xref: /openbmc/qemu/target/arm/helper.c (revision e2862554)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/timer.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* For crc32 */
23 #include "hw/irq.h"
24 #include "sysemu/cpu-timers.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/tcg.h"
27 #include "qapi/error.h"
28 #include "qemu/guest-random.h"
29 #ifdef CONFIG_TCG
30 #include "semihosting/common-semi.h"
31 #endif
32 #include "cpregs.h"
33 
34 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
35 
36 static void switch_mode(CPUARMState *env, int mode);
37 
38 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
39 {
40     assert(ri->fieldoffset);
41     if (cpreg_field_is_64bit(ri)) {
42         return CPREG_FIELD64(env, ri);
43     } else {
44         return CPREG_FIELD32(env, ri);
45     }
46 }
47 
48 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
49 {
50     assert(ri->fieldoffset);
51     if (cpreg_field_is_64bit(ri)) {
52         CPREG_FIELD64(env, ri) = value;
53     } else {
54         CPREG_FIELD32(env, ri) = value;
55     }
56 }
57 
58 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
59 {
60     return (char *)env + ri->fieldoffset;
61 }
62 
63 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
64 {
65     /* Raw read of a coprocessor register (as needed for migration, etc). */
66     if (ri->type & ARM_CP_CONST) {
67         return ri->resetvalue;
68     } else if (ri->raw_readfn) {
69         return ri->raw_readfn(env, ri);
70     } else if (ri->readfn) {
71         return ri->readfn(env, ri);
72     } else {
73         return raw_read(env, ri);
74     }
75 }
76 
77 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
78                              uint64_t v)
79 {
80     /*
81      * Raw write of a coprocessor register (as needed for migration, etc).
82      * Note that constant registers are treated as write-ignored; the
83      * caller should check for success by whether a readback gives the
84      * value written.
85      */
86     if (ri->type & ARM_CP_CONST) {
87         return;
88     } else if (ri->raw_writefn) {
89         ri->raw_writefn(env, ri, v);
90     } else if (ri->writefn) {
91         ri->writefn(env, ri, v);
92     } else {
93         raw_write(env, ri, v);
94     }
95 }
96 
97 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
98 {
99    /*
100     * Return true if the regdef would cause an assertion if you called
101     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
102     * program bug for it not to have the NO_RAW flag).
103     * NB that returning false here doesn't necessarily mean that calling
104     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
105     * read/write access functions which are safe for raw use" from "has
106     * read/write access functions which have side effects but has forgotten
107     * to provide raw access functions".
108     * The tests here line up with the conditions in read/write_raw_cp_reg()
109     * and assertions in raw_read()/raw_write().
110     */
111     if ((ri->type & ARM_CP_CONST) ||
112         ri->fieldoffset ||
113         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
114         return false;
115     }
116     return true;
117 }
118 
119 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
120 {
121     /* Write the coprocessor state from cpu->env to the (index,value) list. */
122     int i;
123     bool ok = true;
124 
125     for (i = 0; i < cpu->cpreg_array_len; i++) {
126         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
127         const ARMCPRegInfo *ri;
128         uint64_t newval;
129 
130         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
131         if (!ri) {
132             ok = false;
133             continue;
134         }
135         if (ri->type & ARM_CP_NO_RAW) {
136             continue;
137         }
138 
139         newval = read_raw_cp_reg(&cpu->env, ri);
140         if (kvm_sync) {
141             /*
142              * Only sync if the previous list->cpustate sync succeeded.
143              * Rather than tracking the success/failure state for every
144              * item in the list, we just recheck "does the raw write we must
145              * have made in write_list_to_cpustate() read back OK" here.
146              */
147             uint64_t oldval = cpu->cpreg_values[i];
148 
149             if (oldval == newval) {
150                 continue;
151             }
152 
153             write_raw_cp_reg(&cpu->env, ri, oldval);
154             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
155                 continue;
156             }
157 
158             write_raw_cp_reg(&cpu->env, ri, newval);
159         }
160         cpu->cpreg_values[i] = newval;
161     }
162     return ok;
163 }
164 
165 bool write_list_to_cpustate(ARMCPU *cpu)
166 {
167     int i;
168     bool ok = true;
169 
170     for (i = 0; i < cpu->cpreg_array_len; i++) {
171         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
172         uint64_t v = cpu->cpreg_values[i];
173         const ARMCPRegInfo *ri;
174 
175         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
176         if (!ri) {
177             ok = false;
178             continue;
179         }
180         if (ri->type & ARM_CP_NO_RAW) {
181             continue;
182         }
183         /*
184          * Write value and confirm it reads back as written
185          * (to catch read-only registers and partially read-only
186          * registers where the incoming migration value doesn't match)
187          */
188         write_raw_cp_reg(&cpu->env, ri, v);
189         if (read_raw_cp_reg(&cpu->env, ri) != v) {
190             ok = false;
191         }
192     }
193     return ok;
194 }
195 
196 static void add_cpreg_to_list(gpointer key, gpointer opaque)
197 {
198     ARMCPU *cpu = opaque;
199     uint32_t regidx = (uintptr_t)key;
200     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
201 
202     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
203         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
204         /* The value array need not be initialized at this point */
205         cpu->cpreg_array_len++;
206     }
207 }
208 
209 static void count_cpreg(gpointer key, gpointer opaque)
210 {
211     ARMCPU *cpu = opaque;
212     const ARMCPRegInfo *ri;
213 
214     ri = g_hash_table_lookup(cpu->cp_regs, key);
215 
216     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
217         cpu->cpreg_array_len++;
218     }
219 }
220 
221 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
222 {
223     uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
224     uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
225 
226     if (aidx > bidx) {
227         return 1;
228     }
229     if (aidx < bidx) {
230         return -1;
231     }
232     return 0;
233 }
234 
235 void init_cpreg_list(ARMCPU *cpu)
236 {
237     /*
238      * Initialise the cpreg_tuples[] array based on the cp_regs hash.
239      * Note that we require cpreg_tuples[] to be sorted by key ID.
240      */
241     GList *keys;
242     int arraylen;
243 
244     keys = g_hash_table_get_keys(cpu->cp_regs);
245     keys = g_list_sort(keys, cpreg_key_compare);
246 
247     cpu->cpreg_array_len = 0;
248 
249     g_list_foreach(keys, count_cpreg, cpu);
250 
251     arraylen = cpu->cpreg_array_len;
252     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
253     cpu->cpreg_values = g_new(uint64_t, arraylen);
254     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
255     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
256     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
257     cpu->cpreg_array_len = 0;
258 
259     g_list_foreach(keys, add_cpreg_to_list, cpu);
260 
261     assert(cpu->cpreg_array_len == arraylen);
262 
263     g_list_free(keys);
264 }
265 
266 static bool arm_pan_enabled(CPUARMState *env)
267 {
268     if (is_a64(env)) {
269         if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) {
270             return false;
271         }
272         return env->pstate & PSTATE_PAN;
273     } else {
274         return env->uncached_cpsr & CPSR_PAN;
275     }
276 }
277 
278 /*
279  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
280  */
281 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
282                                         const ARMCPRegInfo *ri,
283                                         bool isread)
284 {
285     if (!is_a64(env) && arm_current_el(env) == 3 &&
286         arm_is_secure_below_el3(env)) {
287         return CP_ACCESS_TRAP_UNCATEGORIZED;
288     }
289     return CP_ACCESS_OK;
290 }
291 
292 /*
293  * Some secure-only AArch32 registers trap to EL3 if used from
294  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
295  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
296  * We assume that the .access field is set to PL1_RW.
297  */
298 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
299                                             const ARMCPRegInfo *ri,
300                                             bool isread)
301 {
302     if (arm_current_el(env) == 3) {
303         return CP_ACCESS_OK;
304     }
305     if (arm_is_secure_below_el3(env)) {
306         if (env->cp15.scr_el3 & SCR_EEL2) {
307             return CP_ACCESS_TRAP_EL2;
308         }
309         return CP_ACCESS_TRAP_EL3;
310     }
311     /* This will be EL1 NS and EL2 NS, which just UNDEF */
312     return CP_ACCESS_TRAP_UNCATEGORIZED;
313 }
314 
315 /*
316  * Check for traps to performance monitor registers, which are controlled
317  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
318  */
319 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
320                                  bool isread)
321 {
322     int el = arm_current_el(env);
323     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
324 
325     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
326         return CP_ACCESS_TRAP_EL2;
327     }
328     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
329         return CP_ACCESS_TRAP_EL3;
330     }
331     return CP_ACCESS_OK;
332 }
333 
334 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
335 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
336                                bool isread)
337 {
338     if (arm_current_el(env) == 1) {
339         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
340         if (arm_hcr_el2_eff(env) & trap) {
341             return CP_ACCESS_TRAP_EL2;
342         }
343     }
344     return CP_ACCESS_OK;
345 }
346 
347 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
348 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
349                                  bool isread)
350 {
351     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
352         return CP_ACCESS_TRAP_EL2;
353     }
354     return CP_ACCESS_OK;
355 }
356 
357 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
358 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
359                                   bool isread)
360 {
361     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
362         return CP_ACCESS_TRAP_EL2;
363     }
364     return CP_ACCESS_OK;
365 }
366 
367 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
368 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
369                                   bool isread)
370 {
371     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
372         return CP_ACCESS_TRAP_EL2;
373     }
374     return CP_ACCESS_OK;
375 }
376 
377 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
378 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
379                                     bool isread)
380 {
381     if (arm_current_el(env) == 1 &&
382         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
383         return CP_ACCESS_TRAP_EL2;
384     }
385     return CP_ACCESS_OK;
386 }
387 
388 #ifdef TARGET_AARCH64
389 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
390 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
391                                     bool isread)
392 {
393     if (arm_current_el(env) == 1 &&
394         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
395         return CP_ACCESS_TRAP_EL2;
396     }
397     return CP_ACCESS_OK;
398 }
399 #endif
400 
401 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
402 {
403     ARMCPU *cpu = env_archcpu(env);
404 
405     raw_write(env, ri, value);
406     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
407 }
408 
409 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
410 {
411     ARMCPU *cpu = env_archcpu(env);
412 
413     if (raw_read(env, ri) != value) {
414         /*
415          * Unlike real hardware the qemu TLB uses virtual addresses,
416          * not modified virtual addresses, so this causes a TLB flush.
417          */
418         tlb_flush(CPU(cpu));
419         raw_write(env, ri, value);
420     }
421 }
422 
423 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
424                              uint64_t value)
425 {
426     ARMCPU *cpu = env_archcpu(env);
427 
428     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
429         && !extended_addresses_enabled(env)) {
430         /*
431          * For VMSA (when not using the LPAE long descriptor page table
432          * format) this register includes the ASID, so do a TLB flush.
433          * For PMSA it is purely a process ID and no action is needed.
434          */
435         tlb_flush(CPU(cpu));
436     }
437     raw_write(env, ri, value);
438 }
439 
440 static int alle1_tlbmask(CPUARMState *env)
441 {
442     /*
443      * Note that the 'ALL' scope must invalidate both stage 1 and
444      * stage 2 translations, whereas most other scopes only invalidate
445      * stage 1 translations.
446      */
447     return (ARMMMUIdxBit_E10_1 |
448             ARMMMUIdxBit_E10_1_PAN |
449             ARMMMUIdxBit_E10_0 |
450             ARMMMUIdxBit_Stage2 |
451             ARMMMUIdxBit_Stage2_S);
452 }
453 
454 
455 /* IS variants of TLB operations must affect all cores */
456 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
457                              uint64_t value)
458 {
459     CPUState *cs = env_cpu(env);
460 
461     tlb_flush_all_cpus_synced(cs);
462 }
463 
464 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
465                              uint64_t value)
466 {
467     CPUState *cs = env_cpu(env);
468 
469     tlb_flush_all_cpus_synced(cs);
470 }
471 
472 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
473                              uint64_t value)
474 {
475     CPUState *cs = env_cpu(env);
476 
477     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
478 }
479 
480 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
481                              uint64_t value)
482 {
483     CPUState *cs = env_cpu(env);
484 
485     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
486 }
487 
488 /*
489  * Non-IS variants of TLB operations are upgraded to
490  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
491  * force broadcast of these operations.
492  */
493 static bool tlb_force_broadcast(CPUARMState *env)
494 {
495     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
496 }
497 
498 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
499                           uint64_t value)
500 {
501     /* Invalidate all (TLBIALL) */
502     CPUState *cs = env_cpu(env);
503 
504     if (tlb_force_broadcast(env)) {
505         tlb_flush_all_cpus_synced(cs);
506     } else {
507         tlb_flush(cs);
508     }
509 }
510 
511 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
512                           uint64_t value)
513 {
514     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
515     CPUState *cs = env_cpu(env);
516 
517     value &= TARGET_PAGE_MASK;
518     if (tlb_force_broadcast(env)) {
519         tlb_flush_page_all_cpus_synced(cs, value);
520     } else {
521         tlb_flush_page(cs, value);
522     }
523 }
524 
525 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
526                            uint64_t value)
527 {
528     /* Invalidate by ASID (TLBIASID) */
529     CPUState *cs = env_cpu(env);
530 
531     if (tlb_force_broadcast(env)) {
532         tlb_flush_all_cpus_synced(cs);
533     } else {
534         tlb_flush(cs);
535     }
536 }
537 
538 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
539                            uint64_t value)
540 {
541     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
542     CPUState *cs = env_cpu(env);
543 
544     value &= TARGET_PAGE_MASK;
545     if (tlb_force_broadcast(env)) {
546         tlb_flush_page_all_cpus_synced(cs, value);
547     } else {
548         tlb_flush_page(cs, value);
549     }
550 }
551 
552 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
553                                uint64_t value)
554 {
555     CPUState *cs = env_cpu(env);
556 
557     tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
558 }
559 
560 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
561                                   uint64_t value)
562 {
563     CPUState *cs = env_cpu(env);
564 
565     tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
566 }
567 
568 
569 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
570                               uint64_t value)
571 {
572     CPUState *cs = env_cpu(env);
573 
574     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
575 }
576 
577 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
578                                  uint64_t value)
579 {
580     CPUState *cs = env_cpu(env);
581 
582     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
583 }
584 
585 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
586                               uint64_t value)
587 {
588     CPUState *cs = env_cpu(env);
589     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
590 
591     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
592 }
593 
594 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
595                                  uint64_t value)
596 {
597     CPUState *cs = env_cpu(env);
598     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
599 
600     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
601                                              ARMMMUIdxBit_E2);
602 }
603 
604 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
605                                 uint64_t value)
606 {
607     CPUState *cs = env_cpu(env);
608     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
609 
610     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
611 }
612 
613 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
614                                 uint64_t value)
615 {
616     CPUState *cs = env_cpu(env);
617     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
618 
619     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
620 }
621 
622 static const ARMCPRegInfo cp_reginfo[] = {
623     /*
624      * Define the secure and non-secure FCSE identifier CP registers
625      * separately because there is no secure bank in V8 (no _EL3).  This allows
626      * the secure register to be properly reset and migrated. There is also no
627      * v8 EL1 version of the register so the non-secure instance stands alone.
628      */
629     { .name = "FCSEIDR",
630       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
631       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
632       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
633       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
634     { .name = "FCSEIDR_S",
635       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
636       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
637       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
638       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
639     /*
640      * Define the secure and non-secure context identifier CP registers
641      * separately because there is no secure bank in V8 (no _EL3).  This allows
642      * the secure register to be properly reset and migrated.  In the
643      * non-secure case, the 32-bit register will have reset and migration
644      * disabled during registration as it is handled by the 64-bit instance.
645      */
646     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
647       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
648       .access = PL1_RW, .accessfn = access_tvm_trvm,
649       .fgt = FGT_CONTEXTIDR_EL1,
650       .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1,
651       .secure = ARM_CP_SECSTATE_NS,
652       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
653       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
654     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
655       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
656       .access = PL1_RW, .accessfn = access_tvm_trvm,
657       .secure = ARM_CP_SECSTATE_S,
658       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
659       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
660 };
661 
662 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
663     /*
664      * NB: Some of these registers exist in v8 but with more precise
665      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
666      */
667     /* MMU Domain access control / MPU write buffer control */
668     { .name = "DACR",
669       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
670       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
671       .writefn = dacr_write, .raw_writefn = raw_write,
672       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
673                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
674     /*
675      * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
676      * For v6 and v5, these mappings are overly broad.
677      */
678     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
679       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
680     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
681       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
682     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
683       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
684     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
685       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
686     /* Cache maintenance ops; some of this space may be overridden later. */
687     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
688       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
689       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
690 };
691 
692 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
693     /*
694      * Not all pre-v6 cores implemented this WFI, so this is slightly
695      * over-broad.
696      */
697     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
698       .access = PL1_W, .type = ARM_CP_WFI },
699 };
700 
701 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
702     /*
703      * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
704      * is UNPREDICTABLE; we choose to NOP as most implementations do).
705      */
706     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
707       .access = PL1_W, .type = ARM_CP_WFI },
708     /*
709      * L1 cache lockdown. Not architectural in v6 and earlier but in practice
710      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
711      * OMAPCP will override this space.
712      */
713     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
714       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
715       .resetvalue = 0 },
716     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
717       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
718       .resetvalue = 0 },
719     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
720     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
721       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
722       .resetvalue = 0 },
723     /*
724      * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
725      * implementing it as RAZ means the "debug architecture version" bits
726      * will read as a reserved value, which should cause Linux to not try
727      * to use the debug hardware.
728      */
729     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
730       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
731     /*
732      * MMU TLB control. Note that the wildcarding means we cover not just
733      * the unified TLB ops but also the dside/iside/inner-shareable variants.
734      */
735     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
736       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
737       .type = ARM_CP_NO_RAW },
738     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
739       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
740       .type = ARM_CP_NO_RAW },
741     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
742       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
743       .type = ARM_CP_NO_RAW },
744     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
745       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
746       .type = ARM_CP_NO_RAW },
747     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
748       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
749     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
750       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
751 };
752 
753 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
754                         uint64_t value)
755 {
756     uint32_t mask = 0;
757 
758     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
759     if (!arm_feature(env, ARM_FEATURE_V8)) {
760         /*
761          * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
762          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
763          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
764          */
765         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
766             /* VFP coprocessor: cp10 & cp11 [23:20] */
767             mask |= R_CPACR_ASEDIS_MASK |
768                     R_CPACR_D32DIS_MASK |
769                     R_CPACR_CP11_MASK |
770                     R_CPACR_CP10_MASK;
771 
772             if (!arm_feature(env, ARM_FEATURE_NEON)) {
773                 /* ASEDIS [31] bit is RAO/WI */
774                 value |= R_CPACR_ASEDIS_MASK;
775             }
776 
777             /*
778              * VFPv3 and upwards with NEON implement 32 double precision
779              * registers (D0-D31).
780              */
781             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
782                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
783                 value |= R_CPACR_D32DIS_MASK;
784             }
785         }
786         value &= mask;
787     }
788 
789     /*
790      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
791      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
792      */
793     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
794         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
795         mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
796         value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
797     }
798 
799     env->cp15.cpacr_el1 = value;
800 }
801 
802 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
803 {
804     /*
805      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
806      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
807      */
808     uint64_t value = env->cp15.cpacr_el1;
809 
810     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
811         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
812         value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
813     }
814     return value;
815 }
816 
817 
818 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
819 {
820     /*
821      * Call cpacr_write() so that we reset with the correct RAO bits set
822      * for our CPU features.
823      */
824     cpacr_write(env, ri, 0);
825 }
826 
827 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
828                                    bool isread)
829 {
830     if (arm_feature(env, ARM_FEATURE_V8)) {
831         /* Check if CPACR accesses are to be trapped to EL2 */
832         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
833             FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
834             return CP_ACCESS_TRAP_EL2;
835         /* Check if CPACR accesses are to be trapped to EL3 */
836         } else if (arm_current_el(env) < 3 &&
837                    FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
838             return CP_ACCESS_TRAP_EL3;
839         }
840     }
841 
842     return CP_ACCESS_OK;
843 }
844 
845 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
846                                   bool isread)
847 {
848     /* Check if CPTR accesses are set to trap to EL3 */
849     if (arm_current_el(env) == 2 &&
850         FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
851         return CP_ACCESS_TRAP_EL3;
852     }
853 
854     return CP_ACCESS_OK;
855 }
856 
857 static const ARMCPRegInfo v6_cp_reginfo[] = {
858     /* prefetch by MVA in v6, NOP in v7 */
859     { .name = "MVA_prefetch",
860       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
861       .access = PL1_W, .type = ARM_CP_NOP },
862     /*
863      * We need to break the TB after ISB to execute self-modifying code
864      * correctly and also to take any pending interrupts immediately.
865      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
866      */
867     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
868       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
869     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
870       .access = PL0_W, .type = ARM_CP_NOP },
871     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
872       .access = PL0_W, .type = ARM_CP_NOP },
873     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
874       .access = PL1_RW, .accessfn = access_tvm_trvm,
875       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
876                              offsetof(CPUARMState, cp15.ifar_ns) },
877       .resetvalue = 0, },
878     /*
879      * Watchpoint Fault Address Register : should actually only be present
880      * for 1136, 1176, 11MPCore.
881      */
882     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
883       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
884     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
885       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
886       .fgt = FGT_CPACR_EL1,
887       .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1,
888       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
889       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
890 };
891 
892 typedef struct pm_event {
893     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
894     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
895     bool (*supported)(CPUARMState *);
896     /*
897      * Retrieve the current count of the underlying event. The programmed
898      * counters hold a difference from the return value from this function
899      */
900     uint64_t (*get_count)(CPUARMState *);
901     /*
902      * Return how many nanoseconds it will take (at a minimum) for count events
903      * to occur. A negative value indicates the counter will never overflow, or
904      * that the counter has otherwise arranged for the overflow bit to be set
905      * and the PMU interrupt to be raised on overflow.
906      */
907     int64_t (*ns_per_count)(uint64_t);
908 } pm_event;
909 
910 static bool event_always_supported(CPUARMState *env)
911 {
912     return true;
913 }
914 
915 static uint64_t swinc_get_count(CPUARMState *env)
916 {
917     /*
918      * SW_INCR events are written directly to the pmevcntr's by writes to
919      * PMSWINC, so there is no underlying count maintained by the PMU itself
920      */
921     return 0;
922 }
923 
924 static int64_t swinc_ns_per(uint64_t ignored)
925 {
926     return -1;
927 }
928 
929 /*
930  * Return the underlying cycle count for the PMU cycle counters. If we're in
931  * usermode, simply return 0.
932  */
933 static uint64_t cycles_get_count(CPUARMState *env)
934 {
935 #ifndef CONFIG_USER_ONLY
936     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
937                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
938 #else
939     return cpu_get_host_ticks();
940 #endif
941 }
942 
943 #ifndef CONFIG_USER_ONLY
944 static int64_t cycles_ns_per(uint64_t cycles)
945 {
946     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
947 }
948 
949 static bool instructions_supported(CPUARMState *env)
950 {
951     return icount_enabled() == 1; /* Precise instruction counting */
952 }
953 
954 static uint64_t instructions_get_count(CPUARMState *env)
955 {
956     return (uint64_t)icount_get_raw();
957 }
958 
959 static int64_t instructions_ns_per(uint64_t icount)
960 {
961     return icount_to_ns((int64_t)icount);
962 }
963 #endif
964 
965 static bool pmuv3p1_events_supported(CPUARMState *env)
966 {
967     /* For events which are supported in any v8.1 PMU */
968     return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
969 }
970 
971 static bool pmuv3p4_events_supported(CPUARMState *env)
972 {
973     /* For events which are supported in any v8.1 PMU */
974     return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
975 }
976 
977 static uint64_t zero_event_get_count(CPUARMState *env)
978 {
979     /* For events which on QEMU never fire, so their count is always zero */
980     return 0;
981 }
982 
983 static int64_t zero_event_ns_per(uint64_t cycles)
984 {
985     /* An event which never fires can never overflow */
986     return -1;
987 }
988 
989 static const pm_event pm_events[] = {
990     { .number = 0x000, /* SW_INCR */
991       .supported = event_always_supported,
992       .get_count = swinc_get_count,
993       .ns_per_count = swinc_ns_per,
994     },
995 #ifndef CONFIG_USER_ONLY
996     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
997       .supported = instructions_supported,
998       .get_count = instructions_get_count,
999       .ns_per_count = instructions_ns_per,
1000     },
1001     { .number = 0x011, /* CPU_CYCLES, Cycle */
1002       .supported = event_always_supported,
1003       .get_count = cycles_get_count,
1004       .ns_per_count = cycles_ns_per,
1005     },
1006 #endif
1007     { .number = 0x023, /* STALL_FRONTEND */
1008       .supported = pmuv3p1_events_supported,
1009       .get_count = zero_event_get_count,
1010       .ns_per_count = zero_event_ns_per,
1011     },
1012     { .number = 0x024, /* STALL_BACKEND */
1013       .supported = pmuv3p1_events_supported,
1014       .get_count = zero_event_get_count,
1015       .ns_per_count = zero_event_ns_per,
1016     },
1017     { .number = 0x03c, /* STALL */
1018       .supported = pmuv3p4_events_supported,
1019       .get_count = zero_event_get_count,
1020       .ns_per_count = zero_event_ns_per,
1021     },
1022 };
1023 
1024 /*
1025  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1026  * events (i.e. the statistical profiling extension), this implementation
1027  * should first be updated to something sparse instead of the current
1028  * supported_event_map[] array.
1029  */
1030 #define MAX_EVENT_ID 0x3c
1031 #define UNSUPPORTED_EVENT UINT16_MAX
1032 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1033 
1034 /*
1035  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1036  * of ARM event numbers to indices in our pm_events array.
1037  *
1038  * Note: Events in the 0x40XX range are not currently supported.
1039  */
1040 void pmu_init(ARMCPU *cpu)
1041 {
1042     unsigned int i;
1043 
1044     /*
1045      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1046      * events to them
1047      */
1048     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1049         supported_event_map[i] = UNSUPPORTED_EVENT;
1050     }
1051     cpu->pmceid0 = 0;
1052     cpu->pmceid1 = 0;
1053 
1054     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1055         const pm_event *cnt = &pm_events[i];
1056         assert(cnt->number <= MAX_EVENT_ID);
1057         /* We do not currently support events in the 0x40xx range */
1058         assert(cnt->number <= 0x3f);
1059 
1060         if (cnt->supported(&cpu->env)) {
1061             supported_event_map[cnt->number] = i;
1062             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1063             if (cnt->number & 0x20) {
1064                 cpu->pmceid1 |= event_mask;
1065             } else {
1066                 cpu->pmceid0 |= event_mask;
1067             }
1068         }
1069     }
1070 }
1071 
1072 /*
1073  * Check at runtime whether a PMU event is supported for the current machine
1074  */
1075 static bool event_supported(uint16_t number)
1076 {
1077     if (number > MAX_EVENT_ID) {
1078         return false;
1079     }
1080     return supported_event_map[number] != UNSUPPORTED_EVENT;
1081 }
1082 
1083 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1084                                    bool isread)
1085 {
1086     /*
1087      * Performance monitor registers user accessibility is controlled
1088      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1089      * trapping to EL2 or EL3 for other accesses.
1090      */
1091     int el = arm_current_el(env);
1092     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1093 
1094     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1095         return CP_ACCESS_TRAP;
1096     }
1097     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1098         return CP_ACCESS_TRAP_EL2;
1099     }
1100     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1101         return CP_ACCESS_TRAP_EL3;
1102     }
1103 
1104     return CP_ACCESS_OK;
1105 }
1106 
1107 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1108                                            const ARMCPRegInfo *ri,
1109                                            bool isread)
1110 {
1111     /* ER: event counter read trap control */
1112     if (arm_feature(env, ARM_FEATURE_V8)
1113         && arm_current_el(env) == 0
1114         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1115         && isread) {
1116         return CP_ACCESS_OK;
1117     }
1118 
1119     return pmreg_access(env, ri, isread);
1120 }
1121 
1122 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1123                                          const ARMCPRegInfo *ri,
1124                                          bool isread)
1125 {
1126     /* SW: software increment write trap control */
1127     if (arm_feature(env, ARM_FEATURE_V8)
1128         && arm_current_el(env) == 0
1129         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1130         && !isread) {
1131         return CP_ACCESS_OK;
1132     }
1133 
1134     return pmreg_access(env, ri, isread);
1135 }
1136 
1137 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1138                                         const ARMCPRegInfo *ri,
1139                                         bool isread)
1140 {
1141     /* ER: event counter read trap control */
1142     if (arm_feature(env, ARM_FEATURE_V8)
1143         && arm_current_el(env) == 0
1144         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1145         return CP_ACCESS_OK;
1146     }
1147 
1148     return pmreg_access(env, ri, isread);
1149 }
1150 
1151 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1152                                          const ARMCPRegInfo *ri,
1153                                          bool isread)
1154 {
1155     /* CR: cycle counter read trap control */
1156     if (arm_feature(env, ARM_FEATURE_V8)
1157         && arm_current_el(env) == 0
1158         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1159         && isread) {
1160         return CP_ACCESS_OK;
1161     }
1162 
1163     return pmreg_access(env, ri, isread);
1164 }
1165 
1166 /*
1167  * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1168  * We use these to decide whether we need to wrap a write to MDCR_EL2
1169  * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1170  */
1171 #define MDCR_EL2_PMU_ENABLE_BITS \
1172     (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1173 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1174 
1175 /*
1176  * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1177  * the current EL, security state, and register configuration.
1178  */
1179 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1180 {
1181     uint64_t filter;
1182     bool e, p, u, nsk, nsu, nsh, m;
1183     bool enabled, prohibited = false, filtered;
1184     bool secure = arm_is_secure(env);
1185     int el = arm_current_el(env);
1186     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1187     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1188 
1189     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1190         return false;
1191     }
1192 
1193     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1194             (counter < hpmn || counter == 31)) {
1195         e = env->cp15.c9_pmcr & PMCRE;
1196     } else {
1197         e = mdcr_el2 & MDCR_HPME;
1198     }
1199     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1200 
1201     /* Is event counting prohibited? */
1202     if (el == 2 && (counter < hpmn || counter == 31)) {
1203         prohibited = mdcr_el2 & MDCR_HPMD;
1204     }
1205     if (secure) {
1206         prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1207     }
1208 
1209     if (counter == 31) {
1210         /*
1211          * The cycle counter defaults to running. PMCR.DP says "disable
1212          * the cycle counter when event counting is prohibited".
1213          * Some MDCR bits disable the cycle counter specifically.
1214          */
1215         prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1216         if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1217             if (secure) {
1218                 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1219             }
1220             if (el == 2) {
1221                 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1222             }
1223         }
1224     }
1225 
1226     if (counter == 31) {
1227         filter = env->cp15.pmccfiltr_el0;
1228     } else {
1229         filter = env->cp15.c14_pmevtyper[counter];
1230     }
1231 
1232     p   = filter & PMXEVTYPER_P;
1233     u   = filter & PMXEVTYPER_U;
1234     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1235     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1236     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1237     m   = arm_el_is_aa64(env, 1) &&
1238               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1239 
1240     if (el == 0) {
1241         filtered = secure ? u : u != nsu;
1242     } else if (el == 1) {
1243         filtered = secure ? p : p != nsk;
1244     } else if (el == 2) {
1245         filtered = !nsh;
1246     } else { /* EL3 */
1247         filtered = m != p;
1248     }
1249 
1250     if (counter != 31) {
1251         /*
1252          * If not checking PMCCNTR, ensure the counter is setup to an event we
1253          * support
1254          */
1255         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1256         if (!event_supported(event)) {
1257             return false;
1258         }
1259     }
1260 
1261     return enabled && !prohibited && !filtered;
1262 }
1263 
1264 static void pmu_update_irq(CPUARMState *env)
1265 {
1266     ARMCPU *cpu = env_archcpu(env);
1267     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1268             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1269 }
1270 
1271 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1272 {
1273     /*
1274      * Return true if the clock divider is enabled and the cycle counter
1275      * is supposed to tick only once every 64 clock cycles. This is
1276      * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1277      * (64-bit) cycle counter PMCR.D has no effect.
1278      */
1279     return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1280 }
1281 
1282 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1283 {
1284     /* Return true if the specified event counter is configured to be 64 bit */
1285 
1286     /* This isn't intended to be used with the cycle counter */
1287     assert(counter < 31);
1288 
1289     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1290         return false;
1291     }
1292 
1293     if (arm_feature(env, ARM_FEATURE_EL2)) {
1294         /*
1295          * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1296          * current security state, so we don't use arm_mdcr_el2_eff() here.
1297          */
1298         bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1299         int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1300 
1301         if (counter >= hpmn) {
1302             return hlp;
1303         }
1304     }
1305     return env->cp15.c9_pmcr & PMCRLP;
1306 }
1307 
1308 /*
1309  * Ensure c15_ccnt is the guest-visible count so that operations such as
1310  * enabling/disabling the counter or filtering, modifying the count itself,
1311  * etc. can be done logically. This is essentially a no-op if the counter is
1312  * not enabled at the time of the call.
1313  */
1314 static void pmccntr_op_start(CPUARMState *env)
1315 {
1316     uint64_t cycles = cycles_get_count(env);
1317 
1318     if (pmu_counter_enabled(env, 31)) {
1319         uint64_t eff_cycles = cycles;
1320         if (pmccntr_clockdiv_enabled(env)) {
1321             eff_cycles /= 64;
1322         }
1323 
1324         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1325 
1326         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1327                                  1ull << 63 : 1ull << 31;
1328         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1329             env->cp15.c9_pmovsr |= (1ULL << 31);
1330             pmu_update_irq(env);
1331         }
1332 
1333         env->cp15.c15_ccnt = new_pmccntr;
1334     }
1335     env->cp15.c15_ccnt_delta = cycles;
1336 }
1337 
1338 /*
1339  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1340  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1341  * pmccntr_op_start.
1342  */
1343 static void pmccntr_op_finish(CPUARMState *env)
1344 {
1345     if (pmu_counter_enabled(env, 31)) {
1346 #ifndef CONFIG_USER_ONLY
1347         /* Calculate when the counter will next overflow */
1348         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1349         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1350             remaining_cycles = (uint32_t)remaining_cycles;
1351         }
1352         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1353 
1354         if (overflow_in > 0) {
1355             int64_t overflow_at;
1356 
1357             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1358                                  overflow_in, &overflow_at)) {
1359                 ARMCPU *cpu = env_archcpu(env);
1360                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1361             }
1362         }
1363 #endif
1364 
1365         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1366         if (pmccntr_clockdiv_enabled(env)) {
1367             prev_cycles /= 64;
1368         }
1369         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1370     }
1371 }
1372 
1373 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1374 {
1375 
1376     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1377     uint64_t count = 0;
1378     if (event_supported(event)) {
1379         uint16_t event_idx = supported_event_map[event];
1380         count = pm_events[event_idx].get_count(env);
1381     }
1382 
1383     if (pmu_counter_enabled(env, counter)) {
1384         uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1385         uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1386             1ULL << 63 : 1ULL << 31;
1387 
1388         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1389             env->cp15.c9_pmovsr |= (1 << counter);
1390             pmu_update_irq(env);
1391         }
1392         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1393     }
1394     env->cp15.c14_pmevcntr_delta[counter] = count;
1395 }
1396 
1397 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1398 {
1399     if (pmu_counter_enabled(env, counter)) {
1400 #ifndef CONFIG_USER_ONLY
1401         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1402         uint16_t event_idx = supported_event_map[event];
1403         uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1404         int64_t overflow_in;
1405 
1406         if (!pmevcntr_is_64_bit(env, counter)) {
1407             delta = (uint32_t)delta;
1408         }
1409         overflow_in = pm_events[event_idx].ns_per_count(delta);
1410 
1411         if (overflow_in > 0) {
1412             int64_t overflow_at;
1413 
1414             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1415                                  overflow_in, &overflow_at)) {
1416                 ARMCPU *cpu = env_archcpu(env);
1417                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1418             }
1419         }
1420 #endif
1421 
1422         env->cp15.c14_pmevcntr_delta[counter] -=
1423             env->cp15.c14_pmevcntr[counter];
1424     }
1425 }
1426 
1427 void pmu_op_start(CPUARMState *env)
1428 {
1429     unsigned int i;
1430     pmccntr_op_start(env);
1431     for (i = 0; i < pmu_num_counters(env); i++) {
1432         pmevcntr_op_start(env, i);
1433     }
1434 }
1435 
1436 void pmu_op_finish(CPUARMState *env)
1437 {
1438     unsigned int i;
1439     pmccntr_op_finish(env);
1440     for (i = 0; i < pmu_num_counters(env); i++) {
1441         pmevcntr_op_finish(env, i);
1442     }
1443 }
1444 
1445 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1446 {
1447     pmu_op_start(&cpu->env);
1448 }
1449 
1450 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1451 {
1452     pmu_op_finish(&cpu->env);
1453 }
1454 
1455 void arm_pmu_timer_cb(void *opaque)
1456 {
1457     ARMCPU *cpu = opaque;
1458 
1459     /*
1460      * Update all the counter values based on the current underlying counts,
1461      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1462      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1463      * counter may expire.
1464      */
1465     pmu_op_start(&cpu->env);
1466     pmu_op_finish(&cpu->env);
1467 }
1468 
1469 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1470                        uint64_t value)
1471 {
1472     pmu_op_start(env);
1473 
1474     if (value & PMCRC) {
1475         /* The counter has been reset */
1476         env->cp15.c15_ccnt = 0;
1477     }
1478 
1479     if (value & PMCRP) {
1480         unsigned int i;
1481         for (i = 0; i < pmu_num_counters(env); i++) {
1482             env->cp15.c14_pmevcntr[i] = 0;
1483         }
1484     }
1485 
1486     env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1487     env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1488 
1489     pmu_op_finish(env);
1490 }
1491 
1492 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1493 {
1494     uint64_t pmcr = env->cp15.c9_pmcr;
1495 
1496     /*
1497      * If EL2 is implemented and enabled for the current security state, reads
1498      * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
1499      */
1500     if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
1501         pmcr &= ~PMCRN_MASK;
1502         pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
1503     }
1504 
1505     return pmcr;
1506 }
1507 
1508 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1509                           uint64_t value)
1510 {
1511     unsigned int i;
1512     uint64_t overflow_mask, new_pmswinc;
1513 
1514     for (i = 0; i < pmu_num_counters(env); i++) {
1515         /* Increment a counter's count iff: */
1516         if ((value & (1 << i)) && /* counter's bit is set */
1517                 /* counter is enabled and not filtered */
1518                 pmu_counter_enabled(env, i) &&
1519                 /* counter is SW_INCR */
1520                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1521             pmevcntr_op_start(env, i);
1522 
1523             /*
1524              * Detect if this write causes an overflow since we can't predict
1525              * PMSWINC overflows like we can for other events
1526              */
1527             new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1528 
1529             overflow_mask = pmevcntr_is_64_bit(env, i) ?
1530                 1ULL << 63 : 1ULL << 31;
1531 
1532             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1533                 env->cp15.c9_pmovsr |= (1 << i);
1534                 pmu_update_irq(env);
1535             }
1536 
1537             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1538 
1539             pmevcntr_op_finish(env, i);
1540         }
1541     }
1542 }
1543 
1544 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1545 {
1546     uint64_t ret;
1547     pmccntr_op_start(env);
1548     ret = env->cp15.c15_ccnt;
1549     pmccntr_op_finish(env);
1550     return ret;
1551 }
1552 
1553 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1554                          uint64_t value)
1555 {
1556     /*
1557      * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1558      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1559      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1560      * accessed.
1561      */
1562     env->cp15.c9_pmselr = value & 0x1f;
1563 }
1564 
1565 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1566                         uint64_t value)
1567 {
1568     pmccntr_op_start(env);
1569     env->cp15.c15_ccnt = value;
1570     pmccntr_op_finish(env);
1571 }
1572 
1573 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1574                             uint64_t value)
1575 {
1576     uint64_t cur_val = pmccntr_read(env, NULL);
1577 
1578     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1579 }
1580 
1581 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1582                             uint64_t value)
1583 {
1584     pmccntr_op_start(env);
1585     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1586     pmccntr_op_finish(env);
1587 }
1588 
1589 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1590                             uint64_t value)
1591 {
1592     pmccntr_op_start(env);
1593     /* M is not accessible from AArch32 */
1594     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1595         (value & PMCCFILTR);
1596     pmccntr_op_finish(env);
1597 }
1598 
1599 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1600 {
1601     /* M is not visible in AArch32 */
1602     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1603 }
1604 
1605 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1606                             uint64_t value)
1607 {
1608     pmu_op_start(env);
1609     value &= pmu_counter_mask(env);
1610     env->cp15.c9_pmcnten |= value;
1611     pmu_op_finish(env);
1612 }
1613 
1614 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1615                              uint64_t value)
1616 {
1617     pmu_op_start(env);
1618     value &= pmu_counter_mask(env);
1619     env->cp15.c9_pmcnten &= ~value;
1620     pmu_op_finish(env);
1621 }
1622 
1623 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1624                          uint64_t value)
1625 {
1626     value &= pmu_counter_mask(env);
1627     env->cp15.c9_pmovsr &= ~value;
1628     pmu_update_irq(env);
1629 }
1630 
1631 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1632                          uint64_t value)
1633 {
1634     value &= pmu_counter_mask(env);
1635     env->cp15.c9_pmovsr |= value;
1636     pmu_update_irq(env);
1637 }
1638 
1639 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1640                              uint64_t value, const uint8_t counter)
1641 {
1642     if (counter == 31) {
1643         pmccfiltr_write(env, ri, value);
1644     } else if (counter < pmu_num_counters(env)) {
1645         pmevcntr_op_start(env, counter);
1646 
1647         /*
1648          * If this counter's event type is changing, store the current
1649          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1650          * pmevcntr_op_finish has the correct baseline when it converts back to
1651          * a delta.
1652          */
1653         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1654             PMXEVTYPER_EVTCOUNT;
1655         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1656         if (old_event != new_event) {
1657             uint64_t count = 0;
1658             if (event_supported(new_event)) {
1659                 uint16_t event_idx = supported_event_map[new_event];
1660                 count = pm_events[event_idx].get_count(env);
1661             }
1662             env->cp15.c14_pmevcntr_delta[counter] = count;
1663         }
1664 
1665         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1666         pmevcntr_op_finish(env, counter);
1667     }
1668     /*
1669      * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1670      * PMSELR value is equal to or greater than the number of implemented
1671      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1672      */
1673 }
1674 
1675 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1676                                const uint8_t counter)
1677 {
1678     if (counter == 31) {
1679         return env->cp15.pmccfiltr_el0;
1680     } else if (counter < pmu_num_counters(env)) {
1681         return env->cp15.c14_pmevtyper[counter];
1682     } else {
1683       /*
1684        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1685        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1686        */
1687         return 0;
1688     }
1689 }
1690 
1691 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1692                               uint64_t value)
1693 {
1694     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1695     pmevtyper_write(env, ri, value, counter);
1696 }
1697 
1698 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1699                                uint64_t value)
1700 {
1701     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1702     env->cp15.c14_pmevtyper[counter] = value;
1703 
1704     /*
1705      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1706      * pmu_op_finish calls when loading saved state for a migration. Because
1707      * we're potentially updating the type of event here, the value written to
1708      * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1709      * different counter type. Therefore, we need to set this value to the
1710      * current count for the counter type we're writing so that pmu_op_finish
1711      * has the correct count for its calculation.
1712      */
1713     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1714     if (event_supported(event)) {
1715         uint16_t event_idx = supported_event_map[event];
1716         env->cp15.c14_pmevcntr_delta[counter] =
1717             pm_events[event_idx].get_count(env);
1718     }
1719 }
1720 
1721 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1722 {
1723     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1724     return pmevtyper_read(env, ri, counter);
1725 }
1726 
1727 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1728                              uint64_t value)
1729 {
1730     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1731 }
1732 
1733 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1734 {
1735     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1736 }
1737 
1738 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1739                              uint64_t value, uint8_t counter)
1740 {
1741     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1742         /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1743         value &= MAKE_64BIT_MASK(0, 32);
1744     }
1745     if (counter < pmu_num_counters(env)) {
1746         pmevcntr_op_start(env, counter);
1747         env->cp15.c14_pmevcntr[counter] = value;
1748         pmevcntr_op_finish(env, counter);
1749     }
1750     /*
1751      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1752      * are CONSTRAINED UNPREDICTABLE.
1753      */
1754 }
1755 
1756 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1757                               uint8_t counter)
1758 {
1759     if (counter < pmu_num_counters(env)) {
1760         uint64_t ret;
1761         pmevcntr_op_start(env, counter);
1762         ret = env->cp15.c14_pmevcntr[counter];
1763         pmevcntr_op_finish(env, counter);
1764         if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1765             /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1766             ret &= MAKE_64BIT_MASK(0, 32);
1767         }
1768         return ret;
1769     } else {
1770       /*
1771        * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1772        * are CONSTRAINED UNPREDICTABLE.
