1 #include "qemu/osdep.h" 2 #include "target/arm/idau.h" 3 #include "trace.h" 4 #include "cpu.h" 5 #include "internals.h" 6 #include "exec/gdbstub.h" 7 #include "exec/helper-proto.h" 8 #include "qemu/host-utils.h" 9 #include "sysemu/arch_init.h" 10 #include "sysemu/sysemu.h" 11 #include "qemu/bitops.h" 12 #include "qemu/crc32c.h" 13 #include "exec/exec-all.h" 14 #include "exec/cpu_ldst.h" 15 #include "arm_ldst.h" 16 #include <zlib.h> /* For crc32 */ 17 #include "exec/semihost.h" 18 #include "sysemu/kvm.h" 19 #include "fpu/softfloat.h" 20 21 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 22 23 #ifndef CONFIG_USER_ONLY 24 /* Cacheability and shareability attributes for a memory access */ 25 typedef struct ARMCacheAttrs { 26 unsigned int attrs:8; /* as in the MAIR register encoding */ 27 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 28 } ARMCacheAttrs; 29 30 static bool get_phys_addr(CPUARMState *env, target_ulong address, 31 MMUAccessType access_type, ARMMMUIdx mmu_idx, 32 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 33 target_ulong *page_size, 34 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 35 36 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 37 MMUAccessType access_type, ARMMMUIdx mmu_idx, 38 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 39 target_ulong *page_size_ptr, 40 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 41 42 /* Security attributes for an address, as returned by v8m_security_lookup. */ 43 typedef struct V8M_SAttributes { 44 bool ns; 45 bool nsc; 46 uint8_t sregion; 47 bool srvalid; 48 uint8_t iregion; 49 bool irvalid; 50 } V8M_SAttributes; 51 52 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 53 MMUAccessType access_type, ARMMMUIdx mmu_idx, 54 V8M_SAttributes *sattrs); 55 56 /* Definitions for the PMCCNTR and PMCR registers */ 57 #define PMCRD 0x8 58 #define PMCRC 0x4 59 #define PMCRE 0x1 60 #endif 61 62 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 63 { 64 int nregs; 65 66 /* VFP data registers are always little-endian. */ 67 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 68 if (reg < nregs) { 69 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 70 return 8; 71 } 72 if (arm_feature(env, ARM_FEATURE_NEON)) { 73 /* Aliases for Q regs. */ 74 nregs += 16; 75 if (reg < nregs) { 76 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 77 stq_le_p(buf, q[0]); 78 stq_le_p(buf + 8, q[1]); 79 return 16; 80 } 81 } 82 switch (reg - nregs) { 83 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 84 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; 85 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 86 } 87 return 0; 88 } 89 90 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 91 { 92 int nregs; 93 94 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 95 if (reg < nregs) { 96 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 97 return 8; 98 } 99 if (arm_feature(env, ARM_FEATURE_NEON)) { 100 nregs += 16; 101 if (reg < nregs) { 102 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 103 q[0] = ldq_le_p(buf); 104 q[1] = ldq_le_p(buf + 8); 105 return 16; 106 } 107 } 108 switch (reg - nregs) { 109 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 110 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; 111 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 112 } 113 return 0; 114 } 115 116 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 117 { 118 switch (reg) { 119 case 0 ... 31: 120 /* 128 bit FP register */ 121 { 122 uint64_t *q = aa64_vfp_qreg(env, reg); 123 stq_le_p(buf, q[0]); 124 stq_le_p(buf + 8, q[1]); 125 return 16; 126 } 127 case 32: 128 /* FPSR */ 129 stl_p(buf, vfp_get_fpsr(env)); 130 return 4; 131 case 33: 132 /* FPCR */ 133 stl_p(buf, vfp_get_fpcr(env)); 134 return 4; 135 default: 136 return 0; 137 } 138 } 139 140 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 141 { 142 switch (reg) { 143 case 0 ... 31: 144 /* 128 bit FP register */ 145 { 146 uint64_t *q = aa64_vfp_qreg(env, reg); 147 q[0] = ldq_le_p(buf); 148 q[1] = ldq_le_p(buf + 8); 149 return 16; 150 } 151 case 32: 152 /* FPSR */ 153 vfp_set_fpsr(env, ldl_p(buf)); 154 return 4; 155 case 33: 156 /* FPCR */ 157 vfp_set_fpcr(env, ldl_p(buf)); 158 return 4; 159 default: 160 return 0; 161 } 162 } 163 164 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 165 { 166 assert(ri->fieldoffset); 167 if (cpreg_field_is_64bit(ri)) { 168 return CPREG_FIELD64(env, ri); 169 } else { 170 return CPREG_FIELD32(env, ri); 171 } 172 } 173 174 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 175 uint64_t value) 176 { 177 assert(ri->fieldoffset); 178 if (cpreg_field_is_64bit(ri)) { 179 CPREG_FIELD64(env, ri) = value; 180 } else { 181 CPREG_FIELD32(env, ri) = value; 182 } 183 } 184 185 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 186 { 187 return (char *)env + ri->fieldoffset; 188 } 189 190 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 191 { 192 /* Raw read of a coprocessor register (as needed for migration, etc). */ 193 if (ri->type & ARM_CP_CONST) { 194 return ri->resetvalue; 195 } else if (ri->raw_readfn) { 196 return ri->raw_readfn(env, ri); 197 } else if (ri->readfn) { 198 return ri->readfn(env, ri); 199 } else { 200 return raw_read(env, ri); 201 } 202 } 203 204 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 205 uint64_t v) 206 { 207 /* Raw write of a coprocessor register (as needed for migration, etc). 208 * Note that constant registers are treated as write-ignored; the 209 * caller should check for success by whether a readback gives the 210 * value written. 