const ARMCPRegInfo tlbirange_reginfo[] = { 7588 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7589 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7590 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7591 .fgt = FGT_TLBIRVAE1IS, 7592 .writefn = tlbi_aa64_rvae1is_write }, 7593 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7594 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7595 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7596 .fgt = FGT_TLBIRVAAE1IS, 7597 .writefn = tlbi_aa64_rvae1is_write }, 7598 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7599 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7600 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7601 .fgt = FGT_TLBIRVALE1IS, 7602 .writefn = tlbi_aa64_rvae1is_write }, 7603 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7604 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7605 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7606 .fgt = FGT_TLBIRVAALE1IS, 7607 .writefn = tlbi_aa64_rvae1is_write }, 7608 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7609 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7610 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7611 .fgt = FGT_TLBIRVAE1OS, 7612 .writefn = tlbi_aa64_rvae1is_write }, 7613 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7614 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7615 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7616 .fgt = FGT_TLBIRVAAE1OS, 7617 .writefn = tlbi_aa64_rvae1is_write }, 7618 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7619 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7620 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7621 .fgt = FGT_TLBIRVALE1OS, 7622 .writefn = tlbi_aa64_rvae1is_write }, 7623 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7624 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7625 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7626 .fgt = FGT_TLBIRVAALE1OS, 7627 .writefn = tlbi_aa64_rvae1is_write }, 7628 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7629 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7630 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7631 .fgt = FGT_TLBIRVAE1, 7632 .writefn = tlbi_aa64_rvae1_write }, 7633 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7634 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7635 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7636 .fgt = FGT_TLBIRVAAE1, 7637 .writefn = tlbi_aa64_rvae1_write }, 7638 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7639 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7640 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7641 .fgt = FGT_TLBIRVALE1, 7642 .writefn = tlbi_aa64_rvae1_write }, 7643 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7644 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7645 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7646 .fgt = FGT_TLBIRVAALE1, 7647 .writefn = tlbi_aa64_rvae1_write }, 7648 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7649 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7650 .access = PL2_W, .type = ARM_CP_NO_RAW, 7651 .writefn = tlbi_aa64_ripas2e1is_write }, 7652 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7653 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7654 .access = PL2_W, .type = ARM_CP_NO_RAW, 7655 .writefn = tlbi_aa64_ripas2e1is_write }, 7656 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7657 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7658 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7659 .writefn = tlbi_aa64_rvae2is_write }, 7660 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7661 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7662 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7663 .writefn = tlbi_aa64_rvae2is_write }, 7664 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7665 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7666 .access = PL2_W, .type = ARM_CP_NO_RAW, 7667 .writefn = tlbi_aa64_ripas2e1_write }, 7668 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7669 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7670 .access = PL2_W, .type = ARM_CP_NO_RAW, 7671 .writefn = tlbi_aa64_ripas2e1_write }, 7672 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7673 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7674 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7675 .writefn = tlbi_aa64_rvae2is_write }, 7676 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7677 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7678 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7679 .writefn = tlbi_aa64_rvae2is_write }, 7680 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7681 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7682 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7683 .writefn = tlbi_aa64_rvae2_write }, 7684 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7685 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7686 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7687 .writefn = tlbi_aa64_rvae2_write }, 7688 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7689 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7690 .access = PL3_W, .type = ARM_CP_NO_RAW, 7691 .writefn = tlbi_aa64_rvae3is_write }, 7692 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7693 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7694 .access = PL3_W, .type = ARM_CP_NO_RAW, 7695 .writefn = tlbi_aa64_rvae3is_write }, 7696 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7697 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7698 .access = PL3_W, .type = ARM_CP_NO_RAW, 7699 .writefn = tlbi_aa64_rvae3is_write }, 7700 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7701 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7702 .access = PL3_W, .type = ARM_CP_NO_RAW, 7703 .writefn = tlbi_aa64_rvae3is_write }, 7704 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7705 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7706 .access = PL3_W, .type = ARM_CP_NO_RAW, 7707 .writefn = tlbi_aa64_rvae3_write }, 7708 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7709 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7710 .access = PL3_W, .type = ARM_CP_NO_RAW, 7711 .writefn = tlbi_aa64_rvae3_write }, 7712 }; 7713 7714 static const ARMCPRegInfo tlbios_reginfo[] = { 7715 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7716 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7717 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7718 .fgt = FGT_TLBIVMALLE1OS, 7719 .writefn = tlbi_aa64_vmalle1is_write }, 7720 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7721 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7722 .fgt = FGT_TLBIVAE1OS, 7723 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7724 .writefn = tlbi_aa64_vae1is_write }, 7725 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7726 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7727 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7728 .fgt = FGT_TLBIASIDE1OS, 7729 .writefn = tlbi_aa64_vmalle1is_write }, 7730 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7731 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7732 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7733 .fgt = FGT_TLBIVAAE1OS, 7734 .writefn = tlbi_aa64_vae1is_write }, 7735 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7736 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7737 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7738 .fgt = FGT_TLBIVALE1OS, 7739 .writefn = tlbi_aa64_vae1is_write }, 7740 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7741 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7742 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7743 .fgt = FGT_TLBIVAALE1OS, 7744 .writefn = tlbi_aa64_vae1is_write }, 7745 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7746 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7747 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7748 .writefn = tlbi_aa64_alle2is_write }, 7749 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7750 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7751 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7752 .writefn = tlbi_aa64_vae2is_write }, 7753 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7754 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7755 .access = PL2_W, .type = ARM_CP_NO_RAW, 7756 .writefn = tlbi_aa64_alle1is_write }, 7757 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7758 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7759 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7760 .writefn = tlbi_aa64_vae2is_write }, 7761 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7762 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7763 .access = PL2_W, .type = ARM_CP_NO_RAW, 7764 .writefn = tlbi_aa64_alle1is_write }, 7765 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7766 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7767 .access = PL2_W, .type = ARM_CP_NOP }, 7768 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7769 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7770 .access = PL2_W, .type = ARM_CP_NOP }, 7771 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7772 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7773 .access = PL2_W, .type = ARM_CP_NOP }, 7774 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7775 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7776 .access = PL2_W, .type = ARM_CP_NOP }, 7777 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7778 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7779 .access = PL3_W, .type = ARM_CP_NO_RAW, 7780 .writefn = tlbi_aa64_alle3is_write }, 7781 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7782 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7783 .access = PL3_W, .type = ARM_CP_NO_RAW, 7784 .writefn = tlbi_aa64_vae3is_write }, 7785 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7786 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7787 .access = PL3_W, .type = ARM_CP_NO_RAW, 7788 .writefn = tlbi_aa64_vae3is_write }, 7789 }; 7790 7791 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7792 { 7793 Error *err = NULL; 7794 uint64_t ret; 7795 7796 /* Success sets NZCV = 0000. */ 7797 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7798 7799 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7800 /* 7801 * ??? Failed, for unknown reasons in the crypto subsystem. 7802 * The best we can do is log the reason and return the 7803 * timed-out indication to the guest. There is no reason 7804 * we know to expect this failure to be transitory, so the 7805 * guest may well hang retrying the operation. 7806 */ 7807 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7808 ri->name, error_get_pretty(err)); 7809 error_free(err); 7810 7811 env->ZF = 0; /* NZCF = 0100 */ 7812 return 0; 7813 } 7814 return ret; 7815 } 7816 7817 /* We do not support re-seeding, so the two registers operate the same. */ 7818 static const ARMCPRegInfo rndr_reginfo[] = { 7819 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7820 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7821 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7822 .access = PL0_R, .readfn = rndr_readfn }, 7823 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7824 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7825 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7826 .access = PL0_R, .readfn = rndr_readfn }, 7827 }; 7828 7829 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7830 uint64_t value) 7831 { 7832 #ifdef CONFIG_TCG 7833 ARMCPU *cpu = env_archcpu(env); 7834 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7835 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7836 uint64_t vaddr_in = (uint64_t) value; 7837 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7838 void *haddr; 7839 int mem_idx = cpu_mmu_index(env, false); 7840 7841 /* This won't be crossing page boundaries */ 7842 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7843 if (haddr) { 7844 #ifndef CONFIG_USER_ONLY 7845 7846 ram_addr_t offset; 7847 MemoryRegion *mr; 7848 7849 /* RCU lock is already being held */ 7850 mr = memory_region_from_host(haddr, &offset); 7851 7852 if (mr) { 7853 memory_region_writeback(mr, offset, dline_size); 7854 } 7855 #endif /*CONFIG_USER_ONLY*/ 7856 } 7857 #else 7858 /* Handled by hardware accelerator. */ 7859 g_assert_not_reached(); 7860 #endif /* CONFIG_TCG */ 7861 } 7862 7863 static const ARMCPRegInfo dcpop_reg[] = { 7864 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7865 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7866 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7867 .fgt = FGT_DCCVAP, 7868 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7869 }; 7870 7871 static const ARMCPRegInfo dcpodp_reg[] = { 7872 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7873 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7874 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7875 .fgt = FGT_DCCVADP, 7876 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7877 }; 7878 7879 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7880 bool isread) 7881 { 7882 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7883 return CP_ACCESS_TRAP_EL2; 7884 } 7885 7886 return CP_ACCESS_OK; 7887 } 7888 7889 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7890 bool isread) 7891 { 7892 int el = arm_current_el(env); 7893 if (el < 2 && arm_is_el2_enabled(env)) { 7894 uint64_t hcr = arm_hcr_el2_eff(env); 7895 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7896 return CP_ACCESS_TRAP_EL2; 7897 } 7898 } 7899 if (el < 3 && 7900 arm_feature(env, ARM_FEATURE_EL3) && 7901 !(env->cp15.scr_el3 & SCR_ATA)) { 7902 return CP_ACCESS_TRAP_EL3; 7903 } 7904 return CP_ACCESS_OK; 7905 } 7906 7907 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri, 7908 bool isread) 7909 { 7910 CPAccessResult nv1 = access_nv1(env, ri, isread); 7911 7912 if (nv1 != CP_ACCESS_OK) { 7913 return nv1; 7914 } 7915 return access_mte(env, ri, isread); 7916 } 7917 7918 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri, 7919 bool isread) 7920 { 7921 /* 7922 * TFSR_EL2: similar to generic access_mte(), but we need to 7923 * account for FEAT_NV. At EL1 this must be a FEAT_NV access; 7924 * if NV2 is enabled then we will redirect this to TFSR_EL1 7925 * after doing the HCR and SCR ATA traps; otherwise this will 7926 * be a trap to EL2 and the HCR/SCR traps do not apply. 7927 */ 7928 int el = arm_current_el(env); 7929 7930 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) { 7931 return CP_ACCESS_OK; 7932 } 7933 if (el < 2 && arm_is_el2_enabled(env)) { 7934 uint64_t hcr = arm_hcr_el2_eff(env); 7935 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7936 return CP_ACCESS_TRAP_EL2; 7937 } 7938 } 7939 if (el < 3 && 7940 arm_feature(env, ARM_FEATURE_EL3) && 7941 !(env->cp15.scr_el3 & SCR_ATA)) { 7942 return CP_ACCESS_TRAP_EL3; 7943 } 7944 return CP_ACCESS_OK; 7945 } 7946 7947 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7948 { 7949 return env->pstate & PSTATE_TCO; 7950 } 7951 7952 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7953 { 7954 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7955 } 7956 7957 static const ARMCPRegInfo mte_reginfo[] = { 7958 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7959 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7960 .access = PL1_RW, .accessfn = access_mte, 7961 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7962 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7963 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7964 .access = PL1_RW, .accessfn = access_tfsr_el1, 7965 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1, 7966 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7967 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7968 .type = ARM_CP_NV2_REDIRECT, 7969 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7970 .access = PL2_RW, .accessfn = access_tfsr_el2, 7971 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7972 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7973 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7974 .access = PL3_RW, 7975 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7976 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7977 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7978 .access = PL1_RW, .accessfn = access_mte, 7979 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7980 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7981 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7982 .access = PL1_RW, .accessfn = access_mte, 7983 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7984 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7985 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7986 .type = ARM_CP_NO_RAW, 7987 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7988 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7989 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7990 .type = ARM_CP_NOP, .access = PL1_W, 7991 .fgt = FGT_DCIVAC, 7992 .accessfn = aa64_cacheop_poc_access }, 7993 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7994 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7995 .fgt = FGT_DCISW, 7996 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7997 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7998 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7999 .type = ARM_CP_NOP, .access = PL1_W, 8000 .fgt = FGT_DCIVAC, 8001 .accessfn = aa64_cacheop_poc_access }, 8002 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 8003 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 8004 .fgt = FGT_DCISW, 8005 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8006 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 8007 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 8008 .fgt = FGT_DCCSW, 8009 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8010 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 8011 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 8012 .fgt = FGT_DCCSW, 8013 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8014 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 8015 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 8016 .fgt = FGT_DCCISW, 8017 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8018 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 8019 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 8020 .fgt = FGT_DCCISW, 8021 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8022 }; 8023 8024 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 8025 { .name = "TCO", .state = ARM_CP_STATE_AA64, 8026 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 8027 .type = ARM_CP_CONST, .access = PL0_RW, }, 8028 }; 8029 8030 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 8031 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 8032 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 8033 .type = ARM_CP_NOP, .access = PL0_W, 8034 .fgt = FGT_DCCVAC, 8035 .accessfn = aa64_cacheop_poc_access }, 8036 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 8037 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 8038 .type = ARM_CP_NOP, .access = PL0_W, 8039 .fgt = FGT_DCCVAC, 8040 .accessfn = aa64_cacheop_poc_access }, 8041 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 8042 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 8043 .type = ARM_CP_NOP, .access = PL0_W, 8044 .fgt = FGT_DCCVAP, 8045 .accessfn = aa64_cacheop_poc_access }, 8046 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 8047 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 8048 .type = ARM_CP_NOP, .access = PL0_W, 8049 .fgt = FGT_DCCVAP, 8050 .accessfn = aa64_cacheop_poc_access }, 8051 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 8052 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 8053 .type = ARM_CP_NOP, .access = PL0_W, 8054 .fgt = FGT_DCCVADP, 8055 .accessfn = aa64_cacheop_poc_access }, 8056 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 8057 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 8058 .type = ARM_CP_NOP, .access = PL0_W, 8059 .fgt = FGT_DCCVADP, 8060 .accessfn = aa64_cacheop_poc_access }, 8061 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 8062 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 8063 .type = ARM_CP_NOP, .access = PL0_W, 8064 .fgt = FGT_DCCIVAC, 8065 .accessfn = aa64_cacheop_poc_access }, 8066 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 8067 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 8068 .type = ARM_CP_NOP, .access = PL0_W, 8069 .fgt = FGT_DCCIVAC, 8070 .accessfn = aa64_cacheop_poc_access }, 8071 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 8072 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 8073 .access = PL0_W, .type = ARM_CP_DC_GVA, 8074 #ifndef CONFIG_USER_ONLY 8075 /* Avoid overhead of an access check that always passes in user-mode */ 8076 .accessfn = aa64_zva_access, 8077 .fgt = FGT_DCZVA, 8078 #endif 8079 }, 8080 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 8081 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 8082 .access = PL0_W, .type = ARM_CP_DC_GZVA, 8083 #ifndef CONFIG_USER_ONLY 8084 /* Avoid overhead of an access check that always passes in user-mode */ 8085 .accessfn = aa64_zva_access, 8086 .fgt = FGT_DCZVA, 8087 #endif 8088 }, 8089 }; 8090 8091 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 8092 bool isread) 8093 { 8094 uint64_t hcr = arm_hcr_el2_eff(env); 