1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "qemu/log.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/host-utils.h" 17 #include "qemu/main-loop.h" 18 #include "qemu/timer.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/cpu-timers.h" 28 #include "sysemu/kvm.h" 29 #include "qemu/range.h" 30 #include "qapi/qapi-commands-machine-target.h" 31 #include "qapi/error.h" 32 #include "qemu/guest-random.h" 33 #ifdef CONFIG_TCG 34 #include "arm_ldst.h" 35 #include "exec/cpu_ldst.h" 36 #include "semihosting/common-semi.h" 37 #endif 38 #include "cpregs.h" 39 40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 41 42 static void switch_mode(CPUARMState *env, int mode); 43 44 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 45 { 46 assert(ri->fieldoffset); 47 if (cpreg_field_is_64bit(ri)) { 48 return CPREG_FIELD64(env, ri); 49 } else { 50 return CPREG_FIELD32(env, ri); 51 } 52 } 53 54 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 55 uint64_t value) 56 { 57 assert(ri->fieldoffset); 58 if (cpreg_field_is_64bit(ri)) { 59 CPREG_FIELD64(env, ri) = value; 60 } else { 61 CPREG_FIELD32(env, ri) = value; 62 } 63 } 64 65 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 66 { 67 return (char *)env + ri->fieldoffset; 68 } 69 70 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 71 { 72 /* Raw read of a coprocessor register (as needed for migration, etc). */ 73 if (ri->type & ARM_CP_CONST) { 74 return ri->resetvalue; 75 } else if (ri->raw_readfn) { 76 return ri->raw_readfn(env, ri); 77 } else if (ri->readfn) { 78 return ri->readfn(env, ri); 79 } else { 80 return raw_read(env, ri); 81 } 82 } 83 84 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 85 uint64_t v) 86 { 87 /* Raw write of a coprocessor register (as needed for migration, etc). 88 * Note that constant registers are treated as write-ignored; the 89 * caller should check for success by whether a readback gives the 90 * value written. 91 */ 92 if (ri->type & ARM_CP_CONST) { 93 return; 94 } else if (ri->raw_writefn) { 95 ri->raw_writefn(env, ri, v); 96 } else if (ri->writefn) { 97 ri->writefn(env, ri, v); 98 } else { 99 raw_write(env, ri, v); 100 } 101 } 102 103 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 104 { 105 /* Return true if the regdef would cause an assertion if you called 106 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 107 * program bug for it not to have the NO_RAW flag). 108 * NB that returning false here doesn't necessarily mean that calling 109 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 110 * read/write access functions which are safe for raw use" from "has 111 * read/write access functions which have side effects but has forgotten 112 * to provide raw access functions". 113 * The tests here line up with the conditions in read/write_raw_cp_reg() 114 * and assertions in raw_read()/raw_write(). 115 */ 116 if ((ri->type & ARM_CP_CONST) || 117 ri->fieldoffset || 118 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 119 return false; 120 } 121 return true; 122 } 123 124 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 125 { 126 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 127 int i; 128 bool ok = true; 129 130 for (i = 0; i < cpu->cpreg_array_len; i++) { 131 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 132 const ARMCPRegInfo *ri; 133 uint64_t newval; 134 135 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 136 if (!ri) { 137 ok = false; 138 continue; 139 } 140 if (ri->type & ARM_CP_NO_RAW) { 141 continue; 142 } 143 144 newval = read_raw_cp_reg(&cpu->env, ri); 145 if (kvm_sync) { 146 /* 147 * Only sync if the previous list->cpustate sync succeeded. 148 * Rather than tracking the success/failure state for every 149 * item in the list, we just recheck "does the raw write we must 150 * have made in write_list_to_cpustate() read back OK" here. 151 */ 152 uint64_t oldval = cpu->cpreg_values[i]; 153 154 if (oldval == newval) { 155 continue; 156 } 157 158 write_raw_cp_reg(&cpu->env, ri, oldval); 159 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 160 continue; 161 } 162 163 write_raw_cp_reg(&cpu->env, ri, newval); 164 } 165 cpu->cpreg_values[i] = newval; 166 } 167 return ok; 168 } 169 170 bool write_list_to_cpustate(ARMCPU *cpu) 171 { 172 int i; 173 bool ok = true; 174 175 for (i = 0; i < cpu->cpreg_array_len; i++) { 176 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 177 uint64_t v = cpu->cpreg_values[i]; 178 const ARMCPRegInfo *ri; 179 180 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 181 if (!ri) { 182 ok = false; 183 continue; 184 } 185 if (ri->type & ARM_CP_NO_RAW) { 186 continue; 187 } 188 /* Write value and confirm it reads back as written 189 * (to catch read-only registers and partially read-only 190 * registers where the incoming migration value doesn't match) 191 */ 192 write_raw_cp_reg(&cpu->env, ri, v); 193 if (read_raw_cp_reg(&cpu->env, ri) != v) { 194 ok = false; 195 } 196 } 197 return ok; 198 } 199 200 static void add_cpreg_to_list(gpointer key, gpointer opaque) 201 { 202 ARMCPU *cpu = opaque; 203 uint32_t regidx = (uintptr_t)key; 204 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 205 206 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 207 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 208 /* The value array need not be initialized at this point */ 209 cpu->cpreg_array_len++; 210 } 211 } 212 213 static void count_cpreg(gpointer key, gpointer opaque) 214 { 215 ARMCPU *cpu = opaque; 216 const ARMCPRegInfo *ri; 217 218 ri = g_hash_table_lookup(cpu->cp_regs, key); 219 220 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 221 cpu->cpreg_array_len++; 222 } 223 } 224 225 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 226 { 227 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 228 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 229 230 if (aidx > bidx) { 231 return 1; 232 } 233 if (aidx < bidx) { 234 return -1; 235 } 236 return 0; 237 } 238 239 void init_cpreg_list(ARMCPU *cpu) 240 { 241 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 242 * Note that we require cpreg_tuples[] to be sorted by key ID. 243 */ 244 GList *keys; 245 int arraylen; 246 247 keys = g_hash_table_get_keys(cpu->cp_regs); 248 keys = g_list_sort(keys, cpreg_key_compare); 249 250 cpu->cpreg_array_len = 0; 251 252 g_list_foreach(keys, count_cpreg, cpu); 253 254 arraylen = cpu->cpreg_array_len; 255 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 256 cpu->cpreg_values = g_new(uint64_t, arraylen); 257 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 258 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 259 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 260 cpu->cpreg_array_len = 0; 261 262 g_list_foreach(keys, add_cpreg_to_list, cpu); 263 264 assert(cpu->cpreg_array_len == arraylen); 265 266 g_list_free(keys); 267 } 268 269 /* 270 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 271 */ 272 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 273 const ARMCPRegInfo *ri, 274 bool isread) 275 { 276 if (!is_a64(env) && arm_current_el(env) == 3 && 277 arm_is_secure_below_el3(env)) { 278 return CP_ACCESS_TRAP_UNCATEGORIZED; 279 } 280 return CP_ACCESS_OK; 281 } 282 283 /* Some secure-only AArch32 registers trap to EL3 if used from 284 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 285 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 286 * We assume that the .access field is set to PL1_RW. 287 */ 288 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 289 const ARMCPRegInfo *ri, 290 bool isread) 291 { 292 if (arm_current_el(env) == 3) { 293 return CP_ACCESS_OK; 294 } 295 if (arm_is_secure_below_el3(env)) { 296 if (env->cp15.scr_el3 & SCR_EEL2) { 297 return CP_ACCESS_TRAP_EL2; 298 } 299 return CP_ACCESS_TRAP_EL3; 300 } 301 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 302 return CP_ACCESS_TRAP_UNCATEGORIZED; 303 } 304 305 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 306 { 307 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 308 } 309 310 /* Check for traps to "powerdown debug" registers, which are controlled 311 * by MDCR.TDOSA 312 */ 313 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 314 bool isread) 315 { 316 int el = arm_current_el(env); 317 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 318 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 319 (arm_hcr_el2_eff(env) & HCR_TGE); 320 321 if (el < 2 && mdcr_el2_tdosa) { 322 return CP_ACCESS_TRAP_EL2; 323 } 324 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 325 return CP_ACCESS_TRAP_EL3; 326 } 327 return CP_ACCESS_OK; 328 } 329 330 /* Check for traps to "debug ROM" registers, which are controlled 331 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 332 */ 333 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 334 bool isread) 335 { 336 int el = arm_current_el(env); 337 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 338 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 339 (arm_hcr_el2_eff(env) & HCR_TGE); 340 341 if (el < 2 && mdcr_el2_tdra) { 342 return CP_ACCESS_TRAP_EL2; 343 } 344 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 345 return CP_ACCESS_TRAP_EL3; 346 } 347 return CP_ACCESS_OK; 348 } 349 350 /* Check for traps to general debug registers, which are controlled 351 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 352 */ 353 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 354 bool isread) 355 { 356 int el = arm_current_el(env); 357 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 358 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 359 (arm_hcr_el2_eff(env) & HCR_TGE); 360 361 if (el < 2 && mdcr_el2_tda) { 362 return CP_ACCESS_TRAP_EL2; 363 } 364 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 365 return CP_ACCESS_TRAP_EL3; 366 } 367 return CP_ACCESS_OK; 368 } 369 370 /* Check for traps to performance monitor registers, which are controlled 371 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 372 */ 373 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 374 bool isread) 375 { 376 int el = arm_current_el(env); 377 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 378 379 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 380 return CP_ACCESS_TRAP_EL2; 381 } 382 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 383 return CP_ACCESS_TRAP_EL3; 384 } 385 return CP_ACCESS_OK; 386 } 387 388 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 389 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 390 bool isread) 391 { 392 if (arm_current_el(env) == 1) { 393 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 394 if (arm_hcr_el2_eff(env) & trap) { 395 return CP_ACCESS_TRAP_EL2; 396 } 397 } 398 return CP_ACCESS_OK; 399 } 400 401 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 402 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 403 bool isread) 404 { 405 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 406 return CP_ACCESS_TRAP_EL2; 407 } 408 return CP_ACCESS_OK; 409 } 410 411 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 412 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 413 bool isread) 414 { 415 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 416 return CP_ACCESS_TRAP_EL2; 417 } 418 return CP_ACCESS_OK; 419 } 420 421 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 422 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 423 bool isread) 424 { 425 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 426 return CP_ACCESS_TRAP_EL2; 427 } 428 return CP_ACCESS_OK; 429 } 430 431 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 432 { 433 ARMCPU *cpu = env_archcpu(env); 434 435 raw_write(env, ri, value); 436 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 437 } 438 439 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 440 { 441 ARMCPU *cpu = env_archcpu(env); 442 443 if (raw_read(env, ri) != value) { 444 /* Unlike real hardware the qemu TLB uses virtual addresses, 445 * not modified virtual addresses, so this causes a TLB flush. 446 */ 447 tlb_flush(CPU(cpu)); 448 raw_write(env, ri, value); 449 } 450 } 451 452 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 453 uint64_t value) 454 { 455 ARMCPU *cpu = env_archcpu(env); 456 457 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 458 && !extended_addresses_enabled(env)) { 459 /* For VMSA (when not using the LPAE long descriptor page table 460 * format) this register includes the ASID, so do a TLB flush. 461 * For PMSA it is purely a process ID and no action is needed. 462 */ 463 tlb_flush(CPU(cpu)); 464 } 465 raw_write(env, ri, value); 466 } 467 468 /* IS variants of TLB operations must affect all cores */ 469 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 470 uint64_t value) 471 { 472 CPUState *cs = env_cpu(env); 473 474 tlb_flush_all_cpus_synced(cs); 475 } 476 477 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 478 uint64_t value) 479 { 480 CPUState *cs = env_cpu(env); 481 482 tlb_flush_all_cpus_synced(cs); 483 } 484 485 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 486 uint64_t value) 487 { 488 CPUState *cs = env_cpu(env); 489 490 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 491 } 492 493 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 494 uint64_t value) 495 { 496 CPUState *cs = env_cpu(env); 497 498 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 499 } 500 501 /* 502 * Non-IS variants of TLB operations are upgraded to 503 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 504 * force broadcast of these operations. 505 */ 506 static bool tlb_force_broadcast(CPUARMState *env) 507 { 508 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 509 } 510 511 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 512 uint64_t value) 513 { 514 /* Invalidate all (TLBIALL) */ 515 CPUState *cs = env_cpu(env); 516 517 if (tlb_force_broadcast(env)) { 518 tlb_flush_all_cpus_synced(cs); 519 } else { 520 tlb_flush(cs); 521 } 522 } 523 524 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 525 uint64_t value) 526 { 527 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 528 CPUState *cs = env_cpu(env); 529 530 value &= TARGET_PAGE_MASK; 531 if (tlb_force_broadcast(env)) { 532 tlb_flush_page_all_cpus_synced(cs, value); 533 } else { 534 tlb_flush_page(cs, value); 535 } 536 } 537 538 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 539 uint64_t value) 540 { 541 /* Invalidate by ASID (TLBIASID) */ 542 CPUState *cs = env_cpu(env); 543 544 if (tlb_force_broadcast(env)) { 545 tlb_flush_all_cpus_synced(cs); 546 } else { 547 tlb_flush(cs); 548 } 549 } 550 551 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 552 uint64_t value) 553 { 554 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 555 CPUState *cs = env_cpu(env); 556 557 value &= TARGET_PAGE_MASK; 558 if (tlb_force_broadcast(env)) { 559 tlb_flush_page_all_cpus_synced(cs, value); 560 } else { 561 tlb_flush_page(cs, value); 562 } 563 } 564 565 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 566 uint64_t value) 567 { 568 CPUState *cs = env_cpu(env); 569 570 tlb_flush_by_mmuidx(cs, 571 ARMMMUIdxBit_E10_1 | 572 ARMMMUIdxBit_E10_1_PAN | 573 ARMMMUIdxBit_E10_0); 574 } 575 576 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 577 uint64_t value) 578 { 579 CPUState *cs = env_cpu(env); 580 581 tlb_flush_by_mmuidx_all_cpus_synced(cs, 582 ARMMMUIdxBit_E10_1 | 583 ARMMMUIdxBit_E10_1_PAN | 584 ARMMMUIdxBit_E10_0); 585 } 586 587 588 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 589 uint64_t value) 590 { 591 CPUState *cs = env_cpu(env); 592 593 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 594 } 595 596 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 597 uint64_t value) 598 { 599 CPUState *cs = env_cpu(env); 600 601 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 602 } 603 604 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 605 uint64_t value) 606 { 607 CPUState *cs = env_cpu(env); 608 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 609 610 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 611 } 612 613 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 614 uint64_t value) 615 { 616 CPUState *cs = env_cpu(env); 617 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 618 619 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 620 ARMMMUIdxBit_E2); 621 } 622 623 static const ARMCPRegInfo cp_reginfo[] = { 624 /* Define the secure and non-secure FCSE identifier CP registers 625 * separately because there is no secure bank in V8 (no _EL3). This allows 626 * the secure register to be properly reset and migrated. There is also no 627 * v8 EL1 version of the register so the non-secure instance stands alone. 628 */ 629 { .name = "FCSEIDR", 630 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 631 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 632 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 633 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 634 { .name = "FCSEIDR_S", 635 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 636 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 637 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 638 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 639 /* Define the secure and non-secure context identifier CP registers 640 * separately because there is no secure bank in V8 (no _EL3). This allows 641 * the secure register to be properly reset and migrated. In the 642 * non-secure case, the 32-bit register will have reset and migration 643 * disabled during registration as it is handled by the 64-bit instance. 644 */ 645 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 646 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 647 .access = PL1_RW, .accessfn = access_tvm_trvm, 648 .secure = ARM_CP_SECSTATE_NS, 649 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 650 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 651 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 652 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 653 .access = PL1_RW, .accessfn = access_tvm_trvm, 654 .secure = ARM_CP_SECSTATE_S, 655 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 656 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 657 }; 658 659 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 660 /* NB: Some of these registers exist in v8 but with more precise 661 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 662 */ 663 /* MMU Domain access control / MPU write buffer control */ 664 { .name = "DACR", 665 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 666 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 667 .writefn = dacr_write, .raw_writefn = raw_write, 668 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 669 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 670 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 671 * For v6 and v5, these mappings are overly broad. 672 */ 673 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 674 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 675 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 676 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 677 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 678 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 679 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 680 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 681 /* Cache maintenance ops; some of this space may be overridden later. */ 682 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 683 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 684 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 685 }; 686 687 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 688 /* Not all pre-v6 cores implemented this WFI, so this is slightly 689 * over-broad. 690 */ 691 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 692 .access = PL1_W, .type = ARM_CP_WFI }, 693 }; 694 695 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 696 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 697 * is UNPREDICTABLE; we choose to NOP as most implementations do). 698 */ 699 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 700 .access = PL1_W, .type = ARM_CP_WFI }, 701 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 702 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 703 * OMAPCP will override this space. 704 */ 705 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 706 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 707 .resetvalue = 0 }, 708 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 709 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 710 .resetvalue = 0 }, 711 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 712 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 713 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 714 .resetvalue = 0 }, 715 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 716 * implementing it as RAZ means the "debug architecture version" bits 717 * will read as a reserved value, which should cause Linux to not try 718 * to use the debug hardware. 719 */ 720 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 721 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 722 /* MMU TLB control. Note that the wildcarding means we cover not just 723 * the unified TLB ops but also the dside/iside/inner-shareable variants. 724 */ 725 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 726 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 727 .type = ARM_CP_NO_RAW }, 728 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 729 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 730 .type = ARM_CP_NO_RAW }, 731 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 732 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 733 .type = ARM_CP_NO_RAW }, 734 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 735 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 736 .type = ARM_CP_NO_RAW }, 737 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 738 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 739 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 740 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 741 }; 742 743 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 744 uint64_t value) 745 { 746 uint32_t mask = 0; 747 748 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 749 if (!arm_feature(env, ARM_FEATURE_V8)) { 750 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 751 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 752 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 753 */ 754 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 755 /* VFP coprocessor: cp10 & cp11 [23:20] */ 756 mask |= R_CPACR_ASEDIS_MASK | 757 R_CPACR_D32DIS_MASK | 758 R_CPACR_CP11_MASK | 759 R_CPACR_CP10_MASK; 760 761 if (!arm_feature(env, ARM_FEATURE_NEON)) { 762 /* ASEDIS [31] bit is RAO/WI */ 763 value |= R_CPACR_ASEDIS_MASK; 764 } 765 766 /* VFPv3 and upwards with NEON implement 32 double precision 767 * registers (D0-D31). 768 */ 769 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 770 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 771 value |= R_CPACR_D32DIS_MASK; 772 } 773 } 774 value &= mask; 775 } 776 777 /* 778 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 779 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 780 */ 781 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 782 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 783 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 784 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 785 } 786 787 env->cp15.cpacr_el1 = value; 788 } 789 790 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 791 { 792 /* 793 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 794 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 795 */ 796 uint64_t value = env->cp15.cpacr_el1; 797 798 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 799 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 800 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 801 } 802 return value; 803 } 804 805 806 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 807 { 808 /* Call cpacr_write() so that we reset with the correct RAO bits set 809 * for our CPU features. 810 */ 811 cpacr_write(env, ri, 0); 812 } 813 814 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 815 bool isread) 816 { 817 if (arm_feature(env, ARM_FEATURE_V8)) { 818 /* Check if CPACR accesses are to be trapped to EL2 */ 819 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 820 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 821 return CP_ACCESS_TRAP_EL2; 822 /* Check if CPACR accesses are to be trapped to EL3 */ 823 } else if (arm_current_el(env) < 3 && 824 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 825 return CP_ACCESS_TRAP_EL3; 826 } 827 } 828 829 return CP_ACCESS_OK; 830 } 831 832 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 833 bool isread) 834 { 835 /* Check if CPTR accesses are set to trap to EL3 */ 836 if (arm_current_el(env) == 2 && 837 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 838 return CP_ACCESS_TRAP_EL3; 839 } 840 841 return CP_ACCESS_OK; 842 } 843 844 static const ARMCPRegInfo v6_cp_reginfo[] = { 845 /* prefetch by MVA in v6, NOP in v7 */ 846 { .name = "MVA_prefetch", 847 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 848 .access = PL1_W, .type = ARM_CP_NOP }, 849 /* We need to break the TB after ISB to execute self-modifying code 850 * correctly and also to take any pending interrupts immediately. 851 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 852 */ 853 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 854 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 855 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 856 .access = PL0_W, .type = ARM_CP_NOP }, 857 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 858 .access = PL0_W, .type = ARM_CP_NOP }, 859 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 860 .access = PL1_RW, .accessfn = access_tvm_trvm, 861 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 862 offsetof(CPUARMState, cp15.ifar_ns) }, 863 .resetvalue = 0, }, 864 /* Watchpoint Fault Address Register : should actually only be present 865 * for 1136, 1176, 11MPCore. 866 */ 867 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 868 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 869 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 870 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 871 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 872 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 873 }; 874 875 typedef struct pm_event { 876 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 877 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 878 bool (*supported)(CPUARMState *); 879 /* 880 * Retrieve the current count of the underlying event. The programmed 881 * counters hold a difference from the return value from this function 882 */ 883 uint64_t (*get_count)(CPUARMState *); 884 /* 885 * Return how many nanoseconds it will take (at a minimum) for count events 886 * to occur. A negative value indicates the counter will never overflow, or 887 * that the counter has otherwise arranged for the overflow bit to be set 888 * and the PMU interrupt to be raised on overflow. 889 */ 890 int64_t (*ns_per_count)(uint64_t); 891 } pm_event; 892 893 static bool event_always_supported(CPUARMState *env) 894 { 895 return true; 896 } 897 898 static uint64_t swinc_get_count(CPUARMState *env) 899 { 900 /* 901 * SW_INCR events are written directly to the pmevcntr's by writes to 902 * PMSWINC, so there is no underlying count maintained by the PMU itself 903 */ 904 return 0; 905 } 906 907 static int64_t swinc_ns_per(uint64_t ignored) 908 { 909 return -1; 910 } 911 912 /* 913 * Return the underlying cycle count for the PMU cycle counters. If we're in 914 * usermode, simply return 0. 915 */ 916 static uint64_t cycles_get_count(CPUARMState *env) 917 { 918 #ifndef CONFIG_USER_ONLY 919 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 920 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 921 #else 922 return cpu_get_host_ticks(); 923 #endif 924 } 925 926 #ifndef CONFIG_USER_ONLY 927 static int64_t cycles_ns_per(uint64_t cycles) 928 { 929 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 930 } 931 932 static bool instructions_supported(CPUARMState *env) 933 { 934 return icount_enabled() == 1; /* Precise instruction counting */ 935 } 936 937 static uint64_t instructions_get_count(CPUARMState *env) 938 { 939 return (uint64_t)icount_get_raw(); 940 } 941 942 static int64_t instructions_ns_per(uint64_t icount) 943 { 944 return icount_to_ns((int64_t)icount); 945 } 946 #endif 947 948 static bool pmu_8_1_events_supported(CPUARMState *env) 949 { 950 /* For events which are supported in any v8.1 PMU */ 951 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 952 } 953 954 static bool pmu_8_4_events_supported(CPUARMState *env) 955 { 956 /* For events which are supported in any v8.1 PMU */ 957 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 958 } 959 960 static uint64_t zero_event_get_count(CPUARMState *env) 961 { 962 /* For events which on QEMU never fire, so their count is always zero */ 963 return 0; 964 } 965 966 static int64_t zero_event_ns_per(uint64_t cycles) 967 { 968 /* An event which never fires can never overflow */ 969 return -1; 970 } 971 972 static const pm_event pm_events[] = { 973 { .number = 0x000, /* SW_INCR */ 974 .supported = event_always_supported, 975 .get_count = swinc_get_count, 976 .ns_per_count = swinc_ns_per, 977 }, 978 #ifndef CONFIG_USER_ONLY 979 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 980 .supported = instructions_supported, 981 .get_count = instructions_get_count, 982 .ns_per_count = instructions_ns_per, 983 }, 984 { .number = 0x011, /* CPU_CYCLES, Cycle */ 985 .supported = event_always_supported, 986 .get_count = cycles_get_count, 987 .ns_per_count = cycles_ns_per, 988 }, 989 #endif 990 { .number = 0x023, /* STALL_FRONTEND */ 991 .supported = pmu_8_1_events_supported, 992 .get_count = zero_event_get_count, 993 .ns_per_count = zero_event_ns_per, 994 }, 995 { .number = 0x024, /* STALL_BACKEND */ 996 .supported = pmu_8_1_events_supported, 997 .get_count = zero_event_get_count, 998 .ns_per_count = zero_event_ns_per, 999 }, 1000 { .number = 0x03c, /* STALL */ 1001 .supported = pmu_8_4_events_supported, 1002 .get_count = zero_event_get_count, 1003 .ns_per_count = zero_event_ns_per, 1004 }, 1005 }; 1006 1007 /* 1008 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1009 * events (i.e. the statistical profiling extension), this implementation 1010 * should first be updated to something sparse instead of the current 1011 * supported_event_map[] array. 1012 */ 1013 #define MAX_EVENT_ID 0x3c 1014 #define UNSUPPORTED_EVENT UINT16_MAX 1015 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1016 1017 /* 1018 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1019 * of ARM event numbers to indices in our pm_events array. 1020 * 1021 * Note: Events in the 0x40XX range are not currently supported. 1022 */ 1023 void pmu_init(ARMCPU *cpu) 1024 { 1025 unsigned int i; 1026 1027 /* 1028 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1029 * events to them 1030 */ 1031 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1032 supported_event_map[i] = UNSUPPORTED_EVENT; 1033 } 1034 cpu->pmceid0 = 0; 1035 cpu->pmceid1 = 0; 1036 1037 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1038 const pm_event *cnt = &pm_events[i]; 1039 assert(cnt->number <= MAX_EVENT_ID); 1040 /* We do not currently support events in the 0x40xx range */ 1041 assert(cnt->number <= 0x3f); 1042 1043 if (cnt->supported(&cpu->env)) { 1044 supported_event_map[cnt->number] = i; 1045 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1046 if (cnt->number & 0x20) { 1047 cpu->pmceid1 |= event_mask; 1048 } else { 1049 cpu->pmceid0 |= event_mask; 1050 } 1051 } 1052 } 1053 } 1054 1055 /* 1056 * Check at runtime whether a PMU event is supported for the current machine 1057 */ 1058 static bool event_supported(uint16_t number) 1059 { 1060 if (number > MAX_EVENT_ID) { 1061 return false; 1062 } 1063 return supported_event_map[number] != UNSUPPORTED_EVENT; 1064 } 1065 1066 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1067 bool isread) 1068 { 1069 /* Performance monitor registers user accessibility is controlled 1070 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1071 * trapping to EL2 or EL3 for other accesses. 1072 */ 1073 int el = arm_current_el(env); 1074 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1075 1076 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1077 return CP_ACCESS_TRAP; 1078 } 1079 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1080 return CP_ACCESS_TRAP_EL2; 1081 } 1082 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1083 return CP_ACCESS_TRAP_EL3; 1084 } 1085 1086 return CP_ACCESS_OK; 1087 } 1088 1089 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1090 const ARMCPRegInfo *ri, 1091 bool isread) 1092 { 1093 /* ER: event counter read trap control */ 1094 if (arm_feature(env, ARM_FEATURE_V8) 1095 && arm_current_el(env) == 0 1096 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1097 && isread) { 1098 return CP_ACCESS_OK; 1099 } 1100 1101 return pmreg_access(env, ri, isread); 1102 } 1103 1104 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1105 const ARMCPRegInfo *ri, 1106 bool isread) 1107 { 1108 /* SW: software increment write trap control */ 1109 if (arm_feature(env, ARM_FEATURE_V8) 1110 && arm_current_el(env) == 0 1111 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1112 && !isread) { 1113 return CP_ACCESS_OK; 1114 } 1115 1116 return pmreg_access(env, ri, isread); 1117 } 1118 1119 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1120 const ARMCPRegInfo *ri, 1121 bool isread) 1122 { 1123 /* ER: event counter read trap control */ 1124 if (arm_feature(env, ARM_FEATURE_V8) 1125 && arm_current_el(env) == 0 1126 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1127 return CP_ACCESS_OK; 1128 } 1129 1130 return pmreg_access(env, ri, isread); 1131 } 1132 1133 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1134 const ARMCPRegInfo *ri, 1135 bool isread) 1136 { 1137 /* CR: cycle counter read trap control */ 1138 if (arm_feature(env, ARM_FEATURE_V8) 1139 && arm_current_el(env) == 0 1140 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1141 && isread) { 1142 return CP_ACCESS_OK; 1143 } 1144 1145 return pmreg_access(env, ri, isread); 1146 } 1147 1148 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1149 * the current EL, security state, and register configuration. 1150 */ 1151 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1152 { 1153 uint64_t filter; 1154 bool e, p, u, nsk, nsu, nsh, m; 1155 bool enabled, prohibited, filtered; 1156 bool secure = arm_is_secure(env); 1157 int el = arm_current_el(env); 1158 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1159 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1160 1161 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1162 return false; 1163 } 1164 1165 if (!arm_feature(env, ARM_FEATURE_EL2) || 1166 (counter < hpmn || counter == 31)) { 1167 e = env->cp15.c9_pmcr & PMCRE; 1168 } else { 1169 e = mdcr_el2 & MDCR_HPME; 1170 } 1171 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1172 1173 if (!secure) { 1174 if (el == 2 && (counter < hpmn || counter == 31)) { 1175 prohibited = mdcr_el2 & MDCR_HPMD; 1176 } else { 1177 prohibited = false; 1178 } 1179 } else { 1180 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1181 !(env->cp15.mdcr_el3 & MDCR_SPME); 1182 } 1183 1184 if (prohibited && counter == 31) { 1185 prohibited = env->cp15.c9_pmcr & PMCRDP; 1186 } 1187 1188 if (counter == 31) { 1189 filter = env->cp15.pmccfiltr_el0; 1190 } else { 1191 filter = env->cp15.c14_pmevtyper[counter]; 1192 } 1193 1194 p = filter & PMXEVTYPER_P; 1195 u = filter & PMXEVTYPER_U; 1196 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1197 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1198 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1199 m = arm_el_is_aa64(env, 1) && 1200 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1201 1202 if (el == 0) { 1203 filtered = secure ? u : u != nsu; 1204 } else if (el == 1) { 1205 filtered = secure ? p : p != nsk; 1206 } else if (el == 2) { 1207 filtered = !nsh; 1208 } else { /* EL3 */ 1209 filtered = m != p; 1210 } 1211 1212 if (counter != 31) { 1213 /* 1214 * If not checking PMCCNTR, ensure the counter is setup to an event we 1215 * support 1216 */ 1217 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1218 if (!event_supported(event)) { 1219 return false; 1220 } 1221 } 1222 1223 return enabled && !prohibited && !filtered; 1224 } 1225 1226 static void pmu_update_irq(CPUARMState *env) 1227 { 1228 ARMCPU *cpu = env_archcpu(env); 1229 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1230 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1231 } 1232 1233 /* 1234 * Ensure c15_ccnt is the guest-visible count so that operations such as 1235 * enabling/disabling the counter or filtering, modifying the count itself, 1236 * etc. can be done logically. This is essentially a no-op if the counter is 1237 * not enabled at the time of the call. 1238 */ 1239 static void pmccntr_op_start(CPUARMState *env) 1240 { 1241 uint64_t cycles = cycles_get_count(env); 1242 1243 if (pmu_counter_enabled(env, 31)) { 1244 uint64_t eff_cycles = cycles; 1245 if (env->cp15.c9_pmcr & PMCRD) { 1246 /* Increment once every 64 processor clock cycles */ 1247 eff_cycles /= 64; 1248 } 1249 1250 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1251 1252 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1253 1ull << 63 : 1ull << 31; 1254 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1255 env->cp15.c9_pmovsr |= (1 << 31); 1256 pmu_update_irq(env); 1257 } 1258 1259 env->cp15.c15_ccnt = new_pmccntr; 1260 } 1261 env->cp15.c15_ccnt_delta = cycles; 1262 } 1263 1264 /* 1265 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1266 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1267 * pmccntr_op_start. 1268 */ 1269 static void pmccntr_op_finish(CPUARMState *env) 1270 { 1271 if (pmu_counter_enabled(env, 31)) { 1272 #ifndef CONFIG_USER_ONLY 1273 /* Calculate when the counter will next overflow */ 1274 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1275 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1276 remaining_cycles = (uint32_t)remaining_cycles; 1277 } 1278 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1279 1280 if (overflow_in > 0) { 1281 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1282 overflow_in; 1283 ARMCPU *cpu = env_archcpu(env); 1284 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1285 } 1286 #endif 1287 1288 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1289 if (env->cp15.c9_pmcr & PMCRD) { 1290 /* Increment once every 64 processor clock cycles */ 1291 prev_cycles /= 64; 1292 } 1293 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1294 } 1295 } 1296 1297 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1298 { 1299 1300 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1301 uint64_t count = 0; 1302 if (event_supported(event)) { 1303 uint16_t event_idx = supported_event_map[event]; 1304 count = pm_events[event_idx].get_count(env); 1305 } 1306 1307 if (pmu_counter_enabled(env, counter)) { 1308 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1309 1310 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1311 env->cp15.c9_pmovsr |= (1 << counter); 1312 pmu_update_irq(env); 1313 } 1314 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1315 } 1316 env->cp15.c14_pmevcntr_delta[counter] = count; 1317 } 1318 1319 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1320 { 1321 if (pmu_counter_enabled(env, counter)) { 1322 #ifndef CONFIG_USER_ONLY 1323 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1324 uint16_t event_idx = supported_event_map[event]; 1325 uint64_t delta = UINT32_MAX - 1326 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1327 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1328 1329 if (overflow_in > 0) { 1330 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1331 overflow_in; 1332 ARMCPU *cpu = env_archcpu(env); 1333 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1334 } 1335 #endif 1336 1337 env->cp15.c14_pmevcntr_delta[counter] -= 1338 env->cp15.c14_pmevcntr[counter]; 1339 } 1340 } 1341 1342 void pmu_op_start(CPUARMState *env) 1343 { 1344 unsigned int i; 1345 pmccntr_op_start(env); 1346 for (i = 0; i < pmu_num_counters(env); i++) { 1347 pmevcntr_op_start(env, i); 1348 } 1349 } 1350 1351 void pmu_op_finish(CPUARMState *env) 1352 { 1353 unsigned int i; 1354 pmccntr_op_finish(env); 1355 for (i = 0; i < pmu_num_counters(env); i++) { 1356 pmevcntr_op_finish(env, i); 1357 } 1358 } 1359 1360 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1361 { 1362 pmu_op_start(&cpu->env); 1363 } 1364 1365 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1366 { 1367 pmu_op_finish(&cpu->env); 1368 } 1369 1370 void arm_pmu_timer_cb(void *opaque) 1371 { 1372 ARMCPU *cpu = opaque; 1373 1374 /* 1375 * Update all the counter values based on the current underlying counts, 1376 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1377 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1378 * counter may expire. 1379 */ 1380 pmu_op_start(&cpu->env); 1381 pmu_op_finish(&cpu->env); 1382 } 1383 1384 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1385 uint64_t value) 1386 { 1387 pmu_op_start(env); 1388 1389 if (value & PMCRC) { 1390 /* The counter has been reset */ 1391 env->cp15.c15_ccnt = 0; 1392 } 1393 1394 if (value & PMCRP) { 1395 unsigned int i; 1396 for (i = 0; i < pmu_num_counters(env); i++) { 1397 env->cp15.c14_pmevcntr[i] = 0; 1398 } 1399 } 1400 1401 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1402 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1403 1404 pmu_op_finish(env); 1405 } 1406 1407 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1408 uint64_t value) 1409 { 1410 unsigned int i; 1411 for (i = 0; i < pmu_num_counters(env); i++) { 1412 /* Increment a counter's count iff: */ 1413 if ((value & (1 << i)) && /* counter's bit is set */ 1414 /* counter is enabled and not filtered */ 1415 pmu_counter_enabled(env, i) && 1416 /* counter is SW_INCR */ 1417 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1418 pmevcntr_op_start(env, i); 1419 1420 /* 1421 * Detect if this write causes an overflow since we can't predict 1422 * PMSWINC overflows like we can for other events 1423 */ 1424 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1425 1426 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1427 env->cp15.c9_pmovsr |= (1 << i); 1428 pmu_update_irq(env); 1429 } 1430 1431 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1432 1433 pmevcntr_op_finish(env, i); 1434 } 1435 } 1436 } 1437 1438 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1439 { 1440 uint64_t ret; 1441 pmccntr_op_start(env); 1442 ret = env->cp15.c15_ccnt; 1443 pmccntr_op_finish(env); 1444 return ret; 1445 } 1446 1447 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1448 uint64_t value) 1449 { 1450 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1451 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1452 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1453 * accessed. 1454 */ 1455 env->cp15.c9_pmselr = value & 0x1f; 1456 } 1457 1458 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1459 uint64_t value) 1460 { 1461 pmccntr_op_start(env); 1462 env->cp15.c15_ccnt = value; 1463 pmccntr_op_finish(env); 1464 } 1465 1466 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1467 uint64_t value) 1468 { 1469 uint64_t cur_val = pmccntr_read(env, NULL); 1470 1471 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1472 } 1473 1474 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1475 uint64_t value) 1476 { 1477 pmccntr_op_start(env); 1478 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1479 pmccntr_op_finish(env); 1480 } 1481 1482 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1483 uint64_t value) 1484 { 1485 pmccntr_op_start(env); 1486 /* M is not accessible from AArch32 */ 1487 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1488 (value & PMCCFILTR); 1489 pmccntr_op_finish(env); 1490 } 1491 1492 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1493 { 1494 /* M is not visible in AArch32 */ 1495 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1496 } 1497 1498 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1499 uint64_t value) 1500 { 1501 value &= pmu_counter_mask(env); 1502 env->cp15.c9_pmcnten |= value; 1503 } 1504 1505 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1506 uint64_t value) 1507 { 1508 value &= pmu_counter_mask(env); 1509 env->cp15.c9_pmcnten &= ~value; 1510 } 1511 1512 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1513 uint64_t value) 1514 { 1515 value &= pmu_counter_mask(env); 1516 env->cp15.c9_pmovsr &= ~value; 1517 pmu_update_irq(env); 1518 } 1519 1520 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1521 uint64_t value) 1522 { 1523 value &= pmu_counter_mask(env); 1524 env->cp15.c9_pmovsr |= value; 1525 pmu_update_irq(env); 1526 } 1527 1528 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1529 uint64_t value, const uint8_t counter) 1530 { 1531 if (counter == 31) { 1532 pmccfiltr_write(env, ri, value); 1533 } else if (counter < pmu_num_counters(env)) { 1534 pmevcntr_op_start(env, counter); 1535 1536 /* 1537 * If this counter's event type is changing, store the current 1538 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1539 * pmevcntr_op_finish has the correct baseline when it converts back to 1540 * a delta. 1541 */ 1542 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1543 PMXEVTYPER_EVTCOUNT; 1544 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1545 if (old_event != new_event) { 1546 uint64_t count = 0; 1547 if (event_supported(new_event)) { 1548 uint16_t event_idx = supported_event_map[new_event]; 1549 count = pm_events[event_idx].get_count(env); 1550 } 1551 env->cp15.c14_pmevcntr_delta[counter] = count; 1552 } 1553 1554 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1555 pmevcntr_op_finish(env, counter); 1556 } 1557 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1558 * PMSELR value is equal to or greater than the number of implemented 1559 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1560 */ 1561 } 1562 1563 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1564 const uint8_t counter) 1565 { 1566 if (counter == 31) { 1567 return env->cp15.pmccfiltr_el0; 1568 } else if (counter < pmu_num_counters(env)) { 1569 return env->cp15.c14_pmevtyper[counter]; 1570 } else { 1571 /* 1572 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1573 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1574 */ 1575 return 0; 1576 } 1577 } 1578 1579 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1580 uint64_t value) 1581 { 1582 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1583 pmevtyper_write(env, ri, value, counter); 1584 } 1585 1586 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1587 uint64_t value) 1588 { 1589 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1590 env->cp15.c14_pmevtyper[counter] = value; 1591 1592 /* 1593 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1594 * pmu_op_finish calls when loading saved state for a migration. Because 1595 * we're potentially updating the type of event here, the value written to 1596 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1597 * different counter type. Therefore, we need to set this value to the 1598 * current count for the counter type we're writing so that pmu_op_finish 1599 * has the correct count for its calculation. 1600 */ 1601 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1602 if (event_supported(event)) { 1603 uint16_t event_idx = supported_event_map[event]; 1604 env->cp15.c14_pmevcntr_delta[counter] = 1605 pm_events[event_idx].get_count(env); 1606 } 1607 } 1608 1609 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1610 { 1611 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1612 return pmevtyper_read(env, ri, counter); 1613 } 1614 1615 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1616 uint64_t value) 1617 { 1618 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1619 } 1620 1621 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1622 { 1623 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1624 } 1625 1626 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1627 uint64_t value, uint8_t counter) 1628 { 1629 if (counter < pmu_num_counters(env)) { 1630 pmevcntr_op_start(env, counter); 1631 env->cp15.c14_pmevcntr[counter] = value; 1632 pmevcntr_op_finish(env, counter); 1633 } 1634 /* 1635 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1636 * are CONSTRAINED UNPREDICTABLE. 