1773        */
1774         return 0;
1775     }
1776 }
1777 
1778 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1779                              uint64_t value)
1780 {
1781     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1782     pmevcntr_write(env, ri, value, counter);
1783 }
1784 
1785 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1786 {
1787     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1788     return pmevcntr_read(env, ri, counter);
1789 }
1790 
1791 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1792                              uint64_t value)
1793 {
1794     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1795     assert(counter < pmu_num_counters(env));
1796     env->cp15.c14_pmevcntr[counter] = value;
1797     pmevcntr_write(env, ri, value, counter);
1798 }
1799 
1800 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1801 {
1802     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1803     assert(counter < pmu_num_counters(env));
1804     return env->cp15.c14_pmevcntr[counter];
1805 }
1806 
1807 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1808                              uint64_t value)
1809 {
1810     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1811 }
1812 
1813 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1814 {
1815     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1816 }
1817 
1818 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1819                             uint64_t value)
1820 {
1821     if (arm_feature(env, ARM_FEATURE_V8)) {
1822         env->cp15.c9_pmuserenr = value & 0xf;
1823     } else {
1824         env->cp15.c9_pmuserenr = value & 1;
1825     }
1826 }
1827 
1828 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1829                              uint64_t value)
1830 {
1831     /* We have no event counters so only the C bit can be changed */
1832     value &= pmu_counter_mask(env);
1833     env->cp15.c9_pminten |= value;
1834     pmu_update_irq(env);
1835 }
1836 
1837 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1838                              uint64_t value)
1839 {
1840     value &= pmu_counter_mask(env);
1841     env->cp15.c9_pminten &= ~value;
1842     pmu_update_irq(env);
1843 }
1844 
1845 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1846                        uint64_t value)
1847 {
1848     /*
1849      * Note that even though the AArch64 view of this register has bits
1850      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1851      * architectural requirements for bits which are RES0 only in some
1852      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1853      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1854      */
1855     raw_write(env, ri, value & ~0x1FULL);
1856 }
1857 
1858 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1859 {
1860     /* Begin with base v8.0 state.  */
1861     uint64_t valid_mask = 0x3fff;
1862     ARMCPU *cpu = env_archcpu(env);
1863     uint64_t changed;
1864 
1865     /*
1866      * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1867      * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1868      * Instead, choose the format based on the mode of EL3.
1869      */
1870     if (arm_el_is_aa64(env, 3)) {
1871         value |= SCR_FW | SCR_AW;      /* RES1 */
1872         valid_mask &= ~SCR_NET;        /* RES0 */
1873 
1874         if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1875             !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1876             value |= SCR_RW;           /* RAO/WI */
1877         }
1878         if (cpu_isar_feature(aa64_ras, cpu)) {
1879             valid_mask |= SCR_TERR;
1880         }
1881         if (cpu_isar_feature(aa64_lor, cpu)) {
1882             valid_mask |= SCR_TLOR;
1883         }
1884         if (cpu_isar_feature(aa64_pauth, cpu)) {
1885             valid_mask |= SCR_API | SCR_APK;
1886         }
1887         if (cpu_isar_feature(aa64_sel2, cpu)) {
1888             valid_mask |= SCR_EEL2;
1889         } else if (cpu_isar_feature(aa64_rme, cpu)) {
1890             /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1891             value |= SCR_NS;
1892         }
1893         if (cpu_isar_feature(aa64_mte, cpu)) {
1894             valid_mask |= SCR_ATA;
1895         }
1896         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1897             valid_mask |= SCR_ENSCXT;
1898         }
1899         if (cpu_isar_feature(aa64_doublefault, cpu)) {
1900             valid_mask |= SCR_EASE | SCR_NMEA;
1901         }
1902         if (cpu_isar_feature(aa64_sme, cpu)) {
1903             valid_mask |= SCR_ENTP2;
1904         }
1905         if (cpu_isar_feature(aa64_hcx, cpu)) {
1906             valid_mask |= SCR_HXEN;
1907         }
1908         if (cpu_isar_feature(aa64_fgt, cpu)) {
1909             valid_mask |= SCR_FGTEN;
1910         }
1911         if (cpu_isar_feature(aa64_rme, cpu)) {
1912             valid_mask |= SCR_NSE | SCR_GPF;
1913         }
1914     } else {
1915         valid_mask &= ~(SCR_RW | SCR_ST);
1916         if (cpu_isar_feature(aa32_ras, cpu)) {
1917             valid_mask |= SCR_TERR;
1918         }
1919     }
1920 
1921     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1922         valid_mask &= ~SCR_HCE;
1923 
1924         /*
1925          * On ARMv7, SMD (or SCD as it is called in v7) is only
1926          * supported if EL2 exists. The bit is UNK/SBZP when
1927          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1928          * when EL2 is unavailable.
1929          * On ARMv8, this bit is always available.
1930          */
1931         if (arm_feature(env, ARM_FEATURE_V7) &&
1932             !arm_feature(env, ARM_FEATURE_V8)) {
1933             valid_mask &= ~SCR_SMD;
1934         }
1935     }
1936 
1937     /* Clear all-context RES0 bits.  */
1938     value &= valid_mask;
1939     changed = env->cp15.scr_el3 ^ value;
1940     env->cp15.scr_el3 = value;
1941 
1942     /*
1943      * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1944      * we must invalidate all TLBs below EL3.
1945      */
1946     if (changed & (SCR_NS | SCR_NSE)) {
1947         tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1948                                            ARMMMUIdxBit_E20_0 |
1949                                            ARMMMUIdxBit_E10_1 |
1950                                            ARMMMUIdxBit_E20_2 |
1951                                            ARMMMUIdxBit_E10_1_PAN |
1952                                            ARMMMUIdxBit_E20_2_PAN |
1953                                            ARMMMUIdxBit_E2));
1954     }
1955 }
1956 
1957 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1958 {
1959     /*
1960      * scr_write will set the RES1 bits on an AArch64-only CPU.
1961      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1962      */
1963     scr_write(env, ri, 0);
1964 }
1965 
1966 static CPAccessResult access_tid4(CPUARMState *env,
1967                                   const ARMCPRegInfo *ri,
1968                                   bool isread)
1969 {
1970     if (arm_current_el(env) == 1 &&
1971         (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1972         return CP_ACCESS_TRAP_EL2;
1973     }
1974 
1975     return CP_ACCESS_OK;
1976 }
1977 
1978 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1979 {
1980     ARMCPU *cpu = env_archcpu(env);
1981 
1982     /*
1983      * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1984      * bank
1985      */
1986     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1987                                         ri->secure & ARM_CP_SECSTATE_S);
1988 
1989     return cpu->ccsidr[index];
1990 }
1991 
1992 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1993                          uint64_t value)
1994 {
1995     raw_write(env, ri, value & 0xf);
1996 }
1997 
1998 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1999 {
2000     CPUState *cs = env_cpu(env);
2001     bool el1 = arm_current_el(env) == 1;
2002     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2003     uint64_t ret = 0;
2004 
2005     if (hcr_el2 & HCR_IMO) {
2006         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2007             ret |= CPSR_I;
2008         }
2009     } else {
2010         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2011             ret |= CPSR_I;
2012         }
2013     }
2014 
2015     if (hcr_el2 & HCR_FMO) {
2016         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2017             ret |= CPSR_F;
2018         }
2019     } else {
2020         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2021             ret |= CPSR_F;
2022         }
2023     }
2024 
2025     if (hcr_el2 & HCR_AMO) {
2026         if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
2027             ret |= CPSR_A;
2028         }
2029     }
2030 
2031     return ret;
2032 }
2033 
2034 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2035                                        bool isread)
2036 {
2037     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2038         return CP_ACCESS_TRAP_EL2;
2039     }
2040 
2041     return CP_ACCESS_OK;
2042 }
2043 
2044 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2045                                        bool isread)
2046 {
2047     if (arm_feature(env, ARM_FEATURE_V8)) {
2048         return access_aa64_tid1(env, ri, isread);
2049     }
2050 
2051     return CP_ACCESS_OK;
2052 }
2053 
2054 static const ARMCPRegInfo v7_cp_reginfo[] = {
2055     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2056     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2057       .access = PL1_W, .type = ARM_CP_NOP },
2058     /*
2059      * Performance monitors are implementation defined in v7,
2060      * but with an ARM recommended set of registers, which we
2061      * follow.
2062      *
2063      * Performance registers fall into three categories:
2064      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2065      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2066      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2067      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2068      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2069      */
2070     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2071       .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2072       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2073       .writefn = pmcntenset_write,
2074       .accessfn = pmreg_access,
2075       .fgt = FGT_PMCNTEN,
2076       .raw_writefn = raw_write },
2077     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2078       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2079       .access = PL0_RW, .accessfn = pmreg_access,
2080       .fgt = FGT_PMCNTEN,
2081       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2082       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2083     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2084       .access = PL0_RW,
2085       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2086       .accessfn = pmreg_access,
2087       .fgt = FGT_PMCNTEN,
2088       .writefn = pmcntenclr_write,
2089       .type = ARM_CP_ALIAS | ARM_CP_IO },
2090     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2091       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2092       .access = PL0_RW, .accessfn = pmreg_access,
2093       .fgt = FGT_PMCNTEN,
2094       .type = ARM_CP_ALIAS | ARM_CP_IO,
2095       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2096       .writefn = pmcntenclr_write },
2097     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2098       .access = PL0_RW, .type = ARM_CP_IO,
2099       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2100       .accessfn = pmreg_access,
2101       .fgt = FGT_PMOVS,
2102       .writefn = pmovsr_write,
2103       .raw_writefn = raw_write },
2104     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2105       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2106       .access = PL0_RW, .accessfn = pmreg_access,
2107       .fgt = FGT_PMOVS,
2108       .type = ARM_CP_ALIAS | ARM_CP_IO,
2109       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2110       .writefn = pmovsr_write,
2111       .raw_writefn = raw_write },
2112     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2113       .access = PL0_W, .accessfn = pmreg_access_swinc,
2114       .fgt = FGT_PMSWINC_EL0,
2115       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2116       .writefn = pmswinc_write },
2117     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2118       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2119       .access = PL0_W, .accessfn = pmreg_access_swinc,
2120       .fgt = FGT_PMSWINC_EL0,
2121       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2122       .writefn = pmswinc_write },
2123     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2124       .access = PL0_RW, .type = ARM_CP_ALIAS,
2125       .fgt = FGT_PMSELR_EL0,
2126       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2127       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2128       .raw_writefn = raw_write},
2129     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2130       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2131       .access = PL0_RW, .accessfn = pmreg_access_selr,
2132       .fgt = FGT_PMSELR_EL0,
2133       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2134       .writefn = pmselr_write, .raw_writefn = raw_write, },
2135     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2136       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2137       .fgt = FGT_PMCCNTR_EL0,
2138       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2139       .accessfn = pmreg_access_ccntr },
2140     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2141       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2142       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2143       .fgt = FGT_PMCCNTR_EL0,
2144       .type = ARM_CP_IO,
2145       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2146       .readfn = pmccntr_read, .writefn = pmccntr_write,
2147       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2148     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2149       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2150       .access = PL0_RW, .accessfn = pmreg_access,
2151       .fgt = FGT_PMCCFILTR_EL0,
2152       .type = ARM_CP_ALIAS | ARM_CP_IO,
2153       .resetvalue = 0, },
2154     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2155       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2156       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2157       .access = PL0_RW, .accessfn = pmreg_access,
2158       .fgt = FGT_PMCCFILTR_EL0,
2159       .type = ARM_CP_IO,
2160       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2161       .resetvalue = 0, },
2162     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2163       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2164       .accessfn = pmreg_access,
2165       .fgt = FGT_PMEVTYPERN_EL0,
2166       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2167     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2168       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2169       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2170       .accessfn = pmreg_access,
2171       .fgt = FGT_PMEVTYPERN_EL0,
2172       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2173     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2174       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2175       .accessfn = pmreg_access_xevcntr,
2176       .fgt = FGT_PMEVCNTRN_EL0,
2177       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2178     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2179       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2180       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2181       .accessfn = pmreg_access_xevcntr,
2182       .fgt = FGT_PMEVCNTRN_EL0,
2183       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2184     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2185       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2186       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2187       .resetvalue = 0,
2188       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2189     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2190       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2191       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2192       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2193       .resetvalue = 0,
2194       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2195     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2196       .access = PL1_RW, .accessfn = access_tpm,
2197       .fgt = FGT_PMINTEN,
2198       .type = ARM_CP_ALIAS | ARM_CP_IO,
2199       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2200       .resetvalue = 0,
2201       .writefn = pmintenset_write, .raw_writefn = raw_write },
2202     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2203       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2204       .access = PL1_RW, .accessfn = access_tpm,
2205       .fgt = FGT_PMINTEN,
2206       .type = ARM_CP_IO,
2207       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2208       .writefn = pmintenset_write, .raw_writefn = raw_write,
2209       .resetvalue = 0x0 },
2210     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2211       .access = PL1_RW, .accessfn = access_tpm,
2212       .fgt = FGT_PMINTEN,
2213       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2214       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2215       .writefn = pmintenclr_write, },
2216     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2217       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2218       .access = PL1_RW, .accessfn = access_tpm,
2219       .fgt = FGT_PMINTEN,
2220       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2221       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2222       .writefn = pmintenclr_write },
2223     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2224       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2225       .access = PL1_R,
2226       .accessfn = access_tid4,
2227       .fgt = FGT_CCSIDR_EL1,
2228       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2229     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2230       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2231       .access = PL1_RW,
2232       .accessfn = access_tid4,
2233       .fgt = FGT_CSSELR_EL1,
2234       .writefn = csselr_write, .resetvalue = 0,
2235       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2236                              offsetof(CPUARMState, cp15.csselr_ns) } },
2237     /*
2238      * Auxiliary ID register: this actually has an IMPDEF value but for now
2239      * just RAZ for all cores:
2240      */
2241     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2242       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2243       .access = PL1_R, .type = ARM_CP_CONST,
2244       .accessfn = access_aa64_tid1,
2245       .fgt = FGT_AIDR_EL1,
2246       .resetvalue = 0 },
2247     /*
2248      * Auxiliary fault status registers: these also are IMPDEF, and we
2249      * choose to RAZ/WI for all cores.
2250      */
2251     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2252       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2253       .access = PL1_RW, .accessfn = access_tvm_trvm,
2254       .fgt = FGT_AFSR0_EL1,
2255       .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1,
2256       .type = ARM_CP_CONST, .resetvalue = 0 },
2257     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2258       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2259       .access = PL1_RW, .accessfn = access_tvm_trvm,
2260       .fgt = FGT_AFSR1_EL1,
2261       .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1,
2262       .type = ARM_CP_CONST, .resetvalue = 0 },
2263     /*
2264      * MAIR can just read-as-written because we don't implement caches
2265      * and so don't need to care about memory attributes.
2266      */
2267     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2268       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2269       .access = PL1_RW, .accessfn = access_tvm_trvm,
2270       .fgt = FGT_MAIR_EL1,
2271       .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1,
2272       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2273       .resetvalue = 0 },
2274     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2275       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2276       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2277       .resetvalue = 0 },
2278     /*
2279      * For non-long-descriptor page tables these are PRRR and NMRR;
2280      * regardless they still act as reads-as-written for QEMU.
2281      */
2282      /*
2283       * MAIR0/1 are defined separately from their 64-bit counterpart which
2284       * allows them to assign the correct fieldoffset based on the endianness
2285       * handled in the field definitions.
2286       */
2287     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2288       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2289       .access = PL1_RW, .accessfn = access_tvm_trvm,
2290       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2291                              offsetof(CPUARMState, cp15.mair0_ns) },
2292       .resetfn = arm_cp_reset_ignore },
2293     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2294       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2295       .access = PL1_RW, .accessfn = access_tvm_trvm,
2296       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2297                              offsetof(CPUARMState, cp15.mair1_ns) },
2298       .resetfn = arm_cp_reset_ignore },
2299     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2300       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2301       .fgt = FGT_ISR_EL1,
2302       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2303     /* 32 bit ITLB invalidates */
2304     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2305       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2306       .writefn = tlbiall_write },
2307     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2308       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2309       .writefn = tlbimva_write },
2310     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2311       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2312       .writefn = tlbiasid_write },
2313     /* 32 bit DTLB invalidates */
2314     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2315       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2316       .writefn = tlbiall_write },
2317     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2318       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2319       .writefn = tlbimva_write },
2320     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2321       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2322       .writefn = tlbiasid_write },
2323     /* 32 bit TLB invalidates */
2324     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2325       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2326       .writefn = tlbiall_write },
2327     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2328       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2329       .writefn = tlbimva_write },
2330     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2331       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2332       .writefn = tlbiasid_write },
2333     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2334       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2335       .writefn = tlbimvaa_write },
2336 };
2337 
2338 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2339     /* 32 bit TLB invalidates, Inner Shareable */
2340     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2341       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2342       .writefn = tlbiall_is_write },
2343     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2344       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2345       .writefn = tlbimva_is_write },
2346     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2347       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2348       .writefn = tlbiasid_is_write },
2349     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2350       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2351       .writefn = tlbimvaa_is_write },
2352 };
2353 
2354 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2355     /* PMOVSSET is not implemented in v7 before v7ve */
2356     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2357       .access = PL0_RW, .accessfn = pmreg_access,
2358       .fgt = FGT_PMOVS,
2359       .type = ARM_CP_ALIAS | ARM_CP_IO,
2360       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2361       .writefn = pmovsset_write,
2362       .raw_writefn = raw_write },
2363     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2364       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2365       .access = PL0_RW, .accessfn = pmreg_access,
2366       .fgt = FGT_PMOVS,
2367       .type = ARM_CP_ALIAS | ARM_CP_IO,
2368       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2369       .writefn = pmovsset_write,
2370       .raw_writefn = raw_write },
2371 };
2372 
2373 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2374                         uint64_t value)
2375 {
2376     value &= 1;
2377     env->teecr = value;
2378 }
2379 
2380 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2381                                    bool isread)
2382 {
2383     /*
2384      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2385      * at all, so we don't need to check whether we're v8A.
2386      */
2387     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2388         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2389         return CP_ACCESS_TRAP_EL2;
2390     }
2391     return CP_ACCESS_OK;
2392 }
2393 
2394 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2395                                     bool isread)
2396 {
2397     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2398         return CP_ACCESS_TRAP;
2399     }
2400     return teecr_access(env, ri, isread);
2401 }
2402 
2403 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2404     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2405       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2406       .resetvalue = 0,
2407       .writefn = teecr_write, .accessfn = teecr_access },
2408     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2409       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2410       .accessfn = teehbr_access, .resetvalue = 0 },
2411 };
2412 
2413 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2414     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2415       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2416       .access = PL0_RW,
2417       .fgt = FGT_TPIDR_EL0,
2418       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2419     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2420       .access = PL0_RW,
2421       .fgt = FGT_TPIDR_EL0,
2422       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2423                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2424       .resetfn = arm_cp_reset_ignore },
2425     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2426       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2427       .access = PL0_R | PL1_W,
2428       .fgt = FGT_TPIDRRO_EL0,
2429       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2430       .resetvalue = 0},
2431     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2432       .access = PL0_R | PL1_W,
2433       .fgt = FGT_TPIDRRO_EL0,
2434       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2435                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2436       .resetfn = arm_cp_reset_ignore },
2437     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2438       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2439       .access = PL1_RW,
2440       .fgt = FGT_TPIDR_EL1,
2441       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2442     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2443       .access = PL1_RW,
2444       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2445                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2446       .resetvalue = 0 },
2447 };
2448 
2449 #ifndef CONFIG_USER_ONLY
2450 
2451 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2452                                        bool isread)
2453 {
2454     /*
2455      * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2456      * Writable only at the highest implemented exception level.
2457      */
2458     int el = arm_current_el(env);
2459     uint64_t hcr;
2460     uint32_t cntkctl;
2461 
2462     switch (el) {
2463     case 0:
2464         hcr = arm_hcr_el2_eff(env);
2465         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2466             cntkctl = env->cp15.cnthctl_el2;
2467         } else {
2468             cntkctl = env->cp15.c14_cntkctl;
2469         }
2470         if (!extract32(cntkctl, 0, 2)) {
2471             return CP_ACCESS_TRAP;
2472         }
2473         break;
2474     case 1:
2475         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2476             arm_is_secure_below_el3(env)) {
2477             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2478             return CP_ACCESS_TRAP_UNCATEGORIZED;
2479         }
2480         break;
2481     case 2:
2482     case 3:
2483         break;
2484     }
2485 
2486     if (!isread && el < arm_highest_el(env)) {
2487         return CP_ACCESS_TRAP_UNCATEGORIZED;
2488     }
2489 
2490     return CP_ACCESS_OK;
2491 }
2492 
2493 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2494                                         bool isread)
2495 {
2496     unsigned int cur_el = arm_current_el(env);
2497     bool has_el2 = arm_is_el2_enabled(env);
2498     uint64_t hcr = arm_hcr_el2_eff(env);
2499 
2500     switch (cur_el) {
2501     case 0:
2502         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2503         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2504             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2505                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2506         }
2507 
2508         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2509         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2510             return CP_ACCESS_TRAP;
2511         }
2512         /* fall through */
2513     case 1:
2514         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2515         if (has_el2 && timeridx == GTIMER_PHYS &&
2516             (hcr & HCR_E2H
2517              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2518              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2519             return CP_ACCESS_TRAP_EL2;
2520         }
2521         break;
2522     }
2523     return CP_ACCESS_OK;
2524 }
2525 
2526 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2527                                       bool isread)
2528 {
2529     unsigned int cur_el = arm_current_el(env);
2530     bool has_el2 = arm_is_el2_enabled(env);
2531     uint64_t hcr = arm_hcr_el2_eff(env);
2532 
2533     switch (cur_el) {
2534     case 0:
2535         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2536             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2537             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2538                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2539         }
2540 
2541         /*
2542          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2543          * EL0 if EL0[PV]TEN is zero.
2544          */
2545         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2546             return CP_ACCESS_TRAP;
2547         }
2548         /* fall through */
2549 
2550     case 1:
2551         if (has_el2 && timeridx == GTIMER_PHYS) {
2552             if (hcr & HCR_E2H) {
2553                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2554                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2555                     return CP_ACCESS_TRAP_EL2;
2556                 }
2557             } else {
2558                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2559                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2560                     return CP_ACCESS_TRAP_EL2;
2561                 }
2562             }
2563         }
2564         break;
2565     }
2566     return CP_ACCESS_OK;
2567 }
2568 
2569 static CPAccessResult gt_pct_access(CPUARMState *env,
2570                                     const ARMCPRegInfo *ri,
2571                                     bool isread)
2572 {
2573     return gt_counter_access(env, GTIMER_PHYS, isread);
2574 }
2575 
2576 static CPAccessResult gt_vct_access(CPUARMState *env,
2577                                     const ARMCPRegInfo *ri,
2578                                     bool isread)
2579 {
2580     return gt_counter_access(env, GTIMER_VIRT, isread);
2581 }
2582 
2583 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2584                                        bool isread)
2585 {
2586     return gt_timer_access(env, GTIMER_PHYS, isread);
2587 }
2588 
2589 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2590                                        bool isread)
2591 {
2592     return gt_timer_access(env, GTIMER_VIRT, isread);
2593 }
2594 
2595 static CPAccessResult gt_stimer_access(CPUARMState *env,
2596                                        const ARMCPRegInfo *ri,
2597                                        bool isread)
2598 {
2599     /*
2600      * The AArch64 register view of the secure physical timer is
2601      * always accessible from EL3, and configurably accessible from
2602      * Secure EL1.
2603      */
2604     switch (arm_current_el(env)) {
2605     case 1:
2606         if (!arm_is_secure(env)) {
2607             return CP_ACCESS_TRAP;
2608         }
2609         if (!(env->cp15.scr_el3 & SCR_ST)) {
2610             return CP_ACCESS_TRAP_EL3;
2611         }
2612         return CP_ACCESS_OK;
2613     case 0:
2614     case 2:
2615         return CP_ACCESS_TRAP;
2616     case 3:
2617         return CP_ACCESS_OK;
2618     default:
2619         g_assert_not_reached();
2620     }
2621 }
2622 
2623 static uint64_t gt_get_countervalue(CPUARMState *env)
2624 {
2625     ARMCPU *cpu = env_archcpu(env);
2626 
2627     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2628 }
2629 
2630 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2631 {
2632     CPUARMState *env = &cpu->env;
2633     uint64_t cnthctl = env->cp15.cnthctl_el2;
2634     ARMSecuritySpace ss = arm_security_space(env);
2635     /* ISTATUS && !IMASK */
2636     int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2637 
2638     /*
2639      * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2640      * It is RES0 in Secure and NonSecure state.
2641      */
2642     if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2643         ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) ||
2644          (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) {
2645         irqstate = 0;
2646     }
2647 
2648     qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2649     trace_arm_gt_update_irq(timeridx, irqstate);
2650 }
2651 
2652 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2653 {
2654     /*
2655      * Changing security state between Root and Secure/NonSecure, which may
2656      * happen when switching EL, can change the effective value of CNTHCTL_EL2
2657      * mask bits. Update the IRQ state accordingly.
2658      */
2659     gt_update_irq(cpu, GTIMER_VIRT);
2660     gt_update_irq(cpu, GTIMER_PHYS);
2661 }
2662 
2663 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2664 {
2665     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2666 
2667     if (gt->ctl & 1) {
2668         /*
2669          * Timer enabled: calculate and set current ISTATUS, irq, and
2670          * reset timer to when ISTATUS next has to change
2671          */
2672         uint64_t offset = timeridx == GTIMER_VIRT ?
2673                                       cpu->env.cp15.cntvoff_el2 : 0;
2674         uint64_t count = gt_get_countervalue(&cpu->env);
2675         /* Note that this must be unsigned 64 bit arithmetic: */
2676         int istatus = count - offset >= gt->cval;
2677         uint64_t nexttick;
2678 
2679         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2680 
2681         if (istatus) {
2682             /*
2683              * Next transition is when (count - offset) rolls back over to 0.
2684              * If offset > count then this is when count == offset;
2685              * if offset <= count then this is when count == offset + 2^64
2686              * For the latter case we set nexttick to an "as far in future
2687              * as possible" value and let the code below handle it.
2688              */
2689             if (offset > count) {
2690                 nexttick = offset;
2691             } else {
2692                 nexttick = UINT64_MAX;
2693             }
2694         } else {
2695             /*
2696              * Next transition is when (count - offset) == cval, i.e.
2697              * when count == (cval + offset).
2698              * If that would overflow, then again we set up the next interrupt
2699              * for "as far in the future as possible" for the code below.
2700              */
2701             if (uadd64_overflow(gt->cval, offset, &nexttick)) {
2702                 nexttick = UINT64_MAX;
2703             }
2704         }
2705         /*
2706          * Note that the desired next expiry time might be beyond the
2707          * signed-64-bit range of a QEMUTimer -- in this case we just
2708          * set the timer for as far in the future as possible. When the
2709          * timer expires we will reset the timer for any remaining period.
2710          */
2711         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2712             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2713         } else {
2714             timer_mod(cpu->gt_timer[timeridx], nexttick);
2715         }
2716         trace_arm_gt_recalc(timeridx, nexttick);
2717     } else {
2718         /* Timer disabled: ISTATUS and timer output always clear */
2719         gt->ctl &= ~4;
2720         timer_del(cpu->gt_timer[timeridx]);
2721         trace_arm_gt_recalc_disabled(timeridx);
2722     }
2723     gt_update_irq(cpu, timeridx);
2724 }
2725 
2726 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2727                            int timeridx)
2728 {
2729     ARMCPU *cpu = env_archcpu(env);
2730 
2731     timer_del(cpu->gt_timer[timeridx]);
2732 }
2733 
2734 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2735 {
2736     return gt_get_countervalue(env);
2737 }
2738 
2739 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2740 {
2741     uint64_t hcr;
2742 
2743     switch (arm_current_el(env)) {
2744     case 2:
2745         hcr = arm_hcr_el2_eff(env);
2746         if (hcr & HCR_E2H) {
2747             return 0;
2748         }
2749         break;
2750     case 0:
2751         hcr = arm_hcr_el2_eff(env);
2752         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2753             return 0;
2754         }
2755         break;
2756     }
2757 
2758     return env->cp15.cntvoff_el2;
2759 }
2760 
2761 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2762 {
2763     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2764 }
2765 
2766 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2767                           int timeridx,
2768                           uint64_t value)
2769 {
2770     trace_arm_gt_cval_write(timeridx, value);
2771     env->cp15.c14_timer[timeridx].cval = value;
2772     gt_recalc_timer(env_archcpu(env), timeridx);
2773 }
2774 
2775 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2776                              int timeridx)
2777 {
2778     uint64_t offset = 0;
2779 
2780     switch (timeridx) {
2781     case GTIMER_VIRT:
2782     case GTIMER_HYPVIRT:
2783         offset = gt_virt_cnt_offset(env);
2784         break;
2785     }
2786 
2787     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2788                       (gt_get_countervalue(env) - offset));
2789 }
2790 
2791 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2792                           int timeridx,
2793                           uint64_t value)
2794 {
2795     uint64_t offset = 0;
2796 
2797     switch (timeridx) {
2798     case GTIMER_VIRT:
2799     case GTIMER_HYPVIRT:
2800         offset = gt_virt_cnt_offset(env);
2801         break;
2802     }
2803 
2804     trace_arm_gt_tval_write(timeridx, value);
2805     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2806                                          sextract64(value, 0, 32);
2807     gt_recalc_timer(env_archcpu(env), timeridx);
2808 }
2809 
2810 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2811                          int timeridx,
2812                          uint64_t value)
2813 {
2814     ARMCPU *cpu = env_archcpu(env);
2815     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2816 
2817     trace_arm_gt_ctl_write(timeridx, value);
2818     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2819     if ((oldval ^ value) & 1) {
2820         /* Enable toggled */
2821         gt_recalc_timer(cpu, timeridx);
2822     } else if ((oldval ^ value) & 2) {
2823         /*
2824          * IMASK toggled: don't need to recalculate,
2825          * just set the interrupt line based on ISTATUS
2826          */
2827         trace_arm_gt_imask_toggle(timeridx);
2828         gt_update_irq(cpu, timeridx);
2829     }
2830 }
2831 
2832 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2833 {
2834     gt_timer_reset(env, ri, GTIMER_PHYS);
2835 }
2836 
2837 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2838                                uint64_t value)
2839 {
2840     gt_cval_write(env, ri, GTIMER_PHYS, value);
2841 }
2842 
2843 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2844 {
2845     return gt_tval_read(env, ri, GTIMER_PHYS);
2846 }
2847 
2848 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2849                                uint64_t value)
2850 {
2851     gt_tval_write(env, ri, GTIMER_PHYS, value);
2852 }
2853 
2854 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2855                               uint64_t value)
2856 {
2857     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2858 }
2859 
2860 static int gt_phys_redir_timeridx(CPUARMState *env)
2861 {
2862     switch (arm_mmu_idx(env)) {
2863     case ARMMMUIdx_E20_0:
2864     case ARMMMUIdx_E20_2:
2865     case ARMMMUIdx_E20_2_PAN:
2866         return GTIMER_HYP;
2867     default:
2868         return GTIMER_PHYS;
2869     }
2870 }
2871 
2872 static int gt_virt_redir_timeridx(CPUARMState *env)
2873 {
2874     switch (arm_mmu_idx(env)) {
2875     case ARMMMUIdx_E20_0:
2876     case ARMMMUIdx_E20_2:
2877     case ARMMMUIdx_E20_2_PAN:
2878         return GTIMER_HYPVIRT;
2879     default:
2880         return GTIMER_VIRT;
2881     }
2882 }
2883 
2884 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2885                                         const ARMCPRegInfo *ri)
2886 {
2887     int timeridx = gt_phys_redir_timeridx(env);
2888     return env->cp15.c14_timer[timeridx].cval;
2889 }
2890 
2891 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2892                                      uint64_t value)
2893 {
2894     int timeridx = gt_phys_redir_timeridx(env);
2895     gt_cval_write(env, ri, timeridx, value);
2896 }
2897 
2898 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2899                                         const ARMCPRegInfo *ri)
2900 {
2901     int timeridx = gt_phys_redir_timeridx(env);
2902     return gt_tval_read(env, ri, timeridx);
2903 }
2904 
2905 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2906                                      uint64_t value)
2907 {
2908     int timeridx = gt_phys_redir_timeridx(env);
2909     gt_tval_write(env, ri, timeridx, value);
2910 }
2911 
2912 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2913                                        const ARMCPRegInfo *ri)
2914 {
2915     int timeridx = gt_phys_redir_timeridx(env);
2916     return env->cp15.c14_timer[timeridx].ctl;
2917 }
2918 
2919 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2920                                     uint64_t value)
2921 {
2922     int timeridx = gt_phys_redir_timeridx(env);
2923     gt_ctl_write(env, ri, timeridx, value);
2924 }
2925 
2926 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2927 {
2928     gt_timer_reset(env, ri, GTIMER_VIRT);
2929 }
2930 
2931 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2932                                uint64_t value)
2933 {
2934     gt_cval_write(env, ri, GTIMER_VIRT, value);
2935 }
2936 
2937 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2938 {
2939     return gt_tval_read(env, ri, GTIMER_VIRT);
2940 }
2941 
2942 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2943                                uint64_t value)
2944 {
2945     gt_tval_write(env, ri, GTIMER_VIRT, value);
2946 }
2947 
2948 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2949                               uint64_t value)
2950 {
2951     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2952 }
2953 
2954 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2955                              uint64_t value)
2956 {
2957     ARMCPU *cpu = env_archcpu(env);
2958     uint32_t oldval = env->cp15.cnthctl_el2;
2959 
2960     raw_write(env, ri, value);
2961 
2962     if ((oldval ^ value) & CNTHCTL_CNTVMASK) {
2963         gt_update_irq(cpu, GTIMER_VIRT);
2964     } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) {
2965         gt_update_irq(cpu, GTIMER_PHYS);
2966     }
2967 }
2968 
2969 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2970                               uint64_t value)
2971 {
2972     ARMCPU *cpu = env_archcpu(env);
2973 
2974     trace_arm_gt_cntvoff_write(value);
2975     raw_write(env, ri, value);
2976     gt_recalc_timer(cpu, GTIMER_VIRT);
2977 }
2978 
2979 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2980                                         const ARMCPRegInfo *ri)
2981 {
2982     int timeridx = gt_virt_redir_timeridx(env);
2983     return env->cp15.c14_timer[timeridx].cval;
2984 }
2985 
2986 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2987                                      uint64_t value)
2988 {
2989     int timeridx = gt_virt_redir_timeridx(env);
2990     gt_cval_write(env, ri, timeridx, value);
2991 }
2992 
2993 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2994                                         const ARMCPRegInfo *ri)
2995 {
2996     int timeridx = gt_virt_redir_timeridx(env);
2997     return gt_tval_read(env, ri, timeridx);
2998 }
2999 
3000 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3001                                      uint64_t value)
3002 {
3003     int timeridx = gt_virt_redir_timeridx(env);
3004     gt_tval_write(env, ri, timeridx, value);
3005 }
3006 
3007 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3008                                        const ARMCPRegInfo *ri)
3009 {
3010     int timeridx = gt_virt_redir_timeridx(env);
3011     return env->cp15.c14_timer[timeridx].ctl;
3012 }
3013 
3014 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3015                                     uint64_t value)
3016 {
3017     int timeridx = gt_virt_redir_timeridx(env);
3018     gt_ctl_write(env, ri, timeridx, value);
3019 }
3020 
3021 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3022 {
3023     gt_timer_reset(env, ri, GTIMER_HYP);
3024 }
3025 
3026 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3027                               uint64_t value)
3028 {
3029     gt_cval_write(env, ri, GTIMER_HYP, value);
3030 }
3031 
3032 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3033 {
3034     return gt_tval_read(env, ri, GTIMER_HYP);
3035 }
3036 
3037 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3038                               uint64_t value)
3039 {
3040     gt_tval_write(env, ri, GTIMER_HYP, value);
3041 }
3042 
3043 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3044                               uint64_t value)
3045 {
3046     gt_ctl_write(env, ri, GTIMER_HYP, value);
3047 }
3048 
3049 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3050 {
3051     gt_timer_reset(env, ri, GTIMER_SEC);
3052 }
3053 
3054 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3055                               uint64_t value)
3056 {
3057     gt_cval_write(env, ri, GTIMER_SEC, value);
3058 }
3059 
3060 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3061 {
3062     return gt_tval_read(env, ri, GTIMER_SEC);
3063 }
3064 
3065 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3066                               uint64_t value)
3067 {
3068     gt_tval_write(env, ri, GTIMER_SEC, value);
3069 }
3070 
3071 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3072                               uint64_t value)
3073 {
3074     gt_ctl_write(env, ri, GTIMER_SEC, value);
3075 }
3076 
3077 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3078 {
3079     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3080 }
3081 
3082 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3083                              uint64_t value)
3084 {
3085     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3086 }
3087 
3088 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3089 {
3090     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3091 }
3092 
3093 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3094                              uint64_t value)
3095 {
3096     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3097 }
3098 
3099 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3100                             uint64_t value)
3101 {
3102     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3103 }
3104 
3105 void arm_gt_ptimer_cb(void *opaque)
3106 {
3107     ARMCPU *cpu = opaque;
3108 
3109     gt_recalc_timer(cpu, GTIMER_PHYS);
3110 }
3111 
3112 void arm_gt_vtimer_cb(void *opaque)
3113 {
3114     ARMCPU *cpu = opaque;
3115 
3116     gt_recalc_timer(cpu, GTIMER_VIRT);
3117 }
3118 
3119 void arm_gt_htimer_cb(void *opaque)
3120 {
3121     ARMCPU *cpu = opaque;
3122 
3123     gt_recalc_timer(cpu, GTIMER_HYP);
3124 }
3125 
3126 void arm_gt_stimer_cb(void *opaque)
3127 {
3128     ARMCPU *cpu = opaque;
3129 
3130     gt_recalc_timer(cpu, GTIMER_SEC);
3131 }
3132 
3133 void arm_gt_hvtimer_cb(void *opaque)
3134 {
3135     ARMCPU *cpu = opaque;
3136 
3137     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3138 }
3139 
3140 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3141 {
3142     ARMCPU *cpu = env_archcpu(env);
3143 
3144     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3145 }
3146 
3147 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3148     /*
3149      * Note that CNTFRQ is purely reads-as-written for the benefit
3150      * of software; writing it doesn't actually change the timer frequency.
3151      * Our reset value matches the fixed frequency we implement the timer at.
3152      */
3153     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3154       .type = ARM_CP_ALIAS,
3155       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3156       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3157     },
3158     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3159       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3160       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3161       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3162       .resetfn = arm_gt_cntfrq_reset,
3163     },
3164     /* overall control: mostly access permissions */
3165     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3166       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3167       .access = PL1_RW,
3168       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3169       .resetvalue = 0,
3170     },
3171     /* per-timer control */
3172     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3173       .secure = ARM_CP_SECSTATE_NS,
3174       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3175       .accessfn = gt_ptimer_access,
3176       .fieldoffset = offsetoflow32(CPUARMState,
3177                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3178       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3179       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3180     },
3181     { .name = "CNTP_CTL_S",
3182       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3183       .secure = ARM_CP_SECSTATE_S,
3184       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3185       .accessfn = gt_ptimer_access,
3186       .fieldoffset = offsetoflow32(CPUARMState,
3187                                    cp15.c14_timer[GTIMER_SEC].ctl),
3188       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3189     },
3190     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3191       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3192       .type = ARM_CP_IO, .access = PL0_RW,
3193       .accessfn = gt_ptimer_access,
3194       .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1,
3195       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3196       .resetvalue = 0,
3197       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3198       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3199     },
3200     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3201       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3202       .accessfn = gt_vtimer_access,
3203       .fieldoffset = offsetoflow32(CPUARMState,
3204                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3205       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3206       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3207     },
3208     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3209       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3210       .type = ARM_CP_IO, .access = PL0_RW,
3211       .accessfn = gt_vtimer_access,
3212       .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1,
3213       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3214       .resetvalue = 0,
3215       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3216       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3217     },
3218     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3219     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3220       .secure = ARM_CP_SECSTATE_NS,
3221       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3222       .accessfn = gt_ptimer_access,
3223       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3224     },
3225     { .name = "CNTP_TVAL_S",
3226       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3227       .secure = ARM_CP_SECSTATE_S,
3228       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3229       .accessfn = gt_ptimer_access,
3230       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3231     },
3232     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3233       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3234       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3235       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3236       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3237     },
3238     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3239       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3240       .accessfn = gt_vtimer_access,
3241       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3242     },
3243     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3244       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3245       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3246       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3247       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3248     },
3249     /* The counter itself */
3250     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3251       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3252       .accessfn = gt_pct_access,
3253       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3254     },
3255     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3256       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3257       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3258       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3259     },
3260     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3261       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3262       .accessfn = gt_vct_access,
3263       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3264     },
3265     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3266       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3267       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3268       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3269     },
3270     /* Comparison value, indicating when the timer goes off */
3271     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3272       .secure = ARM_CP_SECSTATE_NS,
3273       .access = PL0_RW,
3274       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3275       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3276       .accessfn = gt_ptimer_access,
3277       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3278       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3279     },
3280     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3281       .secure = ARM_CP_SECSTATE_S,
3282       .access = PL0_RW,
3283       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3284       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3285       .accessfn = gt_ptimer_access,
3286       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3287     },
3288     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3289       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3290       .access = PL0_RW,
3291       .type = ARM_CP_IO,
3292       .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1,
3293       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3294       .resetvalue = 0, .accessfn = gt_ptimer_access,
3295       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3296       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3297     },
3298     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3299       .access = PL0_RW,
3300       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3301       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3302       .accessfn = gt_vtimer_access,
3303       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3304       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3305     },
3306     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3307       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3308       .access = PL0_RW,
3309       .type = ARM_CP_IO,
3310       .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1,
3311       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3312       .resetvalue = 0, .accessfn = gt_vtimer_access,
3313       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3314       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3315     },
3316     /*
3317      * Secure timer -- this is actually restricted to only EL3
3318      * and configurably Secure-EL1 via the accessfn.
3319      */
3320     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3321       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3322       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3323       .accessfn = gt_stimer_access,
3324       .readfn = gt_sec_tval_read,
3325       .writefn = gt_sec_tval_write,
3326       .resetfn = gt_sec_timer_reset,
3327     },
3328     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3329       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3330       .type = ARM_CP_IO, .access = PL1_RW,
3331       .accessfn = gt_stimer_access,
3332       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3333       .resetvalue = 0,
3334       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3335     },
3336     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3337       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3338       .type = ARM_CP_IO, .access = PL1_RW,
3339       .accessfn = gt_stimer_access,
3340       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3341       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3342     },
3343 };
3344 
3345 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3346                                  bool isread)
3347 {
3348     if (arm_current_el(env) == 1) {
3349         /* This must be a FEAT_NV access */
3350         /* TODO: FEAT_ECV will need to check CNTHCTL_EL2 here */
3351         return CP_ACCESS_OK;
3352     }
3353     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3354         return CP_ACCESS_TRAP;
3355     }
3356     return CP_ACCESS_OK;
3357 }
3358 
3359 #else
3360 
3361 /*
3362  * In user-mode most of the generic timer registers are inaccessible
3363  * however modern kernels (4.12+) allow access to cntvct_el0
3364  */
3365 
3366 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3367 {
3368     ARMCPU *cpu = env_archcpu(env);
3369 
3370     /*
3371      * Currently we have no support for QEMUTimer in linux-user so we
3372      * can't call gt_get_countervalue(env), instead we directly
3373      * call the lower level functions.
3374      */
3375     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3376 }
3377 
3378 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3379     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3380       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3381       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3382       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3383       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3384     },
3385     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3386       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3387       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3388       .readfn = gt_virt_cnt_read,
3389     },
3390 };
3391 
3392 #endif
3393 
3394 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3395 {
3396     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3397         raw_write(env, ri, value);
3398     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3399         raw_write(env, ri, value & 0xfffff6ff);
3400     } else {
3401         raw_write(env, ri, value & 0xfffff1ff);
3402     }
3403 }
3404 
3405 #ifndef CONFIG_USER_ONLY
3406 /* get_phys_addr() isn't present for user-mode-only targets */
3407 
3408 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3409                                  bool isread)
3410 {
3411     if (ri->opc2 & 4) {
3412         /*
3413          * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3414          * Secure EL1 (which can only happen if EL3 is AArch64).
3415          * They are simply UNDEF if executed from NS EL1.
3416          * They function normally from EL2 or EL3.
3417          */
3418         if (arm_current_el(env) == 1) {
3419             if (arm_is_secure_below_el3(env)) {
3420                 if (env->cp15.scr_el3 & SCR_EEL2) {
3421                     return CP_ACCESS_TRAP_EL2;
3422                 }
3423                 return CP_ACCESS_TRAP_EL3;
3424             }
3425             return CP_ACCESS_TRAP_UNCATEGORIZED;
3426         }
3427     }
3428     return CP_ACCESS_OK;
3429 }
3430 
3431 #ifdef CONFIG_TCG
3432 static int par_el1_shareability(GetPhysAddrResult *res)
3433 {
3434     /*
3435      * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3436      * memory -- see pseudocode PAREncodeShareability().
3437      */
3438     if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3439         res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3440         return 2;
3441     }
3442     return res->cacheattrs.shareability;
3443 }
3444 
3445 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3446                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
3447                              ARMSecuritySpace ss)
3448 {
3449     bool ret;
3450     uint64_t par64;
3451     bool format64 = false;
3452     ARMMMUFaultInfo fi = {};
3453     GetPhysAddrResult res = {};
3454 
3455     /*
3456      * I_MXTJT: Granule protection checks are not performed on the final address
3457      * of a successful translation.