8095 int el = arm_current_el(env); 8096 8097 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 8098 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 8099 if (hcr & HCR_TGE) { 8100 return CP_ACCESS_TRAP_EL2; 8101 } 8102 return CP_ACCESS_TRAP; 8103 } 8104 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 8105 return CP_ACCESS_TRAP_EL2; 8106 } 8107 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 8108 return CP_ACCESS_TRAP_EL2; 8109 } 8110 if (el < 3 8111 && arm_feature(env, ARM_FEATURE_EL3) 8112 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 8113 return CP_ACCESS_TRAP_EL3; 8114 } 8115 return CP_ACCESS_OK; 8116 } 8117 8118 static CPAccessResult access_scxtnum_el1(CPUARMState *env, 8119 const ARMCPRegInfo *ri, 8120 bool isread) 8121 { 8122 CPAccessResult nv1 = access_nv1(env, ri, isread); 8123 8124 if (nv1 != CP_ACCESS_OK) { 8125 return nv1; 8126 } 8127 return access_scxtnum(env, ri, isread); 8128 } 8129 8130 static const ARMCPRegInfo scxtnum_reginfo[] = { 8131 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 8132 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 8133 .access = PL0_RW, .accessfn = access_scxtnum, 8134 .fgt = FGT_SCXTNUM_EL0, 8135 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 8136 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 8137 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 8138 .access = PL1_RW, .accessfn = access_scxtnum_el1, 8139 .fgt = FGT_SCXTNUM_EL1, 8140 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1, 8141 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 8142 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 8143 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 8144 .access = PL2_RW, .accessfn = access_scxtnum, 8145 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 8146 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 8147 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 8148 .access = PL3_RW, 8149 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 8150 }; 8151 8152 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 8153 bool isread) 8154 { 8155 if (arm_current_el(env) == 2 && 8156 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 8157 return CP_ACCESS_TRAP_EL3; 8158 } 8159 return CP_ACCESS_OK; 8160 } 8161 8162 static const ARMCPRegInfo fgt_reginfo[] = { 8163 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 8164 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 8165 .nv2_redirect_offset = 0x1b8, 8166 .access = PL2_RW, .accessfn = access_fgt, 8167 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 8168 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 8169 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 8170 .nv2_redirect_offset = 0x1c0, 8171 .access = PL2_RW, .accessfn = access_fgt, 8172 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 8173 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 8174 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 8175 .nv2_redirect_offset = 0x1d0, 8176 .access = PL2_RW, .accessfn = access_fgt, 8177 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 8178 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 8179 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 8180 .nv2_redirect_offset = 0x1d8, 8181 .access = PL2_RW, .accessfn = access_fgt, 8182 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 8183 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 8184 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 8185 .nv2_redirect_offset = 0x1c8, 8186 .access = PL2_RW, .accessfn = access_fgt, 8187 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 8188 }; 8189 8190 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri, 8191 uint64_t value) 8192 { 8193 /* 8194 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee 8195 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything 8196 * about the RESS bits at the top -- we choose the "generate an EL2 8197 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let 8198 * the ptw.c code detect the resulting invalid address). 8199 */ 8200 env->cp15.vncr_el2 = value & ~0xfffULL; 8201 } 8202 8203 static const ARMCPRegInfo nv2_reginfo[] = { 8204 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64, 8205 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0, 8206 .access = PL2_RW, 8207 .writefn = vncr_write, 8208 .nv2_redirect_offset = 0xb0, 8209 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) }, 8210 }; 8211 8212 #endif /* TARGET_AARCH64 */ 8213 8214 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 8215 bool isread) 8216 { 8217 int el = arm_current_el(env); 8218 8219 if (el == 0) { 8220 uint64_t sctlr = arm_sctlr(env, el); 8221 if (!(sctlr & SCTLR_EnRCTX)) { 8222 return CP_ACCESS_TRAP; 8223 } 8224 } else if (el == 1) { 8225 uint64_t hcr = arm_hcr_el2_eff(env); 8226 if (hcr & HCR_NV) { 8227 return CP_ACCESS_TRAP_EL2; 8228 } 8229 } 8230 return CP_ACCESS_OK; 8231 } 8232 8233 static const ARMCPRegInfo predinv_reginfo[] = { 8234 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 8235 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 8236 .fgt = FGT_CFPRCTX, 8237 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8238 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 8239 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 8240 .fgt = FGT_DVPRCTX, 8241 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8242 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 8243 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 8244 .fgt = FGT_CPPRCTX, 8245 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8246 /* 8247 * Note the AArch32 opcodes have a different OPC1. 8248 */ 8249 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 8250 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 8251 .fgt = FGT_CFPRCTX, 8252 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8253 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 8254 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 8255 .fgt = FGT_DVPRCTX, 8256 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8257 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 8258 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 8259 .fgt = FGT_CPPRCTX, 8260 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8261 }; 8262 8263 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 8264 { 8265 /* Read the high 32 bits of the current CCSIDR */ 8266 return extract64(ccsidr_read(env, ri), 32, 32); 8267 } 8268 8269 static const ARMCPRegInfo ccsidr2_reginfo[] = { 8270 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 8271 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 8272 .access = PL1_R, 8273 .accessfn = access_tid4, 8274 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 8275 }; 8276 8277 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8278 bool isread) 8279 { 8280 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 8281 return CP_ACCESS_TRAP_EL2; 8282 } 8283 8284 return CP_ACCESS_OK; 8285 } 8286 8287 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8288 bool isread) 8289 { 8290 if (arm_feature(env, ARM_FEATURE_V8)) { 8291 return access_aa64_tid3(env, ri, isread); 8292 } 8293 8294 return CP_ACCESS_OK; 8295 } 8296 8297 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 8298 bool isread) 8299 { 8300 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 8301 return CP_ACCESS_TRAP_EL2; 8302 } 8303 8304 return CP_ACCESS_OK; 8305 } 8306 8307 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 8308 const ARMCPRegInfo *ri, bool isread) 8309 { 8310 /* 8311 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 8312 * in v7A, not in v8A. 8313 */ 8314 if (!arm_feature(env, ARM_FEATURE_V8) && 8315 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 8316 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 8317 return CP_ACCESS_TRAP_EL2; 8318 } 8319 return CP_ACCESS_OK; 8320 } 8321 8322 static const ARMCPRegInfo jazelle_regs[] = { 8323 { .name = "JIDR", 8324 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 8325 .access = PL1_R, .accessfn = access_jazelle, 8326 .type = ARM_CP_CONST, .resetvalue = 0 }, 8327 { .name = "JOSCR", 8328 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 8329 .accessfn = access_joscr_jmcr, 8330 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8331 { .name = "JMCR", 8332 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 8333 .accessfn = access_joscr_jmcr, 8334 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8335 }; 8336 8337 static const ARMCPRegInfo contextidr_el2 = { 8338 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 8339 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 8340 .access = PL2_RW, 8341 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 8342 }; 8343 8344 static const ARMCPRegInfo vhe_reginfo[] = { 8345 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 8346 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 8347 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 8348 .raw_writefn = raw_write, 8349 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 8350 #ifndef CONFIG_USER_ONLY 8351 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 8352 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 8353 .fieldoffset = 8354 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 8355 .type = ARM_CP_IO, .access = PL2_RW, 8356 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 8357 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 8358 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 8359 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 8360 .resetfn = gt_hv_timer_reset, 8361 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 8362 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 8363 .type = ARM_CP_IO, 8364 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 8365 .access = PL2_RW, 8366 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 8367 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 8368 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 8369 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 8370 .type = ARM_CP_IO | ARM_CP_ALIAS, 8371 .access = PL2_RW, .accessfn = e2h_access, 8372 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1, 8373 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 8374 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 8375 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 8376 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 8377 .type = ARM_CP_IO | ARM_CP_ALIAS, 8378 .access = PL2_RW, .accessfn = e2h_access, 8379 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1, 8380 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 8381 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 8382 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8383 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 8384 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8385 .access = PL2_RW, .accessfn = e2h_access, 8386 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 8387 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8388 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 8389 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8390 .access = PL2_RW, .accessfn = e2h_access, 8391 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 8392 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8393 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 8394 .type = ARM_CP_IO | ARM_CP_ALIAS, 8395 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 8396 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1, 8397 .access = PL2_RW, .accessfn = e2h_access, 8398 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 8399 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8400 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 8401 .type = ARM_CP_IO | ARM_CP_ALIAS, 8402 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1, 8403 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 8404 .access = PL2_RW, .accessfn = e2h_access, 8405 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 8406 #endif 8407 }; 8408 8409 #ifndef CONFIG_USER_ONLY 8410 static const ARMCPRegInfo ats1e1_reginfo[] = { 8411 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 8412 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8413 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8414 .fgt = FGT_ATS1E1RP, 8415 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 8416 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 8417 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8418 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8419 .fgt = FGT_ATS1E1WP, 8420 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 8421 }; 8422 8423 static const ARMCPRegInfo ats1cp_reginfo[] = { 8424 { .name = "ATS1CPRP", 8425 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8426 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8427 .writefn = ats_write }, 8428 { .name = "ATS1CPWP", 8429 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8430 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8431 .writefn = ats_write }, 8432 }; 8433 #endif 8434 8435 /* 8436 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 8437 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 8438 * is non-zero, which is never for ARMv7, optionally in ARMv8 8439 * and mandatorily for ARMv8.2 and up. 8440 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 8441 * implementation is RAZ/WI we can ignore this detail, as we 8442 * do for ACTLR. 8443 */ 8444 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 8445 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 8446 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 8447 .access = PL1_RW, .accessfn = access_tacr, 8448 .type = ARM_CP_CONST, .resetvalue = 0 }, 8449 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 8450 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 8451 .access = PL2_RW, .type = ARM_CP_CONST, 8452 .resetvalue = 0 }, 8453 }; 8454 8455 void register_cp_regs_for_features(ARMCPU *cpu) 8456 { 8457 /* Register all the coprocessor registers based on feature bits */ 8458 CPUARMState *env = &cpu->env; 8459 if (arm_feature(env, ARM_FEATURE_M)) { 8460 /* M profile has no coprocessor registers */ 8461 return; 8462 } 8463 8464 define_arm_cp_regs(cpu, cp_reginfo); 8465 if (!arm_feature(env, ARM_FEATURE_V8)) { 8466 /* 8467 * Must go early as it is full of wildcards that may be 8468 * overridden by later definitions. 8469 */ 8470 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 8471 } 8472 8473 if (arm_feature(env, ARM_FEATURE_V6)) { 8474 /* The ID registers all have impdef reset values */ 8475 ARMCPRegInfo v6_idregs[] = { 8476 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 8477 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 8478 .access = PL1_R, .type = ARM_CP_CONST, 8479 .accessfn = access_aa32_tid3, 8480 .resetvalue = cpu->isar.id_pfr0 }, 8481 /* 8482 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 8483 * the value of the GIC field until after we define these regs. 8484 */ 8485 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 8486 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 8487 .access = PL1_R, .type = ARM_CP_NO_RAW, 8488 .accessfn = access_aa32_tid3, 8489 #ifdef CONFIG_USER_ONLY 8490 .type = ARM_CP_CONST, 8491 .resetvalue = cpu->isar.id_pfr1, 8492 #else 8493 .type = ARM_CP_NO_RAW, 8494 .accessfn = access_aa32_tid3, 8495 .readfn = id_pfr1_read, 8496 .writefn = arm_cp_write_ignore 8497 #endif 8498 }, 8499 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 8500 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 8501 .access = PL1_R, .type = ARM_CP_CONST, 8502 .accessfn = access_aa32_tid3, 8503 .resetvalue = cpu->isar.id_dfr0 }, 8504 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 8505 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 8506 .access = PL1_R, .type = ARM_CP_CONST, 8507 .accessfn = access_aa32_tid3, 8508 .resetvalue = cpu->id_afr0 }, 8509 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 8510 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 8511 .access = PL1_R, .type = ARM_CP_CONST, 8512 .accessfn = access_aa32_tid3, 8513 .resetvalue = cpu->isar.id_mmfr0 }, 8514 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 8515 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 8516 .access = PL1_R, .type = ARM_CP_CONST, 8517 .accessfn = access_aa32_tid3, 8518 .resetvalue = cpu->isar.id_mmfr1 }, 8519 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 8520 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 8521 .access = PL1_R, .type = ARM_CP_CONST, 8522 .accessfn = access_aa32_tid3, 8523 .resetvalue = cpu->isar.id_mmfr2 }, 8524 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 8525 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 8526 .access = PL1_R, .type = ARM_CP_CONST, 8527 .accessfn = access_aa32_tid3, 8528 .resetvalue = cpu->isar.id_mmfr3 }, 8529 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 8530 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 8531 .access = PL1_R, .type = ARM_CP_CONST, 8532 .accessfn = access_aa32_tid3, 8533 .resetvalue = cpu->isar.id_isar0 }, 8534 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 8535 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 8536 .access = PL1_R, .type = ARM_CP_CONST, 8537 .accessfn = access_aa32_tid3, 8538 .resetvalue = cpu->isar.id_isar1 }, 8539 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 8540 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 8541 .access = PL1_R, .type = ARM_CP_CONST, 8542 .accessfn = access_aa32_tid3, 8543 .resetvalue = cpu->isar.id_isar2 }, 8544 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 8545 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 8546 .access = PL1_R, .type = ARM_CP_CONST, 8547 .accessfn = access_aa32_tid3, 8548 .resetvalue = cpu->isar.id_isar3 }, 8549 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 8550 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 8551 .access = PL1_R, .type = ARM_CP_CONST, 8552 .accessfn = access_aa32_tid3, 8553 .resetvalue = cpu->isar.id_isar4 }, 8554 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 8555 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 8556 .access = PL1_R, .type = ARM_CP_CONST, 8557 .accessfn = access_aa32_tid3, 8558 .resetvalue = cpu->isar.id_isar5 }, 8559 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 8560 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 8561 .access = PL1_R, .type = ARM_CP_CONST, 8562 .accessfn = access_aa32_tid3, 8563 .resetvalue = cpu->isar.id_mmfr4 }, 8564 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 8565 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 8566 .access = PL1_R, .type = ARM_CP_CONST, 8567 .accessfn = access_aa32_tid3, 8568 .resetvalue = cpu->isar.id_isar6 }, 8569 }; 8570 define_arm_cp_regs(cpu, v6_idregs); 8571 define_arm_cp_regs(cpu, v6_cp_reginfo); 8572 } else { 8573 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 8574 } 8575 if (arm_feature(env, ARM_FEATURE_V6K)) { 8576 define_arm_cp_regs(cpu, v6k_cp_reginfo); 8577 } 8578 if (arm_feature(env, ARM_FEATURE_V7MP) && 8579 !arm_feature(env, ARM_FEATURE_PMSA)) { 8580 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 8581 } 8582 if (arm_feature(env, ARM_FEATURE_V7VE)) { 8583 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 8584 } 8585 if (arm_feature(env, ARM_FEATURE_V7)) { 8586 ARMCPRegInfo clidr = { 8587 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 8588 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 8589 .access = PL1_R, .type = ARM_CP_CONST, 8590 .accessfn = access_tid4, 8591 .fgt = FGT_CLIDR_EL1, 8592 .resetvalue = cpu->clidr 8593 }; 8594 define_one_arm_cp_reg(cpu, &clidr); 8595 define_arm_cp_regs(cpu, v7_cp_reginfo); 8596 define_debug_regs(cpu); 8597 define_pmu_regs(cpu); 8598 } else { 8599 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 8600 } 8601 if (arm_feature(env, ARM_FEATURE_V8)) { 8602 /* 8603 * v8 ID registers, which all have impdef reset values. 8604 * Note that within the ID register ranges the unused slots 8605 * must all RAZ, not UNDEF; future architecture versions may 8606 * define new registers here. 8607 * ID registers which are AArch64 views of the AArch32 ID registers 8608 * which already existed in v6 and v7 are handled elsewhere, 8609 * in v6_idregs[]. 