1637 */ 1638 } 1639 1640 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1641 uint8_t counter) 1642 { 1643 if (counter < pmu_num_counters(env)) { 1644 uint64_t ret; 1645 pmevcntr_op_start(env, counter); 1646 ret = env->cp15.c14_pmevcntr[counter]; 1647 pmevcntr_op_finish(env, counter); 1648 return ret; 1649 } else { 1650 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1651 * are CONSTRAINED UNPREDICTABLE. */ 1652 return 0; 1653 } 1654 } 1655 1656 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1657 uint64_t value) 1658 { 1659 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1660 pmevcntr_write(env, ri, value, counter); 1661 } 1662 1663 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1664 { 1665 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1666 return pmevcntr_read(env, ri, counter); 1667 } 1668 1669 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1670 uint64_t value) 1671 { 1672 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1673 assert(counter < pmu_num_counters(env)); 1674 env->cp15.c14_pmevcntr[counter] = value; 1675 pmevcntr_write(env, ri, value, counter); 1676 } 1677 1678 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1679 { 1680 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1681 assert(counter < pmu_num_counters(env)); 1682 return env->cp15.c14_pmevcntr[counter]; 1683 } 1684 1685 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1686 uint64_t value) 1687 { 1688 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1689 } 1690 1691 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1692 { 1693 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1694 } 1695 1696 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1697 uint64_t value) 1698 { 1699 if (arm_feature(env, ARM_FEATURE_V8)) { 1700 env->cp15.c9_pmuserenr = value & 0xf; 1701 } else { 1702 env->cp15.c9_pmuserenr = value & 1; 1703 } 1704 } 1705 1706 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1707 uint64_t value) 1708 { 1709 /* We have no event counters so only the C bit can be changed */ 1710 value &= pmu_counter_mask(env); 1711 env->cp15.c9_pminten |= value; 1712 pmu_update_irq(env); 1713 } 1714 1715 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1716 uint64_t value) 1717 { 1718 value &= pmu_counter_mask(env); 1719 env->cp15.c9_pminten &= ~value; 1720 pmu_update_irq(env); 1721 } 1722 1723 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1724 uint64_t value) 1725 { 1726 /* Note that even though the AArch64 view of this register has bits 1727 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1728 * architectural requirements for bits which are RES0 only in some 1729 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1730 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1731 */ 1732 raw_write(env, ri, value & ~0x1FULL); 1733 } 1734 1735 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1736 { 1737 /* Begin with base v8.0 state. */ 1738 uint32_t valid_mask = 0x3fff; 1739 ARMCPU *cpu = env_archcpu(env); 1740 1741 if (ri->state == ARM_CP_STATE_AA64) { 1742 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1743 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 1744 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1745 } 1746 valid_mask &= ~SCR_NET; 1747 1748 if (cpu_isar_feature(aa64_ras, cpu)) { 1749 valid_mask |= SCR_TERR; 1750 } 1751 if (cpu_isar_feature(aa64_lor, cpu)) { 1752 valid_mask |= SCR_TLOR; 1753 } 1754 if (cpu_isar_feature(aa64_pauth, cpu)) { 1755 valid_mask |= SCR_API | SCR_APK; 1756 } 1757 if (cpu_isar_feature(aa64_sel2, cpu)) { 1758 valid_mask |= SCR_EEL2; 1759 } 1760 if (cpu_isar_feature(aa64_mte, cpu)) { 1761 valid_mask |= SCR_ATA; 1762 } 1763 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1764 valid_mask |= SCR_ENSCXT; 1765 } 1766 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1767 valid_mask |= SCR_EASE | SCR_NMEA; 1768 } 1769 } else { 1770 valid_mask &= ~(SCR_RW | SCR_ST); 1771 if (cpu_isar_feature(aa32_ras, cpu)) { 1772 valid_mask |= SCR_TERR; 1773 } 1774 } 1775 1776 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1777 valid_mask &= ~SCR_HCE; 1778 1779 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1780 * supported if EL2 exists. The bit is UNK/SBZP when 1781 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1782 * when EL2 is unavailable. 1783 * On ARMv8, this bit is always available. 1784 */ 1785 if (arm_feature(env, ARM_FEATURE_V7) && 1786 !arm_feature(env, ARM_FEATURE_V8)) { 1787 valid_mask &= ~SCR_SMD; 1788 } 1789 } 1790 1791 /* Clear all-context RES0 bits. */ 1792 value &= valid_mask; 1793 raw_write(env, ri, value); 1794 } 1795 1796 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1797 { 1798 /* 1799 * scr_write will set the RES1 bits on an AArch64-only CPU. 1800 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1801 */ 1802 scr_write(env, ri, 0); 1803 } 1804 1805 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1806 const ARMCPRegInfo *ri, 1807 bool isread) 1808 { 1809 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1810 return CP_ACCESS_TRAP_EL2; 1811 } 1812 1813 return CP_ACCESS_OK; 1814 } 1815 1816 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1817 { 1818 ARMCPU *cpu = env_archcpu(env); 1819 1820 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1821 * bank 1822 */ 1823 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1824 ri->secure & ARM_CP_SECSTATE_S); 1825 1826 return cpu->ccsidr[index]; 1827 } 1828 1829 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1830 uint64_t value) 1831 { 1832 raw_write(env, ri, value & 0xf); 1833 } 1834 1835 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1836 { 1837 CPUState *cs = env_cpu(env); 1838 bool el1 = arm_current_el(env) == 1; 1839 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1840 uint64_t ret = 0; 1841 1842 if (hcr_el2 & HCR_IMO) { 1843 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1844 ret |= CPSR_I; 1845 } 1846 } else { 1847 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1848 ret |= CPSR_I; 1849 } 1850 } 1851 1852 if (hcr_el2 & HCR_FMO) { 1853 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1854 ret |= CPSR_F; 1855 } 1856 } else { 1857 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1858 ret |= CPSR_F; 1859 } 1860 } 1861 1862 if (hcr_el2 & HCR_AMO) { 1863 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1864 ret |= CPSR_A; 1865 } 1866 } 1867 1868 return ret; 1869 } 1870 1871 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1872 bool isread) 1873 { 1874 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1875 return CP_ACCESS_TRAP_EL2; 1876 } 1877 1878 return CP_ACCESS_OK; 1879 } 1880 1881 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1882 bool isread) 1883 { 1884 if (arm_feature(env, ARM_FEATURE_V8)) { 1885 return access_aa64_tid1(env, ri, isread); 1886 } 1887 1888 return CP_ACCESS_OK; 1889 } 1890 1891 static const ARMCPRegInfo v7_cp_reginfo[] = { 1892 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1893 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1894 .access = PL1_W, .type = ARM_CP_NOP }, 1895 /* Performance monitors are implementation defined in v7, 1896 * but with an ARM recommended set of registers, which we 1897 * follow. 1898 * 1899 * Performance registers fall into three categories: 1900 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1901 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1902 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1903 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1904 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1905 */ 1906 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1907 .access = PL0_RW, .type = ARM_CP_ALIAS, 1908 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1909 .writefn = pmcntenset_write, 1910 .accessfn = pmreg_access, 1911 .raw_writefn = raw_write }, 1912 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1913 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1914 .access = PL0_RW, .accessfn = pmreg_access, 1915 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1916 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1917 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1918 .access = PL0_RW, 1919 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1920 .accessfn = pmreg_access, 1921 .writefn = pmcntenclr_write, 1922 .type = ARM_CP_ALIAS }, 1923 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1924 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1925 .access = PL0_RW, .accessfn = pmreg_access, 1926 .type = ARM_CP_ALIAS, 1927 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1928 .writefn = pmcntenclr_write }, 1929 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1930 .access = PL0_RW, .type = ARM_CP_IO, 1931 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1932 .accessfn = pmreg_access, 1933 .writefn = pmovsr_write, 1934 .raw_writefn = raw_write }, 1935 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1936 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1937 .access = PL0_RW, .accessfn = pmreg_access, 1938 .type = ARM_CP_ALIAS | ARM_CP_IO, 1939 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1940 .writefn = pmovsr_write, 1941 .raw_writefn = raw_write }, 1942 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1943 .access = PL0_W, .accessfn = pmreg_access_swinc, 1944 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1945 .writefn = pmswinc_write }, 1946 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1947 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1948 .access = PL0_W, .accessfn = pmreg_access_swinc, 1949 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1950 .writefn = pmswinc_write }, 1951 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1952 .access = PL0_RW, .type = ARM_CP_ALIAS, 1953 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1954 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1955 .raw_writefn = raw_write}, 1956 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1957 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1958 .access = PL0_RW, .accessfn = pmreg_access_selr, 1959 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1960 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1961 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1962 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1963 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1964 .accessfn = pmreg_access_ccntr }, 1965 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1966 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1967 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1968 .type = ARM_CP_IO, 1969 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1970 .readfn = pmccntr_read, .writefn = pmccntr_write, 1971 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1972 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1973 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1974 .access = PL0_RW, .accessfn = pmreg_access, 1975 .type = ARM_CP_ALIAS | ARM_CP_IO, 1976 .resetvalue = 0, }, 1977 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1978 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1979 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1980 .access = PL0_RW, .accessfn = pmreg_access, 1981 .type = ARM_CP_IO, 1982 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1983 .resetvalue = 0, }, 1984 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1985 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1986 .accessfn = pmreg_access, 1987 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1988 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1989 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1990 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1991 .accessfn = pmreg_access, 1992 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1993 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1994 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1995 .accessfn = pmreg_access_xevcntr, 1996 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 1997 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 1998 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 1999 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2000 .accessfn = pmreg_access_xevcntr, 2001 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2002 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2003 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2004 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2005 .resetvalue = 0, 2006 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2007 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2008 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2009 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2010 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2011 .resetvalue = 0, 2012 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2013 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2014 .access = PL1_RW, .accessfn = access_tpm, 2015 .type = ARM_CP_ALIAS | ARM_CP_IO, 2016 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2017 .resetvalue = 0, 2018 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2019 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2020 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2021 .access = PL1_RW, .accessfn = access_tpm, 2022 .type = ARM_CP_IO, 2023 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2024 .writefn = pmintenset_write, .raw_writefn = raw_write, 2025 .resetvalue = 0x0 }, 2026 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2027 .access = PL1_RW, .accessfn = access_tpm, 2028 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2029 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2030 .writefn = pmintenclr_write, }, 2031 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2032 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2033 .access = PL1_RW, .accessfn = access_tpm, 2034 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2035 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2036 .writefn = pmintenclr_write }, 2037 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2038 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2039 .access = PL1_R, 2040 .accessfn = access_aa64_tid2, 2041 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2042 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2043 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2044 .access = PL1_RW, 2045 .accessfn = access_aa64_tid2, 2046 .writefn = csselr_write, .resetvalue = 0, 2047 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2048 offsetof(CPUARMState, cp15.csselr_ns) } }, 2049 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2050 * just RAZ for all cores: 2051 */ 2052 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2053 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2054 .access = PL1_R, .type = ARM_CP_CONST, 2055 .accessfn = access_aa64_tid1, 2056 .resetvalue = 0 }, 2057 /* Auxiliary fault status registers: these also are IMPDEF, and we 2058 * choose to RAZ/WI for all cores. 2059 */ 2060 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2061 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2062 .access = PL1_RW, .accessfn = access_tvm_trvm, 2063 .type = ARM_CP_CONST, .resetvalue = 0 }, 2064 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2065 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2066 .access = PL1_RW, .accessfn = access_tvm_trvm, 2067 .type = ARM_CP_CONST, .resetvalue = 0 }, 2068 /* MAIR can just read-as-written because we don't implement caches 2069 * and so don't need to care about memory attributes. 2070 */ 2071 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2072 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2073 .access = PL1_RW, .accessfn = access_tvm_trvm, 2074 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2075 .resetvalue = 0 }, 2076 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2077 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2078 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2079 .resetvalue = 0 }, 2080 /* For non-long-descriptor page tables these are PRRR and NMRR; 2081 * regardless they still act as reads-as-written for QEMU. 2082 */ 2083 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2084 * allows them to assign the correct fieldoffset based on the endianness 2085 * handled in the field definitions. 2086 */ 2087 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2088 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2089 .access = PL1_RW, .accessfn = access_tvm_trvm, 2090 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2091 offsetof(CPUARMState, cp15.mair0_ns) }, 2092 .resetfn = arm_cp_reset_ignore }, 2093 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2094 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2095 .access = PL1_RW, .accessfn = access_tvm_trvm, 2096 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2097 offsetof(CPUARMState, cp15.mair1_ns) }, 2098 .resetfn = arm_cp_reset_ignore }, 2099 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2100 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2101 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2102 /* 32 bit ITLB invalidates */ 2103 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2104 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2105 .writefn = tlbiall_write }, 2106 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2107 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2108 .writefn = tlbimva_write }, 2109 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2110 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2111 .writefn = tlbiasid_write }, 2112 /* 32 bit DTLB invalidates */ 2113 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2114 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2115 .writefn = tlbiall_write }, 2116 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2117 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2118 .writefn = tlbimva_write }, 2119 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2120 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2121 .writefn = tlbiasid_write }, 2122 /* 32 bit TLB invalidates */ 2123 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2124 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2125 .writefn = tlbiall_write }, 2126 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2127 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2128 .writefn = tlbimva_write }, 2129 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2130 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2131 .writefn = tlbiasid_write }, 2132 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2133 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2134 .writefn = tlbimvaa_write }, 2135 }; 2136 2137 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2138 /* 32 bit TLB invalidates, Inner Shareable */ 2139 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2140 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2141 .writefn = tlbiall_is_write }, 2142 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2143 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2144 .writefn = tlbimva_is_write }, 2145 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2146 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2147 .writefn = tlbiasid_is_write }, 2148 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2149 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2150 .writefn = tlbimvaa_is_write }, 2151 }; 2152 2153 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2154 /* PMOVSSET is not implemented in v7 before v7ve */ 2155 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2156 .access = PL0_RW, .accessfn = pmreg_access, 2157 .type = ARM_CP_ALIAS | ARM_CP_IO, 2158 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2159 .writefn = pmovsset_write, 2160 .raw_writefn = raw_write }, 2161 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2162 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2163 .access = PL0_RW, .accessfn = pmreg_access, 2164 .type = ARM_CP_ALIAS | ARM_CP_IO, 2165 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2166 .writefn = pmovsset_write, 2167 .raw_writefn = raw_write }, 2168 }; 2169 2170 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2171 uint64_t value) 2172 { 2173 value &= 1; 2174 env->teecr = value; 2175 } 2176 2177 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2178 bool isread) 2179 { 2180 /* 2181 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2182 * at all, so we don't need to check whether we're v8A. 2183 */ 2184 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2185 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2186 return CP_ACCESS_TRAP_EL2; 2187 } 2188 return CP_ACCESS_OK; 2189 } 2190 2191 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2192 bool isread) 2193 { 2194 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2195 return CP_ACCESS_TRAP; 2196 } 2197 return teecr_access(env, ri, isread); 2198 } 2199 2200 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2201 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2202 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2203 .resetvalue = 0, 2204 .writefn = teecr_write, .accessfn = teecr_access }, 2205 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2206 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2207 .accessfn = teehbr_access, .resetvalue = 0 }, 2208 }; 2209 2210 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2211 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2212 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2213 .access = PL0_RW, 2214 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2215 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2216 .access = PL0_RW, 2217 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2218 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2219 .resetfn = arm_cp_reset_ignore }, 2220 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2221 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2222 .access = PL0_R|PL1_W, 2223 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2224 .resetvalue = 0}, 2225 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2226 .access = PL0_R|PL1_W, 2227 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2228 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2229 .resetfn = arm_cp_reset_ignore }, 2230 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2231 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2232 .access = PL1_RW, 2233 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2234 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2235 .access = PL1_RW, 2236 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2237 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2238 .resetvalue = 0 }, 2239 }; 2240 2241 #ifndef CONFIG_USER_ONLY 2242 2243 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2244 bool isread) 2245 { 2246 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2247 * Writable only at the highest implemented exception level. 2248 */ 2249 int el = arm_current_el(env); 2250 uint64_t hcr; 2251 uint32_t cntkctl; 2252 2253 switch (el) { 2254 case 0: 2255 hcr = arm_hcr_el2_eff(env); 2256 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2257 cntkctl = env->cp15.cnthctl_el2; 2258 } else { 2259 cntkctl = env->cp15.c14_cntkctl; 2260 } 2261 if (!extract32(cntkctl, 0, 2)) { 2262 return CP_ACCESS_TRAP; 2263 } 2264 break; 2265 case 1: 2266 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2267 arm_is_secure_below_el3(env)) { 2268 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2269 return CP_ACCESS_TRAP_UNCATEGORIZED; 2270 } 2271 break; 2272 case 2: 2273 case 3: 2274 break; 2275 } 2276 2277 if (!isread && el < arm_highest_el(env)) { 2278 return CP_ACCESS_TRAP_UNCATEGORIZED; 2279 } 2280 2281 return CP_ACCESS_OK; 2282 } 2283 2284 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2285 bool isread) 2286 { 2287 unsigned int cur_el = arm_current_el(env); 2288 bool has_el2 = arm_is_el2_enabled(env); 2289 uint64_t hcr = arm_hcr_el2_eff(env); 2290 2291 switch (cur_el) { 2292 case 0: 2293 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2294 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2295 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2296 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2297 } 2298 2299 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2300 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2301 return CP_ACCESS_TRAP; 2302 } 2303 2304 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2305 if (hcr & HCR_E2H) { 2306 if (timeridx == GTIMER_PHYS && 2307 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2308 return CP_ACCESS_TRAP_EL2; 2309 } 2310 } else { 2311 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2312 if (has_el2 && timeridx == GTIMER_PHYS && 2313 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2314 return CP_ACCESS_TRAP_EL2; 2315 } 2316 } 2317 break; 2318 2319 case 1: 2320 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2321 if (has_el2 && timeridx == GTIMER_PHYS && 2322 (hcr & HCR_E2H 2323 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2324 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2325 return CP_ACCESS_TRAP_EL2; 2326 } 2327 break; 2328 } 2329 return CP_ACCESS_OK; 2330 } 2331 2332 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2333 bool isread) 2334 { 2335 unsigned int cur_el = arm_current_el(env); 2336 bool has_el2 = arm_is_el2_enabled(env); 2337 uint64_t hcr = arm_hcr_el2_eff(env); 2338 2339 switch (cur_el) { 2340 case 0: 2341 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2342 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2343 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2344 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2345 } 2346 2347 /* 2348 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2349 * EL0 if EL0[PV]TEN is zero. 2350 */ 2351 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2352 return CP_ACCESS_TRAP; 2353 } 2354 /* fall through */ 2355 2356 case 1: 2357 if (has_el2 && timeridx == GTIMER_PHYS) { 2358 if (hcr & HCR_E2H) { 2359 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2360 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2361 return CP_ACCESS_TRAP_EL2; 2362 } 2363 } else { 2364 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2365 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2366 return CP_ACCESS_TRAP_EL2; 2367 } 2368 } 2369 } 2370 break; 2371 } 2372 return CP_ACCESS_OK; 2373 } 2374 2375 static CPAccessResult gt_pct_access(CPUARMState *env, 2376 const ARMCPRegInfo *ri, 2377 bool isread) 2378 { 2379 return gt_counter_access(env, GTIMER_PHYS, isread); 2380 } 2381 2382 static CPAccessResult gt_vct_access(CPUARMState *env, 2383 const ARMCPRegInfo *ri, 2384 bool isread) 2385 { 2386 return gt_counter_access(env, GTIMER_VIRT, isread); 2387 } 2388 2389 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2390 bool isread) 2391 { 2392 return gt_timer_access(env, GTIMER_PHYS, isread); 2393 } 2394 2395 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2396 bool isread) 2397 { 2398 return gt_timer_access(env, GTIMER_VIRT, isread); 2399 } 2400 2401 static CPAccessResult gt_stimer_access(CPUARMState *env, 2402 const ARMCPRegInfo *ri, 2403 bool isread) 2404 { 2405 /* The AArch64 register view of the secure physical timer is 2406 * always accessible from EL3, and configurably accessible from 2407 * Secure EL1. 2408 */ 2409 switch (arm_current_el(env)) { 2410 case 1: 2411 if (!arm_is_secure(env)) { 2412 return CP_ACCESS_TRAP; 2413 } 2414 if (!(env->cp15.scr_el3 & SCR_ST)) { 2415 return CP_ACCESS_TRAP_EL3; 2416 } 2417 return CP_ACCESS_OK; 2418 case 0: 2419 case 2: 2420 return CP_ACCESS_TRAP; 2421 case 3: 2422 return CP_ACCESS_OK; 2423 default: 2424 g_assert_not_reached(); 2425 } 2426 } 2427 2428 static uint64_t gt_get_countervalue(CPUARMState *env) 2429 { 2430 ARMCPU *cpu = env_archcpu(env); 2431 2432 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2433 } 2434 2435 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2436 { 2437 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2438 2439 if (gt->ctl & 1) { 2440 /* Timer enabled: calculate and set current ISTATUS, irq, and 2441 * reset timer to when ISTATUS next has to change 2442 */ 2443 uint64_t offset = timeridx == GTIMER_VIRT ? 2444 cpu->env.cp15.cntvoff_el2 : 0; 2445 uint64_t count = gt_get_countervalue(&cpu->env); 2446 /* Note that this must be unsigned 64 bit arithmetic: */ 2447 int istatus = count - offset >= gt->cval; 2448 uint64_t nexttick; 2449 int irqstate; 2450 2451 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2452 2453 irqstate = (istatus && !(gt->ctl & 2)); 2454 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2455 2456 if (istatus) { 2457 /* Next transition is when count rolls back over to zero */ 2458 nexttick = UINT64_MAX; 2459 } else { 2460 /* Next transition is when we hit cval */ 2461 nexttick = gt->cval + offset; 2462 } 2463 /* Note that the desired next expiry time might be beyond the 2464 * signed-64-bit range of a QEMUTimer -- in this case we just 2465 * set the timer for as far in the future as possible. When the 2466 * timer expires we will reset the timer for any remaining period. 2467 */ 2468 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2469 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2470 } else { 2471 timer_mod(cpu->gt_timer[timeridx], nexttick); 2472 } 2473 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2474 } else { 2475 /* Timer disabled: ISTATUS and timer output always clear */ 2476 gt->ctl &= ~4; 2477 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2478 timer_del(cpu->gt_timer[timeridx]); 2479 trace_arm_gt_recalc_disabled(timeridx); 2480 } 2481 } 2482 2483 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2484 int timeridx) 2485 { 2486 ARMCPU *cpu = env_archcpu(env); 2487 2488 timer_del(cpu->gt_timer[timeridx]); 2489 } 2490 2491 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2492 { 2493 return gt_get_countervalue(env); 2494 } 2495 2496 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2497 { 2498 uint64_t hcr; 2499 2500 switch (arm_current_el(env)) { 2501 case 2: 2502 hcr = arm_hcr_el2_eff(env); 2503 if (hcr & HCR_E2H) { 2504 return 0; 2505 } 2506 break; 2507 case 0: 2508 hcr = arm_hcr_el2_eff(env); 2509 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2510 return 0; 2511 } 2512 break; 2513 } 2514 2515 return env->cp15.cntvoff_el2; 2516 } 2517 2518 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2519 { 2520 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2521 } 2522 2523 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2524 int timeridx, 2525 uint64_t value) 2526 { 2527 trace_arm_gt_cval_write(timeridx, value); 2528 env->cp15.c14_timer[timeridx].cval = value; 2529 gt_recalc_timer(env_archcpu(env), timeridx); 2530 } 2531 2532 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2533 int timeridx) 2534 { 2535 uint64_t offset = 0; 2536 2537 switch (timeridx) { 2538 case GTIMER_VIRT: 2539 case GTIMER_HYPVIRT: 2540 offset = gt_virt_cnt_offset(env); 2541 break; 2542 } 2543 2544 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2545 (gt_get_countervalue(env) - offset)); 2546 } 2547 2548 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2549 int timeridx, 2550 uint64_t value) 2551 { 2552 uint64_t offset = 0; 2553 2554 switch (timeridx) { 2555 case GTIMER_VIRT: 2556 case GTIMER_HYPVIRT: 2557 offset = gt_virt_cnt_offset(env); 2558 break; 2559 } 2560 2561 trace_arm_gt_tval_write(timeridx, value); 2562 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2563 sextract64(value, 0, 32); 2564 gt_recalc_timer(env_archcpu(env), timeridx); 2565 } 2566 2567 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2568 int timeridx, 2569 uint64_t value) 2570 { 2571 ARMCPU *cpu = env_archcpu(env); 2572 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2573 2574 trace_arm_gt_ctl_write(timeridx, value); 2575 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2576 if ((oldval ^ value) & 1) { 2577 /* Enable toggled */ 2578 gt_recalc_timer(cpu, timeridx); 2579 } else if ((oldval ^ value) & 2) { 2580 /* IMASK toggled: don't need to recalculate, 2581 * just set the interrupt line based on ISTATUS 2582 */ 2583 int irqstate = (oldval & 4) && !(value & 2); 2584 2585 trace_arm_gt_imask_toggle(timeridx, irqstate); 2586 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2587 } 2588 } 2589 2590 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2591 { 2592 gt_timer_reset(env, ri, GTIMER_PHYS); 2593 } 2594 2595 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2596 uint64_t value) 2597 { 2598 gt_cval_write(env, ri, GTIMER_PHYS, value); 2599 } 2600 2601 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2602 { 2603 return gt_tval_read(env, ri, GTIMER_PHYS); 2604 } 2605 2606 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2607 uint64_t value) 2608 { 2609 gt_tval_write(env, ri, GTIMER_PHYS, value); 2610 } 2611 2612 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2613 uint64_t value) 2614 { 2615 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2616 } 2617 2618 static int gt_phys_redir_timeridx(CPUARMState *env) 2619 { 2620 switch (arm_mmu_idx(env)) { 2621 case ARMMMUIdx_E20_0: 2622 case ARMMMUIdx_E20_2: 2623 case ARMMMUIdx_E20_2_PAN: 2624 case ARMMMUIdx_SE20_0: 2625 case ARMMMUIdx_SE20_2: 2626 case ARMMMUIdx_SE20_2_PAN: 2627 return GTIMER_HYP; 2628 default: 2629 return GTIMER_PHYS; 2630 } 2631 } 2632 2633 static int gt_virt_redir_timeridx(CPUARMState *env) 2634 { 2635 switch (arm_mmu_idx(env)) { 2636 case ARMMMUIdx_E20_0: 2637 case ARMMMUIdx_E20_2: 2638 case ARMMMUIdx_E20_2_PAN: 2639 case ARMMMUIdx_SE20_0: 2640 case ARMMMUIdx_SE20_2: 2641 case ARMMMUIdx_SE20_2_PAN: 2642 return GTIMER_HYPVIRT; 2643 default: 2644 return GTIMER_VIRT; 2645 } 2646 } 2647 2648 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2649 const ARMCPRegInfo *ri) 2650 { 2651 int timeridx = gt_phys_redir_timeridx(env); 2652 return env->cp15.c14_timer[timeridx].cval; 2653 } 2654 2655 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2656 uint64_t value) 2657 { 2658 int timeridx = gt_phys_redir_timeridx(env); 2659 gt_cval_write(env, ri, timeridx, value); 2660 } 2661 2662 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2663 const ARMCPRegInfo *ri) 2664 { 2665 int timeridx = gt_phys_redir_timeridx(env); 2666 return gt_tval_read(env, ri, timeridx); 2667 } 2668 2669 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2670 uint64_t value) 2671 { 2672 int timeridx = gt_phys_redir_timeridx(env); 2673 gt_tval_write(env, ri, timeridx, value); 2674 } 2675 2676 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2677 const ARMCPRegInfo *ri) 2678 { 2679 int timeridx = gt_phys_redir_timeridx(env); 2680 return env->cp15.c14_timer[timeridx].ctl; 2681 } 2682 2683 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2684 uint64_t value) 2685 { 2686 int timeridx = gt_phys_redir_timeridx(env); 2687 gt_ctl_write(env, ri, timeridx, value); 2688 } 2689 2690 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2691 { 2692 gt_timer_reset(env, ri, GTIMER_VIRT); 2693 } 2694 2695 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2696 uint64_t value) 2697 { 2698 gt_cval_write(env, ri, GTIMER_VIRT, value); 2699 } 2700 2701 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2702 { 2703 return gt_tval_read(env, ri, GTIMER_VIRT); 2704 } 2705 2706 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2707 uint64_t value) 2708 { 2709 gt_tval_write(env, ri, GTIMER_VIRT, value); 2710 } 2711 2712 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2713 uint64_t value) 2714 { 2715 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2716 } 2717 2718 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2719 uint64_t value) 2720 { 2721 ARMCPU *cpu = env_archcpu(env); 2722 2723 trace_arm_gt_cntvoff_write(value); 2724 raw_write(env, ri, value); 2725 gt_recalc_timer(cpu, GTIMER_VIRT); 2726 } 2727 2728 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2729 const ARMCPRegInfo *ri) 2730 { 2731 int timeridx = gt_virt_redir_timeridx(env); 2732 return env->cp15.c14_timer[timeridx].cval; 2733 } 2734 2735 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2736 uint64_t value) 2737 { 2738 int timeridx = gt_virt_redir_timeridx(env); 2739 gt_cval_write(env, ri, timeridx, value); 2740 } 2741 2742 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2743 const ARMCPRegInfo *ri) 2744 { 2745 int timeridx = gt_virt_redir_timeridx(env); 2746 return gt_tval_read(env, ri, timeridx); 2747 } 2748 2749 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2750 uint64_t value) 2751 { 2752 int timeridx = gt_virt_redir_timeridx(env); 2753 gt_tval_write(env, ri, timeridx, value); 2754 } 2755 2756 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2757 const ARMCPRegInfo *ri) 2758 { 2759 int timeridx = gt_virt_redir_timeridx(env); 2760 return env->cp15.c14_timer[timeridx].ctl; 2761 } 2762 2763 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2764 uint64_t value) 2765 { 2766 int timeridx = gt_virt_redir_timeridx(env); 2767 gt_ctl_write(env, ri, timeridx, value); 2768 } 2769 2770 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2771 { 2772 gt_timer_reset(env, ri, GTIMER_HYP); 2773 } 2774 2775 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2776 uint64_t value) 2777 { 2778 gt_cval_write(env, ri, GTIMER_HYP, value); 2779 } 2780 2781 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2782 { 2783 return gt_tval_read(env, ri, GTIMER_HYP); 2784 } 2785 2786 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2787 uint64_t value) 2788 { 2789 gt_tval_write(env, ri, GTIMER_HYP, value); 2790 } 2791 2792 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2793 uint64_t value) 2794 { 2795 gt_ctl_write(env, ri, GTIMER_HYP, value); 2796 } 2797 2798 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2799 { 2800 gt_timer_reset(env, ri, GTIMER_SEC); 2801 } 2802 2803 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2804 uint64_t value) 2805 { 2806 gt_cval_write(env, ri, GTIMER_SEC, value); 2807 } 2808 2809 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2810 { 2811 return gt_tval_read(env, ri, GTIMER_SEC); 2812 } 2813 2814 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2815 uint64_t value) 2816 { 2817 gt_tval_write(env, ri, GTIMER_SEC, value); 2818 } 2819 2820 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2821 uint64_t value) 2822 { 2823 gt_ctl_write(env, ri, GTIMER_SEC, value); 2824 } 2825 2826 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2827 { 2828 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2829 } 2830 2831 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2832 uint64_t value) 2833 { 2834 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2835 } 2836 2837 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2838 { 2839 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2840 } 2841 2842 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2843 uint64_t value) 2844 { 2845 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2846 } 2847 2848 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2849 uint64_t value) 2850 { 2851 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2852 } 2853 2854 void arm_gt_ptimer_cb(void *opaque) 2855 { 2856 ARMCPU *cpu = opaque; 2857 2858 gt_recalc_timer(cpu, GTIMER_PHYS); 2859 } 2860 2861 void arm_gt_vtimer_cb(void *opaque) 2862 { 2863 ARMCPU *cpu = opaque; 2864 2865 gt_recalc_timer(cpu, GTIMER_VIRT); 2866 } 2867 2868 void arm_gt_htimer_cb(void *opaque) 2869 { 2870 ARMCPU *cpu = opaque; 2871 2872 gt_recalc_timer(cpu, GTIMER_HYP); 2873 } 2874 2875 void arm_gt_stimer_cb(void *opaque) 2876 { 2877 ARMCPU *cpu = opaque; 2878 2879 gt_recalc_timer(cpu, GTIMER_SEC); 2880 } 2881 2882 void arm_gt_hvtimer_cb(void *opaque) 2883 { 2884 ARMCPU *cpu = opaque; 2885 2886 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2887 } 2888 2889 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2890 { 2891 ARMCPU *cpu = env_archcpu(env); 2892 2893 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2894 } 2895 2896 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2897 /* Note that CNTFRQ is purely reads-as-written for the benefit 2898 * of software; writing it doesn't actually change the timer frequency. 2899 * Our reset value matches the fixed frequency we implement the timer at. 2900 */ 2901 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2902 .type = ARM_CP_ALIAS, 2903 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2904 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2905 }, 2906 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2907 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2908 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2909 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2910 .resetfn = arm_gt_cntfrq_reset, 2911 }, 2912 /* overall control: mostly access permissions */ 2913 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2914 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2915 .access = PL1_RW, 2916 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2917 .resetvalue = 0, 2918 }, 2919 /* per-timer control */ 2920 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2921 .secure = ARM_CP_SECSTATE_NS, 2922 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2923 .accessfn = gt_ptimer_access, 2924 .fieldoffset = offsetoflow32(CPUARMState, 2925 cp15.c14_timer[GTIMER_PHYS].ctl), 2926 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2927 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2928 }, 2929 { .name = "CNTP_CTL_S", 2930 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2931 .secure = ARM_CP_SECSTATE_S, 2932 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2933 .accessfn = gt_ptimer_access, 2934 .fieldoffset = offsetoflow32(CPUARMState, 2935 cp15.c14_timer[GTIMER_SEC].ctl), 2936 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2937 }, 2938 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2939 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2940 .type = ARM_CP_IO, .access = PL0_RW, 2941 .accessfn = gt_ptimer_access, 2942 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2943 .resetvalue = 0, 2944 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2945 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2946 }, 2947 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2948 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2949 .accessfn = gt_vtimer_access, 2950 .fieldoffset = offsetoflow32(CPUARMState, 2951 cp15.c14_timer[GTIMER_VIRT].ctl), 2952 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2953 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2954 }, 2955 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2956 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2957 .type = ARM_CP_IO, .access = PL0_RW, 2958 .accessfn = gt_vtimer_access, 2959 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2960 .resetvalue = 0, 2961 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2962 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2963 }, 2964 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2965 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2966 .secure = ARM_CP_SECSTATE_NS, 2967 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2968 .accessfn = gt_ptimer_access, 2969 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2970 }, 2971 { .name = "CNTP_TVAL_S", 2972 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2973 .secure = ARM_CP_SECSTATE_S, 2974 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2975 .accessfn = gt_ptimer_access, 2976 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2977 }, 2978 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2979 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2980 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2981 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2982 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2983 }, 2984 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2985 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2986 .accessfn = gt_vtimer_access, 2987 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2988 }, 2989 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2990 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2991 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2992 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2993 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2994 }, 2995 /* The counter itself */ 2996 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2997 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2998 .accessfn = gt_pct_access, 2999 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3000 }, 3001 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3002 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3003 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3004 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3005 }, 3006 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3007 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3008 .accessfn = gt_vct_access, 3009 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3010 }, 3011 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3012 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3013 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3014 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3015 }, 3016 /* Comparison value, indicating when the timer goes off */ 3017 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3018 .secure = ARM_CP_SECSTATE_NS, 3019 .access = PL0_RW, 3020 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3021 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3022 .accessfn = gt_ptimer_access, 3023 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3024 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3025 }, 3026 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3027 .secure = ARM_CP_SECSTATE_S, 3028 .access = PL0_RW, 3029 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3030 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3031 .accessfn = gt_ptimer_access, 3032 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3033 }, 3034 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3035 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3036 .access = PL0_RW, 3037 .type = ARM_CP_IO, 3038 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3039 .resetvalue = 0, .accessfn = gt_ptimer_access, 3040 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3041 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3042 }, 3043 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3044 .access = PL0_RW, 3045 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3046 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3047 .accessfn = gt_vtimer_access, 3048 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3049 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3050 }, 3051 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3052 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3053 .access = PL0_RW, 3054 .type = ARM_CP_IO, 3055 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3056 .resetvalue = 0, .accessfn = gt_vtimer_access, 3057 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3058 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3059 }, 3060 /* Secure timer -- this is actually restricted to only EL3 3061 * and configurably Secure-EL1 via the accessfn. 3062 */ 3063 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3064 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3065 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3066 .accessfn = gt_stimer_access, 3067 .readfn = gt_sec_tval_read, 3068 .writefn = gt_sec_tval_write, 3069 .resetfn = gt_sec_timer_reset, 3070 }, 3071 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3072 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3073 .type = ARM_CP_IO, .access = PL1_RW, 3074 .accessfn = gt_stimer_access, 3075 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3076 .resetvalue = 0, 3077 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3078 }, 3079 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3080 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3081 .type = ARM_CP_IO, .access = PL1_RW, 3082 .accessfn = gt_stimer_access, 3083 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3084 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3085 }, 3086 }; 3087 3088 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3089 bool isread) 3090 { 3091 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3092 return CP_ACCESS_TRAP; 3093 } 3094 return CP_ACCESS_OK; 3095 } 3096 3097 #else 3098 3099 /* In user-mode most of the generic timer registers are inaccessible 3100 * however modern kernels (4.12+) allow access to cntvct_el0 3101 */ 3102 3103 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3104 { 3105 ARMCPU *cpu = env_archcpu(env); 3106 3107 /* Currently we have no support for QEMUTimer in linux-user so we 3108 * can't call gt_get_countervalue(env), instead we directly 3109 * call the lower level functions. 