3458      */
3459     ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss,
3460                                          &res, &fi);
3461 
3462     /*
3463      * ATS operations only do S1 or S1+S2 translations, so we never
3464      * have to deal with the ARMCacheAttrs format for S2 only.
3465      */
3466     assert(!res.cacheattrs.is_s2_format);
3467 
3468     if (ret) {
3469         /*
3470          * Some kinds of translation fault must cause exceptions rather
3471          * than being reported in the PAR.
3472          */
3473         int current_el = arm_current_el(env);
3474         int target_el;
3475         uint32_t syn, fsr, fsc;
3476         bool take_exc = false;
3477 
3478         if (fi.s1ptw && current_el == 1
3479             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3480             /*
3481              * Synchronous stage 2 fault on an access made as part of the
3482              * translation table walk for AT S1E0* or AT S1E1* insn
3483              * executed from NS EL1. If this is a synchronous external abort
3484              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3485              * to EL3. Otherwise the fault is taken as an exception to EL2,
3486              * and HPFAR_EL2 holds the faulting IPA.
3487              */
3488             if (fi.type == ARMFault_SyncExternalOnWalk &&
3489                 (env->cp15.scr_el3 & SCR_EA)) {
3490                 target_el = 3;
3491             } else {
3492                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3493                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3494                     env->cp15.hpfar_el2 |= HPFAR_NS;
3495                 }
3496                 target_el = 2;
3497             }
3498             take_exc = true;
3499         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3500             /*
3501              * Synchronous external aborts during a translation table walk
3502              * are taken as Data Abort exceptions.
3503              */
3504             if (fi.stage2) {
3505                 if (current_el == 3) {
3506                     target_el = 3;
3507                 } else {
3508                     target_el = 2;
3509                 }
3510             } else {
3511                 target_el = exception_target_el(env);
3512             }
3513             take_exc = true;
3514         }
3515 
3516         if (take_exc) {
3517             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3518             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3519                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3520                 fsr = arm_fi_to_lfsc(&fi);
3521                 fsc = extract32(fsr, 0, 6);
3522             } else {
3523                 fsr = arm_fi_to_sfsc(&fi);
3524                 fsc = 0x3f;
3525             }
3526             /*
3527              * Report exception with ESR indicating a fault due to a
3528              * translation table walk for a cache maintenance instruction.
3529              */
3530             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3531                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3532             env->exception.vaddress = value;
3533             env->exception.fsr = fsr;
3534             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3535         }
3536     }
3537 
3538     if (is_a64(env)) {
3539         format64 = true;
3540     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3541         /*
3542          * ATS1Cxx:
3543          * * TTBCR.EAE determines whether the result is returned using the
3544          *   32-bit or the 64-bit PAR format
3545          * * Instructions executed in Hyp mode always use the 64bit format
3546          *
3547          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3548          * * The Non-secure TTBCR.EAE bit is set to 1
3549          * * The implementation includes EL2, and the value of HCR.VM is 1
3550          *
3551          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3552          *
3553          * ATS1Hx always uses the 64bit format.
3554          */
3555         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3556 
3557         if (arm_feature(env, ARM_FEATURE_EL2)) {
3558             if (mmu_idx == ARMMMUIdx_E10_0 ||
3559                 mmu_idx == ARMMMUIdx_E10_1 ||
3560                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3561                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3562             } else {
3563                 format64 |= arm_current_el(env) == 2;
3564             }
3565         }
3566     }
3567 
3568     if (format64) {
3569         /* Create a 64-bit PAR */
3570         par64 = (1 << 11); /* LPAE bit always set */
3571         if (!ret) {
3572             par64 |= res.f.phys_addr & ~0xfffULL;
3573             if (!res.f.attrs.secure) {
3574                 par64 |= (1 << 9); /* NS */
3575             }
3576             par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3577             par64 |= par_el1_shareability(&res) << 7; /* SH */
3578         } else {
3579             uint32_t fsr = arm_fi_to_lfsc(&fi);
3580 
3581             par64 |= 1; /* F */
3582             par64 |= (fsr & 0x3f) << 1; /* FS */
3583             if (fi.stage2) {
3584                 par64 |= (1 << 9); /* S */
3585             }
3586             if (fi.s1ptw) {
3587                 par64 |= (1 << 8); /* PTW */
3588             }
3589         }
3590     } else {
3591         /*
3592          * fsr is a DFSR/IFSR value for the short descriptor
3593          * translation table format (with WnR always clear).
3594          * Convert it to a 32-bit PAR.
3595          */
3596         if (!ret) {
3597             /* We do not set any attribute bits in the PAR */
3598             if (res.f.lg_page_size == 24
3599                 && arm_feature(env, ARM_FEATURE_V7)) {
3600                 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3601             } else {
3602                 par64 = res.f.phys_addr & 0xfffff000;
3603             }
3604             if (!res.f.attrs.secure) {
3605                 par64 |= (1 << 9); /* NS */
3606             }
3607         } else {
3608             uint32_t fsr = arm_fi_to_sfsc(&fi);
3609 
3610             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3611                     ((fsr & 0xf) << 1) | 1;
3612         }
3613     }
3614     return par64;
3615 }
3616 #endif /* CONFIG_TCG */
3617 
3618 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3619 {
3620 #ifdef CONFIG_TCG
3621     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3622     uint64_t par64;
3623     ARMMMUIdx mmu_idx;
3624     int el = arm_current_el(env);
3625     ARMSecuritySpace ss = arm_security_space(env);
3626 
3627     switch (ri->opc2 & 6) {
3628     case 0:
3629         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3630         switch (el) {
3631         case 3:
3632             mmu_idx = ARMMMUIdx_E3;
3633             break;
3634         case 2:
3635             g_assert(ss != ARMSS_Secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3636             /* fall through */
3637         case 1:
3638             if (ri->crm == 9 && arm_pan_enabled(env)) {
3639                 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3640             } else {
3641                 mmu_idx = ARMMMUIdx_Stage1_E1;
3642             }
3643             break;
3644         default:
3645             g_assert_not_reached();
3646         }
3647         break;
3648     case 2:
3649         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3650         switch (el) {
3651         case 3:
3652             mmu_idx = ARMMMUIdx_E10_0;
3653             break;
3654         case 2:
3655             g_assert(ss != ARMSS_Secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3656             mmu_idx = ARMMMUIdx_Stage1_E0;
3657             break;
3658         case 1:
3659             mmu_idx = ARMMMUIdx_Stage1_E0;
3660             break;
3661         default:
3662             g_assert_not_reached();
3663         }
3664         break;
3665     case 4:
3666         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3667         mmu_idx = ARMMMUIdx_E10_1;
3668         ss = ARMSS_NonSecure;
3669         break;
3670     case 6:
3671         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3672         mmu_idx = ARMMMUIdx_E10_0;
3673         ss = ARMSS_NonSecure;
3674         break;
3675     default:
3676         g_assert_not_reached();
3677     }
3678 
3679     par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3680 
3681     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3682 #else
3683     /* Handled by hardware accelerator. */
3684     g_assert_not_reached();
3685 #endif /* CONFIG_TCG */
3686 }
3687 
3688 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3689                         uint64_t value)
3690 {
3691 #ifdef CONFIG_TCG
3692     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3693     uint64_t par64;
3694 
3695     /* There is no SecureEL2 for AArch32. */
3696     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3697                          ARMSS_NonSecure);
3698 
3699     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3700 #else
3701     /* Handled by hardware accelerator. */
3702     g_assert_not_reached();
3703 #endif /* CONFIG_TCG */
3704 }
3705 
3706 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3707                                      bool isread)
3708 {
3709     /*
3710      * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3711      * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3712      * only happen when executing at EL3 because that combination also causes an
3713      * illegal exception return. We don't need to check FEAT_RME either, because
3714      * scr_write() ensures that the NSE bit is not set otherwise.
3715      */
3716     if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3717         return CP_ACCESS_TRAP;
3718     }
3719     return CP_ACCESS_OK;
3720 }
3721 
3722 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3723                                      bool isread)
3724 {
3725     if (arm_current_el(env) == 3 &&
3726         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3727         return CP_ACCESS_TRAP;
3728     }
3729     return at_e012_access(env, ri, isread);
3730 }
3731 
3732 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri,
3733                                       bool isread)
3734 {
3735     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) {
3736         return CP_ACCESS_TRAP_EL2;
3737     }
3738     return at_e012_access(env, ri, isread);
3739 }
3740 
3741 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3742                         uint64_t value)
3743 {
3744 #ifdef CONFIG_TCG
3745     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3746     ARMMMUIdx mmu_idx;
3747     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3748     bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3749 
3750     switch (ri->opc2 & 6) {
3751     case 0:
3752         switch (ri->opc1) {
3753         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3754             if (ri->crm == 9 && arm_pan_enabled(env)) {
3755                 mmu_idx = regime_e20 ?
3756                           ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3757             } else {
3758                 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3759             }
3760             break;
3761         case 4: /* AT S1E2R, AT S1E2W */
3762             mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3763             break;
3764         case 6: /* AT S1E3R, AT S1E3W */
3765             mmu_idx = ARMMMUIdx_E3;
3766             break;
3767         default:
3768             g_assert_not_reached();
3769         }
3770         break;
3771     case 2: /* AT S1E0R, AT S1E0W */
3772         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3773         break;
3774     case 4: /* AT S12E1R, AT S12E1W */
3775         mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3776         break;
3777     case 6: /* AT S12E0R, AT S12E0W */
3778         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3779         break;
3780     default:
3781         g_assert_not_reached();
3782     }
3783 
3784     env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3785                                        mmu_idx, arm_security_space(env));
3786 #else
3787     /* Handled by hardware accelerator. */
3788     g_assert_not_reached();
3789 #endif /* CONFIG_TCG */
3790 }
3791 #endif
3792 
3793 /* Return basic MPU access permission bits.  */
3794 static uint32_t simple_mpu_ap_bits(uint32_t val)
3795 {
3796     uint32_t ret;
3797     uint32_t mask;
3798     int i;
3799     ret = 0;
3800     mask = 3;
3801     for (i = 0; i < 16; i += 2) {
3802         ret |= (val >> i) & mask;
3803         mask <<= 2;
3804     }
3805     return ret;
3806 }
3807 
3808 /* Pad basic MPU access permission bits to extended format.  */
3809 static uint32_t extended_mpu_ap_bits(uint32_t val)
3810 {
3811     uint32_t ret;
3812     uint32_t mask;
3813     int i;
3814     ret = 0;
3815     mask = 3;
3816     for (i = 0; i < 16; i += 2) {
3817         ret |= (val & mask) << i;
3818         mask <<= 2;
3819     }
3820     return ret;
3821 }
3822 
3823 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3824                                  uint64_t value)
3825 {
3826     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3827 }
3828 
3829 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3830 {
3831     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3832 }
3833 
3834 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3835                                  uint64_t value)
3836 {
3837     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3838 }
3839 
3840 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3841 {
3842     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3843 }
3844 
3845 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3846 {
3847     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3848 
3849     if (!u32p) {
3850         return 0;
3851     }
3852 
3853     u32p += env->pmsav7.rnr[M_REG_NS];
3854     return *u32p;
3855 }
3856 
3857 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3858                          uint64_t value)
3859 {
3860     ARMCPU *cpu = env_archcpu(env);
3861     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3862 
3863     if (!u32p) {
3864         return;
3865     }
3866 
3867     u32p += env->pmsav7.rnr[M_REG_NS];
3868     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3869     *u32p = value;
3870 }
3871 
3872 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3873                               uint64_t value)
3874 {
3875     ARMCPU *cpu = env_archcpu(env);
3876     uint32_t nrgs = cpu->pmsav7_dregion;
3877 
3878     if (value >= nrgs) {
3879         qemu_log_mask(LOG_GUEST_ERROR,
3880                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3881                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3882         return;
3883     }
3884 
3885     raw_write(env, ri, value);
3886 }
3887 
3888 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3889                           uint64_t value)
3890 {
3891     ARMCPU *cpu = env_archcpu(env);
3892 
3893     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3894     env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3895 }
3896 
3897 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3898 {
3899     return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3900 }
3901 
3902 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3903                           uint64_t value)
3904 {
3905     ARMCPU *cpu = env_archcpu(env);
3906 
3907     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3908     env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3909 }
3910 
3911 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3912 {
3913     return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3914 }
3915 
3916 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3917                            uint64_t value)
3918 {
3919     ARMCPU *cpu = env_archcpu(env);
3920 
3921     /*
3922      * Ignore writes that would select not implemented region.
3923      * This is architecturally UNPREDICTABLE.
3924      */
3925     if (value >= cpu->pmsav7_dregion) {
3926         return;
3927     }
3928 
3929     env->pmsav7.rnr[M_REG_NS] = value;
3930 }
3931 
3932 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3933                           uint64_t value)
3934 {
3935     ARMCPU *cpu = env_archcpu(env);
3936 
3937     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3938     env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3939 }
3940 
3941 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3942 {
3943     return env->pmsav8.hprbar[env->pmsav8.hprselr];
3944 }
3945 
3946 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3947                           uint64_t value)
3948 {
3949     ARMCPU *cpu = env_archcpu(env);
3950 
3951     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3952     env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3953 }
3954 
3955 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3956 {
3957     return env->pmsav8.hprlar[env->pmsav8.hprselr];
3958 }
3959 
3960 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3961                           uint64_t value)
3962 {
3963     uint32_t n;
3964     uint32_t bit;
3965     ARMCPU *cpu = env_archcpu(env);
3966 
3967     /* Ignore writes to unimplemented regions */
3968     int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3969     value &= MAKE_64BIT_MASK(0, rmax);
3970 
3971     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3972 
3973     /* Register alias is only valid for first 32 indexes */
3974     for (n = 0; n < rmax; ++n) {
3975         bit = extract32(value, n, 1);
3976         env->pmsav8.hprlar[n] = deposit32(
3977                     env->pmsav8.hprlar[n], 0, 1, bit);
3978     }
3979 }
3980 
3981 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3982 {
3983     uint32_t n;
3984     uint32_t result = 0x0;
3985     ARMCPU *cpu = env_archcpu(env);
3986 
3987     /* Register alias is only valid for first 32 indexes */
3988     for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3989         if (env->pmsav8.hprlar[n] & 0x1) {
3990             result |= (0x1 << n);
3991         }
3992     }
3993     return result;
3994 }
3995 
3996 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3997                            uint64_t value)
3998 {
3999     ARMCPU *cpu = env_archcpu(env);
4000 
4001     /*
4002      * Ignore writes that would select not implemented region.
4003      * This is architecturally UNPREDICTABLE.
4004      */
4005     if (value >= cpu->pmsav8r_hdregion) {
4006         return;
4007     }
4008 
4009     env->pmsav8.hprselr = value;
4010 }
4011 
4012 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
4013                           uint64_t value)
4014 {
4015     ARMCPU *cpu = env_archcpu(env);
4016     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4017                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4018 
4019     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4020 
4021     if (ri->opc1 & 4) {
4022         if (index >= cpu->pmsav8r_hdregion) {
4023             return;
4024         }
4025         if (ri->opc2 & 0x1) {
4026             env->pmsav8.hprlar[index] = value;
4027         } else {
4028             env->pmsav8.hprbar[index] = value;
4029         }
4030     } else {
4031         if (index >= cpu->pmsav7_dregion) {
4032             return;
4033         }
4034         if (ri->opc2 & 0x1) {
4035             env->pmsav8.rlar[M_REG_NS][index] = value;
4036         } else {
4037             env->pmsav8.rbar[M_REG_NS][index] = value;
4038         }
4039     }
4040 }
4041 
4042 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
4043 {
4044     ARMCPU *cpu = env_archcpu(env);
4045     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4046                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4047 
4048     if (ri->opc1 & 4) {
4049         if (index >= cpu->pmsav8r_hdregion) {
4050             return 0x0;
4051         }
4052         if (ri->opc2 & 0x1) {
4053             return env->pmsav8.hprlar[index];
4054         } else {
4055             return env->pmsav8.hprbar[index];
4056         }
4057     } else {
4058         if (index >= cpu->pmsav7_dregion) {
4059             return 0x0;
4060         }
4061         if (ri->opc2 & 0x1) {
4062             return env->pmsav8.rlar[M_REG_NS][index];
4063         } else {
4064             return env->pmsav8.rbar[M_REG_NS][index];
4065         }
4066     }
4067 }
4068 
4069 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4070     { .name = "PRBAR",
4071       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4072       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4073       .accessfn = access_tvm_trvm,
4074       .readfn = prbar_read, .writefn = prbar_write },
4075     { .name = "PRLAR",
4076       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4077       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4078       .accessfn = access_tvm_trvm,
4079       .readfn = prlar_read, .writefn = prlar_write },
4080     { .name = "PRSELR", .resetvalue = 0,
4081       .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4082       .access = PL1_RW, .accessfn = access_tvm_trvm,
4083       .writefn = prselr_write,
4084       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4085     { .name = "HPRBAR", .resetvalue = 0,
4086       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4087       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4088       .readfn = hprbar_read, .writefn = hprbar_write },
4089     { .name = "HPRLAR",
4090       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4091       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4092       .readfn = hprlar_read, .writefn = hprlar_write },
4093     { .name = "HPRSELR", .resetvalue = 0,
4094       .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4095       .access = PL2_RW,
4096       .writefn = hprselr_write,
4097       .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4098     { .name = "HPRENR",
4099       .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4100       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4101       .readfn = hprenr_read, .writefn = hprenr_write },
4102 };
4103 
4104 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4105     /*
4106      * Reset for all these registers is handled in arm_cpu_reset(),
4107      * because the PMSAv7 is also used by M-profile CPUs, which do
4108      * not register cpregs but still need the state to be reset.
4109      */
4110     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4111       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4112       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4113       .readfn = pmsav7_read, .writefn = pmsav7_write,
4114       .resetfn = arm_cp_reset_ignore },
4115     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4116       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4117       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4118       .readfn = pmsav7_read, .writefn = pmsav7_write,
4119       .resetfn = arm_cp_reset_ignore },
4120     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4121       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4122       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4123       .readfn = pmsav7_read, .writefn = pmsav7_write,
4124       .resetfn = arm_cp_reset_ignore },
4125     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4126       .access = PL1_RW,
4127       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4128       .writefn = pmsav7_rgnr_write,
4129       .resetfn = arm_cp_reset_ignore },
4130 };
4131 
4132 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4133     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4134       .access = PL1_RW, .type = ARM_CP_ALIAS,
4135       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4136       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4137     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4138       .access = PL1_RW, .type = ARM_CP_ALIAS,
4139       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4140       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4141     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4142       .access = PL1_RW,
4143       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4144       .resetvalue = 0, },
4145     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4146       .access = PL1_RW,
4147       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4148       .resetvalue = 0, },
4149     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4150       .access = PL1_RW,
4151       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4152     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4153       .access = PL1_RW,
4154       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4155     /* Protection region base and size registers */
4156     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4157       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4158       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4159     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4160       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4161       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4162     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4163       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4164       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4165     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4166       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4167       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4168     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4169       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4170       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4171     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4172       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4173       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4174     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4175       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4176       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4177     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4178       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4179       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4180 };
4181 
4182 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4183                              uint64_t value)
4184 {
4185     ARMCPU *cpu = env_archcpu(env);
4186 
4187     if (!arm_feature(env, ARM_FEATURE_V8)) {
4188         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4189             /*
4190              * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4191              * using Long-descriptor translation table format
4192              */
4193             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4194         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4195             /*
4196              * In an implementation that includes the Security Extensions
4197              * TTBCR has additional fields PD0 [4] and PD1 [5] for
4198              * Short-descriptor translation table format.
4199              */
4200             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4201         } else {
4202             value &= TTBCR_N;
4203         }
4204     }
4205 
4206     if (arm_feature(env, ARM_FEATURE_LPAE)) {
4207         /*
4208          * With LPAE the TTBCR could result in a change of ASID
4209          * via the TTBCR.A1 bit, so do a TLB flush.
4210          */
4211         tlb_flush(CPU(cpu));
4212     }
4213     raw_write(env, ri, value);
4214 }
4215 
4216 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4217                                uint64_t value)
4218 {
4219     ARMCPU *cpu = env_archcpu(env);
4220 
4221     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4222     tlb_flush(CPU(cpu));
4223     raw_write(env, ri, value);
4224 }
4225 
4226 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4227                             uint64_t value)
4228 {
4229     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4230     if (cpreg_field_is_64bit(ri) &&
4231         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4232         ARMCPU *cpu = env_archcpu(env);
4233         tlb_flush(CPU(cpu));
4234     }
4235     raw_write(env, ri, value);
4236 }
4237 
4238 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4239                                     uint64_t value)
4240 {
4241     /*
4242      * If we are running with E2&0 regime, then an ASID is active.
4243      * Flush if that might be changing.  Note we're not checking
4244      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4245      * holds the active ASID, only checking the field that might.
4246      */
4247     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4248         (arm_hcr_el2_eff(env) & HCR_E2H)) {
4249         uint16_t mask = ARMMMUIdxBit_E20_2 |
4250                         ARMMMUIdxBit_E20_2_PAN |
4251                         ARMMMUIdxBit_E20_0;
4252         tlb_flush_by_mmuidx(env_cpu(env), mask);
4253     }
4254     raw_write(env, ri, value);
4255 }
4256 
4257 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4258                         uint64_t value)
4259 {
4260     ARMCPU *cpu = env_archcpu(env);
4261     CPUState *cs = CPU(cpu);
4262 
4263     /*
4264      * A change in VMID to the stage2 page table (Stage2) invalidates
4265      * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4266      */
4267     if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4268         tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4269     }
4270     raw_write(env, ri, value);
4271 }
4272 
4273 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4274     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4275       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4276       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4277                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4278     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4279       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4280       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4281                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4282     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4283       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4284       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4285                              offsetof(CPUARMState, cp15.dfar_ns) } },
4286     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4287       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4288       .access = PL1_RW, .accessfn = access_tvm_trvm,
4289       .fgt = FGT_FAR_EL1,
4290       .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1,
4291       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4292       .resetvalue = 0, },
4293 };
4294 
4295 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4296     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4297       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4298       .access = PL1_RW, .accessfn = access_tvm_trvm,
4299       .fgt = FGT_ESR_EL1,
4300       .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1,
4301       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4302     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4303       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4304       .access = PL1_RW, .accessfn = access_tvm_trvm,
4305       .fgt = FGT_TTBR0_EL1,
4306       .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1,
4307       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4308       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4309                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4310     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4311       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4312       .access = PL1_RW, .accessfn = access_tvm_trvm,
4313       .fgt = FGT_TTBR1_EL1,
4314       .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1,
4315       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4316       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4317                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4318     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4319       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4320       .access = PL1_RW, .accessfn = access_tvm_trvm,
4321       .fgt = FGT_TCR_EL1,
4322       .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1,
4323       .writefn = vmsa_tcr_el12_write,
4324       .raw_writefn = raw_write,
4325       .resetvalue = 0,
4326       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4327     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4328       .access = PL1_RW, .accessfn = access_tvm_trvm,
4329       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4330       .raw_writefn = raw_write,
4331       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4332                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4333 };
4334 
4335 /*
4336  * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4337  * qemu tlbs nor adjusting cached masks.
4338  */
4339 static const ARMCPRegInfo ttbcr2_reginfo = {
4340     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4341     .access = PL1_RW, .accessfn = access_tvm_trvm,
4342     .type = ARM_CP_ALIAS,
4343     .bank_fieldoffsets = {
4344         offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4345         offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4346     },
4347 };
4348 
4349 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4350                                 uint64_t value)
4351 {
4352     env->cp15.c15_ticonfig = value & 0xe7;
4353     /* The OS_TYPE bit in this register changes the reported CPUID! */
4354     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4355         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4356 }
4357 
4358 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4359                                 uint64_t value)
4360 {
4361     env->cp15.c15_threadid = value & 0xffff;
4362 }
4363 
4364 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4365                            uint64_t value)
4366 {
4367     /* Wait-for-interrupt (deprecated) */
4368     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4369 }
4370 
4371 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4372                                   uint64_t value)
4373 {
4374     /*
4375      * On OMAP there are registers indicating the max/min index of dcache lines
4376      * containing a dirty line; cache flush operations have to reset these.
4377      */
4378     env->cp15.c15_i_max = 0x000;
4379     env->cp15.c15_i_min = 0xff0;
4380 }
4381 
4382 static const ARMCPRegInfo omap_cp_reginfo[] = {
4383     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4384       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4385       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4386       .resetvalue = 0, },
4387     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4388       .access = PL1_RW, .type = ARM_CP_NOP },
4389     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4390       .access = PL1_RW,
4391       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4392       .writefn = omap_ticonfig_write },
4393     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4394       .access = PL1_RW,
4395       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4396     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4397       .access = PL1_RW, .resetvalue = 0xff0,
4398       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4399     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4400       .access = PL1_RW,
4401       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4402       .writefn = omap_threadid_write },
4403     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4404       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4405       .type = ARM_CP_NO_RAW,
4406       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4407     /*
4408      * TODO: Peripheral port remap register:
4409      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4410      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4411      * when MMU is off.
4412      */
4413     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4414       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4415       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4416       .writefn = omap_cachemaint_write },
4417     { .name = "C9", .cp = 15, .crn = 9,
4418       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4419       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4420 };
4421 
4422 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4423                               uint64_t value)
4424 {
4425     env->cp15.c15_cpar = value & 0x3fff;
4426 }
4427 
4428 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4429     { .name = "XSCALE_CPAR",
4430       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4431       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4432       .writefn = xscale_cpar_write, },
4433     { .name = "XSCALE_AUXCR",
4434       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4435       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4436       .resetvalue = 0, },
4437     /*
4438      * XScale specific cache-lockdown: since we have no cache we NOP these
4439      * and hope the guest does not really rely on cache behaviour.
4440      */
4441     { .name = "XSCALE_LOCK_ICACHE_LINE",
4442       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4443       .access = PL1_W, .type = ARM_CP_NOP },
4444     { .name = "XSCALE_UNLOCK_ICACHE",
4445       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4446       .access = PL1_W, .type = ARM_CP_NOP },
4447     { .name = "XSCALE_DCACHE_LOCK",
4448       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4449       .access = PL1_RW, .type = ARM_CP_NOP },
4450     { .name = "XSCALE_UNLOCK_DCACHE",
4451       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4452       .access = PL1_W, .type = ARM_CP_NOP },
4453 };
4454 
4455 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4456     /*
4457      * RAZ/WI the whole crn=15 space, when we don't have a more specific
4458      * implementation of this implementation-defined space.
4459      * Ideally this should eventually disappear in favour of actually
4460      * implementing the correct behaviour for all cores.
4461      */
4462     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4463       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4464       .access = PL1_RW,
4465       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4466       .resetvalue = 0 },
4467 };
4468 
4469 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4470     /* Cache status: RAZ because we have no cache so it's always clean */
4471     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4472       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4473       .resetvalue = 0 },
4474 };
4475 
4476 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4477     /* We never have a block transfer operation in progress */
4478     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4479       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4480       .resetvalue = 0 },
4481     /* The cache ops themselves: these all NOP for QEMU */
4482     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4483       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4484     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4485       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4486     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4487       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4488     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4489       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4490     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4491       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4492     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4493       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4494 };
4495 
4496 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4497     /*
4498      * The cache test-and-clean instructions always return (1 << 30)
4499      * to indicate that there are no dirty cache lines.
4500      */
4501     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4502       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4503       .resetvalue = (1 << 30) },
4504     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4505       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4506       .resetvalue = (1 << 30) },
4507 };
4508 
4509 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4510     /* Ignore ReadBuffer accesses */
4511     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4512       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4513       .access = PL1_RW, .resetvalue = 0,
4514       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4515 };
4516 
4517 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4518 {
4519     unsigned int cur_el = arm_current_el(env);
4520 
4521     if (arm_is_el2_enabled(env) && cur_el == 1) {
4522         return env->cp15.vpidr_el2;
4523     }
4524     return raw_read(env, ri);
4525 }
4526 
4527 static uint64_t mpidr_read_val(CPUARMState *env)
4528 {
4529     ARMCPU *cpu = env_archcpu(env);
4530     uint64_t mpidr = cpu->mp_affinity;
4531 
4532     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4533         mpidr |= (1U << 31);
4534         /*
4535          * Cores which are uniprocessor (non-coherent)
4536          * but still implement the MP extensions set
4537          * bit 30. (For instance, Cortex-R5).
4538          */
4539         if (cpu->mp_is_up) {
4540             mpidr |= (1u << 30);
4541         }
4542     }
4543     return mpidr;
4544 }
4545 
4546 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4547 {
4548     unsigned int cur_el = arm_current_el(env);
4549 
4550     if (arm_is_el2_enabled(env) && cur_el == 1) {
4551         return env->cp15.vmpidr_el2;
4552     }
4553     return mpidr_read_val(env);
4554 }
4555 
4556 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4557     /* NOP AMAIR0/1 */
4558     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4559       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4560       .access = PL1_RW, .accessfn = access_tvm_trvm,
4561       .fgt = FGT_AMAIR_EL1,
4562       .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1,
4563       .type = ARM_CP_CONST, .resetvalue = 0 },
4564     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4565     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4566       .access = PL1_RW, .accessfn = access_tvm_trvm,
4567       .type = ARM_CP_CONST, .resetvalue = 0 },
4568     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4569       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4570       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4571                              offsetof(CPUARMState, cp15.par_ns)} },
4572     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4573       .access = PL1_RW, .accessfn = access_tvm_trvm,
4574       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4575       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4576                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4577       .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4578     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4579       .access = PL1_RW, .accessfn = access_tvm_trvm,
4580       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4581       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4582                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4583       .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4584 };
4585 
4586 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4587 {
4588     return vfp_get_fpcr(env);
4589 }
4590 
4591 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4592                             uint64_t value)
4593 {
4594     vfp_set_fpcr(env, value);
4595 }
4596 
4597 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4598 {
4599     return vfp_get_fpsr(env);
4600 }
4601 
4602 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4603                             uint64_t value)
4604 {
4605     vfp_set_fpsr(env, value);
4606 }
4607 
4608 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4609                                        bool isread)
4610 {
4611     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4612         return CP_ACCESS_TRAP;
4613     }
4614     return CP_ACCESS_OK;
4615 }
4616 
4617 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4618                             uint64_t value)
4619 {
4620     env->daif = value & PSTATE_DAIF;
4621 }
4622 
4623 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4624 {
4625     return env->pstate & PSTATE_PAN;
4626 }
4627 
4628 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4629                            uint64_t value)
4630 {
4631     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4632 }
4633 
4634 static const ARMCPRegInfo pan_reginfo = {
4635     .name = "PAN", .state = ARM_CP_STATE_AA64,
4636     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4637     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4638     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4639 };
4640 
4641 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4642 {
4643     return env->pstate & PSTATE_UAO;
4644 }
4645 
4646 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4647                            uint64_t value)
4648 {
4649     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4650 }
4651 
4652 static const ARMCPRegInfo uao_reginfo = {
4653     .name = "UAO", .state = ARM_CP_STATE_AA64,
4654     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4655     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4656     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4657 };
4658 
4659 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4660 {
4661     return env->pstate & PSTATE_DIT;
4662 }
4663 
4664 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4665                            uint64_t value)
4666 {
4667     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4668 }
4669 
4670 static const ARMCPRegInfo dit_reginfo = {
4671     .name = "DIT", .state = ARM_CP_STATE_AA64,
4672     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4673     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4674     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4675 };
4676 
4677 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4678 {
4679     return env->pstate & PSTATE_SSBS;
4680 }
4681 
4682 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4683                            uint64_t value)
4684 {
4685     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4686 }
4687 
4688 static const ARMCPRegInfo ssbs_reginfo = {
4689     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4690     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4691     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4692     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4693 };
4694 
4695 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4696                                               const ARMCPRegInfo *ri,
4697                                               bool isread)
4698 {
4699     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4700     switch (arm_current_el(env)) {
4701     case 0:
4702         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4703         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4704             return CP_ACCESS_TRAP;
4705         }
4706         /* fall through */
4707     case 1:
4708         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4709         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4710             return CP_ACCESS_TRAP_EL2;
4711         }
4712         break;
4713     }
4714     return CP_ACCESS_OK;
4715 }
4716 
4717 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4718 {
4719     /* Cache invalidate/clean to Point of Unification... */
4720     switch (arm_current_el(env)) {
4721     case 0:
4722         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4723         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4724             return CP_ACCESS_TRAP;
4725         }
4726         /* fall through */
4727     case 1:
4728         /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set.  */
4729         if (arm_hcr_el2_eff(env) & hcrflags) {
4730             return CP_ACCESS_TRAP_EL2;
4731         }
4732         break;
4733     }
4734     return CP_ACCESS_OK;
4735 }
4736 
4737 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4738                                    bool isread)
4739 {
4740     return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4741 }
4742 
4743 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4744                                   bool isread)
4745 {
4746     return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4747 }
4748 
4749 /*
4750  * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4751  * Page D4-1736 (DDI0487A.b)
4752  */
4753 
4754 static int vae1_tlbmask(CPUARMState *env)
4755 {
4756     uint64_t hcr = arm_hcr_el2_eff(env);
4757     uint16_t mask;
4758 
4759     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4760         mask = ARMMMUIdxBit_E20_2 |
4761                ARMMMUIdxBit_E20_2_PAN |
4762                ARMMMUIdxBit_E20_0;
4763     } else {
4764         mask = ARMMMUIdxBit_E10_1 |
4765                ARMMMUIdxBit_E10_1_PAN |
4766                ARMMMUIdxBit_E10_0;
4767     }
4768     return mask;
4769 }
4770 
4771 static int vae2_tlbmask(CPUARMState *env)
4772 {
4773     uint64_t hcr = arm_hcr_el2_eff(env);
4774     uint16_t mask;
4775 
4776     if (hcr & HCR_E2H) {
4777         mask = ARMMMUIdxBit_E20_2 |
4778                ARMMMUIdxBit_E20_2_PAN |
4779                ARMMMUIdxBit_E20_0;
4780     } else {
4781         mask = ARMMMUIdxBit_E2;
4782     }
4783     return mask;
4784 }
4785 
4786 /* Return 56 if TBI is enabled, 64 otherwise. */
4787 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4788                               uint64_t addr)
4789 {
4790     uint64_t tcr = regime_tcr(env, mmu_idx);
4791     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4792     int select = extract64(addr, 55, 1);
4793 
4794     return (tbi >> select) & 1 ? 56 : 64;
4795 }
4796 
4797 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4798 {
4799     uint64_t hcr = arm_hcr_el2_eff(env);
4800     ARMMMUIdx mmu_idx;
4801 
4802     /* Only the regime of the mmu_idx below is significant. */
4803     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4804         mmu_idx = ARMMMUIdx_E20_0;
4805     } else {
4806         mmu_idx = ARMMMUIdx_E10_0;
4807     }
4808 
4809     return tlbbits_for_regime(env, mmu_idx, addr);
4810 }
4811 
4812 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4813 {
4814     uint64_t hcr = arm_hcr_el2_eff(env);
4815     ARMMMUIdx mmu_idx;
4816 
4817     /*
4818      * Only the regime of the mmu_idx below is significant.
4819      * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4820      * only has one.
4821      */
4822     if (hcr & HCR_E2H) {
4823         mmu_idx = ARMMMUIdx_E20_2;
4824     } else {
4825         mmu_idx = ARMMMUIdx_E2;
4826     }
4827 
4828     return tlbbits_for_regime(env, mmu_idx, addr);
4829 }
4830 
4831 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4832                                       uint64_t value)
4833 {
4834     CPUState *cs = env_cpu(env);
4835     int mask = vae1_tlbmask(env);
4836 
4837     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4838 }
4839 
4840 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4841                                     uint64_t value)
4842 {
4843     CPUState *cs = env_cpu(env);
4844     int mask = vae1_tlbmask(env);
4845 
4846     if (tlb_force_broadcast(env)) {
4847         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4848     } else {
4849         tlb_flush_by_mmuidx(cs, mask);
4850     }
4851 }
4852 
4853 static int e2_tlbmask(CPUARMState *env)
4854 {
4855     return (ARMMMUIdxBit_E20_0 |
4856             ARMMMUIdxBit_E20_2 |
4857             ARMMMUIdxBit_E20_2_PAN |
4858             ARMMMUIdxBit_E2);
4859 }
4860 
4861 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4862                                   uint64_t value)
4863 {
4864     CPUState *cs = env_cpu(env);
4865     int mask = alle1_tlbmask(env);
4866 
4867     tlb_flush_by_mmuidx(cs, mask);
4868 }
4869 
4870 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4871                                   uint64_t value)
4872 {
4873     CPUState *cs = env_cpu(env);
4874     int mask = e2_tlbmask(env);
4875 
4876     tlb_flush_by_mmuidx(cs, mask);
4877 }
4878 
4879 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4880                                   uint64_t value)
4881 {
4882     ARMCPU *cpu = env_archcpu(env);
4883     CPUState *cs = CPU(cpu);
4884 
4885     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4886 }
4887 
4888 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4889                                     uint64_t value)
4890 {
4891     CPUState *cs = env_cpu(env);
4892     int mask = alle1_tlbmask(env);
4893 
4894     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4895 }
4896 
4897 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4898                                     uint64_t value)
4899 {
4900     CPUState *cs = env_cpu(env);
4901     int mask = e2_tlbmask(env);
4902 
4903     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4904 }
4905 
4906 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4907                                     uint64_t value)
4908 {
4909     CPUState *cs = env_cpu(env);
4910 
4911     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4912 }
4913 
4914 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4915                                  uint64_t value)
4916 {
4917     /*
4918      * Invalidate by VA, EL2
4919      * Currently handles both VAE2 and VALE2, since we don't support
4920      * flush-last-level-only.
4921      */
4922     CPUState *cs = env_cpu(env);
4923     int mask = vae2_tlbmask(env);
4924     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4925     int bits = vae2_tlbbits(env, pageaddr);
4926 
4927     tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4928 }
4929 
4930 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4931                                  uint64_t value)
4932 {
4933     /*
4934      * Invalidate by VA, EL3
4935      * Currently handles both VAE3 and VALE3, since we don't support
4936      * flush-last-level-only.
4937      */
4938     ARMCPU *cpu = env_archcpu(env);
4939     CPUState *cs = CPU(cpu);
4940     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4941 
4942     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4943 }
4944 
4945 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4946                                    uint64_t value)
4947 {
4948     CPUState *cs = env_cpu(env);
4949     int mask = vae1_tlbmask(env);
4950     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4951     int bits = vae1_tlbbits(env, pageaddr);
4952 
4953     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4954 }
4955 
4956 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4957                                  uint64_t value)
4958 {
4959     /*
4960      * Invalidate by VA, EL1&0 (AArch64 version).
4961      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4962      * since we don't support flush-for-specific-ASID-only or
4963      * flush-last-level-only.
4964      */
4965     CPUState *cs = env_cpu(env);
4966     int mask = vae1_tlbmask(env);
4967     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4968     int bits = vae1_tlbbits(env, pageaddr);
4969 
4970     if (tlb_force_broadcast(env)) {
4971         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4972     } else {
4973         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4974     }
4975 }
4976 
4977 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4978                                    uint64_t value)
4979 {
4980     CPUState *cs = env_cpu(env);
4981     int mask = vae2_tlbmask(env);
4982     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4983     int bits = vae2_tlbbits(env, pageaddr);
4984 
4985     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4986 }
4987 
4988 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4989                                    uint64_t value)
4990 {
4991     CPUState *cs = env_cpu(env);
4992     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4993     int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4994 
4995     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4996                                                   ARMMMUIdxBit_E3, bits);
4997 }
4998 
4999 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
5000 {
5001     /*
5002      * The MSB of value is the NS field, which only applies if SEL2
5003      * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
5004      */
5005     return (value >= 0
5006             && cpu_isar_feature(aa64_sel2, env_archcpu(env))
5007             && arm_is_secure_below_el3(env)
5008             ? ARMMMUIdxBit_Stage2_S
5009             : ARMMMUIdxBit_Stage2);
5010 }
5011 
5012 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5013                                     uint64_t value)
5014 {
5015     CPUState *cs = env_cpu(env);
5016     int mask = ipas2e1_tlbmask(env, value);
5017     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5018 
5019     if (tlb_force_broadcast(env)) {
5020         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5021     } else {
5022         tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
5023     }
5024 }
5025 
5026 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5027                                       uint64_t value)
5028 {
5029     CPUState *cs = env_cpu(env);
5030     int mask = ipas2e1_tlbmask(env, value);
5031     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5032 
5033     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5034 }
5035 
5036 #ifdef TARGET_AARCH64
5037 typedef struct {
5038     uint64_t base;
5039     uint64_t length;
5040 } TLBIRange;
5041 
5042 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
5043 {
5044     /*
5045      * Note that the TLBI range TG field encoding differs from both
5046      * TG0 and TG1 encodings.
5047      */
5048     switch (tg) {
5049     case 1:
5050         return Gran4K;
5051     case 2:
5052         return Gran16K;
5053     case 3:
5054         return Gran64K;
5055     default:
5056         return GranInvalid;
5057     }
5058 }
5059 
5060 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
5061                                      uint64_t value)
5062 {
5063     unsigned int page_size_granule, page_shift, num, scale, exponent;
5064     /* Extract one bit to represent the va selector in use. */
5065     uint64_t select = sextract64(value, 36, 1);
5066     ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
5067     TLBIRange ret = { };
5068     ARMGranuleSize gran;
5069 
5070     page_size_granule = extract64(value, 46, 2);
5071     gran = tlbi_range_tg_to_gran_size(page_size_granule);
5072 
5073     /* The granule encoded in value must match the granule in use. */
5074     if (gran != param.gran) {
5075         qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5076                       page_size_granule);
5077         return ret;
5078     }
5079 
5080     page_shift = arm_granule_bits(gran);
5081     num = extract64(value, 39, 5);
5082     scale = extract64(value, 44, 2);
5083     exponent = (5 * scale) + 1;
5084 
5085     ret.length = (num + 1) << (exponent + page_shift);
5086 
5087     if (param.select) {
5088         ret.base = sextract64(value, 0, 37);
5089     } else {
5090         ret.base = extract64(value, 0, 37);
5091     }
5092     if (param.ds) {
5093         /*
5094          * With DS=1, BaseADDR is always shifted 16 so that it is able
5095          * to address all 52 va bits.  The input address is perforce
5096          * aligned on a 64k boundary regardless of translation granule.
5097          */
5098         page_shift = 16;
5099     }
5100     ret.base <<= page_shift;
5101 
5102     return ret;
5103 }
5104 
5105 static void do_rvae_write(CPUARMState *env, uint64_t value,
5106                           int idxmap, bool synced)
5107 {
5108     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5109     TLBIRange range;
5110     int bits;
5111 
5112     range = tlbi_aa64_get_range(env, one_idx, value);
5113     bits = tlbbits_for_regime(env, one_idx, range.base);
5114 
5115     if (synced) {
5116         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5117                                                   range.base,
5118                                                   range.length,
5119                                                   idxmap,
5120                                                   bits);
5121     } else {
5122         tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5123                                   range.length, idxmap, bits);
5124     }
5125 }
5126 
5127 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5128                                   const ARMCPRegInfo *ri,
5129                                   uint64_t value)
5130 {
5131     /*
5132      * Invalidate by VA range, EL1&0.
5133      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5134      * since we don't support flush-for-specific-ASID-only or
5135      * flush-last-level-only.
5136      */
5137 
5138     do_rvae_write(env, value, vae1_tlbmask(env),
5139                   tlb_force_broadcast(env));
5140 }
5141 
5142 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5143                                     const ARMCPRegInfo *ri,
5144                                     uint64_t value)
5145 {
5146     /*
5147      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5148      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5149      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5150      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5151      * shareable specific flushes.
5152      */
5153 
5154     do_rvae_write(env, value, vae1_tlbmask(env), true);
5155 }
5156 
5157 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5158                                   const ARMCPRegInfo *ri,
5159                                   uint64_t value)
5160 {
5161     /*
5162      * Invalidate by VA range, EL2.
5163      * Currently handles all of RVAE2 and RVALE2,
5164      * since we don't support flush-for-specific-ASID-only or
5165      * flush-last-level-only.
5166      */
5167 
5168     do_rvae_write(env, value, vae2_tlbmask(env),
5169                   tlb_force_broadcast(env));
5170 
5171 
5172 }
5173 
5174 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5175                                     const ARMCPRegInfo *ri,
5176                                     uint64_t value)
5177 {
5178     /*
5179      * Invalidate by VA range, Inner/Outer Shareable, EL2.
5180      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5181      * since we don't support flush-for-specific-ASID-only,
5182      * flush-last-level-only or inner/outer shareable specific flushes.
5183      */
5184 
5185     do_rvae_write(env, value, vae2_tlbmask(env), true);
5186 
5187 }
5188 
5189 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5190                                   const ARMCPRegInfo *ri,
5191                                   uint64_t value)
5192 {
5193     /*
5194      * Invalidate by VA range, EL3.
