xref: /openbmc/qemu/target/arm/helper.c (revision dfc86c0f)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/cpu-timers.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/tcg.h"
30 #include "qemu/range.h"
31 #include "qapi/qapi-commands-machine-target.h"
32 #include "qapi/error.h"
33 #include "qemu/guest-random.h"
34 #ifdef CONFIG_TCG
35 #include "arm_ldst.h"
36 #include "exec/cpu_ldst.h"
37 #include "semihosting/common-semi.h"
38 #endif
39 
40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
41 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */
42 
43 #ifndef CONFIG_USER_ONLY
44 
45 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
46                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
47                                bool s1_is_el0,
48                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
49                                target_ulong *page_size_ptr,
50                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
51     __attribute__((nonnull));
52 #endif
53 
54 static void switch_mode(CPUARMState *env, int mode);
55 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
56 
57 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
58 {
59     ARMCPU *cpu = env_archcpu(env);
60     int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
61 
62     /* VFP data registers are always little-endian.  */
63     if (reg < nregs) {
64         return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
65     }
66     if (arm_feature(env, ARM_FEATURE_NEON)) {
67         /* Aliases for Q regs.  */
68         nregs += 16;
69         if (reg < nregs) {
70             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
71             return gdb_get_reg128(buf, q[0], q[1]);
72         }
73     }
74     switch (reg - nregs) {
75     case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
76     case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
77     case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
78     }
79     return 0;
80 }
81 
82 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
83 {
84     ARMCPU *cpu = env_archcpu(env);
85     int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
86 
87     if (reg < nregs) {
88         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
89         return 8;
90     }
91     if (arm_feature(env, ARM_FEATURE_NEON)) {
92         nregs += 16;
93         if (reg < nregs) {
94             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
95             q[0] = ldq_le_p(buf);
96             q[1] = ldq_le_p(buf + 8);
97             return 16;
98         }
99     }
100     switch (reg - nregs) {
101     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
102     case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
103     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
104     }
105     return 0;
106 }
107 
108 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
109 {
110     switch (reg) {
111     case 0 ... 31:
112     {
113         /* 128 bit FP register - quads are in LE order */
114         uint64_t *q = aa64_vfp_qreg(env, reg);
115         return gdb_get_reg128(buf, q[1], q[0]);
116     }
117     case 32:
118         /* FPSR */
119         return gdb_get_reg32(buf, vfp_get_fpsr(env));
120     case 33:
121         /* FPCR */
122         return gdb_get_reg32(buf,vfp_get_fpcr(env));
123     default:
124         return 0;
125     }
126 }
127 
128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
129 {
130     switch (reg) {
131     case 0 ... 31:
132         /* 128 bit FP register */
133         {
134             uint64_t *q = aa64_vfp_qreg(env, reg);
135             q[0] = ldq_le_p(buf);
136             q[1] = ldq_le_p(buf + 8);
137             return 16;
138         }
139     case 32:
140         /* FPSR */
141         vfp_set_fpsr(env, ldl_p(buf));
142         return 4;
143     case 33:
144         /* FPCR */
145         vfp_set_fpcr(env, ldl_p(buf));
146         return 4;
147     default:
148         return 0;
149     }
150 }
151 
152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
153 {
154     assert(ri->fieldoffset);
155     if (cpreg_field_is_64bit(ri)) {
156         return CPREG_FIELD64(env, ri);
157     } else {
158         return CPREG_FIELD32(env, ri);
159     }
160 }
161 
162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
163                       uint64_t value)
164 {
165     assert(ri->fieldoffset);
166     if (cpreg_field_is_64bit(ri)) {
167         CPREG_FIELD64(env, ri) = value;
168     } else {
169         CPREG_FIELD32(env, ri) = value;
170     }
171 }
172 
173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
174 {
175     return (char *)env + ri->fieldoffset;
176 }
177 
178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
179 {
180     /* Raw read of a coprocessor register (as needed for migration, etc). */
181     if (ri->type & ARM_CP_CONST) {
182         return ri->resetvalue;
183     } else if (ri->raw_readfn) {
184         return ri->raw_readfn(env, ri);
185     } else if (ri->readfn) {
186         return ri->readfn(env, ri);
187     } else {
188         return raw_read(env, ri);
189     }
190 }
191 
192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
193                              uint64_t v)
194 {
195     /* Raw write of a coprocessor register (as needed for migration, etc).
196      * Note that constant registers are treated as write-ignored; the
197      * caller should check for success by whether a readback gives the
198      * value written.
199      */
200     if (ri->type & ARM_CP_CONST) {
201         return;
202     } else if (ri->raw_writefn) {
203         ri->raw_writefn(env, ri, v);
204     } else if (ri->writefn) {
205         ri->writefn(env, ri, v);
206     } else {
207         raw_write(env, ri, v);
208     }
209 }
210 
211 /**
212  * arm_get/set_gdb_*: get/set a gdb register
213  * @env: the CPU state
214  * @buf: a buffer to copy to/from
215  * @reg: register number (offset from start of group)
216  *
217  * We return the number of bytes copied
218  */
219 
220 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
221 {
222     ARMCPU *cpu = env_archcpu(env);
223     const ARMCPRegInfo *ri;
224     uint32_t key;
225 
226     key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
227     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
228     if (ri) {
229         if (cpreg_field_is_64bit(ri)) {
230             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
231         } else {
232             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
233         }
234     }
235     return 0;
236 }
237 
238 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
239 {
240     return 0;
241 }
242 
243 #ifdef TARGET_AARCH64
244 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
245 {
246     ARMCPU *cpu = env_archcpu(env);
247 
248     switch (reg) {
249     /* The first 32 registers are the zregs */
250     case 0 ... 31:
251     {
252         int vq, len = 0;
253         for (vq = 0; vq < cpu->sve_max_vq; vq++) {
254             len += gdb_get_reg128(buf,
255                                   env->vfp.zregs[reg].d[vq * 2 + 1],
256                                   env->vfp.zregs[reg].d[vq * 2]);
257         }
258         return len;
259     }
260     case 32:
261         return gdb_get_reg32(buf, vfp_get_fpsr(env));
262     case 33:
263         return gdb_get_reg32(buf, vfp_get_fpcr(env));
264     /* then 16 predicates and the ffr */
265     case 34 ... 50:
266     {
267         int preg = reg - 34;
268         int vq, len = 0;
269         for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
270             len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
271         }
272         return len;
273     }
274     case 51:
275     {
276         /*
277          * We report in Vector Granules (VG) which is 64bit in a Z reg
278          * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
279          */
280         int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
281         return gdb_get_reg64(buf, vq * 2);
282     }
283     default:
284         /* gdbstub asked for something out our range */
285         qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
286         break;
287     }
288 
289     return 0;
290 }
291 
292 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
293 {
294     ARMCPU *cpu = env_archcpu(env);
295 
296     /* The first 32 registers are the zregs */
297     switch (reg) {
298     /* The first 32 registers are the zregs */
299     case 0 ... 31:
300     {
301         int vq, len = 0;
302         uint64_t *p = (uint64_t *) buf;
303         for (vq = 0; vq < cpu->sve_max_vq; vq++) {
304             env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
305             env->vfp.zregs[reg].d[vq * 2] = *p++;
306             len += 16;
307         }
308         return len;
309     }
310     case 32:
311         vfp_set_fpsr(env, *(uint32_t *)buf);
312         return 4;
313     case 33:
314         vfp_set_fpcr(env, *(uint32_t *)buf);
315         return 4;
316     case 34 ... 50:
317     {
318         int preg = reg - 34;
319         int vq, len = 0;
320         uint64_t *p = (uint64_t *) buf;
321         for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
322             env->vfp.pregs[preg].p[vq / 4] = *p++;
323             len += 8;
324         }
325         return len;
326     }
327     case 51:
328         /* cannot set vg via gdbstub */
329         return 0;
330     default:
331         /* gdbstub asked for something out our range */
332         break;
333     }
334 
335     return 0;
336 }
337 #endif /* TARGET_AARCH64 */
338 
339 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
340 {
341    /* Return true if the regdef would cause an assertion if you called
342     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
343     * program bug for it not to have the NO_RAW flag).
344     * NB that returning false here doesn't necessarily mean that calling
345     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
346     * read/write access functions which are safe for raw use" from "has
347     * read/write access functions which have side effects but has forgotten
348     * to provide raw access functions".
349     * The tests here line up with the conditions in read/write_raw_cp_reg()
350     * and assertions in raw_read()/raw_write().
351     */
352     if ((ri->type & ARM_CP_CONST) ||
353         ri->fieldoffset ||
354         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
355         return false;
356     }
357     return true;
358 }
359 
360 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
361 {
362     /* Write the coprocessor state from cpu->env to the (index,value) list. */
363     int i;
364     bool ok = true;
365 
366     for (i = 0; i < cpu->cpreg_array_len; i++) {
367         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
368         const ARMCPRegInfo *ri;
369         uint64_t newval;
370 
371         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
372         if (!ri) {
373             ok = false;
374             continue;
375         }
376         if (ri->type & ARM_CP_NO_RAW) {
377             continue;
378         }
379 
380         newval = read_raw_cp_reg(&cpu->env, ri);
381         if (kvm_sync) {
382             /*
383              * Only sync if the previous list->cpustate sync succeeded.
384              * Rather than tracking the success/failure state for every
385              * item in the list, we just recheck "does the raw write we must
386              * have made in write_list_to_cpustate() read back OK" here.
387              */
388             uint64_t oldval = cpu->cpreg_values[i];
389 
390             if (oldval == newval) {
391                 continue;
392             }
393 
394             write_raw_cp_reg(&cpu->env, ri, oldval);
395             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
396                 continue;
397             }
398 
399             write_raw_cp_reg(&cpu->env, ri, newval);
400         }
401         cpu->cpreg_values[i] = newval;
402     }
403     return ok;
404 }
405 
406 bool write_list_to_cpustate(ARMCPU *cpu)
407 {
408     int i;
409     bool ok = true;
410 
411     for (i = 0; i < cpu->cpreg_array_len; i++) {
412         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
413         uint64_t v = cpu->cpreg_values[i];
414         const ARMCPRegInfo *ri;
415 
416         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
417         if (!ri) {
418             ok = false;
419             continue;
420         }
421         if (ri->type & ARM_CP_NO_RAW) {
422             continue;
423         }
424         /* Write value and confirm it reads back as written
425          * (to catch read-only registers and partially read-only
426          * registers where the incoming migration value doesn't match)
427          */
428         write_raw_cp_reg(&cpu->env, ri, v);
429         if (read_raw_cp_reg(&cpu->env, ri) != v) {
430             ok = false;
431         }
432     }
433     return ok;
434 }
435 
436 static void add_cpreg_to_list(gpointer key, gpointer opaque)
437 {
438     ARMCPU *cpu = opaque;
439     uint64_t regidx;
440     const ARMCPRegInfo *ri;
441 
442     regidx = *(uint32_t *)key;
443     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
444 
445     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
446         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
447         /* The value array need not be initialized at this point */
448         cpu->cpreg_array_len++;
449     }
450 }
451 
452 static void count_cpreg(gpointer key, gpointer opaque)
453 {
454     ARMCPU *cpu = opaque;
455     uint64_t regidx;
456     const ARMCPRegInfo *ri;
457 
458     regidx = *(uint32_t *)key;
459     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
460 
461     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
462         cpu->cpreg_array_len++;
463     }
464 }
465 
466 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
467 {
468     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
469     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
470 
471     if (aidx > bidx) {
472         return 1;
473     }
474     if (aidx < bidx) {
475         return -1;
476     }
477     return 0;
478 }
479 
480 void init_cpreg_list(ARMCPU *cpu)
481 {
482     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
483      * Note that we require cpreg_tuples[] to be sorted by key ID.
484      */
485     GList *keys;
486     int arraylen;
487 
488     keys = g_hash_table_get_keys(cpu->cp_regs);
489     keys = g_list_sort(keys, cpreg_key_compare);
490 
491     cpu->cpreg_array_len = 0;
492 
493     g_list_foreach(keys, count_cpreg, cpu);
494 
495     arraylen = cpu->cpreg_array_len;
496     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
497     cpu->cpreg_values = g_new(uint64_t, arraylen);
498     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
499     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
500     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
501     cpu->cpreg_array_len = 0;
502 
503     g_list_foreach(keys, add_cpreg_to_list, cpu);
504 
505     assert(cpu->cpreg_array_len == arraylen);
506 
507     g_list_free(keys);
508 }
509 
510 /*
511  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
512  */
513 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
514                                         const ARMCPRegInfo *ri,
515                                         bool isread)
516 {
517     if (!is_a64(env) && arm_current_el(env) == 3 &&
518         arm_is_secure_below_el3(env)) {
519         return CP_ACCESS_TRAP_UNCATEGORIZED;
520     }
521     return CP_ACCESS_OK;
522 }
523 
524 /* Some secure-only AArch32 registers trap to EL3 if used from
525  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
526  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
527  * We assume that the .access field is set to PL1_RW.
528  */
529 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
530                                             const ARMCPRegInfo *ri,
531                                             bool isread)
532 {
533     if (arm_current_el(env) == 3) {
534         return CP_ACCESS_OK;
535     }
536     if (arm_is_secure_below_el3(env)) {
537         if (env->cp15.scr_el3 & SCR_EEL2) {
538             return CP_ACCESS_TRAP_EL2;
539         }
540         return CP_ACCESS_TRAP_EL3;
541     }
542     /* This will be EL1 NS and EL2 NS, which just UNDEF */
543     return CP_ACCESS_TRAP_UNCATEGORIZED;
544 }
545 
546 static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
547 {
548     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
549 }
550 
551 /* Check for traps to "powerdown debug" registers, which are controlled
552  * by MDCR.TDOSA
553  */
554 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
555                                    bool isread)
556 {
557     int el = arm_current_el(env);
558     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
559     bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
560         (arm_hcr_el2_eff(env) & HCR_TGE);
561 
562     if (el < 2 && mdcr_el2_tdosa) {
563         return CP_ACCESS_TRAP_EL2;
564     }
565     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
566         return CP_ACCESS_TRAP_EL3;
567     }
568     return CP_ACCESS_OK;
569 }
570 
571 /* Check for traps to "debug ROM" registers, which are controlled
572  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
573  */
574 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
575                                   bool isread)
576 {
577     int el = arm_current_el(env);
578     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
579     bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
580         (arm_hcr_el2_eff(env) & HCR_TGE);
581 
582     if (el < 2 && mdcr_el2_tdra) {
583         return CP_ACCESS_TRAP_EL2;
584     }
585     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
586         return CP_ACCESS_TRAP_EL3;
587     }
588     return CP_ACCESS_OK;
589 }
590 
591 /* Check for traps to general debug registers, which are controlled
592  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
593  */
594 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
595                                   bool isread)
596 {
597     int el = arm_current_el(env);
598     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
599     bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
600         (arm_hcr_el2_eff(env) & HCR_TGE);
601 
602     if (el < 2 && mdcr_el2_tda) {
603         return CP_ACCESS_TRAP_EL2;
604     }
605     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
606         return CP_ACCESS_TRAP_EL3;
607     }
608     return CP_ACCESS_OK;
609 }
610 
611 /* Check for traps to performance monitor registers, which are controlled
612  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
613  */
614 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
615                                  bool isread)
616 {
617     int el = arm_current_el(env);
618     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
619 
620     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
621         return CP_ACCESS_TRAP_EL2;
622     }
623     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
624         return CP_ACCESS_TRAP_EL3;
625     }
626     return CP_ACCESS_OK;
627 }
628 
629 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
630 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
631                                       bool isread)
632 {
633     if (arm_current_el(env) == 1) {
634         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
635         if (arm_hcr_el2_eff(env) & trap) {
636             return CP_ACCESS_TRAP_EL2;
637         }
638     }
639     return CP_ACCESS_OK;
640 }
641 
642 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
643 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
644                                  bool isread)
645 {
646     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
647         return CP_ACCESS_TRAP_EL2;
648     }
649     return CP_ACCESS_OK;
650 }
651 
652 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
653 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
654                                   bool isread)
655 {
656     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
657         return CP_ACCESS_TRAP_EL2;
658     }
659     return CP_ACCESS_OK;
660 }
661 
662 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
663 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
664                                   bool isread)
665 {
666     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
667         return CP_ACCESS_TRAP_EL2;
668     }
669     return CP_ACCESS_OK;
670 }
671 
672 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
673 {
674     ARMCPU *cpu = env_archcpu(env);
675 
676     raw_write(env, ri, value);
677     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
678 }
679 
680 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
681 {
682     ARMCPU *cpu = env_archcpu(env);
683 
684     if (raw_read(env, ri) != value) {
685         /* Unlike real hardware the qemu TLB uses virtual addresses,
686          * not modified virtual addresses, so this causes a TLB flush.
687          */
688         tlb_flush(CPU(cpu));
689         raw_write(env, ri, value);
690     }
691 }
692 
693 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
694                              uint64_t value)
695 {
696     ARMCPU *cpu = env_archcpu(env);
697 
698     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
699         && !extended_addresses_enabled(env)) {
700         /* For VMSA (when not using the LPAE long descriptor page table
701          * format) this register includes the ASID, so do a TLB flush.
702          * For PMSA it is purely a process ID and no action is needed.
703          */
704         tlb_flush(CPU(cpu));
705     }
706     raw_write(env, ri, value);
707 }
708 
709 /* IS variants of TLB operations must affect all cores */
710 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
711                              uint64_t value)
712 {
713     CPUState *cs = env_cpu(env);
714 
715     tlb_flush_all_cpus_synced(cs);
716 }
717 
718 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
719                              uint64_t value)
720 {
721     CPUState *cs = env_cpu(env);
722 
723     tlb_flush_all_cpus_synced(cs);
724 }
725 
726 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
727                              uint64_t value)
728 {
729     CPUState *cs = env_cpu(env);
730 
731     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
732 }
733 
734 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
735                              uint64_t value)
736 {
737     CPUState *cs = env_cpu(env);
738 
739     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
740 }
741 
742 /*
743  * Non-IS variants of TLB operations are upgraded to
744  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
745  * force broadcast of these operations.
746  */
747 static bool tlb_force_broadcast(CPUARMState *env)
748 {
749     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
750 }
751 
752 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
753                           uint64_t value)
754 {
755     /* Invalidate all (TLBIALL) */
756     CPUState *cs = env_cpu(env);
757 
758     if (tlb_force_broadcast(env)) {
759         tlb_flush_all_cpus_synced(cs);
760     } else {
761         tlb_flush(cs);
762     }
763 }
764 
765 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
766                           uint64_t value)
767 {
768     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
769     CPUState *cs = env_cpu(env);
770 
771     value &= TARGET_PAGE_MASK;
772     if (tlb_force_broadcast(env)) {
773         tlb_flush_page_all_cpus_synced(cs, value);
774     } else {
775         tlb_flush_page(cs, value);
776     }
777 }
778 
779 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
780                            uint64_t value)
781 {
782     /* Invalidate by ASID (TLBIASID) */
783     CPUState *cs = env_cpu(env);
784 
785     if (tlb_force_broadcast(env)) {
786         tlb_flush_all_cpus_synced(cs);
787     } else {
788         tlb_flush(cs);
789     }
790 }
791 
792 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
793                            uint64_t value)
794 {
795     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
796     CPUState *cs = env_cpu(env);
797 
798     value &= TARGET_PAGE_MASK;
799     if (tlb_force_broadcast(env)) {
800         tlb_flush_page_all_cpus_synced(cs, value);
801     } else {
802         tlb_flush_page(cs, value);
803     }
804 }
805 
806 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
807                                uint64_t value)
808 {
809     CPUState *cs = env_cpu(env);
810 
811     tlb_flush_by_mmuidx(cs,
812                         ARMMMUIdxBit_E10_1 |
813                         ARMMMUIdxBit_E10_1_PAN |
814                         ARMMMUIdxBit_E10_0);
815 }
816 
817 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
818                                   uint64_t value)
819 {
820     CPUState *cs = env_cpu(env);
821 
822     tlb_flush_by_mmuidx_all_cpus_synced(cs,
823                                         ARMMMUIdxBit_E10_1 |
824                                         ARMMMUIdxBit_E10_1_PAN |
825                                         ARMMMUIdxBit_E10_0);
826 }
827 
828 
829 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
830                               uint64_t value)
831 {
832     CPUState *cs = env_cpu(env);
833 
834     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
835 }
836 
837 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
838                                  uint64_t value)
839 {
840     CPUState *cs = env_cpu(env);
841 
842     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
843 }
844 
845 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
846                               uint64_t value)
847 {
848     CPUState *cs = env_cpu(env);
849     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
850 
851     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
852 }
853 
854 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
855                                  uint64_t value)
856 {
857     CPUState *cs = env_cpu(env);
858     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
859 
860     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
861                                              ARMMMUIdxBit_E2);
862 }
863 
864 static const ARMCPRegInfo cp_reginfo[] = {
865     /* Define the secure and non-secure FCSE identifier CP registers
866      * separately because there is no secure bank in V8 (no _EL3).  This allows
867      * the secure register to be properly reset and migrated. There is also no
868      * v8 EL1 version of the register so the non-secure instance stands alone.
869      */
870     { .name = "FCSEIDR",
871       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
872       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
873       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
874       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
875     { .name = "FCSEIDR_S",
876       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
877       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
878       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
879       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
880     /* Define the secure and non-secure context identifier CP registers
881      * separately because there is no secure bank in V8 (no _EL3).  This allows
882      * the secure register to be properly reset and migrated.  In the
883      * non-secure case, the 32-bit register will have reset and migration
884      * disabled during registration as it is handled by the 64-bit instance.
885      */
886     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
887       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
888       .access = PL1_RW, .accessfn = access_tvm_trvm,
889       .secure = ARM_CP_SECSTATE_NS,
890       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
891       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
892     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
893       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
894       .access = PL1_RW, .accessfn = access_tvm_trvm,
895       .secure = ARM_CP_SECSTATE_S,
896       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
897       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
898     REGINFO_SENTINEL
899 };
900 
901 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
902     /* NB: Some of these registers exist in v8 but with more precise
903      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
904      */
905     /* MMU Domain access control / MPU write buffer control */
906     { .name = "DACR",
907       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
908       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
909       .writefn = dacr_write, .raw_writefn = raw_write,
910       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
911                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
912     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
913      * For v6 and v5, these mappings are overly broad.
914      */
915     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
916       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
917     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
918       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
919     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
920       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
921     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
922       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
923     /* Cache maintenance ops; some of this space may be overridden later. */
924     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
925       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
926       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
927     REGINFO_SENTINEL
928 };
929 
930 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
931     /* Not all pre-v6 cores implemented this WFI, so this is slightly
932      * over-broad.
933      */
934     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
935       .access = PL1_W, .type = ARM_CP_WFI },
936     REGINFO_SENTINEL
937 };
938 
939 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
940     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
941      * is UNPREDICTABLE; we choose to NOP as most implementations do).
942      */
943     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
944       .access = PL1_W, .type = ARM_CP_WFI },
945     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
946      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
947      * OMAPCP will override this space.
948      */
949     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
950       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
951       .resetvalue = 0 },
952     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
953       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
954       .resetvalue = 0 },
955     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
956     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
957       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
958       .resetvalue = 0 },
959     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
960      * implementing it as RAZ means the "debug architecture version" bits
961      * will read as a reserved value, which should cause Linux to not try
962      * to use the debug hardware.
963      */
964     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
965       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
966     /* MMU TLB control. Note that the wildcarding means we cover not just
967      * the unified TLB ops but also the dside/iside/inner-shareable variants.
968      */
969     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
970       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
971       .type = ARM_CP_NO_RAW },
972     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
973       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
974       .type = ARM_CP_NO_RAW },
975     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
976       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
977       .type = ARM_CP_NO_RAW },
978     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
979       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
980       .type = ARM_CP_NO_RAW },
981     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
982       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
983     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
984       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
985     REGINFO_SENTINEL
986 };
987 
988 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
989                         uint64_t value)
990 {
991     uint32_t mask = 0;
992 
993     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
994     if (!arm_feature(env, ARM_FEATURE_V8)) {
995         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
996          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
997          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
998          */
999         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
1000             /* VFP coprocessor: cp10 & cp11 [23:20] */
1001             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
1002 
1003             if (!arm_feature(env, ARM_FEATURE_NEON)) {
1004                 /* ASEDIS [31] bit is RAO/WI */
1005                 value |= (1 << 31);
1006             }
1007 
1008             /* VFPv3 and upwards with NEON implement 32 double precision
1009              * registers (D0-D31).
1010              */
1011             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
1012                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
1013                 value |= (1 << 30);
1014             }
1015         }
1016         value &= mask;
1017     }
1018 
1019     /*
1020      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1021      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1022      */
1023     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1024         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1025         value &= ~(0xf << 20);
1026         value |= env->cp15.cpacr_el1 & (0xf << 20);
1027     }
1028 
1029     env->cp15.cpacr_el1 = value;
1030 }
1031 
1032 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1033 {
1034     /*
1035      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1036      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1037      */
1038     uint64_t value = env->cp15.cpacr_el1;
1039 
1040     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1041         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1042         value &= ~(0xf << 20);
1043     }
1044     return value;
1045 }
1046 
1047 
1048 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1049 {
1050     /* Call cpacr_write() so that we reset with the correct RAO bits set
1051      * for our CPU features.
1052      */
1053     cpacr_write(env, ri, 0);
1054 }
1055 
1056 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1057                                    bool isread)
1058 {
1059     if (arm_feature(env, ARM_FEATURE_V8)) {
1060         /* Check if CPACR accesses are to be trapped to EL2 */
1061         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
1062             (env->cp15.cptr_el[2] & CPTR_TCPAC)) {
1063             return CP_ACCESS_TRAP_EL2;
1064         /* Check if CPACR accesses are to be trapped to EL3 */
1065         } else if (arm_current_el(env) < 3 &&
1066                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1067             return CP_ACCESS_TRAP_EL3;
1068         }
1069     }
1070 
1071     return CP_ACCESS_OK;
1072 }
1073 
1074 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1075                                   bool isread)
1076 {
1077     /* Check if CPTR accesses are set to trap to EL3 */
1078     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1079         return CP_ACCESS_TRAP_EL3;
1080     }
1081 
1082     return CP_ACCESS_OK;
1083 }
1084 
1085 static const ARMCPRegInfo v6_cp_reginfo[] = {
1086     /* prefetch by MVA in v6, NOP in v7 */
1087     { .name = "MVA_prefetch",
1088       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
1089       .access = PL1_W, .type = ARM_CP_NOP },
1090     /* We need to break the TB after ISB to execute self-modifying code
1091      * correctly and also to take any pending interrupts immediately.
1092      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
1093      */
1094     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
1095       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
1096     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
1097       .access = PL0_W, .type = ARM_CP_NOP },
1098     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
1099       .access = PL0_W, .type = ARM_CP_NOP },
1100     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
1101       .access = PL1_RW, .accessfn = access_tvm_trvm,
1102       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1103                              offsetof(CPUARMState, cp15.ifar_ns) },
1104       .resetvalue = 0, },
1105     /* Watchpoint Fault Address Register : should actually only be present
1106      * for 1136, 1176, 11MPCore.
1107      */
1108     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1109       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1110     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1111       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1112       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1113       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1114     REGINFO_SENTINEL
1115 };
1116 
1117 /* Definitions for the PMU registers */
1118 #define PMCRN_MASK  0xf800
1119 #define PMCRN_SHIFT 11
1120 #define PMCRLC  0x40
1121 #define PMCRDP  0x20
1122 #define PMCRX   0x10
1123 #define PMCRD   0x8
1124 #define PMCRC   0x4
1125 #define PMCRP   0x2
1126 #define PMCRE   0x1
1127 /*
1128  * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1129  * which can be written as 1 to trigger behaviour but which stay RAZ).
1130  */
1131 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1132 
1133 #define PMXEVTYPER_P          0x80000000
1134 #define PMXEVTYPER_U          0x40000000
1135 #define PMXEVTYPER_NSK        0x20000000
1136 #define PMXEVTYPER_NSU        0x10000000
1137 #define PMXEVTYPER_NSH        0x08000000
1138 #define PMXEVTYPER_M          0x04000000
1139 #define PMXEVTYPER_MT         0x02000000
1140 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1141 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1142                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1143                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1144                                PMXEVTYPER_EVTCOUNT)
1145 
1146 #define PMCCFILTR             0xf8000000
1147 #define PMCCFILTR_M           PMXEVTYPER_M
1148 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1149 
1150 static inline uint32_t pmu_num_counters(CPUARMState *env)
1151 {
1152   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1153 }
1154 
1155 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1156 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1157 {
1158   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1159 }
1160 
1161 typedef struct pm_event {
1162     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1163     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1164     bool (*supported)(CPUARMState *);
1165     /*
1166      * Retrieve the current count of the underlying event. The programmed
1167      * counters hold a difference from the return value from this function
1168      */
1169     uint64_t (*get_count)(CPUARMState *);
1170     /*
1171      * Return how many nanoseconds it will take (at a minimum) for count events
1172      * to occur. A negative value indicates the counter will never overflow, or
1173      * that the counter has otherwise arranged for the overflow bit to be set
1174      * and the PMU interrupt to be raised on overflow.
1175      */
1176     int64_t (*ns_per_count)(uint64_t);
1177 } pm_event;
1178 
1179 static bool event_always_supported(CPUARMState *env)
1180 {
1181     return true;
1182 }
1183 
1184 static uint64_t swinc_get_count(CPUARMState *env)
1185 {
1186     /*
1187      * SW_INCR events are written directly to the pmevcntr's by writes to
1188      * PMSWINC, so there is no underlying count maintained by the PMU itself
1189      */
1190     return 0;
1191 }
1192 
1193 static int64_t swinc_ns_per(uint64_t ignored)
1194 {
1195     return -1;
1196 }
1197 
1198 /*
1199  * Return the underlying cycle count for the PMU cycle counters. If we're in
1200  * usermode, simply return 0.
1201  */
1202 static uint64_t cycles_get_count(CPUARMState *env)
1203 {
1204 #ifndef CONFIG_USER_ONLY
1205     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1206                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1207 #else
1208     return cpu_get_host_ticks();
1209 #endif
1210 }
1211 
1212 #ifndef CONFIG_USER_ONLY
1213 static int64_t cycles_ns_per(uint64_t cycles)
1214 {
1215     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1216 }
1217 
1218 static bool instructions_supported(CPUARMState *env)
1219 {
1220     return icount_enabled() == 1; /* Precise instruction counting */
1221 }
1222 
1223 static uint64_t instructions_get_count(CPUARMState *env)
1224 {
1225     return (uint64_t)icount_get_raw();
1226 }
1227 
1228 static int64_t instructions_ns_per(uint64_t icount)
1229 {
1230     return icount_to_ns((int64_t)icount);
1231 }
1232 #endif
1233 
1234 static bool pmu_8_1_events_supported(CPUARMState *env)
1235 {
1236     /* For events which are supported in any v8.1 PMU */
1237     return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1238 }
1239 
1240 static bool pmu_8_4_events_supported(CPUARMState *env)
1241 {
1242     /* For events which are supported in any v8.1 PMU */
1243     return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1244 }
1245 
1246 static uint64_t zero_event_get_count(CPUARMState *env)
1247 {
1248     /* For events which on QEMU never fire, so their count is always zero */
1249     return 0;
1250 }
1251 
1252 static int64_t zero_event_ns_per(uint64_t cycles)
1253 {
1254     /* An event which never fires can never overflow */
1255     return -1;
1256 }
1257 
1258 static const pm_event pm_events[] = {
1259     { .number = 0x000, /* SW_INCR */
1260       .supported = event_always_supported,
1261       .get_count = swinc_get_count,
1262       .ns_per_count = swinc_ns_per,
1263     },
1264 #ifndef CONFIG_USER_ONLY
1265     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1266       .supported = instructions_supported,
1267       .get_count = instructions_get_count,
1268       .ns_per_count = instructions_ns_per,
1269     },
1270     { .number = 0x011, /* CPU_CYCLES, Cycle */
1271       .supported = event_always_supported,
1272       .get_count = cycles_get_count,
1273       .ns_per_count = cycles_ns_per,
1274     },
1275 #endif
1276     { .number = 0x023, /* STALL_FRONTEND */
1277       .supported = pmu_8_1_events_supported,
1278       .get_count = zero_event_get_count,
1279       .ns_per_count = zero_event_ns_per,
1280     },
1281     { .number = 0x024, /* STALL_BACKEND */
1282       .supported = pmu_8_1_events_supported,
1283       .get_count = zero_event_get_count,
1284       .ns_per_count = zero_event_ns_per,
1285     },
1286     { .number = 0x03c, /* STALL */
1287       .supported = pmu_8_4_events_supported,
1288       .get_count = zero_event_get_count,
1289       .ns_per_count = zero_event_ns_per,
1290     },
1291 };
1292 
1293 /*
1294  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1295  * events (i.e. the statistical profiling extension), this implementation
1296  * should first be updated to something sparse instead of the current
1297  * supported_event_map[] array.
1298  */
1299 #define MAX_EVENT_ID 0x3c
1300 #define UNSUPPORTED_EVENT UINT16_MAX
1301 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1302 
1303 /*
1304  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1305  * of ARM event numbers to indices in our pm_events array.
1306  *
1307  * Note: Events in the 0x40XX range are not currently supported.
1308  */
1309 void pmu_init(ARMCPU *cpu)
1310 {
1311     unsigned int i;
1312 
1313     /*
1314      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1315      * events to them
1316      */
1317     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1318         supported_event_map[i] = UNSUPPORTED_EVENT;
1319     }
1320     cpu->pmceid0 = 0;
1321     cpu->pmceid1 = 0;
1322 
1323     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1324         const pm_event *cnt = &pm_events[i];
1325         assert(cnt->number <= MAX_EVENT_ID);
1326         /* We do not currently support events in the 0x40xx range */
1327         assert(cnt->number <= 0x3f);
1328 
1329         if (cnt->supported(&cpu->env)) {
1330             supported_event_map[cnt->number] = i;
1331             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1332             if (cnt->number & 0x20) {
1333                 cpu->pmceid1 |= event_mask;
1334             } else {
1335                 cpu->pmceid0 |= event_mask;
1336             }
1337         }
1338     }
1339 }
1340 
1341 /*
1342  * Check at runtime whether a PMU event is supported for the current machine
1343  */
1344 static bool event_supported(uint16_t number)
1345 {
1346     if (number > MAX_EVENT_ID) {
1347         return false;
1348     }
1349     return supported_event_map[number] != UNSUPPORTED_EVENT;
1350 }
1351 
1352 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1353                                    bool isread)
1354 {
1355     /* Performance monitor registers user accessibility is controlled
1356      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1357      * trapping to EL2 or EL3 for other accesses.
1358      */
1359     int el = arm_current_el(env);
1360     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1361 
1362     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1363         return CP_ACCESS_TRAP;
1364     }
1365     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1366         return CP_ACCESS_TRAP_EL2;
1367     }
1368     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1369         return CP_ACCESS_TRAP_EL3;
1370     }
1371 
1372     return CP_ACCESS_OK;
1373 }
1374 
1375 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1376                                            const ARMCPRegInfo *ri,
1377                                            bool isread)
1378 {
1379     /* ER: event counter read trap control */
1380     if (arm_feature(env, ARM_FEATURE_V8)
1381         && arm_current_el(env) == 0
1382         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1383         && isread) {
1384         return CP_ACCESS_OK;
1385     }
1386 
1387     return pmreg_access(env, ri, isread);
1388 }
1389 
1390 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1391                                          const ARMCPRegInfo *ri,
1392                                          bool isread)
1393 {
1394     /* SW: software increment write trap control */
1395     if (arm_feature(env, ARM_FEATURE_V8)
1396         && arm_current_el(env) == 0
1397         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1398         && !isread) {
1399         return CP_ACCESS_OK;
1400     }
1401 
1402     return pmreg_access(env, ri, isread);
1403 }
1404 
1405 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1406                                         const ARMCPRegInfo *ri,
1407                                         bool isread)
1408 {
1409     /* ER: event counter read trap control */
1410     if (arm_feature(env, ARM_FEATURE_V8)
1411         && arm_current_el(env) == 0
1412         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1413         return CP_ACCESS_OK;
1414     }
1415 
1416     return pmreg_access(env, ri, isread);
1417 }
1418 
1419 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1420                                          const ARMCPRegInfo *ri,
1421                                          bool isread)
1422 {
1423     /* CR: cycle counter read trap control */
1424     if (arm_feature(env, ARM_FEATURE_V8)
1425         && arm_current_el(env) == 0
1426         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1427         && isread) {
1428         return CP_ACCESS_OK;
1429     }
1430 
1431     return pmreg_access(env, ri, isread);
1432 }
1433 
1434 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1435  * the current EL, security state, and register configuration.
1436  */
1437 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1438 {
1439     uint64_t filter;
1440     bool e, p, u, nsk, nsu, nsh, m;
1441     bool enabled, prohibited, filtered;
1442     bool secure = arm_is_secure(env);
1443     int el = arm_current_el(env);
1444     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1445     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1446 
1447     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1448         return false;
1449     }
1450 
1451     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1452             (counter < hpmn || counter == 31)) {
1453         e = env->cp15.c9_pmcr & PMCRE;
1454     } else {
1455         e = mdcr_el2 & MDCR_HPME;
1456     }
1457     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1458 
1459     if (!secure) {
1460         if (el == 2 && (counter < hpmn || counter == 31)) {
1461             prohibited = mdcr_el2 & MDCR_HPMD;
1462         } else {
1463             prohibited = false;
1464         }
1465     } else {
1466         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1467            !(env->cp15.mdcr_el3 & MDCR_SPME);
1468     }
1469 
1470     if (prohibited && counter == 31) {
1471         prohibited = env->cp15.c9_pmcr & PMCRDP;
1472     }
1473 
1474     if (counter == 31) {
1475         filter = env->cp15.pmccfiltr_el0;
1476     } else {
1477         filter = env->cp15.c14_pmevtyper[counter];
1478     }
1479 
1480     p   = filter & PMXEVTYPER_P;
1481     u   = filter & PMXEVTYPER_U;
1482     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1483     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1484     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1485     m   = arm_el_is_aa64(env, 1) &&
1486               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1487 
1488     if (el == 0) {
1489         filtered = secure ? u : u != nsu;
1490     } else if (el == 1) {
1491         filtered = secure ? p : p != nsk;
1492     } else if (el == 2) {
1493         filtered = !nsh;
1494     } else { /* EL3 */
1495         filtered = m != p;
1496     }
1497 
1498     if (counter != 31) {
1499         /*
1500          * If not checking PMCCNTR, ensure the counter is setup to an event we
1501          * support
1502          */
1503         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1504         if (!event_supported(event)) {
1505             return false;
1506         }
1507     }
1508 
1509     return enabled && !prohibited && !filtered;
1510 }
1511 
1512 static void pmu_update_irq(CPUARMState *env)
1513 {
1514     ARMCPU *cpu = env_archcpu(env);
1515     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1516             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1517 }
1518 
1519 /*
1520  * Ensure c15_ccnt is the guest-visible count so that operations such as
1521  * enabling/disabling the counter or filtering, modifying the count itself,
1522  * etc. can be done logically. This is essentially a no-op if the counter is
1523  * not enabled at the time of the call.
1524  */
1525 static void pmccntr_op_start(CPUARMState *env)
1526 {
1527     uint64_t cycles = cycles_get_count(env);
1528 
1529     if (pmu_counter_enabled(env, 31)) {
1530         uint64_t eff_cycles = cycles;
1531         if (env->cp15.c9_pmcr & PMCRD) {
1532             /* Increment once every 64 processor clock cycles */
1533             eff_cycles /= 64;
1534         }
1535 
1536         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1537 
1538         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1539                                  1ull << 63 : 1ull << 31;
1540         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1541             env->cp15.c9_pmovsr |= (1 << 31);
1542             pmu_update_irq(env);
1543         }
1544 
1545         env->cp15.c15_ccnt = new_pmccntr;
1546     }
1547     env->cp15.c15_ccnt_delta = cycles;
1548 }
1549 
1550 /*
1551  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1552  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1553  * pmccntr_op_start.
1554  */
1555 static void pmccntr_op_finish(CPUARMState *env)
1556 {
1557     if (pmu_counter_enabled(env, 31)) {
1558 #ifndef CONFIG_USER_ONLY
1559         /* Calculate when the counter will next overflow */
1560         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1561         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1562             remaining_cycles = (uint32_t)remaining_cycles;
1563         }
1564         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1565 
1566         if (overflow_in > 0) {
1567             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1568                 overflow_in;
1569             ARMCPU *cpu = env_archcpu(env);
1570             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1571         }
1572 #endif
1573 
1574         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1575         if (env->cp15.c9_pmcr & PMCRD) {
1576             /* Increment once every 64 processor clock cycles */
1577             prev_cycles /= 64;
1578         }
1579         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1580     }
1581 }
1582 
1583 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1584 {
1585 
1586     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1587     uint64_t count = 0;
1588     if (event_supported(event)) {
1589         uint16_t event_idx = supported_event_map[event];
1590         count = pm_events[event_idx].get_count(env);
1591     }
1592 
1593     if (pmu_counter_enabled(env, counter)) {
1594         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1595 
1596         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1597             env->cp15.c9_pmovsr |= (1 << counter);
1598             pmu_update_irq(env);
1599         }
1600         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1601     }
1602     env->cp15.c14_pmevcntr_delta[counter] = count;
1603 }
1604 
1605 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1606 {
1607     if (pmu_counter_enabled(env, counter)) {
1608 #ifndef CONFIG_USER_ONLY
1609         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1610         uint16_t event_idx = supported_event_map[event];
1611         uint64_t delta = UINT32_MAX -
1612             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1613         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1614 
1615         if (overflow_in > 0) {
1616             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1617                 overflow_in;
1618             ARMCPU *cpu = env_archcpu(env);
1619             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1620         }
1621 #endif
1622 
1623         env->cp15.c14_pmevcntr_delta[counter] -=
1624             env->cp15.c14_pmevcntr[counter];
1625     }
1626 }
1627 
1628 void pmu_op_start(CPUARMState *env)
1629 {
1630     unsigned int i;
1631     pmccntr_op_start(env);
1632     for (i = 0; i < pmu_num_counters(env); i++) {
1633         pmevcntr_op_start(env, i);
1634     }
1635 }
1636 
1637 void pmu_op_finish(CPUARMState *env)
1638 {
1639     unsigned int i;
1640     pmccntr_op_finish(env);
1641     for (i = 0; i < pmu_num_counters(env); i++) {
1642         pmevcntr_op_finish(env, i);
1643     }
1644 }
1645 
1646 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1647 {
1648     pmu_op_start(&cpu->env);
1649 }
1650 
1651 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1652 {
1653     pmu_op_finish(&cpu->env);
1654 }
1655 
1656 void arm_pmu_timer_cb(void *opaque)
1657 {
1658     ARMCPU *cpu = opaque;
1659 
1660     /*
1661      * Update all the counter values based on the current underlying counts,
1662      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1663      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1664      * counter may expire.
1665      */
1666     pmu_op_start(&cpu->env);
1667     pmu_op_finish(&cpu->env);
1668 }
1669 
1670 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1671                        uint64_t value)
1672 {
1673     pmu_op_start(env);
1674 
1675     if (value & PMCRC) {
1676         /* The counter has been reset */
1677         env->cp15.c15_ccnt = 0;
1678     }
1679 
1680     if (value & PMCRP) {
1681         unsigned int i;
1682         for (i = 0; i < pmu_num_counters(env); i++) {
1683             env->cp15.c14_pmevcntr[i] = 0;
1684         }
1685     }
1686 
1687     env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1688     env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1689 
1690     pmu_op_finish(env);
1691 }
1692 
1693 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1694                           uint64_t value)
1695 {
1696     unsigned int i;
1697     for (i = 0; i < pmu_num_counters(env); i++) {
1698         /* Increment a counter's count iff: */
1699         if ((value & (1 << i)) && /* counter's bit is set */
1700                 /* counter is enabled and not filtered */
1701                 pmu_counter_enabled(env, i) &&
1702                 /* counter is SW_INCR */
1703                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1704             pmevcntr_op_start(env, i);
1705 
1706             /*
1707              * Detect if this write causes an overflow since we can't predict
1708              * PMSWINC overflows like we can for other events
1709              */
1710             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1711 
1712             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1713                 env->cp15.c9_pmovsr |= (1 << i);
1714                 pmu_update_irq(env);
1715             }
1716 
1717             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1718 
1719             pmevcntr_op_finish(env, i);
1720         }
1721     }
1722 }
1723 
1724 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1725 {
1726     uint64_t ret;
1727     pmccntr_op_start(env);
1728     ret = env->cp15.c15_ccnt;
1729     pmccntr_op_finish(env);
1730     return ret;
1731 }
1732 
1733 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734                          uint64_t value)
1735 {
1736     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1737      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1738      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1739      * accessed.
1740      */
1741     env->cp15.c9_pmselr = value & 0x1f;
1742 }
1743 
1744 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1745                         uint64_t value)
1746 {
1747     pmccntr_op_start(env);
1748     env->cp15.c15_ccnt = value;
1749     pmccntr_op_finish(env);
1750 }
1751 
1752 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1753                             uint64_t value)
1754 {
1755     uint64_t cur_val = pmccntr_read(env, NULL);
1756 
1757     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1758 }
1759 
1760 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1761                             uint64_t value)
1762 {
1763     pmccntr_op_start(env);
1764     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1765     pmccntr_op_finish(env);
1766 }
1767 
1768 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1769                             uint64_t value)
1770 {
1771     pmccntr_op_start(env);
1772     /* M is not accessible from AArch32 */
1773     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1774         (value & PMCCFILTR);
1775     pmccntr_op_finish(env);
1776 }
1777 
1778 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1779 {
1780     /* M is not visible in AArch32 */
1781     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1782 }
1783 
1784 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1785                             uint64_t value)
1786 {
1787     value &= pmu_counter_mask(env);
1788     env->cp15.c9_pmcnten |= value;
1789 }
1790 
1791 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792                              uint64_t value)
1793 {
1794     value &= pmu_counter_mask(env);
1795     env->cp15.c9_pmcnten &= ~value;
1796 }
1797 
1798 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1799                          uint64_t value)
1800 {
1801     value &= pmu_counter_mask(env);
1802     env->cp15.c9_pmovsr &= ~value;
1803     pmu_update_irq(env);
1804 }
1805 
1806 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807                          uint64_t value)
1808 {
1809     value &= pmu_counter_mask(env);
1810     env->cp15.c9_pmovsr |= value;
1811     pmu_update_irq(env);
1812 }
1813 
1814 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815                              uint64_t value, const uint8_t counter)
1816 {
1817     if (counter == 31) {
1818         pmccfiltr_write(env, ri, value);
1819     } else if (counter < pmu_num_counters(env)) {
1820         pmevcntr_op_start(env, counter);
1821 
1822         /*
1823          * If this counter's event type is changing, store the current
1824          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1825          * pmevcntr_op_finish has the correct baseline when it converts back to
1826          * a delta.
1827          */
1828         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1829             PMXEVTYPER_EVTCOUNT;
1830         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1831         if (old_event != new_event) {
1832             uint64_t count = 0;
1833             if (event_supported(new_event)) {
1834                 uint16_t event_idx = supported_event_map[new_event];
1835                 count = pm_events[event_idx].get_count(env);
1836             }
1837             env->cp15.c14_pmevcntr_delta[counter] = count;
1838         }
1839 
1840         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1841         pmevcntr_op_finish(env, counter);
1842     }
1843     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1844      * PMSELR value is equal to or greater than the number of implemented
1845      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1846      */
1847 }
1848 
1849 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1850                                const uint8_t counter)
1851 {
1852     if (counter == 31) {
1853         return env->cp15.pmccfiltr_el0;
1854     } else if (counter < pmu_num_counters(env)) {
1855         return env->cp15.c14_pmevtyper[counter];
1856     } else {
1857       /*
1858        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1859        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1860        */
1861         return 0;
1862     }
1863 }
1864 
1865 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1866                               uint64_t value)
1867 {
1868     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1869     pmevtyper_write(env, ri, value, counter);
1870 }
1871 
1872 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1873                                uint64_t value)
1874 {
1875     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1876     env->cp15.c14_pmevtyper[counter] = value;
1877 
1878     /*
1879      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1880      * pmu_op_finish calls when loading saved state for a migration. Because
1881      * we're potentially updating the type of event here, the value written to
1882      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1883      * different counter type. Therefore, we need to set this value to the
1884      * current count for the counter type we're writing so that pmu_op_finish
1885      * has the correct count for its calculation.
1886      */
1887     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1888     if (event_supported(event)) {
1889         uint16_t event_idx = supported_event_map[event];
1890         env->cp15.c14_pmevcntr_delta[counter] =
1891             pm_events[event_idx].get_count(env);
1892     }
1893 }
1894 
1895 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1896 {
1897     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1898     return pmevtyper_read(env, ri, counter);
1899 }
1900 
1901 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1902                              uint64_t value)
1903 {
1904     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1905 }
1906 
1907 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1908 {
1909     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1910 }
1911 
1912 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1913                              uint64_t value, uint8_t counter)
1914 {
1915     if (counter < pmu_num_counters(env)) {
1916         pmevcntr_op_start(env, counter);
1917         env->cp15.c14_pmevcntr[counter] = value;
1918         pmevcntr_op_finish(env, counter);
1919     }
1920     /*
1921      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1922      * are CONSTRAINED UNPREDICTABLE.