211 */ 212 if (ri->type & ARM_CP_CONST) { 213 return; 214 } else if (ri->raw_writefn) { 215 ri->raw_writefn(env, ri, v); 216 } else if (ri->writefn) { 217 ri->writefn(env, ri, v); 218 } else { 219 raw_write(env, ri, v); 220 } 221 } 222 223 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 224 { 225 /* Return true if the regdef would cause an assertion if you called 226 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 227 * program bug for it not to have the NO_RAW flag). 228 * NB that returning false here doesn't necessarily mean that calling 229 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 230 * read/write access functions which are safe for raw use" from "has 231 * read/write access functions which have side effects but has forgotten 232 * to provide raw access functions". 233 * The tests here line up with the conditions in read/write_raw_cp_reg() 234 * and assertions in raw_read()/raw_write(). 235 */ 236 if ((ri->type & ARM_CP_CONST) || 237 ri->fieldoffset || 238 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 239 return false; 240 } 241 return true; 242 } 243 244 bool write_cpustate_to_list(ARMCPU *cpu) 245 { 246 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 247 int i; 248 bool ok = true; 249 250 for (i = 0; i < cpu->cpreg_array_len; i++) { 251 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 252 const ARMCPRegInfo *ri; 253 254 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 255 if (!ri) { 256 ok = false; 257 continue; 258 } 259 if (ri->type & ARM_CP_NO_RAW) { 260 continue; 261 } 262 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); 263 } 264 return ok; 265 } 266 267 bool write_list_to_cpustate(ARMCPU *cpu) 268 { 269 int i; 270 bool ok = true; 271 272 for (i = 0; i < cpu->cpreg_array_len; i++) { 273 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 274 uint64_t v = cpu->cpreg_values[i]; 275 const ARMCPRegInfo *ri; 276 277 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 278 if (!ri) { 279 ok = false; 280 continue; 281 } 282 if (ri->type & ARM_CP_NO_RAW) { 283 continue; 284 } 285 /* Write value and confirm it reads back as written 286 * (to catch read-only registers and partially read-only 287 * registers where the incoming migration value doesn't match) 288 */ 289 write_raw_cp_reg(&cpu->env, ri, v); 290 if (read_raw_cp_reg(&cpu->env, ri) != v) { 291 ok = false; 292 } 293 } 294 return ok; 295 } 296 297 static void add_cpreg_to_list(gpointer key, gpointer opaque) 298 { 299 ARMCPU *cpu = opaque; 300 uint64_t regidx; 301 const ARMCPRegInfo *ri; 302 303 regidx = *(uint32_t *)key; 304 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 305 306 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 307 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 308 /* The value array need not be initialized at this point */ 309 cpu->cpreg_array_len++; 310 } 311 } 312 313 static void count_cpreg(gpointer key, gpointer opaque) 314 { 315 ARMCPU *cpu = opaque; 316 uint64_t regidx; 317 const ARMCPRegInfo *ri; 318 319 regidx = *(uint32_t *)key; 320 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 321 322 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 323 cpu->cpreg_array_len++; 324 } 325 } 326 327 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 328 { 329 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 330 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 331 332 if (aidx > bidx) { 333 return 1; 334 } 335 if (aidx < bidx) { 336 return -1; 337 } 338 return 0; 339 } 340 341 void init_cpreg_list(ARMCPU *cpu) 342 { 343 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 344 * Note that we require cpreg_tuples[] to be sorted by key ID. 345 */ 346 GList *keys; 347 int arraylen; 348 349 keys = g_hash_table_get_keys(cpu->cp_regs); 350 keys = g_list_sort(keys, cpreg_key_compare); 351 352 cpu->cpreg_array_len = 0; 353 354 g_list_foreach(keys, count_cpreg, cpu); 355 356 arraylen = cpu->cpreg_array_len; 357 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 358 cpu->cpreg_values = g_new(uint64_t, arraylen); 359 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 360 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 361 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 362 cpu->cpreg_array_len = 0; 363 364 g_list_foreach(keys, add_cpreg_to_list, cpu); 365 366 assert(cpu->cpreg_array_len == arraylen); 367 368 g_list_free(keys); 369 } 370 371 /* 372 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 373 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 374 * 375 * access_el3_aa32ns: Used to check AArch32 register views. 376 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 377 */ 378 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 379 const ARMCPRegInfo *ri, 380 bool isread) 381 { 382 bool secure = arm_is_secure_below_el3(env); 383 384 assert(!arm_el_is_aa64(env, 3)); 385 if (secure) { 386 return CP_ACCESS_TRAP_UNCATEGORIZED; 387 } 388 return CP_ACCESS_OK; 389 } 390 391 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 392 const ARMCPRegInfo *ri, 393 bool isread) 394 { 395 if (!arm_el_is_aa64(env, 3)) { 396 return access_el3_aa32ns(env, ri, isread); 397 } 398 return CP_ACCESS_OK; 399 } 400 401 /* Some secure-only AArch32 registers trap to EL3 if used from 402 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 403 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 404 * We assume that the .access field is set to PL1_RW. 405 */ 406 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 407 const ARMCPRegInfo *ri, 408 bool isread) 409 { 410 if (arm_current_el(env) == 3) { 411 return CP_ACCESS_OK; 412 } 413 if (arm_is_secure_below_el3(env)) { 414 return CP_ACCESS_TRAP_EL3; 415 } 416 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 417 return CP_ACCESS_TRAP_UNCATEGORIZED; 418 } 419 420 /* Check for traps to "powerdown debug" registers, which are controlled 421 * by MDCR.TDOSA 422 */ 423 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 424 bool isread) 425 { 426 int el = arm_current_el(env); 427 428 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA) 429 && !arm_is_secure_below_el3(env)) { 430 return CP_ACCESS_TRAP_EL2; 431 } 432 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 433 return CP_ACCESS_TRAP_EL3; 434 } 435 return CP_ACCESS_OK; 436 } 437 438 /* Check for traps to "debug ROM" registers, which are controlled 439 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 440 */ 441 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 442 bool isread) 443 { 444 int el = arm_current_el(env); 445 446 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA) 447 && !arm_is_secure_below_el3(env)) { 448 return CP_ACCESS_TRAP_EL2; 449 } 450 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 451 return CP_ACCESS_TRAP_EL3; 452 } 453 return CP_ACCESS_OK; 454 } 455 456 /* Check for traps to general debug registers, which are controlled 457 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 458 */ 459 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 460 bool isread) 461 { 462 int el = arm_current_el(env); 463 464 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA) 465 && !arm_is_secure_below_el3(env)) { 466 return CP_ACCESS_TRAP_EL2; 467 } 468 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 469 return CP_ACCESS_TRAP_EL3; 470 } 471 return CP_ACCESS_OK; 472 } 473 474 /* Check for traps to performance monitor registers, which are controlled 475 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 476 */ 477 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 478 bool isread) 479 { 480 int el = arm_current_el(env); 481 482 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 483 && !arm_is_secure_below_el3(env)) { 484 return CP_ACCESS_TRAP_EL2; 485 } 486 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 487 return CP_ACCESS_TRAP_EL3; 488 } 489 return CP_ACCESS_OK; 490 } 491 492 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 493 { 494 ARMCPU *cpu = arm_env_get_cpu(env); 495 496 raw_write(env, ri, value); 497 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 498 } 499 500 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 501 { 502 ARMCPU *cpu = arm_env_get_cpu(env); 503 504 if (raw_read(env, ri) != value) { 505 /* Unlike real hardware the qemu TLB uses virtual addresses, 506 * not modified virtual addresses, so this causes a TLB flush. 507 */ 508 tlb_flush(CPU(cpu)); 509 raw_write(env, ri, value); 510 } 511 } 512 513 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 514 uint64_t value) 515 { 516 ARMCPU *cpu = arm_env_get_cpu(env); 517 518 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 519 && !extended_addresses_enabled(env)) { 520 /* For VMSA (when not using the LPAE long descriptor page table 521 * format) this register includes the ASID, so do a TLB flush. 522 * For PMSA it is purely a process ID and no action is needed. 523 */ 524 tlb_flush(CPU(cpu)); 525 } 526 raw_write(env, ri, value); 527 } 528 529 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 530 uint64_t value) 531 { 532 /* Invalidate all (TLBIALL) */ 533 ARMCPU *cpu = arm_env_get_cpu(env); 534 535 tlb_flush(CPU(cpu)); 536 } 537 538 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 539 uint64_t value) 540 { 541 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 542 ARMCPU *cpu = arm_env_get_cpu(env); 543 544 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 545 } 546 547 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 548 uint64_t value) 549 { 550 /* Invalidate by ASID (TLBIASID) */ 551 ARMCPU *cpu = arm_env_get_cpu(env); 552 553 tlb_flush(CPU(cpu)); 554 } 555 556 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 560 ARMCPU *cpu = arm_env_get_cpu(env); 561 562 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 563 } 564 565 /* IS variants of TLB operations must affect all cores */ 566 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 567 uint64_t value) 568 { 569 CPUState *cs = ENV_GET_CPU(env); 570 571 tlb_flush_all_cpus_synced(cs); 572 } 573 574 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 575 uint64_t value) 576 { 577 CPUState *cs = ENV_GET_CPU(env); 578 579 tlb_flush_all_cpus_synced(cs); 580 } 581 582 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 583 uint64_t value) 584 { 585 CPUState *cs = ENV_GET_CPU(env); 586 587 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 588 } 589 590 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 591 uint64_t value) 592 { 593 CPUState *cs = ENV_GET_CPU(env); 594 595 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 596 } 597 598 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 599 uint64_t value) 600 { 601 CPUState *cs = ENV_GET_CPU(env); 602 603 tlb_flush_by_mmuidx(cs, 604 ARMMMUIdxBit_S12NSE1 | 605 ARMMMUIdxBit_S12NSE0 | 606 ARMMMUIdxBit_S2NS); 607 } 608 609 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 610 uint64_t value) 611 { 612 CPUState *cs = ENV_GET_CPU(env); 613 614 tlb_flush_by_mmuidx_all_cpus_synced(cs, 615 ARMMMUIdxBit_S12NSE1 | 616 ARMMMUIdxBit_S12NSE0 | 617 ARMMMUIdxBit_S2NS); 618 } 619 620 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 621 uint64_t value) 622 { 623 /* Invalidate by IPA. This has to invalidate any structures that 624 * contain only stage 2 translation information, but does not need 625 * to apply to structures that contain combined stage 1 and stage 2 626 * translation information. 