5195      * Currently handles all of RVAE3 and RVALE3,
5196      * since we don't support flush-for-specific-ASID-only or
5197      * flush-last-level-only.
5198      */
5199 
5200     do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5201 }
5202 
5203 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5204                                     const ARMCPRegInfo *ri,
5205                                     uint64_t value)
5206 {
5207     /*
5208      * Invalidate by VA range, EL3, Inner/Outer Shareable.
5209      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5210      * since we don't support flush-for-specific-ASID-only,
5211      * flush-last-level-only or inner/outer specific flushes.
5212      */
5213 
5214     do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5215 }
5216 
5217 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5218                                      uint64_t value)
5219 {
5220     do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5221                   tlb_force_broadcast(env));
5222 }
5223 
5224 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5225                                        const ARMCPRegInfo *ri,
5226                                        uint64_t value)
5227 {
5228     do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5229 }
5230 #endif
5231 
5232 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5233                                       bool isread)
5234 {
5235     int cur_el = arm_current_el(env);
5236 
5237     if (cur_el < 2) {
5238         uint64_t hcr = arm_hcr_el2_eff(env);
5239 
5240         if (cur_el == 0) {
5241             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5242                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5243                     return CP_ACCESS_TRAP_EL2;
5244                 }
5245             } else {
5246                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5247                     return CP_ACCESS_TRAP;
5248                 }
5249                 if (hcr & HCR_TDZ) {
5250                     return CP_ACCESS_TRAP_EL2;
5251                 }
5252             }
5253         } else if (hcr & HCR_TDZ) {
5254             return CP_ACCESS_TRAP_EL2;
5255         }
5256     }
5257     return CP_ACCESS_OK;
5258 }
5259 
5260 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5261 {
5262     ARMCPU *cpu = env_archcpu(env);
5263     int dzp_bit = 1 << 4;
5264 
5265     /* DZP indicates whether DC ZVA access is allowed */
5266     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5267         dzp_bit = 0;
5268     }
5269     return cpu->dcz_blocksize | dzp_bit;
5270 }
5271 
5272 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5273                                     bool isread)
5274 {
5275     if (!(env->pstate & PSTATE_SP)) {
5276         /*
5277          * Access to SP_EL0 is undefined if it's being used as
5278          * the stack pointer.
5279          */
5280         return CP_ACCESS_TRAP_UNCATEGORIZED;
5281     }
5282     return CP_ACCESS_OK;
5283 }
5284 
5285 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5286 {
5287     return env->pstate & PSTATE_SP;
5288 }
5289 
5290 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5291 {
5292     update_spsel(env, val);
5293 }
5294 
5295 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5296                         uint64_t value)
5297 {
5298     ARMCPU *cpu = env_archcpu(env);
5299 
5300     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5301         /* M bit is RAZ/WI for PMSA with no MPU implemented */
5302         value &= ~SCTLR_M;
5303     }
5304 
5305     /* ??? Lots of these bits are not implemented.  */
5306 
5307     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5308         if (ri->opc1 == 6) { /* SCTLR_EL3 */
5309             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5310         } else {
5311             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5312                        SCTLR_ATA0 | SCTLR_ATA);
5313         }
5314     }
5315 
5316     if (raw_read(env, ri) == value) {
5317         /*
5318          * Skip the TLB flush if nothing actually changed; Linux likes
5319          * to do a lot of pointless SCTLR writes.
5320          */
5321         return;
5322     }
5323 
5324     raw_write(env, ri, value);
5325 
5326     /* This may enable/disable the MMU, so do a TLB flush.  */
5327     tlb_flush(CPU(cpu));
5328 
5329     if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5330         /*
5331          * Normally we would always end the TB on an SCTLR write; see the
5332          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5333          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5334          * of hflags from the translator, so do it here.
5335          */
5336         arm_rebuild_hflags(env);
5337     }
5338 }
5339 
5340 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5341                            uint64_t value)
5342 {
5343     /*
5344      * Some MDCR_EL3 bits affect whether PMU counters are running:
5345      * if we are trying to change any of those then we must
5346      * bracket this update with PMU start/finish calls.
5347      */
5348     bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5349 
5350     if (pmu_op) {
5351         pmu_op_start(env);
5352     }
5353     env->cp15.mdcr_el3 = value;
5354     if (pmu_op) {
5355         pmu_op_finish(env);
5356     }
5357 }
5358 
5359 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5360                        uint64_t value)
5361 {
5362     /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5363     mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5364 }
5365 
5366 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5367                            uint64_t value)
5368 {
5369     /*
5370      * Some MDCR_EL2 bits affect whether PMU counters are running:
5371      * if we are trying to change any of those then we must
5372      * bracket this update with PMU start/finish calls.
5373      */
5374     bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5375 
5376     if (pmu_op) {
5377         pmu_op_start(env);
5378     }
5379     env->cp15.mdcr_el2 = value;
5380     if (pmu_op) {
5381         pmu_op_finish(env);
5382     }
5383 }
5384 
5385 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri,
5386                                  bool isread)
5387 {
5388     if (arm_current_el(env) == 1) {
5389         uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2);
5390 
5391         if (hcr_nv == (HCR_NV | HCR_NV1)) {
5392             return CP_ACCESS_TRAP_EL2;
5393         }
5394     }
5395     return CP_ACCESS_OK;
5396 }
5397 
5398 #ifdef CONFIG_USER_ONLY
5399 /*
5400  * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5401  * code to get around W^X restrictions, where one region is writable and the
5402  * other is executable.
5403  *
5404  * Since the executable region is never written to we cannot detect code
5405  * changes when running in user mode, and rely on the emulated JIT telling us
5406  * that the code has changed by executing this instruction.
5407  */
5408 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5409                           uint64_t value)
5410 {
5411     uint64_t icache_line_mask, start_address, end_address;
5412     const ARMCPU *cpu;
5413 
5414     cpu = env_archcpu(env);
5415 
5416     icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5417     start_address = value & ~icache_line_mask;
5418     end_address = value | icache_line_mask;
5419 
5420     mmap_lock();
5421 
5422     tb_invalidate_phys_range(start_address, end_address);
5423 
5424     mmap_unlock();
5425 }
5426 #endif
5427 
5428 static const ARMCPRegInfo v8_cp_reginfo[] = {
5429     /*
5430      * Minimal set of EL0-visible registers. This will need to be expanded
5431      * significantly for system emulation of AArch64 CPUs.
5432      */
5433     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5434       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5435       .access = PL0_RW, .type = ARM_CP_NZCV },
5436     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5437       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5438       .type = ARM_CP_NO_RAW,
5439       .access = PL0_RW, .accessfn = aa64_daif_access,
5440       .fieldoffset = offsetof(CPUARMState, daif),
5441       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5442     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5443       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5444       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5445       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5446     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5447       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5448       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5449       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5450     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5451       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5452       .access = PL0_R, .type = ARM_CP_NO_RAW,
5453       .fgt = FGT_DCZID_EL0,
5454       .readfn = aa64_dczid_read },
5455     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5456       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5457       .access = PL0_W, .type = ARM_CP_DC_ZVA,
5458 #ifndef CONFIG_USER_ONLY
5459       /* Avoid overhead of an access check that always passes in user-mode */
5460       .accessfn = aa64_zva_access,
5461       .fgt = FGT_DCZVA,
5462 #endif
5463     },
5464     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5465       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5466       .access = PL1_R, .type = ARM_CP_CURRENTEL },
5467     /*
5468      * Instruction cache ops. All of these except `IC IVAU` NOP because we
5469      * don't emulate caches.
5470      */
5471     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5472       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5473       .access = PL1_W, .type = ARM_CP_NOP,
5474       .fgt = FGT_ICIALLUIS,
5475       .accessfn = access_ticab },
5476     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5477       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5478       .access = PL1_W, .type = ARM_CP_NOP,
5479       .fgt = FGT_ICIALLU,
5480       .accessfn = access_tocu },
5481     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5482       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5483       .access = PL0_W,
5484       .fgt = FGT_ICIVAU,
5485       .accessfn = access_tocu,
5486 #ifdef CONFIG_USER_ONLY
5487       .type = ARM_CP_NO_RAW,
5488       .writefn = ic_ivau_write
5489 #else
5490       .type = ARM_CP_NOP
5491 #endif
5492     },
5493     /* Cache ops: all NOPs since we don't emulate caches */
5494     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5495       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5496       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5497       .fgt = FGT_DCIVAC,
5498       .type = ARM_CP_NOP },
5499     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5500       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5501       .fgt = FGT_DCISW,
5502       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5503     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5504       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5505       .access = PL0_W, .type = ARM_CP_NOP,
5506       .fgt = FGT_DCCVAC,
5507       .accessfn = aa64_cacheop_poc_access },
5508     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5509       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5510       .fgt = FGT_DCCSW,
5511       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5512     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5513       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5514       .access = PL0_W, .type = ARM_CP_NOP,
5515       .fgt = FGT_DCCVAU,
5516       .accessfn = access_tocu },
5517     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5518       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5519       .access = PL0_W, .type = ARM_CP_NOP,
5520       .fgt = FGT_DCCIVAC,
5521       .accessfn = aa64_cacheop_poc_access },
5522     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5523       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5524       .fgt = FGT_DCCISW,
5525       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5526     /* TLBI operations */
5527     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5528       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5529       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5530       .fgt = FGT_TLBIVMALLE1IS,
5531       .writefn = tlbi_aa64_vmalle1is_write },
5532     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5533       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5534       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5535       .fgt = FGT_TLBIVAE1IS,
5536       .writefn = tlbi_aa64_vae1is_write },
5537     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5538       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5539       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5540       .fgt = FGT_TLBIASIDE1IS,
5541       .writefn = tlbi_aa64_vmalle1is_write },
5542     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5543       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5544       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5545       .fgt = FGT_TLBIVAAE1IS,
5546       .writefn = tlbi_aa64_vae1is_write },
5547     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5548       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5549       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5550       .fgt = FGT_TLBIVALE1IS,
5551       .writefn = tlbi_aa64_vae1is_write },
5552     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5553       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5554       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5555       .fgt = FGT_TLBIVAALE1IS,
5556       .writefn = tlbi_aa64_vae1is_write },
5557     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5558       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5559       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5560       .fgt = FGT_TLBIVMALLE1,
5561       .writefn = tlbi_aa64_vmalle1_write },
5562     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5563       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5564       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5565       .fgt = FGT_TLBIVAE1,
5566       .writefn = tlbi_aa64_vae1_write },
5567     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5568       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5569       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5570       .fgt = FGT_TLBIASIDE1,
5571       .writefn = tlbi_aa64_vmalle1_write },
5572     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5573       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5574       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5575       .fgt = FGT_TLBIVAAE1,
5576       .writefn = tlbi_aa64_vae1_write },
5577     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5578       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5579       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5580       .fgt = FGT_TLBIVALE1,
5581       .writefn = tlbi_aa64_vae1_write },
5582     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5583       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5584       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5585       .fgt = FGT_TLBIVAALE1,
5586       .writefn = tlbi_aa64_vae1_write },
5587     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5588       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5589       .access = PL2_W, .type = ARM_CP_NO_RAW,
5590       .writefn = tlbi_aa64_ipas2e1is_write },
5591     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5592       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5593       .access = PL2_W, .type = ARM_CP_NO_RAW,
5594       .writefn = tlbi_aa64_ipas2e1is_write },
5595     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5596       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5597       .access = PL2_W, .type = ARM_CP_NO_RAW,
5598       .writefn = tlbi_aa64_alle1is_write },
5599     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5600       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5601       .access = PL2_W, .type = ARM_CP_NO_RAW,
5602       .writefn = tlbi_aa64_alle1is_write },
5603     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5604       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5605       .access = PL2_W, .type = ARM_CP_NO_RAW,
5606       .writefn = tlbi_aa64_ipas2e1_write },
5607     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5608       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5609       .access = PL2_W, .type = ARM_CP_NO_RAW,
5610       .writefn = tlbi_aa64_ipas2e1_write },
5611     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5612       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5613       .access = PL2_W, .type = ARM_CP_NO_RAW,
5614       .writefn = tlbi_aa64_alle1_write },
5615     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5616       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5617       .access = PL2_W, .type = ARM_CP_NO_RAW,
5618       .writefn = tlbi_aa64_alle1is_write },
5619 #ifndef CONFIG_USER_ONLY
5620     /* 64 bit address translation operations */
5621     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5622       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5623       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5624       .fgt = FGT_ATS1E1R,
5625       .accessfn = at_s1e01_access, .writefn = ats_write64 },
5626     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5627       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5628       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5629       .fgt = FGT_ATS1E1W,
5630       .accessfn = at_s1e01_access, .writefn = ats_write64 },
5631     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5632       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5633       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5634       .fgt = FGT_ATS1E0R,
5635       .accessfn = at_s1e01_access, .writefn = ats_write64 },
5636     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5637       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5638       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5639       .fgt = FGT_ATS1E0W,
5640       .accessfn = at_s1e01_access, .writefn = ats_write64 },
5641     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5642       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5643       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5644       .accessfn = at_e012_access, .writefn = ats_write64 },
5645     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5646       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5647       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5648       .accessfn = at_e012_access, .writefn = ats_write64 },
5649     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5650       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5651       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5652       .accessfn = at_e012_access, .writefn = ats_write64 },
5653     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5654       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5655       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5656       .accessfn = at_e012_access, .writefn = ats_write64 },
5657     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5658     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5659       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5660       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5661       .writefn = ats_write64 },
5662     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5663       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5664       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5665       .writefn = ats_write64 },
5666     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5667       .type = ARM_CP_ALIAS,
5668       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5669       .access = PL1_RW, .resetvalue = 0,
5670       .fgt = FGT_PAR_EL1,
5671       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5672       .writefn = par_write },
5673 #endif
5674     /* TLB invalidate last level of translation table walk */
5675     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5676       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5677       .writefn = tlbimva_is_write },
5678     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5679       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5680       .writefn = tlbimvaa_is_write },
5681     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5682       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5683       .writefn = tlbimva_write },
5684     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5685       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5686       .writefn = tlbimvaa_write },
5687     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5688       .type = ARM_CP_NO_RAW, .access = PL2_W,
5689       .writefn = tlbimva_hyp_write },
5690     { .name = "TLBIMVALHIS",
5691       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5692       .type = ARM_CP_NO_RAW, .access = PL2_W,
5693       .writefn = tlbimva_hyp_is_write },
5694     { .name = "TLBIIPAS2",
5695       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5696       .type = ARM_CP_NO_RAW, .access = PL2_W,
5697       .writefn = tlbiipas2_hyp_write },
5698     { .name = "TLBIIPAS2IS",
5699       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5700       .type = ARM_CP_NO_RAW, .access = PL2_W,
5701       .writefn = tlbiipas2is_hyp_write },
5702     { .name = "TLBIIPAS2L",
5703       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5704       .type = ARM_CP_NO_RAW, .access = PL2_W,
5705       .writefn = tlbiipas2_hyp_write },
5706     { .name = "TLBIIPAS2LIS",
5707       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5708       .type = ARM_CP_NO_RAW, .access = PL2_W,
5709       .writefn = tlbiipas2is_hyp_write },
5710     /* 32 bit cache operations */
5711     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5712       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5713     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5714       .type = ARM_CP_NOP, .access = PL1_W },
5715     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5716       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5717     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5718       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5719     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5720       .type = ARM_CP_NOP, .access = PL1_W },
5721     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5722       .type = ARM_CP_NOP, .access = PL1_W },
5723     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5724       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5725     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5726       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5727     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5728       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5729     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5730       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5731     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5732       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5733     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5734       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5735     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5736       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5737     /* MMU Domain access control / MPU write buffer control */
5738     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5739       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5740       .writefn = dacr_write, .raw_writefn = raw_write,
5741       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5742                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5743     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5744       .type = ARM_CP_ALIAS,
5745       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5746       .access = PL1_RW, .accessfn = access_nv1,
5747       .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1,
5748       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5749     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5750       .type = ARM_CP_ALIAS,
5751       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5752       .access = PL1_RW, .accessfn = access_nv1,
5753       .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1,
5754       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5755     /*
5756      * We rely on the access checks not allowing the guest to write to the
5757      * state field when SPSel indicates that it's being used as the stack
5758      * pointer.
5759      */
5760     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5761       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5762       .access = PL1_RW, .accessfn = sp_el0_access,
5763       .type = ARM_CP_ALIAS,
5764       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5765     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5766       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5767       .nv2_redirect_offset = 0x240,
5768       .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5769       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5770     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5771       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5772       .type = ARM_CP_NO_RAW,
5773       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5774     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5775       .type = ARM_CP_ALIAS,
5776       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5777       .access = PL2_RW,
5778       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5779     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5780       .type = ARM_CP_ALIAS,
5781       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5782       .access = PL2_RW,
5783       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5784     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5785       .type = ARM_CP_ALIAS,
5786       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5787       .access = PL2_RW,
5788       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5789     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5790       .type = ARM_CP_ALIAS,
5791       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5792       .access = PL2_RW,
5793       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5794     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5795       .type = ARM_CP_IO,
5796       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5797       .resetvalue = 0,
5798       .access = PL3_RW,
5799       .writefn = mdcr_el3_write,
5800       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5801     { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5802       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5803       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5804       .writefn = sdcr_write,
5805       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5806 };
5807 
5808 /* These are present only when EL1 supports AArch32 */
5809 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
5810     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5811       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5812       .access = PL2_RW,
5813       .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5814       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5815     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5816       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5817       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5818       .writefn = dacr_write, .raw_writefn = raw_write,
5819       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5820     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5821       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5822       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5823       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5824 };
5825 
5826 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5827 {
5828     ARMCPU *cpu = env_archcpu(env);
5829 
5830     if (arm_feature(env, ARM_FEATURE_V8)) {
5831         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5832     } else {
5833         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5834     }
5835 
5836     if (arm_feature(env, ARM_FEATURE_EL3)) {
5837         valid_mask &= ~HCR_HCD;
5838     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5839         /*
5840          * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5841          * However, if we're using the SMC PSCI conduit then QEMU is
5842          * effectively acting like EL3 firmware and so the guest at
5843          * EL2 should retain the ability to prevent EL1 from being
5844          * able to make SMC calls into the ersatz firmware, so in
5845          * that case HCR.TSC should be read/write.
5846          */
5847         valid_mask &= ~HCR_TSC;
5848     }
5849 
5850     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5851         if (cpu_isar_feature(aa64_vh, cpu)) {
5852             valid_mask |= HCR_E2H;
5853         }
5854         if (cpu_isar_feature(aa64_ras, cpu)) {
5855             valid_mask |= HCR_TERR | HCR_TEA;
5856         }
5857         if (cpu_isar_feature(aa64_lor, cpu)) {
5858             valid_mask |= HCR_TLOR;
5859         }
5860         if (cpu_isar_feature(aa64_pauth, cpu)) {
5861             valid_mask |= HCR_API | HCR_APK;
5862         }
5863         if (cpu_isar_feature(aa64_mte, cpu)) {
5864             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5865         }
5866         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5867             valid_mask |= HCR_ENSCXT;
5868         }
5869         if (cpu_isar_feature(aa64_fwb, cpu)) {
5870             valid_mask |= HCR_FWB;
5871         }
5872         if (cpu_isar_feature(aa64_rme, cpu)) {
5873             valid_mask |= HCR_GPF;
5874         }
5875         if (cpu_isar_feature(aa64_nv, cpu)) {
5876             valid_mask |= HCR_NV | HCR_NV1 | HCR_AT;
5877         }
5878         if (cpu_isar_feature(aa64_nv2, cpu)) {
5879             valid_mask |= HCR_NV2;
5880         }
5881     }
5882 
5883     if (cpu_isar_feature(any_evt, cpu)) {
5884         valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5885     } else if (cpu_isar_feature(any_half_evt, cpu)) {
5886         valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5887     }
5888 
5889     /* Clear RES0 bits.  */
5890     value &= valid_mask;
5891 
5892     /*
5893      * These bits change the MMU setup:
5894      * HCR_VM enables stage 2 translation
5895      * HCR_PTW forbids certain page-table setups
5896      * HCR_DC disables stage1 and enables stage2 translation
5897      * HCR_DCT enables tagging on (disabled) stage1 translation
5898      * HCR_FWB changes the interpretation of stage2 descriptor bits
5899      * HCR_NV and HCR_NV1 affect interpretation of descriptor bits
5900      */
5901     if ((env->cp15.hcr_el2 ^ value) &
5902         (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) {
5903         tlb_flush(CPU(cpu));
5904     }
5905     env->cp15.hcr_el2 = value;
5906 
5907     /*
5908      * Updates to VI and VF require us to update the status of
5909      * virtual interrupts, which are the logical OR of these bits
5910      * and the state of the input lines from the GIC. (This requires
5911      * that we have the BQL, which is done by marking the
5912      * reginfo structs as ARM_CP_IO.)
5913      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5914      * possible for it to be taken immediately, because VIRQ and
5915      * VFIQ are masked unless running at EL0 or EL1, and HCR
5916      * can only be written at EL2.
5917      */
5918     g_assert(bql_locked());
5919     arm_cpu_update_virq(cpu);
5920     arm_cpu_update_vfiq(cpu);
5921     arm_cpu_update_vserr(cpu);
5922 }
5923 
5924 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5925 {
5926     do_hcr_write(env, value, 0);
5927 }
5928 
5929 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5930                           uint64_t value)
5931 {
5932     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5933     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5934     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5935 }
5936 
5937 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5938                          uint64_t value)
5939 {
5940     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5941     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5942     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5943 }
5944 
5945 /*
5946  * Return the effective value of HCR_EL2, at the given security state.
5947  * Bits that are not included here:
5948  * RW       (read from SCR_EL3.RW as needed)
5949  */
5950 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
5951 {
5952     uint64_t ret = env->cp15.hcr_el2;
5953 
5954     assert(space != ARMSS_Root);
5955 
5956     if (!arm_is_el2_enabled_secstate(env, space)) {
5957         /*
5958          * "This register has no effect if EL2 is not enabled in the
5959          * current Security state".  This is ARMv8.4-SecEL2 speak for
5960          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5961          *
5962          * Prior to that, the language was "In an implementation that
5963          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5964          * as if this field is 0 for all purposes other than a direct
5965          * read or write access of HCR_EL2".  With lots of enumeration
5966          * on a per-field basis.  In current QEMU, this is condition
5967          * is arm_is_secure_below_el3.
5968          *
5969          * Since the v8.4 language applies to the entire register, and
5970          * appears to be backward compatible, use that.
5971          */
5972         return 0;
5973     }
5974 
5975     /*
5976      * For a cpu that supports both aarch64 and aarch32, we can set bits
5977      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5978      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5979      */
5980     if (!arm_el_is_aa64(env, 2)) {
5981         uint64_t aa32_valid;
5982 
5983         /*
5984          * These bits are up-to-date as of ARMv8.6.
5985          * For HCR, it's easiest to list just the 2 bits that are invalid.
5986          * For HCR2, list those that are valid.
5987          */
5988         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5989         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5990                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5991         ret &= aa32_valid;
5992     }
5993 
5994     if (ret & HCR_TGE) {
5995         /* These bits are up-to-date as of ARMv8.6.  */
5996         if (ret & HCR_E2H) {
5997             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5998                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5999                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
6000                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
6001                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
6002                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
6003         } else {
6004             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
6005         }
6006         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
6007                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
6008                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
6009                  HCR_TLOR);
6010     }
6011 
6012     return ret;
6013 }
6014 
6015 uint64_t arm_hcr_el2_eff(CPUARMState *env)
6016 {
6017     if (arm_feature(env, ARM_FEATURE_M)) {
6018         return 0;
6019     }
6020     return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
6021 }
6022 
6023 /*
6024  * Corresponds to ARM pseudocode function ELIsInHost().
6025  */
6026 bool el_is_in_host(CPUARMState *env, int el)
6027 {
6028     uint64_t mask;
6029 
6030     /*
6031      * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
6032      * Perform the simplest bit tests first, and validate EL2 afterward.
6033      */
6034     if (el & 1) {
6035         return false; /* EL1 or EL3 */
6036     }
6037 
6038     /*
6039      * Note that hcr_write() checks isar_feature_aa64_vh(),
6040      * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
6041      */
6042     mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
6043     if ((env->cp15.hcr_el2 & mask) != mask) {
6044         return false;
6045     }
6046 
6047     /* TGE and/or E2H set: double check those bits are currently legal. */
6048     return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
6049 }
6050 
6051 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
6052                        uint64_t value)
6053 {
6054     uint64_t valid_mask = 0;
6055 
6056     /* FEAT_MOPS adds MSCEn and MCE2 */
6057     if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6058         valid_mask |= HCRX_MSCEN | HCRX_MCE2;
6059     }
6060 
6061     /* Clear RES0 bits.  */
6062     env->cp15.hcrx_el2 = value & valid_mask;
6063 }
6064 
6065 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
6066                                   bool isread)
6067 {
6068     if (arm_current_el(env) == 2
6069         && arm_feature(env, ARM_FEATURE_EL3)
6070         && !(env->cp15.scr_el3 & SCR_HXEN)) {
6071         return CP_ACCESS_TRAP_EL3;
6072     }
6073     return CP_ACCESS_OK;
6074 }
6075 
6076 static const ARMCPRegInfo hcrx_el2_reginfo = {
6077     .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
6078     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
6079     .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
6080     .nv2_redirect_offset = 0xa0,
6081     .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
6082 };
6083 
6084 /* Return the effective value of HCRX_EL2.  */
6085 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
6086 {
6087     /*
6088      * The bits in this register behave as 0 for all purposes other than
6089      * direct reads of the register if SCR_EL3.HXEn is 0.
6090      * If EL2 is not enabled in the current security state, then the
6091      * bit may behave as if 0, or as if 1, depending on the bit.
6092      * For the moment, we treat the EL2-disabled case as taking
6093      * priority over the HXEn-disabled case. This is true for the only
6094      * bit for a feature which we implement where the answer is different
6095      * for the two cases (MSCEn for FEAT_MOPS).
6096      * This may need to be revisited for future bits.
6097      */
6098     if (!arm_is_el2_enabled(env)) {
6099         uint64_t hcrx = 0;
6100         if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6101             /* MSCEn behaves as 1 if EL2 is not enabled */
6102             hcrx |= HCRX_MSCEN;
6103         }
6104         return hcrx;
6105     }
6106     if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
6107         return 0;
6108     }
6109     return env->cp15.hcrx_el2;
6110 }
6111 
6112 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6113                            uint64_t value)
6114 {
6115     /*
6116      * For A-profile AArch32 EL3, if NSACR.CP10
6117      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6118      */
6119     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6120         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6121         uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6122         value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6123     }
6124     env->cp15.cptr_el[2] = value;
6125 }
6126 
6127 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6128 {
6129     /*
6130      * For A-profile AArch32 EL3, if NSACR.CP10
6131      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6132      */
6133     uint64_t value = env->cp15.cptr_el[2];
6134 
6135     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6136         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6137         value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6138     }
6139     return value;
6140 }
6141 
6142 static const ARMCPRegInfo el2_cp_reginfo[] = {
6143     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6144       .type = ARM_CP_IO,
6145       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6146       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6147       .nv2_redirect_offset = 0x78,
6148       .writefn = hcr_write, .raw_writefn = raw_write },
6149     { .name = "HCR", .state = ARM_CP_STATE_AA32,
6150       .type = ARM_CP_ALIAS | ARM_CP_IO,
6151       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6152       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6153       .writefn = hcr_writelow },
6154     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6155       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6156       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6157     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6158       .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6159       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6160       .access = PL2_RW,
6161       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6162     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6163       .type = ARM_CP_NV2_REDIRECT,
6164       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6165       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6166     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6167       .type = ARM_CP_NV2_REDIRECT,
6168       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6169       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6170     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6171       .type = ARM_CP_ALIAS,
6172       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6173       .access = PL2_RW,
6174       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6175     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6176       .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6177       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6178       .access = PL2_RW,
6179       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6180     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6181       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6182       .access = PL2_RW, .writefn = vbar_write,
6183       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6184       .resetvalue = 0 },
6185     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6186       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6187       .access = PL3_RW, .type = ARM_CP_ALIAS,
6188       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6189     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6190       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6191       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6192       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6193       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6194     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6195       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6196       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6197       .resetvalue = 0 },
6198     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6199       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6200       .access = PL2_RW, .type = ARM_CP_ALIAS,
6201       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6202     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6203       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6204       .access = PL2_RW, .type = ARM_CP_CONST,
6205       .resetvalue = 0 },
6206     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6207     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6208       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6209       .access = PL2_RW, .type = ARM_CP_CONST,
6210       .resetvalue = 0 },
6211     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6212       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6213       .access = PL2_RW, .type = ARM_CP_CONST,
6214       .resetvalue = 0 },
6215     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6216       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6217       .access = PL2_RW, .type = ARM_CP_CONST,
6218       .resetvalue = 0 },
6219     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6220       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6221       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6222       .raw_writefn = raw_write,
6223       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6224     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6225       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6226       .type = ARM_CP_ALIAS,
6227       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6228       .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6229     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6230       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6231       .access = PL2_RW,
6232       .nv2_redirect_offset = 0x40,
6233       /* no .writefn needed as this can't cause an ASID change */
6234       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6235     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6236       .cp = 15, .opc1 = 6, .crm = 2,
6237       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6238       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6239       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6240       .writefn = vttbr_write, .raw_writefn = raw_write },
6241     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6242       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6243       .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6244       .nv2_redirect_offset = 0x20,
6245       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6246     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6247       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6248       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6249       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6250     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6251       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6252       .access = PL2_RW, .resetvalue = 0,
6253       .nv2_redirect_offset = 0x90,
6254       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6255     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6256       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6257       .access = PL2_RW, .resetvalue = 0,
6258       .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6259       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6260     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6261       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6262       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6263     { .name = "TLBIALLNSNH",
6264       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6265       .type = ARM_CP_NO_RAW, .access = PL2_W,
6266       .writefn = tlbiall_nsnh_write },
6267     { .name = "TLBIALLNSNHIS",
6268       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6269       .type = ARM_CP_NO_RAW, .access = PL2_W,
6270       .writefn = tlbiall_nsnh_is_write },
6271     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6272       .type = ARM_CP_NO_RAW, .access = PL2_W,
6273       .writefn = tlbiall_hyp_write },
6274     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6275       .type = ARM_CP_NO_RAW, .access = PL2_W,
6276       .writefn = tlbiall_hyp_is_write },
6277     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6278       .type = ARM_CP_NO_RAW, .access = PL2_W,
6279       .writefn = tlbimva_hyp_write },
6280     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6281       .type = ARM_CP_NO_RAW, .access = PL2_W,
6282       .writefn = tlbimva_hyp_is_write },
6283     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6284       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6285       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6286       .writefn = tlbi_aa64_alle2_write },
6287     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6288       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6289       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6290       .writefn = tlbi_aa64_vae2_write },
6291     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6292       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6293       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6294       .writefn = tlbi_aa64_vae2_write },
6295     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6296       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6297       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6298       .writefn = tlbi_aa64_alle2is_write },
6299     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6300       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6301       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6302       .writefn = tlbi_aa64_vae2is_write },
6303     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6304       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6305       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6306       .writefn = tlbi_aa64_vae2is_write },
6307 #ifndef CONFIG_USER_ONLY
6308     /*
6309      * Unlike the other EL2-related AT operations, these must
6310      * UNDEF from EL3 if EL2 is not implemented, which is why we
6311      * define them here rather than with the rest of the AT ops.
6312      */
6313     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6314       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6315       .access = PL2_W, .accessfn = at_s1e2_access,
6316       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6317       .writefn = ats_write64 },
6318     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6319       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6320       .access = PL2_W, .accessfn = at_s1e2_access,
6321       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6322       .writefn = ats_write64 },
6323     /*
6324      * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6325      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6326      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6327      * to behave as if SCR.NS was 1.
6328      */
6329     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6330       .access = PL2_W,
6331       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6332     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6333       .access = PL2_W,
6334       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6335     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6336       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6337       /*
6338        * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6339        * reset values as IMPDEF. We choose to reset to 3 to comply with
6340        * both ARMv7 and ARMv8.
6341        */
6342       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6343       .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6344       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6345     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6346       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6347       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6348       .writefn = gt_cntvoff_write,
6349       .nv2_redirect_offset = 0x60,
6350       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6351     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6352       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6353       .writefn = gt_cntvoff_write,
6354       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6355     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6356       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6357       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6358       .type = ARM_CP_IO, .access = PL2_RW,
6359       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6360     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6361       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6362       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6363       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6364     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6365       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6366       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6367       .resetfn = gt_hyp_timer_reset,
6368       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6369     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6370       .type = ARM_CP_IO,
6371       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6372       .access = PL2_RW,
6373       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6374       .resetvalue = 0,
6375       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6376 #endif
6377     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6378       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6379       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6380       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6381     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6382       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6383       .access = PL2_RW,
6384       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6385     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6386       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6387       .access = PL2_RW,
6388       .nv2_redirect_offset = 0x80,
6389       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6390 };
6391 
6392 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6393     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6394       .type = ARM_CP_ALIAS | ARM_CP_IO,
6395       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6396       .access = PL2_RW,
6397       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6398       .writefn = hcr_writehigh },
6399 };
6400 
6401 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6402                                   bool isread)
6403 {
6404     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6405         return CP_ACCESS_OK;
6406     }
6407     return CP_ACCESS_TRAP_UNCATEGORIZED;
6408 }
6409 
6410 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6411     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6412       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6413       .access = PL2_RW, .accessfn = sel2_access,
6414       .nv2_redirect_offset = 0x30,
6415       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6416     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6417       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6418       .access = PL2_RW, .accessfn = sel2_access,
6419       .nv2_redirect_offset = 0x48,
6420       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6421 };
6422 
6423 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6424                                    bool isread)
6425 {
6426     /*
6427      * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6428      * At Secure EL1 it traps to EL3 or EL2.
6429      */
6430     if (arm_current_el(env) == 3) {
6431         return CP_ACCESS_OK;
6432     }
6433     if (arm_is_secure_below_el3(env)) {
6434         if (env->cp15.scr_el3 & SCR_EEL2) {
6435             return CP_ACCESS_TRAP_EL2;
6436         }
6437         return CP_ACCESS_TRAP_EL3;
6438     }
6439     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6440     if (isread) {
6441         return CP_ACCESS_OK;
6442     }
6443     return CP_ACCESS_TRAP_UNCATEGORIZED;
6444 }
6445 
6446 static const ARMCPRegInfo el3_cp_reginfo[] = {
6447     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6448       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6449       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6450       .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6451     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6452       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6453       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6454       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6455       .writefn = scr_write, .raw_writefn = raw_write },
6456     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6457       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6458       .access = PL3_RW, .resetvalue = 0,
6459       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6460     { .name = "SDER",
6461       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6462       .access = PL3_RW, .resetvalue = 0,
6463       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6464     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6465       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6466       .writefn = vbar_write, .resetvalue = 0,
6467       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6468     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6469       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6470       .access = PL3_RW, .resetvalue = 0,
6471       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6472     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6473       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6474       .access = PL3_RW,
6475       /* no .writefn needed as this can't cause an ASID change */
6476       .resetvalue = 0,
6477       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6478     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6479       .type = ARM_CP_ALIAS,
6480       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6481       .access = PL3_RW,
6482       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6483     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6484       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6485       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6486     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6487       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6488       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6489     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6490       .type = ARM_CP_ALIAS,
6491       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6492       .access = PL3_RW,
6493       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6494     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6495       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6496       .access = PL3_RW, .writefn = vbar_write,
6497       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6498       .resetvalue = 0 },
6499     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6500       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6501       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6502       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6503     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6504       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6505       .access = PL3_RW, .resetvalue = 0,
6506       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6507     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6508       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6509       .access = PL3_RW, .type = ARM_CP_CONST,
6510       .resetvalue = 0 },
6511     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6512       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6513       .access = PL3_RW, .type = ARM_CP_CONST,
6514       .resetvalue = 0 },
6515     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6516       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6517       .access = PL3_RW, .type = ARM_CP_CONST,
6518       .resetvalue = 0 },
6519     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6520       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6521       .access = PL3_W, .type = ARM_CP_NO_RAW,
6522       .writefn = tlbi_aa64_alle3is_write },
6523     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6524       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6525       .access = PL3_W, .type = ARM_CP_NO_RAW,
6526       .writefn = tlbi_aa64_vae3is_write },
6527     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6528       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6529       .access = PL3_W, .type = ARM_CP_NO_RAW,
6530       .writefn = tlbi_aa64_vae3is_write },
6531     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6532       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6533       .access = PL3_W, .type = ARM_CP_NO_RAW,
6534       .writefn = tlbi_aa64_alle3_write },
6535     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6536       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6537       .access = PL3_W, .type = ARM_CP_NO_RAW,
6538       .writefn = tlbi_aa64_vae3_write },
6539     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6540       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6541       .access = PL3_W, .type = ARM_CP_NO_RAW,
6542       .writefn = tlbi_aa64_vae3_write },
6543 };
6544 
6545 #ifndef CONFIG_USER_ONLY
6546 /* Test if system register redirection is to occur in the current state.  */
6547 static bool redirect_for_e2h(CPUARMState *env)
6548 {
6549     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6550 }
6551 
6552 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6553 {
6554     CPReadFn *readfn;
6555 
6556     if (redirect_for_e2h(env)) {
6557         /* Switch to the saved EL2 version of the register.  */
6558         ri = ri->opaque;
6559         readfn = ri->readfn;
6560     } else {
6561         readfn = ri->orig_readfn;
6562     }
6563     if (readfn == NULL) {
6564         readfn = raw_read;
6565     }
6566     return readfn(env, ri);
6567 }
6568 
6569 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6570                           uint64_t value)
6571 {
6572     CPWriteFn *writefn;
6573 
6574     if (redirect_for_e2h(env)) {
6575         /* Switch to the saved EL2 version of the register.  */
6576         ri = ri->opaque;
6577         writefn = ri->writefn;
6578     } else {
6579         writefn = ri->orig_writefn;
6580     }
6581     if (writefn == NULL) {
6582         writefn = raw_write;
6583     }
6584     writefn(env, ri, value);
6585 }
6586 
6587 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri)
6588 {
6589     /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6590     return ri->orig_readfn(env, ri->opaque);
6591 }
6592 
6593 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri,
6594                               uint64_t value)
6595 {
6596     /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6597     return ri->orig_writefn(env, ri->opaque, value);
6598 }
6599 
6600 static CPAccessResult el2_e2h_e12_access(CPUARMState *env,
6601                                          const ARMCPRegInfo *ri,
6602                                          bool isread)
6603 {
6604     if (arm_current_el(env) == 1) {
6605         /*
6606          * This must be a FEAT_NV access (will either trap or redirect
6607          * to memory). None of the registers with _EL12 aliases want to
6608          * apply their trap controls for this kind of access, so don't
6609          * call the orig_accessfn or do the "UNDEF when E2H is 0" check.
6610          */
6611         return CP_ACCESS_OK;
6612     }
6613     /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */
6614     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6615         return CP_ACCESS_TRAP_UNCATEGORIZED;
6616     }
6617     if (ri->orig_accessfn) {
6618         return ri->orig_accessfn(env, ri->opaque, isread);
6619     }
6620     return CP_ACCESS_OK;
6621 }
6622 
6623 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6624 {
6625     struct E2HAlias {
6626         uint32_t src_key, dst_key, new_key;
6627         const char *src_name, *dst_name, *new_name;
6628         bool (*feature)(const ARMISARegisters *id);
6629     };
6630 
6631 #define K(op0, op1, crn, crm, op2) \
6632     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6633 
6634     static const struct E2HAlias aliases[] = {
6635         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
6636           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6637         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
6638           "CPACR", "CPTR_EL2", "CPACR_EL12" },
6639         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
6640           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6641         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
6642           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6643         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
6644           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6645         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6646           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6647         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6648           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6649         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6650           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6651         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6652           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6653         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6654           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6655         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6656           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6657         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6658           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6659         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6660           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6661         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6662           "VBAR", "VBAR_EL2", "VBAR_EL12" },
6663         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6664           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6665         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6666           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6667 
6668         /*
6669          * Note that redirection of ZCR is mentioned in the description
6670          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6671          * not in the summary table.
6672          */
6673         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6674           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6675         { K(3, 0,  1, 2, 6), K(3, 4,  1, 2, 6), K(3, 5, 1, 2, 6),
6676           "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6677 
6678         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6679           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6680 
6681         { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6682           "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6683           isar_feature_aa64_scxtnum },
6684 
6685         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6686         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6687     };
6688 #undef K
6689 
6690     size_t i;
6691 
6692     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6693         const struct E2HAlias *a = &aliases[i];
6694         ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6695         bool ok;
6696 
6697         if (a->feature && !a->feature(&cpu->isar)) {
6698             continue;
6699         }
6700 
6701         src_reg = g_hash_table_lookup(cpu->cp_regs,
6702                                       (gpointer)(uintptr_t)a->src_key);
6703         dst_reg = g_hash_table_lookup(cpu->cp_regs,
6704                                       (gpointer)(uintptr_t)a->dst_key);
6705         g_assert(src_reg != NULL);
6706         g_assert(dst_reg != NULL);
6707 
6708         /* Cross-compare names to detect typos in the keys.  */
6709         g_assert(strcmp(src_reg->name, a->src_name) == 0);
6710         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6711 
6712         /* None of the core system registers use opaque; we will.  */
6713         g_assert(src_reg->opaque == NULL);
6714 
6715         /* Create alias before redirection so we dup the right data. */
6716         new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6717 
6718         new_reg->name = a->new_name;
6719         new_reg->type |= ARM_CP_ALIAS;
6720         /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6721         new_reg->access &= PL2_RW | PL3_RW;
6722         /* The new_reg op fields are as per new_key, not the target reg */
6723         new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK)
6724             >> CP_REG_ARM64_SYSREG_CRN_SHIFT;
6725         new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK)
6726             >> CP_REG_ARM64_SYSREG_CRM_SHIFT;
6727         new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK)
6728             >> CP_REG_ARM64_SYSREG_OP0_SHIFT;
6729         new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK)
6730             >> CP_REG_ARM64_SYSREG_OP1_SHIFT;
6731         new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK)
6732             >> CP_REG_ARM64_SYSREG_OP2_SHIFT;
6733         new_reg->opaque = src_reg;
6734         new_reg->orig_readfn = src_reg->readfn ?: raw_read;
6735         new_reg->orig_writefn = src_reg->writefn ?: raw_write;
6736         new_reg->orig_accessfn = src_reg->accessfn;
6737         if (!new_reg->raw_readfn) {
6738             new_reg->raw_readfn = raw_read;
6739         }
6740         if (!new_reg->raw_writefn) {
6741             new_reg->raw_writefn = raw_write;
6742         }
6743         new_reg->readfn = el2_e2h_e12_read;
6744         new_reg->writefn = el2_e2h_e12_write;
6745         new_reg->accessfn = el2_e2h_e12_access;
6746 
6747         /*
6748          * If the _EL1 register is redirected to memory by FEAT_NV2,
6749          * then it shares the offset with the _EL12 register,
6750          * and which one is redirected depends on HCR_EL2.NV1.
6751          */
6752         if (new_reg->nv2_redirect_offset) {
6753             assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1);
6754             new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1;
6755             new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1;
6756         }
6757 
6758         ok = g_hash_table_insert(cpu->cp_regs,
6759                                  (gpointer)(uintptr_t)a->new_key, new_reg);
6760         g_assert(ok);
6761 
6762         src_reg->opaque = dst_reg;
6763         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6764         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6765         if (!src_reg->raw_readfn) {
6766             src_reg->raw_readfn = raw_read;
6767         }
6768         if (!src_reg->raw_writefn) {
6769             src_reg->raw_writefn = raw_write;
6770         }
6771         src_reg->readfn = el2_e2h_read;
6772         src_reg->writefn = el2_e2h_write;
6773     }
6774 }
6775 #endif
6776 
6777 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6778                                      bool isread)
6779 {
6780     int cur_el = arm_current_el(env);
6781 
6782     if (cur_el < 2) {
6783         uint64_t hcr = arm_hcr_el2_eff(env);
6784 
6785         if (cur_el == 0) {
6786             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6787                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6788                     return CP_ACCESS_TRAP_EL2;
6789                 }
6790             } else {
6791                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6792                     return CP_ACCESS_TRAP;
6793                 }
6794                 if (hcr & HCR_TID2) {
6795                     return CP_ACCESS_TRAP_EL2;
6796                 }
6797             }
6798         } else if (hcr & HCR_TID2) {
6799             return CP_ACCESS_TRAP_EL2;
6800         }
6801     }
6802 
6803     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6804         return CP_ACCESS_TRAP_EL2;
6805     }
6806 
6807     return CP_ACCESS_OK;
6808 }
6809 
6810 /*
6811  * Check for traps to RAS registers, which are controlled
6812  * by HCR_EL2.TERR and SCR_EL3.TERR.