1923      */
1924 }
1925 
1926 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1927                               uint8_t counter)
1928 {
1929     if (counter < pmu_num_counters(env)) {
1930         uint64_t ret;
1931         pmevcntr_op_start(env, counter);
1932         ret = env->cp15.c14_pmevcntr[counter];
1933         pmevcntr_op_finish(env, counter);
1934         return ret;
1935     } else {
1936       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1937        * are CONSTRAINED UNPREDICTABLE. */
1938         return 0;
1939     }
1940 }
1941 
1942 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1943                              uint64_t value)
1944 {
1945     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1946     pmevcntr_write(env, ri, value, counter);
1947 }
1948 
1949 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1950 {
1951     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1952     return pmevcntr_read(env, ri, counter);
1953 }
1954 
1955 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1956                              uint64_t value)
1957 {
1958     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1959     assert(counter < pmu_num_counters(env));
1960     env->cp15.c14_pmevcntr[counter] = value;
1961     pmevcntr_write(env, ri, value, counter);
1962 }
1963 
1964 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1965 {
1966     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1967     assert(counter < pmu_num_counters(env));
1968     return env->cp15.c14_pmevcntr[counter];
1969 }
1970 
1971 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1972                              uint64_t value)
1973 {
1974     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1975 }
1976 
1977 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1978 {
1979     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1980 }
1981 
1982 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1983                             uint64_t value)
1984 {
1985     if (arm_feature(env, ARM_FEATURE_V8)) {
1986         env->cp15.c9_pmuserenr = value & 0xf;
1987     } else {
1988         env->cp15.c9_pmuserenr = value & 1;
1989     }
1990 }
1991 
1992 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1993                              uint64_t value)
1994 {
1995     /* We have no event counters so only the C bit can be changed */
1996     value &= pmu_counter_mask(env);
1997     env->cp15.c9_pminten |= value;
1998     pmu_update_irq(env);
1999 }
2000 
2001 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2002                              uint64_t value)
2003 {
2004     value &= pmu_counter_mask(env);
2005     env->cp15.c9_pminten &= ~value;
2006     pmu_update_irq(env);
2007 }
2008 
2009 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2010                        uint64_t value)
2011 {
2012     /* Note that even though the AArch64 view of this register has bits
2013      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
2014      * architectural requirements for bits which are RES0 only in some
2015      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
2016      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
2017      */
2018     raw_write(env, ri, value & ~0x1FULL);
2019 }
2020 
2021 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2022 {
2023     /* Begin with base v8.0 state.  */
2024     uint32_t valid_mask = 0x3fff;
2025     ARMCPU *cpu = env_archcpu(env);
2026 
2027     if (ri->state == ARM_CP_STATE_AA64) {
2028         if (arm_feature(env, ARM_FEATURE_AARCH64) &&
2029             !cpu_isar_feature(aa64_aa32_el1, cpu)) {
2030                 value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
2031         }
2032         valid_mask &= ~SCR_NET;
2033 
2034         if (cpu_isar_feature(aa64_lor, cpu)) {
2035             valid_mask |= SCR_TLOR;
2036         }
2037         if (cpu_isar_feature(aa64_pauth, cpu)) {
2038             valid_mask |= SCR_API | SCR_APK;
2039         }
2040         if (cpu_isar_feature(aa64_sel2, cpu)) {
2041             valid_mask |= SCR_EEL2;
2042         }
2043         if (cpu_isar_feature(aa64_mte, cpu)) {
2044             valid_mask |= SCR_ATA;
2045         }
2046     } else {
2047         valid_mask &= ~(SCR_RW | SCR_ST);
2048     }
2049 
2050     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2051         valid_mask &= ~SCR_HCE;
2052 
2053         /* On ARMv7, SMD (or SCD as it is called in v7) is only
2054          * supported if EL2 exists. The bit is UNK/SBZP when
2055          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
2056          * when EL2 is unavailable.
2057          * On ARMv8, this bit is always available.
2058          */
2059         if (arm_feature(env, ARM_FEATURE_V7) &&
2060             !arm_feature(env, ARM_FEATURE_V8)) {
2061             valid_mask &= ~SCR_SMD;
2062         }
2063     }
2064 
2065     /* Clear all-context RES0 bits.  */
2066     value &= valid_mask;
2067     raw_write(env, ri, value);
2068 }
2069 
2070 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2071 {
2072     /*
2073      * scr_write will set the RES1 bits on an AArch64-only CPU.
2074      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
2075      */
2076     scr_write(env, ri, 0);
2077 }
2078 
2079 static CPAccessResult access_aa64_tid2(CPUARMState *env,
2080                                        const ARMCPRegInfo *ri,
2081                                        bool isread)
2082 {
2083     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
2084         return CP_ACCESS_TRAP_EL2;
2085     }
2086 
2087     return CP_ACCESS_OK;
2088 }
2089 
2090 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2091 {
2092     ARMCPU *cpu = env_archcpu(env);
2093 
2094     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
2095      * bank
2096      */
2097     uint32_t index = A32_BANKED_REG_GET(env, csselr,
2098                                         ri->secure & ARM_CP_SECSTATE_S);
2099 
2100     return cpu->ccsidr[index];
2101 }
2102 
2103 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2104                          uint64_t value)
2105 {
2106     raw_write(env, ri, value & 0xf);
2107 }
2108 
2109 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2110 {
2111     CPUState *cs = env_cpu(env);
2112     bool el1 = arm_current_el(env) == 1;
2113     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2114     uint64_t ret = 0;
2115 
2116     if (hcr_el2 & HCR_IMO) {
2117         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2118             ret |= CPSR_I;
2119         }
2120     } else {
2121         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2122             ret |= CPSR_I;
2123         }
2124     }
2125 
2126     if (hcr_el2 & HCR_FMO) {
2127         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2128             ret |= CPSR_F;
2129         }
2130     } else {
2131         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2132             ret |= CPSR_F;
2133         }
2134     }
2135 
2136     /* External aborts are not possible in QEMU so A bit is always clear */
2137     return ret;
2138 }
2139 
2140 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2141                                        bool isread)
2142 {
2143     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2144         return CP_ACCESS_TRAP_EL2;
2145     }
2146 
2147     return CP_ACCESS_OK;
2148 }
2149 
2150 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2151                                        bool isread)
2152 {
2153     if (arm_feature(env, ARM_FEATURE_V8)) {
2154         return access_aa64_tid1(env, ri, isread);
2155     }
2156 
2157     return CP_ACCESS_OK;
2158 }
2159 
2160 static const ARMCPRegInfo v7_cp_reginfo[] = {
2161     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2162     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2163       .access = PL1_W, .type = ARM_CP_NOP },
2164     /* Performance monitors are implementation defined in v7,
2165      * but with an ARM recommended set of registers, which we
2166      * follow.
2167      *
2168      * Performance registers fall into three categories:
2169      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2170      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2171      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2172      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2173      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2174      */
2175     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2176       .access = PL0_RW, .type = ARM_CP_ALIAS,
2177       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2178       .writefn = pmcntenset_write,
2179       .accessfn = pmreg_access,
2180       .raw_writefn = raw_write },
2181     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2182       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2183       .access = PL0_RW, .accessfn = pmreg_access,
2184       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2185       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2186     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2187       .access = PL0_RW,
2188       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2189       .accessfn = pmreg_access,
2190       .writefn = pmcntenclr_write,
2191       .type = ARM_CP_ALIAS },
2192     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2193       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2194       .access = PL0_RW, .accessfn = pmreg_access,
2195       .type = ARM_CP_ALIAS,
2196       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2197       .writefn = pmcntenclr_write },
2198     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2199       .access = PL0_RW, .type = ARM_CP_IO,
2200       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2201       .accessfn = pmreg_access,
2202       .writefn = pmovsr_write,
2203       .raw_writefn = raw_write },
2204     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2205       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2206       .access = PL0_RW, .accessfn = pmreg_access,
2207       .type = ARM_CP_ALIAS | ARM_CP_IO,
2208       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2209       .writefn = pmovsr_write,
2210       .raw_writefn = raw_write },
2211     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2212       .access = PL0_W, .accessfn = pmreg_access_swinc,
2213       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2214       .writefn = pmswinc_write },
2215     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2216       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2217       .access = PL0_W, .accessfn = pmreg_access_swinc,
2218       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2219       .writefn = pmswinc_write },
2220     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2221       .access = PL0_RW, .type = ARM_CP_ALIAS,
2222       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2223       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2224       .raw_writefn = raw_write},
2225     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2226       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2227       .access = PL0_RW, .accessfn = pmreg_access_selr,
2228       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2229       .writefn = pmselr_write, .raw_writefn = raw_write, },
2230     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2231       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2232       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2233       .accessfn = pmreg_access_ccntr },
2234     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2235       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2236       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2237       .type = ARM_CP_IO,
2238       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2239       .readfn = pmccntr_read, .writefn = pmccntr_write,
2240       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2241     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2242       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2243       .access = PL0_RW, .accessfn = pmreg_access,
2244       .type = ARM_CP_ALIAS | ARM_CP_IO,
2245       .resetvalue = 0, },
2246     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2247       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2248       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2249       .access = PL0_RW, .accessfn = pmreg_access,
2250       .type = ARM_CP_IO,
2251       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2252       .resetvalue = 0, },
2253     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2254       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2255       .accessfn = pmreg_access,
2256       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2257     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2258       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2259       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2260       .accessfn = pmreg_access,
2261       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2262     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2263       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2264       .accessfn = pmreg_access_xevcntr,
2265       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2266     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2267       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2268       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2269       .accessfn = pmreg_access_xevcntr,
2270       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2271     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2272       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2273       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2274       .resetvalue = 0,
2275       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2276     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2277       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2278       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2279       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2280       .resetvalue = 0,
2281       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2282     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2283       .access = PL1_RW, .accessfn = access_tpm,
2284       .type = ARM_CP_ALIAS | ARM_CP_IO,
2285       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2286       .resetvalue = 0,
2287       .writefn = pmintenset_write, .raw_writefn = raw_write },
2288     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2289       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2290       .access = PL1_RW, .accessfn = access_tpm,
2291       .type = ARM_CP_IO,
2292       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2293       .writefn = pmintenset_write, .raw_writefn = raw_write,
2294       .resetvalue = 0x0 },
2295     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2296       .access = PL1_RW, .accessfn = access_tpm,
2297       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2298       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2299       .writefn = pmintenclr_write, },
2300     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2301       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2302       .access = PL1_RW, .accessfn = access_tpm,
2303       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2304       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2305       .writefn = pmintenclr_write },
2306     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2307       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2308       .access = PL1_R,
2309       .accessfn = access_aa64_tid2,
2310       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2311     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2312       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2313       .access = PL1_RW,
2314       .accessfn = access_aa64_tid2,
2315       .writefn = csselr_write, .resetvalue = 0,
2316       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2317                              offsetof(CPUARMState, cp15.csselr_ns) } },
2318     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2319      * just RAZ for all cores:
2320      */
2321     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2322       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2323       .access = PL1_R, .type = ARM_CP_CONST,
2324       .accessfn = access_aa64_tid1,
2325       .resetvalue = 0 },
2326     /* Auxiliary fault status registers: these also are IMPDEF, and we
2327      * choose to RAZ/WI for all cores.
2328      */
2329     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2330       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2331       .access = PL1_RW, .accessfn = access_tvm_trvm,
2332       .type = ARM_CP_CONST, .resetvalue = 0 },
2333     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2334       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2335       .access = PL1_RW, .accessfn = access_tvm_trvm,
2336       .type = ARM_CP_CONST, .resetvalue = 0 },
2337     /* MAIR can just read-as-written because we don't implement caches
2338      * and so don't need to care about memory attributes.
2339      */
2340     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2341       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2342       .access = PL1_RW, .accessfn = access_tvm_trvm,
2343       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2344       .resetvalue = 0 },
2345     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2346       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2347       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2348       .resetvalue = 0 },
2349     /* For non-long-descriptor page tables these are PRRR and NMRR;
2350      * regardless they still act as reads-as-written for QEMU.
2351      */
2352      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2353       * allows them to assign the correct fieldoffset based on the endianness
2354       * handled in the field definitions.
2355       */
2356     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2357       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2358       .access = PL1_RW, .accessfn = access_tvm_trvm,
2359       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2360                              offsetof(CPUARMState, cp15.mair0_ns) },
2361       .resetfn = arm_cp_reset_ignore },
2362     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2363       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2364       .access = PL1_RW, .accessfn = access_tvm_trvm,
2365       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2366                              offsetof(CPUARMState, cp15.mair1_ns) },
2367       .resetfn = arm_cp_reset_ignore },
2368     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2369       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2370       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2371     /* 32 bit ITLB invalidates */
2372     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2373       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2374       .writefn = tlbiall_write },
2375     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2376       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2377       .writefn = tlbimva_write },
2378     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2379       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2380       .writefn = tlbiasid_write },
2381     /* 32 bit DTLB invalidates */
2382     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2383       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2384       .writefn = tlbiall_write },
2385     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2386       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2387       .writefn = tlbimva_write },
2388     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2389       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2390       .writefn = tlbiasid_write },
2391     /* 32 bit TLB invalidates */
2392     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2393       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2394       .writefn = tlbiall_write },
2395     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2396       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2397       .writefn = tlbimva_write },
2398     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2399       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2400       .writefn = tlbiasid_write },
2401     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2402       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2403       .writefn = tlbimvaa_write },
2404     REGINFO_SENTINEL
2405 };
2406 
2407 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2408     /* 32 bit TLB invalidates, Inner Shareable */
2409     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2410       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2411       .writefn = tlbiall_is_write },
2412     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2413       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2414       .writefn = tlbimva_is_write },
2415     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2416       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2417       .writefn = tlbiasid_is_write },
2418     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2419       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2420       .writefn = tlbimvaa_is_write },
2421     REGINFO_SENTINEL
2422 };
2423 
2424 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2425     /* PMOVSSET is not implemented in v7 before v7ve */
2426     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2427       .access = PL0_RW, .accessfn = pmreg_access,
2428       .type = ARM_CP_ALIAS | ARM_CP_IO,
2429       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2430       .writefn = pmovsset_write,
2431       .raw_writefn = raw_write },
2432     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2433       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2434       .access = PL0_RW, .accessfn = pmreg_access,
2435       .type = ARM_CP_ALIAS | ARM_CP_IO,
2436       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2437       .writefn = pmovsset_write,
2438       .raw_writefn = raw_write },
2439     REGINFO_SENTINEL
2440 };
2441 
2442 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2443                         uint64_t value)
2444 {
2445     value &= 1;
2446     env->teecr = value;
2447 }
2448 
2449 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2450                                    bool isread)
2451 {
2452     /*
2453      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2454      * at all, so we don't need to check whether we're v8A.
2455      */
2456     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2457         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2458         return CP_ACCESS_TRAP_EL2;
2459     }
2460     return CP_ACCESS_OK;
2461 }
2462 
2463 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2464                                     bool isread)
2465 {
2466     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2467         return CP_ACCESS_TRAP;
2468     }
2469     return teecr_access(env, ri, isread);
2470 }
2471 
2472 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2473     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2474       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2475       .resetvalue = 0,
2476       .writefn = teecr_write, .accessfn = teecr_access },
2477     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2478       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2479       .accessfn = teehbr_access, .resetvalue = 0 },
2480     REGINFO_SENTINEL
2481 };
2482 
2483 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2484     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2485       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2486       .access = PL0_RW,
2487       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2488     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2489       .access = PL0_RW,
2490       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2491                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2492       .resetfn = arm_cp_reset_ignore },
2493     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2494       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2495       .access = PL0_R|PL1_W,
2496       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2497       .resetvalue = 0},
2498     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2499       .access = PL0_R|PL1_W,
2500       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2501                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2502       .resetfn = arm_cp_reset_ignore },
2503     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2504       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2505       .access = PL1_RW,
2506       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2507     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2508       .access = PL1_RW,
2509       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2510                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2511       .resetvalue = 0 },
2512     REGINFO_SENTINEL
2513 };
2514 
2515 #ifndef CONFIG_USER_ONLY
2516 
2517 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2518                                        bool isread)
2519 {
2520     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2521      * Writable only at the highest implemented exception level.
2522      */
2523     int el = arm_current_el(env);
2524     uint64_t hcr;
2525     uint32_t cntkctl;
2526 
2527     switch (el) {
2528     case 0:
2529         hcr = arm_hcr_el2_eff(env);
2530         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2531             cntkctl = env->cp15.cnthctl_el2;
2532         } else {
2533             cntkctl = env->cp15.c14_cntkctl;
2534         }
2535         if (!extract32(cntkctl, 0, 2)) {
2536             return CP_ACCESS_TRAP;
2537         }
2538         break;
2539     case 1:
2540         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2541             arm_is_secure_below_el3(env)) {
2542             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2543             return CP_ACCESS_TRAP_UNCATEGORIZED;
2544         }
2545         break;
2546     case 2:
2547     case 3:
2548         break;
2549     }
2550 
2551     if (!isread && el < arm_highest_el(env)) {
2552         return CP_ACCESS_TRAP_UNCATEGORIZED;
2553     }
2554 
2555     return CP_ACCESS_OK;
2556 }
2557 
2558 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2559                                         bool isread)
2560 {
2561     unsigned int cur_el = arm_current_el(env);
2562     bool has_el2 = arm_is_el2_enabled(env);
2563     uint64_t hcr = arm_hcr_el2_eff(env);
2564 
2565     switch (cur_el) {
2566     case 0:
2567         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2568         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2569             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2570                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2571         }
2572 
2573         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2574         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2575             return CP_ACCESS_TRAP;
2576         }
2577 
2578         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2579         if (hcr & HCR_E2H) {
2580             if (timeridx == GTIMER_PHYS &&
2581                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2582                 return CP_ACCESS_TRAP_EL2;
2583             }
2584         } else {
2585             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2586             if (has_el2 && timeridx == GTIMER_PHYS &&
2587                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2588                 return CP_ACCESS_TRAP_EL2;
2589             }
2590         }
2591         break;
2592 
2593     case 1:
2594         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2595         if (has_el2 && timeridx == GTIMER_PHYS &&
2596             (hcr & HCR_E2H
2597              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2598              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2599             return CP_ACCESS_TRAP_EL2;
2600         }
2601         break;
2602     }
2603     return CP_ACCESS_OK;
2604 }
2605 
2606 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2607                                       bool isread)
2608 {
2609     unsigned int cur_el = arm_current_el(env);
2610     bool has_el2 = arm_is_el2_enabled(env);
2611     uint64_t hcr = arm_hcr_el2_eff(env);
2612 
2613     switch (cur_el) {
2614     case 0:
2615         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2616             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2617             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2618                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2619         }
2620 
2621         /*
2622          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2623          * EL0 if EL0[PV]TEN is zero.
2624          */
2625         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2626             return CP_ACCESS_TRAP;
2627         }
2628         /* fall through */
2629 
2630     case 1:
2631         if (has_el2 && timeridx == GTIMER_PHYS) {
2632             if (hcr & HCR_E2H) {
2633                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2634                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2635                     return CP_ACCESS_TRAP_EL2;
2636                 }
2637             } else {
2638                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2639                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2640                     return CP_ACCESS_TRAP_EL2;
2641                 }
2642             }
2643         }
2644         break;
2645     }
2646     return CP_ACCESS_OK;
2647 }
2648 
2649 static CPAccessResult gt_pct_access(CPUARMState *env,
2650                                     const ARMCPRegInfo *ri,
2651                                     bool isread)
2652 {
2653     return gt_counter_access(env, GTIMER_PHYS, isread);
2654 }
2655 
2656 static CPAccessResult gt_vct_access(CPUARMState *env,
2657                                     const ARMCPRegInfo *ri,
2658                                     bool isread)
2659 {
2660     return gt_counter_access(env, GTIMER_VIRT, isread);
2661 }
2662 
2663 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2664                                        bool isread)
2665 {
2666     return gt_timer_access(env, GTIMER_PHYS, isread);
2667 }
2668 
2669 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2670                                        bool isread)
2671 {
2672     return gt_timer_access(env, GTIMER_VIRT, isread);
2673 }
2674 
2675 static CPAccessResult gt_stimer_access(CPUARMState *env,
2676                                        const ARMCPRegInfo *ri,
2677                                        bool isread)
2678 {
2679     /* The AArch64 register view of the secure physical timer is
2680      * always accessible from EL3, and configurably accessible from
2681      * Secure EL1.
2682      */
2683     switch (arm_current_el(env)) {
2684     case 1:
2685         if (!arm_is_secure(env)) {
2686             return CP_ACCESS_TRAP;
2687         }
2688         if (!(env->cp15.scr_el3 & SCR_ST)) {
2689             return CP_ACCESS_TRAP_EL3;
2690         }
2691         return CP_ACCESS_OK;
2692     case 0:
2693     case 2:
2694         return CP_ACCESS_TRAP;
2695     case 3:
2696         return CP_ACCESS_OK;
2697     default:
2698         g_assert_not_reached();
2699     }
2700 }
2701 
2702 static uint64_t gt_get_countervalue(CPUARMState *env)
2703 {
2704     ARMCPU *cpu = env_archcpu(env);
2705 
2706     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2707 }
2708 
2709 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2710 {
2711     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2712 
2713     if (gt->ctl & 1) {
2714         /* Timer enabled: calculate and set current ISTATUS, irq, and
2715          * reset timer to when ISTATUS next has to change
2716          */
2717         uint64_t offset = timeridx == GTIMER_VIRT ?
2718                                       cpu->env.cp15.cntvoff_el2 : 0;
2719         uint64_t count = gt_get_countervalue(&cpu->env);
2720         /* Note that this must be unsigned 64 bit arithmetic: */
2721         int istatus = count - offset >= gt->cval;
2722         uint64_t nexttick;
2723         int irqstate;
2724 
2725         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2726 
2727         irqstate = (istatus && !(gt->ctl & 2));
2728         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2729 
2730         if (istatus) {
2731             /* Next transition is when count rolls back over to zero */
2732             nexttick = UINT64_MAX;
2733         } else {
2734             /* Next transition is when we hit cval */
2735             nexttick = gt->cval + offset;
2736         }
2737         /* Note that the desired next expiry time might be beyond the
2738          * signed-64-bit range of a QEMUTimer -- in this case we just
2739          * set the timer for as far in the future as possible. When the
2740          * timer expires we will reset the timer for any remaining period.
2741          */
2742         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2743             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2744         } else {
2745             timer_mod(cpu->gt_timer[timeridx], nexttick);
2746         }
2747         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2748     } else {
2749         /* Timer disabled: ISTATUS and timer output always clear */
2750         gt->ctl &= ~4;
2751         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2752         timer_del(cpu->gt_timer[timeridx]);
2753         trace_arm_gt_recalc_disabled(timeridx);
2754     }
2755 }
2756 
2757 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2758                            int timeridx)
2759 {
2760     ARMCPU *cpu = env_archcpu(env);
2761 
2762     timer_del(cpu->gt_timer[timeridx]);
2763 }
2764 
2765 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2766 {
2767     return gt_get_countervalue(env);
2768 }
2769 
2770 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2771 {
2772     uint64_t hcr;
2773 
2774     switch (arm_current_el(env)) {
2775     case 2:
2776         hcr = arm_hcr_el2_eff(env);
2777         if (hcr & HCR_E2H) {
2778             return 0;
2779         }
2780         break;
2781     case 0:
2782         hcr = arm_hcr_el2_eff(env);
2783         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2784             return 0;
2785         }
2786         break;
2787     }
2788 
2789     return env->cp15.cntvoff_el2;
2790 }
2791 
2792 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2793 {
2794     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2795 }
2796 
2797 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2798                           int timeridx,
2799                           uint64_t value)
2800 {
2801     trace_arm_gt_cval_write(timeridx, value);
2802     env->cp15.c14_timer[timeridx].cval = value;
2803     gt_recalc_timer(env_archcpu(env), timeridx);
2804 }
2805 
2806 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2807                              int timeridx)
2808 {
2809     uint64_t offset = 0;
2810 
2811     switch (timeridx) {
2812     case GTIMER_VIRT:
2813     case GTIMER_HYPVIRT:
2814         offset = gt_virt_cnt_offset(env);
2815         break;
2816     }
2817 
2818     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2819                       (gt_get_countervalue(env) - offset));
2820 }
2821 
2822 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2823                           int timeridx,
2824                           uint64_t value)
2825 {
2826     uint64_t offset = 0;
2827 
2828     switch (timeridx) {
2829     case GTIMER_VIRT:
2830     case GTIMER_HYPVIRT:
2831         offset = gt_virt_cnt_offset(env);
2832         break;
2833     }
2834 
2835     trace_arm_gt_tval_write(timeridx, value);
2836     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2837                                          sextract64(value, 0, 32);
2838     gt_recalc_timer(env_archcpu(env), timeridx);
2839 }
2840 
2841 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2842                          int timeridx,
2843                          uint64_t value)
2844 {
2845     ARMCPU *cpu = env_archcpu(env);
2846     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2847 
2848     trace_arm_gt_ctl_write(timeridx, value);
2849     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2850     if ((oldval ^ value) & 1) {
2851         /* Enable toggled */
2852         gt_recalc_timer(cpu, timeridx);
2853     } else if ((oldval ^ value) & 2) {
2854         /* IMASK toggled: don't need to recalculate,
2855          * just set the interrupt line based on ISTATUS
2856          */
2857         int irqstate = (oldval & 4) && !(value & 2);
2858 
2859         trace_arm_gt_imask_toggle(timeridx, irqstate);
2860         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2861     }
2862 }
2863 
2864 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2865 {
2866     gt_timer_reset(env, ri, GTIMER_PHYS);
2867 }
2868 
2869 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2870                                uint64_t value)
2871 {
2872     gt_cval_write(env, ri, GTIMER_PHYS, value);
2873 }
2874 
2875 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2876 {
2877     return gt_tval_read(env, ri, GTIMER_PHYS);
2878 }
2879 
2880 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2881                                uint64_t value)
2882 {
2883     gt_tval_write(env, ri, GTIMER_PHYS, value);
2884 }
2885 
2886 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2887                               uint64_t value)
2888 {
2889     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2890 }
2891 
2892 static int gt_phys_redir_timeridx(CPUARMState *env)
2893 {
2894     switch (arm_mmu_idx(env)) {
2895     case ARMMMUIdx_E20_0:
2896     case ARMMMUIdx_E20_2:
2897     case ARMMMUIdx_E20_2_PAN:
2898     case ARMMMUIdx_SE20_0:
2899     case ARMMMUIdx_SE20_2:
2900     case ARMMMUIdx_SE20_2_PAN:
2901         return GTIMER_HYP;
2902     default:
2903         return GTIMER_PHYS;
2904     }
2905 }
2906 
2907 static int gt_virt_redir_timeridx(CPUARMState *env)
2908 {
2909     switch (arm_mmu_idx(env)) {
2910     case ARMMMUIdx_E20_0:
2911     case ARMMMUIdx_E20_2:
2912     case ARMMMUIdx_E20_2_PAN:
2913     case ARMMMUIdx_SE20_0:
2914     case ARMMMUIdx_SE20_2:
2915     case ARMMMUIdx_SE20_2_PAN:
2916         return GTIMER_HYPVIRT;
2917     default:
2918         return GTIMER_VIRT;
2919     }
2920 }
2921 
2922 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2923                                         const ARMCPRegInfo *ri)
2924 {
2925     int timeridx = gt_phys_redir_timeridx(env);
2926     return env->cp15.c14_timer[timeridx].cval;
2927 }
2928 
2929 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2930                                      uint64_t value)
2931 {
2932     int timeridx = gt_phys_redir_timeridx(env);
2933     gt_cval_write(env, ri, timeridx, value);
2934 }
2935 
2936 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2937                                         const ARMCPRegInfo *ri)
2938 {
2939     int timeridx = gt_phys_redir_timeridx(env);
2940     return gt_tval_read(env, ri, timeridx);
2941 }
2942 
2943 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2944                                      uint64_t value)
2945 {
2946     int timeridx = gt_phys_redir_timeridx(env);
2947     gt_tval_write(env, ri, timeridx, value);
2948 }
2949 
2950 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2951                                        const ARMCPRegInfo *ri)
2952 {
2953     int timeridx = gt_phys_redir_timeridx(env);
2954     return env->cp15.c14_timer[timeridx].ctl;
2955 }
2956 
2957 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2958                                     uint64_t value)
2959 {
2960     int timeridx = gt_phys_redir_timeridx(env);
2961     gt_ctl_write(env, ri, timeridx, value);
2962 }
2963 
2964 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2965 {
2966     gt_timer_reset(env, ri, GTIMER_VIRT);
2967 }
2968 
2969 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2970                                uint64_t value)
2971 {
2972     gt_cval_write(env, ri, GTIMER_VIRT, value);
2973 }
2974 
2975 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2976 {
2977     return gt_tval_read(env, ri, GTIMER_VIRT);
2978 }
2979 
2980 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2981                                uint64_t value)
2982 {
2983     gt_tval_write(env, ri, GTIMER_VIRT, value);
2984 }
2985 
2986 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2987                               uint64_t value)
2988 {
2989     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2990 }
2991 
2992 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2993                               uint64_t value)
2994 {
2995     ARMCPU *cpu = env_archcpu(env);
2996 
2997     trace_arm_gt_cntvoff_write(value);
2998     raw_write(env, ri, value);
2999     gt_recalc_timer(cpu, GTIMER_VIRT);
3000 }
3001 
3002 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
3003                                         const ARMCPRegInfo *ri)
3004 {
3005     int timeridx = gt_virt_redir_timeridx(env);
3006     return env->cp15.c14_timer[timeridx].cval;
3007 }
3008 
3009 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3010                                      uint64_t value)
3011 {
3012     int timeridx = gt_virt_redir_timeridx(env);
3013     gt_cval_write(env, ri, timeridx, value);
3014 }
3015 
3016 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
3017                                         const ARMCPRegInfo *ri)
3018 {
3019     int timeridx = gt_virt_redir_timeridx(env);
3020     return gt_tval_read(env, ri, timeridx);
3021 }
3022 
3023 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3024                                      uint64_t value)
3025 {
3026     int timeridx = gt_virt_redir_timeridx(env);
3027     gt_tval_write(env, ri, timeridx, value);
3028 }
3029 
3030 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3031                                        const ARMCPRegInfo *ri)
3032 {
3033     int timeridx = gt_virt_redir_timeridx(env);
3034     return env->cp15.c14_timer[timeridx].ctl;
3035 }
3036 
3037 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3038                                     uint64_t value)
3039 {
3040     int timeridx = gt_virt_redir_timeridx(env);
3041     gt_ctl_write(env, ri, timeridx, value);
3042 }
3043 
3044 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3045 {
3046     gt_timer_reset(env, ri, GTIMER_HYP);
3047 }
3048 
3049 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3050                               uint64_t value)
3051 {
3052     gt_cval_write(env, ri, GTIMER_HYP, value);
3053 }
3054 
3055 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3056 {
3057     return gt_tval_read(env, ri, GTIMER_HYP);
3058 }
3059 
3060 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3061                               uint64_t value)
3062 {
3063     gt_tval_write(env, ri, GTIMER_HYP, value);
3064 }
3065 
3066 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3067                               uint64_t value)
3068 {
3069     gt_ctl_write(env, ri, GTIMER_HYP, value);
3070 }
3071 
3072 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3073 {
3074     gt_timer_reset(env, ri, GTIMER_SEC);
3075 }
3076 
3077 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3078                               uint64_t value)
3079 {
3080     gt_cval_write(env, ri, GTIMER_SEC, value);
3081 }
3082 
3083 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3084 {
3085     return gt_tval_read(env, ri, GTIMER_SEC);
3086 }
3087 
3088 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3089                               uint64_t value)
3090 {
3091     gt_tval_write(env, ri, GTIMER_SEC, value);
3092 }
3093 
3094 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3095                               uint64_t value)
3096 {
3097     gt_ctl_write(env, ri, GTIMER_SEC, value);
3098 }
3099 
3100 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3101 {
3102     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3103 }
3104 
3105 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3106                              uint64_t value)
3107 {
3108     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3109 }
3110 
3111 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3112 {
3113     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3114 }
3115 
3116 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3117                              uint64_t value)
3118 {
3119     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3120 }
3121 
3122 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3123                             uint64_t value)
3124 {
3125     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3126 }
3127 
3128 void arm_gt_ptimer_cb(void *opaque)
3129 {
3130     ARMCPU *cpu = opaque;
3131 
3132     gt_recalc_timer(cpu, GTIMER_PHYS);
3133 }
3134 
3135 void arm_gt_vtimer_cb(void *opaque)
3136 {
3137     ARMCPU *cpu = opaque;
3138 
3139     gt_recalc_timer(cpu, GTIMER_VIRT);
3140 }
3141 
3142 void arm_gt_htimer_cb(void *opaque)
3143 {
3144     ARMCPU *cpu = opaque;
3145 
3146     gt_recalc_timer(cpu, GTIMER_HYP);
3147 }
3148 
3149 void arm_gt_stimer_cb(void *opaque)
3150 {
3151     ARMCPU *cpu = opaque;
3152 
3153     gt_recalc_timer(cpu, GTIMER_SEC);
3154 }
3155 
3156 void arm_gt_hvtimer_cb(void *opaque)
3157 {
3158     ARMCPU *cpu = opaque;
3159 
3160     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3161 }
3162 
3163 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3164 {
3165     ARMCPU *cpu = env_archcpu(env);
3166 
3167     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3168 }
3169 
3170 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3171     /* Note that CNTFRQ is purely reads-as-written for the benefit
3172      * of software; writing it doesn't actually change the timer frequency.
3173      * Our reset value matches the fixed frequency we implement the timer at.
3174      */
3175     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3176       .type = ARM_CP_ALIAS,
3177       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3178       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3179     },
3180     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3181       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3182       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3183       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3184       .resetfn = arm_gt_cntfrq_reset,
3185     },
3186     /* overall control: mostly access permissions */
3187     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3188       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3189       .access = PL1_RW,
3190       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3191       .resetvalue = 0,
3192     },
3193     /* per-timer control */
3194     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3195       .secure = ARM_CP_SECSTATE_NS,
3196       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3197       .accessfn = gt_ptimer_access,
3198       .fieldoffset = offsetoflow32(CPUARMState,
3199                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3200       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3201       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3202     },
3203     { .name = "CNTP_CTL_S",
3204       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3205       .secure = ARM_CP_SECSTATE_S,
3206       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3207       .accessfn = gt_ptimer_access,
3208       .fieldoffset = offsetoflow32(CPUARMState,
3209                                    cp15.c14_timer[GTIMER_SEC].ctl),
3210       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3211     },
3212     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3213       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3214       .type = ARM_CP_IO, .access = PL0_RW,
3215       .accessfn = gt_ptimer_access,
3216       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3217       .resetvalue = 0,
3218       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3219       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3220     },
3221     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3222       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3223       .accessfn = gt_vtimer_access,
3224       .fieldoffset = offsetoflow32(CPUARMState,
3225                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3226       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3227       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3228     },
3229     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3230       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3231       .type = ARM_CP_IO, .access = PL0_RW,
3232       .accessfn = gt_vtimer_access,
3233       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3234       .resetvalue = 0,
3235       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3236       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3237     },
3238     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3239     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3240       .secure = ARM_CP_SECSTATE_NS,
3241       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3242       .accessfn = gt_ptimer_access,
3243       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3244     },
3245     { .name = "CNTP_TVAL_S",
3246       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3247       .secure = ARM_CP_SECSTATE_S,
3248       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3249       .accessfn = gt_ptimer_access,
3250       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3251     },
3252     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3253       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3254       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3255       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3256       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3257     },
3258     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3259       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3260       .accessfn = gt_vtimer_access,
3261       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3262     },
3263     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3264       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3265       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3266       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3267       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3268     },
3269     /* The counter itself */
3270     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3271       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3272       .accessfn = gt_pct_access,
3273       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3274     },
3275     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3276       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3277       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3278       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3279     },
3280     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3281       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3282       .accessfn = gt_vct_access,
3283       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3284     },
3285     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3286       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3287       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3288       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3289     },
3290     /* Comparison value, indicating when the timer goes off */
3291     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3292       .secure = ARM_CP_SECSTATE_NS,
3293       .access = PL0_RW,
3294       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3295       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3296       .accessfn = gt_ptimer_access,
3297       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3298       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3299     },
3300     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3301       .secure = ARM_CP_SECSTATE_S,
3302       .access = PL0_RW,
3303       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3304       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3305       .accessfn = gt_ptimer_access,
3306       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3307     },
3308     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3309       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3310       .access = PL0_RW,
3311       .type = ARM_CP_IO,
3312       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3313       .resetvalue = 0, .accessfn = gt_ptimer_access,
3314       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3315       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3316     },
3317     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3318       .access = PL0_RW,
3319       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3320       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3321       .accessfn = gt_vtimer_access,
3322       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3323       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3324     },
3325     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3326       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3327       .access = PL0_RW,
3328       .type = ARM_CP_IO,
3329       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3330       .resetvalue = 0, .accessfn = gt_vtimer_access,
3331       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3332       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3333     },
3334     /* Secure timer -- this is actually restricted to only EL3
3335      * and configurably Secure-EL1 via the accessfn.
3336      */
3337     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3338       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3339       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3340       .accessfn = gt_stimer_access,
3341       .readfn = gt_sec_tval_read,
3342       .writefn = gt_sec_tval_write,
3343       .resetfn = gt_sec_timer_reset,
3344     },
3345     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3346       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3347       .type = ARM_CP_IO, .access = PL1_RW,
3348       .accessfn = gt_stimer_access,
3349       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3350       .resetvalue = 0,
3351       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3352     },
3353     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3354       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3355       .type = ARM_CP_IO, .access = PL1_RW,
3356       .accessfn = gt_stimer_access,
3357       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3358       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3359     },
3360     REGINFO_SENTINEL
3361 };
3362 
3363 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3364                                  bool isread)
3365 {
3366     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3367         return CP_ACCESS_TRAP;
3368     }
3369     return CP_ACCESS_OK;
3370 }
3371 
3372 #else
3373 
3374 /* In user-mode most of the generic timer registers are inaccessible
3375  * however modern kernels (4.12+) allow access to cntvct_el0
3376  */
3377 
3378 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3379 {
3380     ARMCPU *cpu = env_archcpu(env);
3381 
3382     /* Currently we have no support for QEMUTimer in linux-user so we
3383      * can't call gt_get_countervalue(env), instead we directly
3384      * call the lower level functions.
3385      */
3386     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3387 }
3388 
3389 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3390     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3391       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3392       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3393       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3394       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3395     },
3396     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3397       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3398       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3399       .readfn = gt_virt_cnt_read,
3400     },
3401     REGINFO_SENTINEL
3402 };
3403 
3404 #endif
3405 
3406 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3407 {
3408     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3409         raw_write(env, ri, value);
3410     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3411         raw_write(env, ri, value & 0xfffff6ff);
3412     } else {
3413         raw_write(env, ri, value & 0xfffff1ff);
3414     }
3415 }
3416 
3417 #ifndef CONFIG_USER_ONLY
3418 /* get_phys_addr() isn't present for user-mode-only targets */
3419 
3420 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3421                                  bool isread)
3422 {
3423     if (ri->opc2 & 4) {
3424         /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3425          * Secure EL1 (which can only happen if EL3 is AArch64).
3426          * They are simply UNDEF if executed from NS EL1.
3427          * They function normally from EL2 or EL3.
3428          */
3429         if (arm_current_el(env) == 1) {
3430             if (arm_is_secure_below_el3(env)) {
3431                 if (env->cp15.scr_el3 & SCR_EEL2) {
3432                     return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3433                 }
3434                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3435             }
3436             return CP_ACCESS_TRAP_UNCATEGORIZED;
3437         }
3438     }
3439     return CP_ACCESS_OK;
3440 }
3441 
3442 #ifdef CONFIG_TCG
3443 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3444                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
3445 {
3446     hwaddr phys_addr;
3447     target_ulong page_size;
3448     int prot;
3449     bool ret;
3450     uint64_t par64;
3451     bool format64 = false;
3452     MemTxAttrs attrs = {};
3453     ARMMMUFaultInfo fi = {};
3454     ARMCacheAttrs cacheattrs = {};
3455 
3456     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3457                         &prot, &page_size, &fi, &cacheattrs);
3458 
3459     if (ret) {
3460         /*
3461          * Some kinds of translation fault must cause exceptions rather
3462          * than being reported in the PAR.
3463          */
3464         int current_el = arm_current_el(env);
3465         int target_el;
3466         uint32_t syn, fsr, fsc;
3467         bool take_exc = false;
3468 
3469         if (fi.s1ptw && current_el == 1
3470             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3471             /*
3472              * Synchronous stage 2 fault on an access made as part of the
3473              * translation table walk for AT S1E0* or AT S1E1* insn
3474              * executed from NS EL1. If this is a synchronous external abort
3475              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3476              * to EL3. Otherwise the fault is taken as an exception to EL2,
3477              * and HPFAR_EL2 holds the faulting IPA.
3478              */
3479             if (fi.type == ARMFault_SyncExternalOnWalk &&
3480                 (env->cp15.scr_el3 & SCR_EA)) {
3481                 target_el = 3;
3482             } else {
3483                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3484                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3485                     env->cp15.hpfar_el2 |= HPFAR_NS;
3486                 }
3487                 target_el = 2;
3488             }
3489             take_exc = true;
3490         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3491             /*
3492              * Synchronous external aborts during a translation table walk
3493              * are taken as Data Abort exceptions.
3494              */
3495             if (fi.stage2) {
3496                 if (current_el == 3) {
3497                     target_el = 3;
3498                 } else {
3499                     target_el = 2;
3500                 }
3501             } else {
3502                 target_el = exception_target_el(env);
3503             }
3504             take_exc = true;
3505         }
3506 
3507         if (take_exc) {
3508             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3509             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3510                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3511                 fsr = arm_fi_to_lfsc(&fi);
3512                 fsc = extract32(fsr, 0, 6);
3513             } else {
3514                 fsr = arm_fi_to_sfsc(&fi);
3515                 fsc = 0x3f;
3516             }
3517             /*
3518              * Report exception with ESR indicating a fault due to a
3519              * translation table walk for a cache maintenance instruction.
3520              */
3521             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3522                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3523             env->exception.vaddress = value;
3524             env->exception.fsr = fsr;
3525             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3526         }
3527     }
3528 
3529     if (is_a64(env)) {
3530         format64 = true;
3531     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3532         /*
3533          * ATS1Cxx:
3534          * * TTBCR.EAE determines whether the result is returned using the
3535          *   32-bit or the 64-bit PAR format
3536          * * Instructions executed in Hyp mode always use the 64bit format
3537          *
3538          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3539          * * The Non-secure TTBCR.EAE bit is set to 1
3540          * * The implementation includes EL2, and the value of HCR.VM is 1
3541          *
3542          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3543          *
3544          * ATS1Hx always uses the 64bit format.
3545          */
3546         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3547 
3548         if (arm_feature(env, ARM_FEATURE_EL2)) {
3549             if (mmu_idx == ARMMMUIdx_E10_0 ||
3550                 mmu_idx == ARMMMUIdx_E10_1 ||
3551                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3552                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3553             } else {
3554                 format64 |= arm_current_el(env) == 2;
3555             }
3556         }
3557     }
3558 
3559     if (format64) {
3560         /* Create a 64-bit PAR */
3561         par64 = (1 << 11); /* LPAE bit always set */
3562         if (!ret) {
3563             par64 |= phys_addr & ~0xfffULL;
3564             if (!attrs.secure) {
3565                 par64 |= (1 << 9); /* NS */
3566             }
3567             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3568             par64 |= cacheattrs.shareability << 7; /* SH */
3569         } else {
3570             uint32_t fsr = arm_fi_to_lfsc(&fi);
3571 
3572             par64 |= 1; /* F */
3573             par64 |= (fsr & 0x3f) << 1; /* FS */
3574             if (fi.stage2) {
3575                 par64 |= (1 << 9); /* S */
3576             }
3577             if (fi.s1ptw) {
3578                 par64 |= (1 << 8); /* PTW */
3579             }
3580         }
3581     } else {
3582         /* fsr is a DFSR/IFSR value for the short descriptor
3583          * translation table format (with WnR always clear).
3584          * Convert it to a 32-bit PAR.
3585          */
3586         if (!ret) {
3587             /* We do not set any attribute bits in the PAR */
3588             if (page_size == (1 << 24)
3589                 && arm_feature(env, ARM_FEATURE_V7)) {
3590                 par64 = (phys_addr & 0xff000000) | (1 << 1);
3591             } else {
3592                 par64 = phys_addr & 0xfffff000;
3593             }
3594             if (!attrs.secure) {
3595                 par64 |= (1 << 9); /* NS */
3596             }
3597         } else {
3598             uint32_t fsr = arm_fi_to_sfsc(&fi);
3599 
3600             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3601                     ((fsr & 0xf) << 1) | 1;
3602         }
3603     }
3604     return par64;
3605 }
3606 #endif /* CONFIG_TCG */
3607 
3608 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3609 {
3610 #ifdef CONFIG_TCG
3611     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3612     uint64_t par64;
3613     ARMMMUIdx mmu_idx;
3614     int el = arm_current_el(env);
3615     bool secure = arm_is_secure_below_el3(env);
3616 
3617     switch (ri->opc2 & 6) {
3618     case 0:
3619         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3620         switch (el) {
3621         case 3:
3622             mmu_idx = ARMMMUIdx_SE3;
3623             break;
3624         case 2:
3625             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3626             /* fall through */
3627         case 1:
3628             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3629                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3630                            : ARMMMUIdx_Stage1_E1_PAN);
3631             } else {
3632                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3633             }
3634             break;
3635         default:
3636             g_assert_not_reached();
3637         }
3638         break;
3639     case 2:
3640         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3641         switch (el) {
3642         case 3:
3643             mmu_idx = ARMMMUIdx_SE10_0;
3644             break;
3645         case 2:
3646             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3647             mmu_idx = ARMMMUIdx_Stage1_E0;
3648             break;
3649         case 1:
3650             mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3651             break;
3652         default:
3653             g_assert_not_reached();
3654         }
3655         break;
3656     case 4:
3657         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3658         mmu_idx = ARMMMUIdx_E10_1;
3659         break;
3660     case 6:
3661         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3662         mmu_idx = ARMMMUIdx_E10_0;
3663         break;
3664     default:
3665         g_assert_not_reached();
3666     }
3667 
3668     par64 = do_ats_write(env, value, access_type, mmu_idx);
3669 
3670     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3671 #else
3672     /* Handled by hardware accelerator. */
3673     g_assert_not_reached();
3674 #endif /* CONFIG_TCG */
3675 }
3676 
3677 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3678                         uint64_t value)
3679 {
3680 #ifdef CONFIG_TCG
3681     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3682     uint64_t par64;
3683 
3684     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3685 
3686     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3687 #else
3688     /* Handled by hardware accelerator. */
3689     g_assert_not_reached();
3690 #endif /* CONFIG_TCG */
3691 }
3692 
3693 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3694                                      bool isread)
3695 {
3696     if (arm_current_el(env) == 3 &&
3697         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3698         return CP_ACCESS_TRAP;
3699     }
3700     return CP_ACCESS_OK;
3701 }
3702 
3703 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3704                         uint64_t value)
3705 {
3706 #ifdef CONFIG_TCG
3707     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3708     ARMMMUIdx mmu_idx;
3709     int secure = arm_is_secure_below_el3(env);
3710 
3711     switch (ri->opc2 & 6) {
3712     case 0:
3713         switch (ri->opc1) {
3714         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3715             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3716                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3717                            : ARMMMUIdx_Stage1_E1_PAN);
3718             } else {
3719                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3720             }
3721             break;
3722         case 4: /* AT S1E2R, AT S1E2W */
3723             mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3724             break;
3725         case 6: /* AT S1E3R, AT S1E3W */
3726             mmu_idx = ARMMMUIdx_SE3;
3727             break;
3728         default:
3729             g_assert_not_reached();
3730         }
3731         break;
3732     case 2: /* AT S1E0R, AT S1E0W */
3733         mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3734         break;
3735     case 4: /* AT S12E1R, AT S12E1W */
3736         mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3737         break;
3738     case 6: /* AT S12E0R, AT S12E0W */
3739         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3740         break;
3741     default:
3742         g_assert_not_reached();
3743     }
3744 
3745     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3746 #else
3747     /* Handled by hardware accelerator. */
3748     g_assert_not_reached();
3749 #endif /* CONFIG_TCG */
3750 }
3751 #endif
3752 
3753 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3754     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3755       .access = PL1_RW, .resetvalue = 0,
3756       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3757                              offsetoflow32(CPUARMState, cp15.par_ns) },
3758       .writefn = par_write },
3759 #ifndef CONFIG_USER_ONLY
3760     /* This underdecoding is safe because the reginfo is NO_RAW. */
3761     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3762       .access = PL1_W, .accessfn = ats_access,
3763       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3764 #endif
3765     REGINFO_SENTINEL
3766 };
3767 
3768 /* Return basic MPU access permission bits.  */
3769 static uint32_t simple_mpu_ap_bits(uint32_t val)
3770 {
3771     uint32_t ret;
3772     uint32_t mask;
3773     int i;
3774     ret = 0;
3775     mask = 3;
3776     for (i = 0; i < 16; i += 2) {
3777         ret |= (val >> i) & mask;
3778         mask <<= 2;
3779     }
3780     return ret;
3781 }
3782 
3783 /* Pad basic MPU access permission bits to extended format.  */
3784 static uint32_t extended_mpu_ap_bits(uint32_t val)
3785 {
3786     uint32_t ret;
3787     uint32_t mask;
3788     int i;
3789     ret = 0;
3790     mask = 3;
3791     for (i = 0; i < 16; i += 2) {
3792         ret |= (val & mask) << i;
3793         mask <<= 2;
3794     }
3795     return ret;
3796 }
3797 
3798 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3799                                  uint64_t value)
3800 {
3801     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3802 }
3803 
3804 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3805 {
3806     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3807 }
3808 
3809 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3810                                  uint64_t value)
3811 {
3812     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3813 }
3814 
3815 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3816 {
3817     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3818 }
3819 
3820 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3821 {
3822     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3823 
3824     if (!u32p) {
3825         return 0;
3826     }
3827 
3828     u32p += env->pmsav7.rnr[M_REG_NS];
3829     return *u32p;
3830 }
3831 
3832 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3833                          uint64_t value)
3834 {
3835     ARMCPU *cpu = env_archcpu(env);
3836     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3837 
3838     if (!u32p) {
3839         return;
3840     }
3841 
3842     u32p += env->pmsav7.rnr[M_REG_NS];
3843     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3844     *u32p = value;
3845 }
3846 
3847 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3848                               uint64_t value)
3849 {
3850     ARMCPU *cpu = env_archcpu(env);
3851     uint32_t nrgs = cpu->pmsav7_dregion;
3852 
3853     if (value >= nrgs) {
3854         qemu_log_mask(LOG_GUEST_ERROR,
3855                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3856                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3857         return;
3858     }
3859 
3860     raw_write(env, ri, value);
3861 }
3862 
3863 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3864     /* Reset for all these registers is handled in arm_cpu_reset(),
3865      * because the PMSAv7 is also used by M-profile CPUs, which do
3866      * not register cpregs but still need the state to be reset.