3110 */ 3111 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3112 } 3113 3114 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3115 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3116 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3117 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3118 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3119 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3120 }, 3121 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3122 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3123 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3124 .readfn = gt_virt_cnt_read, 3125 }, 3126 }; 3127 3128 #endif 3129 3130 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3131 { 3132 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3133 raw_write(env, ri, value); 3134 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3135 raw_write(env, ri, value & 0xfffff6ff); 3136 } else { 3137 raw_write(env, ri, value & 0xfffff1ff); 3138 } 3139 } 3140 3141 #ifndef CONFIG_USER_ONLY 3142 /* get_phys_addr() isn't present for user-mode-only targets */ 3143 3144 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3145 bool isread) 3146 { 3147 if (ri->opc2 & 4) { 3148 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3149 * Secure EL1 (which can only happen if EL3 is AArch64). 3150 * They are simply UNDEF if executed from NS EL1. 3151 * They function normally from EL2 or EL3. 3152 */ 3153 if (arm_current_el(env) == 1) { 3154 if (arm_is_secure_below_el3(env)) { 3155 if (env->cp15.scr_el3 & SCR_EEL2) { 3156 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3157 } 3158 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3159 } 3160 return CP_ACCESS_TRAP_UNCATEGORIZED; 3161 } 3162 } 3163 return CP_ACCESS_OK; 3164 } 3165 3166 #ifdef CONFIG_TCG 3167 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3168 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3169 { 3170 hwaddr phys_addr; 3171 target_ulong page_size; 3172 int prot; 3173 bool ret; 3174 uint64_t par64; 3175 bool format64 = false; 3176 MemTxAttrs attrs = {}; 3177 ARMMMUFaultInfo fi = {}; 3178 ARMCacheAttrs cacheattrs = {}; 3179 3180 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3181 &prot, &page_size, &fi, &cacheattrs); 3182 3183 /* 3184 * ATS operations only do S1 or S1+S2 translations, so we never 3185 * have to deal with the ARMCacheAttrs format for S2 only. 3186 */ 3187 assert(!cacheattrs.is_s2_format); 3188 3189 if (ret) { 3190 /* 3191 * Some kinds of translation fault must cause exceptions rather 3192 * than being reported in the PAR. 3193 */ 3194 int current_el = arm_current_el(env); 3195 int target_el; 3196 uint32_t syn, fsr, fsc; 3197 bool take_exc = false; 3198 3199 if (fi.s1ptw && current_el == 1 3200 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3201 /* 3202 * Synchronous stage 2 fault on an access made as part of the 3203 * translation table walk for AT S1E0* or AT S1E1* insn 3204 * executed from NS EL1. If this is a synchronous external abort 3205 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3206 * to EL3. Otherwise the fault is taken as an exception to EL2, 3207 * and HPFAR_EL2 holds the faulting IPA. 3208 */ 3209 if (fi.type == ARMFault_SyncExternalOnWalk && 3210 (env->cp15.scr_el3 & SCR_EA)) { 3211 target_el = 3; 3212 } else { 3213 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3214 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3215 env->cp15.hpfar_el2 |= HPFAR_NS; 3216 } 3217 target_el = 2; 3218 } 3219 take_exc = true; 3220 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3221 /* 3222 * Synchronous external aborts during a translation table walk 3223 * are taken as Data Abort exceptions. 3224 */ 3225 if (fi.stage2) { 3226 if (current_el == 3) { 3227 target_el = 3; 3228 } else { 3229 target_el = 2; 3230 } 3231 } else { 3232 target_el = exception_target_el(env); 3233 } 3234 take_exc = true; 3235 } 3236 3237 if (take_exc) { 3238 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3239 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3240 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3241 fsr = arm_fi_to_lfsc(&fi); 3242 fsc = extract32(fsr, 0, 6); 3243 } else { 3244 fsr = arm_fi_to_sfsc(&fi); 3245 fsc = 0x3f; 3246 } 3247 /* 3248 * Report exception with ESR indicating a fault due to a 3249 * translation table walk for a cache maintenance instruction. 3250 */ 3251 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3252 fi.ea, 1, fi.s1ptw, 1, fsc); 3253 env->exception.vaddress = value; 3254 env->exception.fsr = fsr; 3255 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3256 } 3257 } 3258 3259 if (is_a64(env)) { 3260 format64 = true; 3261 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3262 /* 3263 * ATS1Cxx: 3264 * * TTBCR.EAE determines whether the result is returned using the 3265 * 32-bit or the 64-bit PAR format 3266 * * Instructions executed in Hyp mode always use the 64bit format 3267 * 3268 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3269 * * The Non-secure TTBCR.EAE bit is set to 1 3270 * * The implementation includes EL2, and the value of HCR.VM is 1 3271 * 3272 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3273 * 3274 * ATS1Hx always uses the 64bit format. 3275 */ 3276 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3277 3278 if (arm_feature(env, ARM_FEATURE_EL2)) { 3279 if (mmu_idx == ARMMMUIdx_E10_0 || 3280 mmu_idx == ARMMMUIdx_E10_1 || 3281 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3282 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3283 } else { 3284 format64 |= arm_current_el(env) == 2; 3285 } 3286 } 3287 } 3288 3289 if (format64) { 3290 /* Create a 64-bit PAR */ 3291 par64 = (1 << 11); /* LPAE bit always set */ 3292 if (!ret) { 3293 par64 |= phys_addr & ~0xfffULL; 3294 if (!attrs.secure) { 3295 par64 |= (1 << 9); /* NS */ 3296 } 3297 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3298 par64 |= cacheattrs.shareability << 7; /* SH */ 3299 } else { 3300 uint32_t fsr = arm_fi_to_lfsc(&fi); 3301 3302 par64 |= 1; /* F */ 3303 par64 |= (fsr & 0x3f) << 1; /* FS */ 3304 if (fi.stage2) { 3305 par64 |= (1 << 9); /* S */ 3306 } 3307 if (fi.s1ptw) { 3308 par64 |= (1 << 8); /* PTW */ 3309 } 3310 } 3311 } else { 3312 /* fsr is a DFSR/IFSR value for the short descriptor 3313 * translation table format (with WnR always clear). 3314 * Convert it to a 32-bit PAR. 3315 */ 3316 if (!ret) { 3317 /* We do not set any attribute bits in the PAR */ 3318 if (page_size == (1 << 24) 3319 && arm_feature(env, ARM_FEATURE_V7)) { 3320 par64 = (phys_addr & 0xff000000) | (1 << 1); 3321 } else { 3322 par64 = phys_addr & 0xfffff000; 3323 } 3324 if (!attrs.secure) { 3325 par64 |= (1 << 9); /* NS */ 3326 } 3327 } else { 3328 uint32_t fsr = arm_fi_to_sfsc(&fi); 3329 3330 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3331 ((fsr & 0xf) << 1) | 1; 3332 } 3333 } 3334 return par64; 3335 } 3336 #endif /* CONFIG_TCG */ 3337 3338 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3339 { 3340 #ifdef CONFIG_TCG 3341 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3342 uint64_t par64; 3343 ARMMMUIdx mmu_idx; 3344 int el = arm_current_el(env); 3345 bool secure = arm_is_secure_below_el3(env); 3346 3347 switch (ri->opc2 & 6) { 3348 case 0: 3349 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3350 switch (el) { 3351 case 3: 3352 mmu_idx = ARMMMUIdx_SE3; 3353 break; 3354 case 2: 3355 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3356 /* fall through */ 3357 case 1: 3358 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3359 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3360 : ARMMMUIdx_Stage1_E1_PAN); 3361 } else { 3362 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3363 } 3364 break; 3365 default: 3366 g_assert_not_reached(); 3367 } 3368 break; 3369 case 2: 3370 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3371 switch (el) { 3372 case 3: 3373 mmu_idx = ARMMMUIdx_SE10_0; 3374 break; 3375 case 2: 3376 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3377 mmu_idx = ARMMMUIdx_Stage1_E0; 3378 break; 3379 case 1: 3380 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3381 break; 3382 default: 3383 g_assert_not_reached(); 3384 } 3385 break; 3386 case 4: 3387 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3388 mmu_idx = ARMMMUIdx_E10_1; 3389 break; 3390 case 6: 3391 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3392 mmu_idx = ARMMMUIdx_E10_0; 3393 break; 3394 default: 3395 g_assert_not_reached(); 3396 } 3397 3398 par64 = do_ats_write(env, value, access_type, mmu_idx); 3399 3400 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3401 #else 3402 /* Handled by hardware accelerator. */ 3403 g_assert_not_reached(); 3404 #endif /* CONFIG_TCG */ 3405 } 3406 3407 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3408 uint64_t value) 3409 { 3410 #ifdef CONFIG_TCG 3411 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3412 uint64_t par64; 3413 3414 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3415 3416 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3417 #else 3418 /* Handled by hardware accelerator. */ 3419 g_assert_not_reached(); 3420 #endif /* CONFIG_TCG */ 3421 } 3422 3423 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3424 bool isread) 3425 { 3426 if (arm_current_el(env) == 3 && 3427 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3428 return CP_ACCESS_TRAP; 3429 } 3430 return CP_ACCESS_OK; 3431 } 3432 3433 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3434 uint64_t value) 3435 { 3436 #ifdef CONFIG_TCG 3437 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3438 ARMMMUIdx mmu_idx; 3439 int secure = arm_is_secure_below_el3(env); 3440 3441 switch (ri->opc2 & 6) { 3442 case 0: 3443 switch (ri->opc1) { 3444 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3445 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3446 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3447 : ARMMMUIdx_Stage1_E1_PAN); 3448 } else { 3449 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3450 } 3451 break; 3452 case 4: /* AT S1E2R, AT S1E2W */ 3453 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3454 break; 3455 case 6: /* AT S1E3R, AT S1E3W */ 3456 mmu_idx = ARMMMUIdx_SE3; 3457 break; 3458 default: 3459 g_assert_not_reached(); 3460 } 3461 break; 3462 case 2: /* AT S1E0R, AT S1E0W */ 3463 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3464 break; 3465 case 4: /* AT S12E1R, AT S12E1W */ 3466 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3467 break; 3468 case 6: /* AT S12E0R, AT S12E0W */ 3469 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3470 break; 3471 default: 3472 g_assert_not_reached(); 3473 } 3474 3475 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3476 #else 3477 /* Handled by hardware accelerator. */ 3478 g_assert_not_reached(); 3479 #endif /* CONFIG_TCG */ 3480 } 3481 #endif 3482 3483 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3484 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3485 .access = PL1_RW, .resetvalue = 0, 3486 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3487 offsetoflow32(CPUARMState, cp15.par_ns) }, 3488 .writefn = par_write }, 3489 #ifndef CONFIG_USER_ONLY 3490 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3491 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3492 .access = PL1_W, .accessfn = ats_access, 3493 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3494 #endif 3495 }; 3496 3497 /* Return basic MPU access permission bits. */ 3498 static uint32_t simple_mpu_ap_bits(uint32_t val) 3499 { 3500 uint32_t ret; 3501 uint32_t mask; 3502 int i; 3503 ret = 0; 3504 mask = 3; 3505 for (i = 0; i < 16; i += 2) { 3506 ret |= (val >> i) & mask; 3507 mask <<= 2; 3508 } 3509 return ret; 3510 } 3511 3512 /* Pad basic MPU access permission bits to extended format. */ 3513 static uint32_t extended_mpu_ap_bits(uint32_t val) 3514 { 3515 uint32_t ret; 3516 uint32_t mask; 3517 int i; 3518 ret = 0; 3519 mask = 3; 3520 for (i = 0; i < 16; i += 2) { 3521 ret |= (val & mask) << i; 3522 mask <<= 2; 3523 } 3524 return ret; 3525 } 3526 3527 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3528 uint64_t value) 3529 { 3530 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3531 } 3532 3533 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3534 { 3535 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3536 } 3537 3538 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3539 uint64_t value) 3540 { 3541 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3542 } 3543 3544 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3545 { 3546 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3547 } 3548 3549 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3550 { 3551 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3552 3553 if (!u32p) { 3554 return 0; 3555 } 3556 3557 u32p += env->pmsav7.rnr[M_REG_NS]; 3558 return *u32p; 3559 } 3560 3561 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3562 uint64_t value) 3563 { 3564 ARMCPU *cpu = env_archcpu(env); 3565 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3566 3567 if (!u32p) { 3568 return; 3569 } 3570 3571 u32p += env->pmsav7.rnr[M_REG_NS]; 3572 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3573 *u32p = value; 3574 } 3575 3576 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3577 uint64_t value) 3578 { 3579 ARMCPU *cpu = env_archcpu(env); 3580 uint32_t nrgs = cpu->pmsav7_dregion; 3581 3582 if (value >= nrgs) { 3583 qemu_log_mask(LOG_GUEST_ERROR, 3584 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3585 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3586 return; 3587 } 3588 3589 raw_write(env, ri, value); 3590 } 3591 3592 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3593 /* Reset for all these registers is handled in arm_cpu_reset(), 3594 * because the PMSAv7 is also used by M-profile CPUs, which do 3595 * not register cpregs but still need the state to be reset. 3596 */ 3597 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3598 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3599 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3600 .readfn = pmsav7_read, .writefn = pmsav7_write, 3601 .resetfn = arm_cp_reset_ignore }, 3602 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3603 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3604 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3605 .readfn = pmsav7_read, .writefn = pmsav7_write, 3606 .resetfn = arm_cp_reset_ignore }, 3607 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3608 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3609 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3610 .readfn = pmsav7_read, .writefn = pmsav7_write, 3611 .resetfn = arm_cp_reset_ignore }, 3612 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3613 .access = PL1_RW, 3614 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3615 .writefn = pmsav7_rgnr_write, 3616 .resetfn = arm_cp_reset_ignore }, 3617 }; 3618 3619 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3620 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3621 .access = PL1_RW, .type = ARM_CP_ALIAS, 3622 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3623 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3624 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3625 .access = PL1_RW, .type = ARM_CP_ALIAS, 3626 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3627 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3628 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3629 .access = PL1_RW, 3630 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3631 .resetvalue = 0, }, 3632 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3633 .access = PL1_RW, 3634 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3635 .resetvalue = 0, }, 3636 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3637 .access = PL1_RW, 3638 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3639 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3640 .access = PL1_RW, 3641 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3642 /* Protection region base and size registers */ 3643 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3644 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3645 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3646 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3647 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3648 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3649 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3650 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3651 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3652 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3653 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3654 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3655 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3656 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3657 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3658 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3659 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3660 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3661 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3662 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3663 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3664 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3665 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3666 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3667 }; 3668 3669 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3670 uint64_t value) 3671 { 3672 TCR *tcr = raw_ptr(env, ri); 3673 int maskshift = extract32(value, 0, 3); 3674 3675 if (!arm_feature(env, ARM_FEATURE_V8)) { 3676 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3677 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3678 * using Long-desciptor translation table format */ 3679 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3680 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3681 /* In an implementation that includes the Security Extensions 3682 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3683 * Short-descriptor translation table format. 3684 */ 3685 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3686 } else { 3687 value &= TTBCR_N; 3688 } 3689 } 3690 3691 /* Update the masks corresponding to the TCR bank being written 3692 * Note that we always calculate mask and base_mask, but 3693 * they are only used for short-descriptor tables (ie if EAE is 0); 3694 * for long-descriptor tables the TCR fields are used differently 3695 * and the mask and base_mask values are meaningless. 3696 */ 3697 tcr->raw_tcr = value; 3698 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3699 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3700 } 3701 3702 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3703 uint64_t value) 3704 { 3705 ARMCPU *cpu = env_archcpu(env); 3706 TCR *tcr = raw_ptr(env, ri); 3707 3708 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3709 /* With LPAE the TTBCR could result in a change of ASID 3710 * via the TTBCR.A1 bit, so do a TLB flush. 3711 */ 3712 tlb_flush(CPU(cpu)); 3713 } 3714 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3715 value = deposit64(tcr->raw_tcr, 0, 32, value); 3716 vmsa_ttbcr_raw_write(env, ri, value); 3717 } 3718 3719 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3720 { 3721 TCR *tcr = raw_ptr(env, ri); 3722 3723 /* Reset both the TCR as well as the masks corresponding to the bank of 3724 * the TCR being reset. 3725 */ 3726 tcr->raw_tcr = 0; 3727 tcr->mask = 0; 3728 tcr->base_mask = 0xffffc000u; 3729 } 3730 3731 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3732 uint64_t value) 3733 { 3734 ARMCPU *cpu = env_archcpu(env); 3735 TCR *tcr = raw_ptr(env, ri); 3736 3737 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3738 tlb_flush(CPU(cpu)); 3739 tcr->raw_tcr = value; 3740 } 3741 3742 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3743 uint64_t value) 3744 { 3745 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3746 if (cpreg_field_is_64bit(ri) && 3747 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3748 ARMCPU *cpu = env_archcpu(env); 3749 tlb_flush(CPU(cpu)); 3750 } 3751 raw_write(env, ri, value); 3752 } 3753 3754 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3755 uint64_t value) 3756 { 3757 /* 3758 * If we are running with E2&0 regime, then an ASID is active. 3759 * Flush if that might be changing. Note we're not checking 3760 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3761 * holds the active ASID, only checking the field that might. 3762 */ 3763 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3764 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3765 uint16_t mask = ARMMMUIdxBit_E20_2 | 3766 ARMMMUIdxBit_E20_2_PAN | 3767 ARMMMUIdxBit_E20_0; 3768 3769 if (arm_is_secure_below_el3(env)) { 3770 mask >>= ARM_MMU_IDX_A_NS; 3771 } 3772 3773 tlb_flush_by_mmuidx(env_cpu(env), mask); 3774 } 3775 raw_write(env, ri, value); 3776 } 3777 3778 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3779 uint64_t value) 3780 { 3781 ARMCPU *cpu = env_archcpu(env); 3782 CPUState *cs = CPU(cpu); 3783 3784 /* 3785 * A change in VMID to the stage2 page table (Stage2) invalidates 3786 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3787 */ 3788 if (raw_read(env, ri) != value) { 3789 uint16_t mask = ARMMMUIdxBit_E10_1 | 3790 ARMMMUIdxBit_E10_1_PAN | 3791 ARMMMUIdxBit_E10_0; 3792 3793 if (arm_is_secure_below_el3(env)) { 3794 mask >>= ARM_MMU_IDX_A_NS; 3795 } 3796 3797 tlb_flush_by_mmuidx(cs, mask); 3798 raw_write(env, ri, value); 3799 } 3800 } 3801 3802 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3803 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3804 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3805 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3806 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3807 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3808 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3809 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3810 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3811 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3812 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3813 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3814 offsetof(CPUARMState, cp15.dfar_ns) } }, 3815 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3816 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3817 .access = PL1_RW, .accessfn = access_tvm_trvm, 3818 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3819 .resetvalue = 0, }, 3820 }; 3821 3822 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3823 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3824 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3825 .access = PL1_RW, .accessfn = access_tvm_trvm, 3826 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3827 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3828 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3829 .access = PL1_RW, .accessfn = access_tvm_trvm, 3830 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3831 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3832 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3833 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3834 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3835 .access = PL1_RW, .accessfn = access_tvm_trvm, 3836 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3837 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3838 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3839 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3840 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3841 .access = PL1_RW, .accessfn = access_tvm_trvm, 3842 .writefn = vmsa_tcr_el12_write, 3843 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3844 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3845 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3846 .access = PL1_RW, .accessfn = access_tvm_trvm, 3847 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3848 .raw_writefn = vmsa_ttbcr_raw_write, 3849 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ 3850 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), 3851 offsetof(CPUARMState, cp15.tcr_el[1])} }, 3852 }; 3853 3854 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3855 * qemu tlbs nor adjusting cached masks. 3856 */ 3857 static const ARMCPRegInfo ttbcr2_reginfo = { 3858 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3859 .access = PL1_RW, .accessfn = access_tvm_trvm, 3860 .type = ARM_CP_ALIAS, 3861 .bank_fieldoffsets = { 3862 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), 3863 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), 3864 }, 3865 }; 3866 3867 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3868 uint64_t value) 3869 { 3870 env->cp15.c15_ticonfig = value & 0xe7; 3871 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3872 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3873 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3874 } 3875 3876 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3877 uint64_t value) 3878 { 3879 env->cp15.c15_threadid = value & 0xffff; 3880 } 3881 3882 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3883 uint64_t value) 3884 { 3885 /* Wait-for-interrupt (deprecated) */ 3886 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3887 } 3888 3889 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3890 uint64_t value) 3891 { 3892 /* On OMAP there are registers indicating the max/min index of dcache lines 3893 * containing a dirty line; cache flush operations have to reset these. 3894 */ 3895 env->cp15.c15_i_max = 0x000; 3896 env->cp15.c15_i_min = 0xff0; 3897 } 3898 3899 static const ARMCPRegInfo omap_cp_reginfo[] = { 3900 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3901 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3902 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3903 .resetvalue = 0, }, 3904 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3905 .access = PL1_RW, .type = ARM_CP_NOP }, 3906 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3907 .access = PL1_RW, 3908 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3909 .writefn = omap_ticonfig_write }, 3910 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3911 .access = PL1_RW, 3912 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3913 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3914 .access = PL1_RW, .resetvalue = 0xff0, 3915 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3916 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3917 .access = PL1_RW, 3918 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3919 .writefn = omap_threadid_write }, 3920 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3921 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3922 .type = ARM_CP_NO_RAW, 3923 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3924 /* TODO: Peripheral port remap register: 3925 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3926 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3927 * when MMU is off. 3928 */ 3929 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3930 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3931 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3932 .writefn = omap_cachemaint_write }, 3933 { .name = "C9", .cp = 15, .crn = 9, 3934 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3935 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3936 }; 3937 3938 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3939 uint64_t value) 3940 { 3941 env->cp15.c15_cpar = value & 0x3fff; 3942 } 3943 3944 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3945 { .name = "XSCALE_CPAR", 3946 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3947 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3948 .writefn = xscale_cpar_write, }, 3949 { .name = "XSCALE_AUXCR", 3950 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3951 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3952 .resetvalue = 0, }, 3953 /* XScale specific cache-lockdown: since we have no cache we NOP these 3954 * and hope the guest does not really rely on cache behaviour. 3955 */ 3956 { .name = "XSCALE_LOCK_ICACHE_LINE", 3957 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3958 .access = PL1_W, .type = ARM_CP_NOP }, 3959 { .name = "XSCALE_UNLOCK_ICACHE", 3960 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3961 .access = PL1_W, .type = ARM_CP_NOP }, 3962 { .name = "XSCALE_DCACHE_LOCK", 3963 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3964 .access = PL1_RW, .type = ARM_CP_NOP }, 3965 { .name = "XSCALE_UNLOCK_DCACHE", 3966 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3967 .access = PL1_W, .type = ARM_CP_NOP }, 3968 }; 3969 3970 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3971 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3972 * implementation of this implementation-defined space. 3973 * Ideally this should eventually disappear in favour of actually 3974 * implementing the correct behaviour for all cores. 3975 */ 3976 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3977 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3978 .access = PL1_RW, 3979 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3980 .resetvalue = 0 }, 3981 }; 3982 3983 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3984 /* Cache status: RAZ because we have no cache so it's always clean */ 3985 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3986 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3987 .resetvalue = 0 }, 3988 }; 3989 3990 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 3991 /* We never have a a block transfer operation in progress */ 3992 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 3993 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3994 .resetvalue = 0 }, 3995 /* The cache ops themselves: these all NOP for QEMU */ 3996 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 3997 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3998 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 3999 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4000 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4001 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4002 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4003 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4004 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4005 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4006 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4007 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4008 }; 4009 4010 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4011 /* The cache test-and-clean instructions always return (1 << 30) 4012 * to indicate that there are no dirty cache lines. 4013 */ 4014 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4015 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4016 .resetvalue = (1 << 30) }, 4017 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4018 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4019 .resetvalue = (1 << 30) }, 4020 }; 4021 4022 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4023 /* Ignore ReadBuffer accesses */ 4024 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4025 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4026 .access = PL1_RW, .resetvalue = 0, 4027 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4028 }; 4029 4030 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4031 { 4032 unsigned int cur_el = arm_current_el(env); 4033 4034 if (arm_is_el2_enabled(env) && cur_el == 1) { 4035 return env->cp15.vpidr_el2; 4036 } 4037 return raw_read(env, ri); 4038 } 4039 4040 static uint64_t mpidr_read_val(CPUARMState *env) 4041 { 4042 ARMCPU *cpu = env_archcpu(env); 4043 uint64_t mpidr = cpu->mp_affinity; 4044 4045 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4046 mpidr |= (1U << 31); 4047 /* Cores which are uniprocessor (non-coherent) 4048 * but still implement the MP extensions set 4049 * bit 30. (For instance, Cortex-R5). 4050 */ 4051 if (cpu->mp_is_up) { 4052 mpidr |= (1u << 30); 4053 } 4054 } 4055 return mpidr; 4056 } 4057 4058 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4059 { 4060 unsigned int cur_el = arm_current_el(env); 4061 4062 if (arm_is_el2_enabled(env) && cur_el == 1) { 4063 return env->cp15.vmpidr_el2; 4064 } 4065 return mpidr_read_val(env); 4066 } 4067 4068 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4069 /* NOP AMAIR0/1 */ 4070 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4071 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4072 .access = PL1_RW, .accessfn = access_tvm_trvm, 4073 .type = ARM_CP_CONST, .resetvalue = 0 }, 4074 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4075 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4076 .access = PL1_RW, .accessfn = access_tvm_trvm, 4077 .type = ARM_CP_CONST, .resetvalue = 0 }, 4078 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4079 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4080 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4081 offsetof(CPUARMState, cp15.par_ns)} }, 4082 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4083 .access = PL1_RW, .accessfn = access_tvm_trvm, 4084 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4085 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4086 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4087 .writefn = vmsa_ttbr_write, }, 4088 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4089 .access = PL1_RW, .accessfn = access_tvm_trvm, 4090 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4091 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4092 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4093 .writefn = vmsa_ttbr_write, }, 4094 }; 4095 4096 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4097 { 4098 return vfp_get_fpcr(env); 4099 } 4100 4101 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4102 uint64_t value) 4103 { 4104 vfp_set_fpcr(env, value); 4105 } 4106 4107 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4108 { 4109 return vfp_get_fpsr(env); 4110 } 4111 4112 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4113 uint64_t value) 4114 { 4115 vfp_set_fpsr(env, value); 4116 } 4117 4118 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4119 bool isread) 4120 { 4121 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4122 return CP_ACCESS_TRAP; 4123 } 4124 return CP_ACCESS_OK; 4125 } 4126 4127 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4128 uint64_t value) 4129 { 4130 env->daif = value & PSTATE_DAIF; 4131 } 4132 4133 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4134 { 4135 return env->pstate & PSTATE_PAN; 4136 } 4137 4138 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4139 uint64_t value) 4140 { 4141 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4142 } 4143 4144 static const ARMCPRegInfo pan_reginfo = { 4145 .name = "PAN", .state = ARM_CP_STATE_AA64, 4146 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4147 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4148 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4149 }; 4150 4151 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4152 { 4153 return env->pstate & PSTATE_UAO; 4154 } 4155 4156 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4157 uint64_t value) 4158 { 4159 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4160 } 4161 4162 static const ARMCPRegInfo uao_reginfo = { 4163 .name = "UAO", .state = ARM_CP_STATE_AA64, 4164 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4165 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4166 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4167 }; 4168 4169 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4170 { 4171 return env->pstate & PSTATE_DIT; 4172 } 4173 4174 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4175 uint64_t value) 4176 { 4177 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4178 } 4179 4180 static const ARMCPRegInfo dit_reginfo = { 4181 .name = "DIT", .state = ARM_CP_STATE_AA64, 4182 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4183 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4184 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4185 }; 4186 4187 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4188 { 4189 return env->pstate & PSTATE_SSBS; 4190 } 4191 4192 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4193 uint64_t value) 4194 { 4195 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4196 } 4197 4198 static const ARMCPRegInfo ssbs_reginfo = { 4199 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4200 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4201 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4202 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4203 }; 4204 4205 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4206 const ARMCPRegInfo *ri, 4207 bool isread) 4208 { 4209 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4210 switch (arm_current_el(env)) { 4211 case 0: 4212 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4213 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4214 return CP_ACCESS_TRAP; 4215 } 4216 /* fall through */ 4217 case 1: 4218 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4219 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4220 return CP_ACCESS_TRAP_EL2; 4221 } 4222 break; 4223 } 4224 return CP_ACCESS_OK; 4225 } 4226 4227 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4228 const ARMCPRegInfo *ri, 4229 bool isread) 4230 { 4231 /* Cache invalidate/clean to Point of Unification... */ 4232 switch (arm_current_el(env)) { 4233 case 0: 4234 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4235 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4236 return CP_ACCESS_TRAP; 4237 } 4238 /* fall through */ 4239 case 1: 4240 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4241 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4242 return CP_ACCESS_TRAP_EL2; 4243 } 4244 break; 4245 } 4246 return CP_ACCESS_OK; 4247 } 4248 4249 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4250 * Page D4-1736 (DDI0487A.b) 4251 */ 4252 4253 static int vae1_tlbmask(CPUARMState *env) 4254 { 4255 uint64_t hcr = arm_hcr_el2_eff(env); 4256 uint16_t mask; 4257 4258 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4259 mask = ARMMMUIdxBit_E20_2 | 4260 ARMMMUIdxBit_E20_2_PAN | 4261 ARMMMUIdxBit_E20_0; 4262 } else { 4263 mask = ARMMMUIdxBit_E10_1 | 4264 ARMMMUIdxBit_E10_1_PAN | 4265 ARMMMUIdxBit_E10_0; 4266 } 4267 4268 if (arm_is_secure_below_el3(env)) { 4269 mask >>= ARM_MMU_IDX_A_NS; 4270 } 4271 4272 return mask; 4273 } 4274 4275 /* Return 56 if TBI is enabled, 64 otherwise. */ 4276 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4277 uint64_t addr) 4278 { 4279 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4280 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4281 int select = extract64(addr, 55, 1); 4282 4283 return (tbi >> select) & 1 ? 56 : 64; 4284 } 4285 4286 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4287 { 4288 uint64_t hcr = arm_hcr_el2_eff(env); 4289 ARMMMUIdx mmu_idx; 4290 4291 /* Only the regime of the mmu_idx below is significant. */ 4292 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4293 mmu_idx = ARMMMUIdx_E20_0; 4294 } else { 4295 mmu_idx = ARMMMUIdx_E10_0; 4296 } 4297 4298 if (arm_is_secure_below_el3(env)) { 4299 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4300 } 4301 4302 return tlbbits_for_regime(env, mmu_idx, addr); 4303 } 4304 4305 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4306 uint64_t value) 4307 { 4308 CPUState *cs = env_cpu(env); 4309 int mask = vae1_tlbmask(env); 4310 4311 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4312 } 4313 4314 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4315 uint64_t value) 4316 { 4317 CPUState *cs = env_cpu(env); 4318 int mask = vae1_tlbmask(env); 4319 4320 if (tlb_force_broadcast(env)) { 4321 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4322 } else { 4323 tlb_flush_by_mmuidx(cs, mask); 4324 } 4325 } 4326 4327 static int alle1_tlbmask(CPUARMState *env) 4328 { 4329 /* 4330 * Note that the 'ALL' scope must invalidate both stage 1 and 4331 * stage 2 translations, whereas most other scopes only invalidate 4332 * stage 1 translations. 4333 */ 4334 if (arm_is_secure_below_el3(env)) { 4335 return ARMMMUIdxBit_SE10_1 | 4336 ARMMMUIdxBit_SE10_1_PAN | 4337 ARMMMUIdxBit_SE10_0; 4338 } else { 4339 return ARMMMUIdxBit_E10_1 | 4340 ARMMMUIdxBit_E10_1_PAN | 4341 ARMMMUIdxBit_E10_0; 4342 } 4343 } 4344 4345 static int e2_tlbmask(CPUARMState *env) 4346 { 4347 if (arm_is_secure_below_el3(env)) { 4348 return ARMMMUIdxBit_SE20_0 | 4349 ARMMMUIdxBit_SE20_2 | 4350 ARMMMUIdxBit_SE20_2_PAN | 4351 ARMMMUIdxBit_SE2; 4352 } else { 4353 return ARMMMUIdxBit_E20_0 | 4354 ARMMMUIdxBit_E20_2 | 4355 ARMMMUIdxBit_E20_2_PAN | 4356 ARMMMUIdxBit_E2; 4357 } 4358 } 4359 4360 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4361 uint64_t value) 4362 { 4363 CPUState *cs = env_cpu(env); 4364 int mask = alle1_tlbmask(env); 4365 4366 tlb_flush_by_mmuidx(cs, mask); 4367 } 4368 4369 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4370 uint64_t value) 4371 { 4372 CPUState *cs = env_cpu(env); 4373 int mask = e2_tlbmask(env); 4374 4375 tlb_flush_by_mmuidx(cs, mask); 4376 } 4377 4378 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4379 uint64_t value) 4380 { 4381 ARMCPU *cpu = env_archcpu(env); 4382 CPUState *cs = CPU(cpu); 4383 4384 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4385 } 4386 4387 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4388 uint64_t value) 4389 { 4390 CPUState *cs = env_cpu(env); 4391 int mask = alle1_tlbmask(env); 4392 4393 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4394 } 4395 4396 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4397 uint64_t value) 4398 { 4399 CPUState *cs = env_cpu(env); 4400 int mask = e2_tlbmask(env); 4401 4402 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4403 } 4404 4405 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4406 uint64_t value) 4407 { 4408 CPUState *cs = env_cpu(env); 4409 4410 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4411 } 4412 4413 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4414 uint64_t value) 4415 { 4416 /* Invalidate by VA, EL2 4417 * Currently handles both VAE2 and VALE2, since we don't support 4418 * flush-last-level-only. 4419 */ 4420 CPUState *cs = env_cpu(env); 4421 int mask = e2_tlbmask(env); 4422 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4423 4424 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4425 } 4426 4427 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4428 uint64_t value) 4429 { 4430 /* Invalidate by VA, EL3 4431 * Currently handles both VAE3 and VALE3, since we don't support 4432 * flush-last-level-only. 4433 */ 4434 ARMCPU *cpu = env_archcpu(env); 4435 CPUState *cs = CPU(cpu); 4436 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4437 4438 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4439 } 4440 4441 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4442 uint64_t value) 4443 { 4444 CPUState *cs = env_cpu(env); 4445 int mask = vae1_tlbmask(env); 4446 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4447 int bits = vae1_tlbbits(env, pageaddr); 4448 4449 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4450 } 4451 4452 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4453 uint64_t value) 4454 { 4455 /* Invalidate by VA, EL1&0 (AArch64 version). 4456 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4457 * since we don't support flush-for-specific-ASID-only or 4458 * flush-last-level-only. 4459 */ 4460 CPUState *cs = env_cpu(env); 4461 int mask = vae1_tlbmask(env); 4462 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4463 int bits = vae1_tlbbits(env, pageaddr); 4464 4465 if (tlb_force_broadcast(env)) { 4466 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4467 } else { 4468 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4469 } 4470 } 4471 4472 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4473 uint64_t value) 4474 { 4475 CPUState *cs = env_cpu(env); 4476 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4477 bool secure = arm_is_secure_below_el3(env); 4478 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4479 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4480 pageaddr); 4481 4482 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4483 } 4484 4485 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4486 uint64_t value) 4487 { 4488 CPUState *cs = env_cpu(env); 4489 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4490 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4491 4492 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4493 ARMMMUIdxBit_SE3, bits); 4494 } 4495 4496 #ifdef TARGET_AARCH64 4497 typedef struct { 4498 uint64_t base; 4499 uint64_t length; 4500 } TLBIRange; 4501 4502 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4503 uint64_t value) 4504 { 4505 unsigned int page_size_granule, page_shift, num, scale, exponent; 4506 /* Extract one bit to represent the va selector in use. */ 4507 uint64_t select = sextract64(value, 36, 1); 4508 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4509 TLBIRange ret = { }; 4510 4511 page_size_granule = extract64(value, 46, 2); 4512 4513 /* The granule encoded in value must match the granule in use. */ 4514 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) { 4515 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4516 page_size_granule); 4517 return ret; 4518 } 4519 4520 page_shift = (page_size_granule - 1) * 2 + 12; 4521 num = extract64(value, 39, 5); 4522 scale = extract64(value, 44, 2); 4523 exponent = (5 * scale) + 1; 4524 4525 ret.length = (num + 1) << (exponent + page_shift); 4526 4527 if (param.select) { 4528 ret.base = sextract64(value, 0, 37); 4529 } else { 4530 ret.base = extract64(value, 0, 37); 4531 } 4532 if (param.ds) { 4533 /* 4534 * With DS=1, BaseADDR is always shifted 16 so that it is able 4535 * to address all 52 va bits. The input address is perforce 4536 * aligned on a 64k boundary regardless of translation granule. 4537 */ 4538 page_shift = 16; 4539 } 4540 ret.base <<= page_shift; 4541 4542 return ret; 4543 } 4544 4545 static void do_rvae_write(CPUARMState *env, uint64_t value, 4546 int idxmap, bool synced) 4547 { 4548 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4549 TLBIRange range; 4550 int bits; 4551 4552 range = tlbi_aa64_get_range(env, one_idx, value); 4553 bits = tlbbits_for_regime(env, one_idx, range.base); 4554 4555 if (synced) { 4556 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4557 range.base, 4558 range.length, 4559 idxmap, 4560 bits); 4561 } else { 4562 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4563 range.length, idxmap, bits); 4564 } 4565 } 4566 4567 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4568 const ARMCPRegInfo *ri, 4569 uint64_t value) 4570 { 4571 /* 4572 * Invalidate by VA range, EL1&0. 4573 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4574 * since we don't support flush-for-specific-ASID-only or 4575 * flush-last-level-only. 4576 */ 4577 4578 do_rvae_write(env, value, vae1_tlbmask(env), 4579 tlb_force_broadcast(env)); 4580 } 4581 4582 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4583 const ARMCPRegInfo *ri, 4584 uint64_t value) 4585 { 4586 /* 4587 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4588 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4589 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4590 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4591 * shareable specific flushes. 4592 */ 4593 4594 do_rvae_write(env, value, vae1_tlbmask(env), true); 4595 } 4596 4597 static int vae2_tlbmask(CPUARMState *env) 4598 { 4599 return (arm_is_secure_below_el3(env) 4600 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4601 } 4602 4603 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4604 const ARMCPRegInfo *ri, 4605 uint64_t value) 4606 { 4607 /* 4608 * Invalidate by VA range, EL2. 4609 * Currently handles all of RVAE2 and RVALE2, 4610 * since we don't support flush-for-specific-ASID-only or 4611 * flush-last-level-only. 4612 */ 4613 4614 do_rvae_write(env, value, vae2_tlbmask(env), 4615 tlb_force_broadcast(env)); 4616 4617 4618 } 4619 4620 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4621 const ARMCPRegInfo *ri, 4622 uint64_t value) 4623 { 4624 /* 4625 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4626 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4627 * since we don't support flush-for-specific-ASID-only, 4628 * flush-last-level-only or inner/outer shareable specific flushes. 4629 */ 4630 4631 do_rvae_write(env, value, vae2_tlbmask(env), true); 4632 4633 } 4634 4635 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4636 const ARMCPRegInfo *ri, 4637 uint64_t value) 4638 { 4639 /* 4640 * Invalidate by VA range, EL3. 4641 * Currently handles all of RVAE3 and RVALE3, 4642 * since we don't support flush-for-specific-ASID-only or 4643 * flush-last-level-only. 4644 */ 4645 4646 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4647 tlb_force_broadcast(env)); 4648 } 4649 4650 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4651 const ARMCPRegInfo *ri, 4652 uint64_t value) 4653 { 4654 /* 4655 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4656 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4657 * since we don't support flush-for-specific-ASID-only, 4658 * flush-last-level-only or inner/outer specific flushes. 