8610 */ 8611 int i; 8612 ARMCPRegInfo v8_idregs[] = { 8613 /* 8614 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 8615 * emulation because we don't know the right value for the 8616 * GIC field until after we define these regs. 8617 */ 8618 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 8619 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 8620 .access = PL1_R, 8621 #ifdef CONFIG_USER_ONLY 8622 .type = ARM_CP_CONST, 8623 .resetvalue = cpu->isar.id_aa64pfr0 8624 #else 8625 .type = ARM_CP_NO_RAW, 8626 .accessfn = access_aa64_tid3, 8627 .readfn = id_aa64pfr0_read, 8628 .writefn = arm_cp_write_ignore 8629 #endif 8630 }, 8631 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 8632 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 8633 .access = PL1_R, .type = ARM_CP_CONST, 8634 .accessfn = access_aa64_tid3, 8635 .resetvalue = cpu->isar.id_aa64pfr1}, 8636 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8637 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 8638 .access = PL1_R, .type = ARM_CP_CONST, 8639 .accessfn = access_aa64_tid3, 8640 .resetvalue = 0 }, 8641 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8642 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 8643 .access = PL1_R, .type = ARM_CP_CONST, 8644 .accessfn = access_aa64_tid3, 8645 .resetvalue = 0 }, 8646 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 8647 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 8648 .access = PL1_R, .type = ARM_CP_CONST, 8649 .accessfn = access_aa64_tid3, 8650 .resetvalue = cpu->isar.id_aa64zfr0 }, 8651 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 8652 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 8653 .access = PL1_R, .type = ARM_CP_CONST, 8654 .accessfn = access_aa64_tid3, 8655 .resetvalue = cpu->isar.id_aa64smfr0 }, 8656 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8657 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 8658 .access = PL1_R, .type = ARM_CP_CONST, 8659 .accessfn = access_aa64_tid3, 8660 .resetvalue = 0 }, 8661 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8662 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 8663 .access = PL1_R, .type = ARM_CP_CONST, 8664 .accessfn = access_aa64_tid3, 8665 .resetvalue = 0 }, 8666 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 8667 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 8668 .access = PL1_R, .type = ARM_CP_CONST, 8669 .accessfn = access_aa64_tid3, 8670 .resetvalue = cpu->isar.id_aa64dfr0 }, 8671 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 8672 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 8673 .access = PL1_R, .type = ARM_CP_CONST, 8674 .accessfn = access_aa64_tid3, 8675 .resetvalue = cpu->isar.id_aa64dfr1 }, 8676 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8677 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 8678 .access = PL1_R, .type = ARM_CP_CONST, 8679 .accessfn = access_aa64_tid3, 8680 .resetvalue = 0 }, 8681 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8682 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 8683 .access = PL1_R, .type = ARM_CP_CONST, 8684 .accessfn = access_aa64_tid3, 8685 .resetvalue = 0 }, 8686 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 8687 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 8688 .access = PL1_R, .type = ARM_CP_CONST, 8689 .accessfn = access_aa64_tid3, 8690 .resetvalue = cpu->id_aa64afr0 }, 8691 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 8692 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 8693 .access = PL1_R, .type = ARM_CP_CONST, 8694 .accessfn = access_aa64_tid3, 8695 .resetvalue = cpu->id_aa64afr1 }, 8696 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8697 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 8698 .access = PL1_R, .type = ARM_CP_CONST, 8699 .accessfn = access_aa64_tid3, 8700 .resetvalue = 0 }, 8701 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8702 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8703 .access = PL1_R, .type = ARM_CP_CONST, 8704 .accessfn = access_aa64_tid3, 8705 .resetvalue = 0 }, 8706 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8707 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8708 .access = PL1_R, .type = ARM_CP_CONST, 8709 .accessfn = access_aa64_tid3, 8710 .resetvalue = cpu->isar.id_aa64isar0 }, 8711 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8712 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8713 .access = PL1_R, .type = ARM_CP_CONST, 8714 .accessfn = access_aa64_tid3, 8715 .resetvalue = cpu->isar.id_aa64isar1 }, 8716 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64, 8717 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8718 .access = PL1_R, .type = ARM_CP_CONST, 8719 .accessfn = access_aa64_tid3, 8720 .resetvalue = cpu->isar.id_aa64isar2 }, 8721 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8722 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8723 .access = PL1_R, .type = ARM_CP_CONST, 8724 .accessfn = access_aa64_tid3, 8725 .resetvalue = 0 }, 8726 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8727 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8728 .access = PL1_R, .type = ARM_CP_CONST, 8729 .accessfn = access_aa64_tid3, 8730 .resetvalue = 0 }, 8731 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8732 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8733 .access = PL1_R, .type = ARM_CP_CONST, 8734 .accessfn = access_aa64_tid3, 8735 .resetvalue = 0 }, 8736 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8737 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8738 .access = PL1_R, .type = ARM_CP_CONST, 8739 .accessfn = access_aa64_tid3, 8740 .resetvalue = 0 }, 8741 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8742 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8743 .access = PL1_R, .type = ARM_CP_CONST, 8744 .accessfn = access_aa64_tid3, 8745 .resetvalue = 0 }, 8746 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8747 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8748 .access = PL1_R, .type = ARM_CP_CONST, 8749 .accessfn = access_aa64_tid3, 8750 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8751 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8752 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8753 .access = PL1_R, .type = ARM_CP_CONST, 8754 .accessfn = access_aa64_tid3, 8755 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8756 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8757 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8758 .access = PL1_R, .type = ARM_CP_CONST, 8759 .accessfn = access_aa64_tid3, 8760 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8761 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8762 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8763 .access = PL1_R, .type = ARM_CP_CONST, 8764 .accessfn = access_aa64_tid3, 8765 .resetvalue = 0 }, 8766 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8767 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8768 .access = PL1_R, .type = ARM_CP_CONST, 8769 .accessfn = access_aa64_tid3, 8770 .resetvalue = 0 }, 8771 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8773 .access = PL1_R, .type = ARM_CP_CONST, 8774 .accessfn = access_aa64_tid3, 8775 .resetvalue = 0 }, 8776 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8777 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8778 .access = PL1_R, .type = ARM_CP_CONST, 8779 .accessfn = access_aa64_tid3, 8780 .resetvalue = 0 }, 8781 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8783 .access = PL1_R, .type = ARM_CP_CONST, 8784 .accessfn = access_aa64_tid3, 8785 .resetvalue = 0 }, 8786 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8788 .access = PL1_R, .type = ARM_CP_CONST, 8789 .accessfn = access_aa64_tid3, 8790 .resetvalue = cpu->isar.mvfr0 }, 8791 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8793 .access = PL1_R, .type = ARM_CP_CONST, 8794 .accessfn = access_aa64_tid3, 8795 .resetvalue = cpu->isar.mvfr1 }, 8796 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8797 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8798 .access = PL1_R, .type = ARM_CP_CONST, 8799 .accessfn = access_aa64_tid3, 8800 .resetvalue = cpu->isar.mvfr2 }, 8801 /* 8802 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8803 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8804 * as RAZ, since it is in the "reserved for future ID 8805 * registers, RAZ" part of the AArch32 encoding space. 8806 */ 8807 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8808 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8809 .access = PL1_R, .type = ARM_CP_CONST, 8810 .accessfn = access_aa64_tid3, 8811 .resetvalue = 0 }, 8812 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8813 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8814 .access = PL1_R, .type = ARM_CP_CONST, 8815 .accessfn = access_aa64_tid3, 8816 .resetvalue = 0 }, 8817 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8818 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8819 .access = PL1_R, .type = ARM_CP_CONST, 8820 .accessfn = access_aa64_tid3, 8821 .resetvalue = 0 }, 8822 /* 8823 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8824 * they're also RAZ for AArch64, and in v8 are gradually 8825 * being filled with AArch64-view-of-AArch32-ID-register 8826 * for new ID registers. 8827 */ 8828 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 8829 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8830 .access = PL1_R, .type = ARM_CP_CONST, 8831 .accessfn = access_aa64_tid3, 8832 .resetvalue = 0 }, 8833 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8834 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8835 .access = PL1_R, .type = ARM_CP_CONST, 8836 .accessfn = access_aa64_tid3, 8837 .resetvalue = cpu->isar.id_pfr2 }, 8838 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 8839 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8840 .access = PL1_R, .type = ARM_CP_CONST, 8841 .accessfn = access_aa64_tid3, 8842 .resetvalue = cpu->isar.id_dfr1 }, 8843 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 8844 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8845 .access = PL1_R, .type = ARM_CP_CONST, 8846 .accessfn = access_aa64_tid3, 8847 .resetvalue = cpu->isar.id_mmfr5 }, 8848 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 8849 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8850 .access = PL1_R, .type = ARM_CP_CONST, 8851 .accessfn = access_aa64_tid3, 8852 .resetvalue = 0 }, 8853 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8854 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8855 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8856 .fgt = FGT_PMCEIDN_EL0, 8857 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8858 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8859 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8860 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8861 .fgt = FGT_PMCEIDN_EL0, 8862 .resetvalue = cpu->pmceid0 }, 8863 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8864 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8865 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8866 .fgt = FGT_PMCEIDN_EL0, 8867 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8868 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8869 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8870 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8871 .fgt = FGT_PMCEIDN_EL0, 8872 .resetvalue = cpu->pmceid1 }, 8873 }; 8874 #ifdef CONFIG_USER_ONLY 8875 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8876 { .name = "ID_AA64PFR0_EL1", 8877 .exported_bits = R_ID_AA64PFR0_FP_MASK | 8878 R_ID_AA64PFR0_ADVSIMD_MASK | 8879 R_ID_AA64PFR0_SVE_MASK | 8880 R_ID_AA64PFR0_DIT_MASK, 8881 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 8882 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 8883 { .name = "ID_AA64PFR1_EL1", 8884 .exported_bits = R_ID_AA64PFR1_BT_MASK | 8885 R_ID_AA64PFR1_SSBS_MASK | 8886 R_ID_AA64PFR1_MTE_MASK | 8887 R_ID_AA64PFR1_SME_MASK }, 8888 { .name = "ID_AA64PFR*_EL1_RESERVED", 8889 .is_glob = true }, 8890 { .name = "ID_AA64ZFR0_EL1", 8891 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 8892 R_ID_AA64ZFR0_AES_MASK | 8893 R_ID_AA64ZFR0_BITPERM_MASK | 8894 R_ID_AA64ZFR0_BFLOAT16_MASK | 8895 R_ID_AA64ZFR0_SHA3_MASK | 8896 R_ID_AA64ZFR0_SM4_MASK | 8897 R_ID_AA64ZFR0_I8MM_MASK | 8898 R_ID_AA64ZFR0_F32MM_MASK | 8899 R_ID_AA64ZFR0_F64MM_MASK }, 8900 { .name = "ID_AA64SMFR0_EL1", 8901 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 8902 R_ID_AA64SMFR0_BI32I32_MASK | 8903 R_ID_AA64SMFR0_B16F32_MASK | 8904 R_ID_AA64SMFR0_F16F32_MASK | 8905 R_ID_AA64SMFR0_I8I32_MASK | 8906 R_ID_AA64SMFR0_F16F16_MASK | 8907 R_ID_AA64SMFR0_B16B16_MASK | 8908 R_ID_AA64SMFR0_I16I32_MASK | 8909 R_ID_AA64SMFR0_F64F64_MASK | 8910 R_ID_AA64SMFR0_I16I64_MASK | 8911 R_ID_AA64SMFR0_SMEVER_MASK | 8912 R_ID_AA64SMFR0_FA64_MASK }, 8913 { .name = "ID_AA64MMFR0_EL1", 8914 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 8915 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 8916 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 8917 { .name = "ID_AA64MMFR1_EL1", 8918 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 8919 { .name = "ID_AA64MMFR2_EL1", 8920 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 8921 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8922 .is_glob = true }, 8923 { .name = "ID_AA64DFR0_EL1", 8924 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 8925 { .name = "ID_AA64DFR1_EL1" }, 8926 { .name = "ID_AA64DFR*_EL1_RESERVED", 8927 .is_glob = true }, 8928 { .name = "ID_AA64AFR*", 8929 .is_glob = true }, 8930 { .name = "ID_AA64ISAR0_EL1", 8931 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8932 R_ID_AA64ISAR0_SHA1_MASK | 8933 R_ID_AA64ISAR0_SHA2_MASK | 8934 R_ID_AA64ISAR0_CRC32_MASK | 8935 R_ID_AA64ISAR0_ATOMIC_MASK | 8936 R_ID_AA64ISAR0_RDM_MASK | 8937 R_ID_AA64ISAR0_SHA3_MASK | 8938 R_ID_AA64ISAR0_SM3_MASK | 8939 R_ID_AA64ISAR0_SM4_MASK | 8940 R_ID_AA64ISAR0_DP_MASK | 8941 R_ID_AA64ISAR0_FHM_MASK | 8942 R_ID_AA64ISAR0_TS_MASK | 8943 R_ID_AA64ISAR0_RNDR_MASK }, 8944 { .name = "ID_AA64ISAR1_EL1", 8945 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8946 R_ID_AA64ISAR1_APA_MASK | 8947 R_ID_AA64ISAR1_API_MASK | 8948 R_ID_AA64ISAR1_JSCVT_MASK | 8949 R_ID_AA64ISAR1_FCMA_MASK | 8950 R_ID_AA64ISAR1_LRCPC_MASK | 8951 R_ID_AA64ISAR1_GPA_MASK | 8952 R_ID_AA64ISAR1_GPI_MASK | 8953 R_ID_AA64ISAR1_FRINTTS_MASK | 8954 R_ID_AA64ISAR1_SB_MASK | 8955 R_ID_AA64ISAR1_BF16_MASK | 8956 R_ID_AA64ISAR1_DGH_MASK | 8957 R_ID_AA64ISAR1_I8MM_MASK }, 8958 { .name = "ID_AA64ISAR2_EL1", 8959 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8960 R_ID_AA64ISAR2_RPRES_MASK | 8961 R_ID_AA64ISAR2_GPA3_MASK | 8962 R_ID_AA64ISAR2_APA3_MASK | 8963 R_ID_AA64ISAR2_MOPS_MASK | 8964 R_ID_AA64ISAR2_BC_MASK | 8965 R_ID_AA64ISAR2_RPRFM_MASK | 8966 R_ID_AA64ISAR2_CSSC_MASK }, 8967 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8968 .is_glob = true }, 8969 }; 8970 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8971 #endif 8972 /* 8973 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL. 8974 * TODO: For RMR, a write with bit 1 set should do something with 8975 * cpu_reset(). In the meantime, "the bit is strictly a request", 8976 * so we are in spec just ignoring writes. 8977 */ 8978 if (!arm_feature(env, ARM_FEATURE_EL3) && 8979 !arm_feature(env, ARM_FEATURE_EL2)) { 8980 ARMCPRegInfo el1_reset_regs[] = { 8981 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8982 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8983 .access = PL1_R, 8984 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8985 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH, 8986 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8987 .access = PL1_RW, .type = ARM_CP_CONST, 8988 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) } 8989 }; 8990 define_arm_cp_regs(cpu, el1_reset_regs); 8991 } 8992 define_arm_cp_regs(cpu, v8_idregs); 8993 define_arm_cp_regs(cpu, v8_cp_reginfo); 8994 if (cpu_isar_feature(aa64_aa32_el1, cpu)) { 8995 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo); 8996 } 8997 8998 for (i = 4; i < 16; i++) { 8999 /* 9000 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 9001 * For pre-v8 cores there are RAZ patterns for these in 9002 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 9003 * v8 extends the "must RAZ" part of the ID register space 9004 * to also cover c0, 0, c{8-15}, {0-7}. 9005 * These are STATE_AA32 because in the AArch64 sysreg space 9006 * c4-c7 is where the AArch64 ID registers live (and we've 9007 * already defined those in v8_idregs[]), and c8-c15 are not 9008 * "must RAZ" for AArch64. 9009 */ 9010 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 9011 ARMCPRegInfo v8_aa32_raz_idregs = { 9012 .name = name, 9013 .state = ARM_CP_STATE_AA32, 9014 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 9015 .access = PL1_R, .type = ARM_CP_CONST, 9016 .accessfn = access_aa64_tid3, 9017 .resetvalue = 0 }; 9018 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 9019 } 9020 } 9021 9022 /* 9023 * Register the base EL2 cpregs. 9024 * Pre v8, these registers are implemented only as part of the 9025 * Virtualization Extensions (EL2 present). Beginning with v8, 9026 * if EL2 is missing but EL3 is enabled, mostly these become 9027 * RES0 from EL3, with some specific exceptions. 9028 */ 9029 if (arm_feature(env, ARM_FEATURE_EL2) 9030 || (arm_feature(env, ARM_FEATURE_EL3) 9031 && arm_feature(env, ARM_FEATURE_V8))) { 9032 uint64_t vmpidr_def = mpidr_read_val(env); 9033 ARMCPRegInfo vpidr_regs[] = { 9034 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 9035 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 9036 .access = PL2_RW, .accessfn = access_el3_aa32ns, 9037 .resetvalue = cpu->midr, 9038 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 9039 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 9040 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 9041 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 9042 .access = PL2_RW, .resetvalue = cpu->midr, 9043 .type = ARM_CP_EL3_NO_EL2_C_NZ, 9044 .nv2_redirect_offset = 0x88, 9045 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 9046 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 9047 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 9048 .access = PL2_RW, .accessfn = access_el3_aa32ns, 9049 .resetvalue = vmpidr_def, 9050 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 9051 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 9052 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 9053 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 9054 .access = PL2_RW, .resetvalue = vmpidr_def, 9055 .type = ARM_CP_EL3_NO_EL2_C_NZ, 9056 .nv2_redirect_offset = 0x50, 9057 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 9058 }; 9059 /* 9060 * The only field of MDCR_EL2 that has a defined architectural reset 9061 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 9062 */ 9063 ARMCPRegInfo mdcr_el2 = { 9064 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 9065 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 9066 .writefn = mdcr_el2_write, 9067 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 9068 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 9069 }; 9070 define_one_arm_cp_reg(cpu, &mdcr_el2); 9071 define_arm_cp_regs(cpu, vpidr_regs); 9072 define_arm_cp_regs(cpu, el2_cp_reginfo); 9073 if (arm_feature(env, ARM_FEATURE_V8)) { 9074 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 9075 } 9076 if (cpu_isar_feature(aa64_sel2, cpu)) { 9077 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 9078 } 9079 /* 9080 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL. 9081 * See commentary near RMR_EL1. 