3867      */
3868     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3869       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3870       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3871       .readfn = pmsav7_read, .writefn = pmsav7_write,
3872       .resetfn = arm_cp_reset_ignore },
3873     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3874       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3875       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3876       .readfn = pmsav7_read, .writefn = pmsav7_write,
3877       .resetfn = arm_cp_reset_ignore },
3878     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3879       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3880       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3881       .readfn = pmsav7_read, .writefn = pmsav7_write,
3882       .resetfn = arm_cp_reset_ignore },
3883     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3884       .access = PL1_RW,
3885       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3886       .writefn = pmsav7_rgnr_write,
3887       .resetfn = arm_cp_reset_ignore },
3888     REGINFO_SENTINEL
3889 };
3890 
3891 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3892     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3893       .access = PL1_RW, .type = ARM_CP_ALIAS,
3894       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3895       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3896     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3897       .access = PL1_RW, .type = ARM_CP_ALIAS,
3898       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3899       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3900     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3901       .access = PL1_RW,
3902       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3903       .resetvalue = 0, },
3904     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3905       .access = PL1_RW,
3906       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3907       .resetvalue = 0, },
3908     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3909       .access = PL1_RW,
3910       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3911     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3912       .access = PL1_RW,
3913       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3914     /* Protection region base and size registers */
3915     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3916       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3917       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3918     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3919       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3920       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3921     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3922       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3923       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3924     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3925       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3926       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3927     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3928       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3929       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3930     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3931       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3932       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3933     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3934       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3935       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3936     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3937       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3938       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3939     REGINFO_SENTINEL
3940 };
3941 
3942 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3943                                  uint64_t value)
3944 {
3945     TCR *tcr = raw_ptr(env, ri);
3946     int maskshift = extract32(value, 0, 3);
3947 
3948     if (!arm_feature(env, ARM_FEATURE_V8)) {
3949         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3950             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3951              * using Long-desciptor translation table format */
3952             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3953         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3954             /* In an implementation that includes the Security Extensions
3955              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3956              * Short-descriptor translation table format.
3957              */
3958             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3959         } else {
3960             value &= TTBCR_N;
3961         }
3962     }
3963 
3964     /* Update the masks corresponding to the TCR bank being written
3965      * Note that we always calculate mask and base_mask, but
3966      * they are only used for short-descriptor tables (ie if EAE is 0);
3967      * for long-descriptor tables the TCR fields are used differently
3968      * and the mask and base_mask values are meaningless.
3969      */
3970     tcr->raw_tcr = value;
3971     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3972     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3973 }
3974 
3975 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3976                              uint64_t value)
3977 {
3978     ARMCPU *cpu = env_archcpu(env);
3979     TCR *tcr = raw_ptr(env, ri);
3980 
3981     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3982         /* With LPAE the TTBCR could result in a change of ASID
3983          * via the TTBCR.A1 bit, so do a TLB flush.
3984          */
3985         tlb_flush(CPU(cpu));
3986     }
3987     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3988     value = deposit64(tcr->raw_tcr, 0, 32, value);
3989     vmsa_ttbcr_raw_write(env, ri, value);
3990 }
3991 
3992 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3993 {
3994     TCR *tcr = raw_ptr(env, ri);
3995 
3996     /* Reset both the TCR as well as the masks corresponding to the bank of
3997      * the TCR being reset.
3998      */
3999     tcr->raw_tcr = 0;
4000     tcr->mask = 0;
4001     tcr->base_mask = 0xffffc000u;
4002 }
4003 
4004 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4005                                uint64_t value)
4006 {
4007     ARMCPU *cpu = env_archcpu(env);
4008     TCR *tcr = raw_ptr(env, ri);
4009 
4010     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4011     tlb_flush(CPU(cpu));
4012     tcr->raw_tcr = value;
4013 }
4014 
4015 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4016                             uint64_t value)
4017 {
4018     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4019     if (cpreg_field_is_64bit(ri) &&
4020         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4021         ARMCPU *cpu = env_archcpu(env);
4022         tlb_flush(CPU(cpu));
4023     }
4024     raw_write(env, ri, value);
4025 }
4026 
4027 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4028                                     uint64_t value)
4029 {
4030     /*
4031      * If we are running with E2&0 regime, then an ASID is active.
4032      * Flush if that might be changing.  Note we're not checking
4033      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4034      * holds the active ASID, only checking the field that might.
4035      */
4036     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4037         (arm_hcr_el2_eff(env) & HCR_E2H)) {
4038         uint16_t mask = ARMMMUIdxBit_E20_2 |
4039                         ARMMMUIdxBit_E20_2_PAN |
4040                         ARMMMUIdxBit_E20_0;
4041 
4042         if (arm_is_secure_below_el3(env)) {
4043             mask >>= ARM_MMU_IDX_A_NS;
4044         }
4045 
4046         tlb_flush_by_mmuidx(env_cpu(env), mask);
4047     }
4048     raw_write(env, ri, value);
4049 }
4050 
4051 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4052                         uint64_t value)
4053 {
4054     ARMCPU *cpu = env_archcpu(env);
4055     CPUState *cs = CPU(cpu);
4056 
4057     /*
4058      * A change in VMID to the stage2 page table (Stage2) invalidates
4059      * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
4060      */
4061     if (raw_read(env, ri) != value) {
4062         uint16_t mask = ARMMMUIdxBit_E10_1 |
4063                         ARMMMUIdxBit_E10_1_PAN |
4064                         ARMMMUIdxBit_E10_0;
4065 
4066         if (arm_is_secure_below_el3(env)) {
4067             mask >>= ARM_MMU_IDX_A_NS;
4068         }
4069 
4070         tlb_flush_by_mmuidx(cs, mask);
4071         raw_write(env, ri, value);
4072     }
4073 }
4074 
4075 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4076     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4077       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4078       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4079                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4080     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4081       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4082       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4083                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4084     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4085       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4086       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4087                              offsetof(CPUARMState, cp15.dfar_ns) } },
4088     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4089       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4090       .access = PL1_RW, .accessfn = access_tvm_trvm,
4091       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4092       .resetvalue = 0, },
4093     REGINFO_SENTINEL
4094 };
4095 
4096 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4097     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4098       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4099       .access = PL1_RW, .accessfn = access_tvm_trvm,
4100       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4101     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4102       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4103       .access = PL1_RW, .accessfn = access_tvm_trvm,
4104       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4105       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4106                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4107     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4108       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4109       .access = PL1_RW, .accessfn = access_tvm_trvm,
4110       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4111       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4112                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4113     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4114       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4115       .access = PL1_RW, .accessfn = access_tvm_trvm,
4116       .writefn = vmsa_tcr_el12_write,
4117       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
4118       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4119     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4120       .access = PL1_RW, .accessfn = access_tvm_trvm,
4121       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4122       .raw_writefn = vmsa_ttbcr_raw_write,
4123       /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */
4124       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]),
4125                              offsetof(CPUARMState, cp15.tcr_el[1])} },
4126     REGINFO_SENTINEL
4127 };
4128 
4129 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4130  * qemu tlbs nor adjusting cached masks.
4131  */
4132 static const ARMCPRegInfo ttbcr2_reginfo = {
4133     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4134     .access = PL1_RW, .accessfn = access_tvm_trvm,
4135     .type = ARM_CP_ALIAS,
4136     .bank_fieldoffsets = {
4137         offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr),
4138         offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr),
4139     },
4140 };
4141 
4142 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4143                                 uint64_t value)
4144 {
4145     env->cp15.c15_ticonfig = value & 0xe7;
4146     /* The OS_TYPE bit in this register changes the reported CPUID! */
4147     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4148         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4149 }
4150 
4151 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4152                                 uint64_t value)
4153 {
4154     env->cp15.c15_threadid = value & 0xffff;
4155 }
4156 
4157 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4158                            uint64_t value)
4159 {
4160     /* Wait-for-interrupt (deprecated) */
4161     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4162 }
4163 
4164 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4165                                   uint64_t value)
4166 {
4167     /* On OMAP there are registers indicating the max/min index of dcache lines
4168      * containing a dirty line; cache flush operations have to reset these.
4169      */
4170     env->cp15.c15_i_max = 0x000;
4171     env->cp15.c15_i_min = 0xff0;
4172 }
4173 
4174 static const ARMCPRegInfo omap_cp_reginfo[] = {
4175     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4176       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4177       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4178       .resetvalue = 0, },
4179     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4180       .access = PL1_RW, .type = ARM_CP_NOP },
4181     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4182       .access = PL1_RW,
4183       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4184       .writefn = omap_ticonfig_write },
4185     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4186       .access = PL1_RW,
4187       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4188     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4189       .access = PL1_RW, .resetvalue = 0xff0,
4190       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4191     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4192       .access = PL1_RW,
4193       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4194       .writefn = omap_threadid_write },
4195     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4196       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4197       .type = ARM_CP_NO_RAW,
4198       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4199     /* TODO: Peripheral port remap register:
4200      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4201      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4202      * when MMU is off.
4203      */
4204     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4205       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4206       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4207       .writefn = omap_cachemaint_write },
4208     { .name = "C9", .cp = 15, .crn = 9,
4209       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4210       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4211     REGINFO_SENTINEL
4212 };
4213 
4214 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4215                               uint64_t value)
4216 {
4217     env->cp15.c15_cpar = value & 0x3fff;
4218 }
4219 
4220 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4221     { .name = "XSCALE_CPAR",
4222       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4223       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4224       .writefn = xscale_cpar_write, },
4225     { .name = "XSCALE_AUXCR",
4226       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4227       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4228       .resetvalue = 0, },
4229     /* XScale specific cache-lockdown: since we have no cache we NOP these
4230      * and hope the guest does not really rely on cache behaviour.
4231      */
4232     { .name = "XSCALE_LOCK_ICACHE_LINE",
4233       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4234       .access = PL1_W, .type = ARM_CP_NOP },
4235     { .name = "XSCALE_UNLOCK_ICACHE",
4236       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4237       .access = PL1_W, .type = ARM_CP_NOP },
4238     { .name = "XSCALE_DCACHE_LOCK",
4239       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4240       .access = PL1_RW, .type = ARM_CP_NOP },
4241     { .name = "XSCALE_UNLOCK_DCACHE",
4242       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4243       .access = PL1_W, .type = ARM_CP_NOP },
4244     REGINFO_SENTINEL
4245 };
4246 
4247 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4248     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4249      * implementation of this implementation-defined space.
4250      * Ideally this should eventually disappear in favour of actually
4251      * implementing the correct behaviour for all cores.
4252      */
4253     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4254       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4255       .access = PL1_RW,
4256       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4257       .resetvalue = 0 },
4258     REGINFO_SENTINEL
4259 };
4260 
4261 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4262     /* Cache status: RAZ because we have no cache so it's always clean */
4263     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4264       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4265       .resetvalue = 0 },
4266     REGINFO_SENTINEL
4267 };
4268 
4269 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4270     /* We never have a a block transfer operation in progress */
4271     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4272       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4273       .resetvalue = 0 },
4274     /* The cache ops themselves: these all NOP for QEMU */
4275     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4276       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4277     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4278       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4279     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4280       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4281     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4282       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4283     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4284       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4285     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4286       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4287     REGINFO_SENTINEL
4288 };
4289 
4290 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4291     /* The cache test-and-clean instructions always return (1 << 30)
4292      * to indicate that there are no dirty cache lines.
4293      */
4294     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4295       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4296       .resetvalue = (1 << 30) },
4297     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4298       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4299       .resetvalue = (1 << 30) },
4300     REGINFO_SENTINEL
4301 };
4302 
4303 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4304     /* Ignore ReadBuffer accesses */
4305     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4306       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4307       .access = PL1_RW, .resetvalue = 0,
4308       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4309     REGINFO_SENTINEL
4310 };
4311 
4312 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4313 {
4314     unsigned int cur_el = arm_current_el(env);
4315 
4316     if (arm_is_el2_enabled(env) && cur_el == 1) {
4317         return env->cp15.vpidr_el2;
4318     }
4319     return raw_read(env, ri);
4320 }
4321 
4322 static uint64_t mpidr_read_val(CPUARMState *env)
4323 {
4324     ARMCPU *cpu = env_archcpu(env);
4325     uint64_t mpidr = cpu->mp_affinity;
4326 
4327     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4328         mpidr |= (1U << 31);
4329         /* Cores which are uniprocessor (non-coherent)
4330          * but still implement the MP extensions set
4331          * bit 30. (For instance, Cortex-R5).
4332          */
4333         if (cpu->mp_is_up) {
4334             mpidr |= (1u << 30);
4335         }
4336     }
4337     return mpidr;
4338 }
4339 
4340 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4341 {
4342     unsigned int cur_el = arm_current_el(env);
4343 
4344     if (arm_is_el2_enabled(env) && cur_el == 1) {
4345         return env->cp15.vmpidr_el2;
4346     }
4347     return mpidr_read_val(env);
4348 }
4349 
4350 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4351     /* NOP AMAIR0/1 */
4352     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4353       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4354       .access = PL1_RW, .accessfn = access_tvm_trvm,
4355       .type = ARM_CP_CONST, .resetvalue = 0 },
4356     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4357     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4358       .access = PL1_RW, .accessfn = access_tvm_trvm,
4359       .type = ARM_CP_CONST, .resetvalue = 0 },
4360     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4361       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4362       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4363                              offsetof(CPUARMState, cp15.par_ns)} },
4364     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4365       .access = PL1_RW, .accessfn = access_tvm_trvm,
4366       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4367       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4368                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4369       .writefn = vmsa_ttbr_write, },
4370     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4371       .access = PL1_RW, .accessfn = access_tvm_trvm,
4372       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4373       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4374                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4375       .writefn = vmsa_ttbr_write, },
4376     REGINFO_SENTINEL
4377 };
4378 
4379 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4380 {
4381     return vfp_get_fpcr(env);
4382 }
4383 
4384 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4385                             uint64_t value)
4386 {
4387     vfp_set_fpcr(env, value);
4388 }
4389 
4390 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4391 {
4392     return vfp_get_fpsr(env);
4393 }
4394 
4395 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4396                             uint64_t value)
4397 {
4398     vfp_set_fpsr(env, value);
4399 }
4400 
4401 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4402                                        bool isread)
4403 {
4404     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4405         return CP_ACCESS_TRAP;
4406     }
4407     return CP_ACCESS_OK;
4408 }
4409 
4410 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4411                             uint64_t value)
4412 {
4413     env->daif = value & PSTATE_DAIF;
4414 }
4415 
4416 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4417 {
4418     return env->pstate & PSTATE_PAN;
4419 }
4420 
4421 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4422                            uint64_t value)
4423 {
4424     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4425 }
4426 
4427 static const ARMCPRegInfo pan_reginfo = {
4428     .name = "PAN", .state = ARM_CP_STATE_AA64,
4429     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4430     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4431     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4432 };
4433 
4434 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4435 {
4436     return env->pstate & PSTATE_UAO;
4437 }
4438 
4439 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4440                            uint64_t value)
4441 {
4442     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4443 }
4444 
4445 static const ARMCPRegInfo uao_reginfo = {
4446     .name = "UAO", .state = ARM_CP_STATE_AA64,
4447     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4448     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4449     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4450 };
4451 
4452 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4453 {
4454     return env->pstate & PSTATE_DIT;
4455 }
4456 
4457 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4458                            uint64_t value)
4459 {
4460     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4461 }
4462 
4463 static const ARMCPRegInfo dit_reginfo = {
4464     .name = "DIT", .state = ARM_CP_STATE_AA64,
4465     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4466     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4467     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4468 };
4469 
4470 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4471 {
4472     return env->pstate & PSTATE_SSBS;
4473 }
4474 
4475 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4476                            uint64_t value)
4477 {
4478     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4479 }
4480 
4481 static const ARMCPRegInfo ssbs_reginfo = {
4482     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4483     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4484     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4485     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4486 };
4487 
4488 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4489                                               const ARMCPRegInfo *ri,
4490                                               bool isread)
4491 {
4492     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4493     switch (arm_current_el(env)) {
4494     case 0:
4495         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4496         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4497             return CP_ACCESS_TRAP;
4498         }
4499         /* fall through */
4500     case 1:
4501         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4502         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4503             return CP_ACCESS_TRAP_EL2;
4504         }
4505         break;
4506     }
4507     return CP_ACCESS_OK;
4508 }
4509 
4510 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4511                                               const ARMCPRegInfo *ri,
4512                                               bool isread)
4513 {
4514     /* Cache invalidate/clean to Point of Unification... */
4515     switch (arm_current_el(env)) {
4516     case 0:
4517         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4518         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4519             return CP_ACCESS_TRAP;
4520         }
4521         /* fall through */
4522     case 1:
4523         /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set.  */
4524         if (arm_hcr_el2_eff(env) & HCR_TPU) {
4525             return CP_ACCESS_TRAP_EL2;
4526         }
4527         break;
4528     }
4529     return CP_ACCESS_OK;
4530 }
4531 
4532 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4533  * Page D4-1736 (DDI0487A.b)
4534  */
4535 
4536 static int vae1_tlbmask(CPUARMState *env)
4537 {
4538     uint64_t hcr = arm_hcr_el2_eff(env);
4539     uint16_t mask;
4540 
4541     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4542         mask = ARMMMUIdxBit_E20_2 |
4543                ARMMMUIdxBit_E20_2_PAN |
4544                ARMMMUIdxBit_E20_0;
4545     } else {
4546         mask = ARMMMUIdxBit_E10_1 |
4547                ARMMMUIdxBit_E10_1_PAN |
4548                ARMMMUIdxBit_E10_0;
4549     }
4550 
4551     if (arm_is_secure_below_el3(env)) {
4552         mask >>= ARM_MMU_IDX_A_NS;
4553     }
4554 
4555     return mask;
4556 }
4557 
4558 /* Return 56 if TBI is enabled, 64 otherwise. */
4559 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4560                               uint64_t addr)
4561 {
4562     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4563     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4564     int select = extract64(addr, 55, 1);
4565 
4566     return (tbi >> select) & 1 ? 56 : 64;
4567 }
4568 
4569 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4570 {
4571     uint64_t hcr = arm_hcr_el2_eff(env);
4572     ARMMMUIdx mmu_idx;
4573 
4574     /* Only the regime of the mmu_idx below is significant. */
4575     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4576         mmu_idx = ARMMMUIdx_E20_0;
4577     } else {
4578         mmu_idx = ARMMMUIdx_E10_0;
4579     }
4580 
4581     if (arm_is_secure_below_el3(env)) {
4582         mmu_idx &= ~ARM_MMU_IDX_A_NS;
4583     }
4584 
4585     return tlbbits_for_regime(env, mmu_idx, addr);
4586 }
4587 
4588 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4589                                       uint64_t value)
4590 {
4591     CPUState *cs = env_cpu(env);
4592     int mask = vae1_tlbmask(env);
4593 
4594     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4595 }
4596 
4597 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4598                                     uint64_t value)
4599 {
4600     CPUState *cs = env_cpu(env);
4601     int mask = vae1_tlbmask(env);
4602 
4603     if (tlb_force_broadcast(env)) {
4604         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4605     } else {
4606         tlb_flush_by_mmuidx(cs, mask);
4607     }
4608 }
4609 
4610 static int alle1_tlbmask(CPUARMState *env)
4611 {
4612     /*
4613      * Note that the 'ALL' scope must invalidate both stage 1 and
4614      * stage 2 translations, whereas most other scopes only invalidate
4615      * stage 1 translations.
4616      */
4617     if (arm_is_secure_below_el3(env)) {
4618         return ARMMMUIdxBit_SE10_1 |
4619                ARMMMUIdxBit_SE10_1_PAN |
4620                ARMMMUIdxBit_SE10_0;
4621     } else {
4622         return ARMMMUIdxBit_E10_1 |
4623                ARMMMUIdxBit_E10_1_PAN |
4624                ARMMMUIdxBit_E10_0;
4625     }
4626 }
4627 
4628 static int e2_tlbmask(CPUARMState *env)
4629 {
4630     if (arm_is_secure_below_el3(env)) {
4631         return ARMMMUIdxBit_SE20_0 |
4632                ARMMMUIdxBit_SE20_2 |
4633                ARMMMUIdxBit_SE20_2_PAN |
4634                ARMMMUIdxBit_SE2;
4635     } else {
4636         return ARMMMUIdxBit_E20_0 |
4637                ARMMMUIdxBit_E20_2 |
4638                ARMMMUIdxBit_E20_2_PAN |
4639                ARMMMUIdxBit_E2;
4640     }
4641 }
4642 
4643 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4644                                   uint64_t value)
4645 {
4646     CPUState *cs = env_cpu(env);
4647     int mask = alle1_tlbmask(env);
4648 
4649     tlb_flush_by_mmuidx(cs, mask);
4650 }
4651 
4652 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4653                                   uint64_t value)
4654 {
4655     CPUState *cs = env_cpu(env);
4656     int mask = e2_tlbmask(env);
4657 
4658     tlb_flush_by_mmuidx(cs, mask);
4659 }
4660 
4661 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4662                                   uint64_t value)
4663 {
4664     ARMCPU *cpu = env_archcpu(env);
4665     CPUState *cs = CPU(cpu);
4666 
4667     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4668 }
4669 
4670 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4671                                     uint64_t value)
4672 {
4673     CPUState *cs = env_cpu(env);
4674     int mask = alle1_tlbmask(env);
4675 
4676     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4677 }
4678 
4679 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4680                                     uint64_t value)
4681 {
4682     CPUState *cs = env_cpu(env);
4683     int mask = e2_tlbmask(env);
4684 
4685     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4686 }
4687 
4688 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4689                                     uint64_t value)
4690 {
4691     CPUState *cs = env_cpu(env);
4692 
4693     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4694 }
4695 
4696 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4697                                  uint64_t value)
4698 {
4699     /* Invalidate by VA, EL2
4700      * Currently handles both VAE2 and VALE2, since we don't support
4701      * flush-last-level-only.
4702      */
4703     CPUState *cs = env_cpu(env);
4704     int mask = e2_tlbmask(env);
4705     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4706 
4707     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4708 }
4709 
4710 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4711                                  uint64_t value)
4712 {
4713     /* Invalidate by VA, EL3
4714      * Currently handles both VAE3 and VALE3, since we don't support
4715      * flush-last-level-only.
4716      */
4717     ARMCPU *cpu = env_archcpu(env);
4718     CPUState *cs = CPU(cpu);
4719     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4720 
4721     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4722 }
4723 
4724 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4725                                    uint64_t value)
4726 {
4727     CPUState *cs = env_cpu(env);
4728     int mask = vae1_tlbmask(env);
4729     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4730     int bits = vae1_tlbbits(env, pageaddr);
4731 
4732     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4733 }
4734 
4735 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4736                                  uint64_t value)
4737 {
4738     /* Invalidate by VA, EL1&0 (AArch64 version).
4739      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4740      * since we don't support flush-for-specific-ASID-only or
4741      * flush-last-level-only.
4742      */
4743     CPUState *cs = env_cpu(env);
4744     int mask = vae1_tlbmask(env);
4745     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4746     int bits = vae1_tlbbits(env, pageaddr);
4747 
4748     if (tlb_force_broadcast(env)) {
4749         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4750     } else {
4751         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4752     }
4753 }
4754 
4755 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4756                                    uint64_t value)
4757 {
4758     CPUState *cs = env_cpu(env);
4759     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4760     bool secure = arm_is_secure_below_el3(env);
4761     int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4762     int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4763                                   pageaddr);
4764 
4765     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4766 }
4767 
4768 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4769                                    uint64_t value)
4770 {
4771     CPUState *cs = env_cpu(env);
4772     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4773     int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4774 
4775     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4776                                                   ARMMMUIdxBit_SE3, bits);
4777 }
4778 
4779 #ifdef TARGET_AARCH64
4780 static uint64_t tlbi_aa64_range_get_length(CPUARMState *env,
4781                                            uint64_t value)
4782 {
4783     unsigned int page_shift;
4784     unsigned int page_size_granule;
4785     uint64_t num;
4786     uint64_t scale;
4787     uint64_t exponent;
4788     uint64_t length;
4789 
4790     num = extract64(value, 39, 4);
4791     scale = extract64(value, 44, 2);
4792     page_size_granule = extract64(value, 46, 2);
4793 
4794     page_shift = page_size_granule * 2 + 12;
4795 
4796     if (page_size_granule == 0) {
4797         qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n",
4798                       page_size_granule);
4799         return 0;
4800     }
4801 
4802     exponent = (5 * scale) + 1;
4803     length = (num + 1) << (exponent + page_shift);
4804 
4805     return length;
4806 }
4807 
4808 static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value,
4809                                         bool two_ranges)
4810 {
4811     /* TODO: ARMv8.7 FEAT_LPA2 */
4812     uint64_t pageaddr;
4813 
4814     if (two_ranges) {
4815         pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS;
4816     } else {
4817         pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS;
4818     }
4819 
4820     return pageaddr;
4821 }
4822 
4823 static void do_rvae_write(CPUARMState *env, uint64_t value,
4824                           int idxmap, bool synced)
4825 {
4826     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4827     bool two_ranges = regime_has_2_ranges(one_idx);
4828     uint64_t baseaddr, length;
4829     int bits;
4830 
4831     baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges);
4832     length = tlbi_aa64_range_get_length(env, value);
4833     bits = tlbbits_for_regime(env, one_idx, baseaddr);
4834 
4835     if (synced) {
4836         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4837                                                   baseaddr,
4838                                                   length,
4839                                                   idxmap,
4840                                                   bits);
4841     } else {
4842         tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr,
4843                                   length, idxmap, bits);
4844     }
4845 }
4846 
4847 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4848                                   const ARMCPRegInfo *ri,
4849                                   uint64_t value)
4850 {
4851     /*
4852      * Invalidate by VA range, EL1&0.
4853      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4854      * since we don't support flush-for-specific-ASID-only or
4855      * flush-last-level-only.
4856      */
4857 
4858     do_rvae_write(env, value, vae1_tlbmask(env),
4859                   tlb_force_broadcast(env));
4860 }
4861 
4862 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4863                                     const ARMCPRegInfo *ri,
4864                                     uint64_t value)
4865 {
4866     /*
4867      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4868      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4869      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4870      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4871      * shareable specific flushes.
4872      */
4873 
4874     do_rvae_write(env, value, vae1_tlbmask(env), true);
4875 }
4876 
4877 static int vae2_tlbmask(CPUARMState *env)
4878 {
4879     return (arm_is_secure_below_el3(env)
4880             ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4881 }
4882 
4883 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4884                                   const ARMCPRegInfo *ri,
4885                                   uint64_t value)
4886 {
4887     /*
4888      * Invalidate by VA range, EL2.
4889      * Currently handles all of RVAE2 and RVALE2,
4890      * since we don't support flush-for-specific-ASID-only or
4891      * flush-last-level-only.
4892      */
4893 
4894     do_rvae_write(env, value, vae2_tlbmask(env),
4895                   tlb_force_broadcast(env));
4896 
4897 
4898 }
4899 
4900 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4901                                     const ARMCPRegInfo *ri,
4902                                     uint64_t value)
4903 {
4904     /*
4905      * Invalidate by VA range, Inner/Outer Shareable, EL2.
4906      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4907      * since we don't support flush-for-specific-ASID-only,
4908      * flush-last-level-only or inner/outer shareable specific flushes.
4909      */
4910 
4911     do_rvae_write(env, value, vae2_tlbmask(env), true);
4912 
4913 }
4914 
4915 static void tlbi_aa64_rvae3_write(CPUARMState *env,
4916                                   const ARMCPRegInfo *ri,
4917                                   uint64_t value)
4918 {
4919     /*
4920      * Invalidate by VA range, EL3.
4921      * Currently handles all of RVAE3 and RVALE3,
4922      * since we don't support flush-for-specific-ASID-only or
4923      * flush-last-level-only.
4924      */
4925 
4926     do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4927                   tlb_force_broadcast(env));
4928 }
4929 
4930 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4931                                     const ARMCPRegInfo *ri,
4932                                     uint64_t value)
4933 {
4934     /*
4935      * Invalidate by VA range, EL3, Inner/Outer Shareable.
4936      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4937      * since we don't support flush-for-specific-ASID-only,
4938      * flush-last-level-only or inner/outer specific flushes.
4939      */
4940 
4941     do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4942 }
4943 #endif
4944 
4945 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4946                                       bool isread)
4947 {
4948     int cur_el = arm_current_el(env);
4949 
4950     if (cur_el < 2) {
4951         uint64_t hcr = arm_hcr_el2_eff(env);
4952 
4953         if (cur_el == 0) {
4954             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4955                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4956                     return CP_ACCESS_TRAP_EL2;
4957                 }
4958             } else {
4959                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4960                     return CP_ACCESS_TRAP;
4961                 }
4962                 if (hcr & HCR_TDZ) {
4963                     return CP_ACCESS_TRAP_EL2;
4964                 }
4965             }
4966         } else if (hcr & HCR_TDZ) {
4967             return CP_ACCESS_TRAP_EL2;
4968         }
4969     }
4970     return CP_ACCESS_OK;
4971 }
4972 
4973 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4974 {
4975     ARMCPU *cpu = env_archcpu(env);
4976     int dzp_bit = 1 << 4;
4977 
4978     /* DZP indicates whether DC ZVA access is allowed */
4979     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4980         dzp_bit = 0;
4981     }
4982     return cpu->dcz_blocksize | dzp_bit;
4983 }
4984 
4985 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4986                                     bool isread)
4987 {
4988     if (!(env->pstate & PSTATE_SP)) {
4989         /* Access to SP_EL0 is undefined if it's being used as
4990          * the stack pointer.
4991          */
4992         return CP_ACCESS_TRAP_UNCATEGORIZED;
4993     }
4994     return CP_ACCESS_OK;
4995 }
4996 
4997 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4998 {
4999     return env->pstate & PSTATE_SP;
5000 }
5001 
5002 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5003 {
5004     update_spsel(env, val);
5005 }
5006 
5007 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5008                         uint64_t value)
5009 {
5010     ARMCPU *cpu = env_archcpu(env);
5011 
5012     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5013         /* M bit is RAZ/WI for PMSA with no MPU implemented */
5014         value &= ~SCTLR_M;
5015     }
5016 
5017     /* ??? Lots of these bits are not implemented.  */
5018 
5019     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5020         if (ri->opc1 == 6) { /* SCTLR_EL3 */
5021             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5022         } else {
5023             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5024                        SCTLR_ATA0 | SCTLR_ATA);
5025         }
5026     }
5027 
5028     if (raw_read(env, ri) == value) {
5029         /* Skip the TLB flush if nothing actually changed; Linux likes
5030          * to do a lot of pointless SCTLR writes.
5031          */
5032         return;
5033     }
5034 
5035     raw_write(env, ri, value);
5036 
5037     /* This may enable/disable the MMU, so do a TLB flush.  */
5038     tlb_flush(CPU(cpu));
5039 
5040     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
5041         /*
5042          * Normally we would always end the TB on an SCTLR write; see the
5043          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5044          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5045          * of hflags from the translator, so do it here.
5046          */
5047         arm_rebuild_hflags(env);
5048     }
5049 }
5050 
5051 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
5052                                      bool isread)
5053 {
5054     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
5055         return CP_ACCESS_TRAP_FP_EL2;
5056     }
5057     if (env->cp15.cptr_el[3] & CPTR_TFP) {
5058         return CP_ACCESS_TRAP_FP_EL3;
5059     }
5060     return CP_ACCESS_OK;
5061 }
5062 
5063 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5064                        uint64_t value)
5065 {
5066     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
5067 }
5068 
5069 static const ARMCPRegInfo v8_cp_reginfo[] = {
5070     /* Minimal set of EL0-visible registers. This will need to be expanded
5071      * significantly for system emulation of AArch64 CPUs.
5072      */
5073     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5074       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5075       .access = PL0_RW, .type = ARM_CP_NZCV },
5076     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5077       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5078       .type = ARM_CP_NO_RAW,
5079       .access = PL0_RW, .accessfn = aa64_daif_access,
5080       .fieldoffset = offsetof(CPUARMState, daif),
5081       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5082     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5083       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5084       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5085       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5086     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5087       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5088       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5089       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5090     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5091       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5092       .access = PL0_R, .type = ARM_CP_NO_RAW,
5093       .readfn = aa64_dczid_read },
5094     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5095       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5096       .access = PL0_W, .type = ARM_CP_DC_ZVA,
5097 #ifndef CONFIG_USER_ONLY
5098       /* Avoid overhead of an access check that always passes in user-mode */
5099       .accessfn = aa64_zva_access,
5100 #endif
5101     },
5102     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5103       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5104       .access = PL1_R, .type = ARM_CP_CURRENTEL },
5105     /* Cache ops: all NOPs since we don't emulate caches */
5106     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5107       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5108       .access = PL1_W, .type = ARM_CP_NOP,
5109       .accessfn = aa64_cacheop_pou_access },
5110     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5111       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5112       .access = PL1_W, .type = ARM_CP_NOP,
5113       .accessfn = aa64_cacheop_pou_access },
5114     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5115       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5116       .access = PL0_W, .type = ARM_CP_NOP,
5117       .accessfn = aa64_cacheop_pou_access },
5118     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5119       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5120       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5121       .type = ARM_CP_NOP },
5122     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5123       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5124       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5125     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5126       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5127       .access = PL0_W, .type = ARM_CP_NOP,
5128       .accessfn = aa64_cacheop_poc_access },
5129     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5130       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5131       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5132     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5133       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5134       .access = PL0_W, .type = ARM_CP_NOP,
5135       .accessfn = aa64_cacheop_pou_access },
5136     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5137       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5138       .access = PL0_W, .type = ARM_CP_NOP,
5139       .accessfn = aa64_cacheop_poc_access },
5140     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5141       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5142       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5143     /* TLBI operations */
5144     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5145       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5146       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5147       .writefn = tlbi_aa64_vmalle1is_write },
5148     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5149       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5150       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5151       .writefn = tlbi_aa64_vae1is_write },
5152     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5153       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5154       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5155       .writefn = tlbi_aa64_vmalle1is_write },
5156     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5157       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5158       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5159       .writefn = tlbi_aa64_vae1is_write },
5160     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5161       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5162       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5163       .writefn = tlbi_aa64_vae1is_write },
5164     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5165       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5166       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5167       .writefn = tlbi_aa64_vae1is_write },
5168     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5169       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5170       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5171       .writefn = tlbi_aa64_vmalle1_write },
5172     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5173       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5174       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5175       .writefn = tlbi_aa64_vae1_write },
5176     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5177       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5178       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5179       .writefn = tlbi_aa64_vmalle1_write },
5180     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5181       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5182       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5183       .writefn = tlbi_aa64_vae1_write },
5184     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5185       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5186       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5187       .writefn = tlbi_aa64_vae1_write },
5188     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5189       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5190       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5191       .writefn = tlbi_aa64_vae1_write },
5192     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5193       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5194       .access = PL2_W, .type = ARM_CP_NOP },
5195     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5196       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5197       .access = PL2_W, .type = ARM_CP_NOP },
5198     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5199       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5200       .access = PL2_W, .type = ARM_CP_NO_RAW,
5201       .writefn = tlbi_aa64_alle1is_write },
5202     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5203       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5204       .access = PL2_W, .type = ARM_CP_NO_RAW,
5205       .writefn = tlbi_aa64_alle1is_write },
5206     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5207       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5208       .access = PL2_W, .type = ARM_CP_NOP },
5209     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5210       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5211       .access = PL2_W, .type = ARM_CP_NOP },
5212     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5213       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5214       .access = PL2_W, .type = ARM_CP_NO_RAW,
5215       .writefn = tlbi_aa64_alle1_write },
5216     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5217       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5218       .access = PL2_W, .type = ARM_CP_NO_RAW,
5219       .writefn = tlbi_aa64_alle1is_write },
5220 #ifndef CONFIG_USER_ONLY
5221     /* 64 bit address translation operations */
5222     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5223       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5224       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5225       .writefn = ats_write64 },
5226     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5227       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5228       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5229       .writefn = ats_write64 },
5230     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5231       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5232       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5233       .writefn = ats_write64 },
5234     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5235       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5236       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5237       .writefn = ats_write64 },
5238     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5239       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5240       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5241       .writefn = ats_write64 },
5242     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5243       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5244       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5245       .writefn = ats_write64 },
5246     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5247       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5248       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5249       .writefn = ats_write64 },
5250     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5251       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5252       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5253       .writefn = ats_write64 },
5254     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5255     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5256       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5257       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5258       .writefn = ats_write64 },
5259     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5260       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5261       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5262       .writefn = ats_write64 },
5263     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5264       .type = ARM_CP_ALIAS,
5265       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5266       .access = PL1_RW, .resetvalue = 0,
5267       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5268       .writefn = par_write },
5269 #endif
5270     /* TLB invalidate last level of translation table walk */
5271     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5272       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5273       .writefn = tlbimva_is_write },
5274     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5275       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5276       .writefn = tlbimvaa_is_write },
5277     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5278       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5279       .writefn = tlbimva_write },
5280     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5281       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5282       .writefn = tlbimvaa_write },
5283     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5284       .type = ARM_CP_NO_RAW, .access = PL2_W,
5285       .writefn = tlbimva_hyp_write },
5286     { .name = "TLBIMVALHIS",
5287       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5288       .type = ARM_CP_NO_RAW, .access = PL2_W,
5289       .writefn = tlbimva_hyp_is_write },
5290     { .name = "TLBIIPAS2",
5291       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5292       .type = ARM_CP_NOP, .access = PL2_W },
5293     { .name = "TLBIIPAS2IS",
5294       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5295       .type = ARM_CP_NOP, .access = PL2_W },
5296     { .name = "TLBIIPAS2L",
5297       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5298       .type = ARM_CP_NOP, .access = PL2_W },
5299     { .name = "TLBIIPAS2LIS",
5300       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5301       .type = ARM_CP_NOP, .access = PL2_W },
5302     /* 32 bit cache operations */
5303     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5304       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5305     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5306       .type = ARM_CP_NOP, .access = PL1_W },
5307     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5308       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5309     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5310       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5311     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5312       .type = ARM_CP_NOP, .access = PL1_W },
5313     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5314       .type = ARM_CP_NOP, .access = PL1_W },
5315     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5316       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5317     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5318       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5319     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5320       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5321     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5322       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5323     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5324       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5325     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5326       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5327     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5328       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5329     /* MMU Domain access control / MPU write buffer control */
5330     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5331       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5332       .writefn = dacr_write, .raw_writefn = raw_write,
5333       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5334                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5335     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5336       .type = ARM_CP_ALIAS,
5337       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5338       .access = PL1_RW,
5339       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5340     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5341       .type = ARM_CP_ALIAS,
5342       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5343       .access = PL1_RW,
5344       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5345     /* We rely on the access checks not allowing the guest to write to the
5346      * state field when SPSel indicates that it's being used as the stack
5347      * pointer.
5348      */
5349     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5350       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5351       .access = PL1_RW, .accessfn = sp_el0_access,
5352       .type = ARM_CP_ALIAS,
5353       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5354     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5355       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5356       .access = PL2_RW, .type = ARM_CP_ALIAS,
5357       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5358     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5359       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5360       .type = ARM_CP_NO_RAW,
5361       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5362     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5363       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5364       .type = ARM_CP_ALIAS,
5365       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5366       .access = PL2_RW, .accessfn = fpexc32_access },
5367     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5368       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5369       .access = PL2_RW, .resetvalue = 0,
5370       .writefn = dacr_write, .raw_writefn = raw_write,
5371       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5372     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5373       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5374       .access = PL2_RW, .resetvalue = 0,
5375       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5376     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5377       .type = ARM_CP_ALIAS,
5378       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5379       .access = PL2_RW,
5380       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5381     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5382       .type = ARM_CP_ALIAS,
5383       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5384       .access = PL2_RW,
5385       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5386     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5387       .type = ARM_CP_ALIAS,
5388       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5389       .access = PL2_RW,
5390       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5391     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5392       .type = ARM_CP_ALIAS,
5393       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5394       .access = PL2_RW,
5395       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5396     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5397       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5398       .resetvalue = 0,
5399       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5400     { .name = "SDCR", .type = ARM_CP_ALIAS,
5401       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5402       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5403       .writefn = sdcr_write,
5404       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5405     REGINFO_SENTINEL
5406 };
5407 
5408 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
5409 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5410     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5411       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5412       .access = PL2_RW,
5413       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5414     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5415       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5416       .access = PL2_RW,
5417       .type = ARM_CP_CONST, .resetvalue = 0 },
5418     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5419       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5420       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5421     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5422       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5423       .access = PL2_RW,
5424       .type = ARM_CP_CONST, .resetvalue = 0 },
5425     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5426       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5427       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5428     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5429       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5430       .access = PL2_RW, .type = ARM_CP_CONST,
5431       .resetvalue = 0 },
5432     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5433       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5434       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5435     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5436       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5437       .access = PL2_RW, .type = ARM_CP_CONST,
5438       .resetvalue = 0 },
5439     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5440       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5441       .access = PL2_RW, .type = ARM_CP_CONST,
5442       .resetvalue = 0 },
5443     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5444       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5445       .access = PL2_RW, .type = ARM_CP_CONST,
5446       .resetvalue = 0 },
5447     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5448       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5449       .access = PL2_RW, .type = ARM_CP_CONST,
5450       .resetvalue = 0 },
5451     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5452       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5453       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5454     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5455       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5456       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5457       .type = ARM_CP_CONST, .resetvalue = 0 },
5458     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5459       .cp = 15, .opc1 = 6, .crm = 2,
5460       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5461       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5462     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5463       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5464       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5465     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5466       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5467       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5468     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5469       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5470       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5471     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5472       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5473       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5474     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5475       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5476       .resetvalue = 0 },
5477     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5478       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5479       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5480     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5481       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5482       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5483     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5484       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5485       .resetvalue = 0 },
5486     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5487       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5488       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5489     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5490       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5491       .resetvalue = 0 },
5492     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5493       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5494       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5495     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5496       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5497       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5498     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5499       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5500       .access = PL2_RW, .accessfn = access_tda,
5501       .type = ARM_CP_CONST, .resetvalue = 0 },
5502     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5503       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5504       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5505       .type = ARM_CP_CONST, .resetvalue = 0 },
5506     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5507       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5508       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5509     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5510       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5511       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5512     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5513       .type = ARM_CP_CONST,
5514       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5515       .access = PL2_RW, .resetvalue = 0 },
5516     REGINFO_SENTINEL
5517 };
5518 
5519 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5520 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5521     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5522       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5523       .access = PL2_RW,
5524       .type = ARM_CP_CONST, .resetvalue = 0 },
5525     REGINFO_SENTINEL
5526 };
5527 
5528 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5529 {
5530     ARMCPU *cpu = env_archcpu(env);
5531 
5532     if (arm_feature(env, ARM_FEATURE_V8)) {
5533         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5534     } else {
5535         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5536     }
5537 
5538     if (arm_feature(env, ARM_FEATURE_EL3)) {
5539         valid_mask &= ~HCR_HCD;
5540     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5541         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5542          * However, if we're using the SMC PSCI conduit then QEMU is
5543          * effectively acting like EL3 firmware and so the guest at
5544          * EL2 should retain the ability to prevent EL1 from being
5545          * able to make SMC calls into the ersatz firmware, so in
5546          * that case HCR.TSC should be read/write.
5547          */
5548         valid_mask &= ~HCR_TSC;
5549     }
5550 
5551     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5552         if (cpu_isar_feature(aa64_vh, cpu)) {
5553             valid_mask |= HCR_E2H;
5554         }
5555         if (cpu_isar_feature(aa64_lor, cpu)) {
5556             valid_mask |= HCR_TLOR;
5557         }
5558         if (cpu_isar_feature(aa64_pauth, cpu)) {
5559             valid_mask |= HCR_API | HCR_APK;
5560         }
5561         if (cpu_isar_feature(aa64_mte, cpu)) {
5562             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5563         }
5564     }
5565 
5566     /* Clear RES0 bits.  */
5567     value &= valid_mask;
5568 
5569     /*
5570      * These bits change the MMU setup:
5571      * HCR_VM enables stage 2 translation
5572      * HCR_PTW forbids certain page-table setups
5573      * HCR_DC disables stage1 and enables stage2 translation
5574      * HCR_DCT enables tagging on (disabled) stage1 translation
5575      */
5576     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5577         tlb_flush(CPU(cpu));
5578     }
5579     env->cp15.hcr_el2 = value;
5580 
5581     /*
5582      * Updates to VI and VF require us to update the status of
5583      * virtual interrupts, which are the logical OR of these bits
5584      * and the state of the input lines from the GIC. (This requires
5585      * that we have the iothread lock, which is done by marking the
5586      * reginfo structs as ARM_CP_IO.)
5587      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5588      * possible for it to be taken immediately, because VIRQ and
5589      * VFIQ are masked unless running at EL0 or EL1, and HCR
5590      * can only be written at EL2.
5591      */
5592     g_assert(qemu_mutex_iothread_locked());
5593     arm_cpu_update_virq(cpu);
5594     arm_cpu_update_vfiq(cpu);
5595 }
5596 
5597 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5598 {
5599     do_hcr_write(env, value, 0);
5600 }
5601 
5602 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5603                           uint64_t value)
5604 {
5605     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5606     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5607     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5608 }
5609 
5610 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5611                          uint64_t value)
5612 {
5613     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5614     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5615     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5616 }
5617 
5618 /*
5619  * Return the effective value of HCR_EL2.
5620  * Bits that are not included here:
5621  * RW       (read from SCR_EL3.RW as needed)
5622  */
5623 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5624 {
5625     uint64_t ret = env->cp15.hcr_el2;
5626 
5627     if (!arm_is_el2_enabled(env)) {
5628         /*
5629          * "This register has no effect if EL2 is not enabled in the
5630          * current Security state".  This is ARMv8.4-SecEL2 speak for
5631          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5632          *
5633          * Prior to that, the language was "In an implementation that
5634          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5635          * as if this field is 0 for all purposes other than a direct
5636          * read or write access of HCR_EL2".  With lots of enumeration
5637          * on a per-field basis.  In current QEMU, this is condition
5638          * is arm_is_secure_below_el3.
5639          *
5640          * Since the v8.4 language applies to the entire register, and
5641          * appears to be backward compatible, use that.
5642          */
5643         return 0;
5644     }
5645 
5646     /*
5647      * For a cpu that supports both aarch64 and aarch32, we can set bits
5648      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5649      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5650      */
5651     if (!arm_el_is_aa64(env, 2)) {
5652         uint64_t aa32_valid;
5653 
5654         /*
5655          * These bits are up-to-date as of ARMv8.6.
5656          * For HCR, it's easiest to list just the 2 bits that are invalid.
5657          * For HCR2, list those that are valid.