4659 */ 4660 4661 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4662 } 4663 #endif 4664 4665 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4666 bool isread) 4667 { 4668 int cur_el = arm_current_el(env); 4669 4670 if (cur_el < 2) { 4671 uint64_t hcr = arm_hcr_el2_eff(env); 4672 4673 if (cur_el == 0) { 4674 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4675 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4676 return CP_ACCESS_TRAP_EL2; 4677 } 4678 } else { 4679 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4680 return CP_ACCESS_TRAP; 4681 } 4682 if (hcr & HCR_TDZ) { 4683 return CP_ACCESS_TRAP_EL2; 4684 } 4685 } 4686 } else if (hcr & HCR_TDZ) { 4687 return CP_ACCESS_TRAP_EL2; 4688 } 4689 } 4690 return CP_ACCESS_OK; 4691 } 4692 4693 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4694 { 4695 ARMCPU *cpu = env_archcpu(env); 4696 int dzp_bit = 1 << 4; 4697 4698 /* DZP indicates whether DC ZVA access is allowed */ 4699 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4700 dzp_bit = 0; 4701 } 4702 return cpu->dcz_blocksize | dzp_bit; 4703 } 4704 4705 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4706 bool isread) 4707 { 4708 if (!(env->pstate & PSTATE_SP)) { 4709 /* Access to SP_EL0 is undefined if it's being used as 4710 * the stack pointer. 4711 */ 4712 return CP_ACCESS_TRAP_UNCATEGORIZED; 4713 } 4714 return CP_ACCESS_OK; 4715 } 4716 4717 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4718 { 4719 return env->pstate & PSTATE_SP; 4720 } 4721 4722 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4723 { 4724 update_spsel(env, val); 4725 } 4726 4727 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4728 uint64_t value) 4729 { 4730 ARMCPU *cpu = env_archcpu(env); 4731 4732 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4733 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4734 value &= ~SCTLR_M; 4735 } 4736 4737 /* ??? Lots of these bits are not implemented. */ 4738 4739 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4740 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4741 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4742 } else { 4743 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4744 SCTLR_ATA0 | SCTLR_ATA); 4745 } 4746 } 4747 4748 if (raw_read(env, ri) == value) { 4749 /* Skip the TLB flush if nothing actually changed; Linux likes 4750 * to do a lot of pointless SCTLR writes. 4751 */ 4752 return; 4753 } 4754 4755 raw_write(env, ri, value); 4756 4757 /* This may enable/disable the MMU, so do a TLB flush. */ 4758 tlb_flush(CPU(cpu)); 4759 4760 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4761 /* 4762 * Normally we would always end the TB on an SCTLR write; see the 4763 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4764 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4765 * of hflags from the translator, so do it here. 4766 */ 4767 arm_rebuild_hflags(env); 4768 } 4769 } 4770 4771 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4772 uint64_t value) 4773 { 4774 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4775 } 4776 4777 static const ARMCPRegInfo v8_cp_reginfo[] = { 4778 /* Minimal set of EL0-visible registers. This will need to be expanded 4779 * significantly for system emulation of AArch64 CPUs. 4780 */ 4781 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4782 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4783 .access = PL0_RW, .type = ARM_CP_NZCV }, 4784 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4785 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4786 .type = ARM_CP_NO_RAW, 4787 .access = PL0_RW, .accessfn = aa64_daif_access, 4788 .fieldoffset = offsetof(CPUARMState, daif), 4789 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4790 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4791 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4792 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4793 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4794 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4795 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4796 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4797 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4798 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4799 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4800 .access = PL0_R, .type = ARM_CP_NO_RAW, 4801 .readfn = aa64_dczid_read }, 4802 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4803 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4804 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4805 #ifndef CONFIG_USER_ONLY 4806 /* Avoid overhead of an access check that always passes in user-mode */ 4807 .accessfn = aa64_zva_access, 4808 #endif 4809 }, 4810 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4811 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4812 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4813 /* Cache ops: all NOPs since we don't emulate caches */ 4814 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4815 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4816 .access = PL1_W, .type = ARM_CP_NOP, 4817 .accessfn = aa64_cacheop_pou_access }, 4818 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4819 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4820 .access = PL1_W, .type = ARM_CP_NOP, 4821 .accessfn = aa64_cacheop_pou_access }, 4822 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4823 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4824 .access = PL0_W, .type = ARM_CP_NOP, 4825 .accessfn = aa64_cacheop_pou_access }, 4826 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4827 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4828 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4829 .type = ARM_CP_NOP }, 4830 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4831 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4832 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4833 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4834 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4835 .access = PL0_W, .type = ARM_CP_NOP, 4836 .accessfn = aa64_cacheop_poc_access }, 4837 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4838 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4839 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4840 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4841 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4842 .access = PL0_W, .type = ARM_CP_NOP, 4843 .accessfn = aa64_cacheop_pou_access }, 4844 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4845 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4846 .access = PL0_W, .type = ARM_CP_NOP, 4847 .accessfn = aa64_cacheop_poc_access }, 4848 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4849 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4850 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4851 /* TLBI operations */ 4852 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4853 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4854 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4855 .writefn = tlbi_aa64_vmalle1is_write }, 4856 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4857 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4858 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4859 .writefn = tlbi_aa64_vae1is_write }, 4860 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4861 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4862 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4863 .writefn = tlbi_aa64_vmalle1is_write }, 4864 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4865 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4866 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4867 .writefn = tlbi_aa64_vae1is_write }, 4868 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4869 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4870 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4871 .writefn = tlbi_aa64_vae1is_write }, 4872 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4873 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4874 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4875 .writefn = tlbi_aa64_vae1is_write }, 4876 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4877 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4878 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4879 .writefn = tlbi_aa64_vmalle1_write }, 4880 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4881 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4882 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4883 .writefn = tlbi_aa64_vae1_write }, 4884 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4885 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4886 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4887 .writefn = tlbi_aa64_vmalle1_write }, 4888 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4889 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4890 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4891 .writefn = tlbi_aa64_vae1_write }, 4892 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4893 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4894 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4895 .writefn = tlbi_aa64_vae1_write }, 4896 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4897 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4898 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4899 .writefn = tlbi_aa64_vae1_write }, 4900 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4901 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4902 .access = PL2_W, .type = ARM_CP_NOP }, 4903 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4904 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4905 .access = PL2_W, .type = ARM_CP_NOP }, 4906 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4907 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4908 .access = PL2_W, .type = ARM_CP_NO_RAW, 4909 .writefn = tlbi_aa64_alle1is_write }, 4910 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4911 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4912 .access = PL2_W, .type = ARM_CP_NO_RAW, 4913 .writefn = tlbi_aa64_alle1is_write }, 4914 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4915 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4916 .access = PL2_W, .type = ARM_CP_NOP }, 4917 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4918 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4919 .access = PL2_W, .type = ARM_CP_NOP }, 4920 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4921 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4922 .access = PL2_W, .type = ARM_CP_NO_RAW, 4923 .writefn = tlbi_aa64_alle1_write }, 4924 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4925 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4926 .access = PL2_W, .type = ARM_CP_NO_RAW, 4927 .writefn = tlbi_aa64_alle1is_write }, 4928 #ifndef CONFIG_USER_ONLY 4929 /* 64 bit address translation operations */ 4930 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4931 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4932 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4933 .writefn = ats_write64 }, 4934 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4935 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4936 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4937 .writefn = ats_write64 }, 4938 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4939 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4940 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4941 .writefn = ats_write64 }, 4942 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4943 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4944 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4945 .writefn = ats_write64 }, 4946 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4947 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4948 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4949 .writefn = ats_write64 }, 4950 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4951 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4952 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4953 .writefn = ats_write64 }, 4954 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4955 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4956 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4957 .writefn = ats_write64 }, 4958 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4959 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4960 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4961 .writefn = ats_write64 }, 4962 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4963 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4964 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4965 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4966 .writefn = ats_write64 }, 4967 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4968 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4969 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4970 .writefn = ats_write64 }, 4971 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4972 .type = ARM_CP_ALIAS, 4973 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4974 .access = PL1_RW, .resetvalue = 0, 4975 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4976 .writefn = par_write }, 4977 #endif 4978 /* TLB invalidate last level of translation table walk */ 4979 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4980 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4981 .writefn = tlbimva_is_write }, 4982 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4983 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4984 .writefn = tlbimvaa_is_write }, 4985 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4986 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4987 .writefn = tlbimva_write }, 4988 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4989 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4990 .writefn = tlbimvaa_write }, 4991 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4992 .type = ARM_CP_NO_RAW, .access = PL2_W, 4993 .writefn = tlbimva_hyp_write }, 4994 { .name = "TLBIMVALHIS", 4995 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4996 .type = ARM_CP_NO_RAW, .access = PL2_W, 4997 .writefn = tlbimva_hyp_is_write }, 4998 { .name = "TLBIIPAS2", 4999 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5000 .type = ARM_CP_NOP, .access = PL2_W }, 5001 { .name = "TLBIIPAS2IS", 5002 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5003 .type = ARM_CP_NOP, .access = PL2_W }, 5004 { .name = "TLBIIPAS2L", 5005 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5006 .type = ARM_CP_NOP, .access = PL2_W }, 5007 { .name = "TLBIIPAS2LIS", 5008 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5009 .type = ARM_CP_NOP, .access = PL2_W }, 5010 /* 32 bit cache operations */ 5011 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5012 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5013 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5014 .type = ARM_CP_NOP, .access = PL1_W }, 5015 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5016 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5017 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5018 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5019 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5020 .type = ARM_CP_NOP, .access = PL1_W }, 5021 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5022 .type = ARM_CP_NOP, .access = PL1_W }, 5023 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5024 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5025 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5026 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5027 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5028 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5029 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5030 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5031 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5032 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5033 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5034 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5035 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5036 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5037 /* MMU Domain access control / MPU write buffer control */ 5038 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5039 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5040 .writefn = dacr_write, .raw_writefn = raw_write, 5041 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5042 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5043 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5044 .type = ARM_CP_ALIAS, 5045 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5046 .access = PL1_RW, 5047 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5048 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5049 .type = ARM_CP_ALIAS, 5050 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5051 .access = PL1_RW, 5052 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5053 /* We rely on the access checks not allowing the guest to write to the 5054 * state field when SPSel indicates that it's being used as the stack 5055 * pointer. 5056 */ 5057 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5058 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5059 .access = PL1_RW, .accessfn = sp_el0_access, 5060 .type = ARM_CP_ALIAS, 5061 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5062 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5063 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5064 .access = PL2_RW, .type = ARM_CP_ALIAS, 5065 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5066 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5067 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5068 .type = ARM_CP_NO_RAW, 5069 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5070 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5071 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5072 .access = PL2_RW, 5073 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5074 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5075 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5076 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5077 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5078 .writefn = dacr_write, .raw_writefn = raw_write, 5079 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5080 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5081 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5082 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5083 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5084 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5085 .type = ARM_CP_ALIAS, 5086 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5087 .access = PL2_RW, 5088 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5089 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5090 .type = ARM_CP_ALIAS, 5091 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5092 .access = PL2_RW, 5093 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5094 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5095 .type = ARM_CP_ALIAS, 5096 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5097 .access = PL2_RW, 5098 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5099 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5100 .type = ARM_CP_ALIAS, 5101 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5102 .access = PL2_RW, 5103 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5104 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5105 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5106 .resetvalue = 0, 5107 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5108 { .name = "SDCR", .type = ARM_CP_ALIAS, 5109 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5110 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5111 .writefn = sdcr_write, 5112 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5113 }; 5114 5115 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5116 { 5117 ARMCPU *cpu = env_archcpu(env); 5118 5119 if (arm_feature(env, ARM_FEATURE_V8)) { 5120 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5121 } else { 5122 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5123 } 5124 5125 if (arm_feature(env, ARM_FEATURE_EL3)) { 5126 valid_mask &= ~HCR_HCD; 5127 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5128 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5129 * However, if we're using the SMC PSCI conduit then QEMU is 5130 * effectively acting like EL3 firmware and so the guest at 5131 * EL2 should retain the ability to prevent EL1 from being 5132 * able to make SMC calls into the ersatz firmware, so in 5133 * that case HCR.TSC should be read/write. 5134 */ 5135 valid_mask &= ~HCR_TSC; 5136 } 5137 5138 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5139 if (cpu_isar_feature(aa64_vh, cpu)) { 5140 valid_mask |= HCR_E2H; 5141 } 5142 if (cpu_isar_feature(aa64_ras, cpu)) { 5143 valid_mask |= HCR_TERR | HCR_TEA; 5144 } 5145 if (cpu_isar_feature(aa64_lor, cpu)) { 5146 valid_mask |= HCR_TLOR; 5147 } 5148 if (cpu_isar_feature(aa64_pauth, cpu)) { 5149 valid_mask |= HCR_API | HCR_APK; 5150 } 5151 if (cpu_isar_feature(aa64_mte, cpu)) { 5152 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5153 } 5154 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5155 valid_mask |= HCR_ENSCXT; 5156 } 5157 if (cpu_isar_feature(aa64_fwb, cpu)) { 5158 valid_mask |= HCR_FWB; 5159 } 5160 } 5161 5162 /* Clear RES0 bits. */ 5163 value &= valid_mask; 5164 5165 /* 5166 * These bits change the MMU setup: 5167 * HCR_VM enables stage 2 translation 5168 * HCR_PTW forbids certain page-table setups 5169 * HCR_DC disables stage1 and enables stage2 translation 5170 * HCR_DCT enables tagging on (disabled) stage1 translation 5171 * HCR_FWB changes the interpretation of stage2 descriptor bits 5172 */ 5173 if ((env->cp15.hcr_el2 ^ value) & 5174 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5175 tlb_flush(CPU(cpu)); 5176 } 5177 env->cp15.hcr_el2 = value; 5178 5179 /* 5180 * Updates to VI and VF require us to update the status of 5181 * virtual interrupts, which are the logical OR of these bits 5182 * and the state of the input lines from the GIC. (This requires 5183 * that we have the iothread lock, which is done by marking the 5184 * reginfo structs as ARM_CP_IO.) 5185 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5186 * possible for it to be taken immediately, because VIRQ and 5187 * VFIQ are masked unless running at EL0 or EL1, and HCR 5188 * can only be written at EL2. 5189 */ 5190 g_assert(qemu_mutex_iothread_locked()); 5191 arm_cpu_update_virq(cpu); 5192 arm_cpu_update_vfiq(cpu); 5193 arm_cpu_update_vserr(cpu); 5194 } 5195 5196 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5197 { 5198 do_hcr_write(env, value, 0); 5199 } 5200 5201 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5202 uint64_t value) 5203 { 5204 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5205 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5206 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5207 } 5208 5209 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5210 uint64_t value) 5211 { 5212 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5213 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5214 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5215 } 5216 5217 /* 5218 * Return the effective value of HCR_EL2. 5219 * Bits that are not included here: 5220 * RW (read from SCR_EL3.RW as needed) 5221 */ 5222 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5223 { 5224 uint64_t ret = env->cp15.hcr_el2; 5225 5226 if (!arm_is_el2_enabled(env)) { 5227 /* 5228 * "This register has no effect if EL2 is not enabled in the 5229 * current Security state". This is ARMv8.4-SecEL2 speak for 5230 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5231 * 5232 * Prior to that, the language was "In an implementation that 5233 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5234 * as if this field is 0 for all purposes other than a direct 5235 * read or write access of HCR_EL2". With lots of enumeration 5236 * on a per-field basis. In current QEMU, this is condition 5237 * is arm_is_secure_below_el3. 5238 * 5239 * Since the v8.4 language applies to the entire register, and 5240 * appears to be backward compatible, use that. 5241 */ 5242 return 0; 5243 } 5244 5245 /* 5246 * For a cpu that supports both aarch64 and aarch32, we can set bits 5247 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5248 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5249 */ 5250 if (!arm_el_is_aa64(env, 2)) { 5251 uint64_t aa32_valid; 5252 5253 /* 5254 * These bits are up-to-date as of ARMv8.6. 5255 * For HCR, it's easiest to list just the 2 bits that are invalid. 5256 * For HCR2, list those that are valid. 5257 */ 5258 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5259 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5260 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5261 ret &= aa32_valid; 5262 } 5263 5264 if (ret & HCR_TGE) { 5265 /* These bits are up-to-date as of ARMv8.6. */ 5266 if (ret & HCR_E2H) { 5267 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5268 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5269 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5270 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5271 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5272 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5273 } else { 5274 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5275 } 5276 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5277 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5278 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5279 HCR_TLOR); 5280 } 5281 5282 return ret; 5283 } 5284 5285 /* 5286 * Corresponds to ARM pseudocode function ELIsInHost(). 5287 */ 5288 bool el_is_in_host(CPUARMState *env, int el) 5289 { 5290 uint64_t mask; 5291 5292 /* 5293 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5294 * Perform the simplest bit tests first, and validate EL2 afterward. 5295 */ 5296 if (el & 1) { 5297 return false; /* EL1 or EL3 */ 5298 } 5299 5300 /* 5301 * Note that hcr_write() checks isar_feature_aa64_vh(), 5302 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5303 */ 5304 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5305 if ((env->cp15.hcr_el2 & mask) != mask) { 5306 return false; 5307 } 5308 5309 /* TGE and/or E2H set: double check those bits are currently legal. */ 5310 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5311 } 5312 5313 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5314 uint64_t value) 5315 { 5316 uint64_t valid_mask = 0; 5317 5318 /* No features adding bits to HCRX are implemented. */ 5319 5320 /* Clear RES0 bits. */ 5321 env->cp15.hcrx_el2 = value & valid_mask; 5322 } 5323 5324 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5325 bool isread) 5326 { 5327 if (arm_current_el(env) < 3 5328 && arm_feature(env, ARM_FEATURE_EL3) 5329 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5330 return CP_ACCESS_TRAP_EL3; 5331 } 5332 return CP_ACCESS_OK; 5333 } 5334 5335 static const ARMCPRegInfo hcrx_el2_reginfo = { 5336 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5337 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5338 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5339 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5340 }; 5341 5342 /* Return the effective value of HCRX_EL2. */ 5343 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5344 { 5345 /* 5346 * The bits in this register behave as 0 for all purposes other than 5347 * direct reads of the register if: 5348 * - EL2 is not enabled in the current security state, 5349 * - SCR_EL3.HXEn is 0. 5350 */ 5351 if (!arm_is_el2_enabled(env) 5352 || (arm_feature(env, ARM_FEATURE_EL3) 5353 && !(env->cp15.scr_el3 & SCR_HXEN))) { 5354 return 0; 5355 } 5356 return env->cp15.hcrx_el2; 5357 } 5358 5359 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5360 uint64_t value) 5361 { 5362 /* 5363 * For A-profile AArch32 EL3, if NSACR.CP10 5364 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5365 */ 5366 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5367 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5368 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5369 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5370 } 5371 env->cp15.cptr_el[2] = value; 5372 } 5373 5374 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5375 { 5376 /* 5377 * For A-profile AArch32 EL3, if NSACR.CP10 5378 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5379 */ 5380 uint64_t value = env->cp15.cptr_el[2]; 5381 5382 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5383 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5384 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5385 } 5386 return value; 5387 } 5388 5389 static const ARMCPRegInfo el2_cp_reginfo[] = { 5390 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5391 .type = ARM_CP_IO, 5392 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5393 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5394 .writefn = hcr_write }, 5395 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5396 .type = ARM_CP_ALIAS | ARM_CP_IO, 5397 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5398 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5399 .writefn = hcr_writelow }, 5400 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5401 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5402 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5403 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5404 .type = ARM_CP_ALIAS, 5405 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5406 .access = PL2_RW, 5407 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5408 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5409 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5410 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5411 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5412 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5413 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5414 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5415 .type = ARM_CP_ALIAS, 5416 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5417 .access = PL2_RW, 5418 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5419 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5420 .type = ARM_CP_ALIAS, 5421 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5422 .access = PL2_RW, 5423 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5424 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5425 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5426 .access = PL2_RW, .writefn = vbar_write, 5427 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5428 .resetvalue = 0 }, 5429 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5430 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5431 .access = PL3_RW, .type = ARM_CP_ALIAS, 5432 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5433 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5434 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5435 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5436 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5437 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5438 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5439 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5440 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5441 .resetvalue = 0 }, 5442 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5443 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5444 .access = PL2_RW, .type = ARM_CP_ALIAS, 5445 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5446 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5447 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5448 .access = PL2_RW, .type = ARM_CP_CONST, 5449 .resetvalue = 0 }, 5450 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5451 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5452 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5453 .access = PL2_RW, .type = ARM_CP_CONST, 5454 .resetvalue = 0 }, 5455 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5456 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5457 .access = PL2_RW, .type = ARM_CP_CONST, 5458 .resetvalue = 0 }, 5459 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5460 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5461 .access = PL2_RW, .type = ARM_CP_CONST, 5462 .resetvalue = 0 }, 5463 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5464 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5465 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5466 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5467 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5468 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5469 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5470 .type = ARM_CP_ALIAS, 5471 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5472 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5473 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5474 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5475 .access = PL2_RW, 5476 /* no .writefn needed as this can't cause an ASID change; 5477 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5478 */ 5479 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5480 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5481 .cp = 15, .opc1 = 6, .crm = 2, 5482 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5483 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5484 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5485 .writefn = vttbr_write }, 5486 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5487 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5488 .access = PL2_RW, .writefn = vttbr_write, 5489 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5490 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5491 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5492 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5493 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5494 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5495 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5496 .access = PL2_RW, .resetvalue = 0, 5497 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5498 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5499 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5500 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5501 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5502 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5503 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5504 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5505 { .name = "TLBIALLNSNH", 5506 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5507 .type = ARM_CP_NO_RAW, .access = PL2_W, 5508 .writefn = tlbiall_nsnh_write }, 5509 { .name = "TLBIALLNSNHIS", 5510 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5511 .type = ARM_CP_NO_RAW, .access = PL2_W, 5512 .writefn = tlbiall_nsnh_is_write }, 5513 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5514 .type = ARM_CP_NO_RAW, .access = PL2_W, 5515 .writefn = tlbiall_hyp_write }, 5516 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5517 .type = ARM_CP_NO_RAW, .access = PL2_W, 5518 .writefn = tlbiall_hyp_is_write }, 5519 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5520 .type = ARM_CP_NO_RAW, .access = PL2_W, 5521 .writefn = tlbimva_hyp_write }, 5522 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5523 .type = ARM_CP_NO_RAW, .access = PL2_W, 5524 .writefn = tlbimva_hyp_is_write }, 5525 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5526 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5527 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5528 .writefn = tlbi_aa64_alle2_write }, 5529 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5530 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5531 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5532 .writefn = tlbi_aa64_vae2_write }, 5533 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5534 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5535 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5536 .writefn = tlbi_aa64_vae2_write }, 5537 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5538 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5539 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5540 .writefn = tlbi_aa64_alle2is_write }, 5541 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5542 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5543 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5544 .writefn = tlbi_aa64_vae2is_write }, 5545 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5546 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5547 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5548 .writefn = tlbi_aa64_vae2is_write }, 5549 #ifndef CONFIG_USER_ONLY 5550 /* Unlike the other EL2-related AT operations, these must 5551 * UNDEF from EL3 if EL2 is not implemented, which is why we 5552 * define them here rather than with the rest of the AT ops. 5553 */ 5554 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5555 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5556 .access = PL2_W, .accessfn = at_s1e2_access, 5557 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5558 .writefn = ats_write64 }, 5559 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5560 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5561 .access = PL2_W, .accessfn = at_s1e2_access, 5562 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5563 .writefn = ats_write64 }, 5564 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5565 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5566 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5567 * to behave as if SCR.NS was 1. 5568 */ 5569 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5570 .access = PL2_W, 5571 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5572 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5573 .access = PL2_W, 5574 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5575 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5576 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5577 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5578 * reset values as IMPDEF. We choose to reset to 3 to comply with 5579 * both ARMv7 and ARMv8. 5580 */ 5581 .access = PL2_RW, .resetvalue = 3, 5582 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5583 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5584 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5585 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5586 .writefn = gt_cntvoff_write, 5587 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5588 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5589 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5590 .writefn = gt_cntvoff_write, 5591 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5592 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5593 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5594 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5595 .type = ARM_CP_IO, .access = PL2_RW, 5596 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5597 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5598 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5599 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5600 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5601 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5602 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5603 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5604 .resetfn = gt_hyp_timer_reset, 5605 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5606 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5607 .type = ARM_CP_IO, 5608 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5609 .access = PL2_RW, 5610 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5611 .resetvalue = 0, 5612 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5613 #endif 5614 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5615 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5616 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5617 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5618 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5619 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5620 .access = PL2_RW, 5621 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5622 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5623 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5624 .access = PL2_RW, 5625 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5626 }; 5627 5628 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5629 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5630 .type = ARM_CP_ALIAS | ARM_CP_IO, 5631 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5632 .access = PL2_RW, 5633 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5634 .writefn = hcr_writehigh }, 5635 }; 5636 5637 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5638 bool isread) 5639 { 5640 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5641 return CP_ACCESS_OK; 5642 } 5643 return CP_ACCESS_TRAP_UNCATEGORIZED; 5644 } 5645 5646 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5647 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5648 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5649 .access = PL2_RW, .accessfn = sel2_access, 5650 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5651 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5652 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5653 .access = PL2_RW, .accessfn = sel2_access, 5654 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5655 }; 5656 5657 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5658 bool isread) 5659 { 5660 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5661 * At Secure EL1 it traps to EL3 or EL2. 5662 */ 5663 if (arm_current_el(env) == 3) { 5664 return CP_ACCESS_OK; 5665 } 5666 if (arm_is_secure_below_el3(env)) { 5667 if (env->cp15.scr_el3 & SCR_EEL2) { 5668 return CP_ACCESS_TRAP_EL2; 5669 } 5670 return CP_ACCESS_TRAP_EL3; 5671 } 5672 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5673 if (isread) { 5674 return CP_ACCESS_OK; 5675 } 5676 return CP_ACCESS_TRAP_UNCATEGORIZED; 5677 } 5678 5679 static const ARMCPRegInfo el3_cp_reginfo[] = { 5680 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5681 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5682 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5683 .resetfn = scr_reset, .writefn = scr_write }, 5684 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5685 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5686 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5687 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5688 .writefn = scr_write }, 5689 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5690 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5691 .access = PL3_RW, .resetvalue = 0, 5692 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5693 { .name = "SDER", 5694 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5695 .access = PL3_RW, .resetvalue = 0, 5696 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5697 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5698 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5699 .writefn = vbar_write, .resetvalue = 0, 5700 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5701 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5702 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5703 .access = PL3_RW, .resetvalue = 0, 5704 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5705 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5706 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5707 .access = PL3_RW, 5708 /* no .writefn needed as this can't cause an ASID change; 5709 * we must provide a .raw_writefn and .resetfn because we handle 5710 * reset and migration for the AArch32 TTBCR(S), which might be 5711 * using mask and base_mask. 5712 */ 5713 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5714 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5715 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5716 .type = ARM_CP_ALIAS, 5717 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5718 .access = PL3_RW, 5719 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5720 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5721 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5722 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5723 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5724 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5725 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5726 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5727 .type = ARM_CP_ALIAS, 5728 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5729 .access = PL3_RW, 5730 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5731 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5732 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5733 .access = PL3_RW, .writefn = vbar_write, 5734 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5735 .resetvalue = 0 }, 5736 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5737 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5738 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5739 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5740 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5741 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5742 .access = PL3_RW, .resetvalue = 0, 5743 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5744 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5745 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5746 .access = PL3_RW, .type = ARM_CP_CONST, 5747 .resetvalue = 0 }, 5748 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5749 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5750 .access = PL3_RW, .type = ARM_CP_CONST, 5751 .resetvalue = 0 }, 5752 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5753 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5754 .access = PL3_RW, .type = ARM_CP_CONST, 5755 .resetvalue = 0 }, 5756 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5757 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5758 .access = PL3_W, .type = ARM_CP_NO_RAW, 5759 .writefn = tlbi_aa64_alle3is_write }, 5760 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5761 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5762 .access = PL3_W, .type = ARM_CP_NO_RAW, 5763 .writefn = tlbi_aa64_vae3is_write }, 5764 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5765 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5766 .access = PL3_W, .type = ARM_CP_NO_RAW, 5767 .writefn = tlbi_aa64_vae3is_write }, 5768 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5769 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5770 .access = PL3_W, .type = ARM_CP_NO_RAW, 5771 .writefn = tlbi_aa64_alle3_write }, 5772 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5773 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5774 .access = PL3_W, .type = ARM_CP_NO_RAW, 5775 .writefn = tlbi_aa64_vae3_write }, 5776 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5777 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5778 .access = PL3_W, .type = ARM_CP_NO_RAW, 5779 .writefn = tlbi_aa64_vae3_write }, 5780 }; 5781 5782 #ifndef CONFIG_USER_ONLY 5783 /* Test if system register redirection is to occur in the current state. */ 5784 static bool redirect_for_e2h(CPUARMState *env) 5785 { 5786 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5787 } 5788 5789 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5790 { 5791 CPReadFn *readfn; 5792 5793 if (redirect_for_e2h(env)) { 5794 /* Switch to the saved EL2 version of the register. */ 5795 ri = ri->opaque; 5796 readfn = ri->readfn; 5797 } else { 5798 readfn = ri->orig_readfn; 5799 } 5800 if (readfn == NULL) { 5801 readfn = raw_read; 5802 } 5803 return readfn(env, ri); 5804 } 5805 5806 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5807 uint64_t value) 5808 { 5809 CPWriteFn *writefn; 5810 5811 if (redirect_for_e2h(env)) { 5812 /* Switch to the saved EL2 version of the register. */ 5813 ri = ri->opaque; 5814 writefn = ri->writefn; 5815 } else { 5816 writefn = ri->orig_writefn; 5817 } 5818 if (writefn == NULL) { 5819 writefn = raw_write; 5820 } 5821 writefn(env, ri, value); 5822 } 5823 5824 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5825 { 5826 struct E2HAlias { 5827 uint32_t src_key, dst_key, new_key; 5828 const char *src_name, *dst_name, *new_name; 5829 bool (*feature)(const ARMISARegisters *id); 5830 }; 5831 5832 #define K(op0, op1, crn, crm, op2) \ 5833 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5834 5835 static const struct E2HAlias aliases[] = { 5836 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5837 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5838 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5839 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5840 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5841 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5842 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5843 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5844 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5845 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5846 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5847 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5848 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5849 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5850 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5851 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5852 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5853 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5854 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5855 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5856 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5857 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5858 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5859 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5860 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5861 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5862 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5863 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5864 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5865 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5866 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5867 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5868 5869 /* 5870 * Note that redirection of ZCR is mentioned in the description 5871 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5872 * not in the summary table. 