9082 */ 9083 if (!arm_feature(env, ARM_FEATURE_EL3)) { 9084 static const ARMCPRegInfo el2_reset_regs[] = { 9085 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 9086 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 9087 .access = PL2_R, 9088 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 9089 { .name = "RVBAR", .type = ARM_CP_ALIAS, 9090 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 9091 .access = PL2_R, 9092 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 9093 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64, 9094 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2, 9095 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 9096 }; 9097 define_arm_cp_regs(cpu, el2_reset_regs); 9098 } 9099 } 9100 9101 /* Register the base EL3 cpregs. */ 9102 if (arm_feature(env, ARM_FEATURE_EL3)) { 9103 define_arm_cp_regs(cpu, el3_cp_reginfo); 9104 ARMCPRegInfo el3_regs[] = { 9105 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 9106 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 9107 .access = PL3_R, 9108 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), }, 9109 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64, 9110 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2, 9111 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 9112 { .name = "RMR", .state = ARM_CP_STATE_AA32, 9113 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 9114 .access = PL3_RW, .type = ARM_CP_CONST, 9115 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }, 9116 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 9117 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 9118 .access = PL3_RW, 9119 .raw_writefn = raw_write, .writefn = sctlr_write, 9120 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 9121 .resetvalue = cpu->reset_sctlr }, 9122 }; 9123 9124 define_arm_cp_regs(cpu, el3_regs); 9125 } 9126 /* 9127 * The behaviour of NSACR is sufficiently various that we don't 9128 * try to describe it in a single reginfo: 9129 * if EL3 is 64 bit, then trap to EL3 from S EL1, 9130 * reads as constant 0xc00 from NS EL1 and NS EL2 9131 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 9132 * if v7 without EL3, register doesn't exist 9133 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 9134 */ 9135 if (arm_feature(env, ARM_FEATURE_EL3)) { 9136 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 9137 static const ARMCPRegInfo nsacr = { 9138 .name = "NSACR", .type = ARM_CP_CONST, 9139 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9140 .access = PL1_RW, .accessfn = nsacr_access, 9141 .resetvalue = 0xc00 9142 }; 9143 define_one_arm_cp_reg(cpu, &nsacr); 9144 } else { 9145 static const ARMCPRegInfo nsacr = { 9146 .name = "NSACR", 9147 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9148 .access = PL3_RW | PL1_R, 9149 .resetvalue = 0, 9150 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 9151 }; 9152 define_one_arm_cp_reg(cpu, &nsacr); 9153 } 9154 } else { 9155 if (arm_feature(env, ARM_FEATURE_V8)) { 9156 static const ARMCPRegInfo nsacr = { 9157 .name = "NSACR", .type = ARM_CP_CONST, 9158 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9159 .access = PL1_R, 9160 .resetvalue = 0xc00 9161 }; 9162 define_one_arm_cp_reg(cpu, &nsacr); 9163 } 9164 } 9165 9166 if (arm_feature(env, ARM_FEATURE_PMSA)) { 9167 if (arm_feature(env, ARM_FEATURE_V6)) { 9168 /* PMSAv6 not implemented */ 9169 assert(arm_feature(env, ARM_FEATURE_V7)); 9170 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 9171 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 9172 } else { 9173 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 9174 } 9175 } else { 9176 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 9177 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 9178 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 9179 if (cpu_isar_feature(aa32_hpd, cpu)) { 9180 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 9181 } 9182 } 9183 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 9184 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 9185 } 9186 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 9187 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 9188 } 9189 if (arm_feature(env, ARM_FEATURE_VAPA)) { 9190 ARMCPRegInfo vapa_cp_reginfo[] = { 9191 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 9192 .access = PL1_RW, .resetvalue = 0, 9193 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 9194 offsetoflow32(CPUARMState, cp15.par_ns) }, 9195 .writefn = par_write}, 9196 #ifndef CONFIG_USER_ONLY 9197 /* This underdecoding is safe because the reginfo is NO_RAW. */ 9198 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 9199 .access = PL1_W, .accessfn = ats_access, 9200 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 9201 #endif 9202 }; 9203 9204 /* 9205 * When LPAE exists this 32-bit PAR register is an alias of the 9206 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[] 9207 */ 9208 if (arm_feature(env, ARM_FEATURE_LPAE)) { 9209 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB; 9210 } 9211 define_arm_cp_regs(cpu, vapa_cp_reginfo); 9212 } 9213 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 9214 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 9215 } 9216 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 9217 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 9218 } 9219 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 9220 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 9221 } 9222 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 9223 define_arm_cp_regs(cpu, omap_cp_reginfo); 9224 } 9225 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 9226 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 9227 } 9228 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9229 define_arm_cp_regs(cpu, xscale_cp_reginfo); 9230 } 9231 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 9232 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 9233 } 9234 if (arm_feature(env, ARM_FEATURE_LPAE)) { 9235 define_arm_cp_regs(cpu, lpae_cp_reginfo); 9236 } 9237 if (cpu_isar_feature(aa32_jazelle, cpu)) { 9238 define_arm_cp_regs(cpu, jazelle_regs); 9239 } 9240 /* 9241 * Slightly awkwardly, the OMAP and StrongARM cores need all of 9242 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 9243 * be read-only (ie write causes UNDEF exception). 9244 */ 9245 { 9246 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 9247 /* 9248 * Pre-v8 MIDR space. 9249 * Note that the MIDR isn't a simple constant register because 9250 * of the TI925 behaviour where writes to another register can 9251 * cause the MIDR value to change. 9252 * 9253 * Unimplemented registers in the c15 0 0 0 space default to 9254 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 9255 * and friends override accordingly. 9256 */ 9257 { .name = "MIDR", 9258 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 9259 .access = PL1_R, .resetvalue = cpu->midr, 9260 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 9261 .readfn = midr_read, 9262 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 9263 .type = ARM_CP_OVERRIDE }, 9264 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 9265 { .name = "DUMMY", 9266 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 9267 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9268 { .name = "DUMMY", 9269 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 9270 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9271 { .name = "DUMMY", 9272 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 9273 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9274 { .name = "DUMMY", 9275 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 9276 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9277 { .name = "DUMMY", 9278 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 9279 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9280 }; 9281 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 9282 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 9283 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 9284 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 9285 .fgt = FGT_MIDR_EL1, 9286 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 9287 .readfn = midr_read }, 9288 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 9289 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 9290 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 9291 .access = PL1_R, .resetvalue = cpu->midr }, 9292 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 9293 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 9294 .access = PL1_R, 9295 .accessfn = access_aa64_tid1, 9296 .fgt = FGT_REVIDR_EL1, 9297 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 9298 }; 9299 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 9300 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB, 9301 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9302 .access = PL1_R, .resetvalue = cpu->midr 9303 }; 9304 ARMCPRegInfo id_cp_reginfo[] = { 9305 /* These are common to v8 and pre-v8 */ 9306 { .name = "CTR", 9307 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 9308 .access = PL1_R, .accessfn = ctr_el0_access, 9309 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9310 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 9311 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 9312 .access = PL0_R, .accessfn = ctr_el0_access, 9313 .fgt = FGT_CTR_EL0, 9314 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9315 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 9316 { .name = "TCMTR", 9317 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 9318 .access = PL1_R, 9319 .accessfn = access_aa32_tid1, 9320 .type = ARM_CP_CONST, .resetvalue = 0 }, 9321 }; 9322 /* TLBTR is specific to VMSA */ 9323 ARMCPRegInfo id_tlbtr_reginfo = { 9324 .name = "TLBTR", 9325 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 9326 .access = PL1_R, 9327 .accessfn = access_aa32_tid1, 9328 .type = ARM_CP_CONST, .resetvalue = 0, 9329 }; 9330 /* MPUIR is specific to PMSA V6+ */ 9331 ARMCPRegInfo id_mpuir_reginfo = { 9332 .name = "MPUIR", 9333 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9334 .access = PL1_R, .type = ARM_CP_CONST, 9335 .resetvalue = cpu->pmsav7_dregion << 8 9336 }; 9337 /* HMPUIR is specific to PMSA V8 */ 9338 ARMCPRegInfo id_hmpuir_reginfo = { 9339 .name = "HMPUIR", 9340 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 9341 .access = PL2_R, .type = ARM_CP_CONST, 9342 .resetvalue = cpu->pmsav8r_hdregion 9343 }; 9344 static const ARMCPRegInfo crn0_wi_reginfo = { 9345 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 9346 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 9347 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 9348 }; 9349 #ifdef CONFIG_USER_ONLY 9350 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 9351 { .name = "MIDR_EL1", 9352 .exported_bits = R_MIDR_EL1_REVISION_MASK | 9353 R_MIDR_EL1_PARTNUM_MASK | 9354 R_MIDR_EL1_ARCHITECTURE_MASK | 9355 R_MIDR_EL1_VARIANT_MASK | 9356 R_MIDR_EL1_IMPLEMENTER_MASK }, 9357 { .name = "REVIDR_EL1" }, 9358 }; 9359 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 9360 #endif 9361 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 9362 arm_feature(env, ARM_FEATURE_STRONGARM)) { 9363 size_t i; 9364 /* 9365 * Register the blanket "writes ignored" value first to cover the 9366 * whole space. Then update the specific ID registers to allow write 9367 * access, so that they ignore writes rather than causing them to 9368 * UNDEF. 9369 */ 9370 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 9371 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 9372 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 9373 } 9374 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 9375 id_cp_reginfo[i].access = PL1_RW; 9376 } 9377 id_mpuir_reginfo.access = PL1_RW; 9378 id_tlbtr_reginfo.access = PL1_RW; 9379 } 9380 if (arm_feature(env, ARM_FEATURE_V8)) { 9381 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 9382 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9383 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 9384 } 9385 } else { 9386 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 9387 } 9388 define_arm_cp_regs(cpu, id_cp_reginfo); 9389 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9390 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 9391 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 9392 arm_feature(env, ARM_FEATURE_V8)) { 9393 uint32_t i = 0; 9394 char *tmp_string; 9395 9396 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9397 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 9398 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 9399 9400 /* Register alias is only valid for first 32 indexes */ 9401 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 9402 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9403 uint8_t opc1 = extract32(i, 4, 1); 9404 uint8_t opc2 = extract32(i, 0, 1) << 2; 9405 9406 tmp_string = g_strdup_printf("PRBAR%u", i); 9407 ARMCPRegInfo tmp_prbarn_reginfo = { 9408 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9409 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9410 .access = PL1_RW, .resetvalue = 0, 9411 .accessfn = access_tvm_trvm, 9412 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9413 }; 9414 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 9415 g_free(tmp_string); 9416 9417 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9418 tmp_string = g_strdup_printf("PRLAR%u", i); 9419 ARMCPRegInfo tmp_prlarn_reginfo = { 9420 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9421 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9422 .access = PL1_RW, .resetvalue = 0, 9423 .accessfn = access_tvm_trvm, 9424 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9425 }; 9426 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 9427 g_free(tmp_string); 9428 } 9429 9430 /* Register alias is only valid for first 32 indexes */ 9431 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 9432 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9433 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 9434 uint8_t opc2 = extract32(i, 0, 1) << 2; 9435 9436 tmp_string = g_strdup_printf("HPRBAR%u", i); 9437 ARMCPRegInfo tmp_hprbarn_reginfo = { 9438 .name = tmp_string, 9439 .type = ARM_CP_NO_RAW, 9440 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9441 .access = PL2_RW, .resetvalue = 0, 9442 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9443 }; 9444 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 9445 g_free(tmp_string); 9446 9447 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9448 tmp_string = g_strdup_printf("HPRLAR%u", i); 9449 ARMCPRegInfo tmp_hprlarn_reginfo = { 9450 .name = tmp_string, 9451 .type = ARM_CP_NO_RAW, 9452 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9453 .access = PL2_RW, .resetvalue = 0, 9454 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9455 }; 9456 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 9457 g_free(tmp_string); 9458 } 9459 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9460 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9461 } 9462 } 9463 9464 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 9465 ARMCPRegInfo mpidr_cp_reginfo[] = { 9466 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 9467 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 9468 .fgt = FGT_MPIDR_EL1, 9469 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 9470 }; 9471 #ifdef CONFIG_USER_ONLY 9472 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 9473 { .name = "MPIDR_EL1", 9474 .fixed_bits = 0x0000000080000000 }, 9475 }; 9476 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 9477 #endif 9478 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 9479 } 9480 9481 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 9482 ARMCPRegInfo auxcr_reginfo[] = { 9483 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 9484 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 9485 .access = PL1_RW, .accessfn = access_tacr, 9486 .nv2_redirect_offset = 0x118, 9487 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 9488 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 9489 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 9490 .access = PL2_RW, .type = ARM_CP_CONST, 9491 .resetvalue = 0 }, 9492 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 9493 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 9494 .access = PL3_RW, .type = ARM_CP_CONST, 9495 .resetvalue = 0 }, 9496 }; 9497 define_arm_cp_regs(cpu, auxcr_reginfo); 9498 if (cpu_isar_feature(aa32_ac2, cpu)) { 9499 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 9500 } 9501 } 9502 9503 if (arm_feature(env, ARM_FEATURE_CBAR)) { 9504 /* 9505 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 9506 * There are two flavours: 9507 * (1) older 32-bit only cores have a simple 32-bit CBAR 9508 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 9509 * 32-bit register visible to AArch32 at a different encoding 9510 * to the "flavour 1" register and with the bits rearranged to 9511 * be able to squash a 64-bit address into the 32-bit view. 9512 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 9513 * in future if we support AArch32-only configs of some of the 9514 * AArch64 cores we might need to add a specific feature flag 9515 * to indicate cores with "flavour 2" CBAR. 9516 */ 9517 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 9518 /* 32 bit view is [31:18] 0...0 [43:32]. */ 9519 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 9520 | extract64(cpu->reset_cbar, 32, 12); 9521 ARMCPRegInfo cbar_reginfo[] = { 9522 { .name = "CBAR", 9523 .type = ARM_CP_CONST, 9524 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 9525 .access = PL1_R, .resetvalue = cbar32 }, 9526 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 9527 .type = ARM_CP_CONST, 9528 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 9529 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 9530 }; 9531 /* We don't implement a r/w 64 bit CBAR currently */ 9532 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 9533 define_arm_cp_regs(cpu, cbar_reginfo); 9534 } else { 9535 ARMCPRegInfo cbar = { 9536 .name = "CBAR", 9537 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 9538 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 9539 .fieldoffset = offsetof(CPUARMState, 9540 cp15.c15_config_base_address) 9541 }; 9542 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 9543 cbar.access = PL1_R; 9544 cbar.fieldoffset = 0; 9545 cbar.type = ARM_CP_CONST; 9546 } 9547 define_one_arm_cp_reg(cpu, &cbar); 9548 } 9549 } 9550 9551 if (arm_feature(env, ARM_FEATURE_VBAR)) { 9552 static const ARMCPRegInfo vbar_cp_reginfo[] = { 9553 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 9554 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 9555 .access = PL1_RW, .writefn = vbar_write, 9556 .accessfn = access_nv1, 9557 .fgt = FGT_VBAR_EL1, 9558 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1, 9559 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 9560 offsetof(CPUARMState, cp15.vbar_ns) }, 9561 .resetvalue = 0 }, 9562 }; 9563 define_arm_cp_regs(cpu, vbar_cp_reginfo); 9564 } 9565 9566 /* Generic registers whose values depend on the implementation */ 9567 { 9568 ARMCPRegInfo sctlr = { 9569 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 9570 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 9571 .access = PL1_RW, .accessfn = access_tvm_trvm, 9572 .fgt = FGT_SCTLR_EL1, 9573 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1, 9574 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 9575 offsetof(CPUARMState, cp15.sctlr_ns) }, 9576 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 9577 .raw_writefn = raw_write, 9578 }; 9579 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9580 /* 9581 * Normally we would always end the TB on an SCTLR write, but Linux 9582 * arch/arm/mach-pxa/sleep.S expects two instructions following 9583 * an MMU enable to execute from cache. Imitate this behaviour. 9584 */ 9585 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 9586 } 9587 define_one_arm_cp_reg(cpu, &sctlr); 9588 9589 if (arm_feature(env, ARM_FEATURE_PMSA) && 9590 arm_feature(env, ARM_FEATURE_V8)) { 9591 ARMCPRegInfo vsctlr = { 9592 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 9593 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 9594 .access = PL2_RW, .resetvalue = 0x0, 9595 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 9596 }; 9597 define_one_arm_cp_reg(cpu, &vsctlr); 9598 } 9599 } 9600 9601 if (cpu_isar_feature(aa64_lor, cpu)) { 9602 define_arm_cp_regs(cpu, lor_reginfo); 9603 } 9604 if (cpu_isar_feature(aa64_pan, cpu)) { 9605 define_one_arm_cp_reg(cpu, &pan_reginfo); 9606 } 9607 #ifndef CONFIG_USER_ONLY 9608 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 9609 define_arm_cp_regs(cpu, ats1e1_reginfo); 9610 } 9611 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 9612 define_arm_cp_regs(cpu, ats1cp_reginfo); 9613 } 9614 #endif 9615 if (cpu_isar_feature(aa64_uao, cpu)) { 9616 define_one_arm_cp_reg(cpu, &uao_reginfo); 9617 } 9618 9619 if (cpu_isar_feature(aa64_dit, cpu)) { 9620 define_one_arm_cp_reg(cpu, &dit_reginfo); 9621 } 9622 if (cpu_isar_feature(aa64_ssbs, cpu)) { 9623 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 9624 } 9625 if (cpu_isar_feature(any_ras, cpu)) { 9626 define_arm_cp_regs(cpu, minimal_ras_reginfo); 9627 } 9628 9629 if (cpu_isar_feature(aa64_vh, cpu) || 9630 cpu_isar_feature(aa64_debugv8p2, cpu)) { 9631 define_one_arm_cp_reg(cpu, &contextidr_el2); 9632 } 9633 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9634 define_arm_cp_regs(cpu, vhe_reginfo); 9635 } 9636 9637 if (cpu_isar_feature(aa64_sve, cpu)) { 9638 define_arm_cp_regs(cpu, zcr_reginfo); 9639 } 9640 9641 if (cpu_isar_feature(aa64_hcx, cpu)) { 9642 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 9643 } 9644 9645 #ifdef TARGET_AARCH64 9646 if (cpu_isar_feature(aa64_sme, cpu)) { 9647 define_arm_cp_regs(cpu, sme_reginfo); 9648 } 9649 if (cpu_isar_feature(aa64_pauth, cpu)) { 9650 define_arm_cp_regs(cpu, pauth_reginfo); 9651 } 9652 if (cpu_isar_feature(aa64_rndr, cpu)) { 9653 define_arm_cp_regs(cpu, rndr_reginfo); 9654 } 9655 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 9656 define_arm_cp_regs(cpu, tlbirange_reginfo); 9657 } 9658 if (cpu_isar_feature(aa64_tlbios, cpu)) { 9659 define_arm_cp_regs(cpu, tlbios_reginfo); 9660 } 9661 /* Data Cache clean instructions up to PoP */ 9662 if (cpu_isar_feature(aa64_dcpop, cpu)) { 9663 define_one_arm_cp_reg(cpu, dcpop_reg); 9664 9665 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 9666 define_one_arm_cp_reg(cpu, dcpodp_reg); 9667 } 9668 } 9669 9670 /* 9671 * If full MTE is enabled, add all of the system registers. 9672 * If only "instructions available at EL0" are enabled, 9673 * then define only a RAZ/WI version of PSTATE.TCO. 9674 */ 9675 if (cpu_isar_feature(aa64_mte, cpu)) { 9676 ARMCPRegInfo gmid_reginfo = { 9677 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 9678 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 9679 .access = PL1_R, .accessfn = access_aa64_tid5, 9680 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize, 9681 }; 9682 define_one_arm_cp_reg(cpu, &gmid_reginfo); 9683 define_arm_cp_regs(cpu, mte_reginfo); 9684 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9685 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 9686 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 9687 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9688 } 9689 9690 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 9691 define_arm_cp_regs(cpu, scxtnum_reginfo); 9692 } 9693 9694 if (cpu_isar_feature(aa64_fgt, cpu)) { 9695 define_arm_cp_regs(cpu, fgt_reginfo); 9696 } 9697 9698 if (cpu_isar_feature(aa64_rme, cpu)) { 9699 define_arm_cp_regs(cpu, rme_reginfo); 9700 if (cpu_isar_feature(aa64_mte, cpu)) { 9701 define_arm_cp_regs(cpu, rme_mte_reginfo); 9702 } 9703 } 9704 9705 if (cpu_isar_feature(aa64_nv2, cpu)) { 9706 define_arm_cp_regs(cpu, nv2_reginfo); 9707 } 9708 #endif 9709 9710 if (cpu_isar_feature(any_predinv, cpu)) { 9711 define_arm_cp_regs(cpu, predinv_reginfo); 9712 } 9713 9714 if (cpu_isar_feature(any_ccidx, cpu)) { 9715 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9716 } 9717 9718 #ifndef CONFIG_USER_ONLY 9719 /* 9720 * Register redirections and aliases must be done last, 9721 * after the registers from the other extensions have been defined. 9722 */ 9723 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9724 define_arm_vh_e2h_redirects_aliases(cpu); 9725 } 9726 #endif 9727 } 9728 9729 /* 9730 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9731 * add a single reginfo struct to the hash table. 