5658          */
5659         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5660         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5661                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5662         ret &= aa32_valid;
5663     }
5664 
5665     if (ret & HCR_TGE) {
5666         /* These bits are up-to-date as of ARMv8.6.  */
5667         if (ret & HCR_E2H) {
5668             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5669                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5670                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5671                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5672                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5673                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5674         } else {
5675             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5676         }
5677         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5678                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5679                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5680                  HCR_TLOR);
5681     }
5682 
5683     return ret;
5684 }
5685 
5686 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5687                            uint64_t value)
5688 {
5689     /*
5690      * For A-profile AArch32 EL3, if NSACR.CP10
5691      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5692      */
5693     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5694         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5695         value &= ~(0x3 << 10);
5696         value |= env->cp15.cptr_el[2] & (0x3 << 10);
5697     }
5698     env->cp15.cptr_el[2] = value;
5699 }
5700 
5701 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5702 {
5703     /*
5704      * For A-profile AArch32 EL3, if NSACR.CP10
5705      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5706      */
5707     uint64_t value = env->cp15.cptr_el[2];
5708 
5709     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5710         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5711         value |= 0x3 << 10;
5712     }
5713     return value;
5714 }
5715 
5716 static const ARMCPRegInfo el2_cp_reginfo[] = {
5717     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5718       .type = ARM_CP_IO,
5719       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5720       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5721       .writefn = hcr_write },
5722     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5723       .type = ARM_CP_ALIAS | ARM_CP_IO,
5724       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5725       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5726       .writefn = hcr_writelow },
5727     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5728       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5729       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5730     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5731       .type = ARM_CP_ALIAS,
5732       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5733       .access = PL2_RW,
5734       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5735     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5736       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5737       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5738     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5739       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5740       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5741     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5742       .type = ARM_CP_ALIAS,
5743       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5744       .access = PL2_RW,
5745       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5746     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5747       .type = ARM_CP_ALIAS,
5748       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5749       .access = PL2_RW,
5750       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5751     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5752       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5753       .access = PL2_RW, .writefn = vbar_write,
5754       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5755       .resetvalue = 0 },
5756     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5757       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5758       .access = PL3_RW, .type = ARM_CP_ALIAS,
5759       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5760     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5761       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5762       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5763       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5764       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5765     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5766       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5767       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5768       .resetvalue = 0 },
5769     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5770       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5771       .access = PL2_RW, .type = ARM_CP_ALIAS,
5772       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5773     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5774       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5775       .access = PL2_RW, .type = ARM_CP_CONST,
5776       .resetvalue = 0 },
5777     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5778     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5779       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5780       .access = PL2_RW, .type = ARM_CP_CONST,
5781       .resetvalue = 0 },
5782     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5783       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5784       .access = PL2_RW, .type = ARM_CP_CONST,
5785       .resetvalue = 0 },
5786     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5787       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5788       .access = PL2_RW, .type = ARM_CP_CONST,
5789       .resetvalue = 0 },
5790     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5791       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5792       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5793       /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5794       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5795     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5796       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5797       .type = ARM_CP_ALIAS,
5798       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5799       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5800     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5801       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5802       .access = PL2_RW,
5803       /* no .writefn needed as this can't cause an ASID change;
5804        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5805        */
5806       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5807     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5808       .cp = 15, .opc1 = 6, .crm = 2,
5809       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5810       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5811       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5812       .writefn = vttbr_write },
5813     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5814       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5815       .access = PL2_RW, .writefn = vttbr_write,
5816       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5817     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5818       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5819       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5820       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5821     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5822       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5823       .access = PL2_RW, .resetvalue = 0,
5824       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5825     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5826       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5827       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5828       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5829     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5830       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5831       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5832     { .name = "TLBIALLNSNH",
5833       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5834       .type = ARM_CP_NO_RAW, .access = PL2_W,
5835       .writefn = tlbiall_nsnh_write },
5836     { .name = "TLBIALLNSNHIS",
5837       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5838       .type = ARM_CP_NO_RAW, .access = PL2_W,
5839       .writefn = tlbiall_nsnh_is_write },
5840     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5841       .type = ARM_CP_NO_RAW, .access = PL2_W,
5842       .writefn = tlbiall_hyp_write },
5843     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5844       .type = ARM_CP_NO_RAW, .access = PL2_W,
5845       .writefn = tlbiall_hyp_is_write },
5846     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5847       .type = ARM_CP_NO_RAW, .access = PL2_W,
5848       .writefn = tlbimva_hyp_write },
5849     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5850       .type = ARM_CP_NO_RAW, .access = PL2_W,
5851       .writefn = tlbimva_hyp_is_write },
5852     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5853       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5854       .type = ARM_CP_NO_RAW, .access = PL2_W,
5855       .writefn = tlbi_aa64_alle2_write },
5856     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5857       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5858       .type = ARM_CP_NO_RAW, .access = PL2_W,
5859       .writefn = tlbi_aa64_vae2_write },
5860     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5861       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5862       .access = PL2_W, .type = ARM_CP_NO_RAW,
5863       .writefn = tlbi_aa64_vae2_write },
5864     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5865       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5866       .access = PL2_W, .type = ARM_CP_NO_RAW,
5867       .writefn = tlbi_aa64_alle2is_write },
5868     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5869       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5870       .type = ARM_CP_NO_RAW, .access = PL2_W,
5871       .writefn = tlbi_aa64_vae2is_write },
5872     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5873       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5874       .access = PL2_W, .type = ARM_CP_NO_RAW,
5875       .writefn = tlbi_aa64_vae2is_write },
5876 #ifndef CONFIG_USER_ONLY
5877     /* Unlike the other EL2-related AT operations, these must
5878      * UNDEF from EL3 if EL2 is not implemented, which is why we
5879      * define them here rather than with the rest of the AT ops.
5880      */
5881     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5882       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5883       .access = PL2_W, .accessfn = at_s1e2_access,
5884       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5885     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5886       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5887       .access = PL2_W, .accessfn = at_s1e2_access,
5888       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5889     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5890      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5891      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5892      * to behave as if SCR.NS was 1.
5893      */
5894     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5895       .access = PL2_W,
5896       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5897     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5898       .access = PL2_W,
5899       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5900     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5901       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5902       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5903        * reset values as IMPDEF. We choose to reset to 3 to comply with
5904        * both ARMv7 and ARMv8.
5905        */
5906       .access = PL2_RW, .resetvalue = 3,
5907       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5908     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5909       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5910       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5911       .writefn = gt_cntvoff_write,
5912       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5913     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5914       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5915       .writefn = gt_cntvoff_write,
5916       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5917     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5918       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5919       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5920       .type = ARM_CP_IO, .access = PL2_RW,
5921       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5922     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5923       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5924       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5925       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5926     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5927       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5928       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5929       .resetfn = gt_hyp_timer_reset,
5930       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5931     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5932       .type = ARM_CP_IO,
5933       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5934       .access = PL2_RW,
5935       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5936       .resetvalue = 0,
5937       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5938 #endif
5939     /* The only field of MDCR_EL2 that has a defined architectural reset value
5940      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
5941      */
5942     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5943       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5944       .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS,
5945       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5946     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5947       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5948       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5949       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5950     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5951       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5952       .access = PL2_RW,
5953       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5954     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5955       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5956       .access = PL2_RW,
5957       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5958     REGINFO_SENTINEL
5959 };
5960 
5961 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5962     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5963       .type = ARM_CP_ALIAS | ARM_CP_IO,
5964       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5965       .access = PL2_RW,
5966       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5967       .writefn = hcr_writehigh },
5968     REGINFO_SENTINEL
5969 };
5970 
5971 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5972                                   bool isread)
5973 {
5974     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5975         return CP_ACCESS_OK;
5976     }
5977     return CP_ACCESS_TRAP_UNCATEGORIZED;
5978 }
5979 
5980 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5981     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5982       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5983       .access = PL2_RW, .accessfn = sel2_access,
5984       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5985     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5986       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5987       .access = PL2_RW, .accessfn = sel2_access,
5988       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5989     REGINFO_SENTINEL
5990 };
5991 
5992 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5993                                    bool isread)
5994 {
5995     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5996      * At Secure EL1 it traps to EL3 or EL2.
5997      */
5998     if (arm_current_el(env) == 3) {
5999         return CP_ACCESS_OK;
6000     }
6001     if (arm_is_secure_below_el3(env)) {
6002         if (env->cp15.scr_el3 & SCR_EEL2) {
6003             return CP_ACCESS_TRAP_EL2;
6004         }
6005         return CP_ACCESS_TRAP_EL3;
6006     }
6007     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6008     if (isread) {
6009         return CP_ACCESS_OK;
6010     }
6011     return CP_ACCESS_TRAP_UNCATEGORIZED;
6012 }
6013 
6014 static const ARMCPRegInfo el3_cp_reginfo[] = {
6015     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6016       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6017       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6018       .resetfn = scr_reset, .writefn = scr_write },
6019     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6020       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6021       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6022       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6023       .writefn = scr_write },
6024     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6025       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6026       .access = PL3_RW, .resetvalue = 0,
6027       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6028     { .name = "SDER",
6029       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6030       .access = PL3_RW, .resetvalue = 0,
6031       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6032     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6033       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6034       .writefn = vbar_write, .resetvalue = 0,
6035       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6036     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6037       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6038       .access = PL3_RW, .resetvalue = 0,
6039       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6040     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6041       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6042       .access = PL3_RW,
6043       /* no .writefn needed as this can't cause an ASID change;
6044        * we must provide a .raw_writefn and .resetfn because we handle
6045        * reset and migration for the AArch32 TTBCR(S), which might be
6046        * using mask and base_mask.
6047        */
6048       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
6049       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6050     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6051       .type = ARM_CP_ALIAS,
6052       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6053       .access = PL3_RW,
6054       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6055     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6056       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6057       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6058     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6059       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6060       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6061     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6062       .type = ARM_CP_ALIAS,
6063       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6064       .access = PL3_RW,
6065       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6066     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6067       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6068       .access = PL3_RW, .writefn = vbar_write,
6069       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6070       .resetvalue = 0 },
6071     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6072       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6073       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6074       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6075     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6076       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6077       .access = PL3_RW, .resetvalue = 0,
6078       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6079     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6080       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6081       .access = PL3_RW, .type = ARM_CP_CONST,
6082       .resetvalue = 0 },
6083     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6084       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6085       .access = PL3_RW, .type = ARM_CP_CONST,
6086       .resetvalue = 0 },
6087     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6088       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6089       .access = PL3_RW, .type = ARM_CP_CONST,
6090       .resetvalue = 0 },
6091     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6092       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6093       .access = PL3_W, .type = ARM_CP_NO_RAW,
6094       .writefn = tlbi_aa64_alle3is_write },
6095     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6096       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6097       .access = PL3_W, .type = ARM_CP_NO_RAW,
6098       .writefn = tlbi_aa64_vae3is_write },
6099     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6100       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6101       .access = PL3_W, .type = ARM_CP_NO_RAW,
6102       .writefn = tlbi_aa64_vae3is_write },
6103     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6104       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6105       .access = PL3_W, .type = ARM_CP_NO_RAW,
6106       .writefn = tlbi_aa64_alle3_write },
6107     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6108       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6109       .access = PL3_W, .type = ARM_CP_NO_RAW,
6110       .writefn = tlbi_aa64_vae3_write },
6111     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6112       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6113       .access = PL3_W, .type = ARM_CP_NO_RAW,
6114       .writefn = tlbi_aa64_vae3_write },
6115     REGINFO_SENTINEL
6116 };
6117 
6118 #ifndef CONFIG_USER_ONLY
6119 /* Test if system register redirection is to occur in the current state.  */
6120 static bool redirect_for_e2h(CPUARMState *env)
6121 {
6122     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6123 }
6124 
6125 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6126 {
6127     CPReadFn *readfn;
6128 
6129     if (redirect_for_e2h(env)) {
6130         /* Switch to the saved EL2 version of the register.  */
6131         ri = ri->opaque;
6132         readfn = ri->readfn;
6133     } else {
6134         readfn = ri->orig_readfn;
6135     }
6136     if (readfn == NULL) {
6137         readfn = raw_read;
6138     }
6139     return readfn(env, ri);
6140 }
6141 
6142 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6143                           uint64_t value)
6144 {
6145     CPWriteFn *writefn;
6146 
6147     if (redirect_for_e2h(env)) {
6148         /* Switch to the saved EL2 version of the register.  */
6149         ri = ri->opaque;
6150         writefn = ri->writefn;
6151     } else {
6152         writefn = ri->orig_writefn;
6153     }
6154     if (writefn == NULL) {
6155         writefn = raw_write;
6156     }
6157     writefn(env, ri, value);
6158 }
6159 
6160 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6161 {
6162     struct E2HAlias {
6163         uint32_t src_key, dst_key, new_key;
6164         const char *src_name, *dst_name, *new_name;
6165         bool (*feature)(const ARMISARegisters *id);
6166     };
6167 
6168 #define K(op0, op1, crn, crm, op2) \
6169     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6170 
6171     static const struct E2HAlias aliases[] = {
6172         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
6173           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6174         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
6175           "CPACR", "CPTR_EL2", "CPACR_EL12" },
6176         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
6177           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6178         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
6179           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6180         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
6181           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6182         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6183           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6184         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6185           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6186         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6187           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6188         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6189           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6190         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6191           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6192         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6193           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6194         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6195           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6196         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6197           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6198         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6199           "VBAR", "VBAR_EL2", "VBAR_EL12" },
6200         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6201           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6202         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6203           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6204 
6205         /*
6206          * Note that redirection of ZCR is mentioned in the description
6207          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6208          * not in the summary table.
6209          */
6210         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6211           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6212 
6213         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6214           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6215 
6216         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6217         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6218     };
6219 #undef K
6220 
6221     size_t i;
6222 
6223     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6224         const struct E2HAlias *a = &aliases[i];
6225         ARMCPRegInfo *src_reg, *dst_reg;
6226 
6227         if (a->feature && !a->feature(&cpu->isar)) {
6228             continue;
6229         }
6230 
6231         src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
6232         dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
6233         g_assert(src_reg != NULL);
6234         g_assert(dst_reg != NULL);
6235 
6236         /* Cross-compare names to detect typos in the keys.  */
6237         g_assert(strcmp(src_reg->name, a->src_name) == 0);
6238         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6239 
6240         /* None of the core system registers use opaque; we will.  */
6241         g_assert(src_reg->opaque == NULL);
6242 
6243         /* Create alias before redirection so we dup the right data. */
6244         if (a->new_key) {
6245             ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6246             uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
6247             bool ok;
6248 
6249             new_reg->name = a->new_name;
6250             new_reg->type |= ARM_CP_ALIAS;
6251             /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6252             new_reg->access &= PL2_RW | PL3_RW;
6253 
6254             ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
6255             g_assert(ok);
6256         }
6257 
6258         src_reg->opaque = dst_reg;
6259         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6260         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6261         if (!src_reg->raw_readfn) {
6262             src_reg->raw_readfn = raw_read;
6263         }
6264         if (!src_reg->raw_writefn) {
6265             src_reg->raw_writefn = raw_write;
6266         }
6267         src_reg->readfn = el2_e2h_read;
6268         src_reg->writefn = el2_e2h_write;
6269     }
6270 }
6271 #endif
6272 
6273 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6274                                      bool isread)
6275 {
6276     int cur_el = arm_current_el(env);
6277 
6278     if (cur_el < 2) {
6279         uint64_t hcr = arm_hcr_el2_eff(env);
6280 
6281         if (cur_el == 0) {
6282             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6283                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6284                     return CP_ACCESS_TRAP_EL2;
6285                 }
6286             } else {
6287                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6288                     return CP_ACCESS_TRAP;
6289                 }
6290                 if (hcr & HCR_TID2) {
6291                     return CP_ACCESS_TRAP_EL2;
6292                 }
6293             }
6294         } else if (hcr & HCR_TID2) {
6295             return CP_ACCESS_TRAP_EL2;
6296         }
6297     }
6298 
6299     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6300         return CP_ACCESS_TRAP_EL2;
6301     }
6302 
6303     return CP_ACCESS_OK;
6304 }
6305 
6306 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6307                         uint64_t value)
6308 {
6309     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6310      * read via a bit in OSLSR_EL1.
6311      */
6312     int oslock;
6313 
6314     if (ri->state == ARM_CP_STATE_AA32) {
6315         oslock = (value == 0xC5ACCE55);
6316     } else {
6317         oslock = value & 1;
6318     }
6319 
6320     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6321 }
6322 
6323 static const ARMCPRegInfo debug_cp_reginfo[] = {
6324     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6325      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6326      * unlike DBGDRAR it is never accessible from EL0.
6327      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6328      * accessor.
6329      */
6330     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6331       .access = PL0_R, .accessfn = access_tdra,
6332       .type = ARM_CP_CONST, .resetvalue = 0 },
6333     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6334       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6335       .access = PL1_R, .accessfn = access_tdra,
6336       .type = ARM_CP_CONST, .resetvalue = 0 },
6337     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6338       .access = PL0_R, .accessfn = access_tdra,
6339       .type = ARM_CP_CONST, .resetvalue = 0 },
6340     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6341     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6342       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6343       .access = PL1_RW, .accessfn = access_tda,
6344       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6345       .resetvalue = 0 },
6346     /*
6347      * MDCCSR_EL0[30:29] map to EDSCR[30:29].  Simply RAZ as the external
6348      * Debug Communication Channel is not implemented.
6349      */
6350     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
6351       .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
6352       .access = PL0_R, .accessfn = access_tda,
6353       .type = ARM_CP_CONST, .resetvalue = 0 },
6354     /*
6355      * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2].  Map all bits as
6356      * it is unlikely a guest will care.
6357      * We don't implement the configurable EL0 access.
6358      */
6359     { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
6360       .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6361       .type = ARM_CP_ALIAS,
6362       .access = PL1_R, .accessfn = access_tda,
6363       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6364     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6365       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6366       .access = PL1_W, .type = ARM_CP_NO_RAW,
6367       .accessfn = access_tdosa,
6368       .writefn = oslar_write },
6369     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6370       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6371       .access = PL1_R, .resetvalue = 10,
6372       .accessfn = access_tdosa,
6373       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6374     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6375     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6376       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6377       .access = PL1_RW, .accessfn = access_tdosa,
6378       .type = ARM_CP_NOP },
6379     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6380      * implement vector catch debug events yet.
6381      */
6382     { .name = "DBGVCR",
6383       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6384       .access = PL1_RW, .accessfn = access_tda,
6385       .type = ARM_CP_NOP },
6386     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6387      * to save and restore a 32-bit guest's DBGVCR)
6388      */
6389     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6390       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6391       .access = PL2_RW, .accessfn = access_tda,
6392       .type = ARM_CP_NOP },
6393     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6394      * Channel but Linux may try to access this register. The 32-bit
6395      * alias is DBGDCCINT.
6396      */
6397     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6398       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6399       .access = PL1_RW, .accessfn = access_tda,
6400       .type = ARM_CP_NOP },
6401     REGINFO_SENTINEL
6402 };
6403 
6404 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6405     /* 64 bit access versions of the (dummy) debug registers */
6406     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6407       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6408     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6409       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6410     REGINFO_SENTINEL
6411 };
6412 
6413 /* Return the exception level to which exceptions should be taken
6414  * via SVEAccessTrap.  If an exception should be routed through
6415  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6416  * take care of raising that exception.
6417  * C.f. the ARM pseudocode function CheckSVEEnabled.
6418  */
6419 int sve_exception_el(CPUARMState *env, int el)
6420 {
6421 #ifndef CONFIG_USER_ONLY
6422     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6423 
6424     if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6425         bool disabled = false;
6426 
6427         /* The CPACR.ZEN controls traps to EL1:
6428          * 0, 2 : trap EL0 and EL1 accesses
6429          * 1    : trap only EL0 accesses
6430          * 3    : trap no accesses
6431          */
6432         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6433             disabled = true;
6434         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6435             disabled = el == 0;
6436         }
6437         if (disabled) {
6438             /* route_to_el2 */
6439             return hcr_el2 & HCR_TGE ? 2 : 1;
6440         }
6441 
6442         /* Check CPACR.FPEN.  */
6443         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6444             disabled = true;
6445         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6446             disabled = el == 0;
6447         }
6448         if (disabled) {
6449             return 0;
6450         }
6451     }
6452 
6453     /* CPTR_EL2.  Since TZ and TFP are positive,
6454      * they will be zero when EL2 is not present.
6455      */
6456     if (el <= 2 && arm_is_el2_enabled(env)) {
6457         if (env->cp15.cptr_el[2] & CPTR_TZ) {
6458             return 2;
6459         }
6460         if (env->cp15.cptr_el[2] & CPTR_TFP) {
6461             return 0;
6462         }
6463     }
6464 
6465     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6466     if (arm_feature(env, ARM_FEATURE_EL3)
6467         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6468         return 3;
6469     }
6470 #endif
6471     return 0;
6472 }
6473 
6474 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6475 {
6476     uint32_t end_len;
6477 
6478     start_len = MIN(start_len, ARM_MAX_VQ - 1);
6479     end_len = start_len;
6480 
6481     if (!test_bit(start_len, cpu->sve_vq_map)) {
6482         end_len = find_last_bit(cpu->sve_vq_map, start_len);
6483         assert(end_len < start_len);
6484     }
6485     return end_len;
6486 }
6487 
6488 /*
6489  * Given that SVE is enabled, return the vector length for EL.
6490  */
6491 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6492 {
6493     ARMCPU *cpu = env_archcpu(env);
6494     uint32_t zcr_len = cpu->sve_max_vq - 1;
6495 
6496     if (el <= 1) {
6497         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6498     }
6499     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6500         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6501     }
6502     if (arm_feature(env, ARM_FEATURE_EL3)) {
6503         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6504     }
6505 
6506     return aarch64_sve_zcr_get_valid_len(cpu, zcr_len);
6507 }
6508 
6509 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6510                       uint64_t value)
6511 {
6512     int cur_el = arm_current_el(env);
6513     int old_len = sve_zcr_len_for_el(env, cur_el);
6514     int new_len;
6515 
6516     /* Bits other than [3:0] are RAZ/WI.  */
6517     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6518     raw_write(env, ri, value & 0xf);
6519 
6520     /*
6521      * Because we arrived here, we know both FP and SVE are enabled;
6522      * otherwise we would have trapped access to the ZCR_ELn register.
6523      */
6524     new_len = sve_zcr_len_for_el(env, cur_el);
6525     if (new_len < old_len) {
6526         aarch64_sve_narrow_vq(env, new_len + 1);
6527     }
6528 }
6529 
6530 static const ARMCPRegInfo zcr_el1_reginfo = {
6531     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6532     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6533     .access = PL1_RW, .type = ARM_CP_SVE,
6534     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6535     .writefn = zcr_write, .raw_writefn = raw_write
6536 };
6537 
6538 static const ARMCPRegInfo zcr_el2_reginfo = {
6539     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6540     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6541     .access = PL2_RW, .type = ARM_CP_SVE,
6542     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6543     .writefn = zcr_write, .raw_writefn = raw_write
6544 };
6545 
6546 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6547     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6548     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6549     .access = PL2_RW, .type = ARM_CP_SVE,
6550     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6551 };
6552 
6553 static const ARMCPRegInfo zcr_el3_reginfo = {
6554     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6555     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6556     .access = PL3_RW, .type = ARM_CP_SVE,
6557     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6558     .writefn = zcr_write, .raw_writefn = raw_write
6559 };
6560 
6561 void hw_watchpoint_update(ARMCPU *cpu, int n)
6562 {
6563     CPUARMState *env = &cpu->env;
6564     vaddr len = 0;
6565     vaddr wvr = env->cp15.dbgwvr[n];
6566     uint64_t wcr = env->cp15.dbgwcr[n];
6567     int mask;
6568     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6569 
6570     if (env->cpu_watchpoint[n]) {
6571         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6572         env->cpu_watchpoint[n] = NULL;
6573     }
6574 
6575     if (!extract64(wcr, 0, 1)) {
6576         /* E bit clear : watchpoint disabled */
6577         return;
6578     }
6579 
6580     switch (extract64(wcr, 3, 2)) {
6581     case 0:
6582         /* LSC 00 is reserved and must behave as if the wp is disabled */
6583         return;
6584     case 1:
6585         flags |= BP_MEM_READ;
6586         break;
6587     case 2:
6588         flags |= BP_MEM_WRITE;
6589         break;
6590     case 3:
6591         flags |= BP_MEM_ACCESS;
6592         break;
6593     }
6594 
6595     /* Attempts to use both MASK and BAS fields simultaneously are
6596      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6597      * thus generating a watchpoint for every byte in the masked region.
6598      */
6599     mask = extract64(wcr, 24, 4);
6600     if (mask == 1 || mask == 2) {
6601         /* Reserved values of MASK; we must act as if the mask value was
6602          * some non-reserved value, or as if the watchpoint were disabled.
6603          * We choose the latter.
6604          */
6605         return;
6606     } else if (mask) {
6607         /* Watchpoint covers an aligned area up to 2GB in size */
6608         len = 1ULL << mask;
6609         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6610          * whether the watchpoint fires when the unmasked bits match; we opt
6611          * to generate the exceptions.
6612          */
6613         wvr &= ~(len - 1);
6614     } else {
6615         /* Watchpoint covers bytes defined by the byte address select bits */
6616         int bas = extract64(wcr, 5, 8);
6617         int basstart;
6618 
6619         if (extract64(wvr, 2, 1)) {
6620             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6621              * ignored, and BAS[3:0] define which bytes to watch.
6622              */
6623             bas &= 0xf;
6624         }
6625 
6626         if (bas == 0) {
6627             /* This must act as if the watchpoint is disabled */
6628             return;
6629         }
6630 
6631         /* The BAS bits are supposed to be programmed to indicate a contiguous
6632          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6633          * we fire for each byte in the word/doubleword addressed by the WVR.
6634          * We choose to ignore any non-zero bits after the first range of 1s.
6635          */
6636         basstart = ctz32(bas);
6637         len = cto32(bas >> basstart);
6638         wvr += basstart;
6639     }
6640 
6641     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6642                           &env->cpu_watchpoint[n]);
6643 }
6644 
6645 void hw_watchpoint_update_all(ARMCPU *cpu)
6646 {
6647     int i;
6648     CPUARMState *env = &cpu->env;
6649 
6650     /* Completely clear out existing QEMU watchpoints and our array, to
6651      * avoid possible stale entries following migration load.
6652      */
6653     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6654     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6655 
6656     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6657         hw_watchpoint_update(cpu, i);
6658     }
6659 }
6660 
6661 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6662                          uint64_t value)
6663 {
6664     ARMCPU *cpu = env_archcpu(env);
6665     int i = ri->crm;
6666 
6667     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6668      * register reads and behaves as if values written are sign extended.
6669      * Bits [1:0] are RES0.
6670      */
6671     value = sextract64(value, 0, 49) & ~3ULL;
6672 
6673     raw_write(env, ri, value);
6674     hw_watchpoint_update(cpu, i);
6675 }
6676 
6677 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6678                          uint64_t value)
6679 {
6680     ARMCPU *cpu = env_archcpu(env);
6681     int i = ri->crm;
6682 
6683     raw_write(env, ri, value);
6684     hw_watchpoint_update(cpu, i);
6685 }
6686 
6687 void hw_breakpoint_update(ARMCPU *cpu, int n)
6688 {
6689     CPUARMState *env = &cpu->env;
6690     uint64_t bvr = env->cp15.dbgbvr[n];
6691     uint64_t bcr = env->cp15.dbgbcr[n];
6692     vaddr addr;
6693     int bt;
6694     int flags = BP_CPU;
6695 
6696     if (env->cpu_breakpoint[n]) {
6697         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6698         env->cpu_breakpoint[n] = NULL;
6699     }
6700 
6701     if (!extract64(bcr, 0, 1)) {
6702         /* E bit clear : watchpoint disabled */
6703         return;
6704     }
6705 
6706     bt = extract64(bcr, 20, 4);
6707 
6708     switch (bt) {
6709     case 4: /* unlinked address mismatch (reserved if AArch64) */
6710     case 5: /* linked address mismatch (reserved if AArch64) */
6711         qemu_log_mask(LOG_UNIMP,
6712                       "arm: address mismatch breakpoint types not implemented\n");
6713         return;
6714     case 0: /* unlinked address match */
6715     case 1: /* linked address match */
6716     {
6717         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6718          * we behave as if the register was sign extended. Bits [1:0] are
6719          * RES0. The BAS field is used to allow setting breakpoints on 16
6720          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6721          * a bp will fire if the addresses covered by the bp and the addresses
6722          * covered by the insn overlap but the insn doesn't start at the
6723          * start of the bp address range. We choose to require the insn and
6724          * the bp to have the same address. The constraints on writing to
6725          * BAS enforced in dbgbcr_write mean we have only four cases:
6726          *  0b0000  => no breakpoint
6727          *  0b0011  => breakpoint on addr
6728          *  0b1100  => breakpoint on addr + 2
6729          *  0b1111  => breakpoint on addr
6730          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6731          */
6732         int bas = extract64(bcr, 5, 4);
6733         addr = sextract64(bvr, 0, 49) & ~3ULL;
6734         if (bas == 0) {
6735             return;
6736         }
6737         if (bas == 0xc) {
6738             addr += 2;
6739         }
6740         break;
6741     }
6742     case 2: /* unlinked context ID match */
6743     case 8: /* unlinked VMID match (reserved if no EL2) */
6744     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6745         qemu_log_mask(LOG_UNIMP,
6746                       "arm: unlinked context breakpoint types not implemented\n");
6747         return;
6748     case 9: /* linked VMID match (reserved if no EL2) */
6749     case 11: /* linked context ID and VMID match (reserved if no EL2) */
6750     case 3: /* linked context ID match */
6751     default:
6752         /* We must generate no events for Linked context matches (unless
6753          * they are linked to by some other bp/wp, which is handled in
6754          * updates for the linking bp/wp). We choose to also generate no events
6755          * for reserved values.
6756          */
6757         return;
6758     }
6759 
6760     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6761 }
6762 
6763 void hw_breakpoint_update_all(ARMCPU *cpu)
6764 {
6765     int i;
6766     CPUARMState *env = &cpu->env;
6767 
6768     /* Completely clear out existing QEMU breakpoints and our array, to
6769      * avoid possible stale entries following migration load.
6770      */
6771     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6772     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6773 
6774     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6775         hw_breakpoint_update(cpu, i);
6776     }
6777 }
6778 
6779 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6780                          uint64_t value)
6781 {
6782     ARMCPU *cpu = env_archcpu(env);
6783     int i = ri->crm;
6784 
6785     raw_write(env, ri, value);
6786     hw_breakpoint_update(cpu, i);
6787 }
6788 
6789 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6790                          uint64_t value)
6791 {
6792     ARMCPU *cpu = env_archcpu(env);
6793     int i = ri->crm;
6794 
6795     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6796      * copy of BAS[0].
6797      */
6798     value = deposit64(value, 6, 1, extract64(value, 5, 1));
6799     value = deposit64(value, 8, 1, extract64(value, 7, 1));
6800 
6801     raw_write(env, ri, value);
6802     hw_breakpoint_update(cpu, i);
6803 }
6804 
6805 static void define_debug_regs(ARMCPU *cpu)
6806 {
6807     /* Define v7 and v8 architectural debug registers.
6808      * These are just dummy implementations for now.
6809      */
6810     int i;
6811     int wrps, brps, ctx_cmps;
6812 
6813     /*
6814      * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
6815      * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
6816      * the register must not exist for this cpu.
6817      */
6818     if (cpu->isar.dbgdidr != 0) {
6819         ARMCPRegInfo dbgdidr = {
6820             .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
6821             .opc1 = 0, .opc2 = 0,
6822             .access = PL0_R, .accessfn = access_tda,
6823             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6824         };
6825         define_one_arm_cp_reg(cpu, &dbgdidr);
6826     }
6827 
6828     /* Note that all these register fields hold "number of Xs minus 1". */
6829     brps = arm_num_brps(cpu);
6830     wrps = arm_num_wrps(cpu);
6831     ctx_cmps = arm_num_ctx_cmps(cpu);
6832 
6833     assert(ctx_cmps <= brps);
6834 
6835     define_arm_cp_regs(cpu, debug_cp_reginfo);
6836 
6837     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6838         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6839     }
6840 
6841     for (i = 0; i < brps; i++) {
6842         ARMCPRegInfo dbgregs[] = {
6843             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6844               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6845               .access = PL1_RW, .accessfn = access_tda,
6846               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6847               .writefn = dbgbvr_write, .raw_writefn = raw_write
6848             },
6849             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6850               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6851               .access = PL1_RW, .accessfn = access_tda,
6852               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6853               .writefn = dbgbcr_write, .raw_writefn = raw_write
6854             },
6855             REGINFO_SENTINEL
6856         };
6857         define_arm_cp_regs(cpu, dbgregs);
6858     }
6859 
6860     for (i = 0; i < wrps; i++) {
6861         ARMCPRegInfo dbgregs[] = {
6862             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6863               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6864               .access = PL1_RW, .accessfn = access_tda,
6865               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6866               .writefn = dbgwvr_write, .raw_writefn = raw_write
6867             },
6868             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6869               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6870               .access = PL1_RW, .accessfn = access_tda,
6871               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6872               .writefn = dbgwcr_write, .raw_writefn = raw_write
6873             },
6874             REGINFO_SENTINEL
6875         };
6876         define_arm_cp_regs(cpu, dbgregs);
6877     }
6878 }
6879 
6880 static void define_pmu_regs(ARMCPU *cpu)
6881 {
6882     /*
6883      * v7 performance monitor control register: same implementor
6884      * field as main ID register, and we implement four counters in
6885      * addition to the cycle count register.
6886      */
6887     unsigned int i, pmcrn = PMCR_NUM_COUNTERS;
6888     ARMCPRegInfo pmcr = {
6889         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6890         .access = PL0_RW,
6891         .type = ARM_CP_IO | ARM_CP_ALIAS,
6892         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6893         .accessfn = pmreg_access, .writefn = pmcr_write,
6894         .raw_writefn = raw_write,
6895     };
6896     ARMCPRegInfo pmcr64 = {
6897         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6898         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6899         .access = PL0_RW, .accessfn = pmreg_access,
6900         .type = ARM_CP_IO,
6901         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6902         .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6903                       PMCRLC,
6904         .writefn = pmcr_write, .raw_writefn = raw_write,
6905     };
6906     define_one_arm_cp_reg(cpu, &pmcr);
6907     define_one_arm_cp_reg(cpu, &pmcr64);
6908     for (i = 0; i < pmcrn; i++) {
6909         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6910         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6911         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6912         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6913         ARMCPRegInfo pmev_regs[] = {
6914             { .name = pmevcntr_name, .cp = 15, .crn = 14,
6915               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6916               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6917               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6918               .accessfn = pmreg_access },
6919             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6920               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6921               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6922               .type = ARM_CP_IO,
6923               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6924               .raw_readfn = pmevcntr_rawread,
6925               .raw_writefn = pmevcntr_rawwrite },
6926             { .name = pmevtyper_name, .cp = 15, .crn = 14,
6927               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6928               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6929               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6930               .accessfn = pmreg_access },
6931             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6932               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6933               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6934               .type = ARM_CP_IO,
6935               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6936               .raw_writefn = pmevtyper_rawwrite },
6937             REGINFO_SENTINEL
6938         };
6939         define_arm_cp_regs(cpu, pmev_regs);
6940         g_free(pmevcntr_name);
6941         g_free(pmevcntr_el0_name);
6942         g_free(pmevtyper_name);
6943         g_free(pmevtyper_el0_name);
6944     }
6945     if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6946         ARMCPRegInfo v81_pmu_regs[] = {
6947             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6948               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6949               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6950               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6951             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6952               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6953               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6954               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6955             REGINFO_SENTINEL
6956         };
6957         define_arm_cp_regs(cpu, v81_pmu_regs);
6958     }
6959     if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6960         static const ARMCPRegInfo v84_pmmir = {
6961             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6962             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6963             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6964             .resetvalue = 0
6965         };
6966         define_one_arm_cp_reg(cpu, &v84_pmmir);
6967     }
6968 }
6969 
6970 /* We don't know until after realize whether there's a GICv3
6971  * attached, and that is what registers the gicv3 sysregs.
6972  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6973  * at runtime.
6974  */
6975 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6976 {
6977     ARMCPU *cpu = env_archcpu(env);
6978     uint64_t pfr1 = cpu->isar.id_pfr1;
6979 
6980     if (env->gicv3state) {
6981         pfr1 |= 1 << 28;
6982     }
6983     return pfr1;
6984 }
6985 
6986 #ifndef CONFIG_USER_ONLY
6987 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6988 {
6989     ARMCPU *cpu = env_archcpu(env);
6990     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6991 
6992     if (env->gicv3state) {
6993         pfr0 |= 1 << 24;
6994     }
6995     return pfr0;
6996 }
6997 #endif
6998 
6999 /* Shared logic between LORID and the rest of the LOR* registers.
7000  * Secure state exclusion has already been dealt with.
7001  */
7002 static CPAccessResult access_lor_ns(CPUARMState *env,
7003                                     const ARMCPRegInfo *ri, bool isread)
7004 {
7005     int el = arm_current_el(env);
7006 
7007     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7008         return CP_ACCESS_TRAP_EL2;
7009     }
7010     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7011         return CP_ACCESS_TRAP_EL3;
7012     }
7013     return CP_ACCESS_OK;
7014 }
7015 
7016 static CPAccessResult access_lor_other(CPUARMState *env,
7017                                        const ARMCPRegInfo *ri, bool isread)
7018 {
7019     if (arm_is_secure_below_el3(env)) {
7020         /* Access denied in secure mode.  */
7021         return CP_ACCESS_TRAP;
7022     }
7023     return access_lor_ns(env, ri, isread);
7024 }
7025 
7026 /*
7027  * A trivial implementation of ARMv8.1-LOR leaves all of these
7028  * registers fixed at 0, which indicates that there are zero
7029  * supported Limited Ordering regions.
7030  */
7031 static const ARMCPRegInfo lor_reginfo[] = {
7032     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7033       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7034       .access = PL1_RW, .accessfn = access_lor_other,
7035       .type = ARM_CP_CONST, .resetvalue = 0 },
7036     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7037       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7038       .access = PL1_RW, .accessfn = access_lor_other,
7039       .type = ARM_CP_CONST, .resetvalue = 0 },
7040     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7041       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7042       .access = PL1_RW, .accessfn = access_lor_other,
7043       .type = ARM_CP_CONST, .resetvalue = 0 },
7044     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7045       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7046       .access = PL1_RW, .accessfn = access_lor_other,
7047       .type = ARM_CP_CONST, .resetvalue = 0 },
7048     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7049       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7050       .access = PL1_R, .accessfn = access_lor_ns,
7051       .type = ARM_CP_CONST, .resetvalue = 0 },
7052     REGINFO_SENTINEL
7053 };
7054 
7055 #ifdef TARGET_AARCH64
7056 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7057                                    bool isread)
7058 {
7059     int el = arm_current_el(env);
7060 
7061     if (el < 2 &&
7062         arm_feature(env, ARM_FEATURE_EL2) &&
7063         !(arm_hcr_el2_eff(env) & HCR_APK)) {
7064         return CP_ACCESS_TRAP_EL2;
7065     }
7066     if (el < 3 &&
7067         arm_feature(env, ARM_FEATURE_EL3) &&
7068         !(env->cp15.scr_el3 & SCR_APK)) {
7069         return CP_ACCESS_TRAP_EL3;
7070     }
7071     return CP_ACCESS_OK;
7072 }
7073 
7074 static const ARMCPRegInfo pauth_reginfo[] = {
7075     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7076       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7077       .access = PL1_RW, .accessfn = access_pauth,
7078       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7079     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7080       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7081       .access = PL1_RW, .accessfn = access_pauth,
7082       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7083     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7084       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7085       .access = PL1_RW, .accessfn = access_pauth,
7086       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7087     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7088       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7089       .access = PL1_RW, .accessfn = access_pauth,
7090       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7091     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7092       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7093       .access = PL1_RW, .accessfn = access_pauth,
7094       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7095     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7096       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7097       .access = PL1_RW, .accessfn = access_pauth,
7098       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7099     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7100       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7101       .access = PL1_RW, .accessfn = access_pauth,
7102       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7103     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7104       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7105       .access = PL1_RW, .accessfn = access_pauth,
7106       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7107     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7108       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7109       .access = PL1_RW, .accessfn = access_pauth,
7110       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7111     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7112       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7113       .access = PL1_RW, .accessfn = access_pauth,
7114       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7115     REGINFO_SENTINEL
7116 };
7117 
7118 static const ARMCPRegInfo tlbirange_reginfo[] = {
7119     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7120       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7121       .access = PL1_W, .type = ARM_CP_NO_RAW,
7122       .writefn = tlbi_aa64_rvae1is_write },
7123     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7124       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7125       .access = PL1_W, .type = ARM_CP_NO_RAW,
7126       .writefn = tlbi_aa64_rvae1is_write },
7127    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7128       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7129       .access = PL1_W, .type = ARM_CP_NO_RAW,
7130       .writefn = tlbi_aa64_rvae1is_write },
7131     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7132       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7133       .access = PL1_W, .type = ARM_CP_NO_RAW,
7134       .writefn = tlbi_aa64_rvae1is_write },
7135     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7136       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7137       .access = PL1_W, .type = ARM_CP_NO_RAW,
7138       .writefn = tlbi_aa64_rvae1is_write },
7139     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7140       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7141       .access = PL1_W, .type = ARM_CP_NO_RAW,
7142       .writefn = tlbi_aa64_rvae1is_write },
7143    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7144       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7145       .access = PL1_W, .type = ARM_CP_NO_RAW,
7146       .writefn = tlbi_aa64_rvae1is_write },
7147     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7148       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7149       .access = PL1_W, .type = ARM_CP_NO_RAW,
7150       .writefn = tlbi_aa64_rvae1is_write },
7151     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7152       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7153       .access = PL1_W, .type = ARM_CP_NO_RAW,
7154       .writefn = tlbi_aa64_rvae1_write },
7155     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7156       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7157       .access = PL1_W, .type = ARM_CP_NO_RAW,
7158       .writefn = tlbi_aa64_rvae1_write },
7159    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7160       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7161       .access = PL1_W, .type = ARM_CP_NO_RAW,
7162       .writefn = tlbi_aa64_rvae1_write },
7163     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7164       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7165       .access = PL1_W, .type = ARM_CP_NO_RAW,
7166       .writefn = tlbi_aa64_rvae1_write },
7167     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7168       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7169       .access = PL2_W, .type = ARM_CP_NOP },
7170     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7171       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7172       .access = PL2_W, .type = ARM_CP_NOP },
7173     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7174       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7175       .access = PL2_W, .type = ARM_CP_NO_RAW,
7176       .writefn = tlbi_aa64_rvae2is_write },
7177    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7178       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7179       .access = PL2_W, .type = ARM_CP_NO_RAW,
7180       .writefn = tlbi_aa64_rvae2is_write },
7181     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7182       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7183       .access = PL2_W, .type = ARM_CP_NOP },
7184    { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7185       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7186       .access = PL2_W, .type = ARM_CP_NOP },
7187    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7188       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7189       .access = PL2_W, .type = ARM_CP_NO_RAW,
7190       .writefn = tlbi_aa64_rvae2is_write },
7191    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7192       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7193       .access = PL2_W, .type = ARM_CP_NO_RAW,
7194       .writefn = tlbi_aa64_rvae2is_write },
7195     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7196       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7197       .access = PL2_W, .type = ARM_CP_NO_RAW,
7198       .writefn = tlbi_aa64_rvae2_write },
7199    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7200       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7201       .access = PL2_W, .type = ARM_CP_NO_RAW,
7202       .writefn = tlbi_aa64_rvae2_write },
7203    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7204       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7205       .access = PL3_W, .type = ARM_CP_NO_RAW,
7206       .writefn = tlbi_aa64_rvae3is_write },
7207    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7208       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7209       .access = PL3_W, .type = ARM_CP_NO_RAW,
7210       .writefn = tlbi_aa64_rvae3is_write },
7211    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7212       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7213       .access = PL3_W, .type = ARM_CP_NO_RAW,
7214       .writefn = tlbi_aa64_rvae3is_write },
7215    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7216       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7217       .access = PL3_W, .type = ARM_CP_NO_RAW,
7218       .writefn = tlbi_aa64_rvae3is_write },
7219    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7220       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7221       .access = PL3_W, .type = ARM_CP_NO_RAW,
7222       .writefn = tlbi_aa64_rvae3_write },
7223    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7224       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7225       .access = PL3_W, .type = ARM_CP_NO_RAW,
7226       .writefn = tlbi_aa64_rvae3_write },
7227     REGINFO_SENTINEL
7228 };
7229 
7230 static const ARMCPRegInfo tlbios_reginfo[] = {
7231     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7232       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7233       .access = PL1_W, .type = ARM_CP_NO_RAW,
7234       .writefn = tlbi_aa64_vmalle1is_write },
7235     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7236       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7237       .access = PL1_W, .type = ARM_CP_NO_RAW,
7238       .writefn = tlbi_aa64_vmalle1is_write },
7239     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7240       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7241       .access = PL2_W, .type = ARM_CP_NO_RAW,
7242       .writefn = tlbi_aa64_alle2is_write },
7243    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7244       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7245       .access = PL2_W, .type = ARM_CP_NO_RAW,
7246       .writefn = tlbi_aa64_alle1is_write },
7247     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7248       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7249       .access = PL2_W, .type = ARM_CP_NO_RAW,
7250       .writefn = tlbi_aa64_alle1is_write },
7251     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7252       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7253       .access = PL2_W, .type = ARM_CP_NOP },
7254     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7255       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7256       .access = PL2_W, .type = ARM_CP_NOP },
7257     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7258       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7259       .access = PL2_W, .type = ARM_CP_NOP },
7260     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7261       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7262       .access = PL2_W, .type = ARM_CP_NOP },
7263     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7264       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7265       .access = PL3_W, .type = ARM_CP_NO_RAW,
7266       .writefn = tlbi_aa64_alle3is_write },
7267     REGINFO_SENTINEL
7268 };
7269 
7270 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7271 {
7272     Error *err = NULL;
7273     uint64_t ret;
7274 
7275     /* Success sets NZCV = 0000.  */
7276     env->NF = env->CF = env->VF = 0, env->ZF = 1;
7277 
7278     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7279         /*
7280          * ??? Failed, for unknown reasons in the crypto subsystem.
7281          * The best we can do is log the reason and return the
7282          * timed-out indication to the guest.  There is no reason
7283          * we know to expect this failure to be transitory, so the
7284          * guest may well hang retrying the operation.
7285          */
7286         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7287                       ri->name, error_get_pretty(err));
7288         error_free(err);
7289 
7290         env->ZF = 0; /* NZCF = 0100 */
7291         return 0;
7292     }
7293     return ret;
7294 }
7295 
7296 /* We do not support re-seeding, so the two registers operate the same.  */
7297 static const ARMCPRegInfo rndr_reginfo[] = {
7298     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7299       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7300       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7301       .access = PL0_R, .readfn = rndr_readfn },
7302     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7303       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7304       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7305       .access = PL0_R, .readfn = rndr_readfn },
7306     REGINFO_SENTINEL
7307 };
7308 
7309 #ifndef CONFIG_USER_ONLY
7310 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7311                           uint64_t value)
7312 {
7313     ARMCPU *cpu = env_archcpu(env);
7314     /* CTR_EL0 System register -> DminLine, bits [19:16] */
7315     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7316     uint64_t vaddr_in = (uint64_t) value;
7317     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7318     void *haddr;
7319     int mem_idx = cpu_mmu_index(env, false);
7320 
7321     /* This won't be crossing page boundaries */
7322     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7323     if (haddr) {
7324 
7325         ram_addr_t offset;
7326         MemoryRegion *mr;
7327 
7328         /* RCU lock is already being held */
7329         mr = memory_region_from_host(haddr, &offset);
7330 
7331         if (mr) {
7332             memory_region_writeback(mr, offset, dline_size);
7333         }
7334     }
7335 }
7336 
7337 static const ARMCPRegInfo dcpop_reg[] = {
7338     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7339       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7340       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7341       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7342     REGINFO_SENTINEL
7343 };
7344 
7345 static const ARMCPRegInfo dcpodp_reg[] = {
7346     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7347       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7348       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7349       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7350     REGINFO_SENTINEL
7351 };
7352 #endif /*CONFIG_USER_ONLY*/
7353 
7354 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7355                                        bool isread)
7356 {
7357     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7358         return CP_ACCESS_TRAP_EL2;
7359     }
7360 
7361     return CP_ACCESS_OK;
7362 }
7363 
7364 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7365                                  bool isread)
7366 {
7367     int el = arm_current_el(env);
7368 
7369     if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7370         uint64_t hcr = arm_hcr_el2_eff(env);
7371         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7372             return CP_ACCESS_TRAP_EL2;
7373         }
7374     }
7375     if (el < 3 &&
7376         arm_feature(env, ARM_FEATURE_EL3) &&
7377         !(env->cp15.scr_el3 & SCR_ATA)) {
7378         return CP_ACCESS_TRAP_EL3;
7379     }
7380     return CP_ACCESS_OK;
7381 }
7382 
7383 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7384 {
7385     return env->pstate & PSTATE_TCO;
7386 }
7387 
7388 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7389 {
7390     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7391 }
7392 
7393 static const ARMCPRegInfo mte_reginfo[] = {
7394     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7395       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7396       .access = PL1_RW, .accessfn = access_mte,
7397       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7398     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7399       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7400       .access = PL1_RW, .accessfn = access_mte,
7401       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7402     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7403       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7404       .access = PL2_RW, .accessfn = access_mte,
7405       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7406     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7407       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7408       .access = PL3_RW,
7409       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7410     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7411       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7412       .access = PL1_RW, .accessfn = access_mte,
7413       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7414     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7415       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7416       .access = PL1_RW, .accessfn = access_mte,
7417       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7418     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7419       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7420       .access = PL1_R, .accessfn = access_aa64_tid5,
7421       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7422     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7423       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7424       .type = ARM_CP_NO_RAW,
7425       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7426     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7427       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7428       .type = ARM_CP_NOP, .access = PL1_W,
7429       .accessfn = aa64_cacheop_poc_access },
7430     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7431       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7432       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7433     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7434       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7435       .type = ARM_CP_NOP, .access = PL1_W,
7436       .accessfn = aa64_cacheop_poc_access },
7437     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7438       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7439       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7440     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7441       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7442       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7443     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7444       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7445       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7446     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7447       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7448       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7449     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7450       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7451       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7452     REGINFO_SENTINEL
7453 };
7454 
7455 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7456     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7457       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7458       .type = ARM_CP_CONST, .access = PL0_RW, },
7459     REGINFO_SENTINEL
7460 };
7461 
7462 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7463     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7464       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7465       .type = ARM_CP_NOP, .access = PL0_W,
7466       .accessfn = aa64_cacheop_poc_access },
7467     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7468       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7469       .type = ARM_CP_NOP, .access = PL0_W,
7470       .accessfn = aa64_cacheop_poc_access },
7471     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7472       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7473       .type = ARM_CP_NOP, .access = PL0_W,
7474       .accessfn = aa64_cacheop_poc_access },
7475     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7476       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7477       .type = ARM_CP_NOP, .access = PL0_W,
7478       .accessfn = aa64_cacheop_poc_access },
7479     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7480       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7481       .type = ARM_CP_NOP, .access = PL0_W,
7482       .accessfn = aa64_cacheop_poc_access },
7483     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7484       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7485       .type = ARM_CP_NOP, .access = PL0_W,
7486       .accessfn = aa64_cacheop_poc_access },
7487     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7488       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7489       .type = ARM_CP_NOP, .access = PL0_W,
7490       .accessfn = aa64_cacheop_poc_access },
7491     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7492       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7493       .type = ARM_CP_NOP, .access = PL0_W,
7494       .accessfn = aa64_cacheop_poc_access },
7495     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7496       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7497       .access = PL0_W, .type = ARM_CP_DC_GVA,
7498 #ifndef CONFIG_USER_ONLY
7499       /* Avoid overhead of an access check that always passes in user-mode */
7500       .accessfn = aa64_zva_access,
7501 #endif
7502     },
7503     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7504       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7505       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7506 #ifndef CONFIG_USER_ONLY
7507       /* Avoid overhead of an access check that always passes in user-mode */
7508       .accessfn = aa64_zva_access,
7509 #endif
7510     },
7511     REGINFO_SENTINEL
7512 };
7513 
7514 #endif
7515 
7516 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7517                                      bool isread)
7518 {
7519     int el = arm_current_el(env);
7520 
7521     if (el == 0) {
7522         uint64_t sctlr = arm_sctlr(env, el);
7523         if (!(sctlr & SCTLR_EnRCTX)) {
7524             return CP_ACCESS_TRAP;
7525         }
7526     } else if (el == 1) {
7527         uint64_t hcr = arm_hcr_el2_eff(env);
7528         if (hcr & HCR_NV) {
7529             return CP_ACCESS_TRAP_EL2;
7530         }
7531     }
7532     return CP_ACCESS_OK;
7533 }
7534 
7535 static const ARMCPRegInfo predinv_reginfo[] = {
7536     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7537       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7538       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7539     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7540       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7541       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7542     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7543       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7544       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7545     /*
7546      * Note the AArch32 opcodes have a different OPC1.