627 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 628 */ 629 CPUState *cs = ENV_GET_CPU(env); 630 uint64_t pageaddr; 631 632 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 633 return; 634 } 635 636 pageaddr = sextract64(value << 12, 0, 40); 637 638 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 639 } 640 641 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 642 uint64_t value) 643 { 644 CPUState *cs = ENV_GET_CPU(env); 645 uint64_t pageaddr; 646 647 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 648 return; 649 } 650 651 pageaddr = sextract64(value << 12, 0, 40); 652 653 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 654 ARMMMUIdxBit_S2NS); 655 } 656 657 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 658 uint64_t value) 659 { 660 CPUState *cs = ENV_GET_CPU(env); 661 662 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 663 } 664 665 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 666 uint64_t value) 667 { 668 CPUState *cs = ENV_GET_CPU(env); 669 670 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 671 } 672 673 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 674 uint64_t value) 675 { 676 CPUState *cs = ENV_GET_CPU(env); 677 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 678 679 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 680 } 681 682 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 683 uint64_t value) 684 { 685 CPUState *cs = ENV_GET_CPU(env); 686 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 687 688 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 689 ARMMMUIdxBit_S1E2); 690 } 691 692 static const ARMCPRegInfo cp_reginfo[] = { 693 /* Define the secure and non-secure FCSE identifier CP registers 694 * separately because there is no secure bank in V8 (no _EL3). This allows 695 * the secure register to be properly reset and migrated. There is also no 696 * v8 EL1 version of the register so the non-secure instance stands alone. 697 */ 698 { .name = "FCSEIDR(NS)", 699 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 700 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 701 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 702 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 703 { .name = "FCSEIDR(S)", 704 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 705 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 706 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 707 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 708 /* Define the secure and non-secure context identifier CP registers 709 * separately because there is no secure bank in V8 (no _EL3). This allows 710 * the secure register to be properly reset and migrated. In the 711 * non-secure case, the 32-bit register will have reset and migration 712 * disabled during registration as it is handled by the 64-bit instance. 713 */ 714 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 715 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 716 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 717 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 718 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 719 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, 720 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 721 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 722 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 723 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 724 REGINFO_SENTINEL 725 }; 726 727 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 728 /* NB: Some of these registers exist in v8 but with more precise 729 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 730 */ 731 /* MMU Domain access control / MPU write buffer control */ 732 { .name = "DACR", 733 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 734 .access = PL1_RW, .resetvalue = 0, 735 .writefn = dacr_write, .raw_writefn = raw_write, 736 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 737 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 738 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 739 * For v6 and v5, these mappings are overly broad. 740 */ 741 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 742 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 743 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 744 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 745 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 746 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 747 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 748 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 749 /* Cache maintenance ops; some of this space may be overridden later. */ 750 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 751 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 752 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 753 REGINFO_SENTINEL 754 }; 755 756 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 757 /* Not all pre-v6 cores implemented this WFI, so this is slightly 758 * over-broad. 759 */ 760 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 761 .access = PL1_W, .type = ARM_CP_WFI }, 762 REGINFO_SENTINEL 763 }; 764 765 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 766 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 767 * is UNPREDICTABLE; we choose to NOP as most implementations do). 