5873 */ 5874 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5875 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5876 5877 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5878 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5879 5880 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 5881 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 5882 isar_feature_aa64_scxtnum }, 5883 5884 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5885 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5886 }; 5887 #undef K 5888 5889 size_t i; 5890 5891 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5892 const struct E2HAlias *a = &aliases[i]; 5893 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 5894 bool ok; 5895 5896 if (a->feature && !a->feature(&cpu->isar)) { 5897 continue; 5898 } 5899 5900 src_reg = g_hash_table_lookup(cpu->cp_regs, 5901 (gpointer)(uintptr_t)a->src_key); 5902 dst_reg = g_hash_table_lookup(cpu->cp_regs, 5903 (gpointer)(uintptr_t)a->dst_key); 5904 g_assert(src_reg != NULL); 5905 g_assert(dst_reg != NULL); 5906 5907 /* Cross-compare names to detect typos in the keys. */ 5908 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5909 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5910 5911 /* None of the core system registers use opaque; we will. */ 5912 g_assert(src_reg->opaque == NULL); 5913 5914 /* Create alias before redirection so we dup the right data. */ 5915 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5916 5917 new_reg->name = a->new_name; 5918 new_reg->type |= ARM_CP_ALIAS; 5919 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5920 new_reg->access &= PL2_RW | PL3_RW; 5921 5922 ok = g_hash_table_insert(cpu->cp_regs, 5923 (gpointer)(uintptr_t)a->new_key, new_reg); 5924 g_assert(ok); 5925 5926 src_reg->opaque = dst_reg; 5927 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5928 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5929 if (!src_reg->raw_readfn) { 5930 src_reg->raw_readfn = raw_read; 5931 } 5932 if (!src_reg->raw_writefn) { 5933 src_reg->raw_writefn = raw_write; 5934 } 5935 src_reg->readfn = el2_e2h_read; 5936 src_reg->writefn = el2_e2h_write; 5937 } 5938 } 5939 #endif 5940 5941 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5942 bool isread) 5943 { 5944 int cur_el = arm_current_el(env); 5945 5946 if (cur_el < 2) { 5947 uint64_t hcr = arm_hcr_el2_eff(env); 5948 5949 if (cur_el == 0) { 5950 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5951 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 5952 return CP_ACCESS_TRAP_EL2; 5953 } 5954 } else { 5955 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5956 return CP_ACCESS_TRAP; 5957 } 5958 if (hcr & HCR_TID2) { 5959 return CP_ACCESS_TRAP_EL2; 5960 } 5961 } 5962 } else if (hcr & HCR_TID2) { 5963 return CP_ACCESS_TRAP_EL2; 5964 } 5965 } 5966 5967 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 5968 return CP_ACCESS_TRAP_EL2; 5969 } 5970 5971 return CP_ACCESS_OK; 5972 } 5973 5974 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5975 uint64_t value) 5976 { 5977 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5978 * read via a bit in OSLSR_EL1. 5979 */ 5980 int oslock; 5981 5982 if (ri->state == ARM_CP_STATE_AA32) { 5983 oslock = (value == 0xC5ACCE55); 5984 } else { 5985 oslock = value & 1; 5986 } 5987 5988 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5989 } 5990 5991 static const ARMCPRegInfo debug_cp_reginfo[] = { 5992 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5993 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5994 * unlike DBGDRAR it is never accessible from EL0. 5995 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 5996 * accessor. 5997 */ 5998 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 5999 .access = PL0_R, .accessfn = access_tdra, 6000 .type = ARM_CP_CONST, .resetvalue = 0 }, 6001 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6002 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6003 .access = PL1_R, .accessfn = access_tdra, 6004 .type = ARM_CP_CONST, .resetvalue = 0 }, 6005 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6006 .access = PL0_R, .accessfn = access_tdra, 6007 .type = ARM_CP_CONST, .resetvalue = 0 }, 6008 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6009 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6010 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6011 .access = PL1_RW, .accessfn = access_tda, 6012 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6013 .resetvalue = 0 }, 6014 /* 6015 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external 6016 * Debug Communication Channel is not implemented. 6017 */ 6018 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, 6019 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, 6020 .access = PL0_R, .accessfn = access_tda, 6021 .type = ARM_CP_CONST, .resetvalue = 0 }, 6022 /* 6023 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as 6024 * it is unlikely a guest will care. 6025 * We don't implement the configurable EL0 access. 6026 */ 6027 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, 6028 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6029 .type = ARM_CP_ALIAS, 6030 .access = PL1_R, .accessfn = access_tda, 6031 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6032 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6033 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6034 .access = PL1_W, .type = ARM_CP_NO_RAW, 6035 .accessfn = access_tdosa, 6036 .writefn = oslar_write }, 6037 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6038 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6039 .access = PL1_R, .resetvalue = 10, 6040 .accessfn = access_tdosa, 6041 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6042 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6043 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6044 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6045 .access = PL1_RW, .accessfn = access_tdosa, 6046 .type = ARM_CP_NOP }, 6047 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6048 * implement vector catch debug events yet. 6049 */ 6050 { .name = "DBGVCR", 6051 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6052 .access = PL1_RW, .accessfn = access_tda, 6053 .type = ARM_CP_NOP }, 6054 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6055 * to save and restore a 32-bit guest's DBGVCR) 6056 */ 6057 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6058 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6059 .access = PL2_RW, .accessfn = access_tda, 6060 .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP }, 6061 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6062 * Channel but Linux may try to access this register. The 32-bit 6063 * alias is DBGDCCINT. 6064 */ 6065 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6066 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6067 .access = PL1_RW, .accessfn = access_tda, 6068 .type = ARM_CP_NOP }, 6069 }; 6070 6071 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6072 /* 64 bit access versions of the (dummy) debug registers */ 6073 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6074 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6075 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6076 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6077 }; 6078 6079 /* 6080 * Check for traps to RAS registers, which are controlled 6081 * by HCR_EL2.TERR and SCR_EL3.TERR. 6082 */ 6083 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6084 bool isread) 6085 { 6086 int el = arm_current_el(env); 6087 6088 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6089 return CP_ACCESS_TRAP_EL2; 6090 } 6091 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6092 return CP_ACCESS_TRAP_EL3; 6093 } 6094 return CP_ACCESS_OK; 6095 } 6096 6097 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6098 { 6099 int el = arm_current_el(env); 6100 6101 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6102 return env->cp15.vdisr_el2; 6103 } 6104 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6105 return 0; /* RAZ/WI */ 6106 } 6107 return env->cp15.disr_el1; 6108 } 6109 6110 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6111 { 6112 int el = arm_current_el(env); 6113 6114 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6115 env->cp15.vdisr_el2 = val; 6116 return; 6117 } 6118 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6119 return; /* RAZ/WI */ 6120 } 6121 env->cp15.disr_el1 = val; 6122 } 6123 6124 /* 6125 * Minimal RAS implementation with no Error Records. 6126 * Which means that all of the Error Record registers: 6127 * ERXADDR_EL1 6128 * ERXCTLR_EL1 6129 * ERXFR_EL1 6130 * ERXMISC0_EL1 6131 * ERXMISC1_EL1 6132 * ERXMISC2_EL1 6133 * ERXMISC3_EL1 6134 * ERXPFGCDN_EL1 (RASv1p1) 6135 * ERXPFGCTL_EL1 (RASv1p1) 6136 * ERXPFGF_EL1 (RASv1p1) 6137 * ERXSTATUS_EL1 6138 * and 6139 * ERRSELR_EL1 6140 * may generate UNDEFINED, which is the effect we get by not 6141 * listing them at all. 6142 */ 6143 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6144 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6145 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6146 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6147 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6148 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6149 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6150 .access = PL1_R, .accessfn = access_terr, 6151 .type = ARM_CP_CONST, .resetvalue = 0 }, 6152 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6153 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6154 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6155 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6156 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6157 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6158 }; 6159 6160 /* 6161 * Return the exception level to which exceptions should be taken 6162 * via SVEAccessTrap. This excludes the check for whether the exception 6163 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6164 * be found by testing 0 < fp_exception_el < sve_exception_el. 6165 * 6166 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6167 * pseudocode does *not* separate out the FP trap checks, but has them 6168 * all in one function. 6169 */ 6170 int sve_exception_el(CPUARMState *env, int el) 6171 { 6172 #ifndef CONFIG_USER_ONLY 6173 if (el <= 1 && !el_is_in_host(env, el)) { 6174 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6175 case 1: 6176 if (el != 0) { 6177 break; 6178 } 6179 /* fall through */ 6180 case 0: 6181 case 2: 6182 return 1; 6183 } 6184 } 6185 6186 if (el <= 2 && arm_is_el2_enabled(env)) { 6187 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6188 if (env->cp15.hcr_el2 & HCR_E2H) { 6189 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6190 case 1: 6191 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6192 break; 6193 } 6194 /* fall through */ 6195 case 0: 6196 case 2: 6197 return 2; 6198 } 6199 } else { 6200 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6201 return 2; 6202 } 6203 } 6204 } 6205 6206 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6207 if (arm_feature(env, ARM_FEATURE_EL3) 6208 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6209 return 3; 6210 } 6211 #endif 6212 return 0; 6213 } 6214 6215 /* 6216 * Given that SVE is enabled, return the vector length for EL. 6217 */ 6218 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6219 { 6220 ARMCPU *cpu = env_archcpu(env); 6221 uint32_t len = cpu->sve_max_vq - 1; 6222 6223 if (el <= 1 && !el_is_in_host(env, el)) { 6224 len = MIN(len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6225 } 6226 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6227 len = MIN(len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6228 } 6229 if (arm_feature(env, ARM_FEATURE_EL3)) { 6230 len = MIN(len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6231 } 6232 6233 len = 31 - clz32(cpu->sve_vq_map & MAKE_64BIT_MASK(0, len + 1)); 6234 return len; 6235 } 6236 6237 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6238 uint64_t value) 6239 { 6240 int cur_el = arm_current_el(env); 6241 int old_len = sve_vqm1_for_el(env, cur_el); 6242 int new_len; 6243 6244 /* Bits other than [3:0] are RAZ/WI. */ 6245 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6246 raw_write(env, ri, value & 0xf); 6247 6248 /* 6249 * Because we arrived here, we know both FP and SVE are enabled; 6250 * otherwise we would have trapped access to the ZCR_ELn register. 6251 */ 6252 new_len = sve_vqm1_for_el(env, cur_el); 6253 if (new_len < old_len) { 6254 aarch64_sve_narrow_vq(env, new_len + 1); 6255 } 6256 } 6257 6258 static const ARMCPRegInfo zcr_reginfo[] = { 6259 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6260 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6261 .access = PL1_RW, .type = ARM_CP_SVE, 6262 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6263 .writefn = zcr_write, .raw_writefn = raw_write }, 6264 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6265 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6266 .access = PL2_RW, .type = ARM_CP_SVE, 6267 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6268 .writefn = zcr_write, .raw_writefn = raw_write }, 6269 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6270 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6271 .access = PL3_RW, .type = ARM_CP_SVE, 6272 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6273 .writefn = zcr_write, .raw_writefn = raw_write }, 6274 }; 6275 6276 void hw_watchpoint_update(ARMCPU *cpu, int n) 6277 { 6278 CPUARMState *env = &cpu->env; 6279 vaddr len = 0; 6280 vaddr wvr = env->cp15.dbgwvr[n]; 6281 uint64_t wcr = env->cp15.dbgwcr[n]; 6282 int mask; 6283 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6284 6285 if (env->cpu_watchpoint[n]) { 6286 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6287 env->cpu_watchpoint[n] = NULL; 6288 } 6289 6290 if (!FIELD_EX64(wcr, DBGWCR, E)) { 6291 /* E bit clear : watchpoint disabled */ 6292 return; 6293 } 6294 6295 switch (FIELD_EX64(wcr, DBGWCR, LSC)) { 6296 case 0: 6297 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6298 return; 6299 case 1: 6300 flags |= BP_MEM_READ; 6301 break; 6302 case 2: 6303 flags |= BP_MEM_WRITE; 6304 break; 6305 case 3: 6306 flags |= BP_MEM_ACCESS; 6307 break; 6308 } 6309 6310 /* Attempts to use both MASK and BAS fields simultaneously are 6311 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6312 * thus generating a watchpoint for every byte in the masked region. 6313 */ 6314 mask = FIELD_EX64(wcr, DBGWCR, MASK); 6315 if (mask == 1 || mask == 2) { 6316 /* Reserved values of MASK; we must act as if the mask value was 6317 * some non-reserved value, or as if the watchpoint were disabled. 6318 * We choose the latter. 6319 */ 6320 return; 6321 } else if (mask) { 6322 /* Watchpoint covers an aligned area up to 2GB in size */ 6323 len = 1ULL << mask; 6324 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6325 * whether the watchpoint fires when the unmasked bits match; we opt 6326 * to generate the exceptions. 6327 */ 6328 wvr &= ~(len - 1); 6329 } else { 6330 /* Watchpoint covers bytes defined by the byte address select bits */ 6331 int bas = FIELD_EX64(wcr, DBGWCR, BAS); 6332 int basstart; 6333 6334 if (extract64(wvr, 2, 1)) { 6335 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6336 * ignored, and BAS[3:0] define which bytes to watch. 6337 */ 6338 bas &= 0xf; 6339 } 6340 6341 if (bas == 0) { 6342 /* This must act as if the watchpoint is disabled */ 6343 return; 6344 } 6345 6346 /* The BAS bits are supposed to be programmed to indicate a contiguous 6347 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6348 * we fire for each byte in the word/doubleword addressed by the WVR. 6349 * We choose to ignore any non-zero bits after the first range of 1s. 6350 */ 6351 basstart = ctz32(bas); 6352 len = cto32(bas >> basstart); 6353 wvr += basstart; 6354 } 6355 6356 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6357 &env->cpu_watchpoint[n]); 6358 } 6359 6360 void hw_watchpoint_update_all(ARMCPU *cpu) 6361 { 6362 int i; 6363 CPUARMState *env = &cpu->env; 6364 6365 /* Completely clear out existing QEMU watchpoints and our array, to 6366 * avoid possible stale entries following migration load. 6367 */ 6368 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6369 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6370 6371 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6372 hw_watchpoint_update(cpu, i); 6373 } 6374 } 6375 6376 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6377 uint64_t value) 6378 { 6379 ARMCPU *cpu = env_archcpu(env); 6380 int i = ri->crm; 6381 6382 /* 6383 * Bits [1:0] are RES0. 6384 * 6385 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA) 6386 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if 6387 * they contain the value written. It is CONSTRAINED UNPREDICTABLE 6388 * whether the RESS bits are ignored when comparing an address. 6389 * 6390 * Therefore we are allowed to compare the entire register, which lets 6391 * us avoid considering whether or not FEAT_LVA is actually enabled. 6392 */ 6393 value &= ~3ULL; 6394 6395 raw_write(env, ri, value); 6396 hw_watchpoint_update(cpu, i); 6397 } 6398 6399 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6400 uint64_t value) 6401 { 6402 ARMCPU *cpu = env_archcpu(env); 6403 int i = ri->crm; 6404 6405 raw_write(env, ri, value); 6406 hw_watchpoint_update(cpu, i); 6407 } 6408 6409 void hw_breakpoint_update(ARMCPU *cpu, int n) 6410 { 6411 CPUARMState *env = &cpu->env; 6412 uint64_t bvr = env->cp15.dbgbvr[n]; 6413 uint64_t bcr = env->cp15.dbgbcr[n]; 6414 vaddr addr; 6415 int bt; 6416 int flags = BP_CPU; 6417 6418 if (env->cpu_breakpoint[n]) { 6419 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6420 env->cpu_breakpoint[n] = NULL; 6421 } 6422 6423 if (!extract64(bcr, 0, 1)) { 6424 /* E bit clear : watchpoint disabled */ 6425 return; 6426 } 6427 6428 bt = extract64(bcr, 20, 4); 6429 6430 switch (bt) { 6431 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6432 case 5: /* linked address mismatch (reserved if AArch64) */ 6433 qemu_log_mask(LOG_UNIMP, 6434 "arm: address mismatch breakpoint types not implemented\n"); 6435 return; 6436 case 0: /* unlinked address match */ 6437 case 1: /* linked address match */ 6438 { 6439 /* 6440 * Bits [1:0] are RES0. 6441 * 6442 * It is IMPLEMENTATION DEFINED whether bits [63:49] 6443 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit 6444 * of the VA field ([48] or [52] for FEAT_LVA), or whether the 6445 * value is read as written. It is CONSTRAINED UNPREDICTABLE 6446 * whether the RESS bits are ignored when comparing an address. 6447 * Therefore we are allowed to compare the entire register, which 6448 * lets us avoid considering whether FEAT_LVA is actually enabled. 6449 * 6450 * The BAS field is used to allow setting breakpoints on 16-bit 6451 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6452 * a bp will fire if the addresses covered by the bp and the addresses 6453 * covered by the insn overlap but the insn doesn't start at the 6454 * start of the bp address range. We choose to require the insn and 6455 * the bp to have the same address. The constraints on writing to 6456 * BAS enforced in dbgbcr_write mean we have only four cases: 6457 * 0b0000 => no breakpoint 6458 * 0b0011 => breakpoint on addr 6459 * 0b1100 => breakpoint on addr + 2 6460 * 0b1111 => breakpoint on addr 6461 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6462 */ 6463 int bas = extract64(bcr, 5, 4); 6464 addr = bvr & ~3ULL; 6465 if (bas == 0) { 6466 return; 6467 } 6468 if (bas == 0xc) { 6469 addr += 2; 6470 } 6471 break; 6472 } 6473 case 2: /* unlinked context ID match */ 6474 case 8: /* unlinked VMID match (reserved if no EL2) */ 6475 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6476 qemu_log_mask(LOG_UNIMP, 6477 "arm: unlinked context breakpoint types not implemented\n"); 6478 return; 6479 case 9: /* linked VMID match (reserved if no EL2) */ 6480 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6481 case 3: /* linked context ID match */ 6482 default: 6483 /* We must generate no events for Linked context matches (unless 6484 * they are linked to by some other bp/wp, which is handled in 6485 * updates for the linking bp/wp). We choose to also generate no events 6486 * for reserved values. 6487 */ 6488 return; 6489 } 6490 6491 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6492 } 6493 6494 void hw_breakpoint_update_all(ARMCPU *cpu) 6495 { 6496 int i; 6497 CPUARMState *env = &cpu->env; 6498 6499 /* Completely clear out existing QEMU breakpoints and our array, to 6500 * avoid possible stale entries following migration load. 6501 */ 6502 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6503 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6504 6505 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6506 hw_breakpoint_update(cpu, i); 6507 } 6508 } 6509 6510 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6511 uint64_t value) 6512 { 6513 ARMCPU *cpu = env_archcpu(env); 6514 int i = ri->crm; 6515 6516 raw_write(env, ri, value); 6517 hw_breakpoint_update(cpu, i); 6518 } 6519 6520 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6521 uint64_t value) 6522 { 6523 ARMCPU *cpu = env_archcpu(env); 6524 int i = ri->crm; 6525 6526 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6527 * copy of BAS[0]. 6528 */ 6529 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6530 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6531 6532 raw_write(env, ri, value); 6533 hw_breakpoint_update(cpu, i); 6534 } 6535 6536 static void define_debug_regs(ARMCPU *cpu) 6537 { 6538 /* Define v7 and v8 architectural debug registers. 6539 * These are just dummy implementations for now. 6540 */ 6541 int i; 6542 int wrps, brps, ctx_cmps; 6543 6544 /* 6545 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6546 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6547 * the register must not exist for this cpu. 6548 */ 6549 if (cpu->isar.dbgdidr != 0) { 6550 ARMCPRegInfo dbgdidr = { 6551 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6552 .opc1 = 0, .opc2 = 0, 6553 .access = PL0_R, .accessfn = access_tda, 6554 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6555 }; 6556 define_one_arm_cp_reg(cpu, &dbgdidr); 6557 } 6558 6559 brps = arm_num_brps(cpu); 6560 wrps = arm_num_wrps(cpu); 6561 ctx_cmps = arm_num_ctx_cmps(cpu); 6562 6563 assert(ctx_cmps <= brps); 6564 6565 define_arm_cp_regs(cpu, debug_cp_reginfo); 6566 6567 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6568 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6569 } 6570 6571 for (i = 0; i < brps; i++) { 6572 char *dbgbvr_el1_name = g_strdup_printf("DBGBVR%d_EL1", i); 6573 char *dbgbcr_el1_name = g_strdup_printf("DBGBCR%d_EL1", i); 6574 ARMCPRegInfo dbgregs[] = { 6575 { .name = dbgbvr_el1_name, .state = ARM_CP_STATE_BOTH, 6576 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6577 .access = PL1_RW, .accessfn = access_tda, 6578 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6579 .writefn = dbgbvr_write, .raw_writefn = raw_write 6580 }, 6581 { .name = dbgbcr_el1_name, .state = ARM_CP_STATE_BOTH, 6582 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6583 .access = PL1_RW, .accessfn = access_tda, 6584 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6585 .writefn = dbgbcr_write, .raw_writefn = raw_write 6586 }, 6587 }; 6588 define_arm_cp_regs(cpu, dbgregs); 6589 g_free(dbgbvr_el1_name); 6590 g_free(dbgbcr_el1_name); 6591 } 6592 6593 for (i = 0; i < wrps; i++) { 6594 char *dbgwvr_el1_name = g_strdup_printf("DBGWVR%d_EL1", i); 6595 char *dbgwcr_el1_name = g_strdup_printf("DBGWCR%d_EL1", i); 6596 ARMCPRegInfo dbgregs[] = { 6597 { .name = dbgwvr_el1_name, .state = ARM_CP_STATE_BOTH, 6598 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6599 .access = PL1_RW, .accessfn = access_tda, 6600 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6601 .writefn = dbgwvr_write, .raw_writefn = raw_write 6602 }, 6603 { .name = dbgwcr_el1_name, .state = ARM_CP_STATE_BOTH, 6604 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6605 .access = PL1_RW, .accessfn = access_tda, 6606 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6607 .writefn = dbgwcr_write, .raw_writefn = raw_write 6608 }, 6609 }; 6610 define_arm_cp_regs(cpu, dbgregs); 6611 g_free(dbgwvr_el1_name); 6612 g_free(dbgwcr_el1_name); 6613 } 6614 } 6615 6616 static void define_pmu_regs(ARMCPU *cpu) 6617 { 6618 /* 6619 * v7 performance monitor control register: same implementor 6620 * field as main ID register, and we implement four counters in 6621 * addition to the cycle count register. 6622 */ 6623 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 6624 ARMCPRegInfo pmcr = { 6625 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6626 .access = PL0_RW, 6627 .type = ARM_CP_IO | ARM_CP_ALIAS, 6628 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6629 .accessfn = pmreg_access, .writefn = pmcr_write, 6630 .raw_writefn = raw_write, 6631 }; 6632 ARMCPRegInfo pmcr64 = { 6633 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6634 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6635 .access = PL0_RW, .accessfn = pmreg_access, 6636 .type = ARM_CP_IO, 6637 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6638 .resetvalue = cpu->isar.reset_pmcr_el0, 6639 .writefn = pmcr_write, .raw_writefn = raw_write, 6640 }; 6641 6642 define_one_arm_cp_reg(cpu, &pmcr); 6643 define_one_arm_cp_reg(cpu, &pmcr64); 6644 for (i = 0; i < pmcrn; i++) { 6645 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6646 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6647 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6648 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6649 ARMCPRegInfo pmev_regs[] = { 6650 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6651 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6652 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6653 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6654 .accessfn = pmreg_access_xevcntr }, 6655 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6656 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6657 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6658 .type = ARM_CP_IO, 6659 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6660 .raw_readfn = pmevcntr_rawread, 6661 .raw_writefn = pmevcntr_rawwrite }, 6662 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6663 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6664 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6665 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6666 .accessfn = pmreg_access }, 6667 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6668 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6669 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6670 .type = ARM_CP_IO, 6671 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6672 .raw_writefn = pmevtyper_rawwrite }, 6673 }; 6674 define_arm_cp_regs(cpu, pmev_regs); 6675 g_free(pmevcntr_name); 6676 g_free(pmevcntr_el0_name); 6677 g_free(pmevtyper_name); 6678 g_free(pmevtyper_el0_name); 6679 } 6680 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6681 ARMCPRegInfo v81_pmu_regs[] = { 6682 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6683 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6684 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6685 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6686 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6687 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6688 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6689 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6690 }; 6691 define_arm_cp_regs(cpu, v81_pmu_regs); 6692 } 6693 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6694 static const ARMCPRegInfo v84_pmmir = { 6695 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6696 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6697 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6698 .resetvalue = 0 6699 }; 6700 define_one_arm_cp_reg(cpu, &v84_pmmir); 6701 } 6702 } 6703 6704 /* We don't know until after realize whether there's a GICv3 6705 * attached, and that is what registers the gicv3 sysregs. 6706 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6707 * at runtime. 6708 */ 6709 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6710 { 6711 ARMCPU *cpu = env_archcpu(env); 6712 uint64_t pfr1 = cpu->isar.id_pfr1; 6713 6714 if (env->gicv3state) { 6715 pfr1 |= 1 << 28; 6716 } 6717 return pfr1; 6718 } 6719 6720 #ifndef CONFIG_USER_ONLY 6721 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6722 { 6723 ARMCPU *cpu = env_archcpu(env); 6724 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6725 6726 if (env->gicv3state) { 6727 pfr0 |= 1 << 24; 6728 } 6729 return pfr0; 6730 } 6731 #endif 6732 6733 /* Shared logic between LORID and the rest of the LOR* registers. 6734 * Secure state exclusion has already been dealt with. 6735 */ 6736 static CPAccessResult access_lor_ns(CPUARMState *env, 6737 const ARMCPRegInfo *ri, bool isread) 6738 { 6739 int el = arm_current_el(env); 6740 6741 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6742 return CP_ACCESS_TRAP_EL2; 6743 } 6744 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6745 return CP_ACCESS_TRAP_EL3; 6746 } 6747 return CP_ACCESS_OK; 6748 } 6749 6750 static CPAccessResult access_lor_other(CPUARMState *env, 6751 const ARMCPRegInfo *ri, bool isread) 6752 { 6753 if (arm_is_secure_below_el3(env)) { 6754 /* Access denied in secure mode. */ 6755 return CP_ACCESS_TRAP; 6756 } 6757 return access_lor_ns(env, ri, isread); 6758 } 6759 6760 /* 6761 * A trivial implementation of ARMv8.1-LOR leaves all of these 6762 * registers fixed at 0, which indicates that there are zero 6763 * supported Limited Ordering regions. 6764 */ 6765 static const ARMCPRegInfo lor_reginfo[] = { 6766 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6767 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6768 .access = PL1_RW, .accessfn = access_lor_other, 6769 .type = ARM_CP_CONST, .resetvalue = 0 }, 6770 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6771 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6772 .access = PL1_RW, .accessfn = access_lor_other, 6773 .type = ARM_CP_CONST, .resetvalue = 0 }, 6774 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6775 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6776 .access = PL1_RW, .accessfn = access_lor_other, 6777 .type = ARM_CP_CONST, .resetvalue = 0 }, 6778 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6779 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6780 .access = PL1_RW, .accessfn = access_lor_other, 6781 .type = ARM_CP_CONST, .resetvalue = 0 }, 6782 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6783 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6784 .access = PL1_R, .accessfn = access_lor_ns, 6785 .type = ARM_CP_CONST, .resetvalue = 0 }, 6786 }; 6787 6788 #ifdef TARGET_AARCH64 6789 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6790 bool isread) 6791 { 6792 int el = arm_current_el(env); 6793 6794 if (el < 2 && 6795 arm_is_el2_enabled(env) && 6796 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6797 return CP_ACCESS_TRAP_EL2; 6798 } 6799 if (el < 3 && 6800 arm_feature(env, ARM_FEATURE_EL3) && 6801 !(env->cp15.scr_el3 & SCR_APK)) { 6802 return CP_ACCESS_TRAP_EL3; 6803 } 6804 return CP_ACCESS_OK; 6805 } 6806 6807 static const ARMCPRegInfo pauth_reginfo[] = { 6808 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6809 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6810 .access = PL1_RW, .accessfn = access_pauth, 6811 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6812 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6813 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6814 .access = PL1_RW, .accessfn = access_pauth, 6815 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6816 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6817 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6818 .access = PL1_RW, .accessfn = access_pauth, 6819 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6820 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6821 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6822 .access = PL1_RW, .accessfn = access_pauth, 6823 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6824 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6825 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6826 .access = PL1_RW, .accessfn = access_pauth, 6827 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6828 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6829 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6830 .access = PL1_RW, .accessfn = access_pauth, 6831 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6832 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6833 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6834 .access = PL1_RW, .accessfn = access_pauth, 6835 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6836 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6837 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6838 .access = PL1_RW, .accessfn = access_pauth, 6839 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6840 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6841 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6842 .access = PL1_RW, .accessfn = access_pauth, 6843 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6844 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6845 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6846 .access = PL1_RW, .accessfn = access_pauth, 6847 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6848 }; 6849 6850 static const ARMCPRegInfo tlbirange_reginfo[] = { 6851 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6852 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6853 .access = PL1_W, .type = ARM_CP_NO_RAW, 6854 .writefn = tlbi_aa64_rvae1is_write }, 6855 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6856 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6857 .access = PL1_W, .type = ARM_CP_NO_RAW, 6858 .writefn = tlbi_aa64_rvae1is_write }, 6859 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6860 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6861 .access = PL1_W, .type = ARM_CP_NO_RAW, 6862 .writefn = tlbi_aa64_rvae1is_write }, 6863 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6864 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6865 .access = PL1_W, .type = ARM_CP_NO_RAW, 6866 .writefn = tlbi_aa64_rvae1is_write }, 6867 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6868 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6869 .access = PL1_W, .type = ARM_CP_NO_RAW, 6870 .writefn = tlbi_aa64_rvae1is_write }, 6871 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6872 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6873 .access = PL1_W, .type = ARM_CP_NO_RAW, 6874 .writefn = tlbi_aa64_rvae1is_write }, 6875 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6876 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6877 .access = PL1_W, .type = ARM_CP_NO_RAW, 6878 .writefn = tlbi_aa64_rvae1is_write }, 6879 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6880 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6881 .access = PL1_W, .type = ARM_CP_NO_RAW, 6882 .writefn = tlbi_aa64_rvae1is_write }, 6883 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6884 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6885 .access = PL1_W, .type = ARM_CP_NO_RAW, 6886 .writefn = tlbi_aa64_rvae1_write }, 6887 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6888 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6889 .access = PL1_W, .type = ARM_CP_NO_RAW, 6890 .writefn = tlbi_aa64_rvae1_write }, 6891 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6892 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6893 .access = PL1_W, .type = ARM_CP_NO_RAW, 6894 .writefn = tlbi_aa64_rvae1_write }, 6895 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6896 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6897 .access = PL1_W, .type = ARM_CP_NO_RAW, 6898 .writefn = tlbi_aa64_rvae1_write }, 6899 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6900 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6901 .access = PL2_W, .type = ARM_CP_NOP }, 6902 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6903 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6904 .access = PL2_W, .type = ARM_CP_NOP }, 6905 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6906 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6907 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6908 .writefn = tlbi_aa64_rvae2is_write }, 6909 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6910 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6911 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6912 .writefn = tlbi_aa64_rvae2is_write }, 6913 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6914 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6915 .access = PL2_W, .type = ARM_CP_NOP }, 6916 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6917 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6918 .access = PL2_W, .type = ARM_CP_NOP }, 6919 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6920 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6921 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6922 .writefn = tlbi_aa64_rvae2is_write }, 6923 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6924 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6925 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6926 .writefn = tlbi_aa64_rvae2is_write }, 6927 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6928 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6929 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6930 .writefn = tlbi_aa64_rvae2_write }, 6931 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6932 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6933 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6934 .writefn = tlbi_aa64_rvae2_write }, 6935 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6936 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6937 .access = PL3_W, .type = ARM_CP_NO_RAW, 6938 .writefn = tlbi_aa64_rvae3is_write }, 6939 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6940 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6941 .access = PL3_W, .type = ARM_CP_NO_RAW, 6942 .writefn = tlbi_aa64_rvae3is_write }, 6943 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6944 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6945 .access = PL3_W, .type = ARM_CP_NO_RAW, 6946 .writefn = tlbi_aa64_rvae3is_write }, 6947 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6948 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6949 .access = PL3_W, .type = ARM_CP_NO_RAW, 6950 .writefn = tlbi_aa64_rvae3is_write }, 6951 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6952 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6953 .access = PL3_W, .type = ARM_CP_NO_RAW, 6954 .writefn = tlbi_aa64_rvae3_write }, 6955 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 6956 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 6957 .access = PL3_W, .type = ARM_CP_NO_RAW, 6958 .writefn = tlbi_aa64_rvae3_write }, 6959 }; 6960 6961 static const ARMCPRegInfo tlbios_reginfo[] = { 6962 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 6963 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 6964 .access = PL1_W, .type = ARM_CP_NO_RAW, 6965 .writefn = tlbi_aa64_vmalle1is_write }, 6966 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 6967 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 6968 .access = PL1_W, .type = ARM_CP_NO_RAW, 6969 .writefn = tlbi_aa64_vae1is_write }, 6970 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 6971 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 6972 .access = PL1_W, .type = ARM_CP_NO_RAW, 6973 .writefn = tlbi_aa64_vmalle1is_write }, 6974 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 6975 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 6976 .access = PL1_W, .type = ARM_CP_NO_RAW, 6977 .writefn = tlbi_aa64_vae1is_write }, 6978 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 6979 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 6980 .access = PL1_W, .type = ARM_CP_NO_RAW, 6981 .writefn = tlbi_aa64_vae1is_write }, 6982 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 6983 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 6984 .access = PL1_W, .type = ARM_CP_NO_RAW, 6985 .writefn = tlbi_aa64_vae1is_write }, 6986 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 6987 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 6988 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6989 .writefn = tlbi_aa64_alle2is_write }, 6990 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 6991 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 6992 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6993 .writefn = tlbi_aa64_vae2is_write }, 6994 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 6995 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 6996 .access = PL2_W, .type = ARM_CP_NO_RAW, 6997 .writefn = tlbi_aa64_alle1is_write }, 6998 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 6999 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7000 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7001 .writefn = tlbi_aa64_vae2is_write }, 7002 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7003 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7004 .access = PL2_W, .type = ARM_CP_NO_RAW, 7005 .writefn = tlbi_aa64_alle1is_write }, 7006 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7007 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7008 .access = PL2_W, .type = ARM_CP_NOP }, 7009 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7010 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7011 .access = PL2_W, .type = ARM_CP_NOP }, 7012 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7013 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7014 .access = PL2_W, .type = ARM_CP_NOP }, 7015 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7016 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7017 .access = PL2_W, .type = ARM_CP_NOP }, 7018 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7019 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7020 .access = PL3_W, .type = ARM_CP_NO_RAW, 7021 .writefn = tlbi_aa64_alle3is_write }, 7022 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7023 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7024 .access = PL3_W, .type = ARM_CP_NO_RAW, 7025 .writefn = tlbi_aa64_vae3is_write }, 7026 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7027 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7028 .access = PL3_W, .type = ARM_CP_NO_RAW, 7029 .writefn = tlbi_aa64_vae3is_write }, 7030 }; 7031 7032 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7033 { 7034 Error *err = NULL; 7035 uint64_t ret; 7036 7037 /* Success sets NZCV = 0000. */ 7038 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7039 7040 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7041 /* 7042 * ??? Failed, for unknown reasons in the crypto subsystem. 7043 * The best we can do is log the reason and return the 7044 * timed-out indication to the guest. There is no reason 7045 * we know to expect this failure to be transitory, so the 7046 * guest may well hang retrying the operation. 7047 */ 7048 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7049 ri->name, error_get_pretty(err)); 7050 error_free(err); 7051 7052 env->ZF = 0; /* NZCF = 0100 */ 7053 return 0; 7054 } 7055 return ret; 7056 } 7057 7058 /* We do not support re-seeding, so the two registers operate the same. */ 7059 static const ARMCPRegInfo rndr_reginfo[] = { 7060 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7061 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7062 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7063 .access = PL0_R, .readfn = rndr_readfn }, 7064 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7065 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7066 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7067 .access = PL0_R, .readfn = rndr_readfn }, 7068 }; 7069 7070 #ifndef CONFIG_USER_ONLY 7071 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7072 uint64_t value) 7073 { 7074 ARMCPU *cpu = env_archcpu(env); 7075 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7076 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7077 uint64_t vaddr_in = (uint64_t) value; 7078 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7079 void *haddr; 7080 int mem_idx = cpu_mmu_index(env, false); 7081 7082 /* This won't be crossing page boundaries */ 7083 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7084 if (haddr) { 7085 7086 ram_addr_t offset; 7087 MemoryRegion *mr; 7088 7089 /* RCU lock is already being held */ 7090 mr = memory_region_from_host(haddr, &offset); 7091 7092 if (mr) { 7093 memory_region_writeback(mr, offset, dline_size); 7094 } 7095 } 7096 } 7097 7098 static const ARMCPRegInfo dcpop_reg[] = { 7099 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7100 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7101 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7102 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7103 }; 7104 7105 static const ARMCPRegInfo dcpodp_reg[] = { 7106 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7107 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7108 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7109 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7110 }; 7111 #endif /*CONFIG_USER_ONLY*/ 7112 7113 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7114 bool isread) 7115 { 7116 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7117 return CP_ACCESS_TRAP_EL2; 7118 } 7119 7120 return CP_ACCESS_OK; 7121 } 7122 7123 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7124 bool isread) 7125 { 7126 int el = arm_current_el(env); 7127 7128 if (el < 2 && arm_is_el2_enabled(env)) { 7129 uint64_t hcr = arm_hcr_el2_eff(env); 7130 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7131 return CP_ACCESS_TRAP_EL2; 7132 } 7133 } 7134 if (el < 3 && 7135 arm_feature(env, ARM_FEATURE_EL3) && 7136 !