7547      */
7548     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7549       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7550       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7551     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7552       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7553       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7554     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7555       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7556       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7557     REGINFO_SENTINEL
7558 };
7559 
7560 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7561 {
7562     /* Read the high 32 bits of the current CCSIDR */
7563     return extract64(ccsidr_read(env, ri), 32, 32);
7564 }
7565 
7566 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7567     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7568       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7569       .access = PL1_R,
7570       .accessfn = access_aa64_tid2,
7571       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7572     REGINFO_SENTINEL
7573 };
7574 
7575 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7576                                        bool isread)
7577 {
7578     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7579         return CP_ACCESS_TRAP_EL2;
7580     }
7581 
7582     return CP_ACCESS_OK;
7583 }
7584 
7585 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7586                                        bool isread)
7587 {
7588     if (arm_feature(env, ARM_FEATURE_V8)) {
7589         return access_aa64_tid3(env, ri, isread);
7590     }
7591 
7592     return CP_ACCESS_OK;
7593 }
7594 
7595 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7596                                      bool isread)
7597 {
7598     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7599         return CP_ACCESS_TRAP_EL2;
7600     }
7601 
7602     return CP_ACCESS_OK;
7603 }
7604 
7605 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7606                                         const ARMCPRegInfo *ri, bool isread)
7607 {
7608     /*
7609      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7610      * in v7A, not in v8A.
7611      */
7612     if (!arm_feature(env, ARM_FEATURE_V8) &&
7613         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7614         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7615         return CP_ACCESS_TRAP_EL2;
7616     }
7617     return CP_ACCESS_OK;
7618 }
7619 
7620 static const ARMCPRegInfo jazelle_regs[] = {
7621     { .name = "JIDR",
7622       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7623       .access = PL1_R, .accessfn = access_jazelle,
7624       .type = ARM_CP_CONST, .resetvalue = 0 },
7625     { .name = "JOSCR",
7626       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7627       .accessfn = access_joscr_jmcr,
7628       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7629     { .name = "JMCR",
7630       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7631       .accessfn = access_joscr_jmcr,
7632       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7633     REGINFO_SENTINEL
7634 };
7635 
7636 static const ARMCPRegInfo vhe_reginfo[] = {
7637     { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7638       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7639       .access = PL2_RW,
7640       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7641     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7642       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7643       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7644       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7645 #ifndef CONFIG_USER_ONLY
7646     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7647       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7648       .fieldoffset =
7649         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7650       .type = ARM_CP_IO, .access = PL2_RW,
7651       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7652     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7653       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7654       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7655       .resetfn = gt_hv_timer_reset,
7656       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7657     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7658       .type = ARM_CP_IO,
7659       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7660       .access = PL2_RW,
7661       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7662       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7663     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7664       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7665       .type = ARM_CP_IO | ARM_CP_ALIAS,
7666       .access = PL2_RW, .accessfn = e2h_access,
7667       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7668       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7669     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7670       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7671       .type = ARM_CP_IO | ARM_CP_ALIAS,
7672       .access = PL2_RW, .accessfn = e2h_access,
7673       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7674       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7675     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7676       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7677       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7678       .access = PL2_RW, .accessfn = e2h_access,
7679       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7680     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7681       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7682       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7683       .access = PL2_RW, .accessfn = e2h_access,
7684       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7685     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7686       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7687       .type = ARM_CP_IO | ARM_CP_ALIAS,
7688       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7689       .access = PL2_RW, .accessfn = e2h_access,
7690       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7691     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7692       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7693       .type = ARM_CP_IO | ARM_CP_ALIAS,
7694       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7695       .access = PL2_RW, .accessfn = e2h_access,
7696       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7697 #endif
7698     REGINFO_SENTINEL
7699 };
7700 
7701 #ifndef CONFIG_USER_ONLY
7702 static const ARMCPRegInfo ats1e1_reginfo[] = {
7703     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7704       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7705       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7706       .writefn = ats_write64 },
7707     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7708       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7709       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7710       .writefn = ats_write64 },
7711     REGINFO_SENTINEL
7712 };
7713 
7714 static const ARMCPRegInfo ats1cp_reginfo[] = {
7715     { .name = "ATS1CPRP",
7716       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7717       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7718       .writefn = ats_write },
7719     { .name = "ATS1CPWP",
7720       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7721       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7722       .writefn = ats_write },
7723     REGINFO_SENTINEL
7724 };
7725 #endif
7726 
7727 /*
7728  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7729  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7730  * is non-zero, which is never for ARMv7, optionally in ARMv8
7731  * and mandatorily for ARMv8.2 and up.
7732  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7733  * implementation is RAZ/WI we can ignore this detail, as we
7734  * do for ACTLR.
7735  */
7736 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7737     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7738       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7739       .access = PL1_RW, .accessfn = access_tacr,
7740       .type = ARM_CP_CONST, .resetvalue = 0 },
7741     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7742       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7743       .access = PL2_RW, .type = ARM_CP_CONST,
7744       .resetvalue = 0 },
7745     REGINFO_SENTINEL
7746 };
7747 
7748 void register_cp_regs_for_features(ARMCPU *cpu)
7749 {
7750     /* Register all the coprocessor registers based on feature bits */
7751     CPUARMState *env = &cpu->env;
7752     if (arm_feature(env, ARM_FEATURE_M)) {
7753         /* M profile has no coprocessor registers */
7754         return;
7755     }
7756 
7757     define_arm_cp_regs(cpu, cp_reginfo);
7758     if (!arm_feature(env, ARM_FEATURE_V8)) {
7759         /* Must go early as it is full of wildcards that may be
7760          * overridden by later definitions.
7761          */
7762         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7763     }
7764 
7765     if (arm_feature(env, ARM_FEATURE_V6)) {
7766         /* The ID registers all have impdef reset values */
7767         ARMCPRegInfo v6_idregs[] = {
7768             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7769               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7770               .access = PL1_R, .type = ARM_CP_CONST,
7771               .accessfn = access_aa32_tid3,
7772               .resetvalue = cpu->isar.id_pfr0 },
7773             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7774              * the value of the GIC field until after we define these regs.
7775              */
7776             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7777               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7778               .access = PL1_R, .type = ARM_CP_NO_RAW,
7779               .accessfn = access_aa32_tid3,
7780               .readfn = id_pfr1_read,
7781               .writefn = arm_cp_write_ignore },
7782             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7783               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7784               .access = PL1_R, .type = ARM_CP_CONST,
7785               .accessfn = access_aa32_tid3,
7786               .resetvalue = cpu->isar.id_dfr0 },
7787             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7788               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7789               .access = PL1_R, .type = ARM_CP_CONST,
7790               .accessfn = access_aa32_tid3,
7791               .resetvalue = cpu->id_afr0 },
7792             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7793               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7794               .access = PL1_R, .type = ARM_CP_CONST,
7795               .accessfn = access_aa32_tid3,
7796               .resetvalue = cpu->isar.id_mmfr0 },
7797             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7798               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7799               .access = PL1_R, .type = ARM_CP_CONST,
7800               .accessfn = access_aa32_tid3,
7801               .resetvalue = cpu->isar.id_mmfr1 },
7802             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7803               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7804               .access = PL1_R, .type = ARM_CP_CONST,
7805               .accessfn = access_aa32_tid3,
7806               .resetvalue = cpu->isar.id_mmfr2 },
7807             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7808               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7809               .access = PL1_R, .type = ARM_CP_CONST,
7810               .accessfn = access_aa32_tid3,
7811               .resetvalue = cpu->isar.id_mmfr3 },
7812             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7813               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7814               .access = PL1_R, .type = ARM_CP_CONST,
7815               .accessfn = access_aa32_tid3,
7816               .resetvalue = cpu->isar.id_isar0 },
7817             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7818               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7819               .access = PL1_R, .type = ARM_CP_CONST,
7820               .accessfn = access_aa32_tid3,
7821               .resetvalue = cpu->isar.id_isar1 },
7822             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7823               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7824               .access = PL1_R, .type = ARM_CP_CONST,
7825               .accessfn = access_aa32_tid3,
7826               .resetvalue = cpu->isar.id_isar2 },
7827             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7828               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7829               .access = PL1_R, .type = ARM_CP_CONST,
7830               .accessfn = access_aa32_tid3,
7831               .resetvalue = cpu->isar.id_isar3 },
7832             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7833               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7834               .access = PL1_R, .type = ARM_CP_CONST,
7835               .accessfn = access_aa32_tid3,
7836               .resetvalue = cpu->isar.id_isar4 },
7837             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7838               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7839               .access = PL1_R, .type = ARM_CP_CONST,
7840               .accessfn = access_aa32_tid3,
7841               .resetvalue = cpu->isar.id_isar5 },
7842             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7843               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7844               .access = PL1_R, .type = ARM_CP_CONST,
7845               .accessfn = access_aa32_tid3,
7846               .resetvalue = cpu->isar.id_mmfr4 },
7847             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7848               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7849               .access = PL1_R, .type = ARM_CP_CONST,
7850               .accessfn = access_aa32_tid3,
7851               .resetvalue = cpu->isar.id_isar6 },
7852             REGINFO_SENTINEL
7853         };
7854         define_arm_cp_regs(cpu, v6_idregs);
7855         define_arm_cp_regs(cpu, v6_cp_reginfo);
7856     } else {
7857         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7858     }
7859     if (arm_feature(env, ARM_FEATURE_V6K)) {
7860         define_arm_cp_regs(cpu, v6k_cp_reginfo);
7861     }
7862     if (arm_feature(env, ARM_FEATURE_V7MP) &&
7863         !arm_feature(env, ARM_FEATURE_PMSA)) {
7864         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7865     }
7866     if (arm_feature(env, ARM_FEATURE_V7VE)) {
7867         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7868     }
7869     if (arm_feature(env, ARM_FEATURE_V7)) {
7870         ARMCPRegInfo clidr = {
7871             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7872             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7873             .access = PL1_R, .type = ARM_CP_CONST,
7874             .accessfn = access_aa64_tid2,
7875             .resetvalue = cpu->clidr
7876         };
7877         define_one_arm_cp_reg(cpu, &clidr);
7878         define_arm_cp_regs(cpu, v7_cp_reginfo);
7879         define_debug_regs(cpu);
7880         define_pmu_regs(cpu);
7881     } else {
7882         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7883     }
7884     if (arm_feature(env, ARM_FEATURE_V8)) {
7885         /* AArch64 ID registers, which all have impdef reset values.
7886          * Note that within the ID register ranges the unused slots
7887          * must all RAZ, not UNDEF; future architecture versions may
7888          * define new registers here.
7889          */
7890         ARMCPRegInfo v8_idregs[] = {
7891             /*
7892              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7893              * emulation because we don't know the right value for the
7894              * GIC field until after we define these regs.
7895              */
7896             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7897               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7898               .access = PL1_R,
7899 #ifdef CONFIG_USER_ONLY
7900               .type = ARM_CP_CONST,
7901               .resetvalue = cpu->isar.id_aa64pfr0
7902 #else
7903               .type = ARM_CP_NO_RAW,
7904               .accessfn = access_aa64_tid3,
7905               .readfn = id_aa64pfr0_read,
7906               .writefn = arm_cp_write_ignore
7907 #endif
7908             },
7909             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7910               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7911               .access = PL1_R, .type = ARM_CP_CONST,
7912               .accessfn = access_aa64_tid3,
7913               .resetvalue = cpu->isar.id_aa64pfr1},
7914             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7915               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7916               .access = PL1_R, .type = ARM_CP_CONST,
7917               .accessfn = access_aa64_tid3,
7918               .resetvalue = 0 },
7919             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7920               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7921               .access = PL1_R, .type = ARM_CP_CONST,
7922               .accessfn = access_aa64_tid3,
7923               .resetvalue = 0 },
7924             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7925               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7926               .access = PL1_R, .type = ARM_CP_CONST,
7927               .accessfn = access_aa64_tid3,
7928               .resetvalue = cpu->isar.id_aa64zfr0 },
7929             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7930               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7931               .access = PL1_R, .type = ARM_CP_CONST,
7932               .accessfn = access_aa64_tid3,
7933               .resetvalue = 0 },
7934             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7935               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7936               .access = PL1_R, .type = ARM_CP_CONST,
7937               .accessfn = access_aa64_tid3,
7938               .resetvalue = 0 },
7939             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7940               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7941               .access = PL1_R, .type = ARM_CP_CONST,
7942               .accessfn = access_aa64_tid3,
7943               .resetvalue = 0 },
7944             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7945               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7946               .access = PL1_R, .type = ARM_CP_CONST,
7947               .accessfn = access_aa64_tid3,
7948               .resetvalue = cpu->isar.id_aa64dfr0 },
7949             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7950               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7951               .access = PL1_R, .type = ARM_CP_CONST,
7952               .accessfn = access_aa64_tid3,
7953               .resetvalue = cpu->isar.id_aa64dfr1 },
7954             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7955               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7956               .access = PL1_R, .type = ARM_CP_CONST,
7957               .accessfn = access_aa64_tid3,
7958               .resetvalue = 0 },
7959             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7960               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7961               .access = PL1_R, .type = ARM_CP_CONST,
7962               .accessfn = access_aa64_tid3,
7963               .resetvalue = 0 },
7964             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7965               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7966               .access = PL1_R, .type = ARM_CP_CONST,
7967               .accessfn = access_aa64_tid3,
7968               .resetvalue = cpu->id_aa64afr0 },
7969             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7970               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7971               .access = PL1_R, .type = ARM_CP_CONST,
7972               .accessfn = access_aa64_tid3,
7973               .resetvalue = cpu->id_aa64afr1 },
7974             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7975               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7976               .access = PL1_R, .type = ARM_CP_CONST,
7977               .accessfn = access_aa64_tid3,
7978               .resetvalue = 0 },
7979             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7980               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7981               .access = PL1_R, .type = ARM_CP_CONST,
7982               .accessfn = access_aa64_tid3,
7983               .resetvalue = 0 },
7984             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7985               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7986               .access = PL1_R, .type = ARM_CP_CONST,
7987               .accessfn = access_aa64_tid3,
7988               .resetvalue = cpu->isar.id_aa64isar0 },
7989             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7990               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7991               .access = PL1_R, .type = ARM_CP_CONST,
7992               .accessfn = access_aa64_tid3,
7993               .resetvalue = cpu->isar.id_aa64isar1 },
7994             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7995               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7996               .access = PL1_R, .type = ARM_CP_CONST,
7997               .accessfn = access_aa64_tid3,
7998               .resetvalue = 0 },
7999             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8000               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8001               .access = PL1_R, .type = ARM_CP_CONST,
8002               .accessfn = access_aa64_tid3,
8003               .resetvalue = 0 },
8004             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8005               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8006               .access = PL1_R, .type = ARM_CP_CONST,
8007               .accessfn = access_aa64_tid3,
8008               .resetvalue = 0 },
8009             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8010               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8011               .access = PL1_R, .type = ARM_CP_CONST,
8012               .accessfn = access_aa64_tid3,
8013               .resetvalue = 0 },
8014             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8015               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8016               .access = PL1_R, .type = ARM_CP_CONST,
8017               .accessfn = access_aa64_tid3,
8018               .resetvalue = 0 },
8019             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8020               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8021               .access = PL1_R, .type = ARM_CP_CONST,
8022               .accessfn = access_aa64_tid3,
8023               .resetvalue = 0 },
8024             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8025               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8026               .access = PL1_R, .type = ARM_CP_CONST,
8027               .accessfn = access_aa64_tid3,
8028               .resetvalue = cpu->isar.id_aa64mmfr0 },
8029             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8030               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8031               .access = PL1_R, .type = ARM_CP_CONST,
8032               .accessfn = access_aa64_tid3,
8033               .resetvalue = cpu->isar.id_aa64mmfr1 },
8034             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8035               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8036               .access = PL1_R, .type = ARM_CP_CONST,
8037               .accessfn = access_aa64_tid3,
8038               .resetvalue = cpu->isar.id_aa64mmfr2 },
8039             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8040               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8041               .access = PL1_R, .type = ARM_CP_CONST,
8042               .accessfn = access_aa64_tid3,
8043               .resetvalue = 0 },
8044             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8045               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8046               .access = PL1_R, .type = ARM_CP_CONST,
8047               .accessfn = access_aa64_tid3,
8048               .resetvalue = 0 },
8049             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8050               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8051               .access = PL1_R, .type = ARM_CP_CONST,
8052               .accessfn = access_aa64_tid3,
8053               .resetvalue = 0 },
8054             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8055               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8056               .access = PL1_R, .type = ARM_CP_CONST,
8057               .accessfn = access_aa64_tid3,
8058               .resetvalue = 0 },
8059             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8060               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8061               .access = PL1_R, .type = ARM_CP_CONST,
8062               .accessfn = access_aa64_tid3,
8063               .resetvalue = 0 },
8064             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8065               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8066               .access = PL1_R, .type = ARM_CP_CONST,
8067               .accessfn = access_aa64_tid3,
8068               .resetvalue = cpu->isar.mvfr0 },
8069             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8070               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8071               .access = PL1_R, .type = ARM_CP_CONST,
8072               .accessfn = access_aa64_tid3,
8073               .resetvalue = cpu->isar.mvfr1 },
8074             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8075               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8076               .access = PL1_R, .type = ARM_CP_CONST,
8077               .accessfn = access_aa64_tid3,
8078               .resetvalue = cpu->isar.mvfr2 },
8079             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8080               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8081               .access = PL1_R, .type = ARM_CP_CONST,
8082               .accessfn = access_aa64_tid3,
8083               .resetvalue = 0 },
8084             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8085               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8086               .access = PL1_R, .type = ARM_CP_CONST,
8087               .accessfn = access_aa64_tid3,
8088               .resetvalue = cpu->isar.id_pfr2 },
8089             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8090               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8091               .access = PL1_R, .type = ARM_CP_CONST,
8092               .accessfn = access_aa64_tid3,
8093               .resetvalue = 0 },
8094             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8095               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8096               .access = PL1_R, .type = ARM_CP_CONST,
8097               .accessfn = access_aa64_tid3,
8098               .resetvalue = 0 },
8099             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8100               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8101               .access = PL1_R, .type = ARM_CP_CONST,
8102               .accessfn = access_aa64_tid3,
8103               .resetvalue = 0 },
8104             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8105               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8106               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8107               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8108             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8109               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8110               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8111               .resetvalue = cpu->pmceid0 },
8112             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8113               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8114               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8115               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8116             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8117               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8118               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8119               .resetvalue = cpu->pmceid1 },
8120             REGINFO_SENTINEL
8121         };
8122 #ifdef CONFIG_USER_ONLY
8123         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8124             { .name = "ID_AA64PFR0_EL1",
8125               .exported_bits = 0x000f000f00ff0000,
8126               .fixed_bits    = 0x0000000000000011 },
8127             { .name = "ID_AA64PFR1_EL1",
8128               .exported_bits = 0x00000000000000f0 },
8129             { .name = "ID_AA64PFR*_EL1_RESERVED",
8130               .is_glob = true                     },
8131             { .name = "ID_AA64ZFR0_EL1"           },
8132             { .name = "ID_AA64MMFR0_EL1",
8133               .fixed_bits    = 0x00000000ff000000 },
8134             { .name = "ID_AA64MMFR1_EL1"          },
8135             { .name = "ID_AA64MMFR*_EL1_RESERVED",
8136               .is_glob = true                     },
8137             { .name = "ID_AA64DFR0_EL1",
8138               .fixed_bits    = 0x0000000000000006 },
8139             { .name = "ID_AA64DFR1_EL1"           },
8140             { .name = "ID_AA64DFR*_EL1_RESERVED",
8141               .is_glob = true                     },
8142             { .name = "ID_AA64AFR*",
8143               .is_glob = true                     },
8144             { .name = "ID_AA64ISAR0_EL1",
8145               .exported_bits = 0x00fffffff0fffff0 },
8146             { .name = "ID_AA64ISAR1_EL1",
8147               .exported_bits = 0x000000f0ffffffff },
8148             { .name = "ID_AA64ISAR*_EL1_RESERVED",
8149               .is_glob = true                     },
8150             REGUSERINFO_SENTINEL
8151         };
8152         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8153 #endif
8154         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
8155         if (!arm_feature(env, ARM_FEATURE_EL3) &&
8156             !arm_feature(env, ARM_FEATURE_EL2)) {
8157             ARMCPRegInfo rvbar = {
8158                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
8159                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8160                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
8161             };
8162             define_one_arm_cp_reg(cpu, &rvbar);
8163         }
8164         define_arm_cp_regs(cpu, v8_idregs);
8165         define_arm_cp_regs(cpu, v8_cp_reginfo);
8166     }
8167     if (arm_feature(env, ARM_FEATURE_EL2)) {
8168         uint64_t vmpidr_def = mpidr_read_val(env);
8169         ARMCPRegInfo vpidr_regs[] = {
8170             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8171               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8172               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8173               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
8174               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8175             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8176               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8177               .access = PL2_RW, .resetvalue = cpu->midr,
8178               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8179             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8180               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8181               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8182               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
8183               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8184             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8185               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8186               .access = PL2_RW,
8187               .resetvalue = vmpidr_def,
8188               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8189             REGINFO_SENTINEL
8190         };
8191         define_arm_cp_regs(cpu, vpidr_regs);
8192         define_arm_cp_regs(cpu, el2_cp_reginfo);
8193         if (arm_feature(env, ARM_FEATURE_V8)) {
8194             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8195         }
8196         if (cpu_isar_feature(aa64_sel2, cpu)) {
8197             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8198         }
8199         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8200         if (!arm_feature(env, ARM_FEATURE_EL3)) {
8201             ARMCPRegInfo rvbar = {
8202                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8203                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8204                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
8205             };
8206             define_one_arm_cp_reg(cpu, &rvbar);
8207         }
8208     } else {
8209         /* If EL2 is missing but higher ELs are enabled, we need to
8210          * register the no_el2 reginfos.
8211          */
8212         if (arm_feature(env, ARM_FEATURE_EL3)) {
8213             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
8214              * of MIDR_EL1 and MPIDR_EL1.
8215              */
8216             ARMCPRegInfo vpidr_regs[] = {
8217                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8218                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8219                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
8220                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
8221                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8222                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8223                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8224                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
8225                   .type = ARM_CP_NO_RAW,
8226                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
8227                 REGINFO_SENTINEL
8228             };
8229             define_arm_cp_regs(cpu, vpidr_regs);
8230             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
8231             if (arm_feature(env, ARM_FEATURE_V8)) {
8232                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
8233             }
8234         }
8235     }
8236     if (arm_feature(env, ARM_FEATURE_EL3)) {
8237         define_arm_cp_regs(cpu, el3_cp_reginfo);
8238         ARMCPRegInfo el3_regs[] = {
8239             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8240               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8241               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
8242             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8243               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8244               .access = PL3_RW,
8245               .raw_writefn = raw_write, .writefn = sctlr_write,
8246               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8247               .resetvalue = cpu->reset_sctlr },
8248             REGINFO_SENTINEL
8249         };
8250 
8251         define_arm_cp_regs(cpu, el3_regs);
8252     }
8253     /* The behaviour of NSACR is sufficiently various that we don't
8254      * try to describe it in a single reginfo:
8255      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
8256      *     reads as constant 0xc00 from NS EL1 and NS EL2
8257      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8258      *  if v7 without EL3, register doesn't exist
8259      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8260      */
8261     if (arm_feature(env, ARM_FEATURE_EL3)) {
8262         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8263             ARMCPRegInfo nsacr = {
8264                 .name = "NSACR", .type = ARM_CP_CONST,
8265                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8266                 .access = PL1_RW, .accessfn = nsacr_access,
8267                 .resetvalue = 0xc00
8268             };
8269             define_one_arm_cp_reg(cpu, &nsacr);
8270         } else {
8271             ARMCPRegInfo nsacr = {
8272                 .name = "NSACR",
8273                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8274                 .access = PL3_RW | PL1_R,
8275                 .resetvalue = 0,
8276                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8277             };
8278             define_one_arm_cp_reg(cpu, &nsacr);
8279         }
8280     } else {
8281         if (arm_feature(env, ARM_FEATURE_V8)) {
8282             ARMCPRegInfo nsacr = {
8283                 .name = "NSACR", .type = ARM_CP_CONST,
8284                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8285                 .access = PL1_R,
8286                 .resetvalue = 0xc00
8287             };
8288             define_one_arm_cp_reg(cpu, &nsacr);
8289         }
8290     }
8291 
8292     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8293         if (arm_feature(env, ARM_FEATURE_V6)) {
8294             /* PMSAv6 not implemented */
8295             assert(arm_feature(env, ARM_FEATURE_V7));
8296             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8297             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8298         } else {
8299             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8300         }
8301     } else {
8302         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8303         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8304         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8305         if (cpu_isar_feature(aa32_hpd, cpu)) {
8306             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8307         }
8308     }
8309     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8310         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8311     }
8312     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8313         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8314     }
8315     if (arm_feature(env, ARM_FEATURE_VAPA)) {
8316         define_arm_cp_regs(cpu, vapa_cp_reginfo);
8317     }
8318     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8319         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8320     }
8321     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8322         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8323     }
8324     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8325         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8326     }
8327     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8328         define_arm_cp_regs(cpu, omap_cp_reginfo);
8329     }
8330     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8331         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8332     }
8333     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8334         define_arm_cp_regs(cpu, xscale_cp_reginfo);
8335     }
8336     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8337         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8338     }
8339     if (arm_feature(env, ARM_FEATURE_LPAE)) {
8340         define_arm_cp_regs(cpu, lpae_cp_reginfo);
8341     }
8342     if (cpu_isar_feature(aa32_jazelle, cpu)) {
8343         define_arm_cp_regs(cpu, jazelle_regs);
8344     }
8345     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
8346      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8347      * be read-only (ie write causes UNDEF exception).
8348      */
8349     {
8350         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8351             /* Pre-v8 MIDR space.
8352              * Note that the MIDR isn't a simple constant register because
8353              * of the TI925 behaviour where writes to another register can
8354              * cause the MIDR value to change.
8355              *
8356              * Unimplemented registers in the c15 0 0 0 space default to
8357              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8358              * and friends override accordingly.
8359              */
8360             { .name = "MIDR",
8361               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8362               .access = PL1_R, .resetvalue = cpu->midr,
8363               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8364               .readfn = midr_read,
8365               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8366               .type = ARM_CP_OVERRIDE },
8367             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8368             { .name = "DUMMY",
8369               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8370               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8371             { .name = "DUMMY",
8372               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8373               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8374             { .name = "DUMMY",
8375               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8376               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8377             { .name = "DUMMY",
8378               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8379               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8380             { .name = "DUMMY",
8381               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8382               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8383             REGINFO_SENTINEL
8384         };
8385         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8386             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8387               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8388               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8389               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8390               .readfn = midr_read },
8391             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8392             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8393               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8394               .access = PL1_R, .resetvalue = cpu->midr },
8395             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8396               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8397               .access = PL1_R, .resetvalue = cpu->midr },
8398             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8399               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8400               .access = PL1_R,
8401               .accessfn = access_aa64_tid1,
8402               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8403             REGINFO_SENTINEL
8404         };
8405         ARMCPRegInfo id_cp_reginfo[] = {
8406             /* These are common to v8 and pre-v8 */
8407             { .name = "CTR",
8408               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8409               .access = PL1_R, .accessfn = ctr_el0_access,
8410               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8411             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8412               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8413               .access = PL0_R, .accessfn = ctr_el0_access,
8414               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8415             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8416             { .name = "TCMTR",
8417               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8418               .access = PL1_R,
8419               .accessfn = access_aa32_tid1,
8420               .type = ARM_CP_CONST, .resetvalue = 0 },
8421             REGINFO_SENTINEL
8422         };
8423         /* TLBTR is specific to VMSA */
8424         ARMCPRegInfo id_tlbtr_reginfo = {
8425               .name = "TLBTR",
8426               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8427               .access = PL1_R,
8428               .accessfn = access_aa32_tid1,
8429               .type = ARM_CP_CONST, .resetvalue = 0,
8430         };
8431         /* MPUIR is specific to PMSA V6+ */
8432         ARMCPRegInfo id_mpuir_reginfo = {
8433               .name = "MPUIR",
8434               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8435               .access = PL1_R, .type = ARM_CP_CONST,
8436               .resetvalue = cpu->pmsav7_dregion << 8
8437         };
8438         ARMCPRegInfo crn0_wi_reginfo = {
8439             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8440             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8441             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8442         };
8443 #ifdef CONFIG_USER_ONLY
8444         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8445             { .name = "MIDR_EL1",
8446               .exported_bits = 0x00000000ffffffff },
8447             { .name = "REVIDR_EL1"                },
8448             REGUSERINFO_SENTINEL
8449         };
8450         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8451 #endif
8452         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8453             arm_feature(env, ARM_FEATURE_STRONGARM)) {
8454             ARMCPRegInfo *r;
8455             /* Register the blanket "writes ignored" value first to cover the
8456              * whole space. Then update the specific ID registers to allow write
8457              * access, so that they ignore writes rather than causing them to
8458              * UNDEF.
8459              */
8460             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8461             for (r = id_pre_v8_midr_cp_reginfo;
8462                  r->type != ARM_CP_SENTINEL; r++) {
8463                 r->access = PL1_RW;
8464             }
8465             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
8466                 r->access = PL1_RW;
8467             }
8468             id_mpuir_reginfo.access = PL1_RW;
8469             id_tlbtr_reginfo.access = PL1_RW;
8470         }
8471         if (arm_feature(env, ARM_FEATURE_V8)) {
8472             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8473         } else {
8474             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8475         }
8476         define_arm_cp_regs(cpu, id_cp_reginfo);
8477         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8478             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8479         } else if (arm_feature(env, ARM_FEATURE_V7)) {
8480             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8481         }
8482     }
8483 
8484     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8485         ARMCPRegInfo mpidr_cp_reginfo[] = {
8486             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8487               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8488               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8489             REGINFO_SENTINEL
8490         };
8491 #ifdef CONFIG_USER_ONLY
8492         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8493             { .name = "MPIDR_EL1",
8494               .fixed_bits = 0x0000000080000000 },
8495             REGUSERINFO_SENTINEL
8496         };
8497         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8498 #endif
8499         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8500     }
8501 
8502     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8503         ARMCPRegInfo auxcr_reginfo[] = {
8504             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8505               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8506               .access = PL1_RW, .accessfn = access_tacr,
8507               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8508             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8509               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8510               .access = PL2_RW, .type = ARM_CP_CONST,
8511               .resetvalue = 0 },
8512             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8513               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8514               .access = PL3_RW, .type = ARM_CP_CONST,
8515               .resetvalue = 0 },
8516             REGINFO_SENTINEL
8517         };
8518         define_arm_cp_regs(cpu, auxcr_reginfo);
8519         if (cpu_isar_feature(aa32_ac2, cpu)) {
8520             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8521         }
8522     }
8523 
8524     if (arm_feature(env, ARM_FEATURE_CBAR)) {
8525         /*
8526          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8527          * There are two flavours:
8528          *  (1) older 32-bit only cores have a simple 32-bit CBAR
8529          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8530          *      32-bit register visible to AArch32 at a different encoding
8531          *      to the "flavour 1" register and with the bits rearranged to
8532          *      be able to squash a 64-bit address into the 32-bit view.
8533          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8534          * in future if we support AArch32-only configs of some of the
8535          * AArch64 cores we might need to add a specific feature flag
8536          * to indicate cores with "flavour 2" CBAR.
8537          */
8538         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8539             /* 32 bit view is [31:18] 0...0 [43:32]. */
8540             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8541                 | extract64(cpu->reset_cbar, 32, 12);
8542             ARMCPRegInfo cbar_reginfo[] = {
8543                 { .name = "CBAR",
8544                   .type = ARM_CP_CONST,
8545                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8546                   .access = PL1_R, .resetvalue = cbar32 },
8547                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8548                   .type = ARM_CP_CONST,
8549                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8550                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
8551                 REGINFO_SENTINEL
8552             };
8553             /* We don't implement a r/w 64 bit CBAR currently */
8554             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8555             define_arm_cp_regs(cpu, cbar_reginfo);
8556         } else {
8557             ARMCPRegInfo cbar = {
8558                 .name = "CBAR",
8559                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8560                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8561                 .fieldoffset = offsetof(CPUARMState,
8562                                         cp15.c15_config_base_address)
8563             };
8564             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8565                 cbar.access = PL1_R;
8566                 cbar.fieldoffset = 0;
8567                 cbar.type = ARM_CP_CONST;
8568             }
8569             define_one_arm_cp_reg(cpu, &cbar);
8570         }
8571     }
8572 
8573     if (arm_feature(env, ARM_FEATURE_VBAR)) {
8574         ARMCPRegInfo vbar_cp_reginfo[] = {
8575             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8576               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8577               .access = PL1_RW, .writefn = vbar_write,
8578               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8579                                      offsetof(CPUARMState, cp15.vbar_ns) },
8580               .resetvalue = 0 },
8581             REGINFO_SENTINEL
8582         };
8583         define_arm_cp_regs(cpu, vbar_cp_reginfo);
8584     }
8585 
8586     /* Generic registers whose values depend on the implementation */
8587     {
8588         ARMCPRegInfo sctlr = {
8589             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8590             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8591             .access = PL1_RW, .accessfn = access_tvm_trvm,
8592             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8593                                    offsetof(CPUARMState, cp15.sctlr_ns) },
8594             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8595             .raw_writefn = raw_write,
8596         };
8597         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8598             /* Normally we would always end the TB on an SCTLR write, but Linux
8599              * arch/arm/mach-pxa/sleep.S expects two instructions following
8600              * an MMU enable to execute from cache.  Imitate this behaviour.
8601              */
8602             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8603         }
8604         define_one_arm_cp_reg(cpu, &sctlr);
8605     }
8606 
8607     if (cpu_isar_feature(aa64_lor, cpu)) {
8608         define_arm_cp_regs(cpu, lor_reginfo);
8609     }
8610     if (cpu_isar_feature(aa64_pan, cpu)) {
8611         define_one_arm_cp_reg(cpu, &pan_reginfo);
8612     }
8613 #ifndef CONFIG_USER_ONLY
8614     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8615         define_arm_cp_regs(cpu, ats1e1_reginfo);
8616     }
8617     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8618         define_arm_cp_regs(cpu, ats1cp_reginfo);
8619     }
8620 #endif
8621     if (cpu_isar_feature(aa64_uao, cpu)) {
8622         define_one_arm_cp_reg(cpu, &uao_reginfo);
8623     }
8624 
8625     if (cpu_isar_feature(aa64_dit, cpu)) {
8626         define_one_arm_cp_reg(cpu, &dit_reginfo);
8627     }
8628     if (cpu_isar_feature(aa64_ssbs, cpu)) {
8629         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8630     }
8631 
8632     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8633         define_arm_cp_regs(cpu, vhe_reginfo);
8634     }
8635 
8636     if (cpu_isar_feature(aa64_sve, cpu)) {
8637         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8638         if (arm_feature(env, ARM_FEATURE_EL2)) {
8639             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8640         } else {
8641             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8642         }
8643         if (arm_feature(env, ARM_FEATURE_EL3)) {
8644             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8645         }
8646     }
8647 
8648 #ifdef TARGET_AARCH64
8649     if (cpu_isar_feature(aa64_pauth, cpu)) {
8650         define_arm_cp_regs(cpu, pauth_reginfo);
8651     }
8652     if (cpu_isar_feature(aa64_rndr, cpu)) {
8653         define_arm_cp_regs(cpu, rndr_reginfo);
8654     }
8655     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8656         define_arm_cp_regs(cpu, tlbirange_reginfo);
8657     }
8658     if (cpu_isar_feature(aa64_tlbios, cpu)) {
8659         define_arm_cp_regs(cpu, tlbios_reginfo);
8660     }
8661 #ifndef CONFIG_USER_ONLY
8662     /* Data Cache clean instructions up to PoP */
8663     if (cpu_isar_feature(aa64_dcpop, cpu)) {
8664         define_one_arm_cp_reg(cpu, dcpop_reg);
8665 
8666         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8667             define_one_arm_cp_reg(cpu, dcpodp_reg);
8668         }
8669     }
8670 #endif /*CONFIG_USER_ONLY*/
8671 
8672     /*
8673      * If full MTE is enabled, add all of the system registers.
8674      * If only "instructions available at EL0" are enabled,
8675      * then define only a RAZ/WI version of PSTATE.TCO.
8676      */
8677     if (cpu_isar_feature(aa64_mte, cpu)) {
8678         define_arm_cp_regs(cpu, mte_reginfo);
8679         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8680     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8681         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8682         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8683     }
8684 #endif
8685 
8686     if (cpu_isar_feature(any_predinv, cpu)) {
8687         define_arm_cp_regs(cpu, predinv_reginfo);
8688     }
8689 
8690     if (cpu_isar_feature(any_ccidx, cpu)) {
8691         define_arm_cp_regs(cpu, ccsidr2_reginfo);
8692     }
8693 
8694 #ifndef CONFIG_USER_ONLY
8695     /*
8696      * Register redirections and aliases must be done last,
8697      * after the registers from the other extensions have been defined.
8698      */
8699     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8700         define_arm_vh_e2h_redirects_aliases(cpu);
8701     }
8702 #endif
8703 }
8704 
8705 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
8706 {
8707     CPUState *cs = CPU(cpu);
8708     CPUARMState *env = &cpu->env;
8709 
8710     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8711         /*
8712          * The lower part of each SVE register aliases to the FPU
8713          * registers so we don't need to include both.
8714          */
8715 #ifdef TARGET_AARCH64
8716         if (isar_feature_aa64_sve(&cpu->isar)) {
8717             gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
8718                                      arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
8719                                      "sve-registers.xml", 0);
8720         } else
8721 #endif
8722         {
8723             gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
8724                                      aarch64_fpu_gdb_set_reg,
8725                                      34, "aarch64-fpu.xml", 0);
8726         }
8727     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
8728         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8729                                  51, "arm-neon.xml", 0);
8730     } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
8731         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8732                                  35, "arm-vfp3.xml", 0);
8733     } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
8734         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8735                                  19, "arm-vfp.xml", 0);
8736     }
8737     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
8738                              arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
8739                              "system-registers.xml", 0);
8740 
8741 }
8742 
8743 /* Sort alphabetically by type name, except for "any". */
8744 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8745 {
8746     ObjectClass *class_a = (ObjectClass *)a;
8747     ObjectClass *class_b = (ObjectClass *)b;
8748     const char *name_a, *name_b;
8749 
8750     name_a = object_class_get_name(class_a);
8751     name_b = object_class_get_name(class_b);
8752     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8753         return 1;
8754     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8755         return -1;
8756     } else {
8757         return strcmp(name_a, name_b);
8758     }
8759 }
8760 
8761 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8762 {
8763     ObjectClass *oc = data;
8764     const char *typename;
8765     char *name;
8766 
8767     typename = object_class_get_name(oc);
8768     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8769     qemu_printf("  %s\n", name);
8770     g_free(name);
8771 }
8772 
8773 void arm_cpu_list(void)
8774 {
8775     GSList *list;
8776 
8777     list = object_class_get_list(TYPE_ARM_CPU, false);
8778     list = g_slist_sort(list, arm_cpu_list_compare);
8779     qemu_printf("Available CPUs:\n");
8780     g_slist_foreach(list, arm_cpu_list_entry, NULL);
8781     g_slist_free(list);
8782 }
8783 
8784 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8785 {
8786     ObjectClass *oc = data;
8787     CpuDefinitionInfoList **cpu_list = user_data;
8788     CpuDefinitionInfo *info;
8789     const char *typename;
8790 
8791     typename = object_class_get_name(oc);
8792     info = g_malloc0(sizeof(*info));
8793     info->name = g_strndup(typename,
8794                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
8795     info->q_typename = g_strdup(typename);
8796 
8797     QAPI_LIST_PREPEND(*cpu_list, info);
8798 }
8799 
8800 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8801 {
8802     CpuDefinitionInfoList *cpu_list = NULL;
8803     GSList *list;
8804 
8805     list = object_class_get_list(TYPE_ARM_CPU, false);
8806     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8807     g_slist_free(list);
8808 
8809     return cpu_list;
8810 }
8811 
8812 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8813                                    void *opaque, int state, int secstate,
8814                                    int crm, int opc1, int opc2,
8815                                    const char *name)
8816 {
8817     /* Private utility function for define_one_arm_cp_reg_with_opaque():
8818      * add a single reginfo struct to the hash table.
8819      */
8820     uint32_t *key = g_new(uint32_t, 1);
8821     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8822     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8823     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8824 
8825     r2->name = g_strdup(name);
8826     /* Reset the secure state to the specific incoming state.  This is
8827      * necessary as the register may have been defined with both states.
8828      */
8829     r2->secure = secstate;
8830 
8831     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8832         /* Register is banked (using both entries in array).
8833          * Overwriting fieldoffset as the array is only used to define
8834          * banked registers but later only fieldoffset is used.
8835          */
8836         r2->fieldoffset = r->bank_fieldoffsets[ns];
8837     }
8838 
8839     if (state == ARM_CP_STATE_AA32) {
8840         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8841             /* If the register is banked then we don't need to migrate or
8842              * reset the 32-bit instance in certain cases:
8843              *
8844              * 1) If the register has both 32-bit and 64-bit instances then we
8845              *    can count on the 64-bit instance taking care of the
8846              *    non-secure bank.
8847              * 2) If ARMv8 is enabled then we can count on a 64-bit version
8848              *    taking care of the secure bank.  This requires that separate
8849              *    32 and 64-bit definitions are provided.
8850              */
8851             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8852                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8853                 r2->type |= ARM_CP_ALIAS;
8854             }
8855         } else if ((secstate != r->secure) && !ns) {
8856             /* The register is not banked so we only want to allow migration of
8857              * the non-secure instance.
8858              */
8859             r2->type |= ARM_CP_ALIAS;
8860         }
8861 
8862         if (r->state == ARM_CP_STATE_BOTH) {
8863             /* We assume it is a cp15 register if the .cp field is left unset.
8864              */
8865             if (r2->cp == 0) {
8866                 r2->cp = 15;
8867             }
8868 
8869 #ifdef HOST_WORDS_BIGENDIAN
8870             if (r2->fieldoffset) {
8871                 r2->fieldoffset += sizeof(uint32_t);
8872             }
8873 #endif
8874         }
8875     }
8876     if (state == ARM_CP_STATE_AA64) {
8877         /* To allow abbreviation of ARMCPRegInfo
8878          * definitions, we treat cp == 0 as equivalent to
8879          * the value for "standard guest-visible sysreg".
8880          * STATE_BOTH definitions are also always "standard
8881          * sysreg" in their AArch64 view (the .cp value may
8882          * be non-zero for the benefit of the AArch32 view).
8883          */
8884         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8885             r2->cp = CP_REG_ARM64_SYSREG_CP;
8886         }
8887         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8888                                   r2->opc0, opc1, opc2);
8889     } else {
8890         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8891     }
8892     if (opaque) {
8893         r2->opaque = opaque;
8894     }
8895     /* reginfo passed to helpers is correct for the actual access,
8896      * and is never ARM_CP_STATE_BOTH:
8897      */
8898     r2->state = state;
8899     /* Make sure reginfo passed to helpers for wildcarded regs
8900      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8901      */
8902     r2->crm = crm;
8903     r2->opc1 = opc1;
8904     r2->opc2 = opc2;
8905     /* By convention, for wildcarded registers only the first
8906      * entry is used for migration; the others are marked as
8907      * ALIAS so we don't try to transfer the register
8908      * multiple times. Special registers (ie NOP/WFI) are
8909      * never migratable and not even raw-accessible.
8910      */
8911     if ((r->type & ARM_CP_SPECIAL)) {
8912         r2->type |= ARM_CP_NO_RAW;
8913     }
8914     if (((r->crm == CP_ANY) && crm != 0) ||
8915         ((r->opc1 == CP_ANY) && opc1 != 0) ||
8916         ((r->opc2 == CP_ANY) && opc2 != 0)) {
8917         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8918     }
8919 
8920     /* Check that raw accesses are either forbidden or handled. Note that
8921      * we can't assert this earlier because the setup of fieldoffset for
8922      * banked registers has to be done first.
8923      */
8924     if (!(r2->type & ARM_CP_NO_RAW)) {
8925         assert(!raw_accessors_invalid(r2));
8926     }
8927 
8928     /* Overriding of an existing definition must be explicitly
8929      * requested.
8930      */
8931     if (!(r->type & ARM_CP_OVERRIDE)) {
8932         ARMCPRegInfo *oldreg;
8933         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8934         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8935             fprintf(stderr, "Register redefined: cp=%d %d bit "
8936                     "crn=%d crm=%d opc1=%d opc2=%d, "
8937                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8938                     r2->crn, r2->crm, r2->opc1, r2->opc2,
8939                     oldreg->name, r2->name);
8940             g_assert_not_reached();
8941         }
8942     }
8943     g_hash_table_insert(cpu->cp_regs, key, r2);
8944 }
8945 
8946 
8947 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8948                                        const ARMCPRegInfo *r, void *opaque)
8949 {
8950     /* Define implementations of coprocessor registers.
8951      * We store these in a hashtable because typically
8952      * there are less than 150 registers in a space which
8953      * is 16*16*16*8*8 = 262144 in size.
8954      * Wildcarding is supported for the crm, opc1 and opc2 fields.
8955      * If a register is defined twice then the second definition is
8956      * used, so this can be used to define some generic registers and
8957      * then override them with implementation specific variations.
8958      * At least one of the original and the second definition should
8959      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8960      * against accidental use.
8961      *
8962      * The state field defines whether the register is to be
8963      * visible in the AArch32 or AArch64 execution state. If the
8964      * state is set to ARM_CP_STATE_BOTH then we synthesise a
8965      * reginfo structure for the AArch32 view, which sees the lower
8966      * 32 bits of the 64 bit register.
8967      *
8968      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8969      * be wildcarded. AArch64 registers are always considered to be 64
8970      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8971      * the register, if any.
8972      */
8973     int crm, opc1, opc2, state;
8974     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8975     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8976     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8977     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8978     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8979     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8980     /* 64 bit registers have only CRm and Opc1 fields */
8981     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8982     /* op0 only exists in the AArch64 encodings */
8983     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8984     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8985     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8986     /*
8987      * This API is only for Arm's system coprocessors (14 and 15) or
8988      * (M-profile or v7A-and-earlier only) for implementation defined
8989      * coprocessors in the range 0..7.  Our decode assumes this, since
8990      * 8..13 can be used for other insns including VFP and Neon. See
8991      * valid_cp() in translate.c.  Assert here that we haven't tried
8992      * to use an invalid coprocessor number.