9732 */ 9733 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9734 void *opaque, CPState state, 9735 CPSecureState secstate, 9736 int crm, int opc1, int opc2, 9737 const char *name) 9738 { 9739 CPUARMState *env = &cpu->env; 9740 uint32_t key; 9741 ARMCPRegInfo *r2; 9742 bool is64 = r->type & ARM_CP_64BIT; 9743 bool ns = secstate & ARM_CP_SECSTATE_NS; 9744 int cp = r->cp; 9745 size_t name_len; 9746 bool make_const; 9747 9748 switch (state) { 9749 case ARM_CP_STATE_AA32: 9750 /* We assume it is a cp15 register if the .cp field is left unset. */ 9751 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9752 cp = 15; 9753 } 9754 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9755 break; 9756 case ARM_CP_STATE_AA64: 9757 /* 9758 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9759 * cp == 0 as equivalent to the value for "standard guest-visible 9760 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9761 * in their AArch64 view (the .cp value may be non-zero for the 9762 * benefit of the AArch32 view). 9763 */ 9764 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9765 cp = CP_REG_ARM64_SYSREG_CP; 9766 } 9767 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9768 break; 9769 default: 9770 g_assert_not_reached(); 9771 } 9772 9773 /* Overriding of an existing definition must be explicitly requested. */ 9774 if (!(r->type & ARM_CP_OVERRIDE)) { 9775 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9776 if (oldreg) { 9777 assert(oldreg->type & ARM_CP_OVERRIDE); 9778 } 9779 } 9780 9781 /* 9782 * Eliminate registers that are not present because the EL is missing. 9783 * Doing this here makes it easier to put all registers for a given 9784 * feature into the same ARMCPRegInfo array and define them all at once. 9785 */ 9786 make_const = false; 9787 if (arm_feature(env, ARM_FEATURE_EL3)) { 9788 /* 9789 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9790 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9791 */ 9792 int min_el = ctz32(r->access) / 2; 9793 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9794 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9795 return; 9796 } 9797 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9798 } 9799 } else { 9800 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9801 ? PL2_RW : PL1_RW); 9802 if ((r->access & max_el) == 0) { 9803 return; 9804 } 9805 } 9806 9807 /* Combine cpreg and name into one allocation. */ 9808 name_len = strlen(name) + 1; 9809 r2 = g_malloc(sizeof(*r2) + name_len); 9810 *r2 = *r; 9811 r2->name = memcpy(r2 + 1, name, name_len); 9812 9813 /* 9814 * Update fields to match the instantiation, overwiting wildcards 9815 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9816 */ 9817 r2->cp = cp; 9818 r2->crm = crm; 9819 r2->opc1 = opc1; 9820 r2->opc2 = opc2; 9821 r2->state = state; 9822 r2->secure = secstate; 9823 if (opaque) { 9824 r2->opaque = opaque; 9825 } 9826 9827 if (make_const) { 9828 /* This should not have been a very special register to begin. */ 9829 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 9830 assert(old_special == 0 || old_special == ARM_CP_NOP); 9831 /* 9832 * Set the special function to CONST, retaining the other flags. 9833 * This is important for e.g. ARM_CP_SVE so that we still 9834 * take the SVE trap if CPTR_EL3.EZ == 0. 9835 */ 9836 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 9837 /* 9838 * Usually, these registers become RES0, but there are a few 9839 * special cases like VPIDR_EL2 which have a constant non-zero 9840 * value with writes ignored. 9841 */ 9842 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 9843 r2->resetvalue = 0; 9844 } 9845 /* 9846 * ARM_CP_CONST has precedence, so removing the callbacks and 9847 * offsets are not strictly necessary, but it is potentially 9848 * less confusing to debug later. 9849 */ 9850 r2->readfn = NULL; 9851 r2->writefn = NULL; 9852 r2->raw_readfn = NULL; 9853 r2->raw_writefn = NULL; 9854 r2->resetfn = NULL; 9855 r2->fieldoffset = 0; 9856 r2->bank_fieldoffsets[0] = 0; 9857 r2->bank_fieldoffsets[1] = 0; 9858 } else { 9859 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 9860 9861 if (isbanked) { 9862 /* 9863 * Register is banked (using both entries in array). 9864 * Overwriting fieldoffset as the array is only used to define 9865 * banked registers but later only fieldoffset is used. 9866 */ 9867 r2->fieldoffset = r->bank_fieldoffsets[ns]; 9868 } 9869 if (state == ARM_CP_STATE_AA32) { 9870 if (isbanked) { 9871 /* 9872 * If the register is banked then we don't need to migrate or 9873 * reset the 32-bit instance in certain cases: 9874 * 9875 * 1) If the register has both 32-bit and 64-bit instances 9876 * then we can count on the 64-bit instance taking care 9877 * of the non-secure bank. 9878 * 2) If ARMv8 is enabled then we can count on a 64-bit 9879 * version taking care of the secure bank. This requires 9880 * that separate 32 and 64-bit definitions are provided. 9881 */ 9882 if ((r->state == ARM_CP_STATE_BOTH && ns) || 9883 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 9884 r2->type |= ARM_CP_ALIAS; 9885 } 9886 } else if ((secstate != r->secure) && !ns) { 9887 /* 9888 * The register is not banked so we only want to allow 9889 * migration of the non-secure instance. 9890 */ 9891 r2->type |= ARM_CP_ALIAS; 9892 } 9893 9894 if (HOST_BIG_ENDIAN && 9895 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 9896 r2->fieldoffset += sizeof(uint32_t); 9897 } 9898 } 9899 } 9900 9901 /* 9902 * By convention, for wildcarded registers only the first 9903 * entry is used for migration; the others are marked as 9904 * ALIAS so we don't try to transfer the register 9905 * multiple times. Special registers (ie NOP/WFI) are 9906 * never migratable and not even raw-accessible. 9907 */ 9908 if (r2->type & ARM_CP_SPECIAL_MASK) { 9909 r2->type |= ARM_CP_NO_RAW; 9910 } 9911 if (((r->crm == CP_ANY) && crm != 0) || 9912 ((r->opc1 == CP_ANY) && opc1 != 0) || 9913 ((r->opc2 == CP_ANY) && opc2 != 0)) { 9914 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 9915 } 9916 9917 /* 9918 * Check that raw accesses are either forbidden or handled. Note that 9919 * we can't assert this earlier because the setup of fieldoffset for 9920 * banked registers has to be done first. 9921 */ 9922 if (!(r2->type & ARM_CP_NO_RAW)) { 9923 assert(!raw_accessors_invalid(r2)); 9924 } 9925 9926 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9927 } 9928 9929 9930 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9931 const ARMCPRegInfo *r, void *opaque) 9932 { 9933 /* 9934 * Define implementations of coprocessor registers. 9935 * We store these in a hashtable because typically 9936 * there are less than 150 registers in a space which 9937 * is 16*16*16*8*8 = 262144 in size. 9938 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9939 * If a register is defined twice then the second definition is 9940 * used, so this can be used to define some generic registers and 9941 * then override them with implementation specific variations. 9942 * At least one of the original and the second definition should 9943 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9944 * against accidental use. 9945 * 9946 * The state field defines whether the register is to be 9947 * visible in the AArch32 or AArch64 execution state. If the 9948 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9949 * reginfo structure for the AArch32 view, which sees the lower 9950 * 32 bits of the 64 bit register. 9951 * 9952 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9953 * be wildcarded. AArch64 registers are always considered to be 64 9954 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9955 * the register, if any. 9956 */ 9957 int crm, opc1, opc2; 9958 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9959 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9960 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9961 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9962 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9963 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9964 CPState state; 9965 9966 /* 64 bit registers have only CRm and Opc1 fields */ 9967 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9968 /* op0 only exists in the AArch64 encodings */ 9969 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9970 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9971 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9972 /* 9973 * This API is only for Arm's system coprocessors (14 and 15) or 9974 * (M-profile or v7A-and-earlier only) for implementation defined 9975 * coprocessors in the range 0..7. Our decode assumes this, since 9976 * 8..13 can be used for other insns including VFP and Neon. See 9977 * valid_cp() in translate.c. Assert here that we haven't tried 9978 * to use an invalid coprocessor number. 9979 */ 9980 switch (r->state) { 9981 case ARM_CP_STATE_BOTH: 9982 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9983 if (r->cp == 0) { 9984 break; 9985 } 9986 /* fall through */ 9987 case ARM_CP_STATE_AA32: 9988 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 9989 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 9990 assert(r->cp >= 14 && r->cp <= 15); 9991 } else { 9992 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 9993 } 9994 break; 9995 case ARM_CP_STATE_AA64: 9996 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 9997 break; 9998 default: 9999 g_assert_not_reached(); 10000 } 10001 /* 10002 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 10003 * encodes a minimum access level for the register. We roll this 10004 * runtime check into our general permission check code, so check 10005 * here that the reginfo's specified permissions are strict enough 10006 * to encompass the generic architectural permission check. 10007 */ 10008 if (r->state != ARM_CP_STATE_AA32) { 10009 CPAccessRights mask; 10010 switch (r->opc1) { 10011 case 0: 10012 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 10013 mask = PL0U_R | PL1_RW; 10014 break; 10015 case 1: case 2: 10016 /* min_EL EL1 */ 10017 mask = PL1_RW; 10018 break; 10019 case 3: 10020 /* min_EL EL0 */ 10021 mask = PL0_RW; 10022 break; 10023 case 4: 10024 case 5: 10025 /* min_EL EL2 */ 10026 mask = PL2_RW; 10027 break; 10028 case 6: 10029 /* min_EL EL3 */ 10030 mask = PL3_RW; 10031 break; 10032 case 7: 10033 /* min_EL EL1, secure mode only (we don't check the latter) */ 10034 mask = PL1_RW; 10035 break; 10036 default: 10037 /* broken reginfo with out-of-range opc1 */ 10038 g_assert_not_reached(); 10039 } 10040 /* assert our permissions are not too lax (stricter is fine) */ 10041 assert((r->access & ~mask) == 0); 10042 } 10043 10044 /* 10045 * Check that the register definition has enough info to handle 10046 * reads and writes if they are permitted. 10047 */ 10048 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 10049 if (r->access & PL3_R) { 10050 assert((r->fieldoffset || 10051 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 10052 r->readfn); 10053 } 10054 if (r->access & PL3_W) { 10055 assert((r->fieldoffset || 10056 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 10057 r->writefn); 10058 } 10059 } 10060 10061 for (crm = crmmin; crm <= crmmax; crm++) { 10062 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 10063 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 10064 for (state = ARM_CP_STATE_AA32; 10065 state <= ARM_CP_STATE_AA64; state++) { 10066 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 10067 continue; 10068 } 10069 if (state == ARM_CP_STATE_AA32) { 10070 /* 10071 * Under AArch32 CP registers can be common 10072 * (same for secure and non-secure world) or banked. 10073 */ 10074 char *name; 10075 10076 switch (r->secure) { 10077 case ARM_CP_SECSTATE_S: 10078 case ARM_CP_SECSTATE_NS: 10079 add_cpreg_to_hashtable(cpu, r, opaque, state, 10080 r->secure, crm, opc1, opc2, 10081 r->name); 10082 break; 10083 case ARM_CP_SECSTATE_BOTH: 10084 name = g_strdup_printf("%s_S", r->name); 10085 add_cpreg_to_hashtable(cpu, r, opaque, state, 10086 ARM_CP_SECSTATE_S, 10087 crm, opc1, opc2, name); 10088 g_free(name); 10089 add_cpreg_to_hashtable(cpu, r, opaque, state, 10090 ARM_CP_SECSTATE_NS, 10091 crm, opc1, opc2, r->name); 10092 break; 10093 default: 10094 g_assert_not_reached(); 10095 } 10096 } else { 10097 /* 10098 * AArch64 registers get mapped to non-secure instance 10099 * of AArch32 10100 */ 10101 add_cpreg_to_hashtable(cpu, r, opaque, state, 10102 ARM_CP_SECSTATE_NS, 10103 crm, opc1, opc2, r->name); 10104 } 10105 } 10106 } 10107 } 10108 } 10109 } 10110 10111 /* Define a whole list of registers */ 10112 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 10113 void *opaque, size_t len) 10114 { 10115 size_t i; 10116 for (i = 0; i < len; ++i) { 10117 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 10118 } 10119 } 10120 10121 /* 10122 * Modify ARMCPRegInfo for access from userspace. 10123 * 10124 * This is a data driven modification directed by 10125 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 10126 * user-space cannot alter any values and dynamic values pertaining to 10127 * execution state are hidden from user space view anyway. 10128 */ 10129 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 10130 const ARMCPRegUserSpaceInfo *mods, 10131 size_t mods_len) 10132 { 10133 for (size_t mi = 0; mi < mods_len; ++mi) { 10134 const ARMCPRegUserSpaceInfo *m = mods + mi; 10135 GPatternSpec *pat = NULL; 10136 10137 if (m->is_glob) { 10138 pat = g_pattern_spec_new(m->name); 10139 } 10140 for (size_t ri = 0; ri < regs_len; ++ri) { 10141 ARMCPRegInfo *r = regs + ri; 10142 10143 if (pat && g_pattern_match_string(pat, r->name)) { 10144 r->type = ARM_CP_CONST; 10145 r->access = PL0U_R; 10146 r->resetvalue = 0; 10147 /* continue */ 10148 } else if (strcmp(r->name, m->name) == 0) { 10149 r->type = ARM_CP_CONST; 10150 r->access = PL0U_R; 10151 r->resetvalue &= m->exported_bits; 10152 r->resetvalue |= m->fixed_bits; 10153 break; 10154 } 10155 } 10156 if (pat) { 10157 g_pattern_spec_free(pat); 10158 } 10159 } 10160 } 10161 10162 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 10163 { 10164 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 10165 } 10166 10167 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 10168 uint64_t value) 10169 { 10170 /* Helper coprocessor write function for write-ignore registers */ 10171 } 10172 10173 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 10174 { 10175 /* Helper coprocessor write function for read-as-zero registers */ 10176 return 0; 10177 } 10178 10179 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 10180 { 10181 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 10182 } 10183 10184 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 10185 { 10186 /* 10187 * Return true if it is not valid for us to switch to 10188 * this CPU mode (ie all the UNPREDICTABLE cases in 10189 * the ARM ARM CPSRWriteByInstr pseudocode). 10190 */ 10191 10192 /* Changes to or from Hyp via MSR and CPS are illegal. */ 10193 if (write_type == CPSRWriteByInstr && 10194 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 10195 mode == ARM_CPU_MODE_HYP)) { 10196 return 1; 10197 } 10198 10199 switch (mode) { 10200 case ARM_CPU_MODE_USR: 10201 return 0; 10202 case ARM_CPU_MODE_SYS: 10203 case ARM_CPU_MODE_SVC: 10204 case ARM_CPU_MODE_ABT: 10205 case ARM_CPU_MODE_UND: 10206 case ARM_CPU_MODE_IRQ: 10207 case ARM_CPU_MODE_FIQ: 10208 /* 10209 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 10210 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 10211 */ 10212 /* 10213 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 10214 * and CPS are treated as illegal mode changes. 10215 */ 10216 if (write_type == CPSRWriteByInstr && 10217 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 10218 (arm_hcr_el2_eff(env) & HCR_TGE)) { 10219 return 1; 10220 } 10221 return 0; 10222 case ARM_CPU_MODE_HYP: 10223 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 10224 case ARM_CPU_MODE_MON: 10225 return arm_current_el(env) < 3; 10226 default: 10227 return 1; 10228 } 10229 } 10230 10231 uint32_t cpsr_read(CPUARMState *env) 10232 { 10233 int ZF; 10234 ZF = (env->ZF == 0); 10235 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 10236 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 10237 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 10238 | ((env->condexec_bits & 0xfc) << 8) 10239 | (env->GE << 16) | (env->daif & CPSR_AIF); 10240 } 10241 10242 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 10243 CPSRWriteType write_type) 10244 { 10245 uint32_t changed_daif; 10246 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 10247 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 10248 10249 if (mask & CPSR_NZCV) { 10250 env->ZF = (~val) & CPSR_Z; 10251 env->NF = val; 10252 env->CF = (val >> 29) & 1; 10253 env->VF = (val << 3) & 0x80000000; 10254 } 10255 if (mask & CPSR_Q) { 10256 env->QF = ((val & CPSR_Q) != 0); 10257 } 10258 if (mask & CPSR_T) { 10259 env->thumb = ((val & CPSR_T) != 0); 10260 } 10261 if (mask & CPSR_IT_0_1) { 10262 env->condexec_bits &= ~3; 10263 env->condexec_bits |= (val >> 25) & 3; 10264 } 10265 if (mask & CPSR_IT_2_7) { 10266 env->condexec_bits &= 3; 10267 env->condexec_bits |= (val >> 8) & 0xfc; 10268 } 10269 if (mask & CPSR_GE) { 10270 env->GE = (val >> 16) & 0xf; 10271 } 10272 10273 /* 10274 * In a V7 implementation that includes the security extensions but does 10275 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 10276 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 10277 * bits respectively. 10278 * 10279 * In a V8 implementation, it is permitted for privileged software to 10280 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 10281 */ 10282 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 10283 arm_feature(env, ARM_FEATURE_EL3) && 10284 !arm_feature(env, ARM_FEATURE_EL2) && 10285 !arm_is_secure(env)) { 10286 10287 changed_daif = (env->daif ^ val) & mask; 10288 10289 if (changed_daif & CPSR_A) { 10290 /* 10291 * Check to see if we are allowed to change the masking of async 10292 * abort exceptions from a non-secure state. 10293 */ 10294 if (!(env->cp15.scr_el3 & SCR_AW)) { 10295 qemu_log_mask(LOG_GUEST_ERROR, 10296 "Ignoring attempt to switch CPSR_A flag from " 10297 "non-secure world with SCR.AW bit clear\n"); 10298 mask &= ~CPSR_A; 10299 } 10300 } 10301 10302 if (changed_daif & CPSR_F) { 10303 /* 10304 * Check to see if we are allowed to change the masking of FIQ 10305 * exceptions from a non-secure state. 10306 */ 10307 if (!(env->cp15.scr_el3 & SCR_FW)) { 10308 qemu_log_mask(LOG_GUEST_ERROR, 10309 "Ignoring attempt to switch CPSR_F flag from " 10310 "non-secure world with SCR.FW bit clear\n"); 10311 mask &= ~CPSR_F; 10312 } 10313 10314 /* 10315 * Check whether non-maskable FIQ (NMFI) support is enabled. 10316 * If this bit is set software is not allowed to mask 10317 * FIQs, but is allowed to set CPSR_F to 0. 10318 */ 10319 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 10320 (val & CPSR_F)) { 10321 qemu_log_mask(LOG_GUEST_ERROR, 10322 "Ignoring attempt to enable CPSR_F flag " 10323 "(non-maskable FIQ [NMFI] support enabled)\n"); 10324 mask &= ~CPSR_F; 10325 } 10326 } 10327 } 10328 10329 env->daif &= ~(CPSR_AIF & mask); 10330 env->daif |= val & CPSR_AIF & mask; 10331 10332 if (write_type != CPSRWriteRaw && 10333 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 10334 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 10335 /* 10336 * Note that we can only get here in USR mode if this is a 10337 * gdb stub write; for this case we follow the architectural 10338 * behaviour for guest writes in USR mode of ignoring an attempt 10339 * to switch mode. (Those are caught by translate.c for writes 10340 * triggered by guest instructions.) 10341 */ 10342 mask &= ~CPSR_M; 10343 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 10344 /* 10345 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 10346 * v7, and has defined behaviour in v8: 10347 * + leave CPSR.M untouched 10348 * + allow changes to the other CPSR fields 10349 * + set PSTATE.IL 10350 * For user changes via the GDB stub, we don't set PSTATE.IL, 10351 * as this would be unnecessarily harsh for a user error. 10352 */ 10353 mask &= ~CPSR_M; 10354 if (write_type != CPSRWriteByGDBStub && 10355 arm_feature(env, ARM_FEATURE_V8)) { 10356 mask |= CPSR_IL; 10357 val |= CPSR_IL; 10358 } 10359 qemu_log_mask(LOG_GUEST_ERROR, 10360 "Illegal AArch32 mode switch attempt from %s to %s\n", 10361 aarch32_mode_name(env->uncached_cpsr), 10362 aarch32_mode_name(val)); 10363 } else { 10364 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 10365 write_type == CPSRWriteExceptionReturn ? 