6813  */
6814 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6815                                   bool isread)
6816 {
6817     int el = arm_current_el(env);
6818 
6819     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6820         return CP_ACCESS_TRAP_EL2;
6821     }
6822     if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6823         return CP_ACCESS_TRAP_EL3;
6824     }
6825     return CP_ACCESS_OK;
6826 }
6827 
6828 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6829 {
6830     int el = arm_current_el(env);
6831 
6832     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6833         return env->cp15.vdisr_el2;
6834     }
6835     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6836         return 0; /* RAZ/WI */
6837     }
6838     return env->cp15.disr_el1;
6839 }
6840 
6841 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6842 {
6843     int el = arm_current_el(env);
6844 
6845     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6846         env->cp15.vdisr_el2 = val;
6847         return;
6848     }
6849     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6850         return; /* RAZ/WI */
6851     }
6852     env->cp15.disr_el1 = val;
6853 }
6854 
6855 /*
6856  * Minimal RAS implementation with no Error Records.
6857  * Which means that all of the Error Record registers:
6858  *   ERXADDR_EL1
6859  *   ERXCTLR_EL1
6860  *   ERXFR_EL1
6861  *   ERXMISC0_EL1
6862  *   ERXMISC1_EL1
6863  *   ERXMISC2_EL1
6864  *   ERXMISC3_EL1
6865  *   ERXPFGCDN_EL1  (RASv1p1)
6866  *   ERXPFGCTL_EL1  (RASv1p1)
6867  *   ERXPFGF_EL1    (RASv1p1)
6868  *   ERXSTATUS_EL1
6869  * and
6870  *   ERRSELR_EL1
6871  * may generate UNDEFINED, which is the effect we get by not
6872  * listing them at all.
6873  *
6874  * These registers have fine-grained trap bits, but UNDEF-to-EL1
6875  * is higher priority than FGT-to-EL2 so we do not need to list them
6876  * in order to check for an FGT.
6877  */
6878 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6879     { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6880       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6881       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6882       .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6883     { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6884       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6885       .access = PL1_R, .accessfn = access_terr,
6886       .fgt = FGT_ERRIDR_EL1,
6887       .type = ARM_CP_CONST, .resetvalue = 0 },
6888     { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6889       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6890       .nv2_redirect_offset = 0x500,
6891       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6892     { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6893       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6894       .nv2_redirect_offset = 0x508,
6895       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6896 };
6897 
6898 /*
6899  * Return the exception level to which exceptions should be taken
6900  * via SVEAccessTrap.  This excludes the check for whether the exception
6901  * should be routed through AArch64.AdvSIMDFPAccessTrap.  That can easily
6902  * be found by testing 0 < fp_exception_el < sve_exception_el.
6903  *
6904  * C.f. the ARM pseudocode function CheckSVEEnabled.  Note that the
6905  * pseudocode does *not* separate out the FP trap checks, but has them
6906  * all in one function.
6907  */
6908 int sve_exception_el(CPUARMState *env, int el)
6909 {
6910 #ifndef CONFIG_USER_ONLY
6911     if (el <= 1 && !el_is_in_host(env, el)) {
6912         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6913         case 1:
6914             if (el != 0) {
6915                 break;
6916             }
6917             /* fall through */
6918         case 0:
6919         case 2:
6920             return 1;
6921         }
6922     }
6923 
6924     if (el <= 2 && arm_is_el2_enabled(env)) {
6925         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6926         if (env->cp15.hcr_el2 & HCR_E2H) {
6927             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6928             case 1:
6929                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6930                     break;
6931                 }
6932                 /* fall through */
6933             case 0:
6934             case 2:
6935                 return 2;
6936             }
6937         } else {
6938             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6939                 return 2;
6940             }
6941         }
6942     }
6943 
6944     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6945     if (arm_feature(env, ARM_FEATURE_EL3)
6946         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6947         return 3;
6948     }
6949 #endif
6950     return 0;
6951 }
6952 
6953 /*
6954  * Return the exception level to which exceptions should be taken for SME.
6955  * C.f. the ARM pseudocode function CheckSMEAccess.
6956  */
6957 int sme_exception_el(CPUARMState *env, int el)
6958 {
6959 #ifndef CONFIG_USER_ONLY
6960     if (el <= 1 && !el_is_in_host(env, el)) {
6961         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6962         case 1:
6963             if (el != 0) {
6964                 break;
6965             }
6966             /* fall through */
6967         case 0:
6968         case 2:
6969             return 1;
6970         }
6971     }
6972 
6973     if (el <= 2 && arm_is_el2_enabled(env)) {
6974         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6975         if (env->cp15.hcr_el2 & HCR_E2H) {
6976             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6977             case 1:
6978                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6979                     break;
6980                 }
6981                 /* fall through */
6982             case 0:
6983             case 2:
6984                 return 2;
6985             }
6986         } else {
6987             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6988                 return 2;
6989             }
6990         }
6991     }
6992 
6993     /* CPTR_EL3.  Since ESM is negative we must check for EL3.  */
6994     if (arm_feature(env, ARM_FEATURE_EL3)
6995         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6996         return 3;
6997     }
6998 #endif
6999     return 0;
7000 }
7001 
7002 /*
7003  * Given that SVE is enabled, return the vector length for EL.
7004  */
7005 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
7006 {
7007     ARMCPU *cpu = env_archcpu(env);
7008     uint64_t *cr = env->vfp.zcr_el;
7009     uint32_t map = cpu->sve_vq.map;
7010     uint32_t len = ARM_MAX_VQ - 1;
7011 
7012     if (sm) {
7013         cr = env->vfp.smcr_el;
7014         map = cpu->sme_vq.map;
7015     }
7016 
7017     if (el <= 1 && !el_is_in_host(env, el)) {
7018         len = MIN(len, 0xf & (uint32_t)cr[1]);
7019     }
7020     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7021         len = MIN(len, 0xf & (uint32_t)cr[2]);
7022     }
7023     if (arm_feature(env, ARM_FEATURE_EL3)) {
7024         len = MIN(len, 0xf & (uint32_t)cr[3]);
7025     }
7026 
7027     map &= MAKE_64BIT_MASK(0, len + 1);
7028     if (map != 0) {
7029         return 31 - clz32(map);
7030     }
7031 
7032     /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
7033     assert(sm);
7034     return ctz32(cpu->sme_vq.map);
7035 }
7036 
7037 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
7038 {
7039     return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
7040 }
7041 
7042 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7043                       uint64_t value)
7044 {
7045     int cur_el = arm_current_el(env);
7046     int old_len = sve_vqm1_for_el(env, cur_el);
7047     int new_len;
7048 
7049     /* Bits other than [3:0] are RAZ/WI.  */
7050     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
7051     raw_write(env, ri, value & 0xf);
7052 
7053     /*
7054      * Because we arrived here, we know both FP and SVE are enabled;
7055      * otherwise we would have trapped access to the ZCR_ELn register.
7056      */
7057     new_len = sve_vqm1_for_el(env, cur_el);
7058     if (new_len < old_len) {
7059         aarch64_sve_narrow_vq(env, new_len + 1);
7060     }
7061 }
7062 
7063 static const ARMCPRegInfo zcr_reginfo[] = {
7064     { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
7065       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
7066       .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1,
7067       .access = PL1_RW, .type = ARM_CP_SVE,
7068       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
7069       .writefn = zcr_write, .raw_writefn = raw_write },
7070     { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
7071       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
7072       .access = PL2_RW, .type = ARM_CP_SVE,
7073       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
7074       .writefn = zcr_write, .raw_writefn = raw_write },
7075     { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
7076       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
7077       .access = PL3_RW, .type = ARM_CP_SVE,
7078       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
7079       .writefn = zcr_write, .raw_writefn = raw_write },
7080 };
7081 
7082 #ifdef TARGET_AARCH64
7083 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
7084                                     bool isread)
7085 {
7086     int el = arm_current_el(env);
7087 
7088     if (el == 0) {
7089         uint64_t sctlr = arm_sctlr(env, el);
7090         if (!(sctlr & SCTLR_EnTP2)) {
7091             return CP_ACCESS_TRAP;
7092         }
7093     }
7094     /* TODO: FEAT_FGT */
7095     if (el < 3
7096         && arm_feature(env, ARM_FEATURE_EL3)
7097         && !(env->cp15.scr_el3 & SCR_ENTP2)) {
7098         return CP_ACCESS_TRAP_EL3;
7099     }
7100     return CP_ACCESS_OK;
7101 }
7102 
7103 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri,
7104                                       bool isread)
7105 {
7106     /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */
7107     if (arm_current_el(env) == 2
7108         && arm_feature(env, ARM_FEATURE_EL3)
7109         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7110         return CP_ACCESS_TRAP_EL3;
7111     }
7112     return CP_ACCESS_OK;
7113 }
7114 
7115 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri,
7116                                    bool isread)
7117 {
7118     if (arm_current_el(env) < 3
7119         && arm_feature(env, ARM_FEATURE_EL3)
7120         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7121         return CP_ACCESS_TRAP_EL3;
7122     }
7123     return CP_ACCESS_OK;
7124 }
7125 
7126 /* ResetSVEState */
7127 static void arm_reset_sve_state(CPUARMState *env)
7128 {
7129     memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
7130     /* Recall that FFR is stored as pregs[16]. */
7131     memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
7132     vfp_set_fpcr(env, 0x0800009f);
7133 }
7134 
7135 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
7136 {
7137     uint64_t change = (env->svcr ^ new) & mask;
7138 
7139     if (change == 0) {
7140         return;
7141     }
7142     env->svcr ^= change;
7143 
7144     if (change & R_SVCR_SM_MASK) {
7145         arm_reset_sve_state(env);
7146     }
7147 
7148     /*
7149      * ResetSMEState.
7150      *
7151      * SetPSTATE_ZA zeros on enable and disable.  We can zero this only
7152      * on enable: while disabled, the storage is inaccessible and the
7153      * value does not matter.  We're not saving the storage in vmstate
7154      * when disabled either.
7155      */
7156     if (change & new & R_SVCR_ZA_MASK) {
7157         memset(env->zarray, 0, sizeof(env->zarray));
7158     }
7159 
7160     if (tcg_enabled()) {
7161         arm_rebuild_hflags(env);
7162     }
7163 }
7164 
7165 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7166                        uint64_t value)
7167 {
7168     aarch64_set_svcr(env, value, -1);
7169 }
7170 
7171 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7172                        uint64_t value)
7173 {
7174     int cur_el = arm_current_el(env);
7175     int old_len = sve_vqm1_for_el(env, cur_el);
7176     int new_len;
7177 
7178     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
7179     value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
7180     raw_write(env, ri, value);
7181 
7182     /*
7183      * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
7184      * when SVL is widened (old values kept, or zeros).  Choose to keep the
7185      * current values for simplicity.  But for QEMU internals, we must still
7186      * apply the narrower SVL to the Zregs and Pregs -- see the comment
7187      * above aarch64_sve_narrow_vq.
7188      */
7189     new_len = sve_vqm1_for_el(env, cur_el);
7190     if (new_len < old_len) {
7191         aarch64_sve_narrow_vq(env, new_len + 1);
7192     }
7193 }
7194 
7195 static const ARMCPRegInfo sme_reginfo[] = {
7196     { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7197       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7198       .access = PL0_RW, .accessfn = access_tpidr2,
7199       .fgt = FGT_NTPIDR2_EL0,
7200       .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7201     { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7202       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7203       .access = PL0_RW, .type = ARM_CP_SME,
7204       .fieldoffset = offsetof(CPUARMState, svcr),
7205       .writefn = svcr_write, .raw_writefn = raw_write },
7206     { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7207       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7208       .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1,
7209       .access = PL1_RW, .type = ARM_CP_SME,
7210       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7211       .writefn = smcr_write, .raw_writefn = raw_write },
7212     { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7213       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7214       .access = PL2_RW, .type = ARM_CP_SME,
7215       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7216       .writefn = smcr_write, .raw_writefn = raw_write },
7217     { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7218       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7219       .access = PL3_RW, .type = ARM_CP_SME,
7220       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7221       .writefn = smcr_write, .raw_writefn = raw_write },
7222     { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7223       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7224       .access = PL1_R, .accessfn = access_aa64_tid1,
7225       /*
7226        * IMPLEMENTOR = 0 (software)
7227        * REVISION    = 0 (implementation defined)
7228        * SMPS        = 0 (no streaming execution priority in QEMU)
7229        * AFFINITY    = 0 (streaming sve mode not shared with other PEs)
7230        */
7231       .type = ARM_CP_CONST, .resetvalue = 0, },
7232     /*
7233      * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7234      */
7235     { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7236       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7237       .access = PL1_RW, .accessfn = access_smpri,
7238       .fgt = FGT_NSMPRI_EL1,
7239       .type = ARM_CP_CONST, .resetvalue = 0 },
7240     { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7241       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7242       .nv2_redirect_offset = 0x1f8,
7243       .access = PL2_RW, .accessfn = access_smprimap,
7244       .type = ARM_CP_CONST, .resetvalue = 0 },
7245 };
7246 
7247 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7248                                   uint64_t value)
7249 {
7250     CPUState *cs = env_cpu(env);
7251 
7252     tlb_flush(cs);
7253 }
7254 
7255 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7256                         uint64_t value)
7257 {
7258     /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7259     uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7260         R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7261         R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7262 
7263     env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7264 }
7265 
7266 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7267 {
7268     env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7269                                      env_archcpu(env)->reset_l0gptsz);
7270 }
7271 
7272 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7273                                     uint64_t value)
7274 {
7275     CPUState *cs = env_cpu(env);
7276 
7277     tlb_flush_all_cpus_synced(cs);
7278 }
7279 
7280 static const ARMCPRegInfo rme_reginfo[] = {
7281     { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7282       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7283       .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7284       .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7285     { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7286       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7287       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7288     { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7289       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7290       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7291     { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7292       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7293       .access = PL3_W, .type = ARM_CP_NO_RAW,
7294       .writefn = tlbi_aa64_paall_write },
7295     { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7296       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7297       .access = PL3_W, .type = ARM_CP_NO_RAW,
7298       .writefn = tlbi_aa64_paallos_write },
7299     /*
7300      * QEMU does not have a way to invalidate by physical address, thus
7301      * invalidating a range of physical addresses is accomplished by
7302      * flushing all tlb entries in the outer shareable domain,
7303      * just like PAALLOS.
7304      */
7305     { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7306       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7307       .access = PL3_W, .type = ARM_CP_NO_RAW,
7308       .writefn = tlbi_aa64_paallos_write },
7309     { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7310       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7311       .access = PL3_W, .type = ARM_CP_NO_RAW,
7312       .writefn = tlbi_aa64_paallos_write },
7313     { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7314       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7315       .access = PL3_W, .type = ARM_CP_NOP },
7316 };
7317 
7318 static const ARMCPRegInfo rme_mte_reginfo[] = {
7319     { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7320       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7321       .access = PL3_W, .type = ARM_CP_NOP },
7322 };
7323 #endif /* TARGET_AARCH64 */
7324 
7325 static void define_pmu_regs(ARMCPU *cpu)
7326 {
7327     /*
7328      * v7 performance monitor control register: same implementor
7329      * field as main ID register, and we implement four counters in
7330      * addition to the cycle count register.
7331      */
7332     unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7333     ARMCPRegInfo pmcr = {
7334         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7335         .access = PL0_RW,
7336         .fgt = FGT_PMCR_EL0,
7337         .type = ARM_CP_IO | ARM_CP_ALIAS,
7338         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7339         .accessfn = pmreg_access,
7340         .readfn = pmcr_read, .raw_readfn = raw_read,
7341         .writefn = pmcr_write, .raw_writefn = raw_write,
7342     };
7343     ARMCPRegInfo pmcr64 = {
7344         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7345         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7346         .access = PL0_RW, .accessfn = pmreg_access,
7347         .fgt = FGT_PMCR_EL0,
7348         .type = ARM_CP_IO,
7349         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7350         .resetvalue = cpu->isar.reset_pmcr_el0,
7351         .readfn = pmcr_read, .raw_readfn = raw_read,
7352         .writefn = pmcr_write, .raw_writefn = raw_write,
7353     };
7354 
7355     define_one_arm_cp_reg(cpu, &pmcr);
7356     define_one_arm_cp_reg(cpu, &pmcr64);
7357     for (i = 0; i < pmcrn; i++) {
7358         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7359         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7360         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7361         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7362         ARMCPRegInfo pmev_regs[] = {
7363             { .name = pmevcntr_name, .cp = 15, .crn = 14,
7364               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7365               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7366               .fgt = FGT_PMEVCNTRN_EL0,
7367               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7368               .accessfn = pmreg_access_xevcntr },
7369             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7370               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7371               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7372               .type = ARM_CP_IO,
7373               .fgt = FGT_PMEVCNTRN_EL0,
7374               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7375               .raw_readfn = pmevcntr_rawread,
7376               .raw_writefn = pmevcntr_rawwrite },
7377             { .name = pmevtyper_name, .cp = 15, .crn = 14,
7378               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7379               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7380               .fgt = FGT_PMEVTYPERN_EL0,
7381               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7382               .accessfn = pmreg_access },
7383             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7384               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7385               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7386               .fgt = FGT_PMEVTYPERN_EL0,
7387               .type = ARM_CP_IO,
7388               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7389               .raw_writefn = pmevtyper_rawwrite },
7390         };
7391         define_arm_cp_regs(cpu, pmev_regs);
7392         g_free(pmevcntr_name);
7393         g_free(pmevcntr_el0_name);
7394         g_free(pmevtyper_name);
7395         g_free(pmevtyper_el0_name);
7396     }
7397     if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7398         ARMCPRegInfo v81_pmu_regs[] = {
7399             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7400               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7401               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7402               .fgt = FGT_PMCEIDN_EL0,
7403               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7404             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7405               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7406               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7407               .fgt = FGT_PMCEIDN_EL0,
7408               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7409         };
7410         define_arm_cp_regs(cpu, v81_pmu_regs);
7411     }
7412     if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7413         static const ARMCPRegInfo v84_pmmir = {
7414             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7415             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7416             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7417             .fgt = FGT_PMMIR_EL1,
7418             .resetvalue = 0
7419         };
7420         define_one_arm_cp_reg(cpu, &v84_pmmir);
7421     }
7422 }
7423 
7424 #ifndef CONFIG_USER_ONLY
7425 /*
7426  * We don't know until after realize whether there's a GICv3
7427  * attached, and that is what registers the gicv3 sysregs.
7428  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7429  * at runtime.
7430  */
7431 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7432 {
7433     ARMCPU *cpu = env_archcpu(env);
7434     uint64_t pfr1 = cpu->isar.id_pfr1;
7435 
7436     if (env->gicv3state) {
7437         pfr1 |= 1 << 28;
7438     }
7439     return pfr1;
7440 }
7441 
7442 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7443 {
7444     ARMCPU *cpu = env_archcpu(env);
7445     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7446 
7447     if (env->gicv3state) {
7448         pfr0 |= 1 << 24;
7449     }
7450     return pfr0;
7451 }
7452 #endif
7453 
7454 /*
7455  * Shared logic between LORID and the rest of the LOR* registers.
7456  * Secure state exclusion has already been dealt with.
7457  */
7458 static CPAccessResult access_lor_ns(CPUARMState *env,
7459                                     const ARMCPRegInfo *ri, bool isread)
7460 {
7461     int el = arm_current_el(env);
7462 
7463     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7464         return CP_ACCESS_TRAP_EL2;
7465     }
7466     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7467         return CP_ACCESS_TRAP_EL3;
7468     }
7469     return CP_ACCESS_OK;
7470 }
7471 
7472 static CPAccessResult access_lor_other(CPUARMState *env,
7473                                        const ARMCPRegInfo *ri, bool isread)
7474 {
7475     if (arm_is_secure_below_el3(env)) {
7476         /* Access denied in secure mode.  */
7477         return CP_ACCESS_TRAP;
7478     }
7479     return access_lor_ns(env, ri, isread);
7480 }
7481 
7482 /*
7483  * A trivial implementation of ARMv8.1-LOR leaves all of these
7484  * registers fixed at 0, which indicates that there are zero
7485  * supported Limited Ordering regions.
7486  */
7487 static const ARMCPRegInfo lor_reginfo[] = {
7488     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7489       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7490       .access = PL1_RW, .accessfn = access_lor_other,
7491       .fgt = FGT_LORSA_EL1,
7492       .type = ARM_CP_CONST, .resetvalue = 0 },
7493     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7494       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7495       .access = PL1_RW, .accessfn = access_lor_other,
7496       .fgt = FGT_LOREA_EL1,
7497       .type = ARM_CP_CONST, .resetvalue = 0 },
7498     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7499       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7500       .access = PL1_RW, .accessfn = access_lor_other,
7501       .fgt = FGT_LORN_EL1,
7502       .type = ARM_CP_CONST, .resetvalue = 0 },
7503     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7504       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7505       .access = PL1_RW, .accessfn = access_lor_other,
7506       .fgt = FGT_LORC_EL1,
7507       .type = ARM_CP_CONST, .resetvalue = 0 },
7508     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7509       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7510       .access = PL1_R, .accessfn = access_lor_ns,
7511       .fgt = FGT_LORID_EL1,
7512       .type = ARM_CP_CONST, .resetvalue = 0 },
7513 };
7514 
7515 #ifdef TARGET_AARCH64
7516 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7517                                    bool isread)
7518 {
7519     int el = arm_current_el(env);
7520 
7521     if (el < 2 &&
7522         arm_is_el2_enabled(env) &&
7523         !(arm_hcr_el2_eff(env) & HCR_APK)) {
7524         return CP_ACCESS_TRAP_EL2;
7525     }
7526     if (el < 3 &&
7527         arm_feature(env, ARM_FEATURE_EL3) &&
7528         !(env->cp15.scr_el3 & SCR_APK)) {
7529         return CP_ACCESS_TRAP_EL3;
7530     }
7531     return CP_ACCESS_OK;
7532 }
7533 
7534 static const ARMCPRegInfo pauth_reginfo[] = {
7535     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7536       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7537       .access = PL1_RW, .accessfn = access_pauth,
7538       .fgt = FGT_APDAKEY,
7539       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7540     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7541       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7542       .access = PL1_RW, .accessfn = access_pauth,
7543       .fgt = FGT_APDAKEY,
7544       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7545     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7546       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7547       .access = PL1_RW, .accessfn = access_pauth,
7548       .fgt = FGT_APDBKEY,
7549       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7550     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7551       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7552       .access = PL1_RW, .accessfn = access_pauth,
7553       .fgt = FGT_APDBKEY,
7554       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7555     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7556       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7557       .access = PL1_RW, .accessfn = access_pauth,
7558       .fgt = FGT_APGAKEY,
7559       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7560     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7561       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7562       .access = PL1_RW, .accessfn = access_pauth,
7563       .fgt = FGT_APGAKEY,
7564       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7565     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7566       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7567       .access = PL1_RW, .accessfn = access_pauth,
7568       .fgt = FGT_APIAKEY,
7569       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7570     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7571       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7572       .access = PL1_RW, .accessfn = access_pauth,
7573       .fgt = FGT_APIAKEY,
7574       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7575     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7576       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7577       .access = PL1_RW, .accessfn = access_pauth,
7578       .fgt = FGT_APIBKEY,
7579       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7580     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7581       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7582       .access = PL1_RW, .accessfn = access_pauth,
7583       .fgt = FGT_APIBKEY,
7584       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7585 };
7586 
7587 static const ARMCPRegInfo tlbirange_reginfo[] = {
7588     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7589       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7590       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7591       .fgt = FGT_TLBIRVAE1IS,
7592       .writefn = tlbi_aa64_rvae1is_write },
7593     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7594       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7595       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7596       .fgt = FGT_TLBIRVAAE1IS,
7597       .writefn = tlbi_aa64_rvae1is_write },
7598    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7599       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7600       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7601       .fgt = FGT_TLBIRVALE1IS,
7602       .writefn = tlbi_aa64_rvae1is_write },
7603     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7604       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7605       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7606       .fgt = FGT_TLBIRVAALE1IS,
7607       .writefn = tlbi_aa64_rvae1is_write },
7608     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7609       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7610       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7611       .fgt = FGT_TLBIRVAE1OS,
7612       .writefn = tlbi_aa64_rvae1is_write },
7613     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7614       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7615       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7616       .fgt = FGT_TLBIRVAAE1OS,
7617       .writefn = tlbi_aa64_rvae1is_write },
7618    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7619       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7620       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7621       .fgt = FGT_TLBIRVALE1OS,
7622       .writefn = tlbi_aa64_rvae1is_write },
7623     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7624       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7625       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7626       .fgt = FGT_TLBIRVAALE1OS,
7627       .writefn = tlbi_aa64_rvae1is_write },
7628     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7629       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7630       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7631       .fgt = FGT_TLBIRVAE1,
7632       .writefn = tlbi_aa64_rvae1_write },
7633     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7634       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7635       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7636       .fgt = FGT_TLBIRVAAE1,
7637       .writefn = tlbi_aa64_rvae1_write },
7638    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7639       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7640       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7641       .fgt = FGT_TLBIRVALE1,
7642       .writefn = tlbi_aa64_rvae1_write },
7643     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7644       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7645       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7646       .fgt = FGT_TLBIRVAALE1,
7647       .writefn = tlbi_aa64_rvae1_write },
7648     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7649       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7650       .access = PL2_W, .type = ARM_CP_NO_RAW,
7651       .writefn = tlbi_aa64_ripas2e1is_write },
7652     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7653       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7654       .access = PL2_W, .type = ARM_CP_NO_RAW,
7655       .writefn = tlbi_aa64_ripas2e1is_write },
7656     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7657       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7658       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7659       .writefn = tlbi_aa64_rvae2is_write },
7660    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7661       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7662       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7663       .writefn = tlbi_aa64_rvae2is_write },
7664     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7665       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7666       .access = PL2_W, .type = ARM_CP_NO_RAW,
7667       .writefn = tlbi_aa64_ripas2e1_write },
7668     { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7669       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7670       .access = PL2_W, .type = ARM_CP_NO_RAW,
7671       .writefn = tlbi_aa64_ripas2e1_write },
7672    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7673       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7674       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7675       .writefn = tlbi_aa64_rvae2is_write },
7676    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7677       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7678       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7679       .writefn = tlbi_aa64_rvae2is_write },
7680     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7681       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7682       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7683       .writefn = tlbi_aa64_rvae2_write },
7684    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7685       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7686       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7687       .writefn = tlbi_aa64_rvae2_write },
7688    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7689       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7690       .access = PL3_W, .type = ARM_CP_NO_RAW,
7691       .writefn = tlbi_aa64_rvae3is_write },
7692    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7693       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7694       .access = PL3_W, .type = ARM_CP_NO_RAW,
7695       .writefn = tlbi_aa64_rvae3is_write },
7696    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7697       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7698       .access = PL3_W, .type = ARM_CP_NO_RAW,
7699       .writefn = tlbi_aa64_rvae3is_write },
7700    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7701       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7702       .access = PL3_W, .type = ARM_CP_NO_RAW,
7703       .writefn = tlbi_aa64_rvae3is_write },
7704    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7705       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7706       .access = PL3_W, .type = ARM_CP_NO_RAW,
7707       .writefn = tlbi_aa64_rvae3_write },
7708    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7709       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7710       .access = PL3_W, .type = ARM_CP_NO_RAW,
7711       .writefn = tlbi_aa64_rvae3_write },
7712 };
7713 
7714 static const ARMCPRegInfo tlbios_reginfo[] = {
7715     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7716       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7717       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7718       .fgt = FGT_TLBIVMALLE1OS,
7719       .writefn = tlbi_aa64_vmalle1is_write },
7720     { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7721       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7722       .fgt = FGT_TLBIVAE1OS,
7723       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7724       .writefn = tlbi_aa64_vae1is_write },
7725     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7726       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7727       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7728       .fgt = FGT_TLBIASIDE1OS,
7729       .writefn = tlbi_aa64_vmalle1is_write },
7730     { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7731       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7732       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7733       .fgt = FGT_TLBIVAAE1OS,
7734       .writefn = tlbi_aa64_vae1is_write },
7735     { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7736       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7737       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7738       .fgt = FGT_TLBIVALE1OS,
7739       .writefn = tlbi_aa64_vae1is_write },
7740     { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7741       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7742       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7743       .fgt = FGT_TLBIVAALE1OS,
7744       .writefn = tlbi_aa64_vae1is_write },
7745     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7746       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7747       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7748       .writefn = tlbi_aa64_alle2is_write },
7749     { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7750       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7751       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7752       .writefn = tlbi_aa64_vae2is_write },
7753    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7754       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7755       .access = PL2_W, .type = ARM_CP_NO_RAW,
7756       .writefn = tlbi_aa64_alle1is_write },
7757     { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7758       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7759       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7760       .writefn = tlbi_aa64_vae2is_write },
7761     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7762       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7763       .access = PL2_W, .type = ARM_CP_NO_RAW,
7764       .writefn = tlbi_aa64_alle1is_write },
7765     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7766       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7767       .access = PL2_W, .type = ARM_CP_NOP },
7768     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7769       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7770       .access = PL2_W, .type = ARM_CP_NOP },
7771     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7772       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7773       .access = PL2_W, .type = ARM_CP_NOP },
7774     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7775       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7776       .access = PL2_W, .type = ARM_CP_NOP },
7777     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7778       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7779       .access = PL3_W, .type = ARM_CP_NO_RAW,
7780       .writefn = tlbi_aa64_alle3is_write },
7781     { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7782       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7783       .access = PL3_W, .type = ARM_CP_NO_RAW,
7784       .writefn = tlbi_aa64_vae3is_write },
7785     { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7786       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7787       .access = PL3_W, .type = ARM_CP_NO_RAW,
7788       .writefn = tlbi_aa64_vae3is_write },
7789 };
7790 
7791 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7792 {
7793     Error *err = NULL;
7794     uint64_t ret;
7795 
7796     /* Success sets NZCV = 0000.  */
7797     env->NF = env->CF = env->VF = 0, env->ZF = 1;
7798 
7799     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7800         /*
7801          * ??? Failed, for unknown reasons in the crypto subsystem.
7802          * The best we can do is log the reason and return the
7803          * timed-out indication to the guest.  There is no reason
7804          * we know to expect this failure to be transitory, so the
7805          * guest may well hang retrying the operation.
7806          */
7807         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7808                       ri->name, error_get_pretty(err));
7809         error_free(err);
7810 
7811         env->ZF = 0; /* NZCF = 0100 */
7812         return 0;
7813     }
7814     return ret;
7815 }
7816 
7817 /* We do not support re-seeding, so the two registers operate the same.  */
7818 static const ARMCPRegInfo rndr_reginfo[] = {
7819     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7820       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7821       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7822       .access = PL0_R, .readfn = rndr_readfn },
7823     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7824       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7825       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7826       .access = PL0_R, .readfn = rndr_readfn },
7827 };
7828 
7829 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7830                           uint64_t value)
7831 {
7832 #ifdef CONFIG_TCG
7833     ARMCPU *cpu = env_archcpu(env);
7834     /* CTR_EL0 System register -> DminLine, bits [19:16] */
7835     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7836     uint64_t vaddr_in = (uint64_t) value;
7837     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7838     void *haddr;
7839     int mem_idx = cpu_mmu_index(env, false);
7840 
7841     /* This won't be crossing page boundaries */
7842     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7843     if (haddr) {
7844 #ifndef CONFIG_USER_ONLY
7845 
7846         ram_addr_t offset;
7847         MemoryRegion *mr;
7848 
7849         /* RCU lock is already being held */
7850         mr = memory_region_from_host(haddr, &offset);
7851 
7852         if (mr) {
7853             memory_region_writeback(mr, offset, dline_size);
7854         }
7855 #endif /*CONFIG_USER_ONLY*/
7856     }
7857 #else
7858     /* Handled by hardware accelerator. */
7859     g_assert_not_reached();
7860 #endif /* CONFIG_TCG */
7861 }
7862 
7863 static const ARMCPRegInfo dcpop_reg[] = {
7864     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7865       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7866       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7867       .fgt = FGT_DCCVAP,
7868       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7869 };
7870 
7871 static const ARMCPRegInfo dcpodp_reg[] = {
7872     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7873       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7874       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7875       .fgt = FGT_DCCVADP,
7876       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7877 };
7878 
7879 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7880                                        bool isread)
7881 {
7882     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7883         return CP_ACCESS_TRAP_EL2;
7884     }
7885 
7886     return CP_ACCESS_OK;
7887 }
7888 
7889 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7890                                  bool isread)
7891 {
7892     int el = arm_current_el(env);
7893     if (el < 2 && arm_is_el2_enabled(env)) {
7894         uint64_t hcr = arm_hcr_el2_eff(env);
7895         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7896             return CP_ACCESS_TRAP_EL2;
7897         }
7898     }
7899     if (el < 3 &&
7900         arm_feature(env, ARM_FEATURE_EL3) &&
7901         !(env->cp15.scr_el3 & SCR_ATA)) {
7902         return CP_ACCESS_TRAP_EL3;
7903     }
7904     return CP_ACCESS_OK;
7905 }
7906 
7907 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri,
7908                                       bool isread)
7909 {
7910     CPAccessResult nv1 = access_nv1(env, ri, isread);
7911 
7912     if (nv1 != CP_ACCESS_OK) {
7913         return nv1;
7914     }
7915     return access_mte(env, ri, isread);
7916 }
7917 
7918 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri,
7919                                       bool isread)
7920 {
7921     /*
7922      * TFSR_EL2: similar to generic access_mte(), but we need to
7923      * account for FEAT_NV. At EL1 this must be a FEAT_NV access;
7924      * if NV2 is enabled then we will redirect this to TFSR_EL1
7925      * after doing the HCR and SCR ATA traps; otherwise this will
7926      * be a trap to EL2 and the HCR/SCR traps do not apply.
7927      */
7928     int el = arm_current_el(env);
7929 
7930     if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) {
7931         return CP_ACCESS_OK;
7932     }
7933     if (el < 2 && arm_is_el2_enabled(env)) {
7934         uint64_t hcr = arm_hcr_el2_eff(env);
7935         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7936             return CP_ACCESS_TRAP_EL2;
7937         }
7938     }
7939     if (el < 3 &&
7940         arm_feature(env, ARM_FEATURE_EL3) &&
7941         !(env->cp15.scr_el3 & SCR_ATA)) {
7942         return CP_ACCESS_TRAP_EL3;
7943     }
7944     return CP_ACCESS_OK;
7945 }
7946 
7947 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7948 {
7949     return env->pstate & PSTATE_TCO;
7950 }
7951 
7952 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7953 {
7954     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7955 }
7956 
7957 static const ARMCPRegInfo mte_reginfo[] = {
7958     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7959       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7960       .access = PL1_RW, .accessfn = access_mte,
7961       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7962     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7963       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7964       .access = PL1_RW, .accessfn = access_tfsr_el1,
7965       .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1,
7966       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7967     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7968       .type = ARM_CP_NV2_REDIRECT,
7969       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7970       .access = PL2_RW, .accessfn = access_tfsr_el2,
7971       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7972     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7973       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7974       .access = PL3_RW,
7975       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7976     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7977       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7978       .access = PL1_RW, .accessfn = access_mte,
7979       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7980     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7981       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7982       .access = PL1_RW, .accessfn = access_mte,
7983       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7984     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7985       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7986       .type = ARM_CP_NO_RAW,
7987       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7988     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7989       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7990       .type = ARM_CP_NOP, .access = PL1_W,
7991       .fgt = FGT_DCIVAC,
7992       .accessfn = aa64_cacheop_poc_access },
7993     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7994       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7995       .fgt = FGT_DCISW,
7996       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7997     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7998       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7999       .type = ARM_CP_NOP, .access = PL1_W,
8000       .fgt = FGT_DCIVAC,
8001       .accessfn = aa64_cacheop_poc_access },
8002     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
8003       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
8004       .fgt = FGT_DCISW,
8005       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8006     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
8007       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
8008       .fgt = FGT_DCCSW,
8009       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8010     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
8011       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
8012       .fgt = FGT_DCCSW,
8013       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8014     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
8015       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
8016       .fgt = FGT_DCCISW,
8017       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8018     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
8019       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
8020       .fgt = FGT_DCCISW,
8021       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8022 };
8023 
8024 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
8025     { .name = "TCO", .state = ARM_CP_STATE_AA64,
8026       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8027       .type = ARM_CP_CONST, .access = PL0_RW, },
8028 };
8029 
8030 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
8031     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
8032       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
8033       .type = ARM_CP_NOP, .access = PL0_W,
8034       .fgt = FGT_DCCVAC,
8035       .accessfn = aa64_cacheop_poc_access },
8036     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
8037       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
8038       .type = ARM_CP_NOP, .access = PL0_W,
8039       .fgt = FGT_DCCVAC,
8040       .accessfn = aa64_cacheop_poc_access },
8041     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
8042       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
8043       .type = ARM_CP_NOP, .access = PL0_W,
8044       .fgt = FGT_DCCVAP,
8045       .accessfn = aa64_cacheop_poc_access },
8046     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
8047       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
8048       .type = ARM_CP_NOP, .access = PL0_W,
8049       .fgt = FGT_DCCVAP,
8050       .accessfn = aa64_cacheop_poc_access },
8051     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
8052       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
8053       .type = ARM_CP_NOP, .access = PL0_W,
8054       .fgt = FGT_DCCVADP,
8055       .accessfn = aa64_cacheop_poc_access },
8056     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
8057       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
8058       .type = ARM_CP_NOP, .access = PL0_W,
8059       .fgt = FGT_DCCVADP,
8060       .accessfn = aa64_cacheop_poc_access },
8061     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
8062       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
8063       .type = ARM_CP_NOP, .access = PL0_W,
8064       .fgt = FGT_DCCIVAC,
8065       .accessfn = aa64_cacheop_poc_access },
8066     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
8067       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
8068       .type = ARM_CP_NOP, .access = PL0_W,
8069       .fgt = FGT_DCCIVAC,
8070       .accessfn = aa64_cacheop_poc_access },
8071     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
8072       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
8073       .access = PL0_W, .type = ARM_CP_DC_GVA,
8074 #ifndef CONFIG_USER_ONLY
8075       /* Avoid overhead of an access check that always passes in user-mode */
8076       .accessfn = aa64_zva_access,
8077       .fgt = FGT_DCZVA,
8078 #endif
8079     },
8080     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
8081       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
8082       .access = PL0_W, .type = ARM_CP_DC_GZVA,
8083 #ifndef CONFIG_USER_ONLY
8084       /* Avoid overhead of an access check that always passes in user-mode */
8085       .accessfn = aa64_zva_access,
8086       .fgt = FGT_DCZVA,
8087 #endif
8088     },
8089 };
8090 
8091 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
8092                                      bool isread)
8093 {
8094     uint64_t hcr = arm_hcr_el2_eff(env);
8095     int el = arm_current_el(env);
8096 
8097     if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
8098         if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
8099             if (hcr & HCR_TGE) {
8100                 return CP_ACCESS_TRAP_EL2;
8101             }
8102             return CP_ACCESS_TRAP;
8103         }
8104     } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
8105         return CP_ACCESS_TRAP_EL2;
8106     }
8107     if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
8108         return CP_ACCESS_TRAP_EL2;
8109     }
8110     if (el < 3
8111         && arm_feature(env, ARM_FEATURE_EL3)
8112         && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
8113         return CP_ACCESS_TRAP_EL3;
8114     }
8115     return CP_ACCESS_OK;
8116 }
8117 
8118 static CPAccessResult access_scxtnum_el1(CPUARMState *env,
8119                                          const ARMCPRegInfo *ri,
8120                                          bool isread)
8121 {
8122     CPAccessResult nv1 = access_nv1(env, ri, isread);
8123 
8124     if (nv1 != CP_ACCESS_OK) {
8125         return nv1;
8126     }
8127     return access_scxtnum(env, ri, isread);
8128 }
8129 
8130 static const ARMCPRegInfo scxtnum_reginfo[] = {
8131     { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
8132       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
8133       .access = PL0_RW, .accessfn = access_scxtnum,
8134       .fgt = FGT_SCXTNUM_EL0,
8135       .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
8136     { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
8137       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
8138       .access = PL1_RW, .accessfn = access_scxtnum_el1,
8139       .fgt = FGT_SCXTNUM_EL1,
8140       .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1,
8141       .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
8142     { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
8143       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
8144       .access = PL2_RW, .accessfn = access_scxtnum,
8145       .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
8146     { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
8147       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
8148       .access = PL3_RW,
8149       .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
8150 };
8151 
8152 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
8153                                  bool isread)
8154 {
8155     if (arm_current_el(env) == 2 &&
8156         arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
8157         return CP_ACCESS_TRAP_EL3;
8158     }
8159     return CP_ACCESS_OK;
8160 }
8161 
8162 static const ARMCPRegInfo fgt_reginfo[] = {
8163     { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8164       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
8165       .nv2_redirect_offset = 0x1b8,
8166       .access = PL2_RW, .accessfn = access_fgt,
8167       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
8168     { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8169       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
8170       .nv2_redirect_offset = 0x1c0,
8171       .access = PL2_RW, .accessfn = access_fgt,
8172       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
8173     { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8174       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
8175       .nv2_redirect_offset = 0x1d0,
8176       .access = PL2_RW, .accessfn = access_fgt,
8177       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
8178     { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8179       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
8180       .nv2_redirect_offset = 0x1d8,
8181       .access = PL2_RW, .accessfn = access_fgt,
8182       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
8183     { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
8184       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
8185       .nv2_redirect_offset = 0x1c8,
8186       .access = PL2_RW, .accessfn = access_fgt,
8187       .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
8188 };
8189 
8190 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri,
8191                        uint64_t value)
8192 {
8193     /*
8194      * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee
8195      * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything
8196      * about the RESS bits at the top -- we choose the "generate an EL2
8197      * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let
8198      * the ptw.c code detect the resulting invalid address).
8199      */
8200     env->cp15.vncr_el2 = value & ~0xfffULL;
8201 }
8202 
8203 static const ARMCPRegInfo nv2_reginfo[] = {
8204     { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64,
8205       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0,
8206       .access = PL2_RW,
8207       .writefn = vncr_write,
8208       .nv2_redirect_offset = 0xb0,
8209       .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) },
8210 };
8211 
8212 #endif /* TARGET_AARCH64 */
8213 
8214 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
8215                                      bool isread)
8216 {
8217     int el = arm_current_el(env);
8218 
8219     if (el == 0) {
8220         uint64_t sctlr = arm_sctlr(env, el);
8221         if (!(sctlr & SCTLR_EnRCTX)) {
8222             return CP_ACCESS_TRAP;
8223         }
8224     } else if (el == 1) {
8225         uint64_t hcr = arm_hcr_el2_eff(env);
8226         if (hcr & HCR_NV) {
8227             return CP_ACCESS_TRAP_EL2;
8228         }
8229     }
8230     return CP_ACCESS_OK;
8231 }
8232 
8233 static const ARMCPRegInfo predinv_reginfo[] = {
8234     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
8235       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
8236       .fgt = FGT_CFPRCTX,
8237       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8238     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
8239       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
8240       .fgt = FGT_DVPRCTX,
8241       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8242     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
8243       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
8244       .fgt = FGT_CPPRCTX,
8245       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8246     /*
8247      * Note the AArch32 opcodes have a different OPC1.
8248      */
8249     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
8250       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
8251       .fgt = FGT_CFPRCTX,
8252       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8253     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
8254       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
8255       .fgt = FGT_DVPRCTX,
8256       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8257     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
8258       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
8259       .fgt = FGT_CPPRCTX,
8260       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8261 };
8262 
8263 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
8264 {
8265     /* Read the high 32 bits of the current CCSIDR */
8266     return extract64(ccsidr_read(env, ri), 32, 32);
8267 }
8268 
8269 static const ARMCPRegInfo ccsidr2_reginfo[] = {
8270     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
8271       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
8272       .access = PL1_R,
8273       .accessfn = access_tid4,
8274       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
8275 };
8276 
8277 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8278                                        bool isread)
8279 {
8280     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
8281         return CP_ACCESS_TRAP_EL2;
8282     }
8283 
8284     return CP_ACCESS_OK;
8285 }
8286 
8287 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8288                                        bool isread)
8289 {
8290     if (arm_feature(env, ARM_FEATURE_V8)) {
8291         return access_aa64_tid3(env, ri, isread);
8292     }
8293 
8294     return CP_ACCESS_OK;
8295 }
8296 
8297 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8298                                      bool isread)
8299 {
8300     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8301         return CP_ACCESS_TRAP_EL2;
8302     }
8303 
8304     return CP_ACCESS_OK;
8305 }
8306 
8307 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8308                                         const ARMCPRegInfo *ri, bool isread)
8309 {
8310     /*
8311      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8312      * in v7A, not in v8A.