8993      */
8994     switch (r->state) {
8995     case ARM_CP_STATE_BOTH:
8996         /* 0 has a special meaning, but otherwise the same rules as AA32. */
8997         if (r->cp == 0) {
8998             break;
8999         }
9000         /* fall through */
9001     case ARM_CP_STATE_AA32:
9002         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9003             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9004             assert(r->cp >= 14 && r->cp <= 15);
9005         } else {
9006             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9007         }
9008         break;
9009     case ARM_CP_STATE_AA64:
9010         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9011         break;
9012     default:
9013         g_assert_not_reached();
9014     }
9015     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
9016      * encodes a minimum access level for the register. We roll this
9017      * runtime check into our general permission check code, so check
9018      * here that the reginfo's specified permissions are strict enough
9019      * to encompass the generic architectural permission check.
9020      */
9021     if (r->state != ARM_CP_STATE_AA32) {
9022         int mask = 0;
9023         switch (r->opc1) {
9024         case 0:
9025             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9026             mask = PL0U_R | PL1_RW;
9027             break;
9028         case 1: case 2:
9029             /* min_EL EL1 */
9030             mask = PL1_RW;
9031             break;
9032         case 3:
9033             /* min_EL EL0 */
9034             mask = PL0_RW;
9035             break;
9036         case 4:
9037         case 5:
9038             /* min_EL EL2 */
9039             mask = PL2_RW;
9040             break;
9041         case 6:
9042             /* min_EL EL3 */
9043             mask = PL3_RW;
9044             break;
9045         case 7:
9046             /* min_EL EL1, secure mode only (we don't check the latter) */
9047             mask = PL1_RW;
9048             break;
9049         default:
9050             /* broken reginfo with out-of-range opc1 */
9051             assert(false);
9052             break;
9053         }
9054         /* assert our permissions are not too lax (stricter is fine) */
9055         assert((r->access & ~mask) == 0);
9056     }
9057 
9058     /* Check that the register definition has enough info to handle
9059      * reads and writes if they are permitted.
9060      */
9061     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
9062         if (r->access & PL3_R) {
9063             assert((r->fieldoffset ||
9064                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9065                    r->readfn);
9066         }
9067         if (r->access & PL3_W) {
9068             assert((r->fieldoffset ||
9069                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9070                    r->writefn);
9071         }
9072     }
9073     /* Bad type field probably means missing sentinel at end of reg list */
9074     assert(cptype_valid(r->type));
9075     for (crm = crmmin; crm <= crmmax; crm++) {
9076         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9077             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9078                 for (state = ARM_CP_STATE_AA32;
9079                      state <= ARM_CP_STATE_AA64; state++) {
9080                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9081                         continue;
9082                     }
9083                     if (state == ARM_CP_STATE_AA32) {
9084                         /* Under AArch32 CP registers can be common
9085                          * (same for secure and non-secure world) or banked.
9086                          */
9087                         char *name;
9088 
9089                         switch (r->secure) {
9090                         case ARM_CP_SECSTATE_S:
9091                         case ARM_CP_SECSTATE_NS:
9092                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9093                                                    r->secure, crm, opc1, opc2,
9094                                                    r->name);
9095                             break;
9096                         default:
9097                             name = g_strdup_printf("%s_S", r->name);
9098                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9099                                                    ARM_CP_SECSTATE_S,
9100                                                    crm, opc1, opc2, name);
9101                             g_free(name);
9102                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9103                                                    ARM_CP_SECSTATE_NS,
9104                                                    crm, opc1, opc2, r->name);
9105                             break;
9106                         }
9107                     } else {
9108                         /* AArch64 registers get mapped to non-secure instance
9109                          * of AArch32 */
9110                         add_cpreg_to_hashtable(cpu, r, opaque, state,
9111                                                ARM_CP_SECSTATE_NS,
9112                                                crm, opc1, opc2, r->name);
9113                     }
9114                 }
9115             }
9116         }
9117     }
9118 }
9119 
9120 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
9121                                     const ARMCPRegInfo *regs, void *opaque)
9122 {
9123     /* Define a whole list of registers */
9124     const ARMCPRegInfo *r;
9125     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
9126         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
9127     }
9128 }
9129 
9130 /*
9131  * Modify ARMCPRegInfo for access from userspace.
9132  *
9133  * This is a data driven modification directed by
9134  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9135  * user-space cannot alter any values and dynamic values pertaining to
9136  * execution state are hidden from user space view anyway.
9137  */
9138 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
9139 {
9140     const ARMCPRegUserSpaceInfo *m;
9141     ARMCPRegInfo *r;
9142 
9143     for (m = mods; m->name; m++) {
9144         GPatternSpec *pat = NULL;
9145         if (m->is_glob) {
9146             pat = g_pattern_spec_new(m->name);
9147         }
9148         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
9149             if (pat && g_pattern_match_string(pat, r->name)) {
9150                 r->type = ARM_CP_CONST;
9151                 r->access = PL0U_R;
9152                 r->resetvalue = 0;
9153                 /* continue */
9154             } else if (strcmp(r->name, m->name) == 0) {
9155                 r->type = ARM_CP_CONST;
9156                 r->access = PL0U_R;
9157                 r->resetvalue &= m->exported_bits;
9158                 r->resetvalue |= m->fixed_bits;
9159                 break;
9160             }
9161         }
9162         if (pat) {
9163             g_pattern_spec_free(pat);
9164         }
9165     }
9166 }
9167 
9168 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9169 {
9170     return g_hash_table_lookup(cpregs, &encoded_cp);
9171 }
9172 
9173 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9174                          uint64_t value)
9175 {
9176     /* Helper coprocessor write function for write-ignore registers */
9177 }
9178 
9179 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9180 {
9181     /* Helper coprocessor write function for read-as-zero registers */
9182     return 0;
9183 }
9184 
9185 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9186 {
9187     /* Helper coprocessor reset function for do-nothing-on-reset registers */
9188 }
9189 
9190 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9191 {
9192     /* Return true if it is not valid for us to switch to
9193      * this CPU mode (ie all the UNPREDICTABLE cases in
9194      * the ARM ARM CPSRWriteByInstr pseudocode).
9195      */
9196 
9197     /* Changes to or from Hyp via MSR and CPS are illegal. */
9198     if (write_type == CPSRWriteByInstr &&
9199         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9200          mode == ARM_CPU_MODE_HYP)) {
9201         return 1;
9202     }
9203 
9204     switch (mode) {
9205     case ARM_CPU_MODE_USR:
9206         return 0;
9207     case ARM_CPU_MODE_SYS:
9208     case ARM_CPU_MODE_SVC:
9209     case ARM_CPU_MODE_ABT:
9210     case ARM_CPU_MODE_UND:
9211     case ARM_CPU_MODE_IRQ:
9212     case ARM_CPU_MODE_FIQ:
9213         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
9214          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9215          */
9216         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9217          * and CPS are treated as illegal mode changes.
9218          */
9219         if (write_type == CPSRWriteByInstr &&
9220             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9221             (arm_hcr_el2_eff(env) & HCR_TGE)) {
9222             return 1;
9223         }
9224         return 0;
9225     case ARM_CPU_MODE_HYP:
9226         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9227     case ARM_CPU_MODE_MON:
9228         return arm_current_el(env) < 3;
9229     default:
9230         return 1;
9231     }
9232 }
9233 
9234 uint32_t cpsr_read(CPUARMState *env)
9235 {
9236     int ZF;
9237     ZF = (env->ZF == 0);
9238     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9239         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9240         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9241         | ((env->condexec_bits & 0xfc) << 8)
9242         | (env->GE << 16) | (env->daif & CPSR_AIF);
9243 }
9244 
9245 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9246                 CPSRWriteType write_type)
9247 {
9248     uint32_t changed_daif;
9249     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9250         (mask & (CPSR_M | CPSR_E | CPSR_IL));
9251 
9252     if (mask & CPSR_NZCV) {
9253         env->ZF = (~val) & CPSR_Z;
9254         env->NF = val;
9255         env->CF = (val >> 29) & 1;
9256         env->VF = (val << 3) & 0x80000000;
9257     }
9258     if (mask & CPSR_Q)
9259         env->QF = ((val & CPSR_Q) != 0);
9260     if (mask & CPSR_T)
9261         env->thumb = ((val & CPSR_T) != 0);
9262     if (mask & CPSR_IT_0_1) {
9263         env->condexec_bits &= ~3;
9264         env->condexec_bits |= (val >> 25) & 3;
9265     }
9266     if (mask & CPSR_IT_2_7) {
9267         env->condexec_bits &= 3;
9268         env->condexec_bits |= (val >> 8) & 0xfc;
9269     }
9270     if (mask & CPSR_GE) {
9271         env->GE = (val >> 16) & 0xf;
9272     }
9273 
9274     /* In a V7 implementation that includes the security extensions but does
9275      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9276      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9277      * bits respectively.
9278      *
9279      * In a V8 implementation, it is permitted for privileged software to
9280      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9281      */
9282     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9283         arm_feature(env, ARM_FEATURE_EL3) &&
9284         !arm_feature(env, ARM_FEATURE_EL2) &&
9285         !arm_is_secure(env)) {
9286 
9287         changed_daif = (env->daif ^ val) & mask;
9288 
9289         if (changed_daif & CPSR_A) {
9290             /* Check to see if we are allowed to change the masking of async
9291              * abort exceptions from a non-secure state.
9292              */
9293             if (!(env->cp15.scr_el3 & SCR_AW)) {
9294                 qemu_log_mask(LOG_GUEST_ERROR,
9295                               "Ignoring attempt to switch CPSR_A flag from "
9296                               "non-secure world with SCR.AW bit clear\n");
9297                 mask &= ~CPSR_A;
9298             }
9299         }
9300 
9301         if (changed_daif & CPSR_F) {
9302             /* Check to see if we are allowed to change the masking of FIQ
9303              * exceptions from a non-secure state.
9304              */
9305             if (!(env->cp15.scr_el3 & SCR_FW)) {
9306                 qemu_log_mask(LOG_GUEST_ERROR,
9307                               "Ignoring attempt to switch CPSR_F flag from "
9308                               "non-secure world with SCR.FW bit clear\n");
9309                 mask &= ~CPSR_F;
9310             }
9311 
9312             /* Check whether non-maskable FIQ (NMFI) support is enabled.
9313              * If this bit is set software is not allowed to mask
9314              * FIQs, but is allowed to set CPSR_F to 0.
9315              */
9316             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9317                 (val & CPSR_F)) {
9318                 qemu_log_mask(LOG_GUEST_ERROR,
9319                               "Ignoring attempt to enable CPSR_F flag "
9320                               "(non-maskable FIQ [NMFI] support enabled)\n");
9321                 mask &= ~CPSR_F;
9322             }
9323         }
9324     }
9325 
9326     env->daif &= ~(CPSR_AIF & mask);
9327     env->daif |= val & CPSR_AIF & mask;
9328 
9329     if (write_type != CPSRWriteRaw &&
9330         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9331         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9332             /* Note that we can only get here in USR mode if this is a
9333              * gdb stub write; for this case we follow the architectural
9334              * behaviour for guest writes in USR mode of ignoring an attempt
9335              * to switch mode. (Those are caught by translate.c for writes
9336              * triggered by guest instructions.)
9337              */
9338             mask &= ~CPSR_M;
9339         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9340             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9341              * v7, and has defined behaviour in v8:
9342              *  + leave CPSR.M untouched
9343              *  + allow changes to the other CPSR fields
9344              *  + set PSTATE.IL
9345              * For user changes via the GDB stub, we don't set PSTATE.IL,
9346              * as this would be unnecessarily harsh for a user error.
9347              */
9348             mask &= ~CPSR_M;
9349             if (write_type != CPSRWriteByGDBStub &&
9350                 arm_feature(env, ARM_FEATURE_V8)) {
9351                 mask |= CPSR_IL;
9352                 val |= CPSR_IL;
9353             }
9354             qemu_log_mask(LOG_GUEST_ERROR,
9355                           "Illegal AArch32 mode switch attempt from %s to %s\n",
9356                           aarch32_mode_name(env->uncached_cpsr),
9357                           aarch32_mode_name(val));
9358         } else {
9359             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9360                           write_type == CPSRWriteExceptionReturn ?
9361                           "Exception return from AArch32" :
9362                           "AArch32 mode switch from",
9363                           aarch32_mode_name(env->uncached_cpsr),
9364                           aarch32_mode_name(val), env->regs[15]);
9365             switch_mode(env, val & CPSR_M);
9366         }
9367     }
9368     mask &= ~CACHED_CPSR_BITS;
9369     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9370     if (rebuild_hflags) {
9371         arm_rebuild_hflags(env);
9372     }
9373 }
9374 
9375 /* Sign/zero extend */
9376 uint32_t HELPER(sxtb16)(uint32_t x)
9377 {
9378     uint32_t res;
9379     res = (uint16_t)(int8_t)x;
9380     res |= (uint32_t)(int8_t)(x >> 16) << 16;
9381     return res;
9382 }
9383 
9384 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9385 {
9386     /*
9387      * Take a division-by-zero exception if necessary; otherwise return
9388      * to get the usual non-trapping division behaviour (result of 0)
9389      */
9390     if (arm_feature(env, ARM_FEATURE_M)
9391         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9392         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9393     }
9394 }
9395 
9396 uint32_t HELPER(uxtb16)(uint32_t x)
9397 {
9398     uint32_t res;
9399     res = (uint16_t)(uint8_t)x;
9400     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9401     return res;
9402 }
9403 
9404 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9405 {
9406     if (den == 0) {
9407         handle_possible_div0_trap(env, GETPC());
9408         return 0;
9409     }
9410     if (num == INT_MIN && den == -1) {
9411         return INT_MIN;
9412     }
9413     return num / den;
9414 }
9415 
9416 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9417 {
9418     if (den == 0) {
9419         handle_possible_div0_trap(env, GETPC());
9420         return 0;
9421     }
9422     return num / den;
9423 }
9424 
9425 uint32_t HELPER(rbit)(uint32_t x)
9426 {
9427     return revbit32(x);
9428 }
9429 
9430 #ifdef CONFIG_USER_ONLY
9431 
9432 static void switch_mode(CPUARMState *env, int mode)
9433 {
9434     ARMCPU *cpu = env_archcpu(env);
9435 
9436     if (mode != ARM_CPU_MODE_USR) {
9437         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9438     }
9439 }
9440 
9441 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9442                                  uint32_t cur_el, bool secure)
9443 {
9444     return 1;
9445 }
9446 
9447 void aarch64_sync_64_to_32(CPUARMState *env)
9448 {
9449     g_assert_not_reached();
9450 }
9451 
9452 #else
9453 
9454 static void switch_mode(CPUARMState *env, int mode)
9455 {
9456     int old_mode;
9457     int i;
9458 
9459     old_mode = env->uncached_cpsr & CPSR_M;
9460     if (mode == old_mode)
9461         return;
9462 
9463     if (old_mode == ARM_CPU_MODE_FIQ) {
9464         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9465         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9466     } else if (mode == ARM_CPU_MODE_FIQ) {
9467         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9468         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9469     }
9470 
9471     i = bank_number(old_mode);
9472     env->banked_r13[i] = env->regs[13];
9473     env->banked_spsr[i] = env->spsr;
9474 
9475     i = bank_number(mode);
9476     env->regs[13] = env->banked_r13[i];
9477     env->spsr = env->banked_spsr[i];
9478 
9479     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9480     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9481 }
9482 
9483 /* Physical Interrupt Target EL Lookup Table
9484  *
9485  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9486  *
9487  * The below multi-dimensional table is used for looking up the target
9488  * exception level given numerous condition criteria.  Specifically, the
9489  * target EL is based on SCR and HCR routing controls as well as the
9490  * currently executing EL and secure state.
9491  *
9492  *    Dimensions:
9493  *    target_el_table[2][2][2][2][2][4]
9494  *                    |  |  |  |  |  +--- Current EL
9495  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
9496  *                    |  |  |  +--------- HCR mask override
9497  *                    |  |  +------------ SCR exec state control
9498  *                    |  +--------------- SCR mask override
9499  *                    +------------------ 32-bit(0)/64-bit(1) EL3
9500  *
9501  *    The table values are as such:
9502  *    0-3 = EL0-EL3
9503  *     -1 = Cannot occur
9504  *
9505  * The ARM ARM target EL table includes entries indicating that an "exception
9506  * is not taken".  The two cases where this is applicable are:
9507  *    1) An exception is taken from EL3 but the SCR does not have the exception
9508  *    routed to EL3.
9509  *    2) An exception is taken from EL2 but the HCR does not have the exception
9510  *    routed to EL2.
9511  * In these two cases, the below table contain a target of EL1.  This value is
9512  * returned as it is expected that the consumer of the table data will check
9513  * for "target EL >= current EL" to ensure the exception is not taken.
9514  *
9515  *            SCR     HCR
9516  *         64  EA     AMO                 From
9517  *        BIT IRQ     IMO      Non-secure         Secure
9518  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
9519  */
9520 static const int8_t target_el_table[2][2][2][2][2][4] = {
9521     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9522        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
9523       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9524        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
9525      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9526        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
9527       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9528        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
9529     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
9530        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
9531       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
9532        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
9533      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
9534        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
9535       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
9536        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
9537 };
9538 
9539 /*
9540  * Determine the target EL for physical exceptions
9541  */
9542 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9543                                  uint32_t cur_el, bool secure)
9544 {
9545     CPUARMState *env = cs->env_ptr;
9546     bool rw;
9547     bool scr;
9548     bool hcr;
9549     int target_el;
9550     /* Is the highest EL AArch64? */
9551     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9552     uint64_t hcr_el2;
9553 
9554     if (arm_feature(env, ARM_FEATURE_EL3)) {
9555         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9556     } else {
9557         /* Either EL2 is the highest EL (and so the EL2 register width
9558          * is given by is64); or there is no EL2 or EL3, in which case
9559          * the value of 'rw' does not affect the table lookup anyway.
9560          */
9561         rw = is64;
9562     }
9563 
9564     hcr_el2 = arm_hcr_el2_eff(env);
9565     switch (excp_idx) {
9566     case EXCP_IRQ:
9567         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9568         hcr = hcr_el2 & HCR_IMO;
9569         break;
9570     case EXCP_FIQ:
9571         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9572         hcr = hcr_el2 & HCR_FMO;
9573         break;
9574     default:
9575         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9576         hcr = hcr_el2 & HCR_AMO;
9577         break;
9578     };
9579 
9580     /*
9581      * For these purposes, TGE and AMO/IMO/FMO both force the
9582      * interrupt to EL2.  Fold TGE into the bit extracted above.
9583      */
9584     hcr |= (hcr_el2 & HCR_TGE) != 0;
9585 
9586     /* Perform a table-lookup for the target EL given the current state */
9587     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9588 
9589     assert(target_el > 0);
9590 
9591     return target_el;
9592 }
9593 
9594 void arm_log_exception(int idx)
9595 {
9596     if (qemu_loglevel_mask(CPU_LOG_INT)) {
9597         const char *exc = NULL;
9598         static const char * const excnames[] = {
9599             [EXCP_UDEF] = "Undefined Instruction",
9600             [EXCP_SWI] = "SVC",
9601             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9602             [EXCP_DATA_ABORT] = "Data Abort",
9603             [EXCP_IRQ] = "IRQ",
9604             [EXCP_FIQ] = "FIQ",
9605             [EXCP_BKPT] = "Breakpoint",
9606             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9607             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9608             [EXCP_HVC] = "Hypervisor Call",
9609             [EXCP_HYP_TRAP] = "Hypervisor Trap",
9610             [EXCP_SMC] = "Secure Monitor Call",
9611             [EXCP_VIRQ] = "Virtual IRQ",
9612             [EXCP_VFIQ] = "Virtual FIQ",
9613             [EXCP_SEMIHOST] = "Semihosting call",
9614             [EXCP_NOCP] = "v7M NOCP UsageFault",
9615             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9616             [EXCP_STKOF] = "v8M STKOF UsageFault",
9617             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9618             [EXCP_LSERR] = "v8M LSERR UsageFault",
9619             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9620             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
9621         };
9622 
9623         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9624             exc = excnames[idx];
9625         }
9626         if (!exc) {
9627             exc = "unknown";
9628         }
9629         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9630     }
9631 }
9632 
9633 /*
9634  * Function used to synchronize QEMU's AArch64 register set with AArch32
9635  * register set.  This is necessary when switching between AArch32 and AArch64
9636  * execution state.
9637  */
9638 void aarch64_sync_32_to_64(CPUARMState *env)
9639 {
9640     int i;
9641     uint32_t mode = env->uncached_cpsr & CPSR_M;
9642 
9643     /* We can blanket copy R[0:7] to X[0:7] */
9644     for (i = 0; i < 8; i++) {
9645         env->xregs[i] = env->regs[i];
9646     }
9647 
9648     /*
9649      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9650      * Otherwise, they come from the banked user regs.
9651      */
9652     if (mode == ARM_CPU_MODE_FIQ) {
9653         for (i = 8; i < 13; i++) {
9654             env->xregs[i] = env->usr_regs[i - 8];
9655         }
9656     } else {
9657         for (i = 8; i < 13; i++) {
9658             env->xregs[i] = env->regs[i];
9659         }
9660     }
9661 
9662     /*
9663      * Registers x13-x23 are the various mode SP and FP registers. Registers
9664      * r13 and r14 are only copied if we are in that mode, otherwise we copy
9665      * from the mode banked register.
9666      */
9667     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9668         env->xregs[13] = env->regs[13];
9669         env->xregs[14] = env->regs[14];
9670     } else {
9671         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9672         /* HYP is an exception in that it is copied from r14 */
9673         if (mode == ARM_CPU_MODE_HYP) {
9674             env->xregs[14] = env->regs[14];
9675         } else {
9676             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9677         }
9678     }
9679 
9680     if (mode == ARM_CPU_MODE_HYP) {
9681         env->xregs[15] = env->regs[13];
9682     } else {
9683         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9684     }
9685 
9686     if (mode == ARM_CPU_MODE_IRQ) {
9687         env->xregs[16] = env->regs[14];
9688         env->xregs[17] = env->regs[13];
9689     } else {
9690         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9691         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9692     }
9693 
9694     if (mode == ARM_CPU_MODE_SVC) {
9695         env->xregs[18] = env->regs[14];
9696         env->xregs[19] = env->regs[13];
9697     } else {
9698         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9699         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9700     }
9701 
9702     if (mode == ARM_CPU_MODE_ABT) {
9703         env->xregs[20] = env->regs[14];
9704         env->xregs[21] = env->regs[13];
9705     } else {
9706         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9707         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9708     }
9709 
9710     if (mode == ARM_CPU_MODE_UND) {
9711         env->xregs[22] = env->regs[14];
9712         env->xregs[23] = env->regs[13];
9713     } else {
9714         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9715         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9716     }
9717 
9718     /*
9719      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9720      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9721      * FIQ bank for r8-r14.
9722      */
9723     if (mode == ARM_CPU_MODE_FIQ) {
9724         for (i = 24; i < 31; i++) {
9725             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
9726         }
9727     } else {
9728         for (i = 24; i < 29; i++) {
9729             env->xregs[i] = env->fiq_regs[i - 24];
9730         }
9731         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9732         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9733     }
9734 
9735     env->pc = env->regs[15];
9736 }
9737 
9738 /*
9739  * Function used to synchronize QEMU's AArch32 register set with AArch64
9740  * register set.  This is necessary when switching between AArch32 and AArch64
9741  * execution state.
9742  */
9743 void aarch64_sync_64_to_32(CPUARMState *env)
9744 {
9745     int i;
9746     uint32_t mode = env->uncached_cpsr & CPSR_M;
9747 
9748     /* We can blanket copy X[0:7] to R[0:7] */
9749     for (i = 0; i < 8; i++) {
9750         env->regs[i] = env->xregs[i];
9751     }
9752 
9753     /*
9754      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9755      * Otherwise, we copy x8-x12 into the banked user regs.
9756      */
9757     if (mode == ARM_CPU_MODE_FIQ) {
9758         for (i = 8; i < 13; i++) {
9759             env->usr_regs[i - 8] = env->xregs[i];
9760         }
9761     } else {
9762         for (i = 8; i < 13; i++) {
9763             env->regs[i] = env->xregs[i];
9764         }
9765     }
9766 
9767     /*
9768      * Registers r13 & r14 depend on the current mode.
9769      * If we are in a given mode, we copy the corresponding x registers to r13
9770      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9771      * for the mode.
9772      */
9773     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9774         env->regs[13] = env->xregs[13];
9775         env->regs[14] = env->xregs[14];
9776     } else {
9777         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9778 
9779         /*
9780          * HYP is an exception in that it does not have its own banked r14 but
9781          * shares the USR r14
9782          */
9783         if (mode == ARM_CPU_MODE_HYP) {
9784             env->regs[14] = env->xregs[14];
9785         } else {
9786             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9787         }
9788     }
9789 
9790     if (mode == ARM_CPU_MODE_HYP) {
9791         env->regs[13] = env->xregs[15];
9792     } else {
9793         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9794     }
9795 
9796     if (mode == ARM_CPU_MODE_IRQ) {
9797         env->regs[14] = env->xregs[16];
9798         env->regs[13] = env->xregs[17];
9799     } else {
9800         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9801         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9802     }
9803 
9804     if (mode == ARM_CPU_MODE_SVC) {
9805         env->regs[14] = env->xregs[18];
9806         env->regs[13] = env->xregs[19];
9807     } else {
9808         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9809         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9810     }
9811 
9812     if (mode == ARM_CPU_MODE_ABT) {
9813         env->regs[14] = env->xregs[20];
9814         env->regs[13] = env->xregs[21];
9815     } else {
9816         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9817         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9818     }
9819 
9820     if (mode == ARM_CPU_MODE_UND) {
9821         env->regs[14] = env->xregs[22];
9822         env->regs[13] = env->xregs[23];
9823     } else {
9824         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9825         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9826     }
9827 
9828     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9829      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9830      * FIQ bank for r8-r14.
9831      */
9832     if (mode == ARM_CPU_MODE_FIQ) {
9833         for (i = 24; i < 31; i++) {
9834             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9835         }
9836     } else {
9837         for (i = 24; i < 29; i++) {
9838             env->fiq_regs[i - 24] = env->xregs[i];
9839         }
9840         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9841         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9842     }
9843 
9844     env->regs[15] = env->pc;
9845 }
9846 
9847 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9848                                    uint32_t mask, uint32_t offset,
9849                                    uint32_t newpc)
9850 {
9851     int new_el;
9852 
9853     /* Change the CPU state so as to actually take the exception. */
9854     switch_mode(env, new_mode);
9855 
9856     /*
9857      * For exceptions taken to AArch32 we must clear the SS bit in both
9858      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9859      */
9860     env->pstate &= ~PSTATE_SS;
9861     env->spsr = cpsr_read(env);
9862     /* Clear IT bits.  */
9863     env->condexec_bits = 0;
9864     /* Switch to the new mode, and to the correct instruction set.  */
9865     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9866 
9867     /* This must be after mode switching. */
9868     new_el = arm_current_el(env);
9869 
9870     /* Set new mode endianness */
9871     env->uncached_cpsr &= ~CPSR_E;
9872     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9873         env->uncached_cpsr |= CPSR_E;
9874     }
9875     /* J and IL must always be cleared for exception entry */
9876     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9877     env->daif |= mask;
9878 
9879     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9880         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9881             env->uncached_cpsr |= CPSR_SSBS;
9882         } else {
9883             env->uncached_cpsr &= ~CPSR_SSBS;
9884         }
9885     }
9886 
9887     if (new_mode == ARM_CPU_MODE_HYP) {
9888         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9889         env->elr_el[2] = env->regs[15];
9890     } else {
9891         /* CPSR.PAN is normally preserved preserved unless...  */
9892         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9893             switch (new_el) {
9894             case 3:
9895                 if (!arm_is_secure_below_el3(env)) {
9896                     /* ... the target is EL3, from non-secure state.  */
9897                     env->uncached_cpsr &= ~CPSR_PAN;
9898                     break;
9899                 }
9900                 /* ... the target is EL3, from secure state ... */
9901                 /* fall through */
9902             case 1:
9903                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
9904                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9905                     env->uncached_cpsr |= CPSR_PAN;
9906                 }
9907                 break;
9908             }
9909         }
9910         /*
9911          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9912          * and we should just guard the thumb mode on V4
9913          */
9914         if (arm_feature(env, ARM_FEATURE_V4T)) {
9915             env->thumb =
9916                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9917         }
9918         env->regs[14] = env->regs[15] + offset;
9919     }
9920     env->regs[15] = newpc;
9921     arm_rebuild_hflags(env);
9922 }
9923 
9924 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9925 {
9926     /*
9927      * Handle exception entry to Hyp mode; this is sufficiently
9928      * different to entry to other AArch32 modes that we handle it
9929      * separately here.
9930      *
9931      * The vector table entry used is always the 0x14 Hyp mode entry point,
9932      * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9933      * The offset applied to the preferred return address is always zero
9934      * (see DDI0487C.a section G1.12.3).
9935      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9936      */
9937     uint32_t addr, mask;
9938     ARMCPU *cpu = ARM_CPU(cs);
9939     CPUARMState *env = &cpu->env;
9940 
9941     switch (cs->exception_index) {
9942     case EXCP_UDEF:
9943         addr = 0x04;
9944         break;
9945     case EXCP_SWI:
9946         addr = 0x14;
9947         break;
9948     case EXCP_BKPT:
9949         /* Fall through to prefetch abort.  */
9950     case EXCP_PREFETCH_ABORT:
9951         env->cp15.ifar_s = env->exception.vaddress;
9952         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9953                       (uint32_t)env->exception.vaddress);
9954         addr = 0x0c;
9955         break;
9956     case EXCP_DATA_ABORT:
9957         env->cp15.dfar_s = env->exception.vaddress;
9958         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9959                       (uint32_t)env->exception.vaddress);
9960         addr = 0x10;
9961         break;
9962     case EXCP_IRQ:
9963         addr = 0x18;
9964         break;
9965     case EXCP_FIQ:
9966         addr = 0x1c;
9967         break;
9968     case EXCP_HVC:
9969         addr = 0x08;
9970         break;
9971     case EXCP_HYP_TRAP:
9972         addr = 0x14;
9973         break;
9974     default:
9975         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9976     }
9977 
9978     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9979         if (!arm_feature(env, ARM_FEATURE_V8)) {
9980             /*
9981              * QEMU syndrome values are v8-style. v7 has the IL bit
9982              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9983              * If this is a v7 CPU, squash the IL bit in those cases.
9984              */
9985             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9986                 (cs->exception_index == EXCP_DATA_ABORT &&
9987                  !(env->exception.syndrome & ARM_EL_ISV)) ||
9988                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9989                 env->exception.syndrome &= ~ARM_EL_IL;
9990             }
9991         }
9992         env->cp15.esr_el[2] = env->exception.syndrome;
9993     }
9994 
9995     if (arm_current_el(env) != 2 && addr < 0x14) {
9996         addr = 0x14;
9997     }
9998 
9999     mask = 0;
10000     if (!(env->cp15.scr_el3 & SCR_EA)) {
10001         mask |= CPSR_A;
10002     }
10003     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10004         mask |= CPSR_I;
10005     }
10006     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10007         mask |= CPSR_F;
10008     }
10009 
10010     addr += env->cp15.hvbar;
10011 
10012     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10013 }
10014 
10015 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10016 {
10017     ARMCPU *cpu = ARM_CPU(cs);
10018     CPUARMState *env = &cpu->env;
10019     uint32_t addr;
10020     uint32_t mask;
10021     int new_mode;
10022     uint32_t offset;
10023     uint32_t moe;
10024 
10025     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10026     switch (syn_get_ec(env->exception.syndrome)) {
10027     case EC_BREAKPOINT:
10028     case EC_BREAKPOINT_SAME_EL:
10029         moe = 1;
10030         break;
10031     case EC_WATCHPOINT:
10032     case EC_WATCHPOINT_SAME_EL:
10033         moe = 10;
10034         break;
10035     case EC_AA32_BKPT:
10036         moe = 3;
10037         break;
10038     case EC_VECTORCATCH:
10039         moe = 5;
10040         break;
10041     default:
10042         moe = 0;
10043         break;
10044     }
10045 
10046     if (moe) {
10047         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10048     }
10049 
10050     if (env->exception.target_el == 2) {
10051         arm_cpu_do_interrupt_aarch32_hyp(cs);
10052         return;
10053     }
10054 
10055     switch (cs->exception_index) {
10056     case EXCP_UDEF:
10057         new_mode = ARM_CPU_MODE_UND;
10058         addr = 0x04;
10059         mask = CPSR_I;
10060         if (env->thumb)
10061             offset = 2;
10062         else
10063             offset = 4;
10064         break;
10065     case EXCP_SWI:
10066         new_mode = ARM_CPU_MODE_SVC;
10067         addr = 0x08;
10068         mask = CPSR_I;
10069         /* The PC already points to the next instruction.  */
10070         offset = 0;
10071         break;
10072     case EXCP_BKPT:
10073         /* Fall through to prefetch abort.  */
10074     case EXCP_PREFETCH_ABORT:
10075         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10076         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10077         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10078                       env->exception.fsr, (uint32_t)env->exception.vaddress);
10079         new_mode = ARM_CPU_MODE_ABT;
10080         addr = 0x0c;
10081         mask = CPSR_A | CPSR_I;
10082         offset = 4;
10083         break;
10084     case EXCP_DATA_ABORT:
10085         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10086         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10087         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10088                       env->exception.fsr,
10089                       (uint32_t)env->exception.vaddress);
10090         new_mode = ARM_CPU_MODE_ABT;
10091         addr = 0x10;
10092         mask = CPSR_A | CPSR_I;
10093         offset = 8;
10094         break;
10095     case EXCP_IRQ:
10096         new_mode = ARM_CPU_MODE_IRQ;
10097         addr = 0x18;
10098         /* Disable IRQ and imprecise data aborts.  */
10099         mask = CPSR_A | CPSR_I;
10100         offset = 4;
10101         if (env->cp15.scr_el3 & SCR_IRQ) {
10102             /* IRQ routed to monitor mode */
10103             new_mode = ARM_CPU_MODE_MON;
10104             mask |= CPSR_F;
10105         }
10106         break;
10107     case EXCP_FIQ:
10108         new_mode = ARM_CPU_MODE_FIQ;
10109         addr = 0x1c;
10110         /* Disable FIQ, IRQ and imprecise data aborts.  */
10111         mask = CPSR_A | CPSR_I | CPSR_F;
10112         if (env->cp15.scr_el3 & SCR_FIQ) {
10113             /* FIQ routed to monitor mode */
10114             new_mode = ARM_CPU_MODE_MON;
10115         }
10116         offset = 4;
10117         break;
10118     case EXCP_VIRQ:
10119         new_mode = ARM_CPU_MODE_IRQ;
10120         addr = 0x18;
10121         /* Disable IRQ and imprecise data aborts.  */
10122         mask = CPSR_A | CPSR_I;
10123         offset = 4;
10124         break;
10125     case EXCP_VFIQ:
10126         new_mode = ARM_CPU_MODE_FIQ;
10127         addr = 0x1c;
10128         /* Disable FIQ, IRQ and imprecise data aborts.  */
10129         mask = CPSR_A | CPSR_I | CPSR_F;
10130         offset = 4;
10131         break;
10132     case EXCP_SMC:
10133         new_mode = ARM_CPU_MODE_MON;
10134         addr = 0x08;
10135         mask = CPSR_A | CPSR_I | CPSR_F;
10136         offset = 0;
10137         break;
10138     default:
10139         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10140         return; /* Never happens.  Keep compiler happy.  */
10141     }
10142 
10143     if (new_mode == ARM_CPU_MODE_MON) {
10144         addr += env->cp15.mvbar;
10145     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10146         /* High vectors. When enabled, base address cannot be remapped. */
10147         addr += 0xffff0000;
10148     } else {
10149         /* ARM v7 architectures provide a vector base address register to remap
10150          * the interrupt vector table.
10151          * This register is only followed in non-monitor mode, and is banked.
10152          * Note: only bits 31:5 are valid.
10153          */
10154         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10155     }
10156 
10157     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10158         env->cp15.scr_el3 &= ~SCR_NS;
10159     }
10160 
10161     take_aarch32_exception(env, new_mode, mask, offset, addr);
10162 }
10163 
10164 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10165 {
10166     /*
10167      * Return the register number of the AArch64 view of the AArch32
10168      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10169      * be that of the AArch32 mode the exception came from.
10170      */
10171     int mode = env->uncached_cpsr & CPSR_M;
10172 
10173     switch (aarch32_reg) {
10174     case 0 ... 7:
10175         return aarch32_reg;
10176     case 8 ... 12:
10177         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10178     case 13:
10179         switch (mode) {
10180         case ARM_CPU_MODE_USR:
10181         case ARM_CPU_MODE_SYS:
10182             return 13;
10183         case ARM_CPU_MODE_HYP:
10184             return 15;
10185         case ARM_CPU_MODE_IRQ:
10186             return 17;
10187         case ARM_CPU_MODE_SVC:
10188             return 19;
10189         case ARM_CPU_MODE_ABT:
10190             return 21;
10191         case ARM_CPU_MODE_UND:
10192             return 23;
10193         case ARM_CPU_MODE_FIQ:
10194             return 29;
10195         default:
10196             g_assert_not_reached();
10197         }
10198     case 14:
10199         switch (mode) {
10200         case ARM_CPU_MODE_USR:
10201         case ARM_CPU_MODE_SYS:
10202         case ARM_CPU_MODE_HYP:
10203             return 14;
10204         case ARM_CPU_MODE_IRQ:
10205             return 16;
10206         case ARM_CPU_MODE_SVC:
10207             return 18;
10208         case ARM_CPU_MODE_ABT:
10209             return 20;
10210         case ARM_CPU_MODE_UND:
10211             return 22;
10212         case ARM_CPU_MODE_FIQ:
10213             return 30;
10214         default:
10215             g_assert_not_reached();
10216         }
10217     case 15:
10218         return 31;
10219     default:
10220         g_assert_not_reached();
10221     }
10222 }
10223 
10224 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10225 {
10226     uint32_t ret = cpsr_read(env);
10227 
10228     /* Move DIT to the correct location for SPSR_ELx */
10229     if (ret & CPSR_DIT) {
10230         ret &= ~CPSR_DIT;
10231         ret |= PSTATE_DIT;
10232     }
10233     /* Merge PSTATE.SS into SPSR_ELx */
10234     ret |= env->pstate & PSTATE_SS;
10235 
10236     return ret;
10237 }
10238 
10239 /* Handle exception entry to a target EL which is using AArch64 */
10240 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10241 {
10242     ARMCPU *cpu = ARM_CPU(cs);
10243     CPUARMState *env = &cpu->env;
10244     unsigned int new_el = env->exception.target_el;
10245     target_ulong addr = env->cp15.vbar_el[new_el];
10246     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10247     unsigned int old_mode;
10248     unsigned int cur_el = arm_current_el(env);
10249     int rt;
10250 
10251     /*
10252      * Note that new_el can never be 0.  If cur_el is 0, then
10253      * el0_a64 is is_a64(), else el0_a64 is ignored.
10254      */
10255     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10256 
10257     if (cur_el < new_el) {
10258         /* Entry vector offset depends on whether the implemented EL
10259          * immediately lower than the target level is using AArch32 or AArch64
10260          */
10261         bool is_aa64;
10262         uint64_t hcr;
10263 
10264         switch (new_el) {
10265         case 3:
10266             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10267             break;
10268         case 2:
10269             hcr = arm_hcr_el2_eff(env);
10270             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10271                 is_aa64 = (hcr & HCR_RW) != 0;
10272                 break;
10273             }
10274             /* fall through */
10275         case 1:
10276             is_aa64 = is_a64(env);
10277             break;
10278         default:
10279             g_assert_not_reached();
10280         }
10281 
10282         if (is_aa64) {
10283             addr += 0x400;
10284         } else {
10285             addr += 0x600;
10286         }
10287     } else if (pstate_read(env) & PSTATE_SP) {
10288         addr += 0x200;
10289     }
10290 
10291     switch (cs->exception_index) {
10292     case EXCP_PREFETCH_ABORT:
10293     case EXCP_DATA_ABORT:
10294         env->cp15.far_el[new_el] = env->exception.vaddress;
10295         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10296                       env->cp15.far_el[new_el]);
10297         /* fall through */
10298     case EXCP_BKPT:
10299     case EXCP_UDEF:
10300     case EXCP_SWI:
10301     case EXCP_HVC:
10302     case EXCP_HYP_TRAP:
10303     case EXCP_SMC:
10304         switch (syn_get_ec(env->exception.syndrome)) {
10305         case EC_ADVSIMDFPACCESSTRAP:
10306             /*
10307              * QEMU internal FP/SIMD syndromes from AArch32 include the
10308              * TA and coproc fields which are only exposed if the exception
10309              * is taken to AArch32 Hyp mode. Mask them out to get a valid
10310              * AArch64 format syndrome.
10311              */
10312             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10313             break;
10314         case EC_CP14RTTRAP:
10315         case EC_CP15RTTRAP:
10316         case EC_CP14DTTRAP:
10317             /*
10318              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10319              * the raw register field from the insn; when taking this to
10320              * AArch64 we must convert it to the AArch64 view of the register
10321              * number. Notice that we read a 4-bit AArch32 register number and
10322              * write back a 5-bit AArch64 one.
10323              */
10324             rt = extract32(env->exception.syndrome, 5, 4);
10325             rt = aarch64_regnum(env, rt);
10326             env->exception.syndrome = deposit32(env->exception.syndrome,
10327                                                 5, 5, rt);
10328             break;
10329         case EC_CP15RRTTRAP:
10330         case EC_CP14RRTTRAP:
10331             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10332             rt = extract32(env->exception.syndrome, 5, 4);
10333             rt = aarch64_regnum(env, rt);
10334             env->exception.syndrome = deposit32(env->exception.syndrome,
10335                                                 5, 5, rt);
10336             rt = extract32(env->exception.syndrome, 10, 4);
10337             rt = aarch64_regnum(env, rt);
10338             env->exception.syndrome = deposit32(env->exception.syndrome,
10339                                                 10, 5, rt);
10340             break;
10341         }
10342         env->cp15.esr_el[new_el] = env->exception.syndrome;
10343         break;
10344     case EXCP_IRQ:
10345     case EXCP_VIRQ:
10346         addr += 0x80;
10347         break;
10348     case EXCP_FIQ:
10349     case EXCP_VFIQ:
10350         addr += 0x100;
10351         break;
10352     default:
10353         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10354     }
10355 
10356     if (is_a64(env)) {
10357         old_mode = pstate_read(env);
10358         aarch64_save_sp(env, arm_current_el(env));
10359         env->elr_el[new_el] = env->pc;
10360     } else {
10361         old_mode = cpsr_read_for_spsr_elx(env);
10362         env->elr_el[new_el] = env->regs[15];
10363 
10364         aarch64_sync_32_to_64(env);
10365 
10366         env->condexec_bits = 0;
10367     }
10368     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10369 
10370     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10371                   env->elr_el[new_el]);
10372 
10373     if (cpu_isar_feature(aa64_pan, cpu)) {
10374         /* The value of PSTATE.PAN is normally preserved, except when ... */
10375         new_mode |= old_mode & PSTATE_PAN;
10376         switch (new_el) {
10377         case 2:
10378             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
10379             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10380                 != (HCR_E2H | HCR_TGE)) {
10381                 break;
10382             }
10383             /* fall through */
10384         case 1:
10385             /* ... the target is EL1 ... */
10386             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
10387             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10388                 new_mode |= PSTATE_PAN;
10389             }
10390             break;
10391         }
10392     }
10393     if (cpu_isar_feature(aa64_mte, cpu)) {
10394         new_mode |= PSTATE_TCO;
10395     }
10396 
10397     if (cpu_isar_feature(aa64_ssbs, cpu)) {
10398         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10399             new_mode |= PSTATE_SSBS;
10400         } else {
10401             new_mode &= ~PSTATE_SSBS;
10402         }
10403     }
10404 
10405     pstate_write(env, PSTATE_DAIF | new_mode);
10406     env->aarch64 = 1;
10407     aarch64_restore_sp(env, new_el);
10408     helper_rebuild_hflags_a64(env, new_el);
10409 
10410     env->pc = addr;
10411 
10412     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10413                   new_el, env->pc, pstate_read(env));
10414 }
10415 
10416 /*
10417  * Do semihosting call and set the appropriate return value. All the
10418  * permission and validity checks have been done at translate time.
10419  *
10420  * We only see semihosting exceptions in TCG only as they are not
10421  * trapped to the hypervisor in KVM.
10422  */
10423 #ifdef CONFIG_TCG
10424 static void handle_semihosting(CPUState *cs)
10425 {
10426     ARMCPU *cpu = ARM_CPU(cs);
10427     CPUARMState *env = &cpu->env;
10428 
10429     if (is_a64(env)) {
10430         qemu_log_mask(CPU_LOG_INT,
10431                       "...handling as semihosting call 0x%" PRIx64 "\n",
10432                       env->xregs[0]);
10433         env->xregs[0] = do_common_semihosting(cs);
10434         env->pc += 4;
10435     } else {
10436         qemu_log_mask(CPU_LOG_INT,
10437                       "...handling as semihosting call 0x%x\n",
10438                       env->regs[0]);
10439         env->regs[0] = do_common_semihosting(cs);
10440         env->regs[15] += env->thumb ? 2 : 4;
10441     }
10442 }
10443 #endif
10444 
10445 /* Handle a CPU exception for A and R profile CPUs.
10446  * Do any appropriate logging, handle PSCI calls, and then hand off
10447  * to the AArch64-entry or AArch32-entry function depending on the
10448  * target exception level's register width.
10449  *
10450  * Note: this is used for both TCG (as the do_interrupt tcg op),
10451  *       and KVM to re-inject guest debug exceptions, and to
10452  *       inject a Synchronous-External-Abort.
10453  */
10454 void arm_cpu_do_interrupt(CPUState *cs)
10455 {
10456     ARMCPU *cpu = ARM_CPU(cs);
10457     CPUARMState *env = &cpu->env;
10458     unsigned int new_el = env->exception.target_el;
10459 
10460     assert(!arm_feature(env, ARM_FEATURE_M));
10461 
10462     arm_log_exception(cs->exception_index);
10463     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10464                   new_el);
10465     if (qemu_loglevel_mask(CPU_LOG_INT)
10466         && !excp_is_internal(cs->exception_index)) {
10467         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10468                       syn_get_ec(env->exception.syndrome),
10469                       env->exception.syndrome);
10470     }
10471 
10472     if (arm_is_psci_call(cpu, cs->exception_index)) {
10473         arm_handle_psci_call(cpu);
10474         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10475         return;
10476     }
10477 
10478     /*
10479      * Semihosting semantics depend on the register width of the code
10480      * that caused the exception, not the target exception level, so
10481      * must be handled here.
10482      */
10483 #ifdef CONFIG_TCG
10484     if (cs->exception_index == EXCP_SEMIHOST) {
10485         handle_semihosting(cs);
10486         return;
10487     }
10488 #endif
10489 
10490     /* Hooks may change global state so BQL should be held, also the
10491      * BQL needs to be held for any modification of
10492      * cs->interrupt_request.
10493      */
10494     g_assert(qemu_mutex_iothread_locked());
10495 
10496     arm_call_pre_el_change_hook(cpu);
10497 
10498     assert(!excp_is_internal(cs->exception_index));
10499     if (arm_el_is_aa64(env, new_el)) {
10500         arm_cpu_do_interrupt_aarch64(cs);
10501     } else {
10502         arm_cpu_do_interrupt_aarch32(cs);
10503     }
10504 
10505     arm_call_el_change_hook(cpu);
10506 
10507     if (!kvm_enabled()) {
10508         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10509     }
10510 }
10511 #endif /* !CONFIG_USER_ONLY */
10512 
10513 uint64_t arm_sctlr(CPUARMState *env, int el)
10514 {
10515     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10516     if (el == 0) {
10517         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10518         el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10519              ? 2 : 1;
10520     }
10521     return env->cp15.sctlr_el[el];
10522 }
10523 
10524 /* Return the SCTLR value which controls this address translation regime */
10525 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10526 {
10527     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10528 }
10529 
10530 #ifndef CONFIG_USER_ONLY
10531 
10532 /* Return true if the specified stage of address translation is disabled */
10533 static inline bool regime_translation_disabled(CPUARMState *env,
10534                                                ARMMMUIdx mmu_idx)
10535 {
10536     uint64_t hcr_el2;
10537 
10538     if (arm_feature(env, ARM_FEATURE_M)) {
10539         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10540                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10541         case R_V7M_MPU_CTRL_ENABLE_MASK:
10542             /* Enabled, but not for HardFault and NMI */
10543             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10544         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10545             /* Enabled for all cases */
10546             return false;
10547         case 0:
10548         default:
10549             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10550              * we warned about that in armv7m_nvic.c when the guest set it.