768 */ 769 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 770 .access = PL1_W, .type = ARM_CP_WFI }, 771 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 772 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 773 * OMAPCP will override this space. 774 */ 775 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 776 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 777 .resetvalue = 0 }, 778 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 779 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 780 .resetvalue = 0 }, 781 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 782 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 783 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 784 .resetvalue = 0 }, 785 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 786 * implementing it as RAZ means the "debug architecture version" bits 787 * will read as a reserved value, which should cause Linux to not try 788 * to use the debug hardware. 789 */ 790 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 791 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 792 /* MMU TLB control. Note that the wildcarding means we cover not just 793 * the unified TLB ops but also the dside/iside/inner-shareable variants. 794 */ 795 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 796 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 797 .type = ARM_CP_NO_RAW }, 798 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 799 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 800 .type = ARM_CP_NO_RAW }, 801 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 802 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 803 .type = ARM_CP_NO_RAW }, 804 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 805 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 806 .type = ARM_CP_NO_RAW }, 807 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 808 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 809 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 810 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 811 REGINFO_SENTINEL 812 }; 813 814 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 815 uint64_t value) 816 { 817 uint32_t mask = 0; 818 819 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 820 if (!arm_feature(env, ARM_FEATURE_V8)) { 821 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 822 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 823 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 824 */ 825 if (arm_feature(env, ARM_FEATURE_VFP)) { 826 /* VFP coprocessor: cp10 & cp11 [23:20] */ 827 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 828 829 if (!arm_feature(env, ARM_FEATURE_NEON)) { 830 /* ASEDIS [31] bit is RAO/WI */ 831 value |= (1 << 31); 832 } 833 834 /* VFPv3 and upwards with NEON implement 32 double precision 835 * registers (D0-D31). 836 */ 837 if (!arm_feature(env, ARM_FEATURE_NEON) || 838 !arm_feature(env, ARM_FEATURE_VFP3)) { 839 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 840 value |= (1 << 30); 841 } 842 } 843 value &= mask; 844 } 845 env->cp15.cpacr_el1 = value; 846 } 847 848 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 849 bool isread) 850 { 851 if (arm_feature(env, ARM_FEATURE_V8)) { 852 /* Check if CPACR accesses are to be trapped to EL2 */ 853 if (arm_current_el(env) == 1 && 854 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 855 return CP_ACCESS_TRAP_EL2; 856 /* Check if CPACR accesses are to be trapped to EL3 */ 857 } else if (arm_current_el(env) < 3 && 858 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 859 return CP_ACCESS_TRAP_EL3; 860 } 861 } 862 863 return CP_ACCESS_OK; 864 } 865 866 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 867 bool isread) 868 { 869 /* Check if CPTR accesses are set to trap to EL3 */ 870 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 871 return CP_ACCESS_TRAP_EL3; 872 } 873 874 return CP_ACCESS_OK; 875 } 876 877 static const ARMCPRegInfo v6_cp_reginfo[] = { 878 /* prefetch by MVA in v6, NOP in v7 */ 879 { .name = "MVA_prefetch", 880 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 881 .access = PL1_W, .type = ARM_CP_NOP }, 882 /* We need to break the TB after ISB to execute self-modifying code 883 * correctly and also to take any pending interrupts immediately. 884 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 885 */ 886 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 887 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 888 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 889 .access = PL0_W, .type = ARM_CP_NOP }, 890 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 891 .access = PL0_W, .type = ARM_CP_NOP }, 892 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 893 .access = PL1_RW, 894 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 895 offsetof(CPUARMState, cp15.ifar_ns) }, 896 .resetvalue = 0, }, 897 /* Watchpoint Fault Address Register : should actually only be present 898 * for 1136, 1176, 11MPCore. 899 */ 900 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 901 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 902 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 903 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 904 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 905 .resetvalue = 0, .writefn = cpacr_write }, 906 REGINFO_SENTINEL 907 }; 908 909 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 910 bool isread) 911 { 912 /* Performance monitor registers user accessibility is controlled 913 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 914 * trapping to EL2 or EL3 for other accesses. 