8313      */
8314     if (!arm_feature(env, ARM_FEATURE_V8) &&
8315         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8316         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8317         return CP_ACCESS_TRAP_EL2;
8318     }
8319     return CP_ACCESS_OK;
8320 }
8321 
8322 static const ARMCPRegInfo jazelle_regs[] = {
8323     { .name = "JIDR",
8324       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8325       .access = PL1_R, .accessfn = access_jazelle,
8326       .type = ARM_CP_CONST, .resetvalue = 0 },
8327     { .name = "JOSCR",
8328       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8329       .accessfn = access_joscr_jmcr,
8330       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8331     { .name = "JMCR",
8332       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8333       .accessfn = access_joscr_jmcr,
8334       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8335 };
8336 
8337 static const ARMCPRegInfo contextidr_el2 = {
8338     .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8339     .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8340     .access = PL2_RW,
8341     .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8342 };
8343 
8344 static const ARMCPRegInfo vhe_reginfo[] = {
8345     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8346       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8347       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8348       .raw_writefn = raw_write,
8349       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8350 #ifndef CONFIG_USER_ONLY
8351     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8352       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8353       .fieldoffset =
8354         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8355       .type = ARM_CP_IO, .access = PL2_RW,
8356       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8357     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8358       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8359       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8360       .resetfn = gt_hv_timer_reset,
8361       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8362     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8363       .type = ARM_CP_IO,
8364       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8365       .access = PL2_RW,
8366       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8367       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8368     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8369       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8370       .type = ARM_CP_IO | ARM_CP_ALIAS,
8371       .access = PL2_RW, .accessfn = e2h_access,
8372       .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1,
8373       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8374       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8375     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8376       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8377       .type = ARM_CP_IO | ARM_CP_ALIAS,
8378       .access = PL2_RW, .accessfn = e2h_access,
8379       .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1,
8380       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8381       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8382     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8383       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8384       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8385       .access = PL2_RW, .accessfn = e2h_access,
8386       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8387     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8388       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8389       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8390       .access = PL2_RW, .accessfn = e2h_access,
8391       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8392     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8393       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8394       .type = ARM_CP_IO | ARM_CP_ALIAS,
8395       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8396       .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1,
8397       .access = PL2_RW, .accessfn = e2h_access,
8398       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8399     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8400       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8401       .type = ARM_CP_IO | ARM_CP_ALIAS,
8402       .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1,
8403       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8404       .access = PL2_RW, .accessfn = e2h_access,
8405       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8406 #endif
8407 };
8408 
8409 #ifndef CONFIG_USER_ONLY
8410 static const ARMCPRegInfo ats1e1_reginfo[] = {
8411     { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8412       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8413       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8414       .fgt = FGT_ATS1E1RP,
8415       .accessfn = at_s1e01_access, .writefn = ats_write64 },
8416     { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8417       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8418       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8419       .fgt = FGT_ATS1E1WP,
8420       .accessfn = at_s1e01_access, .writefn = ats_write64 },
8421 };
8422 
8423 static const ARMCPRegInfo ats1cp_reginfo[] = {
8424     { .name = "ATS1CPRP",
8425       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8426       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8427       .writefn = ats_write },
8428     { .name = "ATS1CPWP",
8429       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8430       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8431       .writefn = ats_write },
8432 };
8433 #endif
8434 
8435 /*
8436  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8437  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8438  * is non-zero, which is never for ARMv7, optionally in ARMv8
8439  * and mandatorily for ARMv8.2 and up.
8440  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8441  * implementation is RAZ/WI we can ignore this detail, as we
8442  * do for ACTLR.
8443  */
8444 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8445     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8446       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8447       .access = PL1_RW, .accessfn = access_tacr,
8448       .type = ARM_CP_CONST, .resetvalue = 0 },
8449     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8450       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8451       .access = PL2_RW, .type = ARM_CP_CONST,
8452       .resetvalue = 0 },
8453 };
8454 
8455 void register_cp_regs_for_features(ARMCPU *cpu)
8456 {
8457     /* Register all the coprocessor registers based on feature bits */
8458     CPUARMState *env = &cpu->env;
8459     if (arm_feature(env, ARM_FEATURE_M)) {
8460         /* M profile has no coprocessor registers */
8461         return;
8462     }
8463 
8464     define_arm_cp_regs(cpu, cp_reginfo);
8465     if (!arm_feature(env, ARM_FEATURE_V8)) {
8466         /*
8467          * Must go early as it is full of wildcards that may be
8468          * overridden by later definitions.
8469          */
8470         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8471     }
8472 
8473     if (arm_feature(env, ARM_FEATURE_V6)) {
8474         /* The ID registers all have impdef reset values */
8475         ARMCPRegInfo v6_idregs[] = {
8476             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8477               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8478               .access = PL1_R, .type = ARM_CP_CONST,
8479               .accessfn = access_aa32_tid3,
8480               .resetvalue = cpu->isar.id_pfr0 },
8481             /*
8482              * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8483              * the value of the GIC field until after we define these regs.
8484              */
8485             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8486               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8487               .access = PL1_R, .type = ARM_CP_NO_RAW,
8488               .accessfn = access_aa32_tid3,
8489 #ifdef CONFIG_USER_ONLY
8490               .type = ARM_CP_CONST,
8491               .resetvalue = cpu->isar.id_pfr1,
8492 #else
8493               .type = ARM_CP_NO_RAW,
8494               .accessfn = access_aa32_tid3,
8495               .readfn = id_pfr1_read,
8496               .writefn = arm_cp_write_ignore
8497 #endif
8498             },
8499             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8500               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8501               .access = PL1_R, .type = ARM_CP_CONST,
8502               .accessfn = access_aa32_tid3,
8503               .resetvalue = cpu->isar.id_dfr0 },
8504             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8505               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8506               .access = PL1_R, .type = ARM_CP_CONST,
8507               .accessfn = access_aa32_tid3,
8508               .resetvalue = cpu->id_afr0 },
8509             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8510               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8511               .access = PL1_R, .type = ARM_CP_CONST,
8512               .accessfn = access_aa32_tid3,
8513               .resetvalue = cpu->isar.id_mmfr0 },
8514             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8515               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8516               .access = PL1_R, .type = ARM_CP_CONST,
8517               .accessfn = access_aa32_tid3,
8518               .resetvalue = cpu->isar.id_mmfr1 },
8519             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8520               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8521               .access = PL1_R, .type = ARM_CP_CONST,
8522               .accessfn = access_aa32_tid3,
8523               .resetvalue = cpu->isar.id_mmfr2 },
8524             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8525               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8526               .access = PL1_R, .type = ARM_CP_CONST,
8527               .accessfn = access_aa32_tid3,
8528               .resetvalue = cpu->isar.id_mmfr3 },
8529             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8530               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8531               .access = PL1_R, .type = ARM_CP_CONST,
8532               .accessfn = access_aa32_tid3,
8533               .resetvalue = cpu->isar.id_isar0 },
8534             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8535               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8536               .access = PL1_R, .type = ARM_CP_CONST,
8537               .accessfn = access_aa32_tid3,
8538               .resetvalue = cpu->isar.id_isar1 },
8539             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8540               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8541               .access = PL1_R, .type = ARM_CP_CONST,
8542               .accessfn = access_aa32_tid3,
8543               .resetvalue = cpu->isar.id_isar2 },
8544             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8545               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8546               .access = PL1_R, .type = ARM_CP_CONST,
8547               .accessfn = access_aa32_tid3,
8548               .resetvalue = cpu->isar.id_isar3 },
8549             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8550               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8551               .access = PL1_R, .type = ARM_CP_CONST,
8552               .accessfn = access_aa32_tid3,
8553               .resetvalue = cpu->isar.id_isar4 },
8554             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8555               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8556               .access = PL1_R, .type = ARM_CP_CONST,
8557               .accessfn = access_aa32_tid3,
8558               .resetvalue = cpu->isar.id_isar5 },
8559             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8560               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8561               .access = PL1_R, .type = ARM_CP_CONST,
8562               .accessfn = access_aa32_tid3,
8563               .resetvalue = cpu->isar.id_mmfr4 },
8564             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8565               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8566               .access = PL1_R, .type = ARM_CP_CONST,
8567               .accessfn = access_aa32_tid3,
8568               .resetvalue = cpu->isar.id_isar6 },
8569         };
8570         define_arm_cp_regs(cpu, v6_idregs);
8571         define_arm_cp_regs(cpu, v6_cp_reginfo);
8572     } else {
8573         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8574     }
8575     if (arm_feature(env, ARM_FEATURE_V6K)) {
8576         define_arm_cp_regs(cpu, v6k_cp_reginfo);
8577     }
8578     if (arm_feature(env, ARM_FEATURE_V7MP) &&
8579         !arm_feature(env, ARM_FEATURE_PMSA)) {
8580         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8581     }
8582     if (arm_feature(env, ARM_FEATURE_V7VE)) {
8583         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8584     }
8585     if (arm_feature(env, ARM_FEATURE_V7)) {
8586         ARMCPRegInfo clidr = {
8587             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8588             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8589             .access = PL1_R, .type = ARM_CP_CONST,
8590             .accessfn = access_tid4,
8591             .fgt = FGT_CLIDR_EL1,
8592             .resetvalue = cpu->clidr
8593         };
8594         define_one_arm_cp_reg(cpu, &clidr);
8595         define_arm_cp_regs(cpu, v7_cp_reginfo);
8596         define_debug_regs(cpu);
8597         define_pmu_regs(cpu);
8598     } else {
8599         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8600     }
8601     if (arm_feature(env, ARM_FEATURE_V8)) {
8602         /*
8603          * v8 ID registers, which all have impdef reset values.
8604          * Note that within the ID register ranges the unused slots
8605          * must all RAZ, not UNDEF; future architecture versions may
8606          * define new registers here.
8607          * ID registers which are AArch64 views of the AArch32 ID registers
8608          * which already existed in v6 and v7 are handled elsewhere,
8609          * in v6_idregs[].
8610          */
8611         int i;
8612         ARMCPRegInfo v8_idregs[] = {
8613             /*
8614              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8615              * emulation because we don't know the right value for the
8616              * GIC field until after we define these regs.
8617              */
8618             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8619               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8620               .access = PL1_R,
8621 #ifdef CONFIG_USER_ONLY
8622               .type = ARM_CP_CONST,
8623               .resetvalue = cpu->isar.id_aa64pfr0
8624 #else
8625               .type = ARM_CP_NO_RAW,
8626               .accessfn = access_aa64_tid3,
8627               .readfn = id_aa64pfr0_read,
8628               .writefn = arm_cp_write_ignore
8629 #endif
8630             },
8631             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8632               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8633               .access = PL1_R, .type = ARM_CP_CONST,
8634               .accessfn = access_aa64_tid3,
8635               .resetvalue = cpu->isar.id_aa64pfr1},
8636             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8637               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8638               .access = PL1_R, .type = ARM_CP_CONST,
8639               .accessfn = access_aa64_tid3,
8640               .resetvalue = 0 },
8641             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8642               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8643               .access = PL1_R, .type = ARM_CP_CONST,
8644               .accessfn = access_aa64_tid3,
8645               .resetvalue = 0 },
8646             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8647               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8648               .access = PL1_R, .type = ARM_CP_CONST,
8649               .accessfn = access_aa64_tid3,
8650               .resetvalue = cpu->isar.id_aa64zfr0 },
8651             { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8652               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8653               .access = PL1_R, .type = ARM_CP_CONST,
8654               .accessfn = access_aa64_tid3,
8655               .resetvalue = cpu->isar.id_aa64smfr0 },
8656             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8657               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8658               .access = PL1_R, .type = ARM_CP_CONST,
8659               .accessfn = access_aa64_tid3,
8660               .resetvalue = 0 },
8661             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8662               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8663               .access = PL1_R, .type = ARM_CP_CONST,
8664               .accessfn = access_aa64_tid3,
8665               .resetvalue = 0 },
8666             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8667               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8668               .access = PL1_R, .type = ARM_CP_CONST,
8669               .accessfn = access_aa64_tid3,
8670               .resetvalue = cpu->isar.id_aa64dfr0 },
8671             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8672               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8673               .access = PL1_R, .type = ARM_CP_CONST,
8674               .accessfn = access_aa64_tid3,
8675               .resetvalue = cpu->isar.id_aa64dfr1 },
8676             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8677               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8678               .access = PL1_R, .type = ARM_CP_CONST,
8679               .accessfn = access_aa64_tid3,
8680               .resetvalue = 0 },
8681             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8682               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8683               .access = PL1_R, .type = ARM_CP_CONST,
8684               .accessfn = access_aa64_tid3,
8685               .resetvalue = 0 },
8686             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8687               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8688               .access = PL1_R, .type = ARM_CP_CONST,
8689               .accessfn = access_aa64_tid3,
8690               .resetvalue = cpu->id_aa64afr0 },
8691             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8692               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8693               .access = PL1_R, .type = ARM_CP_CONST,
8694               .accessfn = access_aa64_tid3,
8695               .resetvalue = cpu->id_aa64afr1 },
8696             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8697               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8698               .access = PL1_R, .type = ARM_CP_CONST,
8699               .accessfn = access_aa64_tid3,
8700               .resetvalue = 0 },
8701             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8702               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8703               .access = PL1_R, .type = ARM_CP_CONST,
8704               .accessfn = access_aa64_tid3,
8705               .resetvalue = 0 },
8706             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8707               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8708               .access = PL1_R, .type = ARM_CP_CONST,
8709               .accessfn = access_aa64_tid3,
8710               .resetvalue = cpu->isar.id_aa64isar0 },
8711             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8712               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8713               .access = PL1_R, .type = ARM_CP_CONST,
8714               .accessfn = access_aa64_tid3,
8715               .resetvalue = cpu->isar.id_aa64isar1 },
8716             { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
8717               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8718               .access = PL1_R, .type = ARM_CP_CONST,
8719               .accessfn = access_aa64_tid3,
8720               .resetvalue = cpu->isar.id_aa64isar2 },
8721             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8722               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8723               .access = PL1_R, .type = ARM_CP_CONST,
8724               .accessfn = access_aa64_tid3,
8725               .resetvalue = 0 },
8726             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8727               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8728               .access = PL1_R, .type = ARM_CP_CONST,
8729               .accessfn = access_aa64_tid3,
8730               .resetvalue = 0 },
8731             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8732               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8733               .access = PL1_R, .type = ARM_CP_CONST,
8734               .accessfn = access_aa64_tid3,
8735               .resetvalue = 0 },
8736             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8737               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8738               .access = PL1_R, .type = ARM_CP_CONST,
8739               .accessfn = access_aa64_tid3,
8740               .resetvalue = 0 },
8741             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8742               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8743               .access = PL1_R, .type = ARM_CP_CONST,
8744               .accessfn = access_aa64_tid3,
8745               .resetvalue = 0 },
8746             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8747               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8748               .access = PL1_R, .type = ARM_CP_CONST,
8749               .accessfn = access_aa64_tid3,
8750               .resetvalue = cpu->isar.id_aa64mmfr0 },
8751             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8752               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8753               .access = PL1_R, .type = ARM_CP_CONST,
8754               .accessfn = access_aa64_tid3,
8755               .resetvalue = cpu->isar.id_aa64mmfr1 },
8756             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8757               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8758               .access = PL1_R, .type = ARM_CP_CONST,
8759               .accessfn = access_aa64_tid3,
8760               .resetvalue = cpu->isar.id_aa64mmfr2 },
8761             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8762               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8763               .access = PL1_R, .type = ARM_CP_CONST,
8764               .accessfn = access_aa64_tid3,
8765               .resetvalue = 0 },
8766             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8767               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8768               .access = PL1_R, .type = ARM_CP_CONST,
8769               .accessfn = access_aa64_tid3,
8770               .resetvalue = 0 },
8771             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8772               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8773               .access = PL1_R, .type = ARM_CP_CONST,
8774               .accessfn = access_aa64_tid3,
8775               .resetvalue = 0 },
8776             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8777               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8778               .access = PL1_R, .type = ARM_CP_CONST,
8779               .accessfn = access_aa64_tid3,
8780               .resetvalue = 0 },
8781             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8782               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8783               .access = PL1_R, .type = ARM_CP_CONST,
8784               .accessfn = access_aa64_tid3,
8785               .resetvalue = 0 },
8786             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8787               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8788               .access = PL1_R, .type = ARM_CP_CONST,
8789               .accessfn = access_aa64_tid3,
8790               .resetvalue = cpu->isar.mvfr0 },
8791             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8792               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8793               .access = PL1_R, .type = ARM_CP_CONST,
8794               .accessfn = access_aa64_tid3,
8795               .resetvalue = cpu->isar.mvfr1 },
8796             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8797               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8798               .access = PL1_R, .type = ARM_CP_CONST,
8799               .accessfn = access_aa64_tid3,
8800               .resetvalue = cpu->isar.mvfr2 },
8801             /*
8802              * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8803              * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8804              * as RAZ, since it is in the "reserved for future ID
8805              * registers, RAZ" part of the AArch32 encoding space.
8806              */
8807             { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8808               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8809               .access = PL1_R, .type = ARM_CP_CONST,
8810               .accessfn = access_aa64_tid3,
8811               .resetvalue = 0 },
8812             { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8813               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8814               .access = PL1_R, .type = ARM_CP_CONST,
8815               .accessfn = access_aa64_tid3,
8816               .resetvalue = 0 },
8817             { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8818               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8819               .access = PL1_R, .type = ARM_CP_CONST,
8820               .accessfn = access_aa64_tid3,
8821               .resetvalue = 0 },
8822             /*
8823              * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8824              * they're also RAZ for AArch64, and in v8 are gradually
8825              * being filled with AArch64-view-of-AArch32-ID-register
8826              * for new ID registers.
8827              */
8828             { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8829               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8830               .access = PL1_R, .type = ARM_CP_CONST,
8831               .accessfn = access_aa64_tid3,
8832               .resetvalue = 0 },
8833             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8834               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8835               .access = PL1_R, .type = ARM_CP_CONST,
8836               .accessfn = access_aa64_tid3,
8837               .resetvalue = cpu->isar.id_pfr2 },
8838             { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8839               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8840               .access = PL1_R, .type = ARM_CP_CONST,
8841               .accessfn = access_aa64_tid3,
8842               .resetvalue = cpu->isar.id_dfr1 },
8843             { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8844               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8845               .access = PL1_R, .type = ARM_CP_CONST,
8846               .accessfn = access_aa64_tid3,
8847               .resetvalue = cpu->isar.id_mmfr5 },
8848             { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8849               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8850               .access = PL1_R, .type = ARM_CP_CONST,
8851               .accessfn = access_aa64_tid3,
8852               .resetvalue = 0 },
8853             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8854               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8855               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8856               .fgt = FGT_PMCEIDN_EL0,
8857               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8858             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8859               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8860               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8861               .fgt = FGT_PMCEIDN_EL0,
8862               .resetvalue = cpu->pmceid0 },
8863             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8864               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8865               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8866               .fgt = FGT_PMCEIDN_EL0,
8867               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8868             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8869               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8870               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8871               .fgt = FGT_PMCEIDN_EL0,
8872               .resetvalue = cpu->pmceid1 },
8873         };
8874 #ifdef CONFIG_USER_ONLY
8875         static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8876             { .name = "ID_AA64PFR0_EL1",
8877               .exported_bits = R_ID_AA64PFR0_FP_MASK |
8878                                R_ID_AA64PFR0_ADVSIMD_MASK |
8879                                R_ID_AA64PFR0_SVE_MASK |
8880                                R_ID_AA64PFR0_DIT_MASK,
8881               .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8882                             (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8883             { .name = "ID_AA64PFR1_EL1",
8884               .exported_bits = R_ID_AA64PFR1_BT_MASK |
8885                                R_ID_AA64PFR1_SSBS_MASK |
8886                                R_ID_AA64PFR1_MTE_MASK |
8887                                R_ID_AA64PFR1_SME_MASK },
8888             { .name = "ID_AA64PFR*_EL1_RESERVED",
8889               .is_glob = true },
8890             { .name = "ID_AA64ZFR0_EL1",
8891               .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8892                                R_ID_AA64ZFR0_AES_MASK |
8893                                R_ID_AA64ZFR0_BITPERM_MASK |
8894                                R_ID_AA64ZFR0_BFLOAT16_MASK |
8895                                R_ID_AA64ZFR0_SHA3_MASK |
8896                                R_ID_AA64ZFR0_SM4_MASK |
8897                                R_ID_AA64ZFR0_I8MM_MASK |
8898                                R_ID_AA64ZFR0_F32MM_MASK |
8899                                R_ID_AA64ZFR0_F64MM_MASK },
8900             { .name = "ID_AA64SMFR0_EL1",
8901               .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8902                                R_ID_AA64SMFR0_BI32I32_MASK |
8903                                R_ID_AA64SMFR0_B16F32_MASK |
8904                                R_ID_AA64SMFR0_F16F32_MASK |
8905                                R_ID_AA64SMFR0_I8I32_MASK |
8906                                R_ID_AA64SMFR0_F16F16_MASK |
8907                                R_ID_AA64SMFR0_B16B16_MASK |
8908                                R_ID_AA64SMFR0_I16I32_MASK |
8909                                R_ID_AA64SMFR0_F64F64_MASK |
8910                                R_ID_AA64SMFR0_I16I64_MASK |
8911                                R_ID_AA64SMFR0_SMEVER_MASK |
8912                                R_ID_AA64SMFR0_FA64_MASK },
8913             { .name = "ID_AA64MMFR0_EL1",
8914               .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8915               .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8916                             (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8917             { .name = "ID_AA64MMFR1_EL1",
8918               .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8919             { .name = "ID_AA64MMFR2_EL1",
8920               .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8921             { .name = "ID_AA64MMFR*_EL1_RESERVED",
8922               .is_glob = true },
8923             { .name = "ID_AA64DFR0_EL1",
8924               .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8925             { .name = "ID_AA64DFR1_EL1" },
8926             { .name = "ID_AA64DFR*_EL1_RESERVED",
8927               .is_glob = true },
8928             { .name = "ID_AA64AFR*",
8929               .is_glob = true },
8930             { .name = "ID_AA64ISAR0_EL1",
8931               .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8932                                R_ID_AA64ISAR0_SHA1_MASK |
8933                                R_ID_AA64ISAR0_SHA2_MASK |
8934                                R_ID_AA64ISAR0_CRC32_MASK |
8935                                R_ID_AA64ISAR0_ATOMIC_MASK |
8936                                R_ID_AA64ISAR0_RDM_MASK |
8937                                R_ID_AA64ISAR0_SHA3_MASK |
8938                                R_ID_AA64ISAR0_SM3_MASK |
8939                                R_ID_AA64ISAR0_SM4_MASK |
8940                                R_ID_AA64ISAR0_DP_MASK |
8941                                R_ID_AA64ISAR0_FHM_MASK |
8942                                R_ID_AA64ISAR0_TS_MASK |
8943                                R_ID_AA64ISAR0_RNDR_MASK },
8944             { .name = "ID_AA64ISAR1_EL1",
8945               .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8946                                R_ID_AA64ISAR1_APA_MASK |
8947                                R_ID_AA64ISAR1_API_MASK |
8948                                R_ID_AA64ISAR1_JSCVT_MASK |
8949                                R_ID_AA64ISAR1_FCMA_MASK |
8950                                R_ID_AA64ISAR1_LRCPC_MASK |
8951                                R_ID_AA64ISAR1_GPA_MASK |
8952                                R_ID_AA64ISAR1_GPI_MASK |
8953                                R_ID_AA64ISAR1_FRINTTS_MASK |
8954                                R_ID_AA64ISAR1_SB_MASK |
8955                                R_ID_AA64ISAR1_BF16_MASK |
8956                                R_ID_AA64ISAR1_DGH_MASK |
8957                                R_ID_AA64ISAR1_I8MM_MASK },
8958             { .name = "ID_AA64ISAR2_EL1",
8959               .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8960                                R_ID_AA64ISAR2_RPRES_MASK |
8961                                R_ID_AA64ISAR2_GPA3_MASK |
8962                                R_ID_AA64ISAR2_APA3_MASK |
8963                                R_ID_AA64ISAR2_MOPS_MASK |
8964                                R_ID_AA64ISAR2_BC_MASK |
8965                                R_ID_AA64ISAR2_RPRFM_MASK |
8966                                R_ID_AA64ISAR2_CSSC_MASK },
8967             { .name = "ID_AA64ISAR*_EL1_RESERVED",
8968               .is_glob = true },
8969         };
8970         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8971 #endif
8972         /*
8973          * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
8974          * TODO: For RMR, a write with bit 1 set should do something with
8975          * cpu_reset(). In the meantime, "the bit is strictly a request",
8976          * so we are in spec just ignoring writes.
8977          */
8978         if (!arm_feature(env, ARM_FEATURE_EL3) &&
8979             !arm_feature(env, ARM_FEATURE_EL2)) {
8980             ARMCPRegInfo el1_reset_regs[] = {
8981                 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8982                   .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8983                   .access = PL1_R,
8984                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8985                 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
8986                   .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8987                   .access = PL1_RW, .type = ARM_CP_CONST,
8988                   .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
8989             };
8990             define_arm_cp_regs(cpu, el1_reset_regs);
8991         }
8992         define_arm_cp_regs(cpu, v8_idregs);
8993         define_arm_cp_regs(cpu, v8_cp_reginfo);
8994         if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
8995             define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
8996         }
8997 
8998         for (i = 4; i < 16; i++) {
8999             /*
9000              * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
9001              * For pre-v8 cores there are RAZ patterns for these in
9002              * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
9003              * v8 extends the "must RAZ" part of the ID register space
9004              * to also cover c0, 0, c{8-15}, {0-7}.
9005              * These are STATE_AA32 because in the AArch64 sysreg space
9006              * c4-c7 is where the AArch64 ID registers live (and we've
9007              * already defined those in v8_idregs[]), and c8-c15 are not
9008              * "must RAZ" for AArch64.
9009              */
9010             g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
9011             ARMCPRegInfo v8_aa32_raz_idregs = {
9012                 .name = name,
9013                 .state = ARM_CP_STATE_AA32,
9014                 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
9015                 .access = PL1_R, .type = ARM_CP_CONST,
9016                 .accessfn = access_aa64_tid3,
9017                 .resetvalue = 0 };
9018             define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
9019         }
9020     }
9021 
9022     /*
9023      * Register the base EL2 cpregs.
9024      * Pre v8, these registers are implemented only as part of the
9025      * Virtualization Extensions (EL2 present).  Beginning with v8,
9026      * if EL2 is missing but EL3 is enabled, mostly these become
9027      * RES0 from EL3, with some specific exceptions.
9028      */
9029     if (arm_feature(env, ARM_FEATURE_EL2)
9030         || (arm_feature(env, ARM_FEATURE_EL3)
9031             && arm_feature(env, ARM_FEATURE_V8))) {
9032         uint64_t vmpidr_def = mpidr_read_val(env);
9033         ARMCPRegInfo vpidr_regs[] = {
9034             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
9035               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9036               .access = PL2_RW, .accessfn = access_el3_aa32ns,
9037               .resetvalue = cpu->midr,
9038               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9039               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
9040             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
9041               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9042               .access = PL2_RW, .resetvalue = cpu->midr,
9043               .type = ARM_CP_EL3_NO_EL2_C_NZ,
9044               .nv2_redirect_offset = 0x88,
9045               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
9046             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
9047               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9048               .access = PL2_RW, .accessfn = access_el3_aa32ns,
9049               .resetvalue = vmpidr_def,
9050               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9051               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
9052             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
9053               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9054               .access = PL2_RW, .resetvalue = vmpidr_def,
9055               .type = ARM_CP_EL3_NO_EL2_C_NZ,
9056               .nv2_redirect_offset = 0x50,
9057               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
9058         };
9059         /*
9060          * The only field of MDCR_EL2 that has a defined architectural reset
9061          * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
9062          */
9063         ARMCPRegInfo mdcr_el2 = {
9064             .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
9065             .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
9066             .writefn = mdcr_el2_write,
9067             .access = PL2_RW, .resetvalue = pmu_num_counters(env),
9068             .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
9069         };
9070         define_one_arm_cp_reg(cpu, &mdcr_el2);
9071         define_arm_cp_regs(cpu, vpidr_regs);
9072         define_arm_cp_regs(cpu, el2_cp_reginfo);
9073         if (arm_feature(env, ARM_FEATURE_V8)) {
9074             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
9075         }
9076         if (cpu_isar_feature(aa64_sel2, cpu)) {
9077             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
9078         }
9079         /*
9080          * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
9081          * See commentary near RMR_EL1.
9082          */
9083         if (!arm_feature(env, ARM_FEATURE_EL3)) {
9084             static const ARMCPRegInfo el2_reset_regs[] = {
9085                 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
9086                   .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
9087                   .access = PL2_R,
9088                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9089                 { .name = "RVBAR", .type = ARM_CP_ALIAS,
9090                   .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9091                   .access = PL2_R,
9092                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9093                 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
9094                   .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
9095                   .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9096             };
9097             define_arm_cp_regs(cpu, el2_reset_regs);
9098         }
9099     }
9100 
9101     /* Register the base EL3 cpregs. */
9102     if (arm_feature(env, ARM_FEATURE_EL3)) {
9103         define_arm_cp_regs(cpu, el3_cp_reginfo);
9104         ARMCPRegInfo el3_regs[] = {
9105             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
9106               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
9107               .access = PL3_R,
9108               .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
9109             { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
9110               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
9111               .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9112             { .name = "RMR", .state = ARM_CP_STATE_AA32,
9113               .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9114               .access = PL3_RW, .type = ARM_CP_CONST,
9115               .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
9116             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
9117               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
9118               .access = PL3_RW,
9119               .raw_writefn = raw_write, .writefn = sctlr_write,
9120               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
9121               .resetvalue = cpu->reset_sctlr },
9122         };
9123 
9124         define_arm_cp_regs(cpu, el3_regs);
9125     }
9126     /*
9127      * The behaviour of NSACR is sufficiently various that we don't
9128      * try to describe it in a single reginfo:
9129      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
9130      *     reads as constant 0xc00 from NS EL1 and NS EL2
9131      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
9132      *  if v7 without EL3, register doesn't exist
9133      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
9134      */
9135     if (arm_feature(env, ARM_FEATURE_EL3)) {
9136         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9137             static const ARMCPRegInfo nsacr = {
9138                 .name = "NSACR", .type = ARM_CP_CONST,
9139                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9140                 .access = PL1_RW, .accessfn = nsacr_access,
9141                 .resetvalue = 0xc00
9142             };
9143             define_one_arm_cp_reg(cpu, &nsacr);
9144         } else {
9145             static const ARMCPRegInfo nsacr = {
9146                 .name = "NSACR",
9147                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9148                 .access = PL3_RW | PL1_R,
9149                 .resetvalue = 0,
9150                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
9151             };
9152             define_one_arm_cp_reg(cpu, &nsacr);
9153         }
9154     } else {
9155         if (arm_feature(env, ARM_FEATURE_V8)) {
9156             static const ARMCPRegInfo nsacr = {
9157                 .name = "NSACR", .type = ARM_CP_CONST,
9158                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9159                 .access = PL1_R,
9160                 .resetvalue = 0xc00
9161             };
9162             define_one_arm_cp_reg(cpu, &nsacr);
9163         }
9164     }
9165 
9166     if (arm_feature(env, ARM_FEATURE_PMSA)) {
9167         if (arm_feature(env, ARM_FEATURE_V6)) {
9168             /* PMSAv6 not implemented */
9169             assert(arm_feature(env, ARM_FEATURE_V7));
9170             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9171             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
9172         } else {
9173             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
9174         }
9175     } else {
9176         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9177         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
9178         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
9179         if (cpu_isar_feature(aa32_hpd, cpu)) {
9180             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
9181         }
9182     }
9183     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
9184         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
9185     }
9186     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
9187         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
9188     }
9189     if (arm_feature(env, ARM_FEATURE_VAPA)) {
9190         ARMCPRegInfo vapa_cp_reginfo[] = {
9191             { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
9192               .access = PL1_RW, .resetvalue = 0,
9193               .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
9194                                      offsetoflow32(CPUARMState, cp15.par_ns) },
9195               .writefn = par_write},
9196 #ifndef CONFIG_USER_ONLY
9197             /* This underdecoding is safe because the reginfo is NO_RAW. */
9198             { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
9199               .access = PL1_W, .accessfn = ats_access,
9200               .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
9201 #endif
9202         };
9203 
9204         /*
9205          * When LPAE exists this 32-bit PAR register is an alias of the
9206          * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
9207          */
9208         if (arm_feature(env, ARM_FEATURE_LPAE)) {
9209             vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
9210         }
9211         define_arm_cp_regs(cpu, vapa_cp_reginfo);
9212     }
9213     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
9214         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
9215     }
9216     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
9217         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
9218     }
9219     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
9220         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
9221     }
9222     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
9223         define_arm_cp_regs(cpu, omap_cp_reginfo);
9224     }
9225     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
9226         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
9227     }
9228     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9229         define_arm_cp_regs(cpu, xscale_cp_reginfo);
9230     }
9231     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
9232         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
9233     }
9234     if (arm_feature(env, ARM_FEATURE_LPAE)) {
9235         define_arm_cp_regs(cpu, lpae_cp_reginfo);
9236     }
9237     if (cpu_isar_feature(aa32_jazelle, cpu)) {
9238         define_arm_cp_regs(cpu, jazelle_regs);
9239     }
9240     /*
9241      * Slightly awkwardly, the OMAP and StrongARM cores need all of
9242      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
9243      * be read-only (ie write causes UNDEF exception).
9244      */
9245     {
9246         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
9247             /*
9248              * Pre-v8 MIDR space.
9249              * Note that the MIDR isn't a simple constant register because
9250              * of the TI925 behaviour where writes to another register can
9251              * cause the MIDR value to change.
9252              *
9253              * Unimplemented registers in the c15 0 0 0 space default to
9254              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
9255              * and friends override accordingly.
9256              */
9257             { .name = "MIDR",
9258               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
9259               .access = PL1_R, .resetvalue = cpu->midr,
9260               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
9261               .readfn = midr_read,
9262               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9263               .type = ARM_CP_OVERRIDE },
9264             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
9265             { .name = "DUMMY",
9266               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
9267               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9268             { .name = "DUMMY",
9269               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
9270               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9271             { .name = "DUMMY",
9272               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
9273               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9274             { .name = "DUMMY",
9275               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
9276               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9277             { .name = "DUMMY",
9278               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
9279               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9280         };
9281         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
9282             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
9283               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
9284               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
9285               .fgt = FGT_MIDR_EL1,
9286               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9287               .readfn = midr_read },
9288             /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
9289             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
9290               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
9291               .access = PL1_R, .resetvalue = cpu->midr },
9292             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
9293               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
9294               .access = PL1_R,
9295               .accessfn = access_aa64_tid1,
9296               .fgt = FGT_REVIDR_EL1,
9297               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
9298         };
9299         ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
9300             .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
9301             .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9302             .access = PL1_R, .resetvalue = cpu->midr
9303         };
9304         ARMCPRegInfo id_cp_reginfo[] = {
9305             /* These are common to v8 and pre-v8 */
9306             { .name = "CTR",
9307               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
9308               .access = PL1_R, .accessfn = ctr_el0_access,
9309               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9310             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9311               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9312               .access = PL0_R, .accessfn = ctr_el0_access,
9313               .fgt = FGT_CTR_EL0,
9314               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9315             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9316             { .name = "TCMTR",
9317               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
9318               .access = PL1_R,
9319               .accessfn = access_aa32_tid1,
9320               .type = ARM_CP_CONST, .resetvalue = 0 },
9321         };
9322         /* TLBTR is specific to VMSA */
9323         ARMCPRegInfo id_tlbtr_reginfo = {
9324               .name = "TLBTR",
9325               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
9326               .access = PL1_R,
9327               .accessfn = access_aa32_tid1,
9328               .type = ARM_CP_CONST, .resetvalue = 0,
9329         };
9330         /* MPUIR is specific to PMSA V6+ */
9331         ARMCPRegInfo id_mpuir_reginfo = {
9332               .name = "MPUIR",
9333               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9334               .access = PL1_R, .type = ARM_CP_CONST,
9335               .resetvalue = cpu->pmsav7_dregion << 8
9336         };
9337         /* HMPUIR is specific to PMSA V8 */
9338         ARMCPRegInfo id_hmpuir_reginfo = {
9339             .name = "HMPUIR",
9340             .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9341             .access = PL2_R, .type = ARM_CP_CONST,
9342             .resetvalue = cpu->pmsav8r_hdregion
9343         };
9344         static const ARMCPRegInfo crn0_wi_reginfo = {
9345             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9346             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9347             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9348         };
9349 #ifdef CONFIG_USER_ONLY
9350         static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9351             { .name = "MIDR_EL1",
9352               .exported_bits = R_MIDR_EL1_REVISION_MASK |
9353                                R_MIDR_EL1_PARTNUM_MASK |
9354                                R_MIDR_EL1_ARCHITECTURE_MASK |
9355                                R_MIDR_EL1_VARIANT_MASK |
9356                                R_MIDR_EL1_IMPLEMENTER_MASK },
9357             { .name = "REVIDR_EL1" },
9358         };
9359         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9360 #endif
9361         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9362             arm_feature(env, ARM_FEATURE_STRONGARM)) {
9363             size_t i;
9364             /*
9365              * Register the blanket "writes ignored" value first to cover the
9366              * whole space. Then update the specific ID registers to allow write
9367              * access, so that they ignore writes rather than causing them to
9368              * UNDEF.
9369              */
9370             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9371             for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9372                 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9373             }
9374             for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9375                 id_cp_reginfo[i].access = PL1_RW;
9376             }
9377             id_mpuir_reginfo.access = PL1_RW;
9378             id_tlbtr_reginfo.access = PL1_RW;
9379         }
9380         if (arm_feature(env, ARM_FEATURE_V8)) {
9381             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9382             if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9383                 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9384             }
9385         } else {
9386             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9387         }
9388         define_arm_cp_regs(cpu, id_cp_reginfo);
9389         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9390             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9391         } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9392                    arm_feature(env, ARM_FEATURE_V8)) {
9393             uint32_t i = 0;
9394             char *tmp_string;
9395 
9396             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9397             define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9398             define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9399 
9400             /* Register alias is only valid for first 32 indexes */
9401             for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9402                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9403                 uint8_t opc1 = extract32(i, 4, 1);
9404                 uint8_t opc2 = extract32(i, 0, 1) << 2;
9405 
9406                 tmp_string = g_strdup_printf("PRBAR%u", i);
9407                 ARMCPRegInfo tmp_prbarn_reginfo = {
9408                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9409                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9410                     .access = PL1_RW, .resetvalue = 0,
9411                     .accessfn = access_tvm_trvm,
9412                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9413                 };
9414                 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9415                 g_free(tmp_string);
9416 
9417                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9418                 tmp_string = g_strdup_printf("PRLAR%u", i);
9419                 ARMCPRegInfo tmp_prlarn_reginfo = {
9420                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9421                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9422                     .access = PL1_RW, .resetvalue = 0,
9423                     .accessfn = access_tvm_trvm,
9424                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9425                 };
9426                 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9427                 g_free(tmp_string);
9428             }
9429 
9430             /* Register alias is only valid for first 32 indexes */
9431             for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9432                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9433                 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9434                 uint8_t opc2 = extract32(i, 0, 1) << 2;
9435 
9436                 tmp_string = g_strdup_printf("HPRBAR%u", i);
9437                 ARMCPRegInfo tmp_hprbarn_reginfo = {
9438                     .name = tmp_string,
9439                     .type = ARM_CP_NO_RAW,
9440                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9441                     .access = PL2_RW, .resetvalue = 0,
9442                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9443                 };
9444                 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9445                 g_free(tmp_string);
9446 
9447                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9448                 tmp_string = g_strdup_printf("HPRLAR%u", i);
9449                 ARMCPRegInfo tmp_hprlarn_reginfo = {
9450                     .name = tmp_string,
9451                     .type = ARM_CP_NO_RAW,
9452                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9453                     .access = PL2_RW, .resetvalue = 0,
9454                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9455                 };
9456                 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9457                 g_free(tmp_string);
9458             }
9459         } else if (arm_feature(env, ARM_FEATURE_V7)) {
9460             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9461         }
9462     }
9463 
9464     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9465         ARMCPRegInfo mpidr_cp_reginfo[] = {
9466             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9467               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9468               .fgt = FGT_MPIDR_EL1,
9469               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9470         };
9471 #ifdef CONFIG_USER_ONLY
9472         static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9473             { .name = "MPIDR_EL1",
9474               .fixed_bits = 0x0000000080000000 },
9475         };
9476         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9477 #endif
9478         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9479     }
9480 
9481     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9482         ARMCPRegInfo auxcr_reginfo[] = {
9483             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9484               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9485               .access = PL1_RW, .accessfn = access_tacr,
9486               .nv2_redirect_offset = 0x118,
9487               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9488             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9489               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9490               .access = PL2_RW, .type = ARM_CP_CONST,
9491               .resetvalue = 0 },
9492             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9493               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9494               .access = PL3_RW, .type = ARM_CP_CONST,
9495               .resetvalue = 0 },
9496         };
9497         define_arm_cp_regs(cpu, auxcr_reginfo);
9498         if (cpu_isar_feature(aa32_ac2, cpu)) {
9499             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9500         }
9501     }
9502 
9503     if (arm_feature(env, ARM_FEATURE_CBAR)) {
9504         /*
9505          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9506          * There are two flavours:
9507          *  (1) older 32-bit only cores have a simple 32-bit CBAR
9508          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9509          *      32-bit register visible to AArch32 at a different encoding
9510          *      to the "flavour 1" register and with the bits rearranged to
9511          *      be able to squash a 64-bit address into the 32-bit view.
9512          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9513          * in future if we support AArch32-only configs of some of the
9514          * AArch64 cores we might need to add a specific feature flag
9515          * to indicate cores with "flavour 2" CBAR.
9516          */
9517         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9518             /* 32 bit view is [31:18] 0...0 [43:32]. */
9519             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9520                 | extract64(cpu->reset_cbar, 32, 12);
9521             ARMCPRegInfo cbar_reginfo[] = {
9522                 { .name = "CBAR",
9523                   .type = ARM_CP_CONST,
9524                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9525                   .access = PL1_R, .resetvalue = cbar32 },
9526                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9527                   .type = ARM_CP_CONST,
9528                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9529                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
9530             };
9531             /* We don't implement a r/w 64 bit CBAR currently */
9532             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9533             define_arm_cp_regs(cpu, cbar_reginfo);
9534         } else {
9535             ARMCPRegInfo cbar = {
9536                 .name = "CBAR",
9537                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9538                 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9539                 .fieldoffset = offsetof(CPUARMState,
9540                                         cp15.c15_config_base_address)
9541             };
9542             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9543                 cbar.access = PL1_R;
9544                 cbar.fieldoffset = 0;
9545                 cbar.type = ARM_CP_CONST;
9546             }
9547             define_one_arm_cp_reg(cpu, &cbar);
9548         }
9549     }
9550 
9551     if (arm_feature(env, ARM_FEATURE_VBAR)) {
9552         static const ARMCPRegInfo vbar_cp_reginfo[] = {
9553             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9554               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9555               .access = PL1_RW, .writefn = vbar_write,
9556               .accessfn = access_nv1,
9557               .fgt = FGT_VBAR_EL1,
9558               .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1,
9559               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9560                                      offsetof(CPUARMState, cp15.vbar_ns) },
9561               .resetvalue = 0 },
9562         };
9563         define_arm_cp_regs(cpu, vbar_cp_reginfo);
9564     }
9565 
9566     /* Generic registers whose values depend on the implementation */
9567     {
9568         ARMCPRegInfo sctlr = {
9569             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9570             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9571             .access = PL1_RW, .accessfn = access_tvm_trvm,
9572             .fgt = FGT_SCTLR_EL1,
9573             .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1,
9574             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9575                                    offsetof(CPUARMState, cp15.sctlr_ns) },
9576             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9577             .raw_writefn = raw_write,
9578         };
9579         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9580             /*
9581              * Normally we would always end the TB on an SCTLR write, but Linux
9582              * arch/arm/mach-pxa/sleep.S expects two instructions following
9583              * an MMU enable to execute from cache.  Imitate this behaviour.
9584              */
9585             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9586         }
9587         define_one_arm_cp_reg(cpu, &sctlr);
9588 
9589         if (arm_feature(env, ARM_FEATURE_PMSA) &&
9590             arm_feature(env, ARM_FEATURE_V8)) {
9591             ARMCPRegInfo vsctlr = {
9592                 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9593                 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9594                 .access = PL2_RW, .resetvalue = 0x0,
9595                 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9596             };
9597             define_one_arm_cp_reg(cpu, &vsctlr);
9598         }
9599     }
9600 
9601     if (cpu_isar_feature(aa64_lor, cpu)) {
9602         define_arm_cp_regs(cpu, lor_reginfo);
9603     }
9604     if (cpu_isar_feature(aa64_pan, cpu)) {
9605         define_one_arm_cp_reg(cpu, &pan_reginfo);
9606     }
9607 #ifndef CONFIG_USER_ONLY
9608     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9609         define_arm_cp_regs(cpu, ats1e1_reginfo);
9610     }
9611     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9612         define_arm_cp_regs(cpu, ats1cp_reginfo);
9613     }
9614 #endif
9615     if (cpu_isar_feature(aa64_uao, cpu)) {
9616         define_one_arm_cp_reg(cpu, &uao_reginfo);
9617     }
9618 
9619     if (cpu_isar_feature(aa64_dit, cpu)) {
9620         define_one_arm_cp_reg(cpu, &dit_reginfo);
9621     }
9622     if (cpu_isar_feature(aa64_ssbs, cpu)) {
9623         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9624     }
9625     if (cpu_isar_feature(any_ras, cpu)) {
9626         define_arm_cp_regs(cpu, minimal_ras_reginfo);
9627     }
9628 
9629     if (cpu_isar_feature(aa64_vh, cpu) ||
9630         cpu_isar_feature(aa64_debugv8p2, cpu)) {
9631         define_one_arm_cp_reg(cpu, &contextidr_el2);
9632     }
9633     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9634         define_arm_cp_regs(cpu, vhe_reginfo);
9635     }
9636 
9637     if (cpu_isar_feature(aa64_sve, cpu)) {
9638         define_arm_cp_regs(cpu, zcr_reginfo);
9639     }
9640 
9641     if (cpu_isar_feature(aa64_hcx, cpu)) {
9642         define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9643     }
9644 
9645 #ifdef TARGET_AARCH64
9646     if (cpu_isar_feature(aa64_sme, cpu)) {
9647         define_arm_cp_regs(cpu, sme_reginfo);
9648     }
9649     if (cpu_isar_feature(aa64_pauth, cpu)) {
9650         define_arm_cp_regs(cpu, pauth_reginfo);
9651     }
9652     if (cpu_isar_feature(aa64_rndr, cpu)) {
9653         define_arm_cp_regs(cpu, rndr_reginfo);
9654     }
9655     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9656         define_arm_cp_regs(cpu, tlbirange_reginfo);
9657     }
9658     if (cpu_isar_feature(aa64_tlbios, cpu)) {
9659         define_arm_cp_regs(cpu, tlbios_reginfo);
9660     }
9661     /* Data Cache clean instructions up to PoP */
9662     if (cpu_isar_feature(aa64_dcpop, cpu)) {
9663         define_one_arm_cp_reg(cpu, dcpop_reg);
9664 
9665         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9666             define_one_arm_cp_reg(cpu, dcpodp_reg);
9667         }
9668     }
9669 
9670     /*
9671      * If full MTE is enabled, add all of the system registers.