10551              */
10552             return true;
10553         }
10554     }
10555 
10556     hcr_el2 = arm_hcr_el2_eff(env);
10557 
10558     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10559         /* HCR.DC means HCR.VM behaves as 1 */
10560         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10561     }
10562 
10563     if (hcr_el2 & HCR_TGE) {
10564         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10565         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10566             return true;
10567         }
10568     }
10569 
10570     if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10571         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10572         return true;
10573     }
10574 
10575     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10576 }
10577 
10578 static inline bool regime_translation_big_endian(CPUARMState *env,
10579                                                  ARMMMUIdx mmu_idx)
10580 {
10581     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10582 }
10583 
10584 /* Return the TTBR associated with this translation regime */
10585 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10586                                    int ttbrn)
10587 {
10588     if (mmu_idx == ARMMMUIdx_Stage2) {
10589         return env->cp15.vttbr_el2;
10590     }
10591     if (mmu_idx == ARMMMUIdx_Stage2_S) {
10592         return env->cp15.vsttbr_el2;
10593     }
10594     if (ttbrn == 0) {
10595         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10596     } else {
10597         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10598     }
10599 }
10600 
10601 #endif /* !CONFIG_USER_ONLY */
10602 
10603 /* Convert a possible stage1+2 MMU index into the appropriate
10604  * stage 1 MMU index
10605  */
10606 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10607 {
10608     switch (mmu_idx) {
10609     case ARMMMUIdx_SE10_0:
10610         return ARMMMUIdx_Stage1_SE0;
10611     case ARMMMUIdx_SE10_1:
10612         return ARMMMUIdx_Stage1_SE1;
10613     case ARMMMUIdx_SE10_1_PAN:
10614         return ARMMMUIdx_Stage1_SE1_PAN;
10615     case ARMMMUIdx_E10_0:
10616         return ARMMMUIdx_Stage1_E0;
10617     case ARMMMUIdx_E10_1:
10618         return ARMMMUIdx_Stage1_E1;
10619     case ARMMMUIdx_E10_1_PAN:
10620         return ARMMMUIdx_Stage1_E1_PAN;
10621     default:
10622         return mmu_idx;
10623     }
10624 }
10625 
10626 /* Return true if the translation regime is using LPAE format page tables */
10627 static inline bool regime_using_lpae_format(CPUARMState *env,
10628                                             ARMMMUIdx mmu_idx)
10629 {
10630     int el = regime_el(env, mmu_idx);
10631     if (el == 2 || arm_el_is_aa64(env, el)) {
10632         return true;
10633     }
10634     if (arm_feature(env, ARM_FEATURE_LPAE)
10635         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10636         return true;
10637     }
10638     return false;
10639 }
10640 
10641 /* Returns true if the stage 1 translation regime is using LPAE format page
10642  * tables. Used when raising alignment exceptions, whose FSR changes depending
10643  * on whether the long or short descriptor format is in use. */
10644 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10645 {
10646     mmu_idx = stage_1_mmu_idx(mmu_idx);
10647 
10648     return regime_using_lpae_format(env, mmu_idx);
10649 }
10650 
10651 #ifndef CONFIG_USER_ONLY
10652 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10653 {
10654     switch (mmu_idx) {
10655     case ARMMMUIdx_SE10_0:
10656     case ARMMMUIdx_E20_0:
10657     case ARMMMUIdx_SE20_0:
10658     case ARMMMUIdx_Stage1_E0:
10659     case ARMMMUIdx_Stage1_SE0:
10660     case ARMMMUIdx_MUser:
10661     case ARMMMUIdx_MSUser:
10662     case ARMMMUIdx_MUserNegPri:
10663     case ARMMMUIdx_MSUserNegPri:
10664         return true;
10665     default:
10666         return false;
10667     case ARMMMUIdx_E10_0:
10668     case ARMMMUIdx_E10_1:
10669     case ARMMMUIdx_E10_1_PAN:
10670         g_assert_not_reached();
10671     }
10672 }
10673 
10674 /* Translate section/page access permissions to page
10675  * R/W protection flags
10676  *
10677  * @env:         CPUARMState
10678  * @mmu_idx:     MMU index indicating required translation regime
10679  * @ap:          The 3-bit access permissions (AP[2:0])
10680  * @domain_prot: The 2-bit domain access permissions
10681  */
10682 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10683                                 int ap, int domain_prot)
10684 {
10685     bool is_user = regime_is_user(env, mmu_idx);
10686 
10687     if (domain_prot == 3) {
10688         return PAGE_READ | PAGE_WRITE;
10689     }
10690 
10691     switch (ap) {
10692     case 0:
10693         if (arm_feature(env, ARM_FEATURE_V7)) {
10694             return 0;
10695         }
10696         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10697         case SCTLR_S:
10698             return is_user ? 0 : PAGE_READ;
10699         case SCTLR_R:
10700             return PAGE_READ;
10701         default:
10702             return 0;
10703         }
10704     case 1:
10705         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10706     case 2:
10707         if (is_user) {
10708             return PAGE_READ;
10709         } else {
10710             return PAGE_READ | PAGE_WRITE;
10711         }
10712     case 3:
10713         return PAGE_READ | PAGE_WRITE;
10714     case 4: /* Reserved.  */
10715         return 0;
10716     case 5:
10717         return is_user ? 0 : PAGE_READ;
10718     case 6:
10719         return PAGE_READ;
10720     case 7:
10721         if (!arm_feature(env, ARM_FEATURE_V6K)) {
10722             return 0;
10723         }
10724         return PAGE_READ;
10725     default:
10726         g_assert_not_reached();
10727     }
10728 }
10729 
10730 /* Translate section/page access permissions to page
10731  * R/W protection flags.
10732  *
10733  * @ap:      The 2-bit simple AP (AP[2:1])
10734  * @is_user: TRUE if accessing from PL0
10735  */
10736 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10737 {
10738     switch (ap) {
10739     case 0:
10740         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10741     case 1:
10742         return PAGE_READ | PAGE_WRITE;
10743     case 2:
10744         return is_user ? 0 : PAGE_READ;
10745     case 3:
10746         return PAGE_READ;
10747     default:
10748         g_assert_not_reached();
10749     }
10750 }
10751 
10752 static inline int
10753 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10754 {
10755     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10756 }
10757 
10758 /* Translate S2 section/page access permissions to protection flags
10759  *
10760  * @env:     CPUARMState
10761  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
10762  * @xn:      XN (execute-never) bits
10763  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10764  */
10765 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10766 {
10767     int prot = 0;
10768 
10769     if (s2ap & 1) {
10770         prot |= PAGE_READ;
10771     }
10772     if (s2ap & 2) {
10773         prot |= PAGE_WRITE;
10774     }
10775 
10776     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10777         switch (xn) {
10778         case 0:
10779             prot |= PAGE_EXEC;
10780             break;
10781         case 1:
10782             if (s1_is_el0) {
10783                 prot |= PAGE_EXEC;
10784             }
10785             break;
10786         case 2:
10787             break;
10788         case 3:
10789             if (!s1_is_el0) {
10790                 prot |= PAGE_EXEC;
10791             }
10792             break;
10793         default:
10794             g_assert_not_reached();
10795         }
10796     } else {
10797         if (!extract32(xn, 1, 1)) {
10798             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10799                 prot |= PAGE_EXEC;
10800             }
10801         }
10802     }
10803     return prot;
10804 }
10805 
10806 /* Translate section/page access permissions to protection flags
10807  *
10808  * @env:     CPUARMState
10809  * @mmu_idx: MMU index indicating required translation regime
10810  * @is_aa64: TRUE if AArch64
10811  * @ap:      The 2-bit simple AP (AP[2:1])
10812  * @ns:      NS (non-secure) bit
10813  * @xn:      XN (execute-never) bit
10814  * @pxn:     PXN (privileged execute-never) bit
10815  */
10816 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10817                       int ap, int ns, int xn, int pxn)
10818 {
10819     bool is_user = regime_is_user(env, mmu_idx);
10820     int prot_rw, user_rw;
10821     bool have_wxn;
10822     int wxn = 0;
10823 
10824     assert(mmu_idx != ARMMMUIdx_Stage2);
10825     assert(mmu_idx != ARMMMUIdx_Stage2_S);
10826 
10827     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10828     if (is_user) {
10829         prot_rw = user_rw;
10830     } else {
10831         if (user_rw && regime_is_pan(env, mmu_idx)) {
10832             /* PAN forbids data accesses but doesn't affect insn fetch */
10833             prot_rw = 0;
10834         } else {
10835             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10836         }
10837     }
10838 
10839     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10840         return prot_rw;
10841     }
10842 
10843     /* TODO have_wxn should be replaced with
10844      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10845      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10846      * compatible processors have EL2, which is required for [U]WXN.
10847      */
10848     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10849 
10850     if (have_wxn) {
10851         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10852     }
10853 
10854     if (is_aa64) {
10855         if (regime_has_2_ranges(mmu_idx) && !is_user) {
10856             xn = pxn || (user_rw & PAGE_WRITE);
10857         }
10858     } else if (arm_feature(env, ARM_FEATURE_V7)) {
10859         switch (regime_el(env, mmu_idx)) {
10860         case 1:
10861         case 3:
10862             if (is_user) {
10863                 xn = xn || !(user_rw & PAGE_READ);
10864             } else {
10865                 int uwxn = 0;
10866                 if (have_wxn) {
10867                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10868                 }
10869                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10870                      (uwxn && (user_rw & PAGE_WRITE));
10871             }
10872             break;
10873         case 2:
10874             break;
10875         }
10876     } else {
10877         xn = wxn = 0;
10878     }
10879 
10880     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10881         return prot_rw;
10882     }
10883     return prot_rw | PAGE_EXEC;
10884 }
10885 
10886 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10887                                      uint32_t *table, uint32_t address)
10888 {
10889     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10890     TCR *tcr = regime_tcr(env, mmu_idx);
10891 
10892     if (address & tcr->mask) {
10893         if (tcr->raw_tcr & TTBCR_PD1) {
10894             /* Translation table walk disabled for TTBR1 */
10895             return false;
10896         }
10897         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10898     } else {
10899         if (tcr->raw_tcr & TTBCR_PD0) {
10900             /* Translation table walk disabled for TTBR0 */
10901             return false;
10902         }
10903         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10904     }
10905     *table |= (address >> 18) & 0x3ffc;
10906     return true;
10907 }
10908 
10909 /* Translate a S1 pagetable walk through S2 if needed.  */
10910 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10911                                hwaddr addr, bool *is_secure,
10912                                ARMMMUFaultInfo *fi)
10913 {
10914     if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10915         !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10916         target_ulong s2size;
10917         hwaddr s2pa;
10918         int s2prot;
10919         int ret;
10920         ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
10921                                           : ARMMMUIdx_Stage2;
10922         ARMCacheAttrs cacheattrs = {};
10923         MemTxAttrs txattrs = {};
10924 
10925         ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
10926                                  &s2pa, &txattrs, &s2prot, &s2size, fi,
10927                                  &cacheattrs);
10928         if (ret) {
10929             assert(fi->type != ARMFault_None);
10930             fi->s2addr = addr;
10931             fi->stage2 = true;
10932             fi->s1ptw = true;
10933             fi->s1ns = !*is_secure;
10934             return ~0;
10935         }
10936         if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
10937             (cacheattrs.attrs & 0xf0) == 0) {
10938             /*
10939              * PTW set and S1 walk touched S2 Device memory:
10940              * generate Permission fault.
10941              */
10942             fi->type = ARMFault_Permission;
10943             fi->s2addr = addr;
10944             fi->stage2 = true;
10945             fi->s1ptw = true;
10946             fi->s1ns = !*is_secure;
10947             return ~0;
10948         }
10949 
10950         if (arm_is_secure_below_el3(env)) {
10951             /* Check if page table walk is to secure or non-secure PA space. */
10952             if (*is_secure) {
10953                 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
10954             } else {
10955                 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
10956             }
10957         } else {
10958             assert(!*is_secure);
10959         }
10960 
10961         addr = s2pa;
10962     }
10963     return addr;
10964 }
10965 
10966 /* All loads done in the course of a page table walk go through here. */
10967 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10968                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10969 {
10970     ARMCPU *cpu = ARM_CPU(cs);
10971     CPUARMState *env = &cpu->env;
10972     MemTxAttrs attrs = {};
10973     MemTxResult result = MEMTX_OK;
10974     AddressSpace *as;
10975     uint32_t data;
10976 
10977     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10978     attrs.secure = is_secure;
10979     as = arm_addressspace(cs, attrs);
10980     if (fi->s1ptw) {
10981         return 0;
10982     }
10983     if (regime_translation_big_endian(env, mmu_idx)) {
10984         data = address_space_ldl_be(as, addr, attrs, &result);
10985     } else {
10986         data = address_space_ldl_le(as, addr, attrs, &result);
10987     }
10988     if (result == MEMTX_OK) {
10989         return data;
10990     }
10991     fi->type = ARMFault_SyncExternalOnWalk;
10992     fi->ea = arm_extabort_type(result);
10993     return 0;
10994 }
10995 
10996 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10997                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10998 {
10999     ARMCPU *cpu = ARM_CPU(cs);
11000     CPUARMState *env = &cpu->env;
11001     MemTxAttrs attrs = {};
11002     MemTxResult result = MEMTX_OK;
11003     AddressSpace *as;
11004     uint64_t data;
11005 
11006     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
11007     attrs.secure = is_secure;
11008     as = arm_addressspace(cs, attrs);
11009     if (fi->s1ptw) {
11010         return 0;
11011     }
11012     if (regime_translation_big_endian(env, mmu_idx)) {
11013         data = address_space_ldq_be(as, addr, attrs, &result);
11014     } else {
11015         data = address_space_ldq_le(as, addr, attrs, &result);
11016     }
11017     if (result == MEMTX_OK) {
11018         return data;
11019     }
11020     fi->type = ARMFault_SyncExternalOnWalk;
11021     fi->ea = arm_extabort_type(result);
11022     return 0;
11023 }
11024 
11025 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
11026                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
11027                              hwaddr *phys_ptr, int *prot,
11028                              target_ulong *page_size,
11029                              ARMMMUFaultInfo *fi)
11030 {
11031     CPUState *cs = env_cpu(env);
11032     int level = 1;
11033     uint32_t table;
11034     uint32_t desc;
11035     int type;
11036     int ap;
11037     int domain = 0;
11038     int domain_prot;
11039     hwaddr phys_addr;
11040     uint32_t dacr;
11041 
11042     /* Pagetable walk.  */
11043     /* Lookup l1 descriptor.  */
11044     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
11045         /* Section translation fault if page walk is disabled by PD0 or PD1 */
11046         fi->type = ARMFault_Translation;
11047         goto do_fault;
11048     }
11049     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11050                        mmu_idx, fi);
11051     if (fi->type != ARMFault_None) {
11052         goto do_fault;
11053     }
11054     type = (desc & 3);
11055     domain = (desc >> 5) & 0x0f;
11056     if (regime_el(env, mmu_idx) == 1) {
11057         dacr = env->cp15.dacr_ns;
11058     } else {
11059         dacr = env->cp15.dacr_s;
11060     }
11061     domain_prot = (dacr >> (domain * 2)) & 3;
11062     if (type == 0) {
11063         /* Section translation fault.  */
11064         fi->type = ARMFault_Translation;
11065         goto do_fault;
11066     }
11067     if (type != 2) {
11068         level = 2;
11069     }
11070     if (domain_prot == 0 || domain_prot == 2) {
11071         fi->type = ARMFault_Domain;
11072         goto do_fault;
11073     }
11074     if (type == 2) {
11075         /* 1Mb section.  */
11076         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11077         ap = (desc >> 10) & 3;
11078         *page_size = 1024 * 1024;
11079     } else {
11080         /* Lookup l2 entry.  */
11081         if (type == 1) {
11082             /* Coarse pagetable.  */
11083             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11084         } else {
11085             /* Fine pagetable.  */
11086             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
11087         }
11088         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11089                            mmu_idx, fi);
11090         if (fi->type != ARMFault_None) {
11091             goto do_fault;
11092         }
11093         switch (desc & 3) {
11094         case 0: /* Page translation fault.  */
11095             fi->type = ARMFault_Translation;
11096             goto do_fault;
11097         case 1: /* 64k page.  */
11098             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11099             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
11100             *page_size = 0x10000;
11101             break;
11102         case 2: /* 4k page.  */
11103             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11104             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
11105             *page_size = 0x1000;
11106             break;
11107         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
11108             if (type == 1) {
11109                 /* ARMv6/XScale extended small page format */
11110                 if (arm_feature(env, ARM_FEATURE_XSCALE)
11111                     || arm_feature(env, ARM_FEATURE_V6)) {
11112                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11113                     *page_size = 0x1000;
11114                 } else {
11115                     /* UNPREDICTABLE in ARMv5; we choose to take a
11116                      * page translation fault.
11117                      */
11118                     fi->type = ARMFault_Translation;
11119                     goto do_fault;
11120                 }
11121             } else {
11122                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
11123                 *page_size = 0x400;
11124             }
11125             ap = (desc >> 4) & 3;
11126             break;
11127         default:
11128             /* Never happens, but compiler isn't smart enough to tell.  */
11129             abort();
11130         }
11131     }
11132     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11133     *prot |= *prot ? PAGE_EXEC : 0;
11134     if (!(*prot & (1 << access_type))) {
11135         /* Access permission fault.  */
11136         fi->type = ARMFault_Permission;
11137         goto do_fault;
11138     }
11139     *phys_ptr = phys_addr;
11140     return false;
11141 do_fault:
11142     fi->domain = domain;
11143     fi->level = level;
11144     return true;
11145 }
11146 
11147 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
11148                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
11149                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11150                              target_ulong *page_size, ARMMMUFaultInfo *fi)
11151 {
11152     CPUState *cs = env_cpu(env);
11153     ARMCPU *cpu = env_archcpu(env);
11154     int level = 1;
11155     uint32_t table;
11156     uint32_t desc;
11157     uint32_t xn;
11158     uint32_t pxn = 0;
11159     int type;
11160     int ap;
11161     int domain = 0;
11162     int domain_prot;
11163     hwaddr phys_addr;
11164     uint32_t dacr;
11165     bool ns;
11166 
11167     /* Pagetable walk.  */
11168     /* Lookup l1 descriptor.  */
11169     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
11170         /* Section translation fault if page walk is disabled by PD0 or PD1 */
11171         fi->type = ARMFault_Translation;
11172         goto do_fault;
11173     }
11174     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11175                        mmu_idx, fi);
11176     if (fi->type != ARMFault_None) {
11177         goto do_fault;
11178     }
11179     type = (desc & 3);
11180     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
11181         /* Section translation fault, or attempt to use the encoding
11182          * which is Reserved on implementations without PXN.
11183          */
11184         fi->type = ARMFault_Translation;
11185         goto do_fault;
11186     }
11187     if ((type == 1) || !(desc & (1 << 18))) {
11188         /* Page or Section.  */
11189         domain = (desc >> 5) & 0x0f;
11190     }
11191     if (regime_el(env, mmu_idx) == 1) {
11192         dacr = env->cp15.dacr_ns;
11193     } else {
11194         dacr = env->cp15.dacr_s;
11195     }
11196     if (type == 1) {
11197         level = 2;
11198     }
11199     domain_prot = (dacr >> (domain * 2)) & 3;
11200     if (domain_prot == 0 || domain_prot == 2) {
11201         /* Section or Page domain fault */
11202         fi->type = ARMFault_Domain;
11203         goto do_fault;
11204     }
11205     if (type != 1) {
11206         if (desc & (1 << 18)) {
11207             /* Supersection.  */
11208             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
11209             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
11210             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
11211             *page_size = 0x1000000;
11212         } else {
11213             /* Section.  */
11214             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11215             *page_size = 0x100000;
11216         }
11217         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
11218         xn = desc & (1 << 4);
11219         pxn = desc & 1;
11220         ns = extract32(desc, 19, 1);
11221     } else {
11222         if (cpu_isar_feature(aa32_pxn, cpu)) {
11223             pxn = (desc >> 2) & 1;
11224         }
11225         ns = extract32(desc, 3, 1);
11226         /* Lookup l2 entry.  */
11227         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11228         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11229                            mmu_idx, fi);
11230         if (fi->type != ARMFault_None) {
11231             goto do_fault;
11232         }
11233         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
11234         switch (desc & 3) {
11235         case 0: /* Page translation fault.  */
11236             fi->type = ARMFault_Translation;
11237             goto do_fault;
11238         case 1: /* 64k page.  */
11239             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11240             xn = desc & (1 << 15);
11241             *page_size = 0x10000;
11242             break;
11243         case 2: case 3: /* 4k page.  */
11244             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11245             xn = desc & 1;
11246             *page_size = 0x1000;
11247             break;
11248         default:
11249             /* Never happens, but compiler isn't smart enough to tell.  */
11250             abort();
11251         }
11252     }
11253     if (domain_prot == 3) {
11254         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11255     } else {
11256         if (pxn && !regime_is_user(env, mmu_idx)) {
11257             xn = 1;
11258         }
11259         if (xn && access_type == MMU_INST_FETCH) {
11260             fi->type = ARMFault_Permission;
11261             goto do_fault;
11262         }
11263 
11264         if (arm_feature(env, ARM_FEATURE_V6K) &&
11265                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
11266             /* The simplified model uses AP[0] as an access control bit.  */
11267             if ((ap & 1) == 0) {
11268                 /* Access flag fault.  */
11269                 fi->type = ARMFault_AccessFlag;
11270                 goto do_fault;
11271             }
11272             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
11273         } else {
11274             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11275         }
11276         if (*prot && !xn) {
11277             *prot |= PAGE_EXEC;
11278         }
11279         if (!(*prot & (1 << access_type))) {
11280             /* Access permission fault.  */
11281             fi->type = ARMFault_Permission;
11282             goto do_fault;
11283         }
11284     }
11285     if (ns) {
11286         /* The NS bit will (as required by the architecture) have no effect if
11287          * the CPU doesn't support TZ or this is a non-secure translation
11288          * regime, because the attribute will already be non-secure.
11289          */
11290         attrs->secure = false;
11291     }
11292     *phys_ptr = phys_addr;
11293     return false;
11294 do_fault:
11295     fi->domain = domain;
11296     fi->level = level;
11297     return true;
11298 }
11299 
11300 /*
11301  * check_s2_mmu_setup
11302  * @cpu:        ARMCPU
11303  * @is_aa64:    True if the translation regime is in AArch64 state
11304  * @startlevel: Suggested starting level
11305  * @inputsize:  Bitsize of IPAs
11306  * @stride:     Page-table stride (See the ARM ARM)
11307  *
11308  * Returns true if the suggested S2 translation parameters are OK and
11309  * false otherwise.
11310  */
11311 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
11312                                int inputsize, int stride)
11313 {
11314     const int grainsize = stride + 3;
11315     int startsizecheck;
11316 
11317     /* Negative levels are never allowed.  */
11318     if (level < 0) {
11319         return false;
11320     }
11321 
11322     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
11323     if (startsizecheck < 1 || startsizecheck > stride + 4) {
11324         return false;
11325     }
11326 
11327     if (is_aa64) {
11328         CPUARMState *env = &cpu->env;
11329         unsigned int pamax = arm_pamax(cpu);
11330 
11331         switch (stride) {
11332         case 13: /* 64KB Pages.  */
11333             if (level == 0 || (level == 1 && pamax <= 42)) {
11334                 return false;
11335             }
11336             break;
11337         case 11: /* 16KB Pages.  */
11338             if (level == 0 || (level == 1 && pamax <= 40)) {
11339                 return false;
11340             }
11341             break;
11342         case 9: /* 4KB Pages.  */
11343             if (level == 0 && pamax <= 42) {
11344                 return false;
11345             }
11346             break;
11347         default:
11348             g_assert_not_reached();
11349         }
11350 
11351         /* Inputsize checks.  */
11352         if (inputsize > pamax &&
11353             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
11354             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
11355             return false;
11356         }
11357     } else {
11358         /* AArch32 only supports 4KB pages. Assert on that.  */
11359         assert(stride == 9);
11360 
11361         if (level == 0) {
11362             return false;
11363         }
11364     }
11365     return true;
11366 }
11367 
11368 /* Translate from the 4-bit stage 2 representation of
11369  * memory attributes (without cache-allocation hints) to
11370  * the 8-bit representation of the stage 1 MAIR registers
11371  * (which includes allocation hints).
11372  *
11373  * ref: shared/translation/attrs/S2AttrDecode()
11374  *      .../S2ConvertAttrsHints()
11375  */
11376 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11377 {
11378     uint8_t hiattr = extract32(s2attrs, 2, 2);
11379     uint8_t loattr = extract32(s2attrs, 0, 2);
11380     uint8_t hihint = 0, lohint = 0;
11381 
11382     if (hiattr != 0) { /* normal memory */
11383         if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
11384             hiattr = loattr = 1; /* non-cacheable */
11385         } else {
11386             if (hiattr != 1) { /* Write-through or write-back */
11387                 hihint = 3; /* RW allocate */
11388             }
11389             if (loattr != 1) { /* Write-through or write-back */
11390                 lohint = 3; /* RW allocate */
11391             }
11392         }
11393     }
11394 
11395     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11396 }
11397 #endif /* !CONFIG_USER_ONLY */
11398 
11399 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11400 {
11401     if (regime_has_2_ranges(mmu_idx)) {
11402         return extract64(tcr, 37, 2);
11403     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11404         return 0; /* VTCR_EL2 */
11405     } else {
11406         /* Replicate the single TBI bit so we always have 2 bits.  */
11407         return extract32(tcr, 20, 1) * 3;
11408     }
11409 }
11410 
11411 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11412 {
11413     if (regime_has_2_ranges(mmu_idx)) {
11414         return extract64(tcr, 51, 2);
11415     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11416         return 0; /* VTCR_EL2 */
11417     } else {
11418         /* Replicate the single TBID bit so we always have 2 bits.  */
11419         return extract32(tcr, 29, 1) * 3;
11420     }
11421 }
11422 
11423 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11424 {
11425     if (regime_has_2_ranges(mmu_idx)) {
11426         return extract64(tcr, 57, 2);
11427     } else {
11428         /* Replicate the single TCMA bit so we always have 2 bits.  */
11429         return extract32(tcr, 30, 1) * 3;
11430     }
11431 }
11432 
11433 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11434                                    ARMMMUIdx mmu_idx, bool data)
11435 {
11436     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11437     bool epd, hpd, using16k, using64k;
11438     int select, tsz, tbi, max_tsz;
11439 
11440     if (!regime_has_2_ranges(mmu_idx)) {
11441         select = 0;
11442         tsz = extract32(tcr, 0, 6);
11443         using64k = extract32(tcr, 14, 1);
11444         using16k = extract32(tcr, 15, 1);
11445         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11446             /* VTCR_EL2 */
11447             hpd = false;
11448         } else {
11449             hpd = extract32(tcr, 24, 1);
11450         }
11451         epd = false;
11452     } else {
11453         /*
11454          * Bit 55 is always between the two regions, and is canonical for
11455          * determining if address tagging is enabled.
11456          */
11457         select = extract64(va, 55, 1);
11458         if (!select) {
11459             tsz = extract32(tcr, 0, 6);
11460             epd = extract32(tcr, 7, 1);
11461             using64k = extract32(tcr, 14, 1);
11462             using16k = extract32(tcr, 15, 1);
11463             hpd = extract64(tcr, 41, 1);
11464         } else {
11465             int tg = extract32(tcr, 30, 2);
11466             using16k = tg == 1;
11467             using64k = tg == 3;
11468             tsz = extract32(tcr, 16, 6);
11469             epd = extract32(tcr, 23, 1);
11470             hpd = extract64(tcr, 42, 1);
11471         }
11472     }
11473 
11474     if (cpu_isar_feature(aa64_st, env_archcpu(env))) {
11475         max_tsz = 48 - using64k;
11476     } else {
11477         max_tsz = 39;
11478     }
11479 
11480     tsz = MIN(tsz, max_tsz);
11481     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
11482 
11483     /* Present TBI as a composite with TBID.  */
11484     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11485     if (!data) {
11486         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11487     }
11488     tbi = (tbi >> select) & 1;
11489 
11490     return (ARMVAParameters) {
11491         .tsz = tsz,
11492         .select = select,
11493         .tbi = tbi,
11494         .epd = epd,
11495         .hpd = hpd,
11496         .using16k = using16k,
11497         .using64k = using64k,
11498     };
11499 }
11500 
11501 #ifndef CONFIG_USER_ONLY
11502 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11503                                           ARMMMUIdx mmu_idx)
11504 {
11505     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11506     uint32_t el = regime_el(env, mmu_idx);
11507     int select, tsz;
11508     bool epd, hpd;
11509 
11510     assert(mmu_idx != ARMMMUIdx_Stage2_S);
11511 
11512     if (mmu_idx == ARMMMUIdx_Stage2) {
11513         /* VTCR */
11514         bool sext = extract32(tcr, 4, 1);
11515         bool sign = extract32(tcr, 3, 1);
11516 
11517         /*
11518          * If the sign-extend bit is not the same as t0sz[3], the result
11519          * is unpredictable. Flag this as a guest error.
11520          */
11521         if (sign != sext) {
11522             qemu_log_mask(LOG_GUEST_ERROR,
11523                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11524         }
11525         tsz = sextract32(tcr, 0, 4) + 8;
11526         select = 0;
11527         hpd = false;
11528         epd = false;
11529     } else if (el == 2) {
11530         /* HTCR */
11531         tsz = extract32(tcr, 0, 3);
11532         select = 0;
11533         hpd = extract64(tcr, 24, 1);
11534         epd = false;
11535     } else {
11536         int t0sz = extract32(tcr, 0, 3);
11537         int t1sz = extract32(tcr, 16, 3);
11538 
11539         if (t1sz == 0) {
11540             select = va > (0xffffffffu >> t0sz);
11541         } else {
11542             /* Note that we will detect errors later.  */
11543             select = va >= ~(0xffffffffu >> t1sz);
11544         }
11545         if (!select) {
11546             tsz = t0sz;
11547             epd = extract32(tcr, 7, 1);
11548             hpd = extract64(tcr, 41, 1);
11549         } else {
11550             tsz = t1sz;
11551             epd = extract32(tcr, 23, 1);
11552             hpd = extract64(tcr, 42, 1);
11553         }
11554         /* For aarch32, hpd0 is not enabled without t2e as well.  */
11555         hpd &= extract32(tcr, 6, 1);
11556     }
11557 
11558     return (ARMVAParameters) {
11559         .tsz = tsz,
11560         .select = select,
11561         .epd = epd,
11562         .hpd = hpd,
11563     };
11564 }
11565 
11566 /**
11567  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11568  *
11569  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11570  * prot and page_size may not be filled in, and the populated fsr value provides
11571  * information on why the translation aborted, in the format of a long-format
11572  * DFSR/IFSR fault register, with the following caveats:
11573  *  * the WnR bit is never set (the caller must do this).
11574  *
11575  * @env: CPUARMState
11576  * @address: virtual address to get physical address for
11577  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11578  * @mmu_idx: MMU index indicating required translation regime
11579  * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11580  *             walk), must be true if this is stage 2 of a stage 1+2 walk for an
11581  *             EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11582  * @phys_ptr: set to the physical address corresponding to the virtual address
11583  * @attrs: set to the memory transaction attributes to use
11584  * @prot: set to the permissions for the page containing phys_ptr
11585  * @page_size_ptr: set to the size of the page containing phys_ptr
11586  * @fi: set to fault info if the translation fails
11587  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11588  */
11589 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
11590                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
11591                                bool s1_is_el0,
11592                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11593                                target_ulong *page_size_ptr,
11594                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11595 {
11596     ARMCPU *cpu = env_archcpu(env);
11597     CPUState *cs = CPU(cpu);
11598     /* Read an LPAE long-descriptor translation table. */
11599     ARMFaultType fault_type = ARMFault_Translation;
11600     uint32_t level;
11601     ARMVAParameters param;
11602     uint64_t ttbr;
11603     hwaddr descaddr, indexmask, indexmask_grainsize;
11604     uint32_t tableattrs;
11605     target_ulong page_size;
11606     uint32_t attrs;
11607     int32_t stride;
11608     int addrsize, inputsize;
11609     TCR *tcr = regime_tcr(env, mmu_idx);
11610     int ap, ns, xn, pxn;
11611     uint32_t el = regime_el(env, mmu_idx);
11612     uint64_t descaddrmask;
11613     bool aarch64 = arm_el_is_aa64(env, el);
11614     bool guarded = false;
11615 
11616     /* TODO: This code does not support shareability levels. */
11617     if (aarch64) {
11618         param = aa64_va_parameters(env, address, mmu_idx,
11619                                    access_type != MMU_INST_FETCH);
11620         level = 0;
11621         addrsize = 64 - 8 * param.tbi;
11622         inputsize = 64 - param.tsz;
11623     } else {
11624         param = aa32_va_parameters(env, address, mmu_idx);
11625         level = 1;
11626         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11627         inputsize = addrsize - param.tsz;
11628     }
11629 
11630     /*
11631      * We determined the region when collecting the parameters, but we
11632      * have not yet validated that the address is valid for the region.
11633      * Extract the top bits and verify that they all match select.
11634      *
11635      * For aa32, if inputsize == addrsize, then we have selected the
11636      * region by exclusion in aa32_va_parameters and there is no more
11637      * validation to do here.
11638      */
11639     if (inputsize < addrsize) {
11640         target_ulong top_bits = sextract64(address, inputsize,
11641                                            addrsize - inputsize);
11642         if (-top_bits != param.select) {
11643             /* The gap between the two regions is a Translation fault */
11644             fault_type = ARMFault_Translation;
11645             goto do_fault;
11646         }
11647     }
11648 
11649     if (param.using64k) {
11650         stride = 13;
11651     } else if (param.using16k) {
11652         stride = 11;
11653     } else {
11654         stride = 9;
11655     }
11656 
11657     /* Note that QEMU ignores shareability and cacheability attributes,
11658      * so we don't need to do anything with the SH, ORGN, IRGN fields
11659      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
11660      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11661      * implement any ASID-like capability so we can ignore it (instead
11662      * we will always flush the TLB any time the ASID is changed).
11663      */
11664     ttbr = regime_ttbr(env, mmu_idx, param.select);
11665 
11666     /* Here we should have set up all the parameters for the translation:
11667      * inputsize, ttbr, epd, stride, tbi
11668      */
11669 
11670     if (param.epd) {
11671         /* Translation table walk disabled => Translation fault on TLB miss
11672          * Note: This is always 0 on 64-bit EL2 and EL3.
11673          */
11674         goto do_fault;
11675     }
11676 
11677     if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
11678         /* The starting level depends on the virtual address size (which can
11679          * be up to 48 bits) and the translation granule size. It indicates
11680          * the number of strides (stride bits at a time) needed to
11681          * consume the bits of the input address. In the pseudocode this is:
11682          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
11683          * where their 'inputsize' is our 'inputsize', 'grainsize' is
11684          * our 'stride + 3' and 'stride' is our 'stride'.
11685          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11686          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11687          * = 4 - (inputsize - 4) / stride;
11688          */
11689         level = 4 - (inputsize - 4) / stride;
11690     } else {
11691         /* For stage 2 translations the starting level is specified by the
11692          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11693          */
11694         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11695         uint32_t startlevel;
11696         bool ok;
11697 
11698         if (!aarch64 || stride == 9) {
11699             /* AArch32 or 4KB pages */
11700             startlevel = 2 - sl0;
11701 
11702             if (cpu_isar_feature(aa64_st, cpu)) {
11703                 startlevel &= 3;
11704             }
11705         } else {
11706             /* 16KB or 64KB pages */
11707             startlevel = 3 - sl0;
11708         }
11709 
11710         /* Check that the starting level is valid. */
11711         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11712                                 inputsize, stride);
11713         if (!ok) {
11714             fault_type = ARMFault_Translation;
11715             goto do_fault;
11716         }
11717         level = startlevel;
11718     }
11719 
11720     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11721     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11722 
11723     /* Now we can extract the actual base address from the TTBR */
11724     descaddr = extract64(ttbr, 0, 48);
11725     /*
11726      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11727      * and also to mask out CnP (bit 0) which could validly be non-zero.
11728      */
11729     descaddr &= ~indexmask;
11730 
11731     /* The address field in the descriptor goes up to bit 39 for ARMv7
11732      * but up to bit 47 for ARMv8, but we use the descaddrmask
11733      * up to bit 39 for AArch32, because we don't need other bits in that case
11734      * to construct next descriptor address (anyway they should be all zeroes).
11735      */
11736     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11737                    ~indexmask_grainsize;
11738 
11739     /* Secure accesses start with the page table in secure memory and
11740      * can be downgraded to non-secure at any step. Non-secure accesses
11741      * remain non-secure. We implement this by just ORing in the NSTable/NS
11742      * bits at each step.
11743      */
11744     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11745     for (;;) {
11746         uint64_t descriptor;
11747         bool nstable;
11748 
11749         descaddr |= (address >> (stride * (4 - level))) & indexmask;
11750         descaddr &= ~7ULL;
11751         nstable = extract32(tableattrs, 4, 1);
11752         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11753         if (fi->type != ARMFault_None) {
11754             goto do_fault;
11755         }
11756 
11757         if (!(descriptor & 1) ||
11758             (!(descriptor & 2) && (level == 3))) {
11759             /* Invalid, or the Reserved level 3 encoding */
11760             goto do_fault;
11761         }
11762         descaddr = descriptor & descaddrmask;
11763 
11764         if ((descriptor & 2) && (level < 3)) {
11765             /* Table entry. The top five bits are attributes which may
11766              * propagate down through lower levels of the table (and
11767              * which are all arranged so that 0 means "no effect", so
11768              * we can gather them up by ORing in the bits at each level).
11769              */
11770             tableattrs |= extract64(descriptor, 59, 5);
11771             level++;
11772             indexmask = indexmask_grainsize;
11773             continue;
11774         }
11775         /* Block entry at level 1 or 2, or page entry at level 3.
11776          * These are basically the same thing, although the number
11777          * of bits we pull in from the vaddr varies.
11778          */
11779         page_size = (1ULL << ((stride * (4 - level)) + 3));
11780         descaddr |= (address & (page_size - 1));
11781         /* Extract attributes from the descriptor */
11782         attrs = extract64(descriptor, 2, 10)
11783             | (extract64(descriptor, 52, 12) << 10);
11784 
11785         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11786             /* Stage 2 table descriptors do not include any attribute fields */
11787             break;
11788         }
11789         /* Merge in attributes from table descriptors */
11790         attrs |= nstable << 3; /* NS */
11791         guarded = extract64(descriptor, 50, 1);  /* GP */
11792         if (param.hpd) {
11793             /* HPD disables all the table attributes except NSTable.  */
11794             break;
11795         }
11796         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
11797         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11798          * means "force PL1 access only", which means forcing AP[1] to 0.
11799          */
11800         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
11801         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
11802         break;
11803     }
11804     /* Here descaddr is the final physical address, and attributes
11805      * are all in attrs.
11806      */
11807     fault_type = ARMFault_AccessFlag;
11808     if ((attrs & (1 << 8)) == 0) {
11809         /* Access flag */
11810         goto do_fault;
11811     }
11812 
11813     ap = extract32(attrs, 4, 2);
11814 
11815     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11816         ns = mmu_idx == ARMMMUIdx_Stage2;
11817         xn = extract32(attrs, 11, 2);
11818         *prot = get_S2prot(env, ap, xn, s1_is_el0);
11819     } else {
11820         ns = extract32(attrs, 3, 1);
11821         xn = extract32(attrs, 12, 1);
11822         pxn = extract32(attrs, 11, 1);
11823         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11824     }
11825 
11826     fault_type = ARMFault_Permission;
11827     if (!(*prot & (1 << access_type))) {
11828         goto do_fault;
11829     }
11830 
11831     if (ns) {
11832         /* The NS bit will (as required by the architecture) have no effect if
11833          * the CPU doesn't support TZ or this is a non-secure translation
11834          * regime, because the attribute will already be non-secure.
11835          */
11836         txattrs->secure = false;
11837     }
11838     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
11839     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11840         arm_tlb_bti_gp(txattrs) = true;
11841     }
11842 
11843     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11844         cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11845     } else {
11846         /* Index into MAIR registers for cache attributes */
11847         uint8_t attrindx = extract32(attrs, 0, 3);
11848         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11849         assert(attrindx <= 7);
11850         cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11851     }
11852     cacheattrs->shareability = extract32(attrs, 6, 2);
11853 
11854     *phys_ptr = descaddr;
11855     *page_size_ptr = page_size;
11856     return false;
11857 
11858 do_fault:
11859     fi->type = fault_type;
11860     fi->level = level;
11861     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
11862     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
11863                                mmu_idx == ARMMMUIdx_Stage2_S);
11864     fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
11865     return true;
11866 }
11867 
11868 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11869                                                 ARMMMUIdx mmu_idx,
11870                                                 int32_t address, int *prot)
11871 {
11872     if (!arm_feature(env, ARM_FEATURE_M)) {
11873         *prot = PAGE_READ | PAGE_WRITE;
11874         switch (address) {
11875         case 0xF0000000 ... 0xFFFFFFFF:
11876             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11877                 /* hivecs execing is ok */
11878                 *prot |= PAGE_EXEC;
11879             }
11880             break;
11881         case 0x00000000 ... 0x7FFFFFFF:
11882             *prot |= PAGE_EXEC;
11883             break;
11884         }
11885     } else {
11886         /* Default system address map for M profile cores.
11887          * The architecture specifies which regions are execute-never;
11888          * at the MPU level no other checks are defined.
11889          */
11890         switch (address) {
11891         case 0x00000000 ... 0x1fffffff: /* ROM */
11892         case 0x20000000 ... 0x3fffffff: /* SRAM */
11893         case 0x60000000 ... 0x7fffffff: /* RAM */
11894         case 0x80000000 ... 0x9fffffff: /* RAM */
11895             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11896             break;
11897         case 0x40000000 ... 0x5fffffff: /* Peripheral */
11898         case 0xa0000000 ... 0xbfffffff: /* Device */
11899         case 0xc0000000 ... 0xdfffffff: /* Device */
11900         case 0xe0000000 ... 0xffffffff: /* System */
11901             *prot = PAGE_READ | PAGE_WRITE;
11902             break;
11903         default:
11904             g_assert_not_reached();
11905         }
11906     }
11907 }
11908 
11909 static bool pmsav7_use_background_region(ARMCPU *cpu,
11910                                          ARMMMUIdx mmu_idx, bool is_user)
11911 {
11912     /* Return true if we should use the default memory map as a
11913      * "background" region if there are no hits against any MPU regions.
11914      */
11915     CPUARMState *env = &cpu->env;
11916 
11917     if (is_user) {
11918         return false;
11919     }
11920 
11921     if (arm_feature(env, ARM_FEATURE_M)) {
11922         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11923             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11924     } else {
11925         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11926     }
11927 }
11928 
11929 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11930 {
11931     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11932     return arm_feature(env, ARM_FEATURE_M) &&
11933         extract32(address, 20, 12) == 0xe00;
11934 }
11935 
11936 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11937 {
11938     /* True if address is in the M profile system region
11939      * 0xe0000000 - 0xffffffff
11940      */
11941     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11942 }
11943 
11944 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11945                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11946                                  hwaddr *phys_ptr, int *prot,
11947                                  target_ulong *page_size,
11948                                  ARMMMUFaultInfo *fi)
11949 {
11950     ARMCPU *cpu = env_archcpu(env);
11951     int n;
11952     bool is_user = regime_is_user(env, mmu_idx);
11953 
11954     *phys_ptr = address;
11955     *page_size = TARGET_PAGE_SIZE;
11956     *prot = 0;
11957 
11958     if (regime_translation_disabled(env, mmu_idx) ||
11959         m_is_ppb_region(env, address)) {
11960         /* MPU disabled or M profile PPB access: use default memory map.
11961          * The other case which uses the default memory map in the
11962          * v7M ARM ARM pseudocode is exception vector reads from the vector
11963          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11964          * which always does a direct read using address_space_ldl(), rather
11965          * than going via this function, so we don't need to check that here.
11966          */
11967         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11968     } else { /* MPU enabled */
11969         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11970             /* region search */
11971             uint32_t base = env->pmsav7.drbar[n];
11972             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11973             uint32_t rmask;
11974             bool srdis = false;
11975 
11976             if (!(env->pmsav7.drsr[n] & 0x1)) {
11977                 continue;
11978             }
11979 
11980             if (!rsize) {
11981                 qemu_log_mask(LOG_GUEST_ERROR,
11982                               "DRSR[%d]: Rsize field cannot be 0\n", n);
11983                 continue;
11984             }
11985             rsize++;
11986             rmask = (1ull << rsize) - 1;
11987 
11988             if (base & rmask) {
11989                 qemu_log_mask(LOG_GUEST_ERROR,
11990                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11991                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
11992                               n, base, rmask);
11993                 continue;
11994             }
11995 
11996             if (address < base || address > base + rmask) {
11997                 /*
11998                  * Address not in this region. We must check whether the
11999                  * region covers addresses in the same page as our address.
12000                  * In that case we must not report a size that covers the
12001                  * whole page for a subsequent hit against a different MPU
12002                  * region or the background region, because it would result in
12003                  * incorrect TLB hits for subsequent accesses to addresses that
12004                  * are in this MPU region.
12005                  */
12006                 if (ranges_overlap(base, rmask,
12007                                    address & TARGET_PAGE_MASK,
12008                                    TARGET_PAGE_SIZE)) {
12009                     *page_size = 1;
12010                 }
12011                 continue;
12012             }
12013 
12014             /* Region matched */
12015 
12016             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
12017                 int i, snd;
12018                 uint32_t srdis_mask;
12019 
12020                 rsize -= 3; /* sub region size (power of 2) */
12021                 snd = ((address - base) >> rsize) & 0x7;
12022                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
12023 
12024                 srdis_mask = srdis ? 0x3 : 0x0;
12025                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
12026                     /* This will check in groups of 2, 4 and then 8, whether
12027                      * the subregion bits are consistent. rsize is incremented
12028                      * back up to give the region size, considering consistent
12029                      * adjacent subregions as one region. Stop testing if rsize
12030                      * is already big enough for an entire QEMU page.
12031                      */
12032                     int snd_rounded = snd & ~(i - 1);
12033                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
12034                                                      snd_rounded + 8, i);
12035                     if (srdis_mask ^ srdis_multi) {
12036                         break;
12037                     }
12038                     srdis_mask = (srdis_mask << i) | srdis_mask;
12039                     rsize++;
12040                 }
12041             }
12042             if (srdis) {
12043                 continue;
12044             }
12045             if (rsize < TARGET_PAGE_BITS) {
12046                 *page_size = 1 << rsize;
12047             }
12048             break;
12049         }
12050 
12051         if (n == -1) { /* no hits */
12052             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12053                 /* background fault */
12054                 fi->type = ARMFault_Background;
12055                 return true;
12056             }
12057             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12058         } else { /* a MPU hit! */
12059             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
12060             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
12061 
12062             if (m_is_system_region(env, address)) {
12063                 /* System space is always execute never */
12064                 xn = 1;
12065             }
12066 
12067             if (is_user) { /* User mode AP bit decoding */
12068                 switch (ap) {
12069                 case 0:
12070                 case 1:
12071                 case 5:
12072                     break; /* no access */
12073                 case 3:
12074                     *prot |= PAGE_WRITE;
12075                     /* fall through */
12076                 case 2:
12077                 case 6:
12078                     *prot |= PAGE_READ | PAGE_EXEC;
12079                     break;
12080                 case 7:
12081                     /* for v7M, same as 6; for R profile a reserved value */
12082                     if (arm_feature(env, ARM_FEATURE_M)) {
12083                         *prot |= PAGE_READ | PAGE_EXEC;
12084                         break;
12085                     }
12086                     /* fall through */
12087                 default:
12088                     qemu_log_mask(LOG_GUEST_ERROR,
12089                                   "DRACR[%d]: Bad value for AP bits: 0x%"
12090                                   PRIx32 "\n", n, ap);
12091                 }
12092             } else { /* Priv. mode AP bits decoding */
12093                 switch (ap) {
12094                 case 0:
12095                     break; /* no access */
12096                 case 1:
12097                 case 2:
12098                 case 3:
12099                     *prot |= PAGE_WRITE;
12100                     /* fall through */
12101                 case 5:
12102                 case 6:
12103                     *prot |= PAGE_READ | PAGE_EXEC;
12104                     break;
12105                 case 7:
12106                     /* for v7M, same as 6; for R profile a reserved value */
12107                     if (arm_feature(env, ARM_FEATURE_M)) {
12108                         *prot |= PAGE_READ | PAGE_EXEC;
12109                         break;
12110                     }
12111                     /* fall through */
12112                 default:
12113                     qemu_log_mask(LOG_GUEST_ERROR,
12114                                   "DRACR[%d]: Bad value for AP bits: 0x%"
12115                                   PRIx32 "\n", n, ap);
12116                 }
12117             }
12118 
12119             /* execute never */
12120             if (xn) {
12121                 *prot &= ~PAGE_EXEC;
12122             }
12123         }
12124     }
12125 
12126     fi->type = ARMFault_Permission;
12127     fi->level = 1;
12128     return !(*prot & (1 << access_type));
12129 }
12130 
12131 static bool v8m_is_sau_exempt(CPUARMState *env,
12132                               uint32_t address, MMUAccessType access_type)
12133 {
12134     /* The architecture specifies that certain address ranges are
12135      * exempt from v8M SAU/IDAU checks.
12136      */
12137     return
12138         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
12139         (address >= 0xe0000000 && address <= 0xe0002fff) ||
12140         (address >= 0xe000e000 && address <= 0xe000efff) ||
12141         (address >= 0xe002e000 && address <= 0xe002efff) ||
12142         (address >= 0xe0040000 && address <= 0xe0041fff) ||
12143         (address >= 0xe00ff000 && address <= 0xe00fffff);
12144 }
12145 
12146 void v8m_security_lookup(CPUARMState *env, uint32_t address,
12147                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12148                                 V8M_SAttributes *sattrs)
12149 {
12150     /* Look up the security attributes for this address. Compare the
12151      * pseudocode SecurityCheck() function.
12152      * We assume the caller has zero-initialized *sattrs.