915 */ 916 int el = arm_current_el(env); 917 918 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 919 return CP_ACCESS_TRAP; 920 } 921 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 922 && !arm_is_secure_below_el3(env)) { 923 return CP_ACCESS_TRAP_EL2; 924 } 925 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 926 return CP_ACCESS_TRAP_EL3; 927 } 928 929 return CP_ACCESS_OK; 930 } 931 932 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 933 const ARMCPRegInfo *ri, 934 bool isread) 935 { 936 /* ER: event counter read trap control */ 937 if (arm_feature(env, ARM_FEATURE_V8) 938 && arm_current_el(env) == 0 939 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 940 && isread) { 941 return CP_ACCESS_OK; 942 } 943 944 return pmreg_access(env, ri, isread); 945 } 946 947 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 948 const ARMCPRegInfo *ri, 949 bool isread) 950 { 951 /* SW: software increment write trap control */ 952 if (arm_feature(env, ARM_FEATURE_V8) 953 && arm_current_el(env) == 0 954 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 955 && !isread) { 956 return CP_ACCESS_OK; 957 } 958 959 return pmreg_access(env, ri, isread); 960 } 961 962 #ifndef CONFIG_USER_ONLY 963 964 static CPAccessResult pmreg_access_selr(CPUARMState *env, 965 const ARMCPRegInfo *ri, 966 bool isread) 967 { 968 /* ER: event counter read trap control */ 969 if (arm_feature(env, ARM_FEATURE_V8) 970 && arm_current_el(env) == 0 971 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 972 return CP_ACCESS_OK; 973 } 974 975 return pmreg_access(env, ri, isread); 976 } 977 978 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 979 const ARMCPRegInfo *ri, 980 bool isread) 981 { 982 /* CR: cycle counter read trap control */ 983 if (arm_feature(env, ARM_FEATURE_V8) 984 && arm_current_el(env) == 0 985 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 986 && isread) { 987 return CP_ACCESS_OK; 988 } 989 990 return pmreg_access(env, ri, isread); 991 } 992 993 static inline bool arm_ccnt_enabled(CPUARMState *env) 994 { 995 /* This does not support checking PMCCFILTR_EL0 register */ 996 997 if (!(env->cp15.c9_pmcr & PMCRE)) { 998 return false; 999 } 1000 1001 return true; 1002 } 1003 1004 void pmccntr_sync(CPUARMState *env) 1005 { 1006 uint64_t temp_ticks; 1007 1008 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1009 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1010 1011 if (env->cp15.c9_pmcr & PMCRD) { 1012 /* Increment once every 64 processor clock cycles */ 1013 temp_ticks /= 64; 1014 } 1015 1016 if (arm_ccnt_enabled(env)) { 1017 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; 1018 } 1019 } 1020 1021 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1022 uint64_t value) 1023 { 1024 pmccntr_sync(env); 1025 1026 if (value & PMCRC) { 1027 /* The counter has been reset */ 1028 env->cp15.c15_ccnt = 0; 1029 } 1030 1031 /* only the DP, X, D and E bits are writable */ 1032 env->cp15.c9_pmcr &= ~0x39; 1033 env->cp15.c9_pmcr |= (value & 0x39); 1034 1035 pmccntr_sync(env); 1036 } 1037 1038 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1039 { 1040 uint64_t total_ticks; 1041 1042 if (!arm_ccnt_enabled(env)) { 1043 /* Counter is disabled, do not change value */ 1044 return env->cp15.c15_ccnt; 1045 } 1046 1047 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1048 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1049 1050 if (env->cp15.c9_pmcr & PMCRD) { 1051 /* Increment once every 64 processor clock cycles */ 1052 total_ticks /= 64; 1053 } 1054 return total_ticks - env->cp15.c15_ccnt; 1055 } 1056 1057 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1058 uint64_t value) 1059 { 1060 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1061 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1062 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1063 * accessed. 1064 */ 1065 env->cp15.c9_pmselr = value & 0x1f; 1066 } 1067 1068 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1069 uint64_t value) 1070 { 1071 uint64_t total_ticks; 1072 1073 if (!arm_ccnt_enabled(env)) { 1074 /* Counter is disabled, set the absolute value */ 1075 env->cp15.c15_ccnt = value; 1076 return; 1077 } 1078 1079 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1080 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1081 1082 if (env->cp15.c9_pmcr & PMCRD) { 1083 /* Increment once every 64 processor clock cycles */ 1084 total_ticks /= 64; 1085 } 1086 env->cp15.c15_ccnt = total_ticks - value; 1087 } 1088 1089 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1090 uint64_t value) 1091 { 1092 uint64_t cur_val = pmccntr_read(env, NULL); 1093 1094 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1095 } 1096 1097 #else /* CONFIG_USER_ONLY */ 1098 1099 void pmccntr_sync(CPUARMState *env) 1100 { 1101 } 1102 1103 #endif 1104 1105 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1106 uint64_t value) 1107 { 1108 pmccntr_sync(env); 1109 env->cp15.pmccfiltr_el0 = value & 0x7E000000; 1110 pmccntr_sync(env); 1111 } 1112 1113 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1114 uint64_t value) 1115 { 1116 value &= (1 << 31); 1117 env->cp15.c9_pmcnten |= value; 1118 } 1119 1120 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1121 uint64_t value) 1122 { 1123 value &= (1 << 31); 1124 env->cp15.c9_pmcnten &= ~value; 1125 } 1126 1127 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1128 uint64_t value) 1129 { 1130 env->cp15.c9_pmovsr &= ~value; 1131 } 1132 1133 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1134 uint64_t value) 1135 { 1136 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1137 * PMSELR value is equal to or greater than the number of implemented 1138 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1139 */ 1140 if (env->cp15.c9_pmselr == 0x1f) { 1141 pmccfiltr_write(env, ri, value); 1142 } 1143 } 1144 1145 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1146 { 1147 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1148 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write(). 