10366 "Exception return from AArch32" : 10367 "AArch32 mode switch from", 10368 aarch32_mode_name(env->uncached_cpsr), 10369 aarch32_mode_name(val), env->regs[15]); 10370 switch_mode(env, val & CPSR_M); 10371 } 10372 } 10373 mask &= ~CACHED_CPSR_BITS; 10374 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 10375 if (tcg_enabled() && rebuild_hflags) { 10376 arm_rebuild_hflags(env); 10377 } 10378 } 10379 10380 #ifdef CONFIG_USER_ONLY 10381 10382 static void switch_mode(CPUARMState *env, int mode) 10383 { 10384 ARMCPU *cpu = env_archcpu(env); 10385 10386 if (mode != ARM_CPU_MODE_USR) { 10387 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 10388 } 10389 } 10390 10391 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10392 uint32_t cur_el, bool secure) 10393 { 10394 return 1; 10395 } 10396 10397 void aarch64_sync_64_to_32(CPUARMState *env) 10398 { 10399 g_assert_not_reached(); 10400 } 10401 10402 #else 10403 10404 static void switch_mode(CPUARMState *env, int mode) 10405 { 10406 int old_mode; 10407 int i; 10408 10409 old_mode = env->uncached_cpsr & CPSR_M; 10410 if (mode == old_mode) { 10411 return; 10412 } 10413 10414 if (old_mode == ARM_CPU_MODE_FIQ) { 10415 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10416 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 10417 } else if (mode == ARM_CPU_MODE_FIQ) { 10418 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10419 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 10420 } 10421 10422 i = bank_number(old_mode); 10423 env->banked_r13[i] = env->regs[13]; 10424 env->banked_spsr[i] = env->spsr; 10425 10426 i = bank_number(mode); 10427 env->regs[13] = env->banked_r13[i]; 10428 env->spsr = env->banked_spsr[i]; 10429 10430 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 10431 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 10432 } 10433 10434 /* 10435 * Physical Interrupt Target EL Lookup Table 10436 * 10437 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 10438 * 10439 * The below multi-dimensional table is used for looking up the target 10440 * exception level given numerous condition criteria. Specifically, the 10441 * target EL is based on SCR and HCR routing controls as well as the 10442 * currently executing EL and secure state. 10443 * 10444 * Dimensions: 10445 * target_el_table[2][2][2][2][2][4] 10446 * | | | | | +--- Current EL 10447 * | | | | +------ Non-secure(0)/Secure(1) 10448 * | | | +--------- HCR mask override 10449 * | | +------------ SCR exec state control 10450 * | +--------------- SCR mask override 10451 * +------------------ 32-bit(0)/64-bit(1) EL3 10452 * 10453 * The table values are as such: 10454 * 0-3 = EL0-EL3 10455 * -1 = Cannot occur 10456 * 10457 * The ARM ARM target EL table includes entries indicating that an "exception 10458 * is not taken". The two cases where this is applicable are: 10459 * 1) An exception is taken from EL3 but the SCR does not have the exception 10460 * routed to EL3. 10461 * 2) An exception is taken from EL2 but the HCR does not have the exception 10462 * routed to EL2. 10463 * In these two cases, the below table contain a target of EL1. This value is 10464 * returned as it is expected that the consumer of the table data will check 10465 * for "target EL >= current EL" to ensure the exception is not taken. 10466 * 10467 * SCR HCR 10468 * 64 EA AMO From 10469 * BIT IRQ IMO Non-secure Secure 10470 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 10471 */ 10472 static const int8_t target_el_table[2][2][2][2][2][4] = { 10473 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10474 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 10475 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10476 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 10477 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10478 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 10479 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10480 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 10481 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 10482 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 10483 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 10484 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 10485 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 10486 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 10487 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 10488 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 10489 }; 10490 10491 /* 10492 * Determine the target EL for physical exceptions 10493 */ 10494 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10495 uint32_t cur_el, bool secure) 10496 { 10497 CPUARMState *env = cpu_env(cs); 10498 bool rw; 10499 bool scr; 10500 bool hcr; 10501 int target_el; 10502 /* Is the highest EL AArch64? */ 10503 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 10504 uint64_t hcr_el2; 10505 10506 if (arm_feature(env, ARM_FEATURE_EL3)) { 10507 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 10508 } else { 10509 /* 10510 * Either EL2 is the highest EL (and so the EL2 register width 10511 * is given by is64); or there is no EL2 or EL3, in which case 10512 * the value of 'rw' does not affect the table lookup anyway. 10513 */ 10514 rw = is64; 10515 } 10516 10517 hcr_el2 = arm_hcr_el2_eff(env); 10518 switch (excp_idx) { 10519 case EXCP_IRQ: 10520 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 10521 hcr = hcr_el2 & HCR_IMO; 10522 break; 10523 case EXCP_FIQ: 10524 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 10525 hcr = hcr_el2 & HCR_FMO; 10526 break; 10527 default: 10528 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 10529 hcr = hcr_el2 & HCR_AMO; 10530 break; 10531 }; 10532 10533 /* 10534 * For these purposes, TGE and AMO/IMO/FMO both force the 10535 * interrupt to EL2. Fold TGE into the bit extracted above. 10536 */ 10537 hcr |= (hcr_el2 & HCR_TGE) != 0; 10538 10539 /* Perform a table-lookup for the target EL given the current state */ 10540 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 10541 10542 assert(target_el > 0); 10543 10544 return target_el; 10545 } 10546 10547 void arm_log_exception(CPUState *cs) 10548 { 10549 int idx = cs->exception_index; 10550 10551 if (qemu_loglevel_mask(CPU_LOG_INT)) { 10552 const char *exc = NULL; 10553 static const char * const excnames[] = { 10554 [EXCP_UDEF] = "Undefined Instruction", 10555 [EXCP_SWI] = "SVC", 10556 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 10557 [EXCP_DATA_ABORT] = "Data Abort", 10558 [EXCP_IRQ] = "IRQ", 10559 [EXCP_FIQ] = "FIQ", 10560 [EXCP_BKPT] = "Breakpoint", 10561 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 10562 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 10563 [EXCP_HVC] = "Hypervisor Call", 10564 [EXCP_HYP_TRAP] = "Hypervisor Trap", 10565 [EXCP_SMC] = "Secure Monitor Call", 10566 [EXCP_VIRQ] = "Virtual IRQ", 10567 [EXCP_VFIQ] = "Virtual FIQ", 10568 [EXCP_SEMIHOST] = "Semihosting call", 10569 [EXCP_NOCP] = "v7M NOCP UsageFault", 10570 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 10571 [EXCP_STKOF] = "v8M STKOF UsageFault", 10572 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 10573 [EXCP_LSERR] = "v8M LSERR UsageFault", 10574 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 10575 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 10576 [EXCP_VSERR] = "Virtual SERR", 10577 [EXCP_GPC] = "Granule Protection Check", 10578 }; 10579 10580 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 10581 exc = excnames[idx]; 10582 } 10583 if (!exc) { 10584 exc = "unknown"; 10585 } 10586 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 10587 idx, exc, cs->cpu_index); 10588 } 10589 } 10590 10591 /* 10592 * Function used to synchronize QEMU's AArch64 register set with AArch32 10593 * register set. This is necessary when switching between AArch32 and AArch64 10594 * execution state. 10595 */ 10596 void aarch64_sync_32_to_64(CPUARMState *env) 10597 { 10598 int i; 10599 uint32_t mode = env->uncached_cpsr & CPSR_M; 10600 10601 /* We can blanket copy R[0:7] to X[0:7] */ 10602 for (i = 0; i < 8; i++) { 10603 env->xregs[i] = env->regs[i]; 10604 } 10605 10606 /* 10607 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 10608 * Otherwise, they come from the banked user regs. 10609 */ 10610 if (mode == ARM_CPU_MODE_FIQ) { 10611 for (i = 8; i < 13; i++) { 10612 env->xregs[i] = env->usr_regs[i - 8]; 10613 } 10614 } else { 10615 for (i = 8; i < 13; i++) { 10616 env->xregs[i] = env->regs[i]; 10617 } 10618 } 10619 10620 /* 10621 * Registers x13-x23 are the various mode SP and FP registers. Registers 10622 * r13 and r14 are only copied if we are in that mode, otherwise we copy 10623 * from the mode banked register. 10624 */ 10625 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10626 env->xregs[13] = env->regs[13]; 10627 env->xregs[14] = env->regs[14]; 10628 } else { 10629 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 10630 /* HYP is an exception in that it is copied from r14 */ 10631 if (mode == ARM_CPU_MODE_HYP) { 10632 env->xregs[14] = env->regs[14]; 10633 } else { 10634 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 10635 } 10636 } 10637 10638 if (mode == ARM_CPU_MODE_HYP) { 10639 env->xregs[15] = env->regs[13]; 10640 } else { 10641 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 10642 } 10643 10644 if (mode == ARM_CPU_MODE_IRQ) { 10645 env->xregs[16] = env->regs[14]; 10646 env->xregs[17] = env->regs[13]; 10647 } else { 10648 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 10649 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 10650 } 10651 10652 if (mode == ARM_CPU_MODE_SVC) { 10653 env->xregs[18] = env->regs[14]; 10654 env->xregs[19] = env->regs[13]; 10655 } else { 10656 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 10657 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10658 } 10659 10660 if (mode == ARM_CPU_MODE_ABT) { 10661 env->xregs[20] = env->regs[14]; 10662 env->xregs[21] = env->regs[13]; 10663 } else { 10664 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10665 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10666 } 10667 10668 if (mode == ARM_CPU_MODE_UND) { 10669 env->xregs[22] = env->regs[14]; 10670 env->xregs[23] = env->regs[13]; 10671 } else { 10672 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10673 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10674 } 10675 10676 /* 10677 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10678 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10679 * FIQ bank for r8-r14. 10680 */ 10681 if (mode == ARM_CPU_MODE_FIQ) { 10682 for (i = 24; i < 31; i++) { 10683 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10684 } 10685 } else { 10686 for (i = 24; i < 29; i++) { 10687 env->xregs[i] = env->fiq_regs[i - 24]; 10688 } 10689 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10690 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10691 } 10692 10693 env->pc = env->regs[15]; 10694 } 10695 10696 /* 10697 * Function used to synchronize QEMU's AArch32 register set with AArch64 10698 * register set. This is necessary when switching between AArch32 and AArch64 10699 * execution state. 10700 */ 10701 void aarch64_sync_64_to_32(CPUARMState *env) 10702 { 10703 int i; 10704 uint32_t mode = env->uncached_cpsr & CPSR_M; 10705 10706 /* We can blanket copy X[0:7] to R[0:7] */ 10707 for (i = 0; i < 8; i++) { 10708 env->regs[i] = env->xregs[i]; 10709 } 10710 10711 /* 10712 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10713 * Otherwise, we copy x8-x12 into the banked user regs. 10714 */ 10715 if (mode == ARM_CPU_MODE_FIQ) { 10716 for (i = 8; i < 13; i++) { 10717 env->usr_regs[i - 8] = env->xregs[i]; 10718 } 10719 } else { 10720 for (i = 8; i < 13; i++) { 10721 env->regs[i] = env->xregs[i]; 10722 } 10723 } 10724 10725 /* 10726 * Registers r13 & r14 depend on the current mode. 10727 * If we are in a given mode, we copy the corresponding x registers to r13 10728 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10729 * for the mode. 10730 */ 10731 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10732 env->regs[13] = env->xregs[13]; 10733 env->regs[14] = env->xregs[14]; 10734 } else { 10735 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10736 10737 /* 10738 * HYP is an exception in that it does not have its own banked r14 but 10739 * shares the USR r14 10740 */ 10741 if (mode == ARM_CPU_MODE_HYP) { 10742 env->regs[14] = env->xregs[14]; 10743 } else { 10744 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10745 } 10746 } 10747 10748 if (mode == ARM_CPU_MODE_HYP) { 10749 env->regs[13] = env->xregs[15]; 10750 } else { 10751 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10752 } 10753 10754 if (mode == ARM_CPU_MODE_IRQ) { 10755 env->regs[14] = env->xregs[16]; 10756 env->regs[13] = env->xregs[17]; 10757 } else { 10758 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10759 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10760 } 10761 10762 if (mode == ARM_CPU_MODE_SVC) { 10763 env->regs[14] = env->xregs[18]; 10764 env->regs[13] = env->xregs[19]; 10765 } else { 10766 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10767 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10768 } 10769 10770 if (mode == ARM_CPU_MODE_ABT) { 10771 env->regs[14] = env->xregs[20]; 10772 env->regs[13] = env->xregs[21]; 10773 } else { 10774 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10775 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10776 } 10777 10778 if (mode == ARM_CPU_MODE_UND) { 10779 env->regs[14] = env->xregs[22]; 10780 env->regs[13] = env->xregs[23]; 10781 } else { 10782 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10783 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10784 } 10785 10786 /* 10787 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10788 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10789 * FIQ bank for r8-r14. 10790 */ 10791 if (mode == ARM_CPU_MODE_FIQ) { 10792 for (i = 24; i < 31; i++) { 10793 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10794 } 10795 } else { 10796 for (i = 24; i < 29; i++) { 10797 env->fiq_regs[i - 24] = env->xregs[i]; 10798 } 10799 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10800 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10801 } 10802 10803 env->regs[15] = env->pc; 10804 } 10805 10806 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10807 uint32_t mask, uint32_t offset, 10808 uint32_t newpc) 10809 { 10810 int new_el; 10811 10812 /* Change the CPU state so as to actually take the exception. */ 10813 switch_mode(env, new_mode); 10814 10815 /* 10816 * For exceptions taken to AArch32 we must clear the SS bit in both 10817 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 10818 */ 10819 env->pstate &= ~PSTATE_SS; 10820 env->spsr = cpsr_read(env); 10821 /* Clear IT bits. */ 10822 env->condexec_bits = 0; 10823 /* Switch to the new mode, and to the correct instruction set. */ 10824 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 10825 10826 /* This must be after mode switching. */ 10827 new_el = arm_current_el(env); 10828 10829 /* Set new mode endianness */ 10830 env->uncached_cpsr &= ~CPSR_E; 10831 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 10832 env->uncached_cpsr |= CPSR_E; 10833 } 10834 /* J and IL must always be cleared for exception entry */ 10835 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 10836 env->daif |= mask; 10837 10838 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 10839 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 10840 env->uncached_cpsr |= CPSR_SSBS; 10841 } else { 10842 env->uncached_cpsr &= ~CPSR_SSBS; 10843 } 10844 } 10845 10846 if (new_mode == ARM_CPU_MODE_HYP) { 10847 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 10848 env->elr_el[2] = env->regs[15]; 10849 } else { 10850 /* CPSR.PAN is normally preserved preserved unless... */ 10851 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 10852 switch (new_el) { 10853 case 3: 10854 if (!arm_is_secure_below_el3(env)) { 10855 /* ... the target is EL3, from non-secure state. */ 10856 env->uncached_cpsr &= ~CPSR_PAN; 10857 break; 10858 } 10859 /* ... the target is EL3, from secure state ... */ 10860 /* fall through */ 10861 case 1: 10862 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 10863 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 10864 env->uncached_cpsr |= CPSR_PAN; 10865 } 10866 break; 10867 } 10868 } 10869 /* 10870 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 10871 * and we should just guard the thumb mode on V4 10872 */ 10873 if (arm_feature(env, ARM_FEATURE_V4T)) { 10874 env->thumb = 10875 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 10876 } 10877 env->regs[14] = env->regs[15] + offset; 10878 } 10879 env->regs[15] = newpc; 10880 10881 if (tcg_enabled()) { 10882 arm_rebuild_hflags(env); 10883 } 10884 } 10885 10886 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 10887 { 10888 /* 10889 * Handle exception entry to Hyp mode; this is sufficiently 10890 * different to entry to other AArch32 modes that we handle it 10891 * separately here. 10892 * 10893 * The vector table entry used is always the 0x14 Hyp mode entry point, 10894 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 10895 * The offset applied to the preferred return address is always zero 10896 * (see DDI0487C.a section G1.12.3). 10897 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10898 */ 10899 uint32_t addr, mask; 10900 ARMCPU *cpu = ARM_CPU(cs); 10901 CPUARMState *env = &cpu->env; 10902 10903 switch (cs->exception_index) { 10904 case EXCP_UDEF: 10905 addr = 0x04; 10906 break; 10907 case EXCP_SWI: 10908 addr = 0x08; 10909 break; 10910 case EXCP_BKPT: 10911 /* Fall through to prefetch abort. */ 10912 case EXCP_PREFETCH_ABORT: 10913 env->cp15.ifar_s = env->exception.vaddress; 10914 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10915 (uint32_t)env->exception.vaddress); 10916 addr = 0x0c; 10917 break; 10918 case EXCP_DATA_ABORT: 10919 env->cp15.dfar_s = env->exception.vaddress; 10920 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10921 (uint32_t)env->exception.vaddress); 10922 addr = 0x10; 10923 break; 10924 case EXCP_IRQ: 10925 addr = 0x18; 10926 break; 10927 case EXCP_FIQ: 10928 addr = 0x1c; 10929 break; 10930 case EXCP_HVC: 10931 addr = 0x08; 10932 break; 10933 case EXCP_HYP_TRAP: 10934 addr = 0x14; 10935 break; 10936 default: 10937 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10938 } 10939 10940 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10941 if (!arm_feature(env, ARM_FEATURE_V8)) { 10942 /* 10943 * QEMU syndrome values are v8-style. v7 has the IL bit 10944 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10945 * If this is a v7 CPU, squash the IL bit in those cases. 10946 */ 10947 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10948 (cs->exception_index == EXCP_DATA_ABORT && 10949 !(env->exception.syndrome & ARM_EL_ISV)) || 10950 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10951 env->exception.syndrome &= ~ARM_EL_IL; 10952 } 10953 } 10954 env->cp15.esr_el[2] = env->exception.syndrome; 10955 } 10956 10957 if (arm_current_el(env) != 2 && addr < 0x14) { 10958 addr = 0x14; 10959 } 10960 10961 mask = 0; 10962 if (!(env->cp15.scr_el3 & SCR_EA)) { 10963 mask |= CPSR_A; 10964 } 10965 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10966 mask |= CPSR_I; 10967 } 10968 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10969 mask |= CPSR_F; 10970 } 10971 10972 addr += env->cp15.hvbar; 10973 10974 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10975 } 10976 10977 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10978 { 10979 ARMCPU *cpu = ARM_CPU(cs); 10980 CPUARMState *env = &cpu->env; 10981 uint32_t addr; 10982 uint32_t mask; 10983 int new_mode; 10984 uint32_t offset; 10985 uint32_t moe; 10986 10987 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10988 switch (syn_get_ec(env->exception.syndrome)) { 10989 case EC_BREAKPOINT: 10990 case EC_BREAKPOINT_SAME_EL: 10991 moe = 1; 10992 break; 10993 case EC_WATCHPOINT: 10994 case EC_WATCHPOINT_SAME_EL: 10995 moe = 10; 10996 break; 10997 case EC_AA32_BKPT: 10998 moe = 3; 10999 break; 11000 case EC_VECTORCATCH: 11001 moe = 5; 11002 break; 11003 default: 11004 moe = 0; 11005 break; 11006 } 11007 11008 if (moe) { 11009 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 11010 } 11011 11012 if (env->exception.target_el == 2) { 11013 arm_cpu_do_interrupt_aarch32_hyp(cs); 11014 return; 11015 } 11016 11017 switch (cs->exception_index) { 11018 case EXCP_UDEF: 11019 new_mode = ARM_CPU_MODE_UND; 11020 addr = 0x04; 11021 mask = CPSR_I; 11022 if (env->thumb) { 11023 offset = 2; 11024 } else { 11025 offset = 4; 11026 } 11027 break; 11028 case EXCP_SWI: 11029 new_mode = ARM_CPU_MODE_SVC; 11030 addr = 0x08; 11031 mask = CPSR_I; 11032 /* The PC already points to the next instruction. */ 11033 offset = 0; 11034 break; 11035 case EXCP_BKPT: 11036 /* Fall through to prefetch abort. */ 11037 case EXCP_PREFETCH_ABORT: 11038 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 11039 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 11040 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 11041 env->exception.fsr, (uint32_t)env->exception.vaddress); 11042 new_mode = ARM_CPU_MODE_ABT; 11043 addr = 0x0c; 11044 mask = CPSR_A | CPSR_I; 11045 offset = 4; 11046 break; 11047 case EXCP_DATA_ABORT: 11048 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 11049 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 11050 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 11051 env->exception.fsr, 11052 (uint32_t)env->exception.vaddress); 11053 new_mode = ARM_CPU_MODE_ABT; 11054 addr = 0x10; 11055 mask = CPSR_A | CPSR_I; 11056 offset = 8; 11057 break; 11058 case EXCP_IRQ: 11059 new_mode = ARM_CPU_MODE_IRQ; 11060 addr = 0x18; 11061 /* Disable IRQ and imprecise data aborts. */ 11062 mask = CPSR_A | CPSR_I; 11063 offset = 4; 11064 if (env->cp15.scr_el3 & SCR_IRQ) { 11065 /* IRQ routed to monitor mode */ 11066 new_mode = ARM_CPU_MODE_MON; 11067 mask |= CPSR_F; 11068 } 11069 break; 11070 case EXCP_FIQ: 11071 new_mode = ARM_CPU_MODE_FIQ; 11072 addr = 0x1c; 11073 /* Disable FIQ, IRQ and imprecise data aborts. */ 11074 mask = CPSR_A | CPSR_I | CPSR_F; 11075 if (env->cp15.scr_el3 & SCR_FIQ) { 11076 /* FIQ routed to monitor mode */ 11077 new_mode = ARM_CPU_MODE_MON; 11078 } 11079 offset = 4; 11080 break; 11081 case EXCP_VIRQ: 11082 new_mode = ARM_CPU_MODE_IRQ; 11083 addr = 0x18; 11084 /* Disable IRQ and imprecise data aborts. */ 11085 mask = CPSR_A | CPSR_I; 11086 offset = 4; 11087 break; 11088 case EXCP_VFIQ: 11089 new_mode = ARM_CPU_MODE_FIQ; 11090 addr = 0x1c; 11091 /* Disable FIQ, IRQ and imprecise data aborts. */ 11092 mask = CPSR_A | CPSR_I | CPSR_F; 11093 offset = 4; 11094 break; 11095 case EXCP_VSERR: 11096 { 11097 /* 11098 * Note that this is reported as a data abort, but the DFAR 11099 * has an UNKNOWN value. Construct the SError syndrome from 11100 * AET and ExT fields. 