12153      */
12154     ARMCPU *cpu = env_archcpu(env);
12155     int r;
12156     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
12157     int idau_region = IREGION_NOTVALID;
12158     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12159     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12160 
12161     if (cpu->idau) {
12162         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
12163         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
12164 
12165         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
12166                    &idau_nsc);
12167     }
12168 
12169     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
12170         /* 0xf0000000..0xffffffff is always S for insn fetches */
12171         return;
12172     }
12173 
12174     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
12175         sattrs->ns = !regime_is_secure(env, mmu_idx);
12176         return;
12177     }
12178 
12179     if (idau_region != IREGION_NOTVALID) {
12180         sattrs->irvalid = true;
12181         sattrs->iregion = idau_region;
12182     }
12183 
12184     switch (env->sau.ctrl & 3) {
12185     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
12186         break;
12187     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
12188         sattrs->ns = true;
12189         break;
12190     default: /* SAU.ENABLE == 1 */
12191         for (r = 0; r < cpu->sau_sregion; r++) {
12192             if (env->sau.rlar[r] & 1) {
12193                 uint32_t base = env->sau.rbar[r] & ~0x1f;
12194                 uint32_t limit = env->sau.rlar[r] | 0x1f;
12195 
12196                 if (base <= address && limit >= address) {
12197                     if (base > addr_page_base || limit < addr_page_limit) {
12198                         sattrs->subpage = true;
12199                     }
12200                     if (sattrs->srvalid) {
12201                         /* If we hit in more than one region then we must report
12202                          * as Secure, not NS-Callable, with no valid region
12203                          * number info.
12204                          */
12205                         sattrs->ns = false;
12206                         sattrs->nsc = false;
12207                         sattrs->sregion = 0;
12208                         sattrs->srvalid = false;
12209                         break;
12210                     } else {
12211                         if (env->sau.rlar[r] & 2) {
12212                             sattrs->nsc = true;
12213                         } else {
12214                             sattrs->ns = true;
12215                         }
12216                         sattrs->srvalid = true;
12217                         sattrs->sregion = r;
12218                     }
12219                 } else {
12220                     /*
12221                      * Address not in this region. We must check whether the
12222                      * region covers addresses in the same page as our address.
12223                      * In that case we must not report a size that covers the
12224                      * whole page for a subsequent hit against a different MPU
12225                      * region or the background region, because it would result
12226                      * in incorrect TLB hits for subsequent accesses to
12227                      * addresses that are in this MPU region.
12228                      */
12229                     if (limit >= base &&
12230                         ranges_overlap(base, limit - base + 1,
12231                                        addr_page_base,
12232                                        TARGET_PAGE_SIZE)) {
12233                         sattrs->subpage = true;
12234                     }
12235                 }
12236             }
12237         }
12238         break;
12239     }
12240 
12241     /*
12242      * The IDAU will override the SAU lookup results if it specifies
12243      * higher security than the SAU does.
12244      */
12245     if (!idau_ns) {
12246         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
12247             sattrs->ns = false;
12248             sattrs->nsc = idau_nsc;
12249         }
12250     }
12251 }
12252 
12253 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
12254                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
12255                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
12256                               int *prot, bool *is_subpage,
12257                               ARMMMUFaultInfo *fi, uint32_t *mregion)
12258 {
12259     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
12260      * that a full phys-to-virt translation does).
12261      * mregion is (if not NULL) set to the region number which matched,
12262      * or -1 if no region number is returned (MPU off, address did not
12263      * hit a region, address hit in multiple regions).
12264      * We set is_subpage to true if the region hit doesn't cover the
12265      * entire TARGET_PAGE the address is within.
12266      */
12267     ARMCPU *cpu = env_archcpu(env);
12268     bool is_user = regime_is_user(env, mmu_idx);
12269     uint32_t secure = regime_is_secure(env, mmu_idx);
12270     int n;
12271     int matchregion = -1;
12272     bool hit = false;
12273     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12274     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12275 
12276     *is_subpage = false;
12277     *phys_ptr = address;
12278     *prot = 0;
12279     if (mregion) {
12280         *mregion = -1;
12281     }
12282 
12283     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
12284      * was an exception vector read from the vector table (which is always
12285      * done using the default system address map), because those accesses
12286      * are done in arm_v7m_load_vector(), which always does a direct
12287      * read using address_space_ldl(), rather than going via this function.
12288      */
12289     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
12290         hit = true;
12291     } else if (m_is_ppb_region(env, address)) {
12292         hit = true;
12293     } else {
12294         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12295             hit = true;
12296         }
12297 
12298         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
12299             /* region search */
12300             /* Note that the base address is bits [31:5] from the register
12301              * with bits [4:0] all zeroes, but the limit address is bits
12302              * [31:5] from the register with bits [4:0] all ones.
12303              */
12304             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
12305             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
12306 
12307             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
12308                 /* Region disabled */
12309                 continue;
12310             }
12311 
12312             if (address < base || address > limit) {
12313                 /*
12314                  * Address not in this region. We must check whether the
12315                  * region covers addresses in the same page as our address.
12316                  * In that case we must not report a size that covers the
12317                  * whole page for a subsequent hit against a different MPU
12318                  * region or the background region, because it would result in
12319                  * incorrect TLB hits for subsequent accesses to addresses that
12320                  * are in this MPU region.
12321                  */
12322                 if (limit >= base &&
12323                     ranges_overlap(base, limit - base + 1,
12324                                    addr_page_base,
12325                                    TARGET_PAGE_SIZE)) {
12326                     *is_subpage = true;
12327                 }
12328                 continue;
12329             }
12330 
12331             if (base > addr_page_base || limit < addr_page_limit) {
12332                 *is_subpage = true;
12333             }
12334 
12335             if (matchregion != -1) {
12336                 /* Multiple regions match -- always a failure (unlike
12337                  * PMSAv7 where highest-numbered-region wins)
12338                  */
12339                 fi->type = ARMFault_Permission;
12340                 fi->level = 1;
12341                 return true;
12342             }
12343 
12344             matchregion = n;
12345             hit = true;
12346         }
12347     }
12348 
12349     if (!hit) {
12350         /* background fault */
12351         fi->type = ARMFault_Background;
12352         return true;
12353     }
12354 
12355     if (matchregion == -1) {
12356         /* hit using the background region */
12357         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12358     } else {
12359         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12360         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
12361         bool pxn = false;
12362 
12363         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
12364             pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
12365         }
12366 
12367         if (m_is_system_region(env, address)) {
12368             /* System space is always execute never */
12369             xn = 1;
12370         }
12371 
12372         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12373         if (*prot && !xn && !(pxn && !is_user)) {
12374             *prot |= PAGE_EXEC;
12375         }
12376         /* We don't need to look the attribute up in the MAIR0/MAIR1
12377          * registers because that only tells us about cacheability.
12378          */
12379         if (mregion) {
12380             *mregion = matchregion;
12381         }
12382     }
12383 
12384     fi->type = ARMFault_Permission;
12385     fi->level = 1;
12386     return !(*prot & (1 << access_type));
12387 }
12388 
12389 
12390 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12391                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12392                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
12393                                  int *prot, target_ulong *page_size,
12394                                  ARMMMUFaultInfo *fi)
12395 {
12396     uint32_t secure = regime_is_secure(env, mmu_idx);
12397     V8M_SAttributes sattrs = {};
12398     bool ret;
12399     bool mpu_is_subpage;
12400 
12401     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12402         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12403         if (access_type == MMU_INST_FETCH) {
12404             /* Instruction fetches always use the MMU bank and the
12405              * transaction attribute determined by the fetch address,
12406              * regardless of CPU state. This is painful for QEMU
12407              * to handle, because it would mean we need to encode
12408              * into the mmu_idx not just the (user, negpri) information
12409              * for the current security state but also that for the
12410              * other security state, which would balloon the number
12411              * of mmu_idx values needed alarmingly.
12412              * Fortunately we can avoid this because it's not actually
12413              * possible to arbitrarily execute code from memory with
12414              * the wrong security attribute: it will always generate
12415              * an exception of some kind or another, apart from the
12416              * special case of an NS CPU executing an SG instruction
12417              * in S&NSC memory. So we always just fail the translation
12418              * here and sort things out in the exception handler
12419              * (including possibly emulating an SG instruction).
12420              */
12421             if (sattrs.ns != !secure) {
12422                 if (sattrs.nsc) {
12423                     fi->type = ARMFault_QEMU_NSCExec;
12424                 } else {
12425                     fi->type = ARMFault_QEMU_SFault;
12426                 }
12427                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12428                 *phys_ptr = address;
12429                 *prot = 0;
12430                 return true;
12431             }
12432         } else {
12433             /* For data accesses we always use the MMU bank indicated
12434              * by the current CPU state, but the security attributes
12435              * might downgrade a secure access to nonsecure.
12436              */
12437             if (sattrs.ns) {
12438                 txattrs->secure = false;
12439             } else if (!secure) {
12440                 /* NS access to S memory must fault.
12441                  * Architecturally we should first check whether the
12442                  * MPU information for this address indicates that we
12443                  * are doing an unaligned access to Device memory, which
12444                  * should generate a UsageFault instead. QEMU does not
12445                  * currently check for that kind of unaligned access though.
12446                  * If we added it we would need to do so as a special case
12447                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12448                  */
12449                 fi->type = ARMFault_QEMU_SFault;
12450                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12451                 *phys_ptr = address;
12452                 *prot = 0;
12453                 return true;
12454             }
12455         }
12456     }
12457 
12458     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12459                             txattrs, prot, &mpu_is_subpage, fi, NULL);
12460     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12461     return ret;
12462 }
12463 
12464 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12465                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12466                                  hwaddr *phys_ptr, int *prot,
12467                                  ARMMMUFaultInfo *fi)
12468 {
12469     int n;
12470     uint32_t mask;
12471     uint32_t base;
12472     bool is_user = regime_is_user(env, mmu_idx);
12473 
12474     if (regime_translation_disabled(env, mmu_idx)) {
12475         /* MPU disabled.  */
12476         *phys_ptr = address;
12477         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12478         return false;
12479     }
12480 
12481     *phys_ptr = address;
12482     for (n = 7; n >= 0; n--) {
12483         base = env->cp15.c6_region[n];
12484         if ((base & 1) == 0) {
12485             continue;
12486         }
12487         mask = 1 << ((base >> 1) & 0x1f);
12488         /* Keep this shift separate from the above to avoid an
12489            (undefined) << 32.  */
12490         mask = (mask << 1) - 1;
12491         if (((base ^ address) & ~mask) == 0) {
12492             break;
12493         }
12494     }
12495     if (n < 0) {
12496         fi->type = ARMFault_Background;
12497         return true;
12498     }
12499 
12500     if (access_type == MMU_INST_FETCH) {
12501         mask = env->cp15.pmsav5_insn_ap;
12502     } else {
12503         mask = env->cp15.pmsav5_data_ap;
12504     }
12505     mask = (mask >> (n * 4)) & 0xf;
12506     switch (mask) {
12507     case 0:
12508         fi->type = ARMFault_Permission;
12509         fi->level = 1;
12510         return true;
12511     case 1:
12512         if (is_user) {
12513             fi->type = ARMFault_Permission;
12514             fi->level = 1;
12515             return true;
12516         }
12517         *prot = PAGE_READ | PAGE_WRITE;
12518         break;
12519     case 2:
12520         *prot = PAGE_READ;
12521         if (!is_user) {
12522             *prot |= PAGE_WRITE;
12523         }
12524         break;
12525     case 3:
12526         *prot = PAGE_READ | PAGE_WRITE;
12527         break;
12528     case 5:
12529         if (is_user) {
12530             fi->type = ARMFault_Permission;
12531             fi->level = 1;
12532             return true;
12533         }
12534         *prot = PAGE_READ;
12535         break;
12536     case 6:
12537         *prot = PAGE_READ;
12538         break;
12539     default:
12540         /* Bad permission.  */
12541         fi->type = ARMFault_Permission;
12542         fi->level = 1;
12543         return true;
12544     }
12545     *prot |= PAGE_EXEC;
12546     return false;
12547 }
12548 
12549 /* Combine either inner or outer cacheability attributes for normal
12550  * memory, according to table D4-42 and pseudocode procedure
12551  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12552  *
12553  * NB: only stage 1 includes allocation hints (RW bits), leading to
12554  * some asymmetry.
12555  */
12556 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12557 {
12558     if (s1 == 4 || s2 == 4) {
12559         /* non-cacheable has precedence */
12560         return 4;
12561     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12562         /* stage 1 write-through takes precedence */
12563         return s1;
12564     } else if (extract32(s2, 2, 2) == 2) {
12565         /* stage 2 write-through takes precedence, but the allocation hint
12566          * is still taken from stage 1
12567          */
12568         return (2 << 2) | extract32(s1, 0, 2);
12569     } else { /* write-back */
12570         return s1;
12571     }
12572 }
12573 
12574 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12575  * and CombineS1S2Desc()
12576  *
12577  * @s1:      Attributes from stage 1 walk
12578  * @s2:      Attributes from stage 2 walk
12579  */
12580 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12581 {
12582     uint8_t s1lo, s2lo, s1hi, s2hi;
12583     ARMCacheAttrs ret;
12584     bool tagged = false;
12585 
12586     if (s1.attrs == 0xf0) {
12587         tagged = true;
12588         s1.attrs = 0xff;
12589     }
12590 
12591     s1lo = extract32(s1.attrs, 0, 4);
12592     s2lo = extract32(s2.attrs, 0, 4);
12593     s1hi = extract32(s1.attrs, 4, 4);
12594     s2hi = extract32(s2.attrs, 4, 4);
12595 
12596     /* Combine shareability attributes (table D4-43) */
12597     if (s1.shareability == 2 || s2.shareability == 2) {
12598         /* if either are outer-shareable, the result is outer-shareable */
12599         ret.shareability = 2;
12600     } else if (s1.shareability == 3 || s2.shareability == 3) {
12601         /* if either are inner-shareable, the result is inner-shareable */
12602         ret.shareability = 3;
12603     } else {
12604         /* both non-shareable */
12605         ret.shareability = 0;
12606     }
12607 
12608     /* Combine memory type and cacheability attributes */
12609     if (s1hi == 0 || s2hi == 0) {
12610         /* Device has precedence over normal */
12611         if (s1lo == 0 || s2lo == 0) {
12612             /* nGnRnE has precedence over anything */
12613             ret.attrs = 0;
12614         } else if (s1lo == 4 || s2lo == 4) {
12615             /* non-Reordering has precedence over Reordering */
12616             ret.attrs = 4;  /* nGnRE */
12617         } else if (s1lo == 8 || s2lo == 8) {
12618             /* non-Gathering has precedence over Gathering */
12619             ret.attrs = 8;  /* nGRE */
12620         } else {
12621             ret.attrs = 0xc; /* GRE */
12622         }
12623 
12624         /* Any location for which the resultant memory type is any
12625          * type of Device memory is always treated as Outer Shareable.
12626          */
12627         ret.shareability = 2;
12628     } else { /* Normal memory */
12629         /* Outer/inner cacheability combine independently */
12630         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12631                   | combine_cacheattr_nibble(s1lo, s2lo);
12632 
12633         if (ret.attrs == 0x44) {
12634             /* Any location for which the resultant memory type is Normal
12635              * Inner Non-cacheable, Outer Non-cacheable is always treated
12636              * as Outer Shareable.
12637              */
12638             ret.shareability = 2;
12639         }
12640     }
12641 
12642     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12643     if (tagged && ret.attrs == 0xff) {
12644         ret.attrs = 0xf0;
12645     }
12646 
12647     return ret;
12648 }
12649 
12650 
12651 /* get_phys_addr - get the physical address for this virtual address
12652  *
12653  * Find the physical address corresponding to the given virtual address,
12654  * by doing a translation table walk on MMU based systems or using the
12655  * MPU state on MPU based systems.
12656  *
12657  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12658  * prot and page_size may not be filled in, and the populated fsr value provides
12659  * information on why the translation aborted, in the format of a
12660  * DFSR/IFSR fault register, with the following caveats:
12661  *  * we honour the short vs long DFSR format differences.
12662  *  * the WnR bit is never set (the caller must do this).
12663  *  * for PSMAv5 based systems we don't bother to return a full FSR format
12664  *    value.
12665  *
12666  * @env: CPUARMState
12667  * @address: virtual address to get physical address for
12668  * @access_type: 0 for read, 1 for write, 2 for execute
12669  * @mmu_idx: MMU index indicating required translation regime
12670  * @phys_ptr: set to the physical address corresponding to the virtual address
12671  * @attrs: set to the memory transaction attributes to use
12672  * @prot: set to the permissions for the page containing phys_ptr
12673  * @page_size: set to the size of the page containing phys_ptr
12674  * @fi: set to fault info if the translation fails
12675  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12676  */
12677 bool get_phys_addr(CPUARMState *env, target_ulong address,
12678                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
12679                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12680                    target_ulong *page_size,
12681                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12682 {
12683     ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
12684 
12685     if (mmu_idx != s1_mmu_idx) {
12686         /* Call ourselves recursively to do the stage 1 and then stage 2
12687          * translations if mmu_idx is a two-stage regime.
12688          */
12689         if (arm_feature(env, ARM_FEATURE_EL2)) {
12690             hwaddr ipa;
12691             int s2_prot;
12692             int ret;
12693             ARMCacheAttrs cacheattrs2 = {};
12694             ARMMMUIdx s2_mmu_idx;
12695             bool is_el0;
12696 
12697             ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
12698                                 attrs, prot, page_size, fi, cacheattrs);
12699 
12700             /* If S1 fails or S2 is disabled, return early.  */
12701             if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12702                 *phys_ptr = ipa;
12703                 return ret;
12704             }
12705 
12706             s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
12707             is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
12708 
12709             /* S1 is done. Now do S2 translation.  */
12710             ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
12711                                      phys_ptr, attrs, &s2_prot,
12712                                      page_size, fi, &cacheattrs2);
12713             fi->s2addr = ipa;
12714             /* Combine the S1 and S2 perms.  */
12715             *prot &= s2_prot;
12716 
12717             /* If S2 fails, return early.  */
12718             if (ret) {
12719                 return ret;
12720             }
12721 
12722             /* Combine the S1 and S2 cache attributes. */
12723             if (arm_hcr_el2_eff(env) & HCR_DC) {
12724                 /*
12725                  * HCR.DC forces the first stage attributes to
12726                  *  Normal Non-Shareable,
12727                  *  Inner Write-Back Read-Allocate Write-Allocate,
12728                  *  Outer Write-Back Read-Allocate Write-Allocate.
12729                  * Do not overwrite Tagged within attrs.
12730                  */
12731                 if (cacheattrs->attrs != 0xf0) {
12732                     cacheattrs->attrs = 0xff;
12733                 }
12734                 cacheattrs->shareability = 0;
12735             }
12736             *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12737 
12738             /* Check if IPA translates to secure or non-secure PA space. */
12739             if (arm_is_secure_below_el3(env)) {
12740                 if (attrs->secure) {
12741                     attrs->secure =
12742                         !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
12743                 } else {
12744                     attrs->secure =
12745                         !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
12746                         || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA));
12747                 }
12748             }
12749             return 0;
12750         } else {
12751             /*
12752              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12753              */
12754             mmu_idx = stage_1_mmu_idx(mmu_idx);
12755         }
12756     }
12757 
12758     /* The page table entries may downgrade secure to non-secure, but
12759      * cannot upgrade an non-secure translation regime's attributes
12760      * to secure.
12761      */
12762     attrs->secure = regime_is_secure(env, mmu_idx);
12763     attrs->user = regime_is_user(env, mmu_idx);
12764 
12765     /* Fast Context Switch Extension. This doesn't exist at all in v8.
12766      * In v7 and earlier it affects all stage 1 translations.
12767      */
12768     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12769         && !arm_feature(env, ARM_FEATURE_V8)) {
12770         if (regime_el(env, mmu_idx) == 3) {
12771             address += env->cp15.fcseidr_s;
12772         } else {
12773             address += env->cp15.fcseidr_ns;
12774         }
12775     }
12776 
12777     if (arm_feature(env, ARM_FEATURE_PMSA)) {
12778         bool ret;
12779         *page_size = TARGET_PAGE_SIZE;
12780 
12781         if (arm_feature(env, ARM_FEATURE_V8)) {
12782             /* PMSAv8 */
12783             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12784                                        phys_ptr, attrs, prot, page_size, fi);
12785         } else if (arm_feature(env, ARM_FEATURE_V7)) {
12786             /* PMSAv7 */
12787             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12788                                        phys_ptr, prot, page_size, fi);
12789         } else {
12790             /* Pre-v7 MPU */
12791             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12792                                        phys_ptr, prot, fi);
12793         }
12794         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12795                       " mmu_idx %u -> %s (prot %c%c%c)\n",
12796                       access_type == MMU_DATA_LOAD ? "reading" :
12797                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12798                       (uint32_t)address, mmu_idx,
12799                       ret ? "Miss" : "Hit",
12800                       *prot & PAGE_READ ? 'r' : '-',
12801                       *prot & PAGE_WRITE ? 'w' : '-',
12802                       *prot & PAGE_EXEC ? 'x' : '-');
12803 
12804         return ret;
12805     }
12806 
12807     /* Definitely a real MMU, not an MPU */
12808 
12809     if (regime_translation_disabled(env, mmu_idx)) {
12810         uint64_t hcr;
12811         uint8_t memattr;
12812 
12813         /*
12814          * MMU disabled.  S1 addresses within aa64 translation regimes are
12815          * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12816          */
12817         if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
12818             int r_el = regime_el(env, mmu_idx);
12819             if (arm_el_is_aa64(env, r_el)) {
12820                 int pamax = arm_pamax(env_archcpu(env));
12821                 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12822                 int addrtop, tbi;
12823 
12824                 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12825                 if (access_type == MMU_INST_FETCH) {
12826                     tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12827                 }
12828                 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12829                 addrtop = (tbi ? 55 : 63);
12830 
12831                 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12832                     fi->type = ARMFault_AddressSize;
12833                     fi->level = 0;
12834                     fi->stage2 = false;
12835                     return 1;
12836                 }
12837 
12838                 /*
12839                  * When TBI is disabled, we've just validated that all of the
12840                  * bits above PAMax are zero, so logically we only need to
12841                  * clear the top byte for TBI.  But it's clearer to follow
12842                  * the pseudocode set of addrdesc.paddress.
12843                  */
12844                 address = extract64(address, 0, 52);
12845             }
12846         }
12847         *phys_ptr = address;
12848         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12849         *page_size = TARGET_PAGE_SIZE;
12850 
12851         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12852         hcr = arm_hcr_el2_eff(env);
12853         cacheattrs->shareability = 0;
12854         if (hcr & HCR_DC) {
12855             if (hcr & HCR_DCT) {
12856                 memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
12857             } else {
12858                 memattr = 0xff;  /* Normal, WB, RWA */
12859             }
12860         } else if (access_type == MMU_INST_FETCH) {
12861             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12862                 memattr = 0xee;  /* Normal, WT, RA, NT */
12863             } else {
12864                 memattr = 0x44;  /* Normal, NC, No */
12865             }
12866             cacheattrs->shareability = 2; /* outer sharable */
12867         } else {
12868             memattr = 0x00;      /* Device, nGnRnE */
12869         }
12870         cacheattrs->attrs = memattr;
12871         return 0;
12872     }
12873 
12874     if (regime_using_lpae_format(env, mmu_idx)) {
12875         return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12876                                   phys_ptr, attrs, prot, page_size,
12877                                   fi, cacheattrs);
12878     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12879         return get_phys_addr_v6(env, address, access_type, mmu_idx,
12880                                 phys_ptr, attrs, prot, page_size, fi);
12881     } else {
12882         return get_phys_addr_v5(env, address, access_type, mmu_idx,
12883                                     phys_ptr, prot, page_size, fi);
12884     }
12885 }
12886 
12887 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12888                                          MemTxAttrs *attrs)
12889 {
12890     ARMCPU *cpu = ARM_CPU(cs);
12891     CPUARMState *env = &cpu->env;
12892     hwaddr phys_addr;
12893     target_ulong page_size;
12894     int prot;
12895     bool ret;
12896     ARMMMUFaultInfo fi = {};
12897     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12898     ARMCacheAttrs cacheattrs = {};
12899 
12900     *attrs = (MemTxAttrs) {};
12901 
12902     ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
12903                         attrs, &prot, &page_size, &fi, &cacheattrs);
12904 
12905     if (ret) {
12906         return -1;
12907     }
12908     return phys_addr;
12909 }
12910 
12911 #endif
12912 
12913 /* Note that signed overflow is undefined in C.  The following routines are
12914    careful to use unsigned types where modulo arithmetic is required.
12915    Failure to do so _will_ break on newer gcc.  */
12916 
12917 /* Signed saturating arithmetic.  */
12918 
12919 /* Perform 16-bit signed saturating addition.  */
12920 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12921 {
12922     uint16_t res;
12923 
12924     res = a + b;
12925     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12926         if (a & 0x8000)
12927             res = 0x8000;
12928         else
12929             res = 0x7fff;
12930     }
12931     return res;
12932 }
12933 
12934 /* Perform 8-bit signed saturating addition.  */
12935 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12936 {
12937     uint8_t res;
12938 
12939     res = a + b;
12940     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12941         if (a & 0x80)
12942             res = 0x80;
12943         else
12944             res = 0x7f;
12945     }
12946     return res;
12947 }
12948 
12949 /* Perform 16-bit signed saturating subtraction.  */
12950 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12951 {
12952     uint16_t res;
12953 
12954     res = a - b;
12955     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12956         if (a & 0x8000)
12957             res = 0x8000;
12958         else
12959             res = 0x7fff;
12960     }
12961     return res;
12962 }
12963 
12964 /* Perform 8-bit signed saturating subtraction.  */
12965 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12966 {
12967     uint8_t res;
12968 
12969     res = a - b;
12970     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12971         if (a & 0x80)
12972             res = 0x80;
12973         else
12974             res = 0x7f;
12975     }
12976     return res;
12977 }
12978 
12979 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12980 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12981 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12982 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12983 #define PFX q
12984 
12985 #include "op_addsub.h"
12986 
12987 /* Unsigned saturating arithmetic.  */
12988 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12989 {
12990     uint16_t res;
12991     res = a + b;
12992     if (res < a)
12993         res = 0xffff;
12994     return res;
12995 }
12996 
12997 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12998 {
12999     if (a > b)
13000         return a - b;
13001     else
13002         return 0;
13003 }
13004 
13005 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
13006 {
13007     uint8_t res;
13008     res = a + b;
13009     if (res < a)
13010         res = 0xff;
13011     return res;
13012 }
13013 
13014 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
13015 {
13016     if (a > b)
13017         return a - b;
13018     else
13019         return 0;
13020 }
13021 
13022 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
13023 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
13024 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
13025 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
13026 #define PFX uq
13027 
13028 #include "op_addsub.h"
13029 
13030 /* Signed modulo arithmetic.  */
13031 #define SARITH16(a, b, n, op) do { \
13032     int32_t sum; \
13033     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
13034     RESULT(sum, n, 16); \
13035     if (sum >= 0) \
13036         ge |= 3 << (n * 2); \
13037     } while(0)
13038 
13039 #define SARITH8(a, b, n, op) do { \
13040     int32_t sum; \
13041     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
13042     RESULT(sum, n, 8); \
13043     if (sum >= 0) \
13044         ge |= 1 << n; \
13045     } while(0)
13046 
13047 
13048 #define ADD16(a, b, n) SARITH16(a, b, n, +)
13049 #define SUB16(a, b, n) SARITH16(a, b, n, -)
13050 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
13051 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
13052 #define PFX s
13053 #define ARITH_GE
13054 
13055 #include "op_addsub.h"
13056 
13057 /* Unsigned modulo arithmetic.  */
13058 #define ADD16(a, b, n) do { \
13059     uint32_t sum; \
13060     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
13061     RESULT(sum, n, 16); \
13062     if ((sum >> 16) == 1) \
13063         ge |= 3 << (n * 2); \
13064     } while(0)
13065 
13066 #define ADD8(a, b, n) do { \
13067     uint32_t sum; \
13068     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
13069     RESULT(sum, n, 8); \
13070     if ((sum >> 8) == 1) \
13071         ge |= 1 << n; \
13072     } while(0)
13073 
13074 #define SUB16(a, b, n) do { \
13075     uint32_t sum; \
13076     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
13077     RESULT(sum, n, 16); \
13078     if ((sum >> 16) == 0) \
13079         ge |= 3 << (n * 2); \
13080     } while(0)
13081 
13082 #define SUB8(a, b, n) do { \
13083     uint32_t sum; \
13084     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
13085     RESULT(sum, n, 8); \
13086     if ((sum >> 8) == 0) \
13087         ge |= 1 << n; \
13088     } while(0)
13089 
13090 #define PFX u
13091 #define ARITH_GE
13092 
13093 #include "op_addsub.h"
13094 
13095 /* Halved signed arithmetic.  */
13096 #define ADD16(a, b, n) \
13097   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
13098 #define SUB16(a, b, n) \
13099   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
13100 #define ADD8(a, b, n) \
13101   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
13102 #define SUB8(a, b, n) \
13103   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
13104 #define PFX sh
13105 
13106 #include "op_addsub.h"
13107 
13108 /* Halved unsigned arithmetic.  */
13109 #define ADD16(a, b, n) \
13110   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13111 #define SUB16(a, b, n) \
13112   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13113 #define ADD8(a, b, n) \
13114   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13115 #define SUB8(a, b, n) \
13116   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13117 #define PFX uh
13118 
13119 #include "op_addsub.h"
13120 
13121 static inline uint8_t do_usad(uint8_t a, uint8_t b)
13122 {
13123     if (a > b)
13124         return a - b;
13125     else
13126         return b - a;
13127 }
13128 
13129 /* Unsigned sum of absolute byte differences.  */
13130 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
13131 {
13132     uint32_t sum;
13133     sum = do_usad(a, b);
13134     sum += do_usad(a >> 8, b >> 8);
13135     sum += do_usad(a >> 16, b >> 16);
13136     sum += do_usad(a >> 24, b >> 24);
13137     return sum;
13138 }
13139 
13140 /* For ARMv6 SEL instruction.  */
13141 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
13142 {
13143     uint32_t mask;
13144 
13145     mask = 0;
13146     if (flags & 1)
13147         mask |= 0xff;
13148     if (flags & 2)
13149         mask |= 0xff00;
13150     if (flags & 4)
13151         mask |= 0xff0000;
13152     if (flags & 8)
13153         mask |= 0xff000000;
13154     return (a & mask) | (b & ~mask);
13155 }
13156 
13157 /* CRC helpers.
13158  * The upper bytes of val (above the number specified by 'bytes') must have
13159  * been zeroed out by the caller.
13160  */
13161 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13162 {
13163     uint8_t buf[4];
13164 
13165     stl_le_p(buf, val);
13166 
13167     /* zlib crc32 converts the accumulator and output to one's complement.  */
13168     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13169 }
13170 
13171 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13172 {
13173     uint8_t buf[4];
13174 
13175     stl_le_p(buf, val);
13176 
13177     /* Linux crc32c converts the output to one's complement.  */
13178     return crc32c(acc, buf, bytes) ^ 0xffffffff;
13179 }
13180 
13181 /* Return the exception level to which FP-disabled exceptions should
13182  * be taken, or 0 if FP is enabled.
13183  */
13184 int fp_exception_el(CPUARMState *env, int cur_el)
13185 {
13186 #ifndef CONFIG_USER_ONLY
13187     /* CPACR and the CPTR registers don't exist before v6, so FP is
13188      * always accessible
13189      */
13190     if (!arm_feature(env, ARM_FEATURE_V6)) {
13191         return 0;
13192     }
13193 
13194     if (arm_feature(env, ARM_FEATURE_M)) {
13195         /* CPACR can cause a NOCP UsageFault taken to current security state */
13196         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
13197             return 1;
13198         }
13199 
13200         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
13201             if (!extract32(env->v7m.nsacr, 10, 1)) {
13202                 /* FP insns cause a NOCP UsageFault taken to Secure */
13203                 return 3;
13204             }
13205         }
13206 
13207         return 0;
13208     }
13209 
13210     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13211      * 0, 2 : trap EL0 and EL1/PL1 accesses
13212      * 1    : trap only EL0 accesses
13213      * 3    : trap no accesses
13214      * This register is ignored if E2H+TGE are both set.
13215      */
13216     if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13217         int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13218 
13219         switch (fpen) {
13220         case 0:
13221         case 2:
13222             if (cur_el == 0 || cur_el == 1) {
13223                 /* Trap to PL1, which might be EL1 or EL3 */
13224                 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13225                     return 3;
13226                 }
13227                 return 1;
13228             }
13229             if (cur_el == 3 && !is_a64(env)) {
13230                 /* Secure PL1 running at EL3 */
13231                 return 3;
13232             }
13233             break;
13234         case 1:
13235             if (cur_el == 0) {
13236                 return 1;
13237             }
13238             break;
13239         case 3:
13240             break;
13241         }
13242     }
13243 
13244     /*
13245      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
13246      * to control non-secure access to the FPU. It doesn't have any
13247      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
13248      */
13249     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
13250          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
13251         if (!extract32(env->cp15.nsacr, 10, 1)) {
13252             /* FP insns act as UNDEF */
13253             return cur_el == 2 ? 2 : 1;
13254         }
13255     }
13256 
13257     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
13258      * check because zero bits in the registers mean "don't trap".
13259      */
13260 
13261     /* CPTR_EL2 : present in v7VE or v8 */
13262     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
13263         && arm_is_el2_enabled(env)) {
13264         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
13265         return 2;
13266     }
13267 
13268     /* CPTR_EL3 : present in v8 */
13269     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
13270         /* Trap all FP ops to EL3 */
13271         return 3;
13272     }
13273 #endif
13274     return 0;
13275 }
13276 
13277 /* Return the exception level we're running at if this is our mmu_idx */
13278 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
13279 {
13280     if (mmu_idx & ARM_MMU_IDX_M) {
13281         return mmu_idx & ARM_MMU_IDX_M_PRIV;
13282     }
13283 
13284     switch (mmu_idx) {
13285     case ARMMMUIdx_E10_0:
13286     case ARMMMUIdx_E20_0:
13287     case ARMMMUIdx_SE10_0:
13288     case ARMMMUIdx_SE20_0:
13289         return 0;
13290     case ARMMMUIdx_E10_1:
13291     case ARMMMUIdx_E10_1_PAN:
13292     case ARMMMUIdx_SE10_1:
13293     case ARMMMUIdx_SE10_1_PAN:
13294         return 1;
13295     case ARMMMUIdx_E2:
13296     case ARMMMUIdx_E20_2:
13297     case ARMMMUIdx_E20_2_PAN:
13298     case ARMMMUIdx_SE2:
13299     case ARMMMUIdx_SE20_2:
13300     case ARMMMUIdx_SE20_2_PAN:
13301         return 2;
13302     case ARMMMUIdx_SE3:
13303         return 3;
13304     default:
13305         g_assert_not_reached();
13306     }
13307 }
13308 
13309 #ifndef CONFIG_TCG
13310 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13311 {
13312     g_assert_not_reached();
13313 }
13314 #endif
13315 
13316 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
13317 {
13318     ARMMMUIdx idx;
13319     uint64_t hcr;
13320 
13321     if (arm_feature(env, ARM_FEATURE_M)) {
13322         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13323     }
13324 
13325     /* See ARM pseudo-function ELIsInHost.  */
13326     switch (el) {
13327     case 0:
13328         hcr = arm_hcr_el2_eff(env);
13329         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
13330             idx = ARMMMUIdx_E20_0;
13331         } else {
13332             idx = ARMMMUIdx_E10_0;
13333         }
13334         break;
13335     case 1:
13336         if (env->pstate & PSTATE_PAN) {
13337             idx = ARMMMUIdx_E10_1_PAN;
13338         } else {
13339             idx = ARMMMUIdx_E10_1;
13340         }
13341         break;
13342     case 2:
13343         /* Note that TGE does not apply at EL2.  */
13344         if (arm_hcr_el2_eff(env) & HCR_E2H) {
13345             if (env->pstate & PSTATE_PAN) {
13346                 idx = ARMMMUIdx_E20_2_PAN;
13347             } else {
13348                 idx = ARMMMUIdx_E20_2;
13349             }
13350         } else {
13351             idx = ARMMMUIdx_E2;
13352         }
13353         break;
13354     case 3:
13355         return ARMMMUIdx_SE3;
13356     default:
13357         g_assert_not_reached();
13358     }
13359 
13360     if (arm_is_secure_below_el3(env)) {
13361         idx &= ~ARM_MMU_IDX_A_NS;
13362     }
13363 
13364     return idx;
13365 }
13366 
13367 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13368 {
13369     return arm_mmu_idx_el(env, arm_current_el(env));
13370 }
13371 
13372 #ifndef CONFIG_USER_ONLY
13373 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13374 {
13375     return stage_1_mmu_idx(arm_mmu_idx(env));
13376 }
13377 #endif
13378 
13379 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
13380                                            ARMMMUIdx mmu_idx,
13381                                            CPUARMTBFlags flags)
13382 {
13383     DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
13384     DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13385 
13386     if (arm_singlestep_active(env)) {
13387         DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
13388     }
13389     return flags;
13390 }
13391 
13392 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
13393                                               ARMMMUIdx mmu_idx,
13394                                               CPUARMTBFlags flags)
13395 {
13396     bool sctlr_b = arm_sctlr_b(env);
13397 
13398     if (sctlr_b) {
13399         DP_TBFLAG_A32(flags, SCTLR__B, 1);
13400     }
13401     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
13402         DP_TBFLAG_ANY(flags, BE_DATA, 1);
13403     }
13404     DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
13405 
13406     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13407 }
13408 
13409 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
13410                                         ARMMMUIdx mmu_idx)
13411 {
13412     CPUARMTBFlags flags = {};
13413     uint32_t ccr = env->v7m.ccr[env->v7m.secure];
13414 
13415     /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
13416     if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
13417         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13418     }
13419 
13420     if (arm_v7m_is_handler_mode(env)) {
13421         DP_TBFLAG_M32(flags, HANDLER, 1);
13422     }
13423 
13424     /*
13425      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
13426      * is suppressing them because the requested execution priority
13427      * is less than 0.
13428      */
13429     if (arm_feature(env, ARM_FEATURE_V8) &&
13430         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13431           (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13432         DP_TBFLAG_M32(flags, STACKCHECK, 1);
13433     }
13434 
13435     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13436 }
13437 
13438 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env)
13439 {
13440     CPUARMTBFlags flags = {};
13441 
13442     DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env));
13443     return flags;
13444 }
13445 
13446 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
13447                                         ARMMMUIdx mmu_idx)
13448 {
13449     CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13450     int el = arm_current_el(env);
13451 
13452     if (arm_sctlr(env, el) & SCTLR_A) {
13453         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13454     }
13455 
13456     if (arm_el_is_aa64(env, 1)) {
13457         DP_TBFLAG_A32(flags, VFPEN, 1);
13458     }
13459 
13460     if (el < 2 && env->cp15.hstr_el2 &&
13461         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13462         DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
13463     }
13464 
13465     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13466 }
13467 
13468 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
13469                                         ARMMMUIdx mmu_idx)
13470 {
13471     CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13472     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13473     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
13474     uint64_t sctlr;
13475     int tbii, tbid;
13476 
13477     DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
13478 
13479     /* Get control bits for tagged addresses.  */
13480     tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
13481     tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
13482 
13483     DP_TBFLAG_A64(flags, TBII, tbii);
13484     DP_TBFLAG_A64(flags, TBID, tbid);
13485 
13486     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
13487         int sve_el = sve_exception_el(env, el);
13488         uint32_t zcr_len;
13489 
13490         /*
13491          * If SVE is disabled, but FP is enabled,
13492          * then the effective len is 0.
13493          */
13494         if (sve_el != 0 && fp_el == 0) {
13495             zcr_len = 0;
13496         } else {
13497             zcr_len = sve_zcr_len_for_el(env, el);
13498         }
13499         DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
13500         DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len);
13501     }
13502 
13503     sctlr = regime_sctlr(env, stage1);
13504 
13505     if (sctlr & SCTLR_A) {
13506         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13507     }
13508 
13509     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
13510         DP_TBFLAG_ANY(flags, BE_DATA, 1);
13511     }
13512 
13513     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
13514         /*
13515          * In order to save space in flags, we record only whether
13516          * pauth is "inactive", meaning all insns are implemented as
13517          * a nop, or "active" when some action must be performed.
13518          * The decision of which action to take is left to a helper.
13519          */
13520         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13521             DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
13522         }
13523     }
13524 
13525     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13526         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
13527         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13528             DP_TBFLAG_A64(flags, BT, 1);
13529         }
13530     }
13531 
13532     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13533     if (!(env->pstate & PSTATE_UAO)) {
13534         switch (mmu_idx) {
13535         case ARMMMUIdx_E10_1:
13536         case ARMMMUIdx_E10_1_PAN:
13537         case ARMMMUIdx_SE10_1:
13538         case ARMMMUIdx_SE10_1_PAN:
13539             /* TODO: ARMv8.3-NV */
13540             DP_TBFLAG_A64(flags, UNPRIV, 1);
13541             break;
13542         case ARMMMUIdx_E20_2:
13543         case ARMMMUIdx_E20_2_PAN:
13544         case ARMMMUIdx_SE20_2:
13545         case ARMMMUIdx_SE20_2_PAN:
13546             /*
13547              * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13548              * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13549              */
13550             if (env->cp15.hcr_el2 & HCR_TGE) {
13551                 DP_TBFLAG_A64(flags, UNPRIV, 1);
13552             }
13553             break;
13554         default:
13555             break;
13556         }
13557     }
13558 
13559     if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
13560         /*
13561          * Set MTE_ACTIVE if any access may be Checked, and leave clear
13562          * if all accesses must be Unchecked:
13563          * 1) If no TBI, then there are no tags in the address to check,
13564          * 2) If Tag Check Override, then all accesses are Unchecked,
13565          * 3) If Tag Check Fail == 0, then Checked access have no effect,
13566          * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13567          */
13568         if (allocation_tag_access_enabled(env, el, sctlr)) {
13569             DP_TBFLAG_A64(flags, ATA, 1);
13570             if (tbid
13571                 && !(env->pstate & PSTATE_TCO)
13572                 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
13573                 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
13574             }
13575         }
13576         /* And again for unprivileged accesses, if required.  */
13577         if (EX_TBFLAG_A64(flags, UNPRIV)
13578             && tbid
13579             && !(env->pstate & PSTATE_TCO)
13580             && (sctlr & SCTLR_TCF0)
13581             && allocation_tag_access_enabled(env, 0, sctlr)) {
13582             DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
13583         }
13584         /* Cache TCMA as well as TBI. */
13585         DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
13586     }
13587 
13588     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13589 }
13590 
13591 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
13592 {
13593     int el = arm_current_el(env);
13594     int fp_el = fp_exception_el(env, el);
13595     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13596 
13597     if (is_a64(env)) {
13598         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13599     } else if (arm_feature(env, ARM_FEATURE_M)) {
13600         return rebuild_hflags_m32(env, fp_el, mmu_idx);
13601     } else {
13602         return rebuild_hflags_a32(env, fp_el, mmu_idx);
13603     }
13604 }
13605 
13606 void arm_rebuild_hflags(CPUARMState *env)
13607 {
13608     env->hflags = rebuild_hflags_internal(env);
13609 }
13610 
13611 /*
13612  * If we have triggered a EL state change we can't rely on the
13613  * translator having passed it to us, we need to recompute.
13614  */
13615 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
13616 {
13617     int el = arm_current_el(env);
13618     int fp_el = fp_exception_el(env, el);
13619     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13620 
13621     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13622 }
13623 
13624 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
13625 {
13626     int fp_el = fp_exception_el(env, el);
13627     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13628 
13629     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13630 }
13631 
13632 /*
13633  * If we have triggered a EL state change we can't rely on the
13634  * translator having passed it to us, we need to recompute.
13635  */
13636 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13637 {
13638     int el = arm_current_el(env);
13639     int fp_el = fp_exception_el(env, el);
13640     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13641     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13642 }
13643 
13644 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13645 {
13646     int fp_el = fp_exception_el(env, el);
13647     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13648 
13649     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13650 }
13651 
13652 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13653 {
13654     int fp_el = fp_exception_el(env, el);
13655     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13656 
13657     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13658 }
13659 
13660 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13661 {
13662 #ifdef CONFIG_DEBUG_TCG
13663     CPUARMTBFlags c = env->hflags;
13664     CPUARMTBFlags r = rebuild_hflags_internal(env);
13665 
13666     if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
13667         fprintf(stderr, "TCG hflags mismatch "
13668                         "(current:(0x%08x,0x" TARGET_FMT_lx ")"
13669                         " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
13670                 c.flags, c.flags2, r.flags, r.flags2);
13671         abort();
13672     }
13673 #endif
13674 }
13675 
13676 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13677                           target_ulong *cs_base, uint32_t *pflags)
13678 {
13679     CPUARMTBFlags flags;
13680 
13681     assert_hflags_rebuild_correctly(env);
13682     flags = env->hflags;
13683 
13684     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
13685         *pc = env->pc;
13686         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13687             DP_TBFLAG_A64(flags, BTYPE, env->btype);
13688         }
13689     } else {
13690         *pc = env->regs[15];
13691 
13692         if (arm_feature(env, ARM_FEATURE_M)) {
13693             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13694                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13695                 != env->v7m.secure) {
13696                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
13697             }
13698 
13699             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13700                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13701                  (env->v7m.secure &&
13702                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13703                 /*
13704                  * ASPEN is set, but FPCA/SFPA indicate that there is no
13705                  * active FP context; we must create a new FP context before
13706                  * executing any FP insn.
13707                  */
13708                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
13709             }
13710 
13711             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13712             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13713                 DP_TBFLAG_M32(flags, LSPACT, 1);
13714             }
13715         } else {
13716             /*
13717              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13718              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13719              */
13720             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13721                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
13722             } else {
13723                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
13724                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
13725             }
13726             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13727                 DP_TBFLAG_A32(flags, VFPEN, 1);
13728             }
13729         }
13730 
13731         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
13732         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
13733     }
13734 
13735     /*
13736      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13737      * states defined in the ARM ARM for software singlestep:
13738      *  SS_ACTIVE   PSTATE.SS   State
13739      *     0            x       Inactive (the TB flag for SS is always 0)
13740      *     1            0       Active-pending
13741      *     1            1       Active-not-pending
13742      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
13743      */
13744     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
13745         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
13746     }
13747 
13748     *pflags = flags.flags;
13749     *cs_base = flags.flags2;
13750 }
13751 
13752 #ifdef TARGET_AARCH64
13753 /*
13754  * The manual says that when SVE is enabled and VQ is widened the
13755  * implementation is allowed to zero the previously inaccessible
13756  * portion of the registers.  The corollary to that is that when
13757  * SVE is enabled and VQ is narrowed we are also allowed to zero
13758  * the now inaccessible portion of the registers.
13759  *
13760  * The intent of this is that no predicate bit beyond VQ is ever set.
13761  * Which means that some operations on predicate registers themselves
13762  * may operate on full uint64_t or even unrolled across the maximum
13763  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
13764  * may well be cheaper than conditionals to restrict the operation
13765  * to the relevant portion of a uint16_t[16].
13766  */
13767 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13768 {
13769     int i, j;
13770     uint64_t pmask;
13771 
13772     assert(vq >= 1 && vq <= ARM_MAX_VQ);
13773     assert(vq <= env_archcpu(env)->sve_max_vq);
13774 
13775     /* Zap the high bits of the zregs.  */
13776     for (i = 0; i < 32; i++) {
13777         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13778     }
13779 
13780     /* Zap the high bits of the pregs and ffr.  */
13781     pmask = 0;
13782     if (vq & 3) {
13783         pmask = ~(-1ULL << (16 * (vq & 3)));
13784     }
13785     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13786         for (i = 0; i < 17; ++i) {
13787             env->vfp.pregs[i].p[j] &= pmask;
13788         }
13789         pmask = 0;
13790     }
13791 }
13792 
13793 /*
13794  * Notice a change in SVE vector size when changing EL.
13795  */
13796 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13797                            int new_el, bool el0_a64)
13798 {
13799     ARMCPU *cpu = env_archcpu(env);
13800     int old_len, new_len;
13801     bool old_a64, new_a64;
13802 
13803     /* Nothing to do if no SVE.  */
13804     if (!cpu_isar_feature(aa64_sve, cpu)) {
13805         return;
13806     }
13807 
13808     /* Nothing to do if FP is disabled in either EL.  */
13809     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13810         return;
13811     }
13812 
13813     /*
13814      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13815      * at ELx, or not available because the EL is in AArch32 state, then
13816      * for all purposes other than a direct read, the ZCR_ELx.LEN field
13817      * has an effective value of 0".
13818      *
13819      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13820      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13821      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
13822      * we already have the correct register contents when encountering the
13823      * vq0->vq0 transition between EL0->EL1.
13824      */
13825     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13826     old_len = (old_a64 && !sve_exception_el(env, old_el)
13827                ? sve_zcr_len_for_el(env, old_el) : 0);
13828     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13829     new_len = (new_a64 && !sve_exception_el(env, new_el)
13830                ? sve_zcr_len_for_el(env, new_el) : 0);
13831 
13832     /* When changing vector length, clear inaccessible state.  */
13833     if (new_len < old_len) {
13834         aarch64_sve_narrow_vq(env, new_len + 1);
13835     }
13836 }
13837 #endif
13838