1149 */ 1150 if (env->cp15.c9_pmselr == 0x1f) { 1151 return env->cp15.pmccfiltr_el0; 1152 } else { 1153 return 0; 1154 } 1155 } 1156 1157 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1158 uint64_t value) 1159 { 1160 if (arm_feature(env, ARM_FEATURE_V8)) { 1161 env->cp15.c9_pmuserenr = value & 0xf; 1162 } else { 1163 env->cp15.c9_pmuserenr = value & 1; 1164 } 1165 } 1166 1167 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1168 uint64_t value) 1169 { 1170 /* We have no event counters so only the C bit can be changed */ 1171 value &= (1 << 31); 1172 env->cp15.c9_pminten |= value; 1173 } 1174 1175 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1176 uint64_t value) 1177 { 1178 value &= (1 << 31); 1179 env->cp15.c9_pminten &= ~value; 1180 } 1181 1182 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1183 uint64_t value) 1184 { 1185 /* Note that even though the AArch64 view of this register has bits 1186 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1187 * architectural requirements for bits which are RES0 only in some 1188 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1189 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1190 */ 1191 raw_write(env, ri, value & ~0x1FULL); 1192 } 1193 1194 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1195 { 1196 /* We only mask off bits that are RES0 both for AArch64 and AArch32. 1197 * For bits that vary between AArch32/64, code needs to check the 1198 * current execution mode before directly using the feature bit. 1199 */ 1200 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; 1201 1202 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1203 valid_mask &= ~SCR_HCE; 1204 1205 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1206 * supported if EL2 exists. The bit is UNK/SBZP when 1207 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1208 * when EL2 is unavailable. 1209 * On ARMv8, this bit is always available. 1210 */ 1211 if (arm_feature(env, ARM_FEATURE_V7) && 1212 !arm_feature(env, ARM_FEATURE_V8)) { 1213 valid_mask &= ~SCR_SMD; 1214 } 1215 } 1216 1217 /* Clear all-context RES0 bits. */ 1218 value &= valid_mask; 1219 raw_write(env, ri, value); 1220 } 1221 1222 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1223 { 1224 ARMCPU *cpu = arm_env_get_cpu(env); 1225 1226 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1227 * bank 1228 */ 1229 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1230 ri->secure & ARM_CP_SECSTATE_S); 1231 1232 return cpu->ccsidr[index]; 1233 } 1234 1235 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1236 uint64_t value) 1237 { 1238 raw_write(env, ri, value & 0xf); 1239 } 1240 1241 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1242 { 1243 CPUState *cs = ENV_GET_CPU(env); 1244 uint64_t ret = 0; 1245 1246 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1247 ret |= CPSR_I; 1248 } 1249 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1250 ret |= CPSR_F; 1251 } 1252 /* External aborts are not possible in QEMU so A bit is always clear */ 1253 return ret; 1254 } 1255 1256 static const ARMCPRegInfo v7_cp_reginfo[] = { 1257 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1258 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1259 .access = PL1_W, .type = ARM_CP_NOP }, 1260 /* Performance monitors are implementation defined in v7, 1261 * but with an ARM recommended set of registers, which we 1262 * follow (although we don't actually implement any counters) 1263 * 1264 * Performance registers fall into three categories: 1265 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1266 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1267 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1268 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1269 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1270 */ 1271 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1272 .access = PL0_RW, .type = ARM_CP_ALIAS, 1273 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1274 .writefn = pmcntenset_write, 1275 .accessfn = pmreg_access, 1276 .raw_writefn = raw_write }, 1277 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1278 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1279 .access = PL0_RW, .accessfn = pmreg_access, 1280 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1281 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1282 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1283 .access = PL0_RW, 1284 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1285 .accessfn = pmreg_access, 1286 .writefn = pmcntenclr_write, 1287 .type = ARM_CP_ALIAS }, 1288 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1289 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1290 .access = PL0_RW, .accessfn = pmreg_access, 1291 .type = ARM_CP_ALIAS, 1292 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1293 .writefn = pmcntenclr_write }, 1294 