11101 */ 11102 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 11103 11104 if (extended_addresses_enabled(env)) { 11105 env->exception.fsr = arm_fi_to_lfsc(&fi); 11106 } else { 11107 env->exception.fsr = arm_fi_to_sfsc(&fi); 11108 } 11109 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 11110 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 11111 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 11112 env->exception.fsr); 11113 11114 new_mode = ARM_CPU_MODE_ABT; 11115 addr = 0x10; 11116 mask = CPSR_A | CPSR_I; 11117 offset = 8; 11118 } 11119 break; 11120 case EXCP_SMC: 11121 new_mode = ARM_CPU_MODE_MON; 11122 addr = 0x08; 11123 mask = CPSR_A | CPSR_I | CPSR_F; 11124 offset = 0; 11125 break; 11126 default: 11127 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11128 return; /* Never happens. Keep compiler happy. */ 11129 } 11130 11131 if (new_mode == ARM_CPU_MODE_MON) { 11132 addr += env->cp15.mvbar; 11133 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 11134 /* High vectors. When enabled, base address cannot be remapped. */ 11135 addr += 0xffff0000; 11136 } else { 11137 /* 11138 * ARM v7 architectures provide a vector base address register to remap 11139 * the interrupt vector table. 11140 * This register is only followed in non-monitor mode, and is banked. 11141 * Note: only bits 31:5 are valid. 11142 */ 11143 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 11144 } 11145 11146 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 11147 env->cp15.scr_el3 &= ~SCR_NS; 11148 } 11149 11150 take_aarch32_exception(env, new_mode, mask, offset, addr); 11151 } 11152 11153 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 11154 { 11155 /* 11156 * Return the register number of the AArch64 view of the AArch32 11157 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 11158 * be that of the AArch32 mode the exception came from. 11159 */ 11160 int mode = env->uncached_cpsr & CPSR_M; 11161 11162 switch (aarch32_reg) { 11163 case 0 ... 7: 11164 return aarch32_reg; 11165 case 8 ... 12: 11166 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 11167 case 13: 11168 switch (mode) { 11169 case ARM_CPU_MODE_USR: 11170 case ARM_CPU_MODE_SYS: 11171 return 13; 11172 case ARM_CPU_MODE_HYP: 11173 return 15; 11174 case ARM_CPU_MODE_IRQ: 11175 return 17; 11176 case ARM_CPU_MODE_SVC: 11177 return 19; 11178 case ARM_CPU_MODE_ABT: 11179 return 21; 11180 case ARM_CPU_MODE_UND: 11181 return 23; 11182 case ARM_CPU_MODE_FIQ: 11183 return 29; 11184 default: 11185 g_assert_not_reached(); 11186 } 11187 case 14: 11188 switch (mode) { 11189 case ARM_CPU_MODE_USR: 11190 case ARM_CPU_MODE_SYS: 11191 case ARM_CPU_MODE_HYP: 11192 return 14; 11193 case ARM_CPU_MODE_IRQ: 11194 return 16; 11195 case ARM_CPU_MODE_SVC: 11196 return 18; 11197 case ARM_CPU_MODE_ABT: 11198 return 20; 11199 case ARM_CPU_MODE_UND: 11200 return 22; 11201 case ARM_CPU_MODE_FIQ: 11202 return 30; 11203 default: 11204 g_assert_not_reached(); 11205 } 11206 case 15: 11207 return 31; 11208 default: 11209 g_assert_not_reached(); 11210 } 11211 } 11212 11213 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 11214 { 11215 uint32_t ret = cpsr_read(env); 11216 11217 /* Move DIT to the correct location for SPSR_ELx */ 11218 if (ret & CPSR_DIT) { 11219 ret &= ~CPSR_DIT; 11220 ret |= PSTATE_DIT; 11221 } 11222 /* Merge PSTATE.SS into SPSR_ELx */ 11223 ret |= env->pstate & PSTATE_SS; 11224 11225 return ret; 11226 } 11227 11228 static bool syndrome_is_sync_extabt(uint32_t syndrome) 11229 { 11230 /* Return true if this syndrome value is a synchronous external abort */ 11231 switch (syn_get_ec(syndrome)) { 11232 case EC_INSNABORT: 11233 case EC_INSNABORT_SAME_EL: 11234 case EC_DATAABORT: 11235 case EC_DATAABORT_SAME_EL: 11236 /* Look at fault status code for all the synchronous ext abort cases */ 11237 switch (syndrome & 0x3f) { 11238 case 0x10: 11239 case 0x13: 11240 case 0x14: 11241 case 0x15: 11242 case 0x16: 11243 case 0x17: 11244 return true; 11245 default: 11246 return false; 11247 } 11248 default: 11249 return false; 11250 } 11251 } 11252 11253 /* Handle exception entry to a target EL which is using AArch64 */ 11254 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 11255 { 11256 ARMCPU *cpu = ARM_CPU(cs); 11257 CPUARMState *env = &cpu->env; 11258 unsigned int new_el = env->exception.target_el; 11259 target_ulong addr = env->cp15.vbar_el[new_el]; 11260 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 11261 unsigned int old_mode; 11262 unsigned int cur_el = arm_current_el(env); 11263 int rt; 11264 11265 if (tcg_enabled()) { 11266 /* 11267 * Note that new_el can never be 0. If cur_el is 0, then 11268 * el0_a64 is is_a64(), else el0_a64 is ignored. 11269 */ 11270 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 11271 } 11272 11273 if (cur_el < new_el) { 11274 /* 11275 * Entry vector offset depends on whether the implemented EL 11276 * immediately lower than the target level is using AArch32 or AArch64 11277 */ 11278 bool is_aa64; 11279 uint64_t hcr; 11280 11281 switch (new_el) { 11282 case 3: 11283 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 11284 break; 11285 case 2: 11286 hcr = arm_hcr_el2_eff(env); 11287 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11288 is_aa64 = (hcr & HCR_RW) != 0; 11289 break; 11290 } 11291 /* fall through */ 11292 case 1: 11293 is_aa64 = is_a64(env); 11294 break; 11295 default: 11296 g_assert_not_reached(); 11297 } 11298 11299 if (is_aa64) { 11300 addr += 0x400; 11301 } else { 11302 addr += 0x600; 11303 } 11304 } else if (pstate_read(env) & PSTATE_SP) { 11305 addr += 0x200; 11306 } 11307 11308 switch (cs->exception_index) { 11309 case EXCP_GPC: 11310 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 11311 env->cp15.mfar_el3); 11312 /* fall through */ 11313 case EXCP_PREFETCH_ABORT: 11314 case EXCP_DATA_ABORT: 11315 /* 11316 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 11317 * to be taken to the SError vector entrypoint. 11318 */ 11319 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 11320 syndrome_is_sync_extabt(env->exception.syndrome)) { 11321 addr += 0x180; 11322 } 11323 env->cp15.far_el[new_el] = env->exception.vaddress; 11324 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 11325 env->cp15.far_el[new_el]); 11326 /* fall through */ 11327 case EXCP_BKPT: 11328 case EXCP_UDEF: 11329 case EXCP_SWI: 11330 case EXCP_HVC: 11331 case EXCP_HYP_TRAP: 11332 case EXCP_SMC: 11333 switch (syn_get_ec(env->exception.syndrome)) { 11334 case EC_ADVSIMDFPACCESSTRAP: 11335 /* 11336 * QEMU internal FP/SIMD syndromes from AArch32 include the 11337 * TA and coproc fields which are only exposed if the exception 11338 * is taken to AArch32 Hyp mode. Mask them out to get a valid 11339 * AArch64 format syndrome. 11340 */ 11341 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 11342 break; 11343 case EC_CP14RTTRAP: 11344 case EC_CP15RTTRAP: 11345 case EC_CP14DTTRAP: 11346 /* 11347 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 11348 * the raw register field from the insn; when taking this to 11349 * AArch64 we must convert it to the AArch64 view of the register 11350 * number. Notice that we read a 4-bit AArch32 register number and 11351 * write back a 5-bit AArch64 one. 11352 */ 11353 rt = extract32(env->exception.syndrome, 5, 4); 11354 rt = aarch64_regnum(env, rt); 11355 env->exception.syndrome = deposit32(env->exception.syndrome, 11356 5, 5, rt); 11357 break; 11358 case EC_CP15RRTTRAP: 11359 case EC_CP14RRTTRAP: 11360 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 11361 rt = extract32(env->exception.syndrome, 5, 4); 11362 rt = aarch64_regnum(env, rt); 11363 env->exception.syndrome = deposit32(env->exception.syndrome, 11364 5, 5, rt); 11365 rt = extract32(env->exception.syndrome, 10, 4); 11366 rt = aarch64_regnum(env, rt); 11367 env->exception.syndrome = deposit32(env->exception.syndrome, 11368 10, 5, rt); 11369 break; 11370 } 11371 env->cp15.esr_el[new_el] = env->exception.syndrome; 11372 break; 11373 case EXCP_IRQ: 11374 case EXCP_VIRQ: 11375 addr += 0x80; 11376 break; 11377 case EXCP_FIQ: 11378 case EXCP_VFIQ: 11379 addr += 0x100; 11380 break; 11381 case EXCP_VSERR: 11382 addr += 0x180; 11383 /* Construct the SError syndrome from IDS and ISS fields. */ 11384 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 11385 env->cp15.esr_el[new_el] = env->exception.syndrome; 11386 break; 11387 default: 11388 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11389 } 11390 11391 if (is_a64(env)) { 11392 old_mode = pstate_read(env); 11393 aarch64_save_sp(env, arm_current_el(env)); 11394 env->elr_el[new_el] = env->pc; 11395 11396 if (cur_el == 1 && new_el == 1) { 11397 uint64_t hcr = arm_hcr_el2_eff(env); 11398 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV || 11399 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) { 11400 /* 11401 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR 11402 * by setting M[3:2] to 0b10. 11403 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN) 11404 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM) 11405 */ 11406 old_mode = deposit32(old_mode, 2, 2, 2); 11407 } 11408 } 11409 } else { 11410 old_mode = cpsr_read_for_spsr_elx(env); 11411 env->elr_el[new_el] = env->regs[15]; 11412 11413 aarch64_sync_32_to_64(env); 11414 11415 env->condexec_bits = 0; 11416 } 11417 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 11418 11419 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode); 11420 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 11421 env->elr_el[new_el]); 11422 11423 if (cpu_isar_feature(aa64_pan, cpu)) { 11424 /* The value of PSTATE.PAN is normally preserved, except when ... */ 11425 new_mode |= old_mode & PSTATE_PAN; 11426 switch (new_el) { 11427 case 2: 11428 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 11429 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 11430 != (HCR_E2H | HCR_TGE)) { 11431 break; 11432 } 11433 /* fall through */ 11434 case 1: 11435 /* ... the target is EL1 ... */ 11436 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 11437 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 11438 new_mode |= PSTATE_PAN; 11439 } 11440 break; 11441 } 11442 } 11443 if (cpu_isar_feature(aa64_mte, cpu)) { 11444 new_mode |= PSTATE_TCO; 11445 } 11446 11447 if (cpu_isar_feature(aa64_ssbs, cpu)) { 11448 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 11449 new_mode |= PSTATE_SSBS; 11450 } else { 11451 new_mode &= ~PSTATE_SSBS; 11452 } 11453 } 11454 11455 pstate_write(env, PSTATE_DAIF | new_mode); 11456 env->aarch64 = true; 11457 aarch64_restore_sp(env, new_el); 11458 11459 if (tcg_enabled()) { 11460 helper_rebuild_hflags_a64(env, new_el); 11461 } 11462 11463 env->pc = addr; 11464 11465 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 11466 new_el, env->pc, pstate_read(env)); 11467 } 11468 11469 /* 11470 * Do semihosting call and set the appropriate return value. All the 11471 * permission and validity checks have been done at translate time. 11472 * 11473 * We only see semihosting exceptions in TCG only as they are not 11474 * trapped to the hypervisor in KVM. 11475 */ 11476 #ifdef CONFIG_TCG 11477 static void tcg_handle_semihosting(CPUState *cs) 11478 { 11479 ARMCPU *cpu = ARM_CPU(cs); 11480 CPUARMState *env = &cpu->env; 11481 11482 if (is_a64(env)) { 11483 qemu_log_mask(CPU_LOG_INT, 11484 "...handling as semihosting call 0x%" PRIx64 "\n", 11485 env->xregs[0]); 11486 do_common_semihosting(cs); 11487 env->pc += 4; 11488 } else { 11489 qemu_log_mask(CPU_LOG_INT, 11490 "...handling as semihosting call 0x%x\n", 11491 env->regs[0]); 11492 do_common_semihosting(cs); 11493 env->regs[15] += env->thumb ? 2 : 4; 11494 } 11495 } 11496 #endif 11497 11498 /* 11499 * Handle a CPU exception for A and R profile CPUs. 11500 * Do any appropriate logging, handle PSCI calls, and then hand off 11501 * to the AArch64-entry or AArch32-entry function depending on the 11502 * target exception level's register width. 11503 * 11504 * Note: this is used for both TCG (as the do_interrupt tcg op), 11505 * and KVM to re-inject guest debug exceptions, and to 11506 * inject a Synchronous-External-Abort. 11507 */ 11508 void arm_cpu_do_interrupt(CPUState *cs) 11509 { 11510 ARMCPU *cpu = ARM_CPU(cs); 11511 CPUARMState *env = &cpu->env; 11512 unsigned int new_el = env->exception.target_el; 11513 11514 assert(!arm_feature(env, ARM_FEATURE_M)); 11515 11516 arm_log_exception(cs); 11517 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 11518 new_el); 11519 if (qemu_loglevel_mask(CPU_LOG_INT) 11520 && !excp_is_internal(cs->exception_index)) { 11521 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 11522 syn_get_ec(env->exception.syndrome), 11523 env->exception.syndrome); 11524 } 11525 11526 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 11527 arm_handle_psci_call(cpu); 11528 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 11529 return; 11530 } 11531 11532 /* 11533 * Semihosting semantics depend on the register width of the code 11534 * that caused the exception, not the target exception level, so 11535 * must be handled here. 11536 */ 11537 #ifdef CONFIG_TCG 11538 if (cs->exception_index == EXCP_SEMIHOST) { 11539 tcg_handle_semihosting(cs); 11540 return; 11541 } 11542 #endif 11543 11544 /* 11545 * Hooks may change global state so BQL should be held, also the 11546 * BQL needs to be held for any modification of 11547 * cs->interrupt_request. 11548 */ 11549 g_assert(bql_locked()); 11550 11551 arm_call_pre_el_change_hook(cpu); 11552 11553 assert(!excp_is_internal(cs->exception_index)); 11554 if (arm_el_is_aa64(env, new_el)) { 11555 arm_cpu_do_interrupt_aarch64(cs); 11556 } else { 11557 arm_cpu_do_interrupt_aarch32(cs); 11558 } 11559 11560 arm_call_el_change_hook(cpu); 11561 11562 if (!kvm_enabled()) { 11563 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 11564 } 11565 } 11566 #endif /* !CONFIG_USER_ONLY */ 11567 11568 uint64_t arm_sctlr(CPUARMState *env, int el) 11569 { 11570 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 11571 if (el == 0) { 11572 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 11573 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 11574 } 11575 return env->cp15.sctlr_el[el]; 11576 } 11577 11578 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11579 { 11580 if (regime_has_2_ranges(mmu_idx)) { 11581 return extract64(tcr, 37, 2); 11582 } else if (regime_is_stage2(mmu_idx)) { 11583 return 0; /* VTCR_EL2 */ 11584 } else { 11585 /* Replicate the single TBI bit so we always have 2 bits. */ 11586 return extract32(tcr, 20, 1) * 3; 11587 } 11588 } 11589 11590 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11591 { 11592 if (regime_has_2_ranges(mmu_idx)) { 11593 return extract64(tcr, 51, 2); 11594 } else if (regime_is_stage2(mmu_idx)) { 11595 return 0; /* VTCR_EL2 */ 11596 } else { 11597 /* Replicate the single TBID bit so we always have 2 bits. */ 11598 return extract32(tcr, 29, 1) * 3; 11599 } 11600 } 11601 11602 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11603 { 11604 if (regime_has_2_ranges(mmu_idx)) { 11605 return extract64(tcr, 57, 2); 11606 } else { 11607 /* Replicate the single TCMA bit so we always have 2 bits. */ 11608 return extract32(tcr, 30, 1) * 3; 11609 } 11610 } 11611 11612 static ARMGranuleSize tg0_to_gran_size(int tg) 11613 { 11614 switch (tg) { 11615 case 0: 11616 return Gran4K; 11617 case 1: 11618 return Gran64K; 11619 case 2: 11620 return Gran16K; 11621 default: 11622 return GranInvalid; 11623 } 11624 } 11625 11626 static ARMGranuleSize tg1_to_gran_size(int tg) 11627 { 11628 switch (tg) { 11629 case 1: 11630 return Gran16K; 11631 case 2: 11632 return Gran4K; 11633 case 3: 11634 return Gran64K; 11635 default: 11636 return GranInvalid; 11637 } 11638 } 11639 11640 static inline bool have4k(ARMCPU *cpu, bool stage2) 11641 { 11642 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11643 : cpu_isar_feature(aa64_tgran4, cpu); 11644 } 11645 11646 static inline bool have16k(ARMCPU *cpu, bool stage2) 11647 { 11648 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11649 : cpu_isar_feature(aa64_tgran16, cpu); 11650 } 11651 11652 static inline bool have64k(ARMCPU *cpu, bool stage2) 11653 { 11654 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11655 : cpu_isar_feature(aa64_tgran64, cpu); 11656 } 11657 11658 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11659 bool stage2) 11660 { 11661 switch (gran) { 11662 case Gran4K: 11663 if (have4k(cpu, stage2)) { 11664 return gran; 11665 } 11666 break; 11667 case Gran16K: 11668 if (have16k(cpu, stage2)) { 11669 return gran; 11670 } 11671 break; 11672 case Gran64K: 11673 if (have64k(cpu, stage2)) { 11674 return gran; 11675 } 11676 break; 11677 case GranInvalid: 11678 break; 11679 } 11680 /* 11681 * If the guest selects a granule size that isn't implemented, 11682 * the architecture requires that we behave as if it selected one 11683 * that is (with an IMPDEF choice of which one to pick). We choose 11684 * to implement the smallest supported granule size. 11685 */ 11686 if (have4k(cpu, stage2)) { 11687 return Gran4K; 11688 } 11689 if (have16k(cpu, stage2)) { 11690 return Gran16K; 11691 } 11692 assert(have64k(cpu, stage2)); 11693 return Gran64K; 11694 } 11695 11696 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11697 ARMMMUIdx mmu_idx, bool data, 11698 bool el1_is_aa32) 11699 { 11700 uint64_t tcr = regime_tcr(env, mmu_idx); 11701 bool epd, hpd, tsz_oob, ds, ha, hd; 11702 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11703 ARMGranuleSize gran; 11704 ARMCPU *cpu = env_archcpu(env); 11705 bool stage2 = regime_is_stage2(mmu_idx); 11706 11707 if (!regime_has_2_ranges(mmu_idx)) { 11708 select = 0; 11709 tsz = extract32(tcr, 0, 6); 11710 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11711 if (stage2) { 11712 /* VTCR_EL2 */ 11713 hpd = false; 11714 } else { 11715 hpd = extract32(tcr, 24, 1); 11716 } 11717 epd = false; 11718 sh = extract32(tcr, 12, 2); 11719 ps = extract32(tcr, 16, 3); 11720 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11721 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11722 ds = extract64(tcr, 32, 1); 11723 } else { 11724 bool e0pd; 11725 11726 /* 11727 * Bit 55 is always between the two regions, and is canonical for 11728 * determining if address tagging is enabled. 11729 */ 11730 select = extract64(va, 55, 1); 11731 if (!select) { 11732 tsz = extract32(tcr, 0, 6); 11733 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11734 epd = extract32(tcr, 7, 1); 11735 sh = extract32(tcr, 12, 2); 11736 hpd = extract64(tcr, 41, 1); 11737 e0pd = extract64(tcr, 55, 1); 11738 } else { 11739 tsz = extract32(tcr, 16, 6); 11740 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11741 epd = extract32(tcr, 23, 1); 11742 sh = extract32(tcr, 28, 2); 11743 hpd = extract64(tcr, 42, 1); 11744 e0pd = extract64(tcr, 56, 1); 11745 } 11746 ps = extract64(tcr, 32, 3); 11747 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11748 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11749 ds = extract64(tcr, 59, 1); 11750 11751 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11752 regime_is_user(env, mmu_idx)) { 11753 epd = true; 11754 } 11755 } 11756 11757 gran = sanitize_gran_size(cpu, gran, stage2); 11758 11759 if (cpu_isar_feature(aa64_st, cpu)) { 11760 max_tsz = 48 - (gran == Gran64K); 11761 } else { 11762 max_tsz = 39; 11763 } 11764 11765 /* 11766 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11767 * adjust the effective value of DS, as documented. 11768 */ 11769 min_tsz = 16; 11770 if (gran == Gran64K) { 11771 if (cpu_isar_feature(aa64_lva, cpu)) { 11772 min_tsz = 12; 11773 } 11774 ds = false; 11775 } else if (ds) { 11776 if (regime_is_stage2(mmu_idx)) { 11777 if (gran == Gran16K) { 11778 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11779 } else { 11780 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11781 } 11782 } else { 11783 if (gran == Gran16K) { 11784 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11785 } else { 11786 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11787 } 11788 } 11789 if (ds) { 11790 min_tsz = 12; 11791 } 11792 } 11793 11794 if (stage2 && el1_is_aa32) { 11795 /* 11796 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 11797 * are loosened: a configured IPA of 40 bits is permitted even if 11798 * the implemented PA is less than that (and so a 40 bit IPA would 11799 * fault for an AArch64 EL1). See R_DTLMN. 11800 */ 11801 min_tsz = MIN(min_tsz, 24); 11802 } 11803 11804 if (tsz > max_tsz) { 11805 tsz = max_tsz; 11806 tsz_oob = true; 11807 } else if (tsz < min_tsz) { 11808 tsz = min_tsz; 11809 tsz_oob = true; 11810 } else { 11811 tsz_oob = false; 11812 } 11813 11814 /* Present TBI as a composite with TBID. */ 11815 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11816 if (!data) { 11817 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11818 } 11819 tbi = (tbi >> select) & 1; 11820 11821 return (ARMVAParameters) { 11822 .tsz = tsz, 11823 .ps = ps, 11824 .sh = sh, 11825 .select = select, 11826 .tbi = tbi, 11827 .epd = epd, 11828 .hpd = hpd, 11829 .tsz_oob = tsz_oob, 11830 .ds = ds, 11831 .ha = ha, 11832 .hd = ha && hd, 11833 .gran = gran, 11834 }; 11835 } 11836 11837 /* 11838 * Note that signed overflow is undefined in C. The following routines are 11839 * careful to use unsigned types where modulo arithmetic is required. 