(env->cp15.scr_el3 & SCR_ATA)) { 7137 return CP_ACCESS_TRAP_EL3; 7138 } 7139 return CP_ACCESS_OK; 7140 } 7141 7142 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7143 { 7144 return env->pstate & PSTATE_TCO; 7145 } 7146 7147 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7148 { 7149 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7150 } 7151 7152 static const ARMCPRegInfo mte_reginfo[] = { 7153 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7154 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7155 .access = PL1_RW, .accessfn = access_mte, 7156 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7157 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7158 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7159 .access = PL1_RW, .accessfn = access_mte, 7160 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7161 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7162 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7163 .access = PL2_RW, .accessfn = access_mte, 7164 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7165 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7166 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7167 .access = PL3_RW, 7168 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7169 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7170 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7171 .access = PL1_RW, .accessfn = access_mte, 7172 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7173 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7174 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7175 .access = PL1_RW, .accessfn = access_mte, 7176 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7177 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7178 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7179 .access = PL1_R, .accessfn = access_aa64_tid5, 7180 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7181 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7182 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7183 .type = ARM_CP_NO_RAW, 7184 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7185 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7186 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7187 .type = ARM_CP_NOP, .access = PL1_W, 7188 .accessfn = aa64_cacheop_poc_access }, 7189 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7190 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7191 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7192 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7193 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7194 .type = ARM_CP_NOP, .access = PL1_W, 7195 .accessfn = aa64_cacheop_poc_access }, 7196 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7197 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7198 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7199 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7200 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7201 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7202 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7203 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7204 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7205 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7206 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7207 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7208 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7209 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7210 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7211 }; 7212 7213 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7214 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7215 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7216 .type = ARM_CP_CONST, .access = PL0_RW, }, 7217 }; 7218 7219 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7220 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7221 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7222 .type = ARM_CP_NOP, .access = PL0_W, 7223 .accessfn = aa64_cacheop_poc_access }, 7224 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7225 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7226 .type = ARM_CP_NOP, .access = PL0_W, 7227 .accessfn = aa64_cacheop_poc_access }, 7228 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7229 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7230 .type = ARM_CP_NOP, .access = PL0_W, 7231 .accessfn = aa64_cacheop_poc_access }, 7232 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7233 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7234 .type = ARM_CP_NOP, .access = PL0_W, 7235 .accessfn = aa64_cacheop_poc_access }, 7236 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7237 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7238 .type = ARM_CP_NOP, .access = PL0_W, 7239 .accessfn = aa64_cacheop_poc_access }, 7240 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7241 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7242 .type = ARM_CP_NOP, .access = PL0_W, 7243 .accessfn = aa64_cacheop_poc_access }, 7244 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7245 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7246 .type = ARM_CP_NOP, .access = PL0_W, 7247 .accessfn = aa64_cacheop_poc_access }, 7248 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7249 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7250 .type = ARM_CP_NOP, .access = PL0_W, 7251 .accessfn = aa64_cacheop_poc_access }, 7252 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7253 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7254 .access = PL0_W, .type = ARM_CP_DC_GVA, 7255 #ifndef CONFIG_USER_ONLY 7256 /* Avoid overhead of an access check that always passes in user-mode */ 7257 .accessfn = aa64_zva_access, 7258 #endif 7259 }, 7260 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7261 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7262 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7263 #ifndef CONFIG_USER_ONLY 7264 /* Avoid overhead of an access check that always passes in user-mode */ 7265 .accessfn = aa64_zva_access, 7266 #endif 7267 }, 7268 }; 7269 7270 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7271 bool isread) 7272 { 7273 uint64_t hcr = arm_hcr_el2_eff(env); 7274 int el = arm_current_el(env); 7275 7276 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7277 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7278 if (hcr & HCR_TGE) { 7279 return CP_ACCESS_TRAP_EL2; 7280 } 7281 return CP_ACCESS_TRAP; 7282 } 7283 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7284 return CP_ACCESS_TRAP_EL2; 7285 } 7286 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7287 return CP_ACCESS_TRAP_EL2; 7288 } 7289 if (el < 3 7290 && arm_feature(env, ARM_FEATURE_EL3) 7291 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7292 return CP_ACCESS_TRAP_EL3; 7293 } 7294 return CP_ACCESS_OK; 7295 } 7296 7297 static const ARMCPRegInfo scxtnum_reginfo[] = { 7298 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7299 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7300 .access = PL0_RW, .accessfn = access_scxtnum, 7301 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7302 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7303 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7304 .access = PL1_RW, .accessfn = access_scxtnum, 7305 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7306 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7307 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7308 .access = PL2_RW, .accessfn = access_scxtnum, 7309 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7310 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7311 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7312 .access = PL3_RW, 7313 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7314 }; 7315 #endif /* TARGET_AARCH64 */ 7316 7317 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7318 bool isread) 7319 { 7320 int el = arm_current_el(env); 7321 7322 if (el == 0) { 7323 uint64_t sctlr = arm_sctlr(env, el); 7324 if (!(sctlr & SCTLR_EnRCTX)) { 7325 return CP_ACCESS_TRAP; 7326 } 7327 } else if (el == 1) { 7328 uint64_t hcr = arm_hcr_el2_eff(env); 7329 if (hcr & HCR_NV) { 7330 return CP_ACCESS_TRAP_EL2; 7331 } 7332 } 7333 return CP_ACCESS_OK; 7334 } 7335 7336 static const ARMCPRegInfo predinv_reginfo[] = { 7337 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7338 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7339 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7340 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7341 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7342 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7343 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7344 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7345 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7346 /* 7347 * Note the AArch32 opcodes have a different OPC1. 7348 */ 7349 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7350 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7351 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7352 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7353 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7354 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7355 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7356 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7357 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7358 }; 7359 7360 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7361 { 7362 /* Read the high 32 bits of the current CCSIDR */ 7363 return extract64(ccsidr_read(env, ri), 32, 32); 7364 } 7365 7366 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7367 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7368 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7369 .access = PL1_R, 7370 .accessfn = access_aa64_tid2, 7371 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7372 }; 7373 7374 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7375 bool isread) 7376 { 7377 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7378 return CP_ACCESS_TRAP_EL2; 7379 } 7380 7381 return CP_ACCESS_OK; 7382 } 7383 7384 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7385 bool isread) 7386 { 7387 if (arm_feature(env, ARM_FEATURE_V8)) { 7388 return access_aa64_tid3(env, ri, isread); 7389 } 7390 7391 return CP_ACCESS_OK; 7392 } 7393 7394 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7395 bool isread) 7396 { 7397 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7398 return CP_ACCESS_TRAP_EL2; 7399 } 7400 7401 return CP_ACCESS_OK; 7402 } 7403 7404 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7405 const ARMCPRegInfo *ri, bool isread) 7406 { 7407 /* 7408 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7409 * in v7A, not in v8A. 7410 */ 7411 if (!arm_feature(env, ARM_FEATURE_V8) && 7412 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7413 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7414 return CP_ACCESS_TRAP_EL2; 7415 } 7416 return CP_ACCESS_OK; 7417 } 7418 7419 static const ARMCPRegInfo jazelle_regs[] = { 7420 { .name = "JIDR", 7421 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7422 .access = PL1_R, .accessfn = access_jazelle, 7423 .type = ARM_CP_CONST, .resetvalue = 0 }, 7424 { .name = "JOSCR", 7425 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7426 .accessfn = access_joscr_jmcr, 7427 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7428 { .name = "JMCR", 7429 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7430 .accessfn = access_joscr_jmcr, 7431 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7432 }; 7433 7434 static const ARMCPRegInfo contextidr_el2 = { 7435 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7436 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7437 .access = PL2_RW, 7438 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7439 }; 7440 7441 static const ARMCPRegInfo vhe_reginfo[] = { 7442 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7443 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7444 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7445 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7446 #ifndef CONFIG_USER_ONLY 7447 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7448 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7449 .fieldoffset = 7450 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7451 .type = ARM_CP_IO, .access = PL2_RW, 7452 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7453 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7454 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7455 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7456 .resetfn = gt_hv_timer_reset, 7457 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7458 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7459 .type = ARM_CP_IO, 7460 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7461 .access = PL2_RW, 7462 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7463 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7464 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7465 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7466 .type = ARM_CP_IO | ARM_CP_ALIAS, 7467 .access = PL2_RW, .accessfn = e2h_access, 7468 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7469 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7470 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7471 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7472 .type = ARM_CP_IO | ARM_CP_ALIAS, 7473 .access = PL2_RW, .accessfn = e2h_access, 7474 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7475 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7476 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7477 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7478 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7479 .access = PL2_RW, .accessfn = e2h_access, 7480 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7481 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7482 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7483 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7484 .access = PL2_RW, .accessfn = e2h_access, 7485 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7486 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7487 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7488 .type = ARM_CP_IO | ARM_CP_ALIAS, 7489 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7490 .access = PL2_RW, .accessfn = e2h_access, 7491 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7492 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7493 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7494 .type = ARM_CP_IO | ARM_CP_ALIAS, 7495 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7496 .access = PL2_RW, .accessfn = e2h_access, 7497 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7498 #endif 7499 }; 7500 7501 #ifndef CONFIG_USER_ONLY 7502 static const ARMCPRegInfo ats1e1_reginfo[] = { 7503 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7504 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7505 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7506 .writefn = ats_write64 }, 7507 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7508 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7509 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7510 .writefn = ats_write64 }, 7511 }; 7512 7513 static const ARMCPRegInfo ats1cp_reginfo[] = { 7514 { .name = "ATS1CPRP", 7515 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7516 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7517 .writefn = ats_write }, 7518 { .name = "ATS1CPWP", 7519 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7520 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7521 .writefn = ats_write }, 7522 }; 7523 #endif 7524 7525 /* 7526 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7527 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7528 * is non-zero, which is never for ARMv7, optionally in ARMv8 7529 * and mandatorily for ARMv8.2 and up. 7530 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7531 * implementation is RAZ/WI we can ignore this detail, as we 7532 * do for ACTLR. 7533 */ 7534 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7535 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7536 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7537 .access = PL1_RW, .accessfn = access_tacr, 7538 .type = ARM_CP_CONST, .resetvalue = 0 }, 7539 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7540 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7541 .access = PL2_RW, .type = ARM_CP_CONST, 7542 .resetvalue = 0 }, 7543 }; 7544 7545 void register_cp_regs_for_features(ARMCPU *cpu) 7546 { 7547 /* Register all the coprocessor registers based on feature bits */ 7548 CPUARMState *env = &cpu->env; 7549 if (arm_feature(env, ARM_FEATURE_M)) { 7550 /* M profile has no coprocessor registers */ 7551 return; 7552 } 7553 7554 define_arm_cp_regs(cpu, cp_reginfo); 7555 if (!arm_feature(env, ARM_FEATURE_V8)) { 7556 /* Must go early as it is full of wildcards that may be 7557 * overridden by later definitions. 7558 */ 7559 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7560 } 7561 7562 if (arm_feature(env, ARM_FEATURE_V6)) { 7563 /* The ID registers all have impdef reset values */ 7564 ARMCPRegInfo v6_idregs[] = { 7565 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7566 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7567 .access = PL1_R, .type = ARM_CP_CONST, 7568 .accessfn = access_aa32_tid3, 7569 .resetvalue = cpu->isar.id_pfr0 }, 7570 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7571 * the value of the GIC field until after we define these regs. 7572 */ 7573 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7574 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7575 .access = PL1_R, .type = ARM_CP_NO_RAW, 7576 .accessfn = access_aa32_tid3, 7577 .readfn = id_pfr1_read, 7578 .writefn = arm_cp_write_ignore }, 7579 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7580 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7581 .access = PL1_R, .type = ARM_CP_CONST, 7582 .accessfn = access_aa32_tid3, 7583 .resetvalue = cpu->isar.id_dfr0 }, 7584 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7585 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7586 .access = PL1_R, .type = ARM_CP_CONST, 7587 .accessfn = access_aa32_tid3, 7588 .resetvalue = cpu->id_afr0 }, 7589 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7590 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7591 .access = PL1_R, .type = ARM_CP_CONST, 7592 .accessfn = access_aa32_tid3, 7593 .resetvalue = cpu->isar.id_mmfr0 }, 7594 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7595 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7596 .access = PL1_R, .type = ARM_CP_CONST, 7597 .accessfn = access_aa32_tid3, 7598 .resetvalue = cpu->isar.id_mmfr1 }, 7599 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7600 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7601 .access = PL1_R, .type = ARM_CP_CONST, 7602 .accessfn = access_aa32_tid3, 7603 .resetvalue = cpu->isar.id_mmfr2 }, 7604 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7605 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7606 .access = PL1_R, .type = ARM_CP_CONST, 7607 .accessfn = access_aa32_tid3, 7608 .resetvalue = cpu->isar.id_mmfr3 }, 7609 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7610 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7611 .access = PL1_R, .type = ARM_CP_CONST, 7612 .accessfn = access_aa32_tid3, 7613 .resetvalue = cpu->isar.id_isar0 }, 7614 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7615 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7616 .access = PL1_R, .type = ARM_CP_CONST, 7617 .accessfn = access_aa32_tid3, 7618 .resetvalue = cpu->isar.id_isar1 }, 7619 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7620 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7621 .access = PL1_R, .type = ARM_CP_CONST, 7622 .accessfn = access_aa32_tid3, 7623 .resetvalue = cpu->isar.id_isar2 }, 7624 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7625 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7626 .access = PL1_R, .type = ARM_CP_CONST, 7627 .accessfn = access_aa32_tid3, 7628 .resetvalue = cpu->isar.id_isar3 }, 7629 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7630 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7631 .access = PL1_R, .type = ARM_CP_CONST, 7632 .accessfn = access_aa32_tid3, 7633 .resetvalue = cpu->isar.id_isar4 }, 7634 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7635 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7636 .access = PL1_R, .type = ARM_CP_CONST, 7637 .accessfn = access_aa32_tid3, 7638 .resetvalue = cpu->isar.id_isar5 }, 7639 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7640 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7641 .access = PL1_R, .type = ARM_CP_CONST, 7642 .accessfn = access_aa32_tid3, 7643 .resetvalue = cpu->isar.id_mmfr4 }, 7644 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7645 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7646 .access = PL1_R, .type = ARM_CP_CONST, 7647 .accessfn = access_aa32_tid3, 7648 .resetvalue = cpu->isar.id_isar6 }, 7649 }; 7650 define_arm_cp_regs(cpu, v6_idregs); 7651 define_arm_cp_regs(cpu, v6_cp_reginfo); 7652 } else { 7653 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7654 } 7655 if (arm_feature(env, ARM_FEATURE_V6K)) { 7656 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7657 } 7658 if (arm_feature(env, ARM_FEATURE_V7MP) && 7659 !arm_feature(env, ARM_FEATURE_PMSA)) { 7660 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7661 } 7662 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7663 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7664 } 7665 if (arm_feature(env, ARM_FEATURE_V7)) { 7666 ARMCPRegInfo clidr = { 7667 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7668 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7669 .access = PL1_R, .type = ARM_CP_CONST, 7670 .accessfn = access_aa64_tid2, 7671 .resetvalue = cpu->clidr 7672 }; 7673 define_one_arm_cp_reg(cpu, &clidr); 7674 define_arm_cp_regs(cpu, v7_cp_reginfo); 7675 define_debug_regs(cpu); 7676 define_pmu_regs(cpu); 7677 } else { 7678 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7679 } 7680 if (arm_feature(env, ARM_FEATURE_V8)) { 7681 /* AArch64 ID registers, which all have impdef reset values. 7682 * Note that within the ID register ranges the unused slots 7683 * must all RAZ, not UNDEF; future architecture versions may 7684 * define new registers here. 7685 */ 7686 ARMCPRegInfo v8_idregs[] = { 7687 /* 7688 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7689 * emulation because we don't know the right value for the 7690 * GIC field until after we define these regs. 7691 */ 7692 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7693 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7694 .access = PL1_R, 7695 #ifdef CONFIG_USER_ONLY 7696 .type = ARM_CP_CONST, 7697 .resetvalue = cpu->isar.id_aa64pfr0 7698 #else 7699 .type = ARM_CP_NO_RAW, 7700 .accessfn = access_aa64_tid3, 7701 .readfn = id_aa64pfr0_read, 7702 .writefn = arm_cp_write_ignore 7703 #endif 7704 }, 7705 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7706 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7707 .access = PL1_R, .type = ARM_CP_CONST, 7708 .accessfn = access_aa64_tid3, 7709 .resetvalue = cpu->isar.id_aa64pfr1}, 7710 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7711 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7712 .access = PL1_R, .type = ARM_CP_CONST, 7713 .accessfn = access_aa64_tid3, 7714 .resetvalue = 0 }, 7715 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7716 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7717 .access = PL1_R, .type = ARM_CP_CONST, 7718 .accessfn = access_aa64_tid3, 7719 .resetvalue = 0 }, 7720 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7721 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7722 .access = PL1_R, .type = ARM_CP_CONST, 7723 .accessfn = access_aa64_tid3, 7724 .resetvalue = cpu->isar.id_aa64zfr0 }, 7725 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 7726 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7727 .access = PL1_R, .type = ARM_CP_CONST, 7728 .accessfn = access_aa64_tid3, 7729 .resetvalue = cpu->isar.id_aa64smfr0 }, 7730 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7732 .access = PL1_R, .type = ARM_CP_CONST, 7733 .accessfn = access_aa64_tid3, 7734 .resetvalue = 0 }, 7735 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7736 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7737 .access = PL1_R, .type = ARM_CP_CONST, 7738 .accessfn = access_aa64_tid3, 7739 .resetvalue = 0 }, 7740 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7741 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7742 .access = PL1_R, .type = ARM_CP_CONST, 7743 .accessfn = access_aa64_tid3, 7744 .resetvalue = cpu->isar.id_aa64dfr0 }, 7745 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7746 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7747 .access = PL1_R, .type = ARM_CP_CONST, 7748 .accessfn = access_aa64_tid3, 7749 .resetvalue = cpu->isar.id_aa64dfr1 }, 7750 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7751 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7752 .access = PL1_R, .type = ARM_CP_CONST, 7753 .accessfn = access_aa64_tid3, 7754 .resetvalue = 0 }, 7755 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7756 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7757 .access = PL1_R, .type = ARM_CP_CONST, 7758 .accessfn = access_aa64_tid3, 7759 .resetvalue = 0 }, 7760 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7761 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7762 .access = PL1_R, .type = ARM_CP_CONST, 7763 .accessfn = access_aa64_tid3, 7764 .resetvalue = cpu->id_aa64afr0 }, 7765 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7766 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7767 .access = PL1_R, .type = ARM_CP_CONST, 7768 .accessfn = access_aa64_tid3, 7769 .resetvalue = cpu->id_aa64afr1 }, 7770 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7771 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7772 .access = PL1_R, .type = ARM_CP_CONST, 7773 .accessfn = access_aa64_tid3, 7774 .resetvalue = 0 }, 7775 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7776 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7777 .access = PL1_R, .type = ARM_CP_CONST, 7778 .accessfn = access_aa64_tid3, 7779 .resetvalue = 0 }, 7780 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7781 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7782 .access = PL1_R, .type = ARM_CP_CONST, 7783 .accessfn = access_aa64_tid3, 7784 .resetvalue = cpu->isar.id_aa64isar0 }, 7785 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7786 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7787 .access = PL1_R, .type = ARM_CP_CONST, 7788 .accessfn = access_aa64_tid3, 7789 .resetvalue = cpu->isar.id_aa64isar1 }, 7790 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7791 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7792 .access = PL1_R, .type = ARM_CP_CONST, 7793 .accessfn = access_aa64_tid3, 7794 .resetvalue = 0 }, 7795 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7796 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7797 .access = PL1_R, .type = ARM_CP_CONST, 7798 .accessfn = access_aa64_tid3, 7799 .resetvalue = 0 }, 7800 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7801 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7802 .access = PL1_R, .type = ARM_CP_CONST, 7803 .accessfn = access_aa64_tid3, 7804 .resetvalue = 0 }, 7805 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7806 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7807 .access = PL1_R, .type = ARM_CP_CONST, 7808 .accessfn = access_aa64_tid3, 7809 .resetvalue = 0 }, 7810 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7811 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7812 .access = PL1_R, .type = ARM_CP_CONST, 7813 .accessfn = access_aa64_tid3, 7814 .resetvalue = 0 }, 7815 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7816 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7817 .access = PL1_R, .type = ARM_CP_CONST, 7818 .accessfn = access_aa64_tid3, 7819 .resetvalue = 0 }, 7820 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7821 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7822 .access = PL1_R, .type = ARM_CP_CONST, 7823 .accessfn = access_aa64_tid3, 7824 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7825 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7826 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7827 .access = PL1_R, .type = ARM_CP_CONST, 7828 .accessfn = access_aa64_tid3, 7829 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7830 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7831 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7832 .access = PL1_R, .type = ARM_CP_CONST, 7833 .accessfn = access_aa64_tid3, 7834 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7835 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7836 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7837 .access = PL1_R, .type = ARM_CP_CONST, 7838 .accessfn = access_aa64_tid3, 7839 .resetvalue = 0 }, 7840 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7841 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7842 .access = PL1_R, .type = ARM_CP_CONST, 7843 .accessfn = access_aa64_tid3, 7844 .resetvalue = 0 }, 7845 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7846 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7847 .access = PL1_R, .type = ARM_CP_CONST, 7848 .accessfn = access_aa64_tid3, 7849 .resetvalue = 0 }, 7850 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7851 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7852 .access = PL1_R, .type = ARM_CP_CONST, 7853 .accessfn = access_aa64_tid3, 7854 .resetvalue = 0 }, 7855 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7856 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7857 .access = PL1_R, .type = ARM_CP_CONST, 7858 .accessfn = access_aa64_tid3, 7859 .resetvalue = 0 }, 7860 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7861 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7862 .access = PL1_R, .type = ARM_CP_CONST, 7863 .accessfn = access_aa64_tid3, 7864 .resetvalue = cpu->isar.mvfr0 }, 7865 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7866 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7867 .access = PL1_R, .type = ARM_CP_CONST, 7868 .accessfn = access_aa64_tid3, 7869 .resetvalue = cpu->isar.mvfr1 }, 7870 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7871 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7872 .access = PL1_R, .type = ARM_CP_CONST, 7873 .accessfn = access_aa64_tid3, 7874 .resetvalue = cpu->isar.mvfr2 }, 7875 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7876 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7877 .access = PL1_R, .type = ARM_CP_CONST, 7878 .accessfn = access_aa64_tid3, 7879 .resetvalue = 0 }, 7880 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7881 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7882 .access = PL1_R, .type = ARM_CP_CONST, 7883 .accessfn = access_aa64_tid3, 7884 .resetvalue = cpu->isar.id_pfr2 }, 7885 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7886 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7887 .access = PL1_R, .type = ARM_CP_CONST, 7888 .accessfn = access_aa64_tid3, 7889 .resetvalue = 0 }, 7890 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7891 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7892 .access = PL1_R, .type = ARM_CP_CONST, 7893 .accessfn = access_aa64_tid3, 7894 .resetvalue = 0 }, 7895 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7896 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7897 .access = PL1_R, .type = ARM_CP_CONST, 7898 .accessfn = access_aa64_tid3, 7899 .resetvalue = 0 }, 7900 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7901 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7902 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7903 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7904 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7905 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7906 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7907 .resetvalue = cpu->pmceid0 }, 7908 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7909 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7910 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7911 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7912 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7913 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7914 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7915 .resetvalue = cpu->pmceid1 }, 7916 }; 7917 #ifdef CONFIG_USER_ONLY 7918 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7919 { .name = "ID_AA64PFR0_EL1", 7920 .exported_bits = 0x000f000f00ff0000, 7921 .fixed_bits = 0x0000000000000011 }, 7922 { .name = "ID_AA64PFR1_EL1", 7923 .exported_bits = 0x00000000000000f0 }, 7924 { .name = "ID_AA64PFR*_EL1_RESERVED", 7925 .is_glob = true }, 7926 { .name = "ID_AA64ZFR0_EL1" }, 7927 { .name = "ID_AA64MMFR0_EL1", 7928 .fixed_bits = 0x00000000ff000000 }, 7929 { .name = "ID_AA64MMFR1_EL1" }, 7930 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7931 .is_glob = true }, 7932 { .name = "ID_AA64DFR0_EL1", 7933 .fixed_bits = 0x0000000000000006 }, 7934 { .name = "ID_AA64DFR1_EL1" }, 7935 { .name = "ID_AA64DFR*_EL1_RESERVED", 7936 .is_glob = true }, 7937 { .name = "ID_AA64AFR*", 7938 .is_glob = true }, 7939 { .name = "ID_AA64ISAR0_EL1", 7940 .exported_bits = 0x00fffffff0fffff0 }, 7941 { .name = "ID_AA64ISAR1_EL1", 7942 .exported_bits = 0x000000f0ffffffff }, 7943 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7944 .is_glob = true }, 7945 }; 7946 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7947 #endif 7948 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7949 if (!arm_feature(env, ARM_FEATURE_EL3) && 7950 !arm_feature(env, ARM_FEATURE_EL2)) { 7951 ARMCPRegInfo rvbar = { 7952 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7953 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7954 .access = PL1_R, 7955 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7956 }; 7957 define_one_arm_cp_reg(cpu, &rvbar); 7958 } 7959 define_arm_cp_regs(cpu, v8_idregs); 7960 define_arm_cp_regs(cpu, v8_cp_reginfo); 7961 } 7962 7963 /* 7964 * Register the base EL2 cpregs. 7965 * Pre v8, these registers are implemented only as part of the 7966 * Virtualization Extensions (EL2 present). Beginning with v8, 7967 * if EL2 is missing but EL3 is enabled, mostly these become 7968 * RES0 from EL3, with some specific exceptions. 7969 */ 7970 if (arm_feature(env, ARM_FEATURE_EL2) 7971 || (arm_feature(env, ARM_FEATURE_EL3) 7972 && arm_feature(env, ARM_FEATURE_V8))) { 7973 uint64_t vmpidr_def = mpidr_read_val(env); 7974 ARMCPRegInfo vpidr_regs[] = { 7975 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7976 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7977 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7978 .resetvalue = cpu->midr, 7979 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7980 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7981 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7982 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7983 .access = PL2_RW, .resetvalue = cpu->midr, 7984 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7985 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7986 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7987 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7988 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7989 .resetvalue = vmpidr_def, 7990 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7991 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7992 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7993 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7994 .access = PL2_RW, .resetvalue = vmpidr_def, 7995 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7996 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7997 }; 7998 /* 7999 * The only field of MDCR_EL2 that has a defined architectural reset 8000 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8001 */ 8002 ARMCPRegInfo mdcr_el2 = { 8003 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 8004 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8005 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8006 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8007 }; 8008 define_one_arm_cp_reg(cpu, &mdcr_el2); 8009 define_arm_cp_regs(cpu, vpidr_regs); 8010 define_arm_cp_regs(cpu, el2_cp_reginfo); 8011 if (arm_feature(env, ARM_FEATURE_V8)) { 8012 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8013 } 8014 if (cpu_isar_feature(aa64_sel2, cpu)) { 8015 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8016 } 8017 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 8018 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8019 ARMCPRegInfo rvbar = { 8020 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8021 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8022 .access = PL2_R, 8023 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8024 }; 8025 define_one_arm_cp_reg(cpu, &rvbar); 8026 } 8027 } 8028 8029 /* Register the base EL3 cpregs. */ 8030 if (arm_feature(env, ARM_FEATURE_EL3)) { 8031 define_arm_cp_regs(cpu, el3_cp_reginfo); 8032 ARMCPRegInfo el3_regs[] = { 8033 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8034 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8035 .access = PL3_R, 8036 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8037 }, 8038 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8039 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8040 .access = PL3_RW, 8041 .raw_writefn = raw_write, .writefn = sctlr_write, 8042 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8043 .resetvalue = cpu->reset_sctlr }, 8044 }; 8045 8046 define_arm_cp_regs(cpu, el3_regs); 8047 } 8048 /* The behaviour of NSACR is sufficiently various that we don't 8049 * try to describe it in a single reginfo: 8050 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8051 * reads as constant 0xc00 from NS EL1 and NS EL2 8052 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8053 * if v7 without EL3, register doesn't exist 8054 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8055 */ 8056 if (arm_feature(env, ARM_FEATURE_EL3)) { 8057 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8058 static const ARMCPRegInfo nsacr = { 8059 .name = "NSACR", .type = ARM_CP_CONST, 8060 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8061 .access = PL1_RW, .accessfn = nsacr_access, 8062 .resetvalue = 0xc00 8063 }; 8064 define_one_arm_cp_reg(cpu, &nsacr); 8065 } else { 8066 static const ARMCPRegInfo nsacr = { 8067 .name = "NSACR", 8068 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8069 .access = PL3_RW | PL1_R, 8070 .resetvalue = 0, 8071 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8072 }; 8073 define_one_arm_cp_reg(cpu, &nsacr); 8074 } 8075 } else { 8076 if (arm_feature(env, ARM_FEATURE_V8)) { 8077 static const ARMCPRegInfo nsacr = { 8078 .name = "NSACR", .type = ARM_CP_CONST, 8079 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8080 .access = PL1_R, 8081 .resetvalue = 0xc00 8082 }; 8083 define_one_arm_cp_reg(cpu, &nsacr); 8084 } 8085 } 8086 8087 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8088 if (arm_feature(env, ARM_FEATURE_V6)) { 8089 /* PMSAv6 not implemented */ 8090 assert(arm_feature(env, ARM_FEATURE_V7)); 8091 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8092 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8093 } else { 8094 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8095 } 8096 } else { 8097 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8098 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8099 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8100 if (cpu_isar_feature(aa32_hpd, cpu)) { 8101 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8102 } 8103 } 8104 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8105 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8106 } 8107 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8108 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8109 } 8110 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8111 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8112 } 8113 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8114 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8115 } 8116 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8117 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8118 } 8119 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8120 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8121 } 8122 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8123 define_arm_cp_regs(cpu, omap_cp_reginfo); 8124 } 8125 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8126 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8127 } 8128 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8129 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8130 } 8131 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8132 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8133 } 8134 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8135 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8136 } 8137 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8138 define_arm_cp_regs(cpu, jazelle_regs); 8139 } 8140 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8141 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8142 * be read-only (ie write causes UNDEF exception). 8143 */ 8144 { 8145 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8146 /* Pre-v8 MIDR space. 8147 * Note that the MIDR isn't a simple constant register because 8148 * of the TI925 behaviour where writes to another register can 8149 * cause the MIDR value to change. 8150 * 8151 * Unimplemented registers in the c15 0 0 0 space default to 8152 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8153 * and friends override accordingly. 8154 */ 8155 { .name = "MIDR", 8156 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8157 .access = PL1_R, .resetvalue = cpu->midr, 8158 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8159 .readfn = midr_read, 8160 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8161 .type = ARM_CP_OVERRIDE }, 8162 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8163 { .name = "DUMMY", 8164 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8165 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8166 { .name = "DUMMY", 8167 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8168 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8169 { .name = "DUMMY", 8170 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8171 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8172 { .name = "DUMMY", 8173 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8174 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8175 { .name = "DUMMY", 8176 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8177 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8178 }; 8179 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8180 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8181 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8182 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8183 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8184 .readfn = midr_read }, 8185 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8186 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8187 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8188 .access = PL1_R, .resetvalue = cpu->midr }, 8189 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8190 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8191 .access = PL1_R, .resetvalue = cpu->midr }, 8192 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8193 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8194 .access = PL1_R, 8195 .accessfn = access_aa64_tid1, 8196 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8197 }; 8198 ARMCPRegInfo id_cp_reginfo[] = { 8199 /* These are common to v8 and pre-v8 */ 8200 { .name = "CTR", 8201 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8202 .access = PL1_R, .accessfn = ctr_el0_access, 8203 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8204 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8205 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8206 .access = PL0_R, .accessfn = ctr_el0_access, 8207 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8208 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8209 { .name = "TCMTR", 8210 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8211 .access = PL1_R, 8212 .accessfn = access_aa32_tid1, 8213 .type = ARM_CP_CONST, .resetvalue = 0 }, 8214 }; 8215 /* TLBTR is specific to VMSA */ 8216 ARMCPRegInfo id_tlbtr_reginfo = { 8217 .name = "TLBTR", 8218 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8219 .access = PL1_R, 8220 .accessfn = access_aa32_tid1, 8221 .type = ARM_CP_CONST, .resetvalue = 0, 8222 }; 8223 /* MPUIR is specific to PMSA V6+ */ 8224 ARMCPRegInfo id_mpuir_reginfo = { 8225 .name = "MPUIR", 8226 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8227 .access = PL1_R, .type = ARM_CP_CONST, 8228 .resetvalue = cpu->pmsav7_dregion << 8 8229 }; 8230 static const ARMCPRegInfo crn0_wi_reginfo = { 8231 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8232 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8233 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8234 }; 8235 #ifdef CONFIG_USER_ONLY 8236 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8237 { .name = "MIDR_EL1", 8238 .exported_bits = 0x00000000ffffffff }, 8239 { .name = "REVIDR_EL1" }, 8240 }; 8241 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8242 #endif 8243 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8244 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8245 size_t i; 8246 /* Register the blanket "writes ignored" value first to cover the 8247 * whole space. Then update the specific ID registers to allow write 8248 * access, so that they ignore writes rather than causing them to 8249 * UNDEF. 8250 */ 8251 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8252 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8253 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8254 } 8255 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8256 id_cp_reginfo[i].access = PL1_RW; 8257 } 8258 id_mpuir_reginfo.access = PL1_RW; 8259 id_tlbtr_reginfo.access = PL1_RW; 8260 } 8261 if (arm_feature(env, ARM_FEATURE_V8)) { 8262 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8263 } else { 8264 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8265 } 8266 define_arm_cp_regs(cpu, id_cp_reginfo); 8267 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8268 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8269 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8270 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8271 } 8272 } 8273 8274 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8275 ARMCPRegInfo mpidr_cp_reginfo[] = { 8276 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8277 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8278 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8279 }; 8280 #ifdef CONFIG_USER_ONLY 8281 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8282 { .name = "MPIDR_EL1", 8283 .fixed_bits = 0x0000000080000000 }, 8284 }; 8285 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8286 #endif 8287 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8288 } 8289 8290 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8291 ARMCPRegInfo auxcr_reginfo[] = { 8292 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8293 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8294 .access = PL1_RW, .accessfn = access_tacr, 8295 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8296 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8297 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8298 .access = PL2_RW, .type = ARM_CP_CONST, 8299 .resetvalue = 0 }, 8300 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8301 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8302 .access = PL3_RW, .type = ARM_CP_CONST, 8303 .resetvalue = 0 }, 8304 }; 8305 define_arm_cp_regs(cpu, auxcr_reginfo); 8306 if (cpu_isar_feature(aa32_ac2, cpu)) { 8307 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8308 } 8309 } 8310 8311 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8312 /* 8313 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8314 * There are two flavours: 8315 * (1) older 32-bit only cores have a simple 32-bit CBAR 8316 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8317 * 32-bit register visible to AArch32 at a different encoding 8318 * to the "flavour 1" register and with the bits rearranged to 8319 * be able to squash a 64-bit address into the 32-bit view. 8320 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8321 * in future if we support AArch32-only configs of some of the 8322 * AArch64 cores we might need to add a specific feature flag 8323 * to indicate cores with "flavour 2" CBAR. 8324 */ 8325 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8326 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8327 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8328 | extract64(cpu->reset_cbar, 32, 12); 8329 ARMCPRegInfo cbar_reginfo[] = { 8330 { .name = "CBAR", 8331 .type = ARM_CP_CONST, 8332 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8333 .access = PL1_R, .resetvalue = cbar32 }, 8334 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8335 .type = ARM_CP_CONST, 8336 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8337 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8338 }; 8339 /* We don't implement a r/w 64 bit CBAR currently */ 8340 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8341 define_arm_cp_regs(cpu, cbar_reginfo); 8342 } else { 8343 ARMCPRegInfo cbar = { 8344 .name = "CBAR", 8345 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8346 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8347 .fieldoffset = offsetof(CPUARMState, 8348 cp15.c15_config_base_address) 8349 }; 8350 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8351 cbar.access = PL1_R; 8352 cbar.fieldoffset = 0; 8353 cbar.type = ARM_CP_CONST; 8354 } 8355 define_one_arm_cp_reg(cpu, &cbar); 8356 } 8357 } 8358 8359 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8360 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8361 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8362 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8363 .access = PL1_RW, .writefn = vbar_write, 8364 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8365 offsetof(CPUARMState, cp15.vbar_ns) }, 8366 .resetvalue = 0 }, 8367 }; 8368 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8369 } 8370 8371 /* Generic registers whose values depend on the implementation */ 8372 { 8373 ARMCPRegInfo sctlr = { 8374 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8375 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8376 .access = PL1_RW, .accessfn = access_tvm_trvm, 8377 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8378 offsetof(CPUARMState, cp15.sctlr_ns) }, 8379 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8380 .raw_writefn = raw_write, 8381 }; 8382 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8383 /* Normally we would always end the TB on an SCTLR write, but Linux 8384 * arch/arm/mach-pxa/sleep.S expects two instructions following 8385 * an MMU enable to execute from cache. Imitate this behaviour. 