9672      * If only "instructions available at EL0" are enabled,
9673      * then define only a RAZ/WI version of PSTATE.TCO.
9674      */
9675     if (cpu_isar_feature(aa64_mte, cpu)) {
9676         ARMCPRegInfo gmid_reginfo = {
9677             .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
9678             .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
9679             .access = PL1_R, .accessfn = access_aa64_tid5,
9680             .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
9681         };
9682         define_one_arm_cp_reg(cpu, &gmid_reginfo);
9683         define_arm_cp_regs(cpu, mte_reginfo);
9684         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9685     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9686         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9687         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9688     }
9689 
9690     if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9691         define_arm_cp_regs(cpu, scxtnum_reginfo);
9692     }
9693 
9694     if (cpu_isar_feature(aa64_fgt, cpu)) {
9695         define_arm_cp_regs(cpu, fgt_reginfo);
9696     }
9697 
9698     if (cpu_isar_feature(aa64_rme, cpu)) {
9699         define_arm_cp_regs(cpu, rme_reginfo);
9700         if (cpu_isar_feature(aa64_mte, cpu)) {
9701             define_arm_cp_regs(cpu, rme_mte_reginfo);
9702         }
9703     }
9704 
9705     if (cpu_isar_feature(aa64_nv2, cpu)) {
9706         define_arm_cp_regs(cpu, nv2_reginfo);
9707     }
9708 #endif
9709 
9710     if (cpu_isar_feature(any_predinv, cpu)) {
9711         define_arm_cp_regs(cpu, predinv_reginfo);
9712     }
9713 
9714     if (cpu_isar_feature(any_ccidx, cpu)) {
9715         define_arm_cp_regs(cpu, ccsidr2_reginfo);
9716     }
9717 
9718 #ifndef CONFIG_USER_ONLY
9719     /*
9720      * Register redirections and aliases must be done last,
9721      * after the registers from the other extensions have been defined.
9722      */
9723     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9724         define_arm_vh_e2h_redirects_aliases(cpu);
9725     }
9726 #endif
9727 }
9728 
9729 /*
9730  * Private utility function for define_one_arm_cp_reg_with_opaque():
9731  * add a single reginfo struct to the hash table.
9732  */
9733 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9734                                    void *opaque, CPState state,
9735                                    CPSecureState secstate,
9736                                    int crm, int opc1, int opc2,
9737                                    const char *name)
9738 {
9739     CPUARMState *env = &cpu->env;
9740     uint32_t key;
9741     ARMCPRegInfo *r2;
9742     bool is64 = r->type & ARM_CP_64BIT;
9743     bool ns = secstate & ARM_CP_SECSTATE_NS;
9744     int cp = r->cp;
9745     size_t name_len;
9746     bool make_const;
9747 
9748     switch (state) {
9749     case ARM_CP_STATE_AA32:
9750         /* We assume it is a cp15 register if the .cp field is left unset. */
9751         if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9752             cp = 15;
9753         }
9754         key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9755         break;
9756     case ARM_CP_STATE_AA64:
9757         /*
9758          * To allow abbreviation of ARMCPRegInfo definitions, we treat
9759          * cp == 0 as equivalent to the value for "standard guest-visible
9760          * sysreg".  STATE_BOTH definitions are also always "standard sysreg"
9761          * in their AArch64 view (the .cp value may be non-zero for the
9762          * benefit of the AArch32 view).
9763          */
9764         if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9765             cp = CP_REG_ARM64_SYSREG_CP;
9766         }
9767         key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9768         break;
9769     default:
9770         g_assert_not_reached();
9771     }
9772 
9773     /* Overriding of an existing definition must be explicitly requested. */
9774     if (!(r->type & ARM_CP_OVERRIDE)) {
9775         const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9776         if (oldreg) {
9777             assert(oldreg->type & ARM_CP_OVERRIDE);
9778         }
9779     }
9780 
9781     /*
9782      * Eliminate registers that are not present because the EL is missing.
9783      * Doing this here makes it easier to put all registers for a given
9784      * feature into the same ARMCPRegInfo array and define them all at once.
9785      */
9786     make_const = false;
9787     if (arm_feature(env, ARM_FEATURE_EL3)) {
9788         /*
9789          * An EL2 register without EL2 but with EL3 is (usually) RES0.
9790          * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9791          */
9792         int min_el = ctz32(r->access) / 2;
9793         if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9794             if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9795                 return;
9796             }
9797             make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9798         }
9799     } else {
9800         CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9801                                  ? PL2_RW : PL1_RW);
9802         if ((r->access & max_el) == 0) {
9803             return;
9804         }
9805     }
9806 
9807     /* Combine cpreg and name into one allocation. */
9808     name_len = strlen(name) + 1;
9809     r2 = g_malloc(sizeof(*r2) + name_len);
9810     *r2 = *r;
9811     r2->name = memcpy(r2 + 1, name, name_len);
9812 
9813     /*
9814      * Update fields to match the instantiation, overwiting wildcards
9815      * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9816      */
9817     r2->cp = cp;
9818     r2->crm = crm;
9819     r2->opc1 = opc1;
9820     r2->opc2 = opc2;
9821     r2->state = state;
9822     r2->secure = secstate;
9823     if (opaque) {
9824         r2->opaque = opaque;
9825     }
9826 
9827     if (make_const) {
9828         /* This should not have been a very special register to begin. */
9829         int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9830         assert(old_special == 0 || old_special == ARM_CP_NOP);
9831         /*
9832          * Set the special function to CONST, retaining the other flags.
9833          * This is important for e.g. ARM_CP_SVE so that we still
9834          * take the SVE trap if CPTR_EL3.EZ == 0.
9835          */
9836         r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9837         /*
9838          * Usually, these registers become RES0, but there are a few
9839          * special cases like VPIDR_EL2 which have a constant non-zero
9840          * value with writes ignored.
9841          */
9842         if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9843             r2->resetvalue = 0;
9844         }
9845         /*
9846          * ARM_CP_CONST has precedence, so removing the callbacks and
9847          * offsets are not strictly necessary, but it is potentially
9848          * less confusing to debug later.
9849          */
9850         r2->readfn = NULL;
9851         r2->writefn = NULL;
9852         r2->raw_readfn = NULL;
9853         r2->raw_writefn = NULL;
9854         r2->resetfn = NULL;
9855         r2->fieldoffset = 0;
9856         r2->bank_fieldoffsets[0] = 0;
9857         r2->bank_fieldoffsets[1] = 0;
9858     } else {
9859         bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9860 
9861         if (isbanked) {
9862             /*
9863              * Register is banked (using both entries in array).
9864              * Overwriting fieldoffset as the array is only used to define
9865              * banked registers but later only fieldoffset is used.
9866              */
9867             r2->fieldoffset = r->bank_fieldoffsets[ns];
9868         }
9869         if (state == ARM_CP_STATE_AA32) {
9870             if (isbanked) {
9871                 /*
9872                  * If the register is banked then we don't need to migrate or
9873                  * reset the 32-bit instance in certain cases:
9874                  *
9875                  * 1) If the register has both 32-bit and 64-bit instances
9876                  *    then we can count on the 64-bit instance taking care
9877                  *    of the non-secure bank.
9878                  * 2) If ARMv8 is enabled then we can count on a 64-bit
9879                  *    version taking care of the secure bank.  This requires
9880                  *    that separate 32 and 64-bit definitions are provided.
9881                  */
9882                 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9883                     (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9884                     r2->type |= ARM_CP_ALIAS;
9885                 }
9886             } else if ((secstate != r->secure) && !ns) {
9887                 /*
9888                  * The register is not banked so we only want to allow
9889                  * migration of the non-secure instance.
9890                  */
9891                 r2->type |= ARM_CP_ALIAS;
9892             }
9893 
9894             if (HOST_BIG_ENDIAN &&
9895                 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9896                 r2->fieldoffset += sizeof(uint32_t);
9897             }
9898         }
9899     }
9900 
9901     /*
9902      * By convention, for wildcarded registers only the first
9903      * entry is used for migration; the others are marked as
9904      * ALIAS so we don't try to transfer the register
9905      * multiple times. Special registers (ie NOP/WFI) are
9906      * never migratable and not even raw-accessible.
9907      */
9908     if (r2->type & ARM_CP_SPECIAL_MASK) {
9909         r2->type |= ARM_CP_NO_RAW;
9910     }
9911     if (((r->crm == CP_ANY) && crm != 0) ||
9912         ((r->opc1 == CP_ANY) && opc1 != 0) ||
9913         ((r->opc2 == CP_ANY) && opc2 != 0)) {
9914         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9915     }
9916 
9917     /*
9918      * Check that raw accesses are either forbidden or handled. Note that
9919      * we can't assert this earlier because the setup of fieldoffset for
9920      * banked registers has to be done first.
9921      */
9922     if (!(r2->type & ARM_CP_NO_RAW)) {
9923         assert(!raw_accessors_invalid(r2));
9924     }
9925 
9926     g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9927 }
9928 
9929 
9930 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9931                                        const ARMCPRegInfo *r, void *opaque)
9932 {
9933     /*
9934      * Define implementations of coprocessor registers.
9935      * We store these in a hashtable because typically
9936      * there are less than 150 registers in a space which
9937      * is 16*16*16*8*8 = 262144 in size.
9938      * Wildcarding is supported for the crm, opc1 and opc2 fields.
9939      * If a register is defined twice then the second definition is
9940      * used, so this can be used to define some generic registers and
9941      * then override them with implementation specific variations.
9942      * At least one of the original and the second definition should
9943      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9944      * against accidental use.
9945      *
9946      * The state field defines whether the register is to be
9947      * visible in the AArch32 or AArch64 execution state. If the
9948      * state is set to ARM_CP_STATE_BOTH then we synthesise a
9949      * reginfo structure for the AArch32 view, which sees the lower
9950      * 32 bits of the 64 bit register.
9951      *
9952      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9953      * be wildcarded. AArch64 registers are always considered to be 64
9954      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9955      * the register, if any.
9956      */
9957     int crm, opc1, opc2;
9958     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9959     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9960     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9961     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9962     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9963     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9964     CPState state;
9965 
9966     /* 64 bit registers have only CRm and Opc1 fields */
9967     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9968     /* op0 only exists in the AArch64 encodings */
9969     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9970     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9971     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9972     /*
9973      * This API is only for Arm's system coprocessors (14 and 15) or
9974      * (M-profile or v7A-and-earlier only) for implementation defined
9975      * coprocessors in the range 0..7.  Our decode assumes this, since
9976      * 8..13 can be used for other insns including VFP and Neon. See
9977      * valid_cp() in translate.c.  Assert here that we haven't tried
9978      * to use an invalid coprocessor number.
9979      */
9980     switch (r->state) {
9981     case ARM_CP_STATE_BOTH:
9982         /* 0 has a special meaning, but otherwise the same rules as AA32. */
9983         if (r->cp == 0) {
9984             break;
9985         }
9986         /* fall through */
9987     case ARM_CP_STATE_AA32:
9988         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9989             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9990             assert(r->cp >= 14 && r->cp <= 15);
9991         } else {
9992             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9993         }
9994         break;
9995     case ARM_CP_STATE_AA64:
9996         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9997         break;
9998     default:
9999         g_assert_not_reached();
10000     }
10001     /*
10002      * The AArch64 pseudocode CheckSystemAccess() specifies that op1
10003      * encodes a minimum access level for the register. We roll this
10004      * runtime check into our general permission check code, so check
10005      * here that the reginfo's specified permissions are strict enough
10006      * to encompass the generic architectural permission check.
10007      */
10008     if (r->state != ARM_CP_STATE_AA32) {
10009         CPAccessRights mask;
10010         switch (r->opc1) {
10011         case 0:
10012             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
10013             mask = PL0U_R | PL1_RW;
10014             break;
10015         case 1: case 2:
10016             /* min_EL EL1 */
10017             mask = PL1_RW;
10018             break;
10019         case 3:
10020             /* min_EL EL0 */
10021             mask = PL0_RW;
10022             break;
10023         case 4:
10024         case 5:
10025             /* min_EL EL2 */
10026             mask = PL2_RW;
10027             break;
10028         case 6:
10029             /* min_EL EL3 */
10030             mask = PL3_RW;
10031             break;
10032         case 7:
10033             /* min_EL EL1, secure mode only (we don't check the latter) */
10034             mask = PL1_RW;
10035             break;
10036         default:
10037             /* broken reginfo with out-of-range opc1 */
10038             g_assert_not_reached();
10039         }
10040         /* assert our permissions are not too lax (stricter is fine) */
10041         assert((r->access & ~mask) == 0);
10042     }
10043 
10044     /*
10045      * Check that the register definition has enough info to handle
10046      * reads and writes if they are permitted.
10047      */
10048     if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
10049         if (r->access & PL3_R) {
10050             assert((r->fieldoffset ||
10051                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10052                    r->readfn);
10053         }
10054         if (r->access & PL3_W) {
10055             assert((r->fieldoffset ||
10056                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10057                    r->writefn);
10058         }
10059     }
10060 
10061     for (crm = crmmin; crm <= crmmax; crm++) {
10062         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
10063             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
10064                 for (state = ARM_CP_STATE_AA32;
10065                      state <= ARM_CP_STATE_AA64; state++) {
10066                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
10067                         continue;
10068                     }
10069                     if (state == ARM_CP_STATE_AA32) {
10070                         /*
10071                          * Under AArch32 CP registers can be common
10072                          * (same for secure and non-secure world) or banked.
10073                          */
10074                         char *name;
10075 
10076                         switch (r->secure) {
10077                         case ARM_CP_SECSTATE_S:
10078                         case ARM_CP_SECSTATE_NS:
10079                             add_cpreg_to_hashtable(cpu, r, opaque, state,
10080                                                    r->secure, crm, opc1, opc2,
10081                                                    r->name);
10082                             break;
10083                         case ARM_CP_SECSTATE_BOTH:
10084                             name = g_strdup_printf("%s_S", r->name);
10085                             add_cpreg_to_hashtable(cpu, r, opaque, state,
10086                                                    ARM_CP_SECSTATE_S,
10087                                                    crm, opc1, opc2, name);
10088                             g_free(name);
10089                             add_cpreg_to_hashtable(cpu, r, opaque, state,
10090                                                    ARM_CP_SECSTATE_NS,
10091                                                    crm, opc1, opc2, r->name);
10092                             break;
10093                         default:
10094                             g_assert_not_reached();
10095                         }
10096                     } else {
10097                         /*
10098                          * AArch64 registers get mapped to non-secure instance
10099                          * of AArch32
10100                          */
10101                         add_cpreg_to_hashtable(cpu, r, opaque, state,
10102                                                ARM_CP_SECSTATE_NS,
10103                                                crm, opc1, opc2, r->name);
10104                     }
10105                 }
10106             }
10107         }
10108     }
10109 }
10110 
10111 /* Define a whole list of registers */
10112 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
10113                                         void *opaque, size_t len)
10114 {
10115     size_t i;
10116     for (i = 0; i < len; ++i) {
10117         define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
10118     }
10119 }
10120 
10121 /*
10122  * Modify ARMCPRegInfo for access from userspace.
10123  *
10124  * This is a data driven modification directed by
10125  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
10126  * user-space cannot alter any values and dynamic values pertaining to
10127  * execution state are hidden from user space view anyway.
10128  */
10129 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
10130                                  const ARMCPRegUserSpaceInfo *mods,
10131                                  size_t mods_len)
10132 {
10133     for (size_t mi = 0; mi < mods_len; ++mi) {
10134         const ARMCPRegUserSpaceInfo *m = mods + mi;
10135         GPatternSpec *pat = NULL;
10136 
10137         if (m->is_glob) {
10138             pat = g_pattern_spec_new(m->name);
10139         }
10140         for (size_t ri = 0; ri < regs_len; ++ri) {
10141             ARMCPRegInfo *r = regs + ri;
10142 
10143             if (pat && g_pattern_match_string(pat, r->name)) {
10144                 r->type = ARM_CP_CONST;
10145                 r->access = PL0U_R;
10146                 r->resetvalue = 0;
10147                 /* continue */
10148             } else if (strcmp(r->name, m->name) == 0) {
10149                 r->type = ARM_CP_CONST;
10150                 r->access = PL0U_R;
10151                 r->resetvalue &= m->exported_bits;
10152                 r->resetvalue |= m->fixed_bits;
10153                 break;
10154             }
10155         }
10156         if (pat) {
10157             g_pattern_spec_free(pat);
10158         }
10159     }
10160 }
10161 
10162 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
10163 {
10164     return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
10165 }
10166 
10167 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
10168                          uint64_t value)
10169 {
10170     /* Helper coprocessor write function for write-ignore registers */
10171 }
10172 
10173 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
10174 {
10175     /* Helper coprocessor write function for read-as-zero registers */
10176     return 0;
10177 }
10178 
10179 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
10180 {
10181     /* Helper coprocessor reset function for do-nothing-on-reset registers */
10182 }
10183 
10184 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
10185 {
10186     /*
10187      * Return true if it is not valid for us to switch to
10188      * this CPU mode (ie all the UNPREDICTABLE cases in
10189      * the ARM ARM CPSRWriteByInstr pseudocode).
10190      */
10191 
10192     /* Changes to or from Hyp via MSR and CPS are illegal. */
10193     if (write_type == CPSRWriteByInstr &&
10194         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
10195          mode == ARM_CPU_MODE_HYP)) {
10196         return 1;
10197     }
10198 
10199     switch (mode) {
10200     case ARM_CPU_MODE_USR:
10201         return 0;
10202     case ARM_CPU_MODE_SYS:
10203     case ARM_CPU_MODE_SVC:
10204     case ARM_CPU_MODE_ABT:
10205     case ARM_CPU_MODE_UND:
10206     case ARM_CPU_MODE_IRQ:
10207     case ARM_CPU_MODE_FIQ:
10208         /*
10209          * Note that we don't implement the IMPDEF NSACR.RFR which in v7
10210          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
10211          */
10212         /*
10213          * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
10214          * and CPS are treated as illegal mode changes.
10215          */
10216         if (write_type == CPSRWriteByInstr &&
10217             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
10218             (arm_hcr_el2_eff(env) & HCR_TGE)) {
10219             return 1;
10220         }
10221         return 0;
10222     case ARM_CPU_MODE_HYP:
10223         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
10224     case ARM_CPU_MODE_MON:
10225         return arm_current_el(env) < 3;
10226     default:
10227         return 1;
10228     }
10229 }
10230 
10231 uint32_t cpsr_read(CPUARMState *env)
10232 {
10233     int ZF;
10234     ZF = (env->ZF == 0);
10235     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
10236         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
10237         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
10238         | ((env->condexec_bits & 0xfc) << 8)
10239         | (env->GE << 16) | (env->daif & CPSR_AIF);
10240 }
10241 
10242 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
10243                 CPSRWriteType write_type)
10244 {
10245     uint32_t changed_daif;
10246     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
10247         (mask & (CPSR_M | CPSR_E | CPSR_IL));
10248 
10249     if (mask & CPSR_NZCV) {
10250         env->ZF = (~val) & CPSR_Z;
10251         env->NF = val;
10252         env->CF = (val >> 29) & 1;
10253         env->VF = (val << 3) & 0x80000000;
10254     }
10255     if (mask & CPSR_Q) {
10256         env->QF = ((val & CPSR_Q) != 0);
10257     }
10258     if (mask & CPSR_T) {
10259         env->thumb = ((val & CPSR_T) != 0);
10260     }
10261     if (mask & CPSR_IT_0_1) {
10262         env->condexec_bits &= ~3;
10263         env->condexec_bits |= (val >> 25) & 3;
10264     }
10265     if (mask & CPSR_IT_2_7) {
10266         env->condexec_bits &= 3;
10267         env->condexec_bits |= (val >> 8) & 0xfc;
10268     }
10269     if (mask & CPSR_GE) {
10270         env->GE = (val >> 16) & 0xf;
10271     }
10272 
10273     /*
10274      * In a V7 implementation that includes the security extensions but does
10275      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10276      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10277      * bits respectively.
10278      *
10279      * In a V8 implementation, it is permitted for privileged software to
10280      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10281      */
10282     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
10283         arm_feature(env, ARM_FEATURE_EL3) &&
10284         !arm_feature(env, ARM_FEATURE_EL2) &&
10285         !arm_is_secure(env)) {
10286 
10287         changed_daif = (env->daif ^ val) & mask;
10288 
10289         if (changed_daif & CPSR_A) {
10290             /*
10291              * Check to see if we are allowed to change the masking of async
10292              * abort exceptions from a non-secure state.
10293              */
10294             if (!(env->cp15.scr_el3 & SCR_AW)) {
10295                 qemu_log_mask(LOG_GUEST_ERROR,
10296                               "Ignoring attempt to switch CPSR_A flag from "
10297                               "non-secure world with SCR.AW bit clear\n");
10298                 mask &= ~CPSR_A;
10299             }
10300         }
10301 
10302         if (changed_daif & CPSR_F) {
10303             /*
10304              * Check to see if we are allowed to change the masking of FIQ
10305              * exceptions from a non-secure state.
10306              */
10307             if (!(env->cp15.scr_el3 & SCR_FW)) {
10308                 qemu_log_mask(LOG_GUEST_ERROR,
10309                               "Ignoring attempt to switch CPSR_F flag from "
10310                               "non-secure world with SCR.FW bit clear\n");
10311                 mask &= ~CPSR_F;
10312             }
10313 
10314             /*
10315              * Check whether non-maskable FIQ (NMFI) support is enabled.
10316              * If this bit is set software is not allowed to mask
10317              * FIQs, but is allowed to set CPSR_F to 0.
10318              */
10319             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10320                 (val & CPSR_F)) {
10321                 qemu_log_mask(LOG_GUEST_ERROR,
10322                               "Ignoring attempt to enable CPSR_F flag "
10323                               "(non-maskable FIQ [NMFI] support enabled)\n");
10324                 mask &= ~CPSR_F;
10325             }
10326         }
10327     }
10328 
10329     env->daif &= ~(CPSR_AIF & mask);
10330     env->daif |= val & CPSR_AIF & mask;
10331 
10332     if (write_type != CPSRWriteRaw &&
10333         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10334         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10335             /*
10336              * Note that we can only get here in USR mode if this is a
10337              * gdb stub write; for this case we follow the architectural
10338              * behaviour for guest writes in USR mode of ignoring an attempt
10339              * to switch mode. (Those are caught by translate.c for writes
10340              * triggered by guest instructions.)
10341              */
10342             mask &= ~CPSR_M;
10343         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10344             /*
10345              * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10346              * v7, and has defined behaviour in v8:
10347              *  + leave CPSR.M untouched
10348              *  + allow changes to the other CPSR fields
10349              *  + set PSTATE.IL
10350              * For user changes via the GDB stub, we don't set PSTATE.IL,
10351              * as this would be unnecessarily harsh for a user error.
10352              */
10353             mask &= ~CPSR_M;
10354             if (write_type != CPSRWriteByGDBStub &&
10355                 arm_feature(env, ARM_FEATURE_V8)) {
10356                 mask |= CPSR_IL;
10357                 val |= CPSR_IL;
10358             }
10359             qemu_log_mask(LOG_GUEST_ERROR,
10360                           "Illegal AArch32 mode switch attempt from %s to %s\n",
10361                           aarch32_mode_name(env->uncached_cpsr),
10362                           aarch32_mode_name(val));
10363         } else {
10364             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10365                           write_type == CPSRWriteExceptionReturn ?
10366                           "Exception return from AArch32" :
10367                           "AArch32 mode switch from",
10368                           aarch32_mode_name(env->uncached_cpsr),
10369                           aarch32_mode_name(val), env->regs[15]);
10370             switch_mode(env, val & CPSR_M);
10371         }
10372     }
10373     mask &= ~CACHED_CPSR_BITS;
10374     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10375     if (tcg_enabled() && rebuild_hflags) {
10376         arm_rebuild_hflags(env);
10377     }
10378 }
10379 
10380 #ifdef CONFIG_USER_ONLY
10381 
10382 static void switch_mode(CPUARMState *env, int mode)
10383 {
10384     ARMCPU *cpu = env_archcpu(env);
10385 
10386     if (mode != ARM_CPU_MODE_USR) {
10387         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10388     }
10389 }
10390 
10391 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10392                                  uint32_t cur_el, bool secure)
10393 {
10394     return 1;
10395 }
10396 
10397 void aarch64_sync_64_to_32(CPUARMState *env)
10398 {
10399     g_assert_not_reached();
10400 }
10401 
10402 #else
10403 
10404 static void switch_mode(CPUARMState *env, int mode)
10405 {
10406     int old_mode;
10407     int i;
10408 
10409     old_mode = env->uncached_cpsr & CPSR_M;
10410     if (mode == old_mode) {
10411         return;
10412     }
10413 
10414     if (old_mode == ARM_CPU_MODE_FIQ) {
10415         memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10416         memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10417     } else if (mode == ARM_CPU_MODE_FIQ) {
10418         memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10419         memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10420     }
10421 
10422     i = bank_number(old_mode);
10423     env->banked_r13[i] = env->regs[13];
10424     env->banked_spsr[i] = env->spsr;
10425 
10426     i = bank_number(mode);
10427     env->regs[13] = env->banked_r13[i];
10428     env->spsr = env->banked_spsr[i];
10429 
10430     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10431     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10432 }
10433 
10434 /*
10435  * Physical Interrupt Target EL Lookup Table
10436  *
10437  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10438  *
10439  * The below multi-dimensional table is used for looking up the target
10440  * exception level given numerous condition criteria.  Specifically, the
10441  * target EL is based on SCR and HCR routing controls as well as the
10442  * currently executing EL and secure state.
10443  *
10444  *    Dimensions:
10445  *    target_el_table[2][2][2][2][2][4]
10446  *                    |  |  |  |  |  +--- Current EL
10447  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
10448  *                    |  |  |  +--------- HCR mask override
10449  *                    |  |  +------------ SCR exec state control
10450  *                    |  +--------------- SCR mask override
10451  *                    +------------------ 32-bit(0)/64-bit(1) EL3
10452  *
10453  *    The table values are as such:
10454  *    0-3 = EL0-EL3
10455  *     -1 = Cannot occur
10456  *
10457  * The ARM ARM target EL table includes entries indicating that an "exception
10458  * is not taken".  The two cases where this is applicable are:
10459  *    1) An exception is taken from EL3 but the SCR does not have the exception
10460  *    routed to EL3.
10461  *    2) An exception is taken from EL2 but the HCR does not have the exception
10462  *    routed to EL2.
10463  * In these two cases, the below table contain a target of EL1.  This value is
10464  * returned as it is expected that the consumer of the table data will check
10465  * for "target EL >= current EL" to ensure the exception is not taken.
10466  *
10467  *            SCR     HCR
10468  *         64  EA     AMO                 From
10469  *        BIT IRQ     IMO      Non-secure         Secure
10470  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
10471  */
10472 static const int8_t target_el_table[2][2][2][2][2][4] = {
10473     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10474        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
10475       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10476        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
10477      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10478        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
10479       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10480        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
10481     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
10482        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
10483       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
10484        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
10485      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
10486        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
10487       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
10488        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
10489 };
10490 
10491 /*
10492  * Determine the target EL for physical exceptions
10493  */
10494 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10495                                  uint32_t cur_el, bool secure)
10496 {
10497     CPUARMState *env = cpu_env(cs);
10498     bool rw;
10499     bool scr;
10500     bool hcr;
10501     int target_el;
10502     /* Is the highest EL AArch64? */
10503     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10504     uint64_t hcr_el2;
10505 
10506     if (arm_feature(env, ARM_FEATURE_EL3)) {
10507         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10508     } else {
10509         /*
10510          * Either EL2 is the highest EL (and so the EL2 register width
10511          * is given by is64); or there is no EL2 or EL3, in which case
10512          * the value of 'rw' does not affect the table lookup anyway.
10513          */
10514         rw = is64;
10515     }
10516 
10517     hcr_el2 = arm_hcr_el2_eff(env);
10518     switch (excp_idx) {
10519     case EXCP_IRQ:
10520         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10521         hcr = hcr_el2 & HCR_IMO;
10522         break;
10523     case EXCP_FIQ:
10524         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10525         hcr = hcr_el2 & HCR_FMO;
10526         break;
10527     default:
10528         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10529         hcr = hcr_el2 & HCR_AMO;
10530         break;
10531     };
10532 
10533     /*
10534      * For these purposes, TGE and AMO/IMO/FMO both force the
10535      * interrupt to EL2.  Fold TGE into the bit extracted above.
10536      */
10537     hcr |= (hcr_el2 & HCR_TGE) != 0;
10538 
10539     /* Perform a table-lookup for the target EL given the current state */
10540     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10541 
10542     assert(target_el > 0);
10543 
10544     return target_el;
10545 }
10546 
10547 void arm_log_exception(CPUState *cs)
10548 {
10549     int idx = cs->exception_index;
10550 
10551     if (qemu_loglevel_mask(CPU_LOG_INT)) {
10552         const char *exc = NULL;
10553         static const char * const excnames[] = {
10554             [EXCP_UDEF] = "Undefined Instruction",
10555             [EXCP_SWI] = "SVC",
10556             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10557             [EXCP_DATA_ABORT] = "Data Abort",
10558             [EXCP_IRQ] = "IRQ",
10559             [EXCP_FIQ] = "FIQ",
10560             [EXCP_BKPT] = "Breakpoint",
10561             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10562             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10563             [EXCP_HVC] = "Hypervisor Call",
10564             [EXCP_HYP_TRAP] = "Hypervisor Trap",
10565             [EXCP_SMC] = "Secure Monitor Call",
10566             [EXCP_VIRQ] = "Virtual IRQ",
10567             [EXCP_VFIQ] = "Virtual FIQ",
10568             [EXCP_SEMIHOST] = "Semihosting call",
10569             [EXCP_NOCP] = "v7M NOCP UsageFault",
10570             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10571             [EXCP_STKOF] = "v8M STKOF UsageFault",
10572             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10573             [EXCP_LSERR] = "v8M LSERR UsageFault",
10574             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10575             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10576             [EXCP_VSERR] = "Virtual SERR",
10577             [EXCP_GPC] = "Granule Protection Check",
10578         };
10579 
10580         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10581             exc = excnames[idx];
10582         }
10583         if (!exc) {
10584             exc = "unknown";
10585         }
10586         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10587                       idx, exc, cs->cpu_index);
10588     }
10589 }
10590 
10591 /*
10592  * Function used to synchronize QEMU's AArch64 register set with AArch32
10593  * register set.  This is necessary when switching between AArch32 and AArch64
10594  * execution state.
10595  */
10596 void aarch64_sync_32_to_64(CPUARMState *env)
10597 {
10598     int i;
10599     uint32_t mode = env->uncached_cpsr & CPSR_M;
10600 
10601     /* We can blanket copy R[0:7] to X[0:7] */
10602     for (i = 0; i < 8; i++) {
10603         env->xregs[i] = env->regs[i];
10604     }
10605 
10606     /*
10607      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10608      * Otherwise, they come from the banked user regs.
10609      */
10610     if (mode == ARM_CPU_MODE_FIQ) {
10611         for (i = 8; i < 13; i++) {
10612             env->xregs[i] = env->usr_regs[i - 8];
10613         }
10614     } else {
10615         for (i = 8; i < 13; i++) {
10616             env->xregs[i] = env->regs[i];
10617         }
10618     }
10619 
10620     /*
10621      * Registers x13-x23 are the various mode SP and FP registers. Registers
10622      * r13 and r14 are only copied if we are in that mode, otherwise we copy
10623      * from the mode banked register.
10624      */
10625     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10626         env->xregs[13] = env->regs[13];
10627         env->xregs[14] = env->regs[14];
10628     } else {
10629         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10630         /* HYP is an exception in that it is copied from r14 */
10631         if (mode == ARM_CPU_MODE_HYP) {
10632             env->xregs[14] = env->regs[14];
10633         } else {
10634             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10635         }
10636     }
10637 
10638     if (mode == ARM_CPU_MODE_HYP) {
10639         env->xregs[15] = env->regs[13];
10640     } else {
10641         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10642     }
10643 
10644     if (mode == ARM_CPU_MODE_IRQ) {
10645         env->xregs[16] = env->regs[14];
10646         env->xregs[17] = env->regs[13];
10647     } else {
10648         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10649         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10650     }
10651 
10652     if (mode == ARM_CPU_MODE_SVC) {
10653         env->xregs[18] = env->regs[14];
10654         env->xregs[19] = env->regs[13];
10655     } else {
10656         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10657         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10658     }
10659 
10660     if (mode == ARM_CPU_MODE_ABT) {
10661         env->xregs[20] = env->regs[14];
10662         env->xregs[21] = env->regs[13];
10663     } else {
10664         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10665         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10666     }
10667 
10668     if (mode == ARM_CPU_MODE_UND) {
10669         env->xregs[22] = env->regs[14];
10670         env->xregs[23] = env->regs[13];
10671     } else {
10672         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10673         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10674     }
10675 
10676     /*
10677      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10678      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
10679      * FIQ bank for r8-r14.
10680      */
10681     if (mode == ARM_CPU_MODE_FIQ) {
10682         for (i = 24; i < 31; i++) {
10683             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
10684         }
10685     } else {
10686         for (i = 24; i < 29; i++) {
10687             env->xregs[i] = env->fiq_regs[i - 24];
10688         }
10689         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10690         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10691     }
10692 
10693     env->pc = env->regs[15];
10694 }
10695 
10696 /*
10697  * Function used to synchronize QEMU's AArch32 register set with AArch64
10698  * register set.  This is necessary when switching between AArch32 and AArch64
10699  * execution state.
10700  */
10701 void aarch64_sync_64_to_32(CPUARMState *env)
10702 {
10703     int i;
10704     uint32_t mode = env->uncached_cpsr & CPSR_M;
10705 
10706     /* We can blanket copy X[0:7] to R[0:7] */
10707     for (i = 0; i < 8; i++) {
10708         env->regs[i] = env->xregs[i];
10709     }
10710 
10711     /*
10712      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10713      * Otherwise, we copy x8-x12 into the banked user regs.
10714      */
10715     if (mode == ARM_CPU_MODE_FIQ) {
10716         for (i = 8; i < 13; i++) {
10717             env->usr_regs[i - 8] = env->xregs[i];
10718         }
10719     } else {
10720         for (i = 8; i < 13; i++) {
10721             env->regs[i] = env->xregs[i];
10722         }
10723     }
10724 
10725     /*
10726      * Registers r13 & r14 depend on the current mode.
10727      * If we are in a given mode, we copy the corresponding x registers to r13
10728      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
10729      * for the mode.
10730      */
10731     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10732         env->regs[13] = env->xregs[13];
10733         env->regs[14] = env->xregs[14];
10734     } else {
10735         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10736 
10737         /*
10738          * HYP is an exception in that it does not have its own banked r14 but
10739          * shares the USR r14
10740          */
10741         if (mode == ARM_CPU_MODE_HYP) {
10742             env->regs[14] = env->xregs[14];
10743         } else {
10744             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10745         }
10746     }
10747 
10748     if (mode == ARM_CPU_MODE_HYP) {
10749         env->regs[13] = env->xregs[15];
10750     } else {
10751         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10752     }
10753 
10754     if (mode == ARM_CPU_MODE_IRQ) {
10755         env->regs[14] = env->xregs[16];
10756         env->regs[13] = env->xregs[17];
10757     } else {
10758         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10759         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10760     }
10761 
10762     if (mode == ARM_CPU_MODE_SVC) {
10763         env->regs[14] = env->xregs[18];
10764         env->regs[13] = env->xregs[19];
10765     } else {
10766         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10767         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10768     }
10769 
10770     if (mode == ARM_CPU_MODE_ABT) {
10771         env->regs[14] = env->xregs[20];
10772         env->regs[13] = env->xregs[21];
10773     } else {
10774         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10775         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10776     }
10777 
10778     if (mode == ARM_CPU_MODE_UND) {
10779         env->regs[14] = env->xregs[22];
10780         env->regs[13] = env->xregs[23];
10781     } else {
10782         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10783         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10784     }
10785 
10786     /*
10787      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10788      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
10789      * FIQ bank for r8-r14.
10790      */
10791     if (mode == ARM_CPU_MODE_FIQ) {
10792         for (i = 24; i < 31; i++) {
10793             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
10794         }
10795     } else {
10796         for (i = 24; i < 29; i++) {
10797             env->fiq_regs[i - 24] = env->xregs[i];
10798         }
10799         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10800         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10801     }
10802 
10803     env->regs[15] = env->pc;
10804 }
10805 
10806 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10807                                    uint32_t mask, uint32_t offset,
10808                                    uint32_t newpc)
10809 {
10810     int new_el;
10811 
10812     /* Change the CPU state so as to actually take the exception. */
10813     switch_mode(env, new_mode);
10814 
10815     /*
10816      * For exceptions taken to AArch32 we must clear the SS bit in both
10817      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10818      */
10819     env->pstate &= ~PSTATE_SS;
10820     env->spsr = cpsr_read(env);
10821     /* Clear IT bits.  */
10822     env->condexec_bits = 0;
10823     /* Switch to the new mode, and to the correct instruction set.  */
10824     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10825 
10826     /* This must be after mode switching. */
10827     new_el = arm_current_el(env);
10828 
10829     /* Set new mode endianness */
10830     env->uncached_cpsr &= ~CPSR_E;
10831     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10832         env->uncached_cpsr |= CPSR_E;
10833     }
10834     /* J and IL must always be cleared for exception entry */
10835     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10836     env->daif |= mask;
10837 
10838     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10839         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10840             env->uncached_cpsr |= CPSR_SSBS;
10841         } else {
10842             env->uncached_cpsr &= ~CPSR_SSBS;
10843         }
10844     }
10845 
10846     if (new_mode == ARM_CPU_MODE_HYP) {
10847         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10848         env->elr_el[2] = env->regs[15];
10849     } else {
10850         /* CPSR.PAN is normally preserved preserved unless...  */
10851         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10852             switch (new_el) {
10853             case 3:
10854                 if (!arm_is_secure_below_el3(env)) {
10855                     /* ... the target is EL3, from non-secure state.  */
10856                     env->uncached_cpsr &= ~CPSR_PAN;
10857                     break;
10858                 }
10859                 /* ... the target is EL3, from secure state ... */
10860                 /* fall through */
10861             case 1:
10862                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
10863                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10864                     env->uncached_cpsr |= CPSR_PAN;
10865                 }
10866                 break;
10867             }
10868         }
10869         /*
10870          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10871          * and we should just guard the thumb mode on V4
10872          */
10873         if (arm_feature(env, ARM_FEATURE_V4T)) {
10874             env->thumb =
10875                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10876         }
10877         env->regs[14] = env->regs[15] + offset;
10878     }
10879     env->regs[15] = newpc;
10880 
10881     if (tcg_enabled()) {
10882         arm_rebuild_hflags(env);
10883     }
10884 }
10885 
10886 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10887 {
10888     /*
10889      * Handle exception entry to Hyp mode; this is sufficiently
10890      * different to entry to other AArch32 modes that we handle it
10891      * separately here.
10892      *
10893      * The vector table entry used is always the 0x14 Hyp mode entry point,
10894      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10895      * The offset applied to the preferred return address is always zero
10896      * (see DDI0487C.a section G1.12.3).
10897      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10898      */
10899     uint32_t addr, mask;
10900     ARMCPU *cpu = ARM_CPU(cs);
10901     CPUARMState *env = &cpu->env;
10902 
10903     switch (cs->exception_index) {
10904     case EXCP_UDEF:
10905         addr = 0x04;
10906         break;
10907     case EXCP_SWI:
10908         addr = 0x08;
10909         break;
10910     case EXCP_BKPT:
10911         /* Fall through to prefetch abort.  */
10912     case EXCP_PREFETCH_ABORT:
10913         env->cp15.ifar_s = env->exception.vaddress;
10914         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10915                       (uint32_t)env->exception.vaddress);
10916         addr = 0x0c;
10917         break;
10918     case EXCP_DATA_ABORT:
10919         env->cp15.dfar_s = env->exception.vaddress;
10920         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10921                       (uint32_t)env->exception.vaddress);
10922         addr = 0x10;
10923         break;
10924     case EXCP_IRQ:
10925         addr = 0x18;
10926         break;
10927     case EXCP_FIQ:
10928         addr = 0x1c;
10929         break;
10930     case EXCP_HVC:
10931         addr = 0x08;
10932         break;
10933     case EXCP_HYP_TRAP:
10934         addr = 0x14;
10935         break;
10936     default:
10937         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10938     }
10939 
10940     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10941         if (!arm_feature(env, ARM_FEATURE_V8)) {
10942             /*
10943              * QEMU syndrome values are v8-style. v7 has the IL bit
10944              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10945              * If this is a v7 CPU, squash the IL bit in those cases.
10946              */
10947             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10948                 (cs->exception_index == EXCP_DATA_ABORT &&
10949                  !(env->exception.syndrome & ARM_EL_ISV)) ||
10950                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10951                 env->exception.syndrome &= ~ARM_EL_IL;
10952             }
10953         }
10954         env->cp15.esr_el[2] = env->exception.syndrome;
10955     }
10956 
10957     if (arm_current_el(env) != 2 && addr < 0x14) {
10958         addr = 0x14;
10959     }
10960 
10961     mask = 0;
10962     if (!(env->cp15.scr_el3 & SCR_EA)) {
10963         mask |= CPSR_A;
10964     }
10965     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10966         mask |= CPSR_I;
10967     }
10968     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10969         mask |= CPSR_F;
10970     }
10971 
10972     addr += env->cp15.hvbar;
10973 
10974     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10975 }
10976 
10977 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10978 {
10979     ARMCPU *cpu = ARM_CPU(cs);
10980     CPUARMState *env = &cpu->env;
10981     uint32_t addr;
10982     uint32_t mask;
10983     int new_mode;
10984     uint32_t offset;
10985     uint32_t moe;
10986 
10987     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10988     switch (syn_get_ec(env->exception.syndrome)) {
10989     case EC_BREAKPOINT:
10990     case EC_BREAKPOINT_SAME_EL:
10991         moe = 1;
10992         break;
10993     case EC_WATCHPOINT:
10994     case EC_WATCHPOINT_SAME_EL:
10995         moe = 10;
10996         break;
10997     case EC_AA32_BKPT:
10998         moe = 3;
10999         break;
11000     case EC_VECTORCATCH:
11001         moe = 5;
11002         break;
11003     default:
11004         moe = 0;
11005         break;
11006     }
11007 
11008     if (moe) {
11009         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
11010     }
11011 
11012     if (env->exception.target_el == 2) {
11013         arm_cpu_do_interrupt_aarch32_hyp(cs);
11014         return;
11015     }
11016 
11017     switch (cs->exception_index) {
11018     case EXCP_UDEF:
11019         new_mode = ARM_CPU_MODE_UND;
11020         addr = 0x04;
11021         mask = CPSR_I;
11022         if (env->thumb) {
11023             offset = 2;
11024         } else {
11025             offset = 4;
11026         }
11027         break;
11028     case EXCP_SWI:
11029         new_mode = ARM_CPU_MODE_SVC;
11030         addr = 0x08;
11031         mask = CPSR_I;
11032         /* The PC already points to the next instruction.  */
11033         offset = 0;
11034         break;
11035     case EXCP_BKPT:
11036         /* Fall through to prefetch abort.  */
11037     case EXCP_PREFETCH_ABORT:
11038         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
11039         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
11040         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
11041                       env->exception.fsr, (uint32_t)env->exception.vaddress);
11042         new_mode = ARM_CPU_MODE_ABT;
11043         addr = 0x0c;
11044         mask = CPSR_A | CPSR_I;
11045         offset = 4;
11046         break;
11047     case EXCP_DATA_ABORT:
11048         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11049         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
11050         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
11051                       env->exception.fsr,
11052                       (uint32_t)env->exception.vaddress);
11053         new_mode = ARM_CPU_MODE_ABT;
11054         addr = 0x10;
11055         mask = CPSR_A | CPSR_I;
11056         offset = 8;
11057         break;
11058     case EXCP_IRQ:
11059         new_mode = ARM_CPU_MODE_IRQ;
11060         addr = 0x18;
11061         /* Disable IRQ and imprecise data aborts.  */
11062         mask = CPSR_A | CPSR_I;
11063         offset = 4;
11064         if (env->cp15.scr_el3 & SCR_IRQ) {
11065             /* IRQ routed to monitor mode */
11066             new_mode = ARM_CPU_MODE_MON;
11067             mask |= CPSR_F;
11068         }
11069         break;
11070     case EXCP_FIQ:
11071         new_mode = ARM_CPU_MODE_FIQ;
11072         addr = 0x1c;
11073         /* Disable FIQ, IRQ and imprecise data aborts.  */
11074         mask = CPSR_A | CPSR_I | CPSR_F;
11075         if (env->cp15.scr_el3 & SCR_FIQ) {
11076             /* FIQ routed to monitor mode */
11077             new_mode = ARM_CPU_MODE_MON;
11078         }
11079         offset = 4;
11080         break;
11081     case EXCP_VIRQ:
11082         new_mode = ARM_CPU_MODE_IRQ;
11083         addr = 0x18;
11084         /* Disable IRQ and imprecise data aborts.  */
11085         mask = CPSR_A | CPSR_I;
11086         offset = 4;
11087         break;
11088     case EXCP_VFIQ:
11089         new_mode = ARM_CPU_MODE_FIQ;
11090         addr = 0x1c;
11091         /* Disable FIQ, IRQ and imprecise data aborts.  */
11092         mask = CPSR_A | CPSR_I | CPSR_F;
11093         offset = 4;
11094         break;
11095     case EXCP_VSERR:
11096         {
11097             /*
11098              * Note that this is reported as a data abort, but the DFAR
11099              * has an UNKNOWN value.  Construct the SError syndrome from
11100              * AET and ExT fields.