11840 * Failure to do so _will_ break on newer gcc. 11841 */ 11842 11843 /* Signed saturating arithmetic. */ 11844 11845 /* Perform 16-bit signed saturating addition. */ 11846 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11847 { 11848 uint16_t res; 11849 11850 res = a + b; 11851 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11852 if (a & 0x8000) { 11853 res = 0x8000; 11854 } else { 11855 res = 0x7fff; 11856 } 11857 } 11858 return res; 11859 } 11860 11861 /* Perform 8-bit signed saturating addition. */ 11862 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11863 { 11864 uint8_t res; 11865 11866 res = a + b; 11867 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11868 if (a & 0x80) { 11869 res = 0x80; 11870 } else { 11871 res = 0x7f; 11872 } 11873 } 11874 return res; 11875 } 11876 11877 /* Perform 16-bit signed saturating subtraction. */ 11878 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11879 { 11880 uint16_t res; 11881 11882 res = a - b; 11883 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11884 if (a & 0x8000) { 11885 res = 0x8000; 11886 } else { 11887 res = 0x7fff; 11888 } 11889 } 11890 return res; 11891 } 11892 11893 /* Perform 8-bit signed saturating subtraction. */ 11894 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11895 { 11896 uint8_t res; 11897 11898 res = a - b; 11899 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11900 if (a & 0x80) { 11901 res = 0x80; 11902 } else { 11903 res = 0x7f; 11904 } 11905 } 11906 return res; 11907 } 11908 11909 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11910 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11911 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11912 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11913 #define PFX q 11914 11915 #include "op_addsub.h" 11916 11917 /* Unsigned saturating arithmetic. */ 11918 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11919 { 11920 uint16_t res; 11921 res = a + b; 11922 if (res < a) { 11923 res = 0xffff; 11924 } 11925 return res; 11926 } 11927 11928 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11929 { 11930 if (a > b) { 11931 return a - b; 11932 } else { 11933 return 0; 11934 } 11935 } 11936 11937 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11938 { 11939 uint8_t res; 11940 res = a + b; 11941 if (res < a) { 11942 res = 0xff; 11943 } 11944 return res; 11945 } 11946 11947 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11948 { 11949 if (a > b) { 11950 return a - b; 11951 } else { 11952 return 0; 11953 } 11954 } 11955 11956 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11957 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11958 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11959 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11960 #define PFX uq 11961 11962 #include "op_addsub.h" 11963 11964 /* Signed modulo arithmetic. */ 11965 #define SARITH16(a, b, n, op) do { \ 11966 int32_t sum; \ 11967 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11968 RESULT(sum, n, 16); \ 11969 if (sum >= 0) \ 11970 ge |= 3 << (n * 2); \ 11971 } while (0) 11972 11973 #define SARITH8(a, b, n, op) do { \ 11974 int32_t sum; \ 11975 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11976 RESULT(sum, n, 8); \ 11977 if (sum >= 0) \ 11978 ge |= 1 << n; \ 11979 } while (0) 11980 11981 11982 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11983 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11984 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11985 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11986 #define PFX s 11987 #define ARITH_GE 11988 11989 #include "op_addsub.h" 11990 11991 /* Unsigned modulo arithmetic. */ 11992 #define ADD16(a, b, n) do { \ 11993 uint32_t sum; \ 11994 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11995 RESULT(sum, n, 16); \ 11996 if ((sum >> 16) == 1) \ 11997 ge |= 3 << (n * 2); \ 11998 } while (0) 11999 12000 #define ADD8(a, b, n) do { \ 12001 uint32_t sum; \ 12002 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12003 RESULT(sum, n, 8); \ 12004 if ((sum >> 8) == 1) \ 12005 ge |= 1 << n; \ 12006 } while (0) 12007 12008 #define SUB16(a, b, n) do { \ 12009 uint32_t sum; \ 12010 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12011 RESULT(sum, n, 16); \ 12012 if ((sum >> 16) == 0) \ 12013 ge |= 3 << (n * 2); \ 12014 } while (0) 12015 12016 #define SUB8(a, b, n) do { \ 12017 uint32_t sum; \ 12018 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12019 RESULT(sum, n, 8); \ 12020 if ((sum >> 8) == 0) \ 12021 ge |= 1 << n; \ 12022 } while (0) 12023 12024 #define PFX u 12025 #define ARITH_GE 12026 12027 #include "op_addsub.h" 12028 12029 /* Halved signed arithmetic. */ 12030 #define ADD16(a, b, n) \ 12031 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12032 #define SUB16(a, b, n) \ 12033 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12034 #define ADD8(a, b, n) \ 12035 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12036 #define SUB8(a, b, n) \ 12037 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12038 #define PFX sh 12039 12040 #include "op_addsub.h" 12041 12042 /* Halved unsigned arithmetic. */ 12043 #define ADD16(a, b, n) \ 12044 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12045 #define SUB16(a, b, n) \ 12046 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12047 #define ADD8(a, b, n) \ 12048 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12049 #define SUB8(a, b, n) \ 12050 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12051 #define PFX uh 12052 12053 #include "op_addsub.h" 12054 12055 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12056 { 12057 if (a > b) { 12058 return a - b; 12059 } else { 12060 return b - a; 12061 } 12062 } 12063 12064 /* Unsigned sum of absolute byte differences. */ 12065 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12066 { 12067 uint32_t sum; 12068 sum = do_usad(a, b); 12069 sum += do_usad(a >> 8, b >> 8); 12070 sum += do_usad(a >> 16, b >> 16); 12071 sum += do_usad(a >> 24, b >> 24); 12072 return sum; 12073 } 12074 12075 /* For ARMv6 SEL instruction. */ 12076 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12077 { 12078 uint32_t mask; 12079 12080 mask = 0; 12081 if (flags & 1) { 12082 mask |= 0xff; 12083 } 12084 if (flags & 2) { 12085 mask |= 0xff00; 12086 } 12087 if (flags & 4) { 12088 mask |= 0xff0000; 12089 } 12090 if (flags & 8) { 12091 mask |= 0xff000000; 12092 } 12093 return (a & mask) | (b & ~mask); 12094 } 12095 12096 /* 12097 * CRC helpers. 12098 * The upper bytes of val (above the number specified by 'bytes') must have 12099 * been zeroed out by the caller. 12100 */ 12101 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12102 { 12103 uint8_t buf[4]; 12104 12105 stl_le_p(buf, val); 12106 12107 /* zlib crc32 converts the accumulator and output to one's complement. */ 12108 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12109 } 12110 12111 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12112 { 12113 uint8_t buf[4]; 12114 12115 stl_le_p(buf, val); 12116 12117 /* Linux crc32c converts the output to one's complement. */ 12118 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12119 } 12120 12121 /* 12122 * Return the exception level to which FP-disabled exceptions should 12123 * be taken, or 0 if FP is enabled. 12124 */ 12125 int fp_exception_el(CPUARMState *env, int cur_el) 12126 { 12127 #ifndef CONFIG_USER_ONLY 12128 uint64_t hcr_el2; 12129 12130 /* 12131 * CPACR and the CPTR registers don't exist before v6, so FP is 12132 * always accessible 12133 */ 12134 if (!arm_feature(env, ARM_FEATURE_V6)) { 12135 return 0; 12136 } 12137 12138 if (arm_feature(env, ARM_FEATURE_M)) { 12139 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12140 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12141 return 1; 12142 } 12143 12144 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12145 if (!extract32(env->v7m.nsacr, 10, 1)) { 12146 /* FP insns cause a NOCP UsageFault taken to Secure */ 12147 return 3; 12148 } 12149 } 12150 12151 return 0; 12152 } 12153 12154 hcr_el2 = arm_hcr_el2_eff(env); 12155 12156 /* 12157 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12158 * 0, 2 : trap EL0 and EL1/PL1 accesses 12159 * 1 : trap only EL0 accesses 12160 * 3 : trap no accesses 12161 * This register is ignored if E2H+TGE are both set. 12162 */ 12163 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12164 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 12165 12166 switch (fpen) { 12167 case 1: 12168 if (cur_el != 0) { 12169 break; 12170 } 12171 /* fall through */ 12172 case 0: 12173 case 2: 12174 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 12175 if (!arm_el_is_aa64(env, 3) 12176 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 12177 return 3; 12178 } 12179 if (cur_el <= 1) { 12180 return 1; 12181 } 12182 break; 12183 } 12184 } 12185 12186 /* 12187 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12188 * to control non-secure access to the FPU. It doesn't have any 12189 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12190 */ 12191 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12192 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12193 if (!extract32(env->cp15.nsacr, 10, 1)) { 12194 /* FP insns act as UNDEF */ 12195 return cur_el == 2 ? 2 : 1; 12196 } 12197 } 12198 12199 /* 12200 * CPTR_EL2 is present in v7VE or v8, and changes format 12201 * with HCR_EL2.E2H (regardless of TGE). 12202 */ 12203 if (cur_el <= 2) { 12204 if (hcr_el2 & HCR_E2H) { 12205 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 12206 case 1: 12207 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 12208 break; 12209 } 12210 /* fall through */ 12211 case 0: 12212 case 2: 12213 return 2; 12214 } 12215 } else if (arm_is_el2_enabled(env)) { 12216 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 12217 return 2; 12218 } 12219 } 12220 } 12221 12222 /* CPTR_EL3 : present in v8 */ 12223 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 12224 /* Trap all FP ops to EL3 */ 12225 return 3; 12226 } 12227 #endif 12228 return 0; 12229 } 12230 12231 /* Return the exception level we're running at if this is our mmu_idx */ 12232 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12233 { 12234 if (mmu_idx & ARM_MMU_IDX_M) { 12235 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12236 } 12237 12238 switch (mmu_idx) { 12239 case ARMMMUIdx_E10_0: 12240 case ARMMMUIdx_E20_0: 12241 return 0; 12242 case ARMMMUIdx_E10_1: 12243 case ARMMMUIdx_E10_1_PAN: 12244 return 1; 12245 case ARMMMUIdx_E2: 12246 case ARMMMUIdx_E20_2: 12247 case ARMMMUIdx_E20_2_PAN: 12248 return 2; 12249 case ARMMMUIdx_E3: 12250 return 3; 12251 default: 12252 g_assert_not_reached(); 12253 } 12254 } 12255 12256 #ifndef CONFIG_TCG 12257 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12258 { 12259 g_assert_not_reached(); 12260 } 12261 #endif 12262 12263 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12264 { 12265 ARMMMUIdx idx; 12266 uint64_t hcr; 12267 12268 if (arm_feature(env, ARM_FEATURE_M)) { 12269 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12270 } 12271 12272 /* See ARM pseudo-function ELIsInHost. */ 12273 switch (el) { 12274 case 0: 12275 hcr = arm_hcr_el2_eff(env); 12276 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 12277 idx = ARMMMUIdx_E20_0; 12278 } else { 12279 idx = ARMMMUIdx_E10_0; 12280 } 12281 break; 12282 case 1: 12283 if (arm_pan_enabled(env)) { 12284 idx = ARMMMUIdx_E10_1_PAN; 12285 } else { 12286 idx = ARMMMUIdx_E10_1; 12287 } 12288 break; 12289 case 2: 12290 /* Note that TGE does not apply at EL2. */ 12291 if (arm_hcr_el2_eff(env) & HCR_E2H) { 12292 if (arm_pan_enabled(env)) { 12293 idx = ARMMMUIdx_E20_2_PAN; 12294 } else { 12295 idx = ARMMMUIdx_E20_2; 12296 } 12297 } else { 12298 idx = ARMMMUIdx_E2; 12299 } 12300 break; 12301 case 3: 12302 return ARMMMUIdx_E3; 12303 default: 12304 g_assert_not_reached(); 12305 } 12306 12307 return idx; 12308 } 12309 12310 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12311 { 12312 return arm_mmu_idx_el(env, arm_current_el(env)); 12313 } 12314 12315 static bool mve_no_pred(CPUARMState *env) 12316 { 12317 /* 12318 * Return true if there is definitely no predication of MVE 12319 * instructions by VPR or LTPSIZE. (Returning false even if there 12320 * isn't any predication is OK; generated code will just be 12321 * a little worse.) 12322 * If the CPU does not implement MVE then this TB flag is always 0. 12323 * 12324 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 12325 * logic in gen_update_fp_context() needs to be updated to match. 12326 * 12327 * We do not include the effect of the ECI bits here -- they are 12328 * tracked in other TB flags. This simplifies the logic for 12329 * "when did we emit code that changes the MVE_NO_PRED TB flag 12330 * and thus need to end the TB?". 12331 */ 12332 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 12333 return false; 12334 } 12335 if (env->v7m.vpr) { 12336 return false; 12337 } 12338 if (env->v7m.ltpsize < 4) { 12339 return false; 12340 } 12341 return true; 12342 } 12343 12344 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 12345 uint64_t *cs_base, uint32_t *pflags) 12346 { 12347 CPUARMTBFlags flags; 12348 12349 assert_hflags_rebuild_correctly(env); 12350 flags = env->hflags; 12351 12352 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 12353 *pc = env->pc; 12354 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12355 DP_TBFLAG_A64(flags, BTYPE, env->btype); 12356 } 12357 } else { 12358 *pc = env->regs[15]; 12359 12360 if (arm_feature(env, ARM_FEATURE_M)) { 12361 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12362 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12363 != env->v7m.secure) { 12364 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 12365 } 12366 12367 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12368 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12369 (env->v7m.secure && 12370 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12371 /* 12372 * ASPEN is set, but FPCA/SFPA indicate that there is no 12373 * active FP context; we must create a new FP context before 12374 * executing any FP insn. 12375 */ 12376 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 12377 } 12378 12379 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12380 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12381 DP_TBFLAG_M32(flags, LSPACT, 1); 12382 } 12383 12384 if (mve_no_pred(env)) { 12385 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 12386 } 12387 } else { 12388 /* 12389 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12390 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12391 */ 12392 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12393 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 12394 } else { 12395 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 12396 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 12397 } 12398 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12399 DP_TBFLAG_A32(flags, VFPEN, 1); 12400 } 12401 } 12402 12403 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 12404 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 12405 } 12406 12407 /* 12408 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12409 * states defined in the ARM ARM for software singlestep: 12410 * SS_ACTIVE PSTATE.SS State 12411 * 0 x Inactive (the TB flag for SS is always 0) 12412 * 1 0 Active-pending 12413 * 1 1 Active-not-pending 12414 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 12415 */ 12416 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 12417 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 12418 } 12419 12420 *pflags = flags.flags; 12421 *cs_base = flags.flags2; 12422 } 12423 12424 #ifdef TARGET_AARCH64 12425 /* 12426 * The manual says that when SVE is enabled and VQ is widened the 12427 * implementation is allowed to zero the previously inaccessible 12428 * portion of the registers. The corollary to that is that when 12429 * SVE is enabled and VQ is narrowed we are also allowed to zero 12430 * the now inaccessible portion of the registers. 12431 * 12432 * The intent of this is that no predicate bit beyond VQ is ever set. 12433 * Which means that some operations on predicate registers themselves 12434 * may operate on full uint64_t or even unrolled across the maximum 12435 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12436 * may well be cheaper than conditionals to restrict the operation 12437 * to the relevant portion of a uint16_t[16]. 12438 */ 12439 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12440 { 12441 int i, j; 12442 uint64_t pmask; 12443 12444 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12445 assert(vq <= env_archcpu(env)->sve_max_vq); 12446 12447 /* Zap the high bits of the zregs. */ 12448 for (i = 0; i < 32; i++) { 12449 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12450 } 12451 12452 /* Zap the high bits of the pregs and ffr. */ 12453 pmask = 0; 12454 if (vq & 3) { 12455 pmask = ~(-1ULL << (16 * (vq & 3))); 12456 } 12457 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12458 for (i = 0; i < 17; ++i) { 12459 env->vfp.pregs[i].p[j] &= pmask; 12460 } 12461 pmask = 0; 12462 } 12463 } 12464 12465 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 12466 { 12467 int exc_el; 12468 12469 if (sm) { 12470 exc_el = sme_exception_el(env, el); 12471 } else { 12472 exc_el = sve_exception_el(env, el); 12473 } 12474 if (exc_el) { 12475 return 0; /* disabled */ 12476 } 12477 return sve_vqm1_for_el_sm(env, el, sm); 12478 } 12479 12480 /* 12481 * Notice a change in SVE vector size when changing EL. 12482 */ 12483 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12484 int new_el, bool el0_a64) 12485 { 12486 ARMCPU *cpu = env_archcpu(env); 12487 int old_len, new_len; 12488 bool old_a64, new_a64, sm; 12489 12490 /* Nothing to do if no SVE. */ 12491 if (!cpu_isar_feature(aa64_sve, cpu)) { 12492 return; 12493 } 12494 12495 /* Nothing to do if FP is disabled in either EL. */ 12496 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12497 return; 12498 } 12499 12500 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12501 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12502 12503 /* 12504 * Both AArch64.TakeException and AArch64.ExceptionReturn 12505 * invoke ResetSVEState when taking an exception from, or 12506 * returning to, AArch32 state when PSTATE.SM is enabled. 12507 */ 12508 sm = FIELD_EX64(env->svcr, SVCR, SM); 12509 if (old_a64 != new_a64 && sm) { 12510 arm_reset_sve_state(env); 12511 return; 12512 } 12513 12514 /* 12515 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12516 * at ELx, or not available because the EL is in AArch32 state, then 12517 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12518 * has an effective value of 0". 12519 * 12520 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12521 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12522 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12523 * we already have the correct register contents when encountering the 12524 * vq0->vq0 transition between EL0->EL1. 12525 */ 12526 old_len = new_len = 0; 12527 if (old_a64) { 12528 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12529 } 12530 if (new_a64) { 12531 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12532 } 12533 12534 /* When changing vector length, clear inaccessible state. */ 12535 if (new_len < old_len) { 12536 aarch64_sve_narrow_vq(env, new_len + 1); 12537 } 12538 } 12539 #endif 12540 12541 #ifndef CONFIG_USER_ONLY 12542 ARMSecuritySpace arm_security_space(CPUARMState *env) 12543 { 12544 if (arm_feature(env, ARM_FEATURE_M)) { 12545 return arm_secure_to_space(env->v7m.secure); 12546 } 12547 12548 /* 12549 * If EL3 is not supported then the secure state is implementation 12550 * defined, in which case QEMU defaults to non-secure. 12551 */ 12552 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12553 return ARMSS_NonSecure; 12554 } 12555 12556 /* Check for AArch64 EL3 or AArch32 Mon. */ 12557 if (is_a64(env)) { 12558 if (extract32(env->pstate, 2, 2) == 3) { 12559 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 12560 return ARMSS_Root; 12561 } else { 12562 return ARMSS_Secure; 12563 } 12564 } 12565 } else { 12566 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 12567 return ARMSS_Secure; 12568 } 12569 } 12570 12571 return arm_security_space_below_el3(env); 12572 } 12573 12574 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 12575 { 12576 assert(!arm_feature(env, ARM_FEATURE_M)); 12577 12578 /* 12579 * If EL3 is not supported then the secure state is implementation 12580 * defined, in which case QEMU defaults to non-secure. 12581 */ 12582 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12583 return ARMSS_NonSecure; 12584 } 12585 12586 /* 12587 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 12588 * Ignoring NSE when !NS retains consistency without having to 12589 * modify other predicates. 12590 */ 12591 if (!(env->cp15.scr_el3 & SCR_NS)) { 12592 return ARMSS_Secure; 12593 } else if (env->cp15.scr_el3 & SCR_NSE) { 12594 return ARMSS_Realm; 12595 } else { 12596 return ARMSS_NonSecure; 12597 } 12598 } 12599 #endif /* !CONFIG_USER_ONLY */ 12600