8386 */ 8387 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8388 } 8389 define_one_arm_cp_reg(cpu, &sctlr); 8390 } 8391 8392 if (cpu_isar_feature(aa64_lor, cpu)) { 8393 define_arm_cp_regs(cpu, lor_reginfo); 8394 } 8395 if (cpu_isar_feature(aa64_pan, cpu)) { 8396 define_one_arm_cp_reg(cpu, &pan_reginfo); 8397 } 8398 #ifndef CONFIG_USER_ONLY 8399 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8400 define_arm_cp_regs(cpu, ats1e1_reginfo); 8401 } 8402 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8403 define_arm_cp_regs(cpu, ats1cp_reginfo); 8404 } 8405 #endif 8406 if (cpu_isar_feature(aa64_uao, cpu)) { 8407 define_one_arm_cp_reg(cpu, &uao_reginfo); 8408 } 8409 8410 if (cpu_isar_feature(aa64_dit, cpu)) { 8411 define_one_arm_cp_reg(cpu, &dit_reginfo); 8412 } 8413 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8414 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8415 } 8416 if (cpu_isar_feature(any_ras, cpu)) { 8417 define_arm_cp_regs(cpu, minimal_ras_reginfo); 8418 } 8419 8420 if (cpu_isar_feature(aa64_vh, cpu) || 8421 cpu_isar_feature(aa64_debugv8p2, cpu)) { 8422 define_one_arm_cp_reg(cpu, &contextidr_el2); 8423 } 8424 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8425 define_arm_cp_regs(cpu, vhe_reginfo); 8426 } 8427 8428 if (cpu_isar_feature(aa64_sve, cpu)) { 8429 define_arm_cp_regs(cpu, zcr_reginfo); 8430 } 8431 8432 if (cpu_isar_feature(aa64_hcx, cpu)) { 8433 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 8434 } 8435 8436 #ifdef TARGET_AARCH64 8437 if (cpu_isar_feature(aa64_pauth, cpu)) { 8438 define_arm_cp_regs(cpu, pauth_reginfo); 8439 } 8440 if (cpu_isar_feature(aa64_rndr, cpu)) { 8441 define_arm_cp_regs(cpu, rndr_reginfo); 8442 } 8443 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8444 define_arm_cp_regs(cpu, tlbirange_reginfo); 8445 } 8446 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8447 define_arm_cp_regs(cpu, tlbios_reginfo); 8448 } 8449 #ifndef CONFIG_USER_ONLY 8450 /* Data Cache clean instructions up to PoP */ 8451 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8452 define_one_arm_cp_reg(cpu, dcpop_reg); 8453 8454 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8455 define_one_arm_cp_reg(cpu, dcpodp_reg); 8456 } 8457 } 8458 #endif /*CONFIG_USER_ONLY*/ 8459 8460 /* 8461 * If full MTE is enabled, add all of the system registers. 8462 * If only "instructions available at EL0" are enabled, 8463 * then define only a RAZ/WI version of PSTATE.TCO. 8464 */ 8465 if (cpu_isar_feature(aa64_mte, cpu)) { 8466 define_arm_cp_regs(cpu, mte_reginfo); 8467 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8468 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8469 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8470 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8471 } 8472 8473 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 8474 define_arm_cp_regs(cpu, scxtnum_reginfo); 8475 } 8476 #endif 8477 8478 if (cpu_isar_feature(any_predinv, cpu)) { 8479 define_arm_cp_regs(cpu, predinv_reginfo); 8480 } 8481 8482 if (cpu_isar_feature(any_ccidx, cpu)) { 8483 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8484 } 8485 8486 #ifndef CONFIG_USER_ONLY 8487 /* 8488 * Register redirections and aliases must be done last, 8489 * after the registers from the other extensions have been defined. 8490 */ 8491 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8492 define_arm_vh_e2h_redirects_aliases(cpu); 8493 } 8494 #endif 8495 } 8496 8497 /* Sort alphabetically by type name, except for "any". */ 8498 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8499 { 8500 ObjectClass *class_a = (ObjectClass *)a; 8501 ObjectClass *class_b = (ObjectClass *)b; 8502 const char *name_a, *name_b; 8503 8504 name_a = object_class_get_name(class_a); 8505 name_b = object_class_get_name(class_b); 8506 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8507 return 1; 8508 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8509 return -1; 8510 } else { 8511 return strcmp(name_a, name_b); 8512 } 8513 } 8514 8515 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8516 { 8517 ObjectClass *oc = data; 8518 const char *typename; 8519 char *name; 8520 8521 typename = object_class_get_name(oc); 8522 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8523 qemu_printf(" %s\n", name); 8524 g_free(name); 8525 } 8526 8527 void arm_cpu_list(void) 8528 { 8529 GSList *list; 8530 8531 list = object_class_get_list(TYPE_ARM_CPU, false); 8532 list = g_slist_sort(list, arm_cpu_list_compare); 8533 qemu_printf("Available CPUs:\n"); 8534 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8535 g_slist_free(list); 8536 } 8537 8538 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8539 { 8540 ObjectClass *oc = data; 8541 CpuDefinitionInfoList **cpu_list = user_data; 8542 CpuDefinitionInfo *info; 8543 const char *typename; 8544 8545 typename = object_class_get_name(oc); 8546 info = g_malloc0(sizeof(*info)); 8547 info->name = g_strndup(typename, 8548 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8549 info->q_typename = g_strdup(typename); 8550 8551 QAPI_LIST_PREPEND(*cpu_list, info); 8552 } 8553 8554 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8555 { 8556 CpuDefinitionInfoList *cpu_list = NULL; 8557 GSList *list; 8558 8559 list = object_class_get_list(TYPE_ARM_CPU, false); 8560 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8561 g_slist_free(list); 8562 8563 return cpu_list; 8564 } 8565 8566 /* 8567 * Private utility function for define_one_arm_cp_reg_with_opaque(): 8568 * add a single reginfo struct to the hash table. 8569 */ 8570 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8571 void *opaque, CPState state, 8572 CPSecureState secstate, 8573 int crm, int opc1, int opc2, 8574 const char *name) 8575 { 8576 CPUARMState *env = &cpu->env; 8577 uint32_t key; 8578 ARMCPRegInfo *r2; 8579 bool is64 = r->type & ARM_CP_64BIT; 8580 bool ns = secstate & ARM_CP_SECSTATE_NS; 8581 int cp = r->cp; 8582 size_t name_len; 8583 bool make_const; 8584 8585 switch (state) { 8586 case ARM_CP_STATE_AA32: 8587 /* We assume it is a cp15 register if the .cp field is left unset. */ 8588 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 8589 cp = 15; 8590 } 8591 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 8592 break; 8593 case ARM_CP_STATE_AA64: 8594 /* 8595 * To allow abbreviation of ARMCPRegInfo definitions, we treat 8596 * cp == 0 as equivalent to the value for "standard guest-visible 8597 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 8598 * in their AArch64 view (the .cp value may be non-zero for the 8599 * benefit of the AArch32 view). 8600 */ 8601 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8602 cp = CP_REG_ARM64_SYSREG_CP; 8603 } 8604 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 8605 break; 8606 default: 8607 g_assert_not_reached(); 8608 } 8609 8610 /* Overriding of an existing definition must be explicitly requested. */ 8611 if (!(r->type & ARM_CP_OVERRIDE)) { 8612 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 8613 if (oldreg) { 8614 assert(oldreg->type & ARM_CP_OVERRIDE); 8615 } 8616 } 8617 8618 /* 8619 * Eliminate registers that are not present because the EL is missing. 8620 * Doing this here makes it easier to put all registers for a given 8621 * feature into the same ARMCPRegInfo array and define them all at once. 8622 */ 8623 make_const = false; 8624 if (arm_feature(env, ARM_FEATURE_EL3)) { 8625 /* 8626 * An EL2 register without EL2 but with EL3 is (usually) RES0. 8627 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 8628 */ 8629 int min_el = ctz32(r->access) / 2; 8630 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 8631 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 8632 return; 8633 } 8634 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 8635 } 8636 } else { 8637 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 8638 ? PL2_RW : PL1_RW); 8639 if ((r->access & max_el) == 0) { 8640 return; 8641 } 8642 } 8643 8644 /* Combine cpreg and name into one allocation. */ 8645 name_len = strlen(name) + 1; 8646 r2 = g_malloc(sizeof(*r2) + name_len); 8647 *r2 = *r; 8648 r2->name = memcpy(r2 + 1, name, name_len); 8649 8650 /* 8651 * Update fields to match the instantiation, overwiting wildcards 8652 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 8653 */ 8654 r2->cp = cp; 8655 r2->crm = crm; 8656 r2->opc1 = opc1; 8657 r2->opc2 = opc2; 8658 r2->state = state; 8659 r2->secure = secstate; 8660 if (opaque) { 8661 r2->opaque = opaque; 8662 } 8663 8664 if (make_const) { 8665 /* This should not have been a very special register to begin. */ 8666 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 8667 assert(old_special == 0 || old_special == ARM_CP_NOP); 8668 /* 8669 * Set the special function to CONST, retaining the other flags. 8670 * This is important for e.g. ARM_CP_SVE so that we still 8671 * take the SVE trap if CPTR_EL3.EZ == 0. 8672 */ 8673 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 8674 /* 8675 * Usually, these registers become RES0, but there are a few 8676 * special cases like VPIDR_EL2 which have a constant non-zero 8677 * value with writes ignored. 8678 */ 8679 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 8680 r2->resetvalue = 0; 8681 } 8682 /* 8683 * ARM_CP_CONST has precedence, so removing the callbacks and 8684 * offsets are not strictly necessary, but it is potentially 8685 * less confusing to debug later. 8686 */ 8687 r2->readfn = NULL; 8688 r2->writefn = NULL; 8689 r2->raw_readfn = NULL; 8690 r2->raw_writefn = NULL; 8691 r2->resetfn = NULL; 8692 r2->fieldoffset = 0; 8693 r2->bank_fieldoffsets[0] = 0; 8694 r2->bank_fieldoffsets[1] = 0; 8695 } else { 8696 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 8697 8698 if (isbanked) { 8699 /* 8700 * Register is banked (using both entries in array). 8701 * Overwriting fieldoffset as the array is only used to define 8702 * banked registers but later only fieldoffset is used. 8703 */ 8704 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8705 } 8706 if (state == ARM_CP_STATE_AA32) { 8707 if (isbanked) { 8708 /* 8709 * If the register is banked then we don't need to migrate or 8710 * reset the 32-bit instance in certain cases: 8711 * 8712 * 1) If the register has both 32-bit and 64-bit instances 8713 * then we can count on the 64-bit instance taking care 8714 * of the non-secure bank. 8715 * 2) If ARMv8 is enabled then we can count on a 64-bit 8716 * version taking care of the secure bank. This requires 8717 * that separate 32 and 64-bit definitions are provided. 8718 */ 8719 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8720 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 8721 r2->type |= ARM_CP_ALIAS; 8722 } 8723 } else if ((secstate != r->secure) && !ns) { 8724 /* 8725 * The register is not banked so we only want to allow 8726 * migration of the non-secure instance. 8727 */ 8728 r2->type |= ARM_CP_ALIAS; 8729 } 8730 8731 if (HOST_BIG_ENDIAN && 8732 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 8733 r2->fieldoffset += sizeof(uint32_t); 8734 } 8735 } 8736 } 8737 8738 /* 8739 * By convention, for wildcarded registers only the first 8740 * entry is used for migration; the others are marked as 8741 * ALIAS so we don't try to transfer the register 8742 * multiple times. Special registers (ie NOP/WFI) are 8743 * never migratable and not even raw-accessible. 8744 */ 8745 if (r2->type & ARM_CP_SPECIAL_MASK) { 8746 r2->type |= ARM_CP_NO_RAW; 8747 } 8748 if (((r->crm == CP_ANY) && crm != 0) || 8749 ((r->opc1 == CP_ANY) && opc1 != 0) || 8750 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8751 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8752 } 8753 8754 /* 8755 * Check that raw accesses are either forbidden or handled. Note that 8756 * we can't assert this earlier because the setup of fieldoffset for 8757 * banked registers has to be done first. 8758 */ 8759 if (!(r2->type & ARM_CP_NO_RAW)) { 8760 assert(!raw_accessors_invalid(r2)); 8761 } 8762 8763 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 8764 } 8765 8766 8767 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8768 const ARMCPRegInfo *r, void *opaque) 8769 { 8770 /* Define implementations of coprocessor registers. 8771 * We store these in a hashtable because typically 8772 * there are less than 150 registers in a space which 8773 * is 16*16*16*8*8 = 262144 in size. 8774 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8775 * If a register is defined twice then the second definition is 8776 * used, so this can be used to define some generic registers and 8777 * then override them with implementation specific variations. 8778 * At least one of the original and the second definition should 8779 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8780 * against accidental use. 8781 * 8782 * The state field defines whether the register is to be 8783 * visible in the AArch32 or AArch64 execution state. If the 8784 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8785 * reginfo structure for the AArch32 view, which sees the lower 8786 * 32 bits of the 64 bit register. 8787 * 8788 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8789 * be wildcarded. AArch64 registers are always considered to be 64 8790 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8791 * the register, if any. 8792 */ 8793 int crm, opc1, opc2; 8794 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8795 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8796 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8797 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8798 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8799 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8800 CPState state; 8801 8802 /* 64 bit registers have only CRm and Opc1 fields */ 8803 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8804 /* op0 only exists in the AArch64 encodings */ 8805 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8806 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8807 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8808 /* 8809 * This API is only for Arm's system coprocessors (14 and 15) or 8810 * (M-profile or v7A-and-earlier only) for implementation defined 8811 * coprocessors in the range 0..7. Our decode assumes this, since 8812 * 8..13 can be used for other insns including VFP and Neon. See 8813 * valid_cp() in translate.c. Assert here that we haven't tried 8814 * to use an invalid coprocessor number. 8815 */ 8816 switch (r->state) { 8817 case ARM_CP_STATE_BOTH: 8818 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8819 if (r->cp == 0) { 8820 break; 8821 } 8822 /* fall through */ 8823 case ARM_CP_STATE_AA32: 8824 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8825 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8826 assert(r->cp >= 14 && r->cp <= 15); 8827 } else { 8828 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8829 } 8830 break; 8831 case ARM_CP_STATE_AA64: 8832 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8833 break; 8834 default: 8835 g_assert_not_reached(); 8836 } 8837 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8838 * encodes a minimum access level for the register. We roll this 8839 * runtime check into our general permission check code, so check 8840 * here that the reginfo's specified permissions are strict enough 8841 * to encompass the generic architectural permission check. 8842 */ 8843 if (r->state != ARM_CP_STATE_AA32) { 8844 CPAccessRights mask; 8845 switch (r->opc1) { 8846 case 0: 8847 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8848 mask = PL0U_R | PL1_RW; 8849 break; 8850 case 1: case 2: 8851 /* min_EL EL1 */ 8852 mask = PL1_RW; 8853 break; 8854 case 3: 8855 /* min_EL EL0 */ 8856 mask = PL0_RW; 8857 break; 8858 case 4: 8859 case 5: 8860 /* min_EL EL2 */ 8861 mask = PL2_RW; 8862 break; 8863 case 6: 8864 /* min_EL EL3 */ 8865 mask = PL3_RW; 8866 break; 8867 case 7: 8868 /* min_EL EL1, secure mode only (we don't check the latter) */ 8869 mask = PL1_RW; 8870 break; 8871 default: 8872 /* broken reginfo with out-of-range opc1 */ 8873 g_assert_not_reached(); 8874 } 8875 /* assert our permissions are not too lax (stricter is fine) */ 8876 assert((r->access & ~mask) == 0); 8877 } 8878 8879 /* Check that the register definition has enough info to handle 8880 * reads and writes if they are permitted. 8881 */ 8882 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 8883 if (r->access & PL3_R) { 8884 assert((r->fieldoffset || 8885 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8886 r->readfn); 8887 } 8888 if (r->access & PL3_W) { 8889 assert((r->fieldoffset || 8890 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8891 r->writefn); 8892 } 8893 } 8894 8895 for (crm = crmmin; crm <= crmmax; crm++) { 8896 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8897 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8898 for (state = ARM_CP_STATE_AA32; 8899 state <= ARM_CP_STATE_AA64; state++) { 8900 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8901 continue; 8902 } 8903 if (state == ARM_CP_STATE_AA32) { 8904 /* Under AArch32 CP registers can be common 8905 * (same for secure and non-secure world) or banked. 8906 */ 8907 char *name; 8908 8909 switch (r->secure) { 8910 case ARM_CP_SECSTATE_S: 8911 case ARM_CP_SECSTATE_NS: 8912 add_cpreg_to_hashtable(cpu, r, opaque, state, 8913 r->secure, crm, opc1, opc2, 8914 r->name); 8915 break; 8916 case ARM_CP_SECSTATE_BOTH: 8917 name = g_strdup_printf("%s_S", r->name); 8918 add_cpreg_to_hashtable(cpu, r, opaque, state, 8919 ARM_CP_SECSTATE_S, 8920 crm, opc1, opc2, name); 8921 g_free(name); 8922 add_cpreg_to_hashtable(cpu, r, opaque, state, 8923 ARM_CP_SECSTATE_NS, 8924 crm, opc1, opc2, r->name); 8925 break; 8926 default: 8927 g_assert_not_reached(); 8928 } 8929 } else { 8930 /* AArch64 registers get mapped to non-secure instance 8931 * of AArch32 */ 8932 add_cpreg_to_hashtable(cpu, r, opaque, state, 8933 ARM_CP_SECSTATE_NS, 8934 crm, opc1, opc2, r->name); 8935 } 8936 } 8937 } 8938 } 8939 } 8940 } 8941 8942 /* Define a whole list of registers */ 8943 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 8944 void *opaque, size_t len) 8945 { 8946 size_t i; 8947 for (i = 0; i < len; ++i) { 8948 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 8949 } 8950 } 8951 8952 /* 8953 * Modify ARMCPRegInfo for access from userspace. 8954 * 8955 * This is a data driven modification directed by 8956 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8957 * user-space cannot alter any values and dynamic values pertaining to 8958 * execution state are hidden from user space view anyway. 8959 */ 8960 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 8961 const ARMCPRegUserSpaceInfo *mods, 8962 size_t mods_len) 8963 { 8964 for (size_t mi = 0; mi < mods_len; ++mi) { 8965 const ARMCPRegUserSpaceInfo *m = mods + mi; 8966 GPatternSpec *pat = NULL; 8967 8968 if (m->is_glob) { 8969 pat = g_pattern_spec_new(m->name); 8970 } 8971 for (size_t ri = 0; ri < regs_len; ++ri) { 8972 ARMCPRegInfo *r = regs + ri; 8973 8974 if (pat && g_pattern_match_string(pat, r->name)) { 8975 r->type = ARM_CP_CONST; 8976 r->access = PL0U_R; 8977 r->resetvalue = 0; 8978 /* continue */ 8979 } else if (strcmp(r->name, m->name) == 0) { 8980 r->type = ARM_CP_CONST; 8981 r->access = PL0U_R; 8982 r->resetvalue &= m->exported_bits; 8983 r->resetvalue |= m->fixed_bits; 8984 break; 8985 } 8986 } 8987 if (pat) { 8988 g_pattern_spec_free(pat); 8989 } 8990 } 8991 } 8992 8993 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8994 { 8995 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 8996 } 8997 8998 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8999 uint64_t value) 9000 { 9001 /* Helper coprocessor write function for write-ignore registers */ 9002 } 9003 9004 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9005 { 9006 /* Helper coprocessor write function for read-as-zero registers */ 9007 return 0; 9008 } 9009 9010 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9011 { 9012 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9013 } 9014 9015 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9016 { 9017 /* Return true if it is not valid for us to switch to 9018 * this CPU mode (ie all the UNPREDICTABLE cases in 9019 * the ARM ARM CPSRWriteByInstr pseudocode). 9020 */ 9021 9022 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9023 if (write_type == CPSRWriteByInstr && 9024 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9025 mode == ARM_CPU_MODE_HYP)) { 9026 return 1; 9027 } 9028 9029 switch (mode) { 9030 case ARM_CPU_MODE_USR: 9031 return 0; 9032 case ARM_CPU_MODE_SYS: 9033 case ARM_CPU_MODE_SVC: 9034 case ARM_CPU_MODE_ABT: 9035 case ARM_CPU_MODE_UND: 9036 case ARM_CPU_MODE_IRQ: 9037 case ARM_CPU_MODE_FIQ: 9038 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 9039 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9040 */ 9041 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9042 * and CPS are treated as illegal mode changes. 9043 */ 9044 if (write_type == CPSRWriteByInstr && 9045 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9046 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9047 return 1; 9048 } 9049 return 0; 9050 case ARM_CPU_MODE_HYP: 9051 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9052 case ARM_CPU_MODE_MON: 9053 return arm_current_el(env) < 3; 9054 default: 9055 return 1; 9056 } 9057 } 9058 9059 uint32_t cpsr_read(CPUARMState *env) 9060 { 9061 int ZF; 9062 ZF = (env->ZF == 0); 9063 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9064 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9065 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9066 | ((env->condexec_bits & 0xfc) << 8) 9067 | (env->GE << 16) | (env->daif & CPSR_AIF); 9068 } 9069 9070 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9071 CPSRWriteType write_type) 9072 { 9073 uint32_t changed_daif; 9074 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9075 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9076 9077 if (mask & CPSR_NZCV) { 9078 env->ZF = (~val) & CPSR_Z; 9079 env->NF = val; 9080 env->CF = (val >> 29) & 1; 9081 env->VF = (val << 3) & 0x80000000; 9082 } 9083 if (mask & CPSR_Q) 9084 env->QF = ((val & CPSR_Q) != 0); 9085 if (mask & CPSR_T) 9086 env->thumb = ((val & CPSR_T) != 0); 9087 if (mask & CPSR_IT_0_1) { 9088 env->condexec_bits &= ~3; 9089 env->condexec_bits |= (val >> 25) & 3; 9090 } 9091 if (mask & CPSR_IT_2_7) { 9092 env->condexec_bits &= 3; 9093 env->condexec_bits |= (val >> 8) & 0xfc; 9094 } 9095 if (mask & CPSR_GE) { 9096 env->GE = (val >> 16) & 0xf; 9097 } 9098 9099 /* In a V7 implementation that includes the security extensions but does 9100 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9101 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9102 * bits respectively. 9103 * 9104 * In a V8 implementation, it is permitted for privileged software to 9105 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9106 */ 9107 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9108 arm_feature(env, ARM_FEATURE_EL3) && 9109 !arm_feature(env, ARM_FEATURE_EL2) && 9110 !arm_is_secure(env)) { 9111 9112 changed_daif = (env->daif ^ val) & mask; 9113 9114 if (changed_daif & CPSR_A) { 9115 /* Check to see if we are allowed to change the masking of async 9116 * abort exceptions from a non-secure state. 9117 */ 9118 if (!(env->cp15.scr_el3 & SCR_AW)) { 9119 qemu_log_mask(LOG_GUEST_ERROR, 9120 "Ignoring attempt to switch CPSR_A flag from " 9121 "non-secure world with SCR.AW bit clear\n"); 9122 mask &= ~CPSR_A; 9123 } 9124 } 9125 9126 if (changed_daif & CPSR_F) { 9127 /* Check to see if we are allowed to change the masking of FIQ 9128 * exceptions from a non-secure state. 9129 */ 9130 if (!(env->cp15.scr_el3 & SCR_FW)) { 9131 qemu_log_mask(LOG_GUEST_ERROR, 9132 "Ignoring attempt to switch CPSR_F flag from " 9133 "non-secure world with SCR.FW bit clear\n"); 9134 mask &= ~CPSR_F; 9135 } 9136 9137 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9138 * If this bit is set software is not allowed to mask 9139 * FIQs, but is allowed to set CPSR_F to 0. 9140 */ 9141 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9142 (val & CPSR_F)) { 9143 qemu_log_mask(LOG_GUEST_ERROR, 9144 "Ignoring attempt to enable CPSR_F flag " 9145 "(non-maskable FIQ [NMFI] support enabled)\n"); 9146 mask &= ~CPSR_F; 9147 } 9148 } 9149 } 9150 9151 env->daif &= ~(CPSR_AIF & mask); 9152 env->daif |= val & CPSR_AIF & mask; 9153 9154 if (write_type != CPSRWriteRaw && 9155 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9156 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9157 /* Note that we can only get here in USR mode if this is a 9158 * gdb stub write; for this case we follow the architectural 9159 * behaviour for guest writes in USR mode of ignoring an attempt 9160 * to switch mode. (Those are caught by translate.c for writes 9161 * triggered by guest instructions.) 9162 */ 9163 mask &= ~CPSR_M; 9164 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9165 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9166 * v7, and has defined behaviour in v8: 9167 * + leave CPSR.M untouched 9168 * + allow changes to the other CPSR fields 9169 * + set PSTATE.IL 9170 * For user changes via the GDB stub, we don't set PSTATE.IL, 9171 * as this would be unnecessarily harsh for a user error. 9172 */ 9173 mask &= ~CPSR_M; 9174 if (write_type != CPSRWriteByGDBStub && 9175 arm_feature(env, ARM_FEATURE_V8)) { 9176 mask |= CPSR_IL; 9177 val |= CPSR_IL; 9178 } 9179 qemu_log_mask(LOG_GUEST_ERROR, 9180 "Illegal AArch32 mode switch attempt from %s to %s\n", 9181 aarch32_mode_name(env->uncached_cpsr), 9182 aarch32_mode_name(val)); 9183 } else { 9184 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9185 write_type == CPSRWriteExceptionReturn ? 9186 "Exception return from AArch32" : 9187 "AArch32 mode switch from", 9188 aarch32_mode_name(env->uncached_cpsr), 9189 aarch32_mode_name(val), env->regs[15]); 9190 switch_mode(env, val & CPSR_M); 9191 } 9192 } 9193 mask &= ~CACHED_CPSR_BITS; 9194 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9195 if (rebuild_hflags) { 9196 arm_rebuild_hflags(env); 9197 } 9198 } 9199 9200 /* Sign/zero extend */ 9201 uint32_t HELPER(sxtb16)(uint32_t x) 9202 { 9203 uint32_t res; 9204 res = (uint16_t)(int8_t)x; 9205 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9206 return res; 9207 } 9208 9209 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9210 { 9211 /* 9212 * Take a division-by-zero exception if necessary; otherwise return 9213 * to get the usual non-trapping division behaviour (result of 0) 9214 */ 9215 if (arm_feature(env, ARM_FEATURE_M) 9216 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9217 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9218 } 9219 } 9220 9221 uint32_t HELPER(uxtb16)(uint32_t x) 9222 { 9223 uint32_t res; 9224 res = (uint16_t)(uint8_t)x; 9225 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9226 return res; 9227 } 9228 9229 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9230 { 9231 if (den == 0) { 9232 handle_possible_div0_trap(env, GETPC()); 9233 return 0; 9234 } 9235 if (num == INT_MIN && den == -1) { 9236 return INT_MIN; 9237 } 9238 return num / den; 9239 } 9240 9241 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9242 { 9243 if (den == 0) { 9244 handle_possible_div0_trap(env, GETPC()); 9245 return 0; 9246 } 9247 return num / den; 9248 } 9249 9250 uint32_t HELPER(rbit)(uint32_t x) 9251 { 9252 return revbit32(x); 9253 } 9254 9255 #ifdef CONFIG_USER_ONLY 9256 9257 static void switch_mode(CPUARMState *env, int mode) 9258 { 9259 ARMCPU *cpu = env_archcpu(env); 9260 9261 if (mode != ARM_CPU_MODE_USR) { 9262 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9263 } 9264 } 9265 9266 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9267 uint32_t cur_el, bool secure) 9268 { 9269 return 1; 9270 } 9271 9272 void aarch64_sync_64_to_32(CPUARMState *env) 9273 { 9274 g_assert_not_reached(); 9275 } 9276 9277 #else 9278 9279 static void switch_mode(CPUARMState *env, int mode) 9280 { 9281 int old_mode; 9282 int i; 9283 9284 old_mode = env->uncached_cpsr & CPSR_M; 9285 if (mode == old_mode) 9286 return; 9287 9288 if (old_mode == ARM_CPU_MODE_FIQ) { 9289 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9290 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9291 } else if (mode == ARM_CPU_MODE_FIQ) { 9292 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9293 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9294 } 9295 9296 i = bank_number(old_mode); 9297 env->banked_r13[i] = env->regs[13]; 9298 env->banked_spsr[i] = env->spsr; 9299 9300 i = bank_number(mode); 9301 env->regs[13] = env->banked_r13[i]; 9302 env->spsr = env->banked_spsr[i]; 9303 9304 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9305 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9306 } 9307 9308 /* Physical Interrupt Target EL Lookup Table 9309 * 9310 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9311 * 9312 * The below multi-dimensional table is used for looking up the target 9313 * exception level given numerous condition criteria. Specifically, the 9314 * target EL is based on SCR and HCR routing controls as well as the 9315 * currently executing EL and secure state. 9316 * 9317 * Dimensions: 9318 * target_el_table[2][2][2][2][2][4] 9319 * | | | | | +--- Current EL 9320 * | | | | +------ Non-secure(0)/Secure(1) 9321 * | | | +--------- HCR mask override 9322 * | | +------------ SCR exec state control 9323 * | +--------------- SCR mask override 9324 * +------------------ 32-bit(0)/64-bit(1) EL3 9325 * 9326 * The table values are as such: 9327 * 0-3 = EL0-EL3 9328 * -1 = Cannot occur 9329 * 9330 * The ARM ARM target EL table includes entries indicating that an "exception 9331 * is not taken". The two cases where this is applicable are: 9332 * 1) An exception is taken from EL3 but the SCR does not have the exception 9333 * routed to EL3. 9334 * 2) An exception is taken from EL2 but the HCR does not have the exception 9335 * routed to EL2. 9336 * In these two cases, the below table contain a target of EL1. This value is 9337 * returned as it is expected that the consumer of the table data will check 9338 * for "target EL >= current EL" to ensure the exception is not taken. 9339 * 9340 * SCR HCR 9341 * 64 EA AMO From 9342 * BIT IRQ IMO Non-secure Secure 9343 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9344 */ 9345 static const int8_t target_el_table[2][2][2][2][2][4] = { 9346 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9347 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9348 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9349 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9350 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9351 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9352 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9353 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9354 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9355 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9356 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9357 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9358 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9359 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9360 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9361 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9362 }; 9363 9364 /* 9365 * Determine the target EL for physical exceptions 9366 */ 9367 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9368 uint32_t cur_el, bool secure) 9369 { 9370 CPUARMState *env = cs->env_ptr; 9371 bool rw; 9372 bool scr; 9373 bool hcr; 9374 int target_el; 9375 /* Is the highest EL AArch64? */ 9376 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9377 uint64_t hcr_el2; 9378 9379 if (arm_feature(env, ARM_FEATURE_EL3)) { 9380 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9381 } else { 9382 /* Either EL2 is the highest EL (and so the EL2 register width 9383 * is given by is64); or there is no EL2 or EL3, in which case 9384 * the value of 'rw' does not affect the table lookup anyway. 9385 */ 9386 rw = is64; 9387 } 9388 9389 hcr_el2 = arm_hcr_el2_eff(env); 9390 switch (excp_idx) { 9391 case EXCP_IRQ: 9392 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9393 hcr = hcr_el2 & HCR_IMO; 9394 break; 9395 case EXCP_FIQ: 9396 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9397 hcr = hcr_el2 & HCR_FMO; 9398 break; 9399 default: 9400 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9401 hcr = hcr_el2 & HCR_AMO; 9402 break; 9403 }; 9404 9405 /* 9406 * For these purposes, TGE and AMO/IMO/FMO both force the 9407 * interrupt to EL2. Fold TGE into the bit extracted above. 9408 */ 9409 hcr |= (hcr_el2 & HCR_TGE) != 0; 9410 9411 /* Perform a table-lookup for the target EL given the current state */ 9412 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9413 9414 assert(target_el > 0); 9415 9416 return target_el; 9417 } 9418 9419 void arm_log_exception(CPUState *cs) 9420 { 9421 int idx = cs->exception_index; 9422 9423 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9424 const char *exc = NULL; 9425 static const char * const excnames[] = { 9426 [EXCP_UDEF] = "Undefined Instruction", 9427 [EXCP_SWI] = "SVC", 9428 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9429 [EXCP_DATA_ABORT] = "Data Abort", 9430 [EXCP_IRQ] = "IRQ", 9431 [EXCP_FIQ] = "FIQ", 9432 [EXCP_BKPT] = "Breakpoint", 9433 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9434 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9435 [EXCP_HVC] = "Hypervisor Call", 9436 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9437 [EXCP_SMC] = "Secure Monitor Call", 9438 [EXCP_VIRQ] = "Virtual IRQ", 9439 [EXCP_VFIQ] = "Virtual FIQ", 9440 [EXCP_SEMIHOST] = "Semihosting call", 9441 [EXCP_NOCP] = "v7M NOCP UsageFault", 9442 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9443 [EXCP_STKOF] = "v8M STKOF UsageFault", 9444 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9445 [EXCP_LSERR] = "v8M LSERR UsageFault", 9446 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9447 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9448 [EXCP_VSERR] = "Virtual SERR", 9449 }; 9450 9451 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9452 exc = excnames[idx]; 9453 } 9454 if (!exc) { 9455 exc = "unknown"; 9456 } 9457 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9458 idx, exc, cs->cpu_index); 9459 } 9460 } 9461 9462 /* 9463 * Function used to synchronize QEMU's AArch64 register set with AArch32 9464 * register set. This is necessary when switching between AArch32 and AArch64 9465 * execution state. 9466 */ 9467 void aarch64_sync_32_to_64(CPUARMState *env) 9468 { 9469 int i; 9470 uint32_t mode = env->uncached_cpsr & CPSR_M; 9471 9472 /* We can blanket copy R[0:7] to X[0:7] */ 9473 for (i = 0; i < 8; i++) { 9474 env->xregs[i] = env->regs[i]; 9475 } 9476 9477 /* 9478 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9479 * Otherwise, they come from the banked user regs. 9480 */ 9481 if (mode == ARM_CPU_MODE_FIQ) { 9482 for (i = 8; i < 13; i++) { 9483 env->xregs[i] = env->usr_regs[i - 8]; 9484 } 9485 } else { 9486 for (i = 8; i < 13; i++) { 9487 env->xregs[i] = env->regs[i]; 9488 } 9489 } 9490 9491 /* 9492 * Registers x13-x23 are the various mode SP and FP registers. Registers 9493 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9494 * from the mode banked register. 9495 */ 9496 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9497 env->xregs[13] = env->regs[13]; 9498 env->xregs[14] = env->regs[14]; 9499 } else { 9500 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9501 /* HYP is an exception in that it is copied from r14 */ 9502 if (mode == ARM_CPU_MODE_HYP) { 9503 env->xregs[14] = env->regs[14]; 9504 } else { 9505 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9506 } 9507 } 9508 9509 if (mode == ARM_CPU_MODE_HYP) { 9510 env->xregs[15] = env->regs[13]; 9511 } else { 9512 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9513 } 9514 9515 if (mode == ARM_CPU_MODE_IRQ) { 9516 env->xregs[16] = env->regs[14]; 9517 env->xregs[17] = env->regs[13]; 9518 } else { 9519 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9520 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9521 } 9522 9523 if (mode == ARM_CPU_MODE_SVC) { 9524 env->xregs[18] = env->regs[14]; 9525 env->xregs[19] = env->regs[13]; 9526 } else { 9527 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9528 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9529 } 9530 9531 if (mode == ARM_CPU_MODE_ABT) { 9532 env->xregs[20] = env->regs[14]; 9533 env->xregs[21] = env->regs[13]; 9534 } else { 9535 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9536 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9537 } 9538 9539 if (mode == ARM_CPU_MODE_UND) { 9540 env->xregs[22] = env->regs[14]; 9541 env->xregs[23] = env->regs[13]; 9542 } else { 9543 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9544 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9545 } 9546 9547 /* 9548 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9549 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9550 * FIQ bank for r8-r14. 9551 */ 9552 if (mode == ARM_CPU_MODE_FIQ) { 9553 for (i = 24; i < 31; i++) { 9554 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9555 } 9556 } else { 9557 for (i = 24; i < 29; i++) { 9558 env->xregs[i] = env->fiq_regs[i - 24]; 9559 } 9560 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9561 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9562 } 9563 9564 env->pc = env->regs[15]; 9565 } 9566 9567 /* 9568 * Function used to synchronize QEMU's AArch32 register set with AArch64 9569 * register set. This is necessary when switching between AArch32 and AArch64 9570 * execution state. 9571 */ 9572 void aarch64_sync_64_to_32(CPUARMState *env) 9573 { 9574 int i; 9575 uint32_t mode = env->uncached_cpsr & CPSR_M; 9576 9577 /* We can blanket copy X[0:7] to R[0:7] */ 9578 for (i = 0; i < 8; i++) { 9579 env->regs[i] = env->xregs[i]; 9580 } 9581 9582 /* 9583 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9584 * Otherwise, we copy x8-x12 into the banked user regs. 9585 */ 9586 if (mode == ARM_CPU_MODE_FIQ) { 9587 for (i = 8; i < 13; i++) { 9588 env->usr_regs[i - 8] = env->xregs[i]; 9589 } 9590 } else { 9591 for (i = 8; i < 13; i++) { 9592 env->regs[i] = env->xregs[i]; 9593 } 9594 } 9595 9596 /* 9597 * Registers r13 & r14 depend on the current mode. 9598 * If we are in a given mode, we copy the corresponding x registers to r13 9599 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9600 * for the mode. 9601 */ 9602 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9603 env->regs[13] = env->xregs[13]; 9604 env->regs[14] = env->xregs[14]; 9605 } else { 9606 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9607 9608 /* 9609 * HYP is an exception in that it does not have its own banked r14 but 9610 * shares the USR r14 9611 */ 9612 if (mode == ARM_CPU_MODE_HYP) { 9613 env->regs[14] = env->xregs[14]; 9614 } else { 9615 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9616 } 9617 } 9618 9619 if (mode == ARM_CPU_MODE_HYP) { 9620 env->regs[13] = env->xregs[15]; 9621 } else { 9622 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9623 } 9624 9625 if (mode == ARM_CPU_MODE_IRQ) { 9626 env->regs[14] = env->xregs[16]; 9627 env->regs[13] = env->xregs[17]; 9628 } else { 9629 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9630 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9631 } 9632 9633 if (mode == ARM_CPU_MODE_SVC) { 9634 env->regs[14] = env->xregs[18]; 9635 env->regs[13] = env->xregs[19]; 9636 } else { 9637 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9638 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9639 } 9640 9641 if (mode == ARM_CPU_MODE_ABT) { 9642 env->regs[14] = env->xregs[20]; 9643 env->regs[13] = env->xregs[21]; 9644 } else { 9645 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9646 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9647 } 9648 9649 if (mode == ARM_CPU_MODE_UND) { 9650 env->regs[14] = env->xregs[22]; 9651 env->regs[13] = env->xregs[23]; 9652 } else { 9653 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9654 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9655 } 9656 9657 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9658 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9659 * FIQ bank for r8-r14. 9660 */ 9661 if (mode == ARM_CPU_MODE_FIQ) { 9662 for (i = 24; i < 31; i++) { 9663 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9664 } 9665 } else { 9666 for (i = 24; i < 29; i++) { 9667 env->fiq_regs[i - 24] = env->xregs[i]; 9668 } 9669 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9670 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9671 } 9672 9673 env->regs[15] = env->pc; 9674 } 9675 9676 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9677 uint32_t mask, uint32_t offset, 9678 uint32_t newpc) 9679 { 9680 int new_el; 9681 9682 /* Change the CPU state so as to actually take the exception. */ 9683 switch_mode(env, new_mode); 9684 9685 /* 9686 * For exceptions taken to AArch32 we must clear the SS bit in both 9687 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9688 */ 9689 env->pstate &= ~PSTATE_SS; 9690 env->spsr = cpsr_read(env); 9691 /* Clear IT bits. */ 9692 env->condexec_bits = 0; 9693 /* Switch to the new mode, and to the correct instruction set. */ 9694 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9695 9696 /* This must be after mode switching. */ 9697 new_el = arm_current_el(env); 9698 9699 /* Set new mode endianness */ 9700 env->uncached_cpsr &= ~CPSR_E; 9701 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9702 env->uncached_cpsr |= CPSR_E; 9703 } 9704 /* J and IL must always be cleared for exception entry */ 9705 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9706 env->daif |= mask; 9707 9708 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9709 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9710 env->uncached_cpsr |= CPSR_SSBS; 9711 } else { 9712 env->uncached_cpsr &= ~CPSR_SSBS; 9713 } 9714 } 9715 9716 if (new_mode == ARM_CPU_MODE_HYP) { 9717 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9718 env->elr_el[2] = env->regs[15]; 9719 } else { 9720 /* CPSR.PAN is normally preserved preserved unless... */ 9721 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9722 switch (new_el) { 9723 case 3: 9724 if (!arm_is_secure_below_el3(env)) { 9725 /* ... the target is EL3, from non-secure state. */ 9726 env->uncached_cpsr &= ~CPSR_PAN; 9727 break; 9728 } 9729 /* ... the target is EL3, from secure state ... */ 9730 /* fall through */ 9731 case 1: 9732 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9733 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9734 env->uncached_cpsr |= CPSR_PAN; 9735 } 9736 break; 9737 } 9738 } 9739 /* 9740 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9741 * and we should just guard the thumb mode on V4 9742 */ 9743 if (arm_feature(env, ARM_FEATURE_V4T)) { 9744 env->thumb = 9745 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9746 } 9747 env->regs[14] = env->regs[15] + offset; 9748 } 9749 env->regs[15] = newpc; 9750 arm_rebuild_hflags(env); 9751 } 9752 9753 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9754 { 9755 /* 9756 * Handle exception entry to Hyp mode; this is sufficiently 9757 * different to entry to other AArch32 modes that we handle it 9758 * separately here. 9759 * 9760 * The vector table entry used is always the 0x14 Hyp mode entry point, 9761 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9762 * The offset applied to the preferred return address is always zero 9763 * (see DDI0487C.a section G1.12.3). 9764 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9765 */ 9766 uint32_t addr, mask; 9767 ARMCPU *cpu = ARM_CPU(cs); 9768 CPUARMState *env = &cpu->env; 9769 9770 switch (cs->exception_index) { 9771 case EXCP_UDEF: 9772 addr = 0x04; 9773 break; 9774 case EXCP_SWI: 9775 addr = 0x08; 9776 break; 9777 case EXCP_BKPT: 9778 /* Fall through to prefetch abort. */ 9779 case EXCP_PREFETCH_ABORT: 9780 env->cp15.ifar_s = env->exception.vaddress; 9781 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9782 (uint32_t)env->exception.vaddress); 9783 addr = 0x0c; 9784 break; 9785 case EXCP_DATA_ABORT: 9786 env->cp15.dfar_s = env->exception.vaddress; 9787 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9788 (uint32_t)env->exception.vaddress); 9789 addr = 0x10; 9790 break; 9791 case EXCP_IRQ: 9792 addr = 0x18; 9793 break; 9794 case EXCP_FIQ: 9795 addr = 0x1c; 9796 break; 9797 case EXCP_HVC: 9798 addr = 0x08; 9799 break; 9800 case EXCP_HYP_TRAP: 9801 addr = 0x14; 9802 break; 9803 default: 9804 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9805 } 9806 9807 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9808 if (!arm_feature(env, ARM_FEATURE_V8)) { 9809 /* 9810 * QEMU syndrome values are v8-style. v7 has the IL bit 9811 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9812 * If this is a v7 CPU, squash the IL bit in those cases. 9813 */ 9814 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9815 (cs->exception_index == EXCP_DATA_ABORT && 9816 !(env->exception.syndrome & ARM_EL_ISV)) || 9817 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9818 env->exception.syndrome &= ~ARM_EL_IL; 9819 } 9820 } 9821 env->cp15.esr_el[2] = env->exception.syndrome; 9822 } 9823 9824 if (arm_current_el(env) != 2 && addr < 0x14) { 9825 addr = 0x14; 9826 } 9827 9828 mask = 0; 9829 if (!