11101              */
11102             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
11103 
11104             if (extended_addresses_enabled(env)) {
11105                 env->exception.fsr = arm_fi_to_lfsc(&fi);
11106             } else {
11107                 env->exception.fsr = arm_fi_to_sfsc(&fi);
11108             }
11109             env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
11110             A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11111             qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
11112                           env->exception.fsr);
11113 
11114             new_mode = ARM_CPU_MODE_ABT;
11115             addr = 0x10;
11116             mask = CPSR_A | CPSR_I;
11117             offset = 8;
11118         }
11119         break;
11120     case EXCP_SMC:
11121         new_mode = ARM_CPU_MODE_MON;
11122         addr = 0x08;
11123         mask = CPSR_A | CPSR_I | CPSR_F;
11124         offset = 0;
11125         break;
11126     default:
11127         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11128         return; /* Never happens.  Keep compiler happy.  */
11129     }
11130 
11131     if (new_mode == ARM_CPU_MODE_MON) {
11132         addr += env->cp15.mvbar;
11133     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
11134         /* High vectors. When enabled, base address cannot be remapped. */
11135         addr += 0xffff0000;
11136     } else {
11137         /*
11138          * ARM v7 architectures provide a vector base address register to remap
11139          * the interrupt vector table.
11140          * This register is only followed in non-monitor mode, and is banked.
11141          * Note: only bits 31:5 are valid.
11142          */
11143         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
11144     }
11145 
11146     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
11147         env->cp15.scr_el3 &= ~SCR_NS;
11148     }
11149 
11150     take_aarch32_exception(env, new_mode, mask, offset, addr);
11151 }
11152 
11153 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
11154 {
11155     /*
11156      * Return the register number of the AArch64 view of the AArch32
11157      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
11158      * be that of the AArch32 mode the exception came from.
11159      */
11160     int mode = env->uncached_cpsr & CPSR_M;
11161 
11162     switch (aarch32_reg) {
11163     case 0 ... 7:
11164         return aarch32_reg;
11165     case 8 ... 12:
11166         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
11167     case 13:
11168         switch (mode) {
11169         case ARM_CPU_MODE_USR:
11170         case ARM_CPU_MODE_SYS:
11171             return 13;
11172         case ARM_CPU_MODE_HYP:
11173             return 15;
11174         case ARM_CPU_MODE_IRQ:
11175             return 17;
11176         case ARM_CPU_MODE_SVC:
11177             return 19;
11178         case ARM_CPU_MODE_ABT:
11179             return 21;
11180         case ARM_CPU_MODE_UND:
11181             return 23;
11182         case ARM_CPU_MODE_FIQ:
11183             return 29;
11184         default:
11185             g_assert_not_reached();
11186         }
11187     case 14:
11188         switch (mode) {
11189         case ARM_CPU_MODE_USR:
11190         case ARM_CPU_MODE_SYS:
11191         case ARM_CPU_MODE_HYP:
11192             return 14;
11193         case ARM_CPU_MODE_IRQ:
11194             return 16;
11195         case ARM_CPU_MODE_SVC:
11196             return 18;
11197         case ARM_CPU_MODE_ABT:
11198             return 20;
11199         case ARM_CPU_MODE_UND:
11200             return 22;
11201         case ARM_CPU_MODE_FIQ:
11202             return 30;
11203         default:
11204             g_assert_not_reached();
11205         }
11206     case 15:
11207         return 31;
11208     default:
11209         g_assert_not_reached();
11210     }
11211 }
11212 
11213 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
11214 {
11215     uint32_t ret = cpsr_read(env);
11216 
11217     /* Move DIT to the correct location for SPSR_ELx */
11218     if (ret & CPSR_DIT) {
11219         ret &= ~CPSR_DIT;
11220         ret |= PSTATE_DIT;
11221     }
11222     /* Merge PSTATE.SS into SPSR_ELx */
11223     ret |= env->pstate & PSTATE_SS;
11224 
11225     return ret;
11226 }
11227 
11228 static bool syndrome_is_sync_extabt(uint32_t syndrome)
11229 {
11230     /* Return true if this syndrome value is a synchronous external abort */
11231     switch (syn_get_ec(syndrome)) {
11232     case EC_INSNABORT:
11233     case EC_INSNABORT_SAME_EL:
11234     case EC_DATAABORT:
11235     case EC_DATAABORT_SAME_EL:
11236         /* Look at fault status code for all the synchronous ext abort cases */
11237         switch (syndrome & 0x3f) {
11238         case 0x10:
11239         case 0x13:
11240         case 0x14:
11241         case 0x15:
11242         case 0x16:
11243         case 0x17:
11244             return true;
11245         default:
11246             return false;
11247         }
11248     default:
11249         return false;
11250     }
11251 }
11252 
11253 /* Handle exception entry to a target EL which is using AArch64 */
11254 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11255 {
11256     ARMCPU *cpu = ARM_CPU(cs);
11257     CPUARMState *env = &cpu->env;
11258     unsigned int new_el = env->exception.target_el;
11259     target_ulong addr = env->cp15.vbar_el[new_el];
11260     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11261     unsigned int old_mode;
11262     unsigned int cur_el = arm_current_el(env);
11263     int rt;
11264 
11265     if (tcg_enabled()) {
11266         /*
11267          * Note that new_el can never be 0.  If cur_el is 0, then
11268          * el0_a64 is is_a64(), else el0_a64 is ignored.
11269          */
11270         aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11271     }
11272 
11273     if (cur_el < new_el) {
11274         /*
11275          * Entry vector offset depends on whether the implemented EL
11276          * immediately lower than the target level is using AArch32 or AArch64
11277          */
11278         bool is_aa64;
11279         uint64_t hcr;
11280 
11281         switch (new_el) {
11282         case 3:
11283             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11284             break;
11285         case 2:
11286             hcr = arm_hcr_el2_eff(env);
11287             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11288                 is_aa64 = (hcr & HCR_RW) != 0;
11289                 break;
11290             }
11291             /* fall through */
11292         case 1:
11293             is_aa64 = is_a64(env);
11294             break;
11295         default:
11296             g_assert_not_reached();
11297         }
11298 
11299         if (is_aa64) {
11300             addr += 0x400;
11301         } else {
11302             addr += 0x600;
11303         }
11304     } else if (pstate_read(env) & PSTATE_SP) {
11305         addr += 0x200;
11306     }
11307 
11308     switch (cs->exception_index) {
11309     case EXCP_GPC:
11310         qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11311                       env->cp15.mfar_el3);
11312         /* fall through */
11313     case EXCP_PREFETCH_ABORT:
11314     case EXCP_DATA_ABORT:
11315         /*
11316          * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11317          * to be taken to the SError vector entrypoint.
11318          */
11319         if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11320             syndrome_is_sync_extabt(env->exception.syndrome)) {
11321             addr += 0x180;
11322         }
11323         env->cp15.far_el[new_el] = env->exception.vaddress;
11324         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11325                       env->cp15.far_el[new_el]);
11326         /* fall through */
11327     case EXCP_BKPT:
11328     case EXCP_UDEF:
11329     case EXCP_SWI:
11330     case EXCP_HVC:
11331     case EXCP_HYP_TRAP:
11332     case EXCP_SMC:
11333         switch (syn_get_ec(env->exception.syndrome)) {
11334         case EC_ADVSIMDFPACCESSTRAP:
11335             /*
11336              * QEMU internal FP/SIMD syndromes from AArch32 include the
11337              * TA and coproc fields which are only exposed if the exception
11338              * is taken to AArch32 Hyp mode. Mask them out to get a valid
11339              * AArch64 format syndrome.
11340              */
11341             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11342             break;
11343         case EC_CP14RTTRAP:
11344         case EC_CP15RTTRAP:
11345         case EC_CP14DTTRAP:
11346             /*
11347              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11348              * the raw register field from the insn; when taking this to
11349              * AArch64 we must convert it to the AArch64 view of the register
11350              * number. Notice that we read a 4-bit AArch32 register number and
11351              * write back a 5-bit AArch64 one.
11352              */
11353             rt = extract32(env->exception.syndrome, 5, 4);
11354             rt = aarch64_regnum(env, rt);
11355             env->exception.syndrome = deposit32(env->exception.syndrome,
11356                                                 5, 5, rt);
11357             break;
11358         case EC_CP15RRTTRAP:
11359         case EC_CP14RRTTRAP:
11360             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11361             rt = extract32(env->exception.syndrome, 5, 4);
11362             rt = aarch64_regnum(env, rt);
11363             env->exception.syndrome = deposit32(env->exception.syndrome,
11364                                                 5, 5, rt);
11365             rt = extract32(env->exception.syndrome, 10, 4);
11366             rt = aarch64_regnum(env, rt);
11367             env->exception.syndrome = deposit32(env->exception.syndrome,
11368                                                 10, 5, rt);
11369             break;
11370         }
11371         env->cp15.esr_el[new_el] = env->exception.syndrome;
11372         break;
11373     case EXCP_IRQ:
11374     case EXCP_VIRQ:
11375         addr += 0x80;
11376         break;
11377     case EXCP_FIQ:
11378     case EXCP_VFIQ:
11379         addr += 0x100;
11380         break;
11381     case EXCP_VSERR:
11382         addr += 0x180;
11383         /* Construct the SError syndrome from IDS and ISS fields. */
11384         env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11385         env->cp15.esr_el[new_el] = env->exception.syndrome;
11386         break;
11387     default:
11388         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11389     }
11390 
11391     if (is_a64(env)) {
11392         old_mode = pstate_read(env);
11393         aarch64_save_sp(env, arm_current_el(env));
11394         env->elr_el[new_el] = env->pc;
11395 
11396         if (cur_el == 1 && new_el == 1) {
11397             uint64_t hcr = arm_hcr_el2_eff(env);
11398             if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV ||
11399                 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) {
11400                 /*
11401                  * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR
11402                  * by setting M[3:2] to 0b10.
11403                  * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN)
11404                  * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM)
11405                  */
11406                 old_mode = deposit32(old_mode, 2, 2, 2);
11407             }
11408         }
11409     } else {
11410         old_mode = cpsr_read_for_spsr_elx(env);
11411         env->elr_el[new_el] = env->regs[15];
11412 
11413         aarch64_sync_32_to_64(env);
11414 
11415         env->condexec_bits = 0;
11416     }
11417     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11418 
11419     qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode);
11420     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11421                   env->elr_el[new_el]);
11422 
11423     if (cpu_isar_feature(aa64_pan, cpu)) {
11424         /* The value of PSTATE.PAN is normally preserved, except when ... */
11425         new_mode |= old_mode & PSTATE_PAN;
11426         switch (new_el) {
11427         case 2:
11428             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
11429             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11430                 != (HCR_E2H | HCR_TGE)) {
11431                 break;
11432             }
11433             /* fall through */
11434         case 1:
11435             /* ... the target is EL1 ... */
11436             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
11437             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11438                 new_mode |= PSTATE_PAN;
11439             }
11440             break;
11441         }
11442     }
11443     if (cpu_isar_feature(aa64_mte, cpu)) {
11444         new_mode |= PSTATE_TCO;
11445     }
11446 
11447     if (cpu_isar_feature(aa64_ssbs, cpu)) {
11448         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11449             new_mode |= PSTATE_SSBS;
11450         } else {
11451             new_mode &= ~PSTATE_SSBS;
11452         }
11453     }
11454 
11455     pstate_write(env, PSTATE_DAIF | new_mode);
11456     env->aarch64 = true;
11457     aarch64_restore_sp(env, new_el);
11458 
11459     if (tcg_enabled()) {
11460         helper_rebuild_hflags_a64(env, new_el);
11461     }
11462 
11463     env->pc = addr;
11464 
11465     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11466                   new_el, env->pc, pstate_read(env));
11467 }
11468 
11469 /*
11470  * Do semihosting call and set the appropriate return value. All the
11471  * permission and validity checks have been done at translate time.
11472  *
11473  * We only see semihosting exceptions in TCG only as they are not
11474  * trapped to the hypervisor in KVM.
11475  */
11476 #ifdef CONFIG_TCG
11477 static void tcg_handle_semihosting(CPUState *cs)
11478 {
11479     ARMCPU *cpu = ARM_CPU(cs);
11480     CPUARMState *env = &cpu->env;
11481 
11482     if (is_a64(env)) {
11483         qemu_log_mask(CPU_LOG_INT,
11484                       "...handling as semihosting call 0x%" PRIx64 "\n",
11485                       env->xregs[0]);
11486         do_common_semihosting(cs);
11487         env->pc += 4;
11488     } else {
11489         qemu_log_mask(CPU_LOG_INT,
11490                       "...handling as semihosting call 0x%x\n",
11491                       env->regs[0]);
11492         do_common_semihosting(cs);
11493         env->regs[15] += env->thumb ? 2 : 4;
11494     }
11495 }
11496 #endif
11497 
11498 /*
11499  * Handle a CPU exception for A and R profile CPUs.
11500  * Do any appropriate logging, handle PSCI calls, and then hand off
11501  * to the AArch64-entry or AArch32-entry function depending on the
11502  * target exception level's register width.
11503  *
11504  * Note: this is used for both TCG (as the do_interrupt tcg op),
11505  *       and KVM to re-inject guest debug exceptions, and to
11506  *       inject a Synchronous-External-Abort.
11507  */
11508 void arm_cpu_do_interrupt(CPUState *cs)
11509 {
11510     ARMCPU *cpu = ARM_CPU(cs);
11511     CPUARMState *env = &cpu->env;
11512     unsigned int new_el = env->exception.target_el;
11513 
11514     assert(!arm_feature(env, ARM_FEATURE_M));
11515 
11516     arm_log_exception(cs);
11517     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11518                   new_el);
11519     if (qemu_loglevel_mask(CPU_LOG_INT)
11520         && !excp_is_internal(cs->exception_index)) {
11521         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11522                       syn_get_ec(env->exception.syndrome),
11523                       env->exception.syndrome);
11524     }
11525 
11526     if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11527         arm_handle_psci_call(cpu);
11528         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11529         return;
11530     }
11531 
11532     /*
11533      * Semihosting semantics depend on the register width of the code
11534      * that caused the exception, not the target exception level, so
11535      * must be handled here.
11536      */
11537 #ifdef CONFIG_TCG
11538     if (cs->exception_index == EXCP_SEMIHOST) {
11539         tcg_handle_semihosting(cs);
11540         return;
11541     }
11542 #endif
11543 
11544     /*
11545      * Hooks may change global state so BQL should be held, also the
11546      * BQL needs to be held for any modification of
11547      * cs->interrupt_request.
11548      */
11549     g_assert(bql_locked());
11550 
11551     arm_call_pre_el_change_hook(cpu);
11552 
11553     assert(!excp_is_internal(cs->exception_index));
11554     if (arm_el_is_aa64(env, new_el)) {
11555         arm_cpu_do_interrupt_aarch64(cs);
11556     } else {
11557         arm_cpu_do_interrupt_aarch32(cs);
11558     }
11559 
11560     arm_call_el_change_hook(cpu);
11561 
11562     if (!kvm_enabled()) {
11563         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11564     }
11565 }
11566 #endif /* !CONFIG_USER_ONLY */
11567 
11568 uint64_t arm_sctlr(CPUARMState *env, int el)
11569 {
11570     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11571     if (el == 0) {
11572         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11573         el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11574     }
11575     return env->cp15.sctlr_el[el];
11576 }
11577 
11578 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11579 {
11580     if (regime_has_2_ranges(mmu_idx)) {
11581         return extract64(tcr, 37, 2);
11582     } else if (regime_is_stage2(mmu_idx)) {
11583         return 0; /* VTCR_EL2 */
11584     } else {
11585         /* Replicate the single TBI bit so we always have 2 bits.  */
11586         return extract32(tcr, 20, 1) * 3;
11587     }
11588 }
11589 
11590 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11591 {
11592     if (regime_has_2_ranges(mmu_idx)) {
11593         return extract64(tcr, 51, 2);
11594     } else if (regime_is_stage2(mmu_idx)) {
11595         return 0; /* VTCR_EL2 */
11596     } else {
11597         /* Replicate the single TBID bit so we always have 2 bits.  */
11598         return extract32(tcr, 29, 1) * 3;
11599     }
11600 }
11601 
11602 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11603 {
11604     if (regime_has_2_ranges(mmu_idx)) {
11605         return extract64(tcr, 57, 2);
11606     } else {
11607         /* Replicate the single TCMA bit so we always have 2 bits.  */
11608         return extract32(tcr, 30, 1) * 3;
11609     }
11610 }
11611 
11612 static ARMGranuleSize tg0_to_gran_size(int tg)
11613 {
11614     switch (tg) {
11615     case 0:
11616         return Gran4K;
11617     case 1:
11618         return Gran64K;
11619     case 2:
11620         return Gran16K;
11621     default:
11622         return GranInvalid;
11623     }
11624 }
11625 
11626 static ARMGranuleSize tg1_to_gran_size(int tg)
11627 {
11628     switch (tg) {
11629     case 1:
11630         return Gran16K;
11631     case 2:
11632         return Gran4K;
11633     case 3:
11634         return Gran64K;
11635     default:
11636         return GranInvalid;
11637     }
11638 }
11639 
11640 static inline bool have4k(ARMCPU *cpu, bool stage2)
11641 {
11642     return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11643         : cpu_isar_feature(aa64_tgran4, cpu);
11644 }
11645 
11646 static inline bool have16k(ARMCPU *cpu, bool stage2)
11647 {
11648     return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11649         : cpu_isar_feature(aa64_tgran16, cpu);
11650 }
11651 
11652 static inline bool have64k(ARMCPU *cpu, bool stage2)
11653 {
11654     return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11655         : cpu_isar_feature(aa64_tgran64, cpu);
11656 }
11657 
11658 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11659                                          bool stage2)
11660 {
11661     switch (gran) {
11662     case Gran4K:
11663         if (have4k(cpu, stage2)) {
11664             return gran;
11665         }
11666         break;
11667     case Gran16K:
11668         if (have16k(cpu, stage2)) {
11669             return gran;
11670         }
11671         break;
11672     case Gran64K:
11673         if (have64k(cpu, stage2)) {
11674             return gran;
11675         }
11676         break;
11677     case GranInvalid:
11678         break;
11679     }
11680     /*
11681      * If the guest selects a granule size that isn't implemented,
11682      * the architecture requires that we behave as if it selected one
11683      * that is (with an IMPDEF choice of which one to pick). We choose
11684      * to implement the smallest supported granule size.
11685      */
11686     if (have4k(cpu, stage2)) {
11687         return Gran4K;
11688     }
11689     if (have16k(cpu, stage2)) {
11690         return Gran16K;
11691     }
11692     assert(have64k(cpu, stage2));
11693     return Gran64K;
11694 }
11695 
11696 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11697                                    ARMMMUIdx mmu_idx, bool data,
11698                                    bool el1_is_aa32)
11699 {
11700     uint64_t tcr = regime_tcr(env, mmu_idx);
11701     bool epd, hpd, tsz_oob, ds, ha, hd;
11702     int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11703     ARMGranuleSize gran;
11704     ARMCPU *cpu = env_archcpu(env);
11705     bool stage2 = regime_is_stage2(mmu_idx);
11706 
11707     if (!regime_has_2_ranges(mmu_idx)) {
11708         select = 0;
11709         tsz = extract32(tcr, 0, 6);
11710         gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11711         if (stage2) {
11712             /* VTCR_EL2 */
11713             hpd = false;
11714         } else {
11715             hpd = extract32(tcr, 24, 1);
11716         }
11717         epd = false;
11718         sh = extract32(tcr, 12, 2);
11719         ps = extract32(tcr, 16, 3);
11720         ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11721         hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11722         ds = extract64(tcr, 32, 1);
11723     } else {
11724         bool e0pd;
11725 
11726         /*
11727          * Bit 55 is always between the two regions, and is canonical for
11728          * determining if address tagging is enabled.
11729          */
11730         select = extract64(va, 55, 1);
11731         if (!select) {
11732             tsz = extract32(tcr, 0, 6);
11733             gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11734             epd = extract32(tcr, 7, 1);
11735             sh = extract32(tcr, 12, 2);
11736             hpd = extract64(tcr, 41, 1);
11737             e0pd = extract64(tcr, 55, 1);
11738         } else {
11739             tsz = extract32(tcr, 16, 6);
11740             gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11741             epd = extract32(tcr, 23, 1);
11742             sh = extract32(tcr, 28, 2);
11743             hpd = extract64(tcr, 42, 1);
11744             e0pd = extract64(tcr, 56, 1);
11745         }
11746         ps = extract64(tcr, 32, 3);
11747         ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11748         hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11749         ds = extract64(tcr, 59, 1);
11750 
11751         if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11752             regime_is_user(env, mmu_idx)) {
11753             epd = true;
11754         }
11755     }
11756 
11757     gran = sanitize_gran_size(cpu, gran, stage2);
11758 
11759     if (cpu_isar_feature(aa64_st, cpu)) {
11760         max_tsz = 48 - (gran == Gran64K);
11761     } else {
11762         max_tsz = 39;
11763     }
11764 
11765     /*
11766      * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11767      * adjust the effective value of DS, as documented.
11768      */
11769     min_tsz = 16;
11770     if (gran == Gran64K) {
11771         if (cpu_isar_feature(aa64_lva, cpu)) {
11772             min_tsz = 12;
11773         }
11774         ds = false;
11775     } else if (ds) {
11776         if (regime_is_stage2(mmu_idx)) {
11777             if (gran == Gran16K) {
11778                 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11779             } else {
11780                 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11781             }
11782         } else {
11783             if (gran == Gran16K) {
11784                 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11785             } else {
11786                 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11787             }
11788         }
11789         if (ds) {
11790             min_tsz = 12;
11791         }
11792     }
11793 
11794     if (stage2 && el1_is_aa32) {
11795         /*
11796          * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11797          * are loosened: a configured IPA of 40 bits is permitted even if
11798          * the implemented PA is less than that (and so a 40 bit IPA would
11799          * fault for an AArch64 EL1). See R_DTLMN.
11800          */
11801         min_tsz = MIN(min_tsz, 24);
11802     }
11803 
11804     if (tsz > max_tsz) {
11805         tsz = max_tsz;
11806         tsz_oob = true;
11807     } else if (tsz < min_tsz) {
11808         tsz = min_tsz;
11809         tsz_oob = true;
11810     } else {
11811         tsz_oob = false;
11812     }
11813 
11814     /* Present TBI as a composite with TBID.  */
11815     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11816     if (!data) {
11817         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11818     }
11819     tbi = (tbi >> select) & 1;
11820 
11821     return (ARMVAParameters) {
11822         .tsz = tsz,
11823         .ps = ps,
11824         .sh = sh,
11825         .select = select,
11826         .tbi = tbi,
11827         .epd = epd,
11828         .hpd = hpd,
11829         .tsz_oob = tsz_oob,
11830         .ds = ds,
11831         .ha = ha,
11832         .hd = ha && hd,
11833         .gran = gran,
11834     };
11835 }
11836 
11837 /*
11838  * Note that signed overflow is undefined in C.  The following routines are
11839  * careful to use unsigned types where modulo arithmetic is required.
11840  * Failure to do so _will_ break on newer gcc.
11841  */
11842 
11843 /* Signed saturating arithmetic.  */
11844 
11845 /* Perform 16-bit signed saturating addition.  */
11846 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11847 {
11848     uint16_t res;
11849 
11850     res = a + b;
11851     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11852         if (a & 0x8000) {
11853             res = 0x8000;
11854         } else {
11855             res = 0x7fff;
11856         }
11857     }
11858     return res;
11859 }
11860 
11861 /* Perform 8-bit signed saturating addition.  */
11862 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11863 {
11864     uint8_t res;
11865 
11866     res = a + b;
11867     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11868         if (a & 0x80) {
11869             res = 0x80;
11870         } else {
11871             res = 0x7f;
11872         }
11873     }
11874     return res;
11875 }
11876 
11877 /* Perform 16-bit signed saturating subtraction.  */
11878 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11879 {
11880     uint16_t res;
11881 
11882     res = a - b;
11883     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11884         if (a & 0x8000) {
11885             res = 0x8000;
11886         } else {
11887             res = 0x7fff;
11888         }
11889     }
11890     return res;
11891 }
11892 
11893 /* Perform 8-bit signed saturating subtraction.  */
11894 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11895 {
11896     uint8_t res;
11897 
11898     res = a - b;
11899     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11900         if (a & 0x80) {
11901             res = 0x80;
11902         } else {
11903             res = 0x7f;
11904         }
11905     }
11906     return res;
11907 }
11908 
11909 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11910 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11911 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
11912 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
11913 #define PFX q
11914 
11915 #include "op_addsub.h"
11916 
11917 /* Unsigned saturating arithmetic.  */
11918 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11919 {
11920     uint16_t res;
11921     res = a + b;
11922     if (res < a) {
11923         res = 0xffff;
11924     }
11925     return res;
11926 }
11927 
11928 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11929 {
11930     if (a > b) {
11931         return a - b;
11932     } else {
11933         return 0;
11934     }
11935 }
11936 
11937 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11938 {
11939     uint8_t res;
11940     res = a + b;
11941     if (res < a) {
11942         res = 0xff;
11943     }
11944     return res;
11945 }
11946 
11947 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11948 {
11949     if (a > b) {
11950         return a - b;
11951     } else {
11952         return 0;
11953     }
11954 }
11955 
11956 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11957 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11958 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
11959 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
11960 #define PFX uq
11961 
11962 #include "op_addsub.h"
11963 
11964 /* Signed modulo arithmetic.  */
11965 #define SARITH16(a, b, n, op) do { \
11966     int32_t sum; \
11967     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11968     RESULT(sum, n, 16); \
11969     if (sum >= 0) \
11970         ge |= 3 << (n * 2); \
11971     } while (0)
11972 
11973 #define SARITH8(a, b, n, op) do { \
11974     int32_t sum; \
11975     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11976     RESULT(sum, n, 8); \
11977     if (sum >= 0) \
11978         ge |= 1 << n; \
11979     } while (0)
11980 
11981 
11982 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11983 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11984 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
11985 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
11986 #define PFX s
11987 #define ARITH_GE
11988 
11989 #include "op_addsub.h"
11990 
11991 /* Unsigned modulo arithmetic.  */
11992 #define ADD16(a, b, n) do { \
11993     uint32_t sum; \
11994     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11995     RESULT(sum, n, 16); \
11996     if ((sum >> 16) == 1) \
11997         ge |= 3 << (n * 2); \
11998     } while (0)
11999 
12000 #define ADD8(a, b, n) do { \
12001     uint32_t sum; \
12002     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12003     RESULT(sum, n, 8); \
12004     if ((sum >> 8) == 1) \
12005         ge |= 1 << n; \
12006     } while (0)
12007 
12008 #define SUB16(a, b, n) do { \
12009     uint32_t sum; \
12010     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12011     RESULT(sum, n, 16); \
12012     if ((sum >> 16) == 0) \
12013         ge |= 3 << (n * 2); \
12014     } while (0)
12015 
12016 #define SUB8(a, b, n) do { \
12017     uint32_t sum; \
12018     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12019     RESULT(sum, n, 8); \
12020     if ((sum >> 8) == 0) \
12021         ge |= 1 << n; \
12022     } while (0)
12023 
12024 #define PFX u
12025 #define ARITH_GE
12026 
12027 #include "op_addsub.h"
12028 
12029 /* Halved signed arithmetic.  */
12030 #define ADD16(a, b, n) \
12031   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12032 #define SUB16(a, b, n) \
12033   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12034 #define ADD8(a, b, n) \
12035   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12036 #define SUB8(a, b, n) \
12037   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12038 #define PFX sh
12039 
12040 #include "op_addsub.h"
12041 
12042 /* Halved unsigned arithmetic.  */
12043 #define ADD16(a, b, n) \
12044   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12045 #define SUB16(a, b, n) \
12046   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12047 #define ADD8(a, b, n) \
12048   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12049 #define SUB8(a, b, n) \
12050   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12051 #define PFX uh
12052 
12053 #include "op_addsub.h"
12054 
12055 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12056 {
12057     if (a > b) {
12058         return a - b;
12059     } else {
12060         return b - a;
12061     }
12062 }
12063 
12064 /* Unsigned sum of absolute byte differences.  */
12065 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12066 {
12067     uint32_t sum;
12068     sum = do_usad(a, b);
12069     sum += do_usad(a >> 8, b >> 8);
12070     sum += do_usad(a >> 16, b >> 16);
12071     sum += do_usad(a >> 24, b >> 24);
12072     return sum;
12073 }
12074 
12075 /* For ARMv6 SEL instruction.  */
12076 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12077 {
12078     uint32_t mask;
12079 
12080     mask = 0;
12081     if (flags & 1) {
12082         mask |= 0xff;
12083     }
12084     if (flags & 2) {
12085         mask |= 0xff00;
12086     }
12087     if (flags & 4) {
12088         mask |= 0xff0000;
12089     }
12090     if (flags & 8) {
12091         mask |= 0xff000000;
12092     }
12093     return (a & mask) | (b & ~mask);
12094 }
12095 
12096 /*
12097  * CRC helpers.
12098  * The upper bytes of val (above the number specified by 'bytes') must have
12099  * been zeroed out by the caller.
12100  */
12101 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12102 {
12103     uint8_t buf[4];
12104 
12105     stl_le_p(buf, val);
12106 
12107     /* zlib crc32 converts the accumulator and output to one's complement.  */
12108     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12109 }
12110 
12111 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12112 {
12113     uint8_t buf[4];
12114 
12115     stl_le_p(buf, val);
12116 
12117     /* Linux crc32c converts the output to one's complement.  */
12118     return crc32c(acc, buf, bytes) ^ 0xffffffff;
12119 }
12120 
12121 /*
12122  * Return the exception level to which FP-disabled exceptions should
12123  * be taken, or 0 if FP is enabled.
12124  */
12125 int fp_exception_el(CPUARMState *env, int cur_el)
12126 {
12127 #ifndef CONFIG_USER_ONLY
12128     uint64_t hcr_el2;
12129 
12130     /*
12131      * CPACR and the CPTR registers don't exist before v6, so FP is
12132      * always accessible
12133      */
12134     if (!arm_feature(env, ARM_FEATURE_V6)) {
12135         return 0;
12136     }
12137 
12138     if (arm_feature(env, ARM_FEATURE_M)) {
12139         /* CPACR can cause a NOCP UsageFault taken to current security state */
12140         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12141             return 1;
12142         }
12143 
12144         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12145             if (!extract32(env->v7m.nsacr, 10, 1)) {
12146                 /* FP insns cause a NOCP UsageFault taken to Secure */
12147                 return 3;
12148             }
12149         }
12150 
12151         return 0;
12152     }
12153 
12154     hcr_el2 = arm_hcr_el2_eff(env);
12155 
12156     /*
12157      * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12158      * 0, 2 : trap EL0 and EL1/PL1 accesses
12159      * 1    : trap only EL0 accesses
12160      * 3    : trap no accesses
12161      * This register is ignored if E2H+TGE are both set.
12162      */
12163     if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12164         int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
12165 
12166         switch (fpen) {
12167         case 1:
12168             if (cur_el != 0) {
12169                 break;
12170             }
12171             /* fall through */
12172         case 0:
12173         case 2:
12174             /* Trap from Secure PL0 or PL1 to Secure PL1. */
12175             if (!arm_el_is_aa64(env, 3)
12176                 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
12177                 return 3;
12178             }
12179             if (cur_el <= 1) {
12180                 return 1;
12181             }
12182             break;
12183         }
12184     }
12185 
12186     /*
12187      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12188      * to control non-secure access to the FPU. It doesn't have any
12189      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12190      */
12191     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12192          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12193         if (!extract32(env->cp15.nsacr, 10, 1)) {
12194             /* FP insns act as UNDEF */
12195             return cur_el == 2 ? 2 : 1;
12196         }
12197     }
12198 
12199     /*
12200      * CPTR_EL2 is present in v7VE or v8, and changes format
12201      * with HCR_EL2.E2H (regardless of TGE).
12202      */
12203     if (cur_el <= 2) {
12204         if (hcr_el2 & HCR_E2H) {
12205             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
12206             case 1:
12207                 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
12208                     break;
12209                 }
12210                 /* fall through */
12211             case 0:
12212             case 2:
12213                 return 2;
12214             }
12215         } else if (arm_is_el2_enabled(env)) {
12216             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
12217                 return 2;
12218             }
12219         }
12220     }
12221 
12222     /* CPTR_EL3 : present in v8 */
12223     if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
12224         /* Trap all FP ops to EL3 */
12225         return 3;
12226     }
12227 #endif
12228     return 0;
12229 }
12230 
12231 /* Return the exception level we're running at if this is our mmu_idx */
12232 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12233 {
12234     if (mmu_idx & ARM_MMU_IDX_M) {
12235         return mmu_idx & ARM_MMU_IDX_M_PRIV;
12236     }
12237 
12238     switch (mmu_idx) {
12239     case ARMMMUIdx_E10_0:
12240     case ARMMMUIdx_E20_0:
12241         return 0;
12242     case ARMMMUIdx_E10_1:
12243     case ARMMMUIdx_E10_1_PAN:
12244         return 1;
12245     case ARMMMUIdx_E2:
12246     case ARMMMUIdx_E20_2:
12247     case ARMMMUIdx_E20_2_PAN:
12248         return 2;
12249     case ARMMMUIdx_E3:
12250         return 3;
12251     default:
12252         g_assert_not_reached();
12253     }
12254 }
12255 
12256 #ifndef CONFIG_TCG
12257 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12258 {
12259     g_assert_not_reached();
12260 }
12261 #endif
12262 
12263 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12264 {
12265     ARMMMUIdx idx;
12266     uint64_t hcr;
12267 
12268     if (arm_feature(env, ARM_FEATURE_M)) {
12269         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12270     }
12271 
12272     /* See ARM pseudo-function ELIsInHost.  */
12273     switch (el) {
12274     case 0:
12275         hcr = arm_hcr_el2_eff(env);
12276         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12277             idx = ARMMMUIdx_E20_0;
12278         } else {
12279             idx = ARMMMUIdx_E10_0;
12280         }
12281         break;
12282     case 1:
12283         if (arm_pan_enabled(env)) {
12284             idx = ARMMMUIdx_E10_1_PAN;
12285         } else {
12286             idx = ARMMMUIdx_E10_1;
12287         }
12288         break;
12289     case 2:
12290         /* Note that TGE does not apply at EL2.  */
12291         if (arm_hcr_el2_eff(env) & HCR_E2H) {
12292             if (arm_pan_enabled(env)) {
12293                 idx = ARMMMUIdx_E20_2_PAN;
12294             } else {
12295                 idx = ARMMMUIdx_E20_2;
12296             }
12297         } else {
12298             idx = ARMMMUIdx_E2;
12299         }
12300         break;
12301     case 3:
12302         return ARMMMUIdx_E3;
12303     default:
12304         g_assert_not_reached();
12305     }
12306 
12307     return idx;
12308 }
12309 
12310 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12311 {
12312     return arm_mmu_idx_el(env, arm_current_el(env));
12313 }
12314 
12315 static bool mve_no_pred(CPUARMState *env)
12316 {
12317     /*
12318      * Return true if there is definitely no predication of MVE
12319      * instructions by VPR or LTPSIZE. (Returning false even if there
12320      * isn't any predication is OK; generated code will just be
12321      * a little worse.)
12322      * If the CPU does not implement MVE then this TB flag is always 0.
12323      *
12324      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12325      * logic in gen_update_fp_context() needs to be updated to match.
12326      *
12327      * We do not include the effect of the ECI bits here -- they are
12328      * tracked in other TB flags. This simplifies the logic for
12329      * "when did we emit code that changes the MVE_NO_PRED TB flag
12330      * and thus need to end the TB?".
12331      */
12332     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12333         return false;
12334     }
12335     if (env->v7m.vpr) {
12336         return false;
12337     }
12338     if (env->v7m.ltpsize < 4) {
12339         return false;
12340     }
12341     return true;
12342 }
12343 
12344 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12345                           uint64_t *cs_base, uint32_t *pflags)
12346 {
12347     CPUARMTBFlags flags;
12348 
12349     assert_hflags_rebuild_correctly(env);
12350     flags = env->hflags;
12351 
12352     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12353         *pc = env->pc;
12354         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12355             DP_TBFLAG_A64(flags, BTYPE, env->btype);
12356         }
12357     } else {
12358         *pc = env->regs[15];
12359 
12360         if (arm_feature(env, ARM_FEATURE_M)) {
12361             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12362                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12363                 != env->v7m.secure) {
12364                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12365             }
12366 
12367             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12368                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12369                  (env->v7m.secure &&
12370                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12371                 /*
12372                  * ASPEN is set, but FPCA/SFPA indicate that there is no
12373                  * active FP context; we must create a new FP context before
12374                  * executing any FP insn.
12375                  */
12376                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12377             }
12378 
12379             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12380             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12381                 DP_TBFLAG_M32(flags, LSPACT, 1);
12382             }
12383 
12384             if (mve_no_pred(env)) {
12385                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12386             }
12387         } else {
12388             /*
12389              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12390              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12391              */
12392             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12393                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12394             } else {
12395                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12396                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12397             }
12398             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12399                 DP_TBFLAG_A32(flags, VFPEN, 1);
12400             }
12401         }
12402 
12403         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12404         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12405     }
12406 
12407     /*
12408      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12409      * states defined in the ARM ARM for software singlestep:
12410      *  SS_ACTIVE   PSTATE.SS   State
12411      *     0            x       Inactive (the TB flag for SS is always 0)
12412      *     1            0       Active-pending
12413      *     1            1       Active-not-pending
12414      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12415      */
12416     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12417         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12418     }
12419 
12420     *pflags = flags.flags;
12421     *cs_base = flags.flags2;
12422 }
12423 
12424 #ifdef TARGET_AARCH64
12425 /*
12426  * The manual says that when SVE is enabled and VQ is widened the
12427  * implementation is allowed to zero the previously inaccessible
12428  * portion of the registers.  The corollary to that is that when
12429  * SVE is enabled and VQ is narrowed we are also allowed to zero
12430  * the now inaccessible portion of the registers.
12431  *
12432  * The intent of this is that no predicate bit beyond VQ is ever set.
12433  * Which means that some operations on predicate registers themselves
12434  * may operate on full uint64_t or even unrolled across the maximum
12435  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
12436  * may well be cheaper than conditionals to restrict the operation
12437  * to the relevant portion of a uint16_t[16].
12438  */
12439 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12440 {
12441     int i, j;
12442     uint64_t pmask;
12443 
12444     assert(vq >= 1 && vq <= ARM_MAX_VQ);
12445     assert(vq <= env_archcpu(env)->sve_max_vq);
12446 
12447     /* Zap the high bits of the zregs.  */
12448     for (i = 0; i < 32; i++) {
12449         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12450     }
12451 
12452     /* Zap the high bits of the pregs and ffr.  */
12453     pmask = 0;
12454     if (vq & 3) {
12455         pmask = ~(-1ULL << (16 * (vq & 3)));
12456     }
12457     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12458         for (i = 0; i < 17; ++i) {
12459             env->vfp.pregs[i].p[j] &= pmask;
12460         }
12461         pmask = 0;
12462     }
12463 }
12464 
12465 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12466 {
12467     int exc_el;
12468 
12469     if (sm) {
12470         exc_el = sme_exception_el(env, el);
12471     } else {
12472         exc_el = sve_exception_el(env, el);
12473     }
12474     if (exc_el) {
12475         return 0; /* disabled */
12476     }
12477     return sve_vqm1_for_el_sm(env, el, sm);
12478 }
12479 
12480 /*
12481  * Notice a change in SVE vector size when changing EL.
12482  */
12483 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12484                            int new_el, bool el0_a64)
12485 {
12486     ARMCPU *cpu = env_archcpu(env);
12487     int old_len, new_len;
12488     bool old_a64, new_a64, sm;
12489 
12490     /* Nothing to do if no SVE.  */
12491     if (!cpu_isar_feature(aa64_sve, cpu)) {
12492         return;
12493     }
12494 
12495     /* Nothing to do if FP is disabled in either EL.  */
12496     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12497         return;
12498     }
12499 
12500     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12501     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12502 
12503     /*
12504      * Both AArch64.TakeException and AArch64.ExceptionReturn
12505      * invoke ResetSVEState when taking an exception from, or
12506      * returning to, AArch32 state when PSTATE.SM is enabled.
12507      */
12508     sm = FIELD_EX64(env->svcr, SVCR, SM);
12509     if (old_a64 != new_a64 && sm) {
12510         arm_reset_sve_state(env);
12511         return;
12512     }
12513 
12514     /*
12515      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12516      * at ELx, or not available because the EL is in AArch32 state, then
12517      * for all purposes other than a direct read, the ZCR_ELx.LEN field
12518      * has an effective value of 0".
12519      *
12520      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12521      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12522      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
12523      * we already have the correct register contents when encountering the
12524      * vq0->vq0 transition between EL0->EL1.
12525      */
12526     old_len = new_len = 0;
12527     if (old_a64) {
12528         old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12529     }
12530     if (new_a64) {
12531         new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12532     }
12533 
12534     /* When changing vector length, clear inaccessible state.  */
12535     if (new_len < old_len) {
12536         aarch64_sve_narrow_vq(env, new_len + 1);
12537     }
12538 }
12539 #endif
12540 
12541 #ifndef CONFIG_USER_ONLY
12542 ARMSecuritySpace arm_security_space(CPUARMState *env)
12543 {
12544     if (arm_feature(env, ARM_FEATURE_M)) {
12545         return arm_secure_to_space(env->v7m.secure);
12546     }
12547 
12548     /*
12549      * If EL3 is not supported then the secure state is implementation
12550      * defined, in which case QEMU defaults to non-secure.
12551      */
12552     if (!arm_feature(env, ARM_FEATURE_EL3)) {
12553         return ARMSS_NonSecure;
12554     }
12555 
12556     /* Check for AArch64 EL3 or AArch32 Mon. */
12557     if (is_a64(env)) {
12558         if (extract32(env->pstate, 2, 2) == 3) {
12559             if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12560                 return ARMSS_Root;
12561             } else {
12562                 return ARMSS_Secure;
12563             }
12564         }
12565     } else {
12566         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12567             return ARMSS_Secure;
12568         }
12569     }
12570 
12571     return arm_security_space_below_el3(env);
12572 }
12573 
12574 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12575 {
12576     assert(!arm_feature(env, ARM_FEATURE_M));
12577 
12578     /*
12579      * If EL3 is not supported then the secure state is implementation
12580      * defined, in which case QEMU defaults to non-secure.
12581      */
12582     if (!arm_feature(env, ARM_FEATURE_EL3)) {
12583         return ARMSS_NonSecure;
12584     }
12585 
12586     /*
12587      * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12588      * Ignoring NSE when !NS retains consistency without having to
12589      * modify other predicates.
12590      */
12591     if (!(env->cp15.scr_el3 & SCR_NS)) {
12592         return ARMSS_Secure;
12593     } else if (env->cp15.scr_el3 & SCR_NSE) {
12594         return ARMSS_Realm;
12595     } else {
12596         return ARMSS_NonSecure;
12597     }
12598 }
12599 #endif /* !CONFIG_USER_ONLY */
12600