(env->cp15.scr_el3 & SCR_EA)) { 9830 mask |= CPSR_A; 9831 } 9832 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9833 mask |= CPSR_I; 9834 } 9835 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9836 mask |= CPSR_F; 9837 } 9838 9839 addr += env->cp15.hvbar; 9840 9841 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9842 } 9843 9844 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9845 { 9846 ARMCPU *cpu = ARM_CPU(cs); 9847 CPUARMState *env = &cpu->env; 9848 uint32_t addr; 9849 uint32_t mask; 9850 int new_mode; 9851 uint32_t offset; 9852 uint32_t moe; 9853 9854 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9855 switch (syn_get_ec(env->exception.syndrome)) { 9856 case EC_BREAKPOINT: 9857 case EC_BREAKPOINT_SAME_EL: 9858 moe = 1; 9859 break; 9860 case EC_WATCHPOINT: 9861 case EC_WATCHPOINT_SAME_EL: 9862 moe = 10; 9863 break; 9864 case EC_AA32_BKPT: 9865 moe = 3; 9866 break; 9867 case EC_VECTORCATCH: 9868 moe = 5; 9869 break; 9870 default: 9871 moe = 0; 9872 break; 9873 } 9874 9875 if (moe) { 9876 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9877 } 9878 9879 if (env->exception.target_el == 2) { 9880 arm_cpu_do_interrupt_aarch32_hyp(cs); 9881 return; 9882 } 9883 9884 switch (cs->exception_index) { 9885 case EXCP_UDEF: 9886 new_mode = ARM_CPU_MODE_UND; 9887 addr = 0x04; 9888 mask = CPSR_I; 9889 if (env->thumb) 9890 offset = 2; 9891 else 9892 offset = 4; 9893 break; 9894 case EXCP_SWI: 9895 new_mode = ARM_CPU_MODE_SVC; 9896 addr = 0x08; 9897 mask = CPSR_I; 9898 /* The PC already points to the next instruction. */ 9899 offset = 0; 9900 break; 9901 case EXCP_BKPT: 9902 /* Fall through to prefetch abort. */ 9903 case EXCP_PREFETCH_ABORT: 9904 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9905 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9906 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9907 env->exception.fsr, (uint32_t)env->exception.vaddress); 9908 new_mode = ARM_CPU_MODE_ABT; 9909 addr = 0x0c; 9910 mask = CPSR_A | CPSR_I; 9911 offset = 4; 9912 break; 9913 case EXCP_DATA_ABORT: 9914 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9915 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9916 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9917 env->exception.fsr, 9918 (uint32_t)env->exception.vaddress); 9919 new_mode = ARM_CPU_MODE_ABT; 9920 addr = 0x10; 9921 mask = CPSR_A | CPSR_I; 9922 offset = 8; 9923 break; 9924 case EXCP_IRQ: 9925 new_mode = ARM_CPU_MODE_IRQ; 9926 addr = 0x18; 9927 /* Disable IRQ and imprecise data aborts. */ 9928 mask = CPSR_A | CPSR_I; 9929 offset = 4; 9930 if (env->cp15.scr_el3 & SCR_IRQ) { 9931 /* IRQ routed to monitor mode */ 9932 new_mode = ARM_CPU_MODE_MON; 9933 mask |= CPSR_F; 9934 } 9935 break; 9936 case EXCP_FIQ: 9937 new_mode = ARM_CPU_MODE_FIQ; 9938 addr = 0x1c; 9939 /* Disable FIQ, IRQ and imprecise data aborts. */ 9940 mask = CPSR_A | CPSR_I | CPSR_F; 9941 if (env->cp15.scr_el3 & SCR_FIQ) { 9942 /* FIQ routed to monitor mode */ 9943 new_mode = ARM_CPU_MODE_MON; 9944 } 9945 offset = 4; 9946 break; 9947 case EXCP_VIRQ: 9948 new_mode = ARM_CPU_MODE_IRQ; 9949 addr = 0x18; 9950 /* Disable IRQ and imprecise data aborts. */ 9951 mask = CPSR_A | CPSR_I; 9952 offset = 4; 9953 break; 9954 case EXCP_VFIQ: 9955 new_mode = ARM_CPU_MODE_FIQ; 9956 addr = 0x1c; 9957 /* Disable FIQ, IRQ and imprecise data aborts. */ 9958 mask = CPSR_A | CPSR_I | CPSR_F; 9959 offset = 4; 9960 break; 9961 case EXCP_VSERR: 9962 { 9963 /* 9964 * Note that this is reported as a data abort, but the DFAR 9965 * has an UNKNOWN value. Construct the SError syndrome from 9966 * AET and ExT fields. 9967 */ 9968 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 9969 9970 if (extended_addresses_enabled(env)) { 9971 env->exception.fsr = arm_fi_to_lfsc(&fi); 9972 } else { 9973 env->exception.fsr = arm_fi_to_sfsc(&fi); 9974 } 9975 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 9976 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9977 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 9978 env->exception.fsr); 9979 9980 new_mode = ARM_CPU_MODE_ABT; 9981 addr = 0x10; 9982 mask = CPSR_A | CPSR_I; 9983 offset = 8; 9984 } 9985 break; 9986 case EXCP_SMC: 9987 new_mode = ARM_CPU_MODE_MON; 9988 addr = 0x08; 9989 mask = CPSR_A | CPSR_I | CPSR_F; 9990 offset = 0; 9991 break; 9992 default: 9993 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9994 return; /* Never happens. Keep compiler happy. */ 9995 } 9996 9997 if (new_mode == ARM_CPU_MODE_MON) { 9998 addr += env->cp15.mvbar; 9999 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10000 /* High vectors. When enabled, base address cannot be remapped. */ 10001 addr += 0xffff0000; 10002 } else { 10003 /* ARM v7 architectures provide a vector base address register to remap 10004 * the interrupt vector table. 10005 * This register is only followed in non-monitor mode, and is banked. 10006 * Note: only bits 31:5 are valid. 10007 */ 10008 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10009 } 10010 10011 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10012 env->cp15.scr_el3 &= ~SCR_NS; 10013 } 10014 10015 take_aarch32_exception(env, new_mode, mask, offset, addr); 10016 } 10017 10018 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10019 { 10020 /* 10021 * Return the register number of the AArch64 view of the AArch32 10022 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10023 * be that of the AArch32 mode the exception came from. 10024 */ 10025 int mode = env->uncached_cpsr & CPSR_M; 10026 10027 switch (aarch32_reg) { 10028 case 0 ... 7: 10029 return aarch32_reg; 10030 case 8 ... 12: 10031 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10032 case 13: 10033 switch (mode) { 10034 case ARM_CPU_MODE_USR: 10035 case ARM_CPU_MODE_SYS: 10036 return 13; 10037 case ARM_CPU_MODE_HYP: 10038 return 15; 10039 case ARM_CPU_MODE_IRQ: 10040 return 17; 10041 case ARM_CPU_MODE_SVC: 10042 return 19; 10043 case ARM_CPU_MODE_ABT: 10044 return 21; 10045 case ARM_CPU_MODE_UND: 10046 return 23; 10047 case ARM_CPU_MODE_FIQ: 10048 return 29; 10049 default: 10050 g_assert_not_reached(); 10051 } 10052 case 14: 10053 switch (mode) { 10054 case ARM_CPU_MODE_USR: 10055 case ARM_CPU_MODE_SYS: 10056 case ARM_CPU_MODE_HYP: 10057 return 14; 10058 case ARM_CPU_MODE_IRQ: 10059 return 16; 10060 case ARM_CPU_MODE_SVC: 10061 return 18; 10062 case ARM_CPU_MODE_ABT: 10063 return 20; 10064 case ARM_CPU_MODE_UND: 10065 return 22; 10066 case ARM_CPU_MODE_FIQ: 10067 return 30; 10068 default: 10069 g_assert_not_reached(); 10070 } 10071 case 15: 10072 return 31; 10073 default: 10074 g_assert_not_reached(); 10075 } 10076 } 10077 10078 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10079 { 10080 uint32_t ret = cpsr_read(env); 10081 10082 /* Move DIT to the correct location for SPSR_ELx */ 10083 if (ret & CPSR_DIT) { 10084 ret &= ~CPSR_DIT; 10085 ret |= PSTATE_DIT; 10086 } 10087 /* Merge PSTATE.SS into SPSR_ELx */ 10088 ret |= env->pstate & PSTATE_SS; 10089 10090 return ret; 10091 } 10092 10093 static bool syndrome_is_sync_extabt(uint32_t syndrome) 10094 { 10095 /* Return true if this syndrome value is a synchronous external abort */ 10096 switch (syn_get_ec(syndrome)) { 10097 case EC_INSNABORT: 10098 case EC_INSNABORT_SAME_EL: 10099 case EC_DATAABORT: 10100 case EC_DATAABORT_SAME_EL: 10101 /* Look at fault status code for all the synchronous ext abort cases */ 10102 switch (syndrome & 0x3f) { 10103 case 0x10: 10104 case 0x13: 10105 case 0x14: 10106 case 0x15: 10107 case 0x16: 10108 case 0x17: 10109 return true; 10110 default: 10111 return false; 10112 } 10113 default: 10114 return false; 10115 } 10116 } 10117 10118 /* Handle exception entry to a target EL which is using AArch64 */ 10119 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10120 { 10121 ARMCPU *cpu = ARM_CPU(cs); 10122 CPUARMState *env = &cpu->env; 10123 unsigned int new_el = env->exception.target_el; 10124 target_ulong addr = env->cp15.vbar_el[new_el]; 10125 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10126 unsigned int old_mode; 10127 unsigned int cur_el = arm_current_el(env); 10128 int rt; 10129 10130 /* 10131 * Note that new_el can never be 0. If cur_el is 0, then 10132 * el0_a64 is is_a64(), else el0_a64 is ignored. 10133 */ 10134 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10135 10136 if (cur_el < new_el) { 10137 /* Entry vector offset depends on whether the implemented EL 10138 * immediately lower than the target level is using AArch32 or AArch64 10139 */ 10140 bool is_aa64; 10141 uint64_t hcr; 10142 10143 switch (new_el) { 10144 case 3: 10145 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10146 break; 10147 case 2: 10148 hcr = arm_hcr_el2_eff(env); 10149 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10150 is_aa64 = (hcr & HCR_RW) != 0; 10151 break; 10152 } 10153 /* fall through */ 10154 case 1: 10155 is_aa64 = is_a64(env); 10156 break; 10157 default: 10158 g_assert_not_reached(); 10159 } 10160 10161 if (is_aa64) { 10162 addr += 0x400; 10163 } else { 10164 addr += 0x600; 10165 } 10166 } else if (pstate_read(env) & PSTATE_SP) { 10167 addr += 0x200; 10168 } 10169 10170 switch (cs->exception_index) { 10171 case EXCP_PREFETCH_ABORT: 10172 case EXCP_DATA_ABORT: 10173 /* 10174 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 10175 * to be taken to the SError vector entrypoint. 10176 */ 10177 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 10178 syndrome_is_sync_extabt(env->exception.syndrome)) { 10179 addr += 0x180; 10180 } 10181 env->cp15.far_el[new_el] = env->exception.vaddress; 10182 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10183 env->cp15.far_el[new_el]); 10184 /* fall through */ 10185 case EXCP_BKPT: 10186 case EXCP_UDEF: 10187 case EXCP_SWI: 10188 case EXCP_HVC: 10189 case EXCP_HYP_TRAP: 10190 case EXCP_SMC: 10191 switch (syn_get_ec(env->exception.syndrome)) { 10192 case EC_ADVSIMDFPACCESSTRAP: 10193 /* 10194 * QEMU internal FP/SIMD syndromes from AArch32 include the 10195 * TA and coproc fields which are only exposed if the exception 10196 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10197 * AArch64 format syndrome. 10198 */ 10199 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10200 break; 10201 case EC_CP14RTTRAP: 10202 case EC_CP15RTTRAP: 10203 case EC_CP14DTTRAP: 10204 /* 10205 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10206 * the raw register field from the insn; when taking this to 10207 * AArch64 we must convert it to the AArch64 view of the register 10208 * number. Notice that we read a 4-bit AArch32 register number and 10209 * write back a 5-bit AArch64 one. 10210 */ 10211 rt = extract32(env->exception.syndrome, 5, 4); 10212 rt = aarch64_regnum(env, rt); 10213 env->exception.syndrome = deposit32(env->exception.syndrome, 10214 5, 5, rt); 10215 break; 10216 case EC_CP15RRTTRAP: 10217 case EC_CP14RRTTRAP: 10218 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10219 rt = extract32(env->exception.syndrome, 5, 4); 10220 rt = aarch64_regnum(env, rt); 10221 env->exception.syndrome = deposit32(env->exception.syndrome, 10222 5, 5, rt); 10223 rt = extract32(env->exception.syndrome, 10, 4); 10224 rt = aarch64_regnum(env, rt); 10225 env->exception.syndrome = deposit32(env->exception.syndrome, 10226 10, 5, rt); 10227 break; 10228 } 10229 env->cp15.esr_el[new_el] = env->exception.syndrome; 10230 break; 10231 case EXCP_IRQ: 10232 case EXCP_VIRQ: 10233 addr += 0x80; 10234 break; 10235 case EXCP_FIQ: 10236 case EXCP_VFIQ: 10237 addr += 0x100; 10238 break; 10239 case EXCP_VSERR: 10240 addr += 0x180; 10241 /* Construct the SError syndrome from IDS and ISS fields. */ 10242 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10243 env->cp15.esr_el[new_el] = env->exception.syndrome; 10244 break; 10245 default: 10246 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10247 } 10248 10249 if (is_a64(env)) { 10250 old_mode = pstate_read(env); 10251 aarch64_save_sp(env, arm_current_el(env)); 10252 env->elr_el[new_el] = env->pc; 10253 } else { 10254 old_mode = cpsr_read_for_spsr_elx(env); 10255 env->elr_el[new_el] = env->regs[15]; 10256 10257 aarch64_sync_32_to_64(env); 10258 10259 env->condexec_bits = 0; 10260 } 10261 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10262 10263 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10264 env->elr_el[new_el]); 10265 10266 if (cpu_isar_feature(aa64_pan, cpu)) { 10267 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10268 new_mode |= old_mode & PSTATE_PAN; 10269 switch (new_el) { 10270 case 2: 10271 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10272 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10273 != (HCR_E2H | HCR_TGE)) { 10274 break; 10275 } 10276 /* fall through */ 10277 case 1: 10278 /* ... the target is EL1 ... */ 10279 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10280 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10281 new_mode |= PSTATE_PAN; 10282 } 10283 break; 10284 } 10285 } 10286 if (cpu_isar_feature(aa64_mte, cpu)) { 10287 new_mode |= PSTATE_TCO; 10288 } 10289 10290 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10291 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10292 new_mode |= PSTATE_SSBS; 10293 } else { 10294 new_mode &= ~PSTATE_SSBS; 10295 } 10296 } 10297 10298 pstate_write(env, PSTATE_DAIF | new_mode); 10299 env->aarch64 = true; 10300 aarch64_restore_sp(env, new_el); 10301 helper_rebuild_hflags_a64(env, new_el); 10302 10303 env->pc = addr; 10304 10305 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10306 new_el, env->pc, pstate_read(env)); 10307 } 10308 10309 /* 10310 * Do semihosting call and set the appropriate return value. All the 10311 * permission and validity checks have been done at translate time. 10312 * 10313 * We only see semihosting exceptions in TCG only as they are not 10314 * trapped to the hypervisor in KVM. 10315 */ 10316 #ifdef CONFIG_TCG 10317 static void handle_semihosting(CPUState *cs) 10318 { 10319 ARMCPU *cpu = ARM_CPU(cs); 10320 CPUARMState *env = &cpu->env; 10321 10322 if (is_a64(env)) { 10323 qemu_log_mask(CPU_LOG_INT, 10324 "...handling as semihosting call 0x%" PRIx64 "\n", 10325 env->xregs[0]); 10326 env->xregs[0] = do_common_semihosting(cs); 10327 env->pc += 4; 10328 } else { 10329 qemu_log_mask(CPU_LOG_INT, 10330 "...handling as semihosting call 0x%x\n", 10331 env->regs[0]); 10332 env->regs[0] = do_common_semihosting(cs); 10333 env->regs[15] += env->thumb ? 2 : 4; 10334 } 10335 } 10336 #endif 10337 10338 /* Handle a CPU exception for A and R profile CPUs. 10339 * Do any appropriate logging, handle PSCI calls, and then hand off 10340 * to the AArch64-entry or AArch32-entry function depending on the 10341 * target exception level's register width. 10342 * 10343 * Note: this is used for both TCG (as the do_interrupt tcg op), 10344 * and KVM to re-inject guest debug exceptions, and to 10345 * inject a Synchronous-External-Abort. 10346 */ 10347 void arm_cpu_do_interrupt(CPUState *cs) 10348 { 10349 ARMCPU *cpu = ARM_CPU(cs); 10350 CPUARMState *env = &cpu->env; 10351 unsigned int new_el = env->exception.target_el; 10352 10353 assert(!arm_feature(env, ARM_FEATURE_M)); 10354 10355 arm_log_exception(cs); 10356 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10357 new_el); 10358 if (qemu_loglevel_mask(CPU_LOG_INT) 10359 && !excp_is_internal(cs->exception_index)) { 10360 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10361 syn_get_ec(env->exception.syndrome), 10362 env->exception.syndrome); 10363 } 10364 10365 if (arm_is_psci_call(cpu, cs->exception_index)) { 10366 arm_handle_psci_call(cpu); 10367 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10368 return; 10369 } 10370 10371 /* 10372 * Semihosting semantics depend on the register width of the code 10373 * that caused the exception, not the target exception level, so 10374 * must be handled here. 10375 */ 10376 #ifdef CONFIG_TCG 10377 if (cs->exception_index == EXCP_SEMIHOST) { 10378 handle_semihosting(cs); 10379 return; 10380 } 10381 #endif 10382 10383 /* Hooks may change global state so BQL should be held, also the 10384 * BQL needs to be held for any modification of 10385 * cs->interrupt_request. 10386 */ 10387 g_assert(qemu_mutex_iothread_locked()); 10388 10389 arm_call_pre_el_change_hook(cpu); 10390 10391 assert(!excp_is_internal(cs->exception_index)); 10392 if (arm_el_is_aa64(env, new_el)) { 10393 arm_cpu_do_interrupt_aarch64(cs); 10394 } else { 10395 arm_cpu_do_interrupt_aarch32(cs); 10396 } 10397 10398 arm_call_el_change_hook(cpu); 10399 10400 if (!kvm_enabled()) { 10401 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10402 } 10403 } 10404 #endif /* !CONFIG_USER_ONLY */ 10405 10406 uint64_t arm_sctlr(CPUARMState *env, int el) 10407 { 10408 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10409 if (el == 0) { 10410 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10411 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10412 ? 2 : 1; 10413 } 10414 return env->cp15.sctlr_el[el]; 10415 } 10416 10417 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10418 { 10419 if (regime_has_2_ranges(mmu_idx)) { 10420 return extract64(tcr, 37, 2); 10421 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10422 return 0; /* VTCR_EL2 */ 10423 } else { 10424 /* Replicate the single TBI bit so we always have 2 bits. */ 10425 return extract32(tcr, 20, 1) * 3; 10426 } 10427 } 10428 10429 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10430 { 10431 if (regime_has_2_ranges(mmu_idx)) { 10432 return extract64(tcr, 51, 2); 10433 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10434 return 0; /* VTCR_EL2 */ 10435 } else { 10436 /* Replicate the single TBID bit so we always have 2 bits. */ 10437 return extract32(tcr, 29, 1) * 3; 10438 } 10439 } 10440 10441 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10442 { 10443 if (regime_has_2_ranges(mmu_idx)) { 10444 return extract64(tcr, 57, 2); 10445 } else { 10446 /* Replicate the single TCMA bit so we always have 2 bits. */ 10447 return extract32(tcr, 30, 1) * 3; 10448 } 10449 } 10450 10451 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10452 ARMMMUIdx mmu_idx, bool data) 10453 { 10454 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10455 bool epd, hpd, using16k, using64k, tsz_oob, ds; 10456 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 10457 ARMCPU *cpu = env_archcpu(env); 10458 10459 if (!regime_has_2_ranges(mmu_idx)) { 10460 select = 0; 10461 tsz = extract32(tcr, 0, 6); 10462 using64k = extract32(tcr, 14, 1); 10463 using16k = extract32(tcr, 15, 1); 10464 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10465 /* VTCR_EL2 */ 10466 hpd = false; 10467 } else { 10468 hpd = extract32(tcr, 24, 1); 10469 } 10470 epd = false; 10471 sh = extract32(tcr, 12, 2); 10472 ps = extract32(tcr, 16, 3); 10473 ds = extract64(tcr, 32, 1); 10474 } else { 10475 /* 10476 * Bit 55 is always between the two regions, and is canonical for 10477 * determining if address tagging is enabled. 10478 */ 10479 select = extract64(va, 55, 1); 10480 if (!select) { 10481 tsz = extract32(tcr, 0, 6); 10482 epd = extract32(tcr, 7, 1); 10483 sh = extract32(tcr, 12, 2); 10484 using64k = extract32(tcr, 14, 1); 10485 using16k = extract32(tcr, 15, 1); 10486 hpd = extract64(tcr, 41, 1); 10487 } else { 10488 int tg = extract32(tcr, 30, 2); 10489 using16k = tg == 1; 10490 using64k = tg == 3; 10491 tsz = extract32(tcr, 16, 6); 10492 epd = extract32(tcr, 23, 1); 10493 sh = extract32(tcr, 28, 2); 10494 hpd = extract64(tcr, 42, 1); 10495 } 10496 ps = extract64(tcr, 32, 3); 10497 ds = extract64(tcr, 59, 1); 10498 } 10499 10500 if (cpu_isar_feature(aa64_st, cpu)) { 10501 max_tsz = 48 - using64k; 10502 } else { 10503 max_tsz = 39; 10504 } 10505 10506 /* 10507 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 10508 * adjust the effective value of DS, as documented. 10509 */ 10510 min_tsz = 16; 10511 if (using64k) { 10512 if (cpu_isar_feature(aa64_lva, cpu)) { 10513 min_tsz = 12; 10514 } 10515 ds = false; 10516 } else if (ds) { 10517 switch (mmu_idx) { 10518 case ARMMMUIdx_Stage2: 10519 case ARMMMUIdx_Stage2_S: 10520 if (using16k) { 10521 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 10522 } else { 10523 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 10524 } 10525 break; 10526 default: 10527 if (using16k) { 10528 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 10529 } else { 10530 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 10531 } 10532 break; 10533 } 10534 if (ds) { 10535 min_tsz = 12; 10536 } 10537 } 10538 10539 if (tsz > max_tsz) { 10540 tsz = max_tsz; 10541 tsz_oob = true; 10542 } else if (tsz < min_tsz) { 10543 tsz = min_tsz; 10544 tsz_oob = true; 10545 } else { 10546 tsz_oob = false; 10547 } 10548 10549 /* Present TBI as a composite with TBID. */ 10550 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 10551 if (!data) { 10552 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 10553 } 10554 tbi = (tbi >> select) & 1; 10555 10556 return (ARMVAParameters) { 10557 .tsz = tsz, 10558 .ps = ps, 10559 .sh = sh, 10560 .select = select, 10561 .tbi = tbi, 10562 .epd = epd, 10563 .hpd = hpd, 10564 .using16k = using16k, 10565 .using64k = using64k, 10566 .tsz_oob = tsz_oob, 10567 .ds = ds, 10568 }; 10569 } 10570 10571 /* Note that signed overflow is undefined in C. The following routines are 10572 careful to use unsigned types where modulo arithmetic is required. 10573 Failure to do so _will_ break on newer gcc. */ 10574 10575 /* Signed saturating arithmetic. */ 10576 10577 /* Perform 16-bit signed saturating addition. */ 10578 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10579 { 10580 uint16_t res; 10581 10582 res = a + b; 10583 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10584 if (a & 0x8000) 10585 res = 0x8000; 10586 else 10587 res = 0x7fff; 10588 } 10589 return res; 10590 } 10591 10592 /* Perform 8-bit signed saturating addition. */ 10593 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10594 { 10595 uint8_t res; 10596 10597 res = a + b; 10598 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10599 if (a & 0x80) 10600 res = 0x80; 10601 else 10602 res = 0x7f; 10603 } 10604 return res; 10605 } 10606 10607 /* Perform 16-bit signed saturating subtraction. */ 10608 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10609 { 10610 uint16_t res; 10611 10612 res = a - b; 10613 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10614 if (a & 0x8000) 10615 res = 0x8000; 10616 else 10617 res = 0x7fff; 10618 } 10619 return res; 10620 } 10621 10622 /* Perform 8-bit signed saturating subtraction. */ 10623 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10624 { 10625 uint8_t res; 10626 10627 res = a - b; 10628 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10629 if (a & 0x80) 10630 res = 0x80; 10631 else 10632 res = 0x7f; 10633 } 10634 return res; 10635 } 10636 10637 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10638 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10639 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10640 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10641 #define PFX q 10642 10643 #include "op_addsub.h" 10644 10645 /* Unsigned saturating arithmetic. */ 10646 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10647 { 10648 uint16_t res; 10649 res = a + b; 10650 if (res < a) 10651 res = 0xffff; 10652 return res; 10653 } 10654 10655 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10656 { 10657 if (a > b) 10658 return a - b; 10659 else 10660 return 0; 10661 } 10662 10663 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10664 { 10665 uint8_t res; 10666 res = a + b; 10667 if (res < a) 10668 res = 0xff; 10669 return res; 10670 } 10671 10672 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10673 { 10674 if (a > b) 10675 return a - b; 10676 else 10677 return 0; 10678 } 10679 10680 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 10681 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 10682 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 10683 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 10684 #define PFX uq 10685 10686 #include "op_addsub.h" 10687 10688 /* Signed modulo arithmetic. */ 10689 #define SARITH16(a, b, n, op) do { \ 10690 int32_t sum; \ 10691 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 10692 RESULT(sum, n, 16); \ 10693 if (sum >= 0) \ 10694 ge |= 3 << (n * 2); \ 10695 } while(0) 10696 10697 #define SARITH8(a, b, n, op) do { \ 10698 int32_t sum; \ 10699 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 10700 RESULT(sum, n, 8); \ 10701 if (sum >= 0) \ 10702 ge |= 1 << n; \ 10703 } while(0) 10704 10705 10706 #define ADD16(a, b, n) SARITH16(a, b, n, +) 10707 #define SUB16(a, b, n) SARITH16(a, b, n, -) 10708 #define ADD8(a, b, n) SARITH8(a, b, n, +) 10709 #define SUB8(a, b, n) SARITH8(a, b, n, -) 10710 #define PFX s 10711 #define ARITH_GE 10712 10713 #include "op_addsub.h" 10714 10715 /* Unsigned modulo arithmetic. */ 10716 #define ADD16(a, b, n) do { \ 10717 uint32_t sum; \ 10718 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 10719 RESULT(sum, n, 16); \ 10720 if ((sum >> 16) == 1) \ 10721 ge |= 3 << (n * 2); \ 10722 } while(0) 10723 10724 #define ADD8(a, b, n) do { \ 10725 uint32_t sum; \ 10726 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 10727 RESULT(sum, n, 8); \ 10728 if ((sum >> 8) == 1) \ 10729 ge |= 1 << n; \ 10730 } while(0) 10731 10732 #define SUB16(a, b, n) do { \ 10733 uint32_t sum; \ 10734 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 10735 RESULT(sum, n, 16); \ 10736 if ((sum >> 16) == 0) \ 10737 ge |= 3 << (n * 2); \ 10738 } while(0) 10739 10740 #define SUB8(a, b, n) do { \ 10741 uint32_t sum; \ 10742 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 10743 RESULT(sum, n, 8); \ 10744 if ((sum >> 8) == 0) \ 10745 ge |= 1 << n; \ 10746 } while(0) 10747 10748 #define PFX u 10749 #define ARITH_GE 10750 10751 #include "op_addsub.h" 10752 10753 /* Halved signed arithmetic. */ 10754 #define ADD16(a, b, n) \ 10755 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 10756 #define SUB16(a, b, n) \ 10757 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 10758 #define ADD8(a, b, n) \ 10759 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 10760 #define SUB8(a, b, n) \ 10761 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 10762 #define PFX sh 10763 10764 #include "op_addsub.h" 10765 10766 /* Halved unsigned arithmetic. */ 10767 #define ADD16(a, b, n) \ 10768 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10769 #define SUB16(a, b, n) \ 10770 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10771 #define ADD8(a, b, n) \ 10772 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10773 #define SUB8(a, b, n) \ 10774 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10775 #define PFX uh 10776 10777 #include "op_addsub.h" 10778 10779 static inline uint8_t do_usad(uint8_t a, uint8_t b) 10780 { 10781 if (a > b) 10782 return a - b; 10783 else 10784 return b - a; 10785 } 10786 10787 /* Unsigned sum of absolute byte differences. */ 10788 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 10789 { 10790 uint32_t sum; 10791 sum = do_usad(a, b); 10792 sum += do_usad(a >> 8, b >> 8); 10793 sum += do_usad(a >> 16, b >> 16); 10794 sum += do_usad(a >> 24, b >> 24); 10795 return sum; 10796 } 10797 10798 /* For ARMv6 SEL instruction. */ 10799 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 10800 { 10801 uint32_t mask; 10802 10803 mask = 0; 10804 if (flags & 1) 10805 mask |= 0xff; 10806 if (flags & 2) 10807 mask |= 0xff00; 10808 if (flags & 4) 10809 mask |= 0xff0000; 10810 if (flags & 8) 10811 mask |= 0xff000000; 10812 return (a & mask) | (b & ~mask); 10813 } 10814 10815 /* CRC helpers. 10816 * The upper bytes of val (above the number specified by 'bytes') must have 10817 * been zeroed out by the caller. 10818 */ 10819 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 10820 { 10821 uint8_t buf[4]; 10822 10823 stl_le_p(buf, val); 10824 10825 /* zlib crc32 converts the accumulator and output to one's complement. */ 10826 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 10827 } 10828 10829 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 10830 { 10831 uint8_t buf[4]; 10832 10833 stl_le_p(buf, val); 10834 10835 /* Linux crc32c converts the output to one's complement. */ 10836 return crc32c(acc, buf, bytes) ^ 0xffffffff; 10837 } 10838 10839 /* Return the exception level to which FP-disabled exceptions should 10840 * be taken, or 0 if FP is enabled. 10841 */ 10842 int fp_exception_el(CPUARMState *env, int cur_el) 10843 { 10844 #ifndef CONFIG_USER_ONLY 10845 uint64_t hcr_el2; 10846 10847 /* CPACR and the CPTR registers don't exist before v6, so FP is 10848 * always accessible 10849 */ 10850 if (!arm_feature(env, ARM_FEATURE_V6)) { 10851 return 0; 10852 } 10853 10854 if (arm_feature(env, ARM_FEATURE_M)) { 10855 /* CPACR can cause a NOCP UsageFault taken to current security state */ 10856 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 10857 return 1; 10858 } 10859 10860 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 10861 if (!extract32(env->v7m.nsacr, 10, 1)) { 10862 /* FP insns cause a NOCP UsageFault taken to Secure */ 10863 return 3; 10864 } 10865 } 10866 10867 return 0; 10868 } 10869 10870 hcr_el2 = arm_hcr_el2_eff(env); 10871 10872 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 10873 * 0, 2 : trap EL0 and EL1/PL1 accesses 10874 * 1 : trap only EL0 accesses 10875 * 3 : trap no accesses 10876 * This register is ignored if E2H+TGE are both set. 10877 */ 10878 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10879 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 10880 10881 switch (fpen) { 10882 case 0: 10883 case 2: 10884 if (cur_el == 0 || cur_el == 1) { 10885 /* Trap to PL1, which might be EL1 or EL3 */ 10886 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 10887 return 3; 10888 } 10889 return 1; 10890 } 10891 if (cur_el == 3 && !is_a64(env)) { 10892 /* Secure PL1 running at EL3 */ 10893 return 3; 10894 } 10895 break; 10896 case 1: 10897 if (cur_el == 0) { 10898 return 1; 10899 } 10900 break; 10901 case 3: 10902 break; 10903 } 10904 } 10905 10906 /* 10907 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 10908 * to control non-secure access to the FPU. It doesn't have any 10909 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 10910 */ 10911 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 10912 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 10913 if (!extract32(env->cp15.nsacr, 10, 1)) { 10914 /* FP insns act as UNDEF */ 10915 return cur_el == 2 ? 2 : 1; 10916 } 10917 } 10918 10919 /* 10920 * CPTR_EL2 is present in v7VE or v8, and changes format 10921 * with HCR_EL2.E2H (regardless of TGE). 10922 */ 10923 if (cur_el <= 2) { 10924 if (hcr_el2 & HCR_E2H) { 10925 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 10926 case 1: 10927 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 10928 break; 10929 } 10930 /* fall through */ 10931 case 0: 10932 case 2: 10933 return 2; 10934 } 10935 } else if (arm_is_el2_enabled(env)) { 10936 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 10937 return 2; 10938 } 10939 } 10940 } 10941 10942 /* CPTR_EL3 : present in v8 */ 10943 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 10944 /* Trap all FP ops to EL3 */ 10945 return 3; 10946 } 10947 #endif 10948 return 0; 10949 } 10950 10951 /* Return the exception level we're running at if this is our mmu_idx */ 10952 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 10953 { 10954 if (mmu_idx & ARM_MMU_IDX_M) { 10955 return mmu_idx & ARM_MMU_IDX_M_PRIV; 10956 } 10957 10958 switch (mmu_idx) { 10959 case ARMMMUIdx_E10_0: 10960 case ARMMMUIdx_E20_0: 10961 case ARMMMUIdx_SE10_0: 10962 case ARMMMUIdx_SE20_0: 10963 return 0; 10964 case ARMMMUIdx_E10_1: 10965 case ARMMMUIdx_E10_1_PAN: 10966 case ARMMMUIdx_SE10_1: 10967 case ARMMMUIdx_SE10_1_PAN: 10968 return 1; 10969 case ARMMMUIdx_E2: 10970 case ARMMMUIdx_E20_2: 10971 case ARMMMUIdx_E20_2_PAN: 10972 case ARMMMUIdx_SE2: 10973 case ARMMMUIdx_SE20_2: 10974 case ARMMMUIdx_SE20_2_PAN: 10975 return 2; 10976 case ARMMMUIdx_SE3: 10977 return 3; 10978 default: 10979 g_assert_not_reached(); 10980 } 10981 } 10982 10983 #ifndef CONFIG_TCG 10984 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 10985 { 10986 g_assert_not_reached(); 10987 } 10988 #endif 10989 10990 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 10991 { 10992 ARMMMUIdx idx; 10993 uint64_t hcr; 10994 10995 if (arm_feature(env, ARM_FEATURE_M)) { 10996 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 10997 } 10998 10999 /* See ARM pseudo-function ELIsInHost. */ 11000 switch (el) { 11001 case 0: 11002 hcr = arm_hcr_el2_eff(env); 11003 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 11004 idx = ARMMMUIdx_E20_0; 11005 } else { 11006 idx = ARMMMUIdx_E10_0; 11007 } 11008 break; 11009 case 1: 11010 if (env->pstate & PSTATE_PAN) { 11011 idx = ARMMMUIdx_E10_1_PAN; 11012 } else { 11013 idx = ARMMMUIdx_E10_1; 11014 } 11015 break; 11016 case 2: 11017 /* Note that TGE does not apply at EL2. */ 11018 if (arm_hcr_el2_eff(env) & HCR_E2H) { 11019 if (env->pstate & PSTATE_PAN) { 11020 idx = ARMMMUIdx_E20_2_PAN; 11021 } else { 11022 idx = ARMMMUIdx_E20_2; 11023 } 11024 } else { 11025 idx = ARMMMUIdx_E2; 11026 } 11027 break; 11028 case 3: 11029 return ARMMMUIdx_SE3; 11030 default: 11031 g_assert_not_reached(); 11032 } 11033 11034 if (arm_is_secure_below_el3(env)) { 11035 idx &= ~ARM_MMU_IDX_A_NS; 11036 } 11037 11038 return idx; 11039 } 11040 11041 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11042 { 11043 return arm_mmu_idx_el(env, arm_current_el(env)); 11044 } 11045 11046 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 11047 ARMMMUIdx mmu_idx, 11048 CPUARMTBFlags flags) 11049 { 11050 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 11051 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 11052 11053 if (arm_singlestep_active(env)) { 11054 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 11055 } 11056 return flags; 11057 } 11058 11059 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 11060 ARMMMUIdx mmu_idx, 11061 CPUARMTBFlags flags) 11062 { 11063 bool sctlr_b = arm_sctlr_b(env); 11064 11065 if (sctlr_b) { 11066 DP_TBFLAG_A32(flags, SCTLR__B, 1); 11067 } 11068 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 11069 DP_TBFLAG_ANY(flags, BE_DATA, 1); 11070 } 11071 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 11072 11073 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11074 } 11075 11076 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 11077 ARMMMUIdx mmu_idx) 11078 { 11079 CPUARMTBFlags flags = {}; 11080 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 11081 11082 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 11083 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 11084 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11085 } 11086 11087 if (arm_v7m_is_handler_mode(env)) { 11088 DP_TBFLAG_M32(flags, HANDLER, 1); 11089 } 11090 11091 /* 11092 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 11093 * is suppressing them because the requested execution priority 11094 * is less than 0. 11095 */ 11096 if (arm_feature(env, ARM_FEATURE_V8) && 11097 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 11098 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 11099 DP_TBFLAG_M32(flags, STACKCHECK, 1); 11100 } 11101 11102 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11103 } 11104 11105 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) 11106 { 11107 CPUARMTBFlags flags = {}; 11108 11109 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); 11110 return flags; 11111 } 11112 11113 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 11114 ARMMMUIdx mmu_idx) 11115 { 11116 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 11117 int el = arm_current_el(env); 11118 11119 if (arm_sctlr(env, el) & SCTLR_A) { 11120 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11121 } 11122 11123 if (arm_el_is_aa64(env, 1)) { 11124 DP_TBFLAG_A32(flags, VFPEN, 1); 11125 } 11126 11127 if (el < 2 && env->cp15.hstr_el2 && 11128 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11129 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 11130 } 11131 11132 if (env->uncached_cpsr & CPSR_IL) { 11133 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 11134 } 11135 11136 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11137 } 11138 11139 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 11140 ARMMMUIdx mmu_idx) 11141 { 11142 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 11143 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 11144 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11145 uint64_t sctlr; 11146 int tbii, tbid; 11147 11148 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 11149 11150 /* Get control bits for tagged addresses. */ 11151 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 11152 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 11153 11154 DP_TBFLAG_A64(flags, TBII, tbii); 11155 DP_TBFLAG_A64(flags, TBID, tbid); 11156 11157 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 11158 int sve_el = sve_exception_el(env, el); 11159 11160 /* 11161 * If either FP or SVE are disabled, translator does not need len. 11162 * If SVE EL > FP EL, FP exception has precedence, and translator 11163 * does not need SVE EL. Save potential re-translations by forcing 11164 * the unneeded data to zero. 11165 */ 11166 if (fp_el != 0) { 11167 if (sve_el > fp_el) { 11168 sve_el = 0; 11169 } 11170 } else if (sve_el == 0) { 11171 DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el)); 11172 } 11173 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 11174 } 11175 11176 sctlr = regime_sctlr(env, stage1); 11177 11178 if (sctlr & SCTLR_A) { 11179 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11180 } 11181 11182 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 11183 DP_TBFLAG_ANY(flags, BE_DATA, 1); 11184 } 11185 11186 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 11187 /* 11188 * In order to save space in flags, we record only whether 11189 * pauth is "inactive", meaning all insns are implemented as 11190 * a nop, or "active" when some action must be performed. 11191 * The decision of which action to take is left to a helper. 11192 */ 11193 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 11194 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 11195 } 11196 } 11197 11198 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11199 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 11200 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 11201 DP_TBFLAG_A64(flags, BT, 1); 11202 } 11203 } 11204 11205 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 11206 if (!(env->pstate & PSTATE_UAO)) { 11207 switch (mmu_idx) { 11208 case ARMMMUIdx_E10_1: 11209 case ARMMMUIdx_E10_1_PAN: 11210 case ARMMMUIdx_SE10_1: 11211 case ARMMMUIdx_SE10_1_PAN: 11212 /* TODO: ARMv8.3-NV */ 11213 DP_TBFLAG_A64(flags, UNPRIV, 1); 11214 break; 11215 case ARMMMUIdx_E20_2: 11216 case ARMMMUIdx_E20_2_PAN: 11217 case ARMMMUIdx_SE20_2: 11218 case ARMMMUIdx_SE20_2_PAN: 11219 /* 11220 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 11221 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 11222 */ 11223 if (env->cp15.hcr_el2 & HCR_TGE) { 11224 DP_TBFLAG_A64(flags, UNPRIV, 1); 11225 } 11226 break; 11227 default: 11228 break; 11229 } 11230 } 11231 11232 if (env->pstate & PSTATE_IL) { 11233 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 11234 } 11235 11236 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 11237 /* 11238 * Set MTE_ACTIVE if any access may be Checked, and leave clear 11239 * if all accesses must be Unchecked: 11240 * 1) If no TBI, then there are no tags in the address to check, 11241 * 2) If Tag Check Override, then all accesses are Unchecked, 11242 * 3) If Tag Check Fail == 0, then Checked access have no effect, 11243 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 11244 */ 11245 if (allocation_tag_access_enabled(env, el, sctlr)) { 11246 DP_TBFLAG_A64(flags, ATA, 1); 11247 if (tbid 11248 && !(env->pstate & PSTATE_TCO) 11249 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 11250 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 11251 } 11252 } 11253 /* And again for unprivileged accesses, if required. */ 11254 if (EX_TBFLAG_A64(flags, UNPRIV) 11255 && tbid 11256 && !(env->pstate & PSTATE_TCO) 11257 && (sctlr & SCTLR_TCF0) 11258 && allocation_tag_access_enabled(env, 0, sctlr)) { 11259 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 11260 } 11261 /* Cache TCMA as well as TBI. */ 11262 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 11263 } 11264 11265 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11266 } 11267 11268 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 11269 { 11270 int el = arm_current_el(env); 11271 int fp_el = fp_exception_el(env, el); 11272 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11273 11274 if (is_a64(env)) { 11275 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11276 } else if (arm_feature(env, ARM_FEATURE_M)) { 11277 return rebuild_hflags_m32(env, fp_el, mmu_idx); 11278 } else { 11279 return rebuild_hflags_a32(env, fp_el, mmu_idx); 11280 } 11281 } 11282 11283 void arm_rebuild_hflags(CPUARMState *env) 11284 { 11285 env->hflags = rebuild_hflags_internal(env); 11286 } 11287 11288 /* 11289 * If we have triggered a EL state change we can't rely on the 11290 * translator having passed it to us, we need to recompute. 11291 */ 11292 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 11293 { 11294 int el = arm_current_el(env); 11295 int fp_el = fp_exception_el(env, el); 11296 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11297 11298 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11299 } 11300 11301 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 11302 { 11303 int fp_el = fp_exception_el(env, el); 11304 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11305 11306 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11307 } 11308 11309 /* 11310 * If we have triggered a EL state change we can't rely on the 11311 * translator having passed it to us, we need to recompute. 11312 */ 11313 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 11314 { 11315 int el = arm_current_el(env); 11316 int fp_el = fp_exception_el(env, el); 11317 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11318 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11319 } 11320 11321 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 11322 { 11323 int fp_el = fp_exception_el(env, el); 11324 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11325 11326 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11327 } 11328 11329 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 11330 { 11331 int fp_el = fp_exception_el(env, el); 11332 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11333 11334 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11335 } 11336 11337 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 11338 { 11339 #ifdef CONFIG_DEBUG_TCG 11340 CPUARMTBFlags c = env->hflags; 11341 CPUARMTBFlags r = rebuild_hflags_internal(env); 11342 11343 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 11344 fprintf(stderr, "TCG hflags mismatch " 11345 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 11346 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 11347 c.flags, c.flags2, r.flags, r.flags2); 11348 abort(); 11349 } 11350 #endif 11351 } 11352 11353 static bool mve_no_pred(CPUARMState *env) 11354 { 11355 /* 11356 * Return true if there is definitely no predication of MVE 11357 * instructions by VPR or LTPSIZE. (Returning false even if there 11358 * isn't any predication is OK; generated code will just be 11359 * a little worse.) 11360 * If the CPU does not implement MVE then this TB flag is always 0. 11361 * 11362 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 11363 * logic in gen_update_fp_context() needs to be updated to match. 11364 * 11365 * We do not include the effect of the ECI bits here -- they are 11366 * tracked in other TB flags. This simplifies the logic for 11367 * "when did we emit code that changes the MVE_NO_PRED TB flag 11368 * and thus need to end the TB?". 11369 */ 11370 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 11371 return false; 11372 } 11373 if (env->v7m.vpr) { 11374 return false; 11375 } 11376 if (env->v7m.ltpsize < 4) { 11377 return false; 11378 } 11379 return true; 11380 } 11381 11382 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 11383 target_ulong *cs_base, uint32_t *pflags) 11384 { 11385 CPUARMTBFlags flags; 11386 11387 assert_hflags_rebuild_correctly(env); 11388 flags = env->hflags; 11389 11390 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 11391 *pc = env->pc; 11392 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11393 DP_TBFLAG_A64(flags, BTYPE, env->btype); 11394 } 11395 } else { 11396 *pc = env->regs[15]; 11397 11398 if (arm_feature(env, ARM_FEATURE_M)) { 11399 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11400 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 11401 != env->v7m.secure) { 11402 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 11403 } 11404 11405 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11406 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11407 (env->v7m.secure && 11408 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11409 /* 11410 * ASPEN is set, but FPCA/SFPA indicate that there is no 11411 * active FP context; we must create a new FP context before 11412 * executing any FP insn. 11413 */ 11414 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 11415 } 11416 11417 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11418 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11419 DP_TBFLAG_M32(flags, LSPACT, 1); 11420 } 11421 11422 if (mve_no_pred(env)) { 11423 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 11424 } 11425 } else { 11426 /* 11427 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 11428 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 11429 */ 11430 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11431 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 11432 } else { 11433 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 11434 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 11435 } 11436 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 11437 DP_TBFLAG_A32(flags, VFPEN, 1); 11438 } 11439 } 11440 11441 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 11442 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 11443 } 11444 11445 /* 11446 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11447 * states defined in the ARM ARM for software singlestep: 11448 * SS_ACTIVE PSTATE.SS State 11449 * 0 x Inactive (the TB flag for SS is always 0) 11450 * 1 0 Active-pending 11451 * 1 1 Active-not-pending 11452 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 11453 */ 11454 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 11455 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 11456 } 11457 11458 *pflags = flags.flags; 11459 *cs_base = flags.flags2; 11460 } 11461 11462 #ifdef TARGET_AARCH64 11463 /* 11464 * The manual says that when SVE is enabled and VQ is widened the 11465 * implementation is allowed to zero the previously inaccessible 11466 * portion of the registers. The corollary to that is that when 11467 * SVE is enabled and VQ is narrowed we are also allowed to zero 11468 * the now inaccessible portion of the registers. 11469 * 11470 * The intent of this is that no predicate bit beyond VQ is ever set. 11471 * Which means that some operations on predicate registers themselves 11472 * may operate on full uint64_t or even unrolled across the maximum 11473 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11474 * may well be cheaper than conditionals to restrict the operation 11475 * to the relevant portion of a uint16_t[16]. 11476 */ 11477 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11478 { 11479 int i, j; 11480 uint64_t pmask; 11481 11482 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11483 assert(vq <= env_archcpu(env)->sve_max_vq); 11484 11485 /* Zap the high bits of the zregs. */ 11486 for (i = 0; i < 32; i++) { 11487 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11488 } 11489 11490 /* Zap the high bits of the pregs and ffr. */ 11491 pmask = 0; 11492 if (vq & 3) { 11493 pmask = ~(-1ULL << (16 * (vq & 3))); 11494 } 11495 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11496 for (i = 0; i < 17; ++i) { 11497 env->vfp.pregs[i].p[j] &= pmask; 11498 } 11499 pmask = 0; 11500 } 11501 } 11502 11503 /* 11504 * Notice a change in SVE vector size when changing EL. 11505 */ 11506 void aarch64_sve_change_el(CPUARMState *env, int old_el, 11507 int new_el, bool el0_a64) 11508 { 11509 ARMCPU *cpu = env_archcpu(env); 11510 int old_len, new_len; 11511 bool old_a64, new_a64; 11512 11513 /* Nothing to do if no SVE. */ 11514 if (!cpu_isar_feature(aa64_sve, cpu)) { 11515 return; 11516 } 11517 11518 /* Nothing to do if FP is disabled in either EL. */ 11519 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 11520 return; 11521 } 11522 11523 /* 11524 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 11525 * at ELx, or not available because the EL is in AArch32 state, then 11526 * for all purposes other than a direct read, the ZCR_ELx.LEN field 11527 * has an effective value of 0". 11528 * 11529 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 11530 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 11531 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 11532 * we already have the correct register contents when encountering the 11533 * vq0->vq0 transition between EL0->EL1. 11534 */ 11535 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 11536 old_len = (old_a64 && !sve_exception_el(env, old_el) 11537 ? sve_vqm1_for_el(env, old_el) : 0); 11538 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 11539 new_len = (new_a64 && !sve_exception_el(env, new_el) 11540 ? sve_vqm1_for_el(env, new_el) : 0); 11541 11542 /* When changing vector length, clear inaccessible state. */ 11543 if (new_len < old_len) { 11544 aarch64_sve_narrow_vq(env, new_len + 1); 11545 } 11546 } 11547 #endif 11548