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1295 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1296 .accessfn = pmreg_access, 1297 .writefn = pmovsr_write, 1298 .raw_writefn = raw_write }, 1299 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1300 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1301 .access = PL0_RW, .accessfn = pmreg_access, 1302 .type = ARM_CP_ALIAS, 1303 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1304 .writefn = pmovsr_write, 1305 .raw_writefn = raw_write }, 1306 /* Unimplemented so WI. */ 1307 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1308 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP }, 1309 #ifndef CONFIG_USER_ONLY 1310 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1311 .access = PL0_RW, .type = ARM_CP_ALIAS, 1312 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1313 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1314 .raw_writefn = raw_write}, 1315 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1316 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1317 .access = PL0_RW, .accessfn = pmreg_access_selr, 1318 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1319 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1320 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1321 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, 1322 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1323 .accessfn = pmreg_access_ccntr }, 1324 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1325 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1326 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1327 .type = ARM_CP_IO, 1328 .readfn = pmccntr_read, .writefn = pmccntr_write, }, 1329 #endif 1330 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1331 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1332 .writefn = pmccfiltr_write, 1333 .access = PL0_RW, .accessfn = pmreg_access, 1334 .type = ARM_CP_IO, 1335 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1336 .resetvalue = 0, }, 1337 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1338 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1339 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1340 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1341 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1342 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1343 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1344 /* Unimplemented, RAZ/WI. */ 1345 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1346 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, 1347 .accessfn = pmreg_access_xevcntr }, 1348 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1349 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1350 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1351 .resetvalue = 0, 1352 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1353 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 1354 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 1355 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1356 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1357 .resetvalue = 0, 1358 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1359 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 1360 .access = PL1_RW, .accessfn = access_tpm, 1361 .type = ARM_CP_ALIAS, 1362 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 1363 .resetvalue = 0, 1364 .writefn = pmintenset_write, .raw_writefn = raw_write }, 1365 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 1366 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 1367 .access = PL1_RW, .accessfn = access_tpm, 1368 .type = ARM_CP_IO, 1369 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1370 .writefn = pmintenset_write, .raw_writefn = raw_write, 1371 .resetvalue = 0x0 }, 1372 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 1373 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1374 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1375 .writefn = pmintenclr_write, }, 1376 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 1377 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 1378 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1379 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1380 .writefn = pmintenclr_write }, 1381 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 1382 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 1383 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 1384 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 1385 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 1386 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 1387 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 1388 offsetof(CPUARMState, cp15.csselr_ns) } }, 1389 /* Auxiliary ID register: this actually has an IMPDEF value but for now 1390 * just RAZ for all cores: 1391 */ 1392 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 1393 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 1394 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 1395 /* Auxiliary fault status registers: these also are IMPDEF, and we 1396 * choose to RAZ/WI for all cores. 1397 */ 1398 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 1399 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 1400 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1401 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 1402 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 1403 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1404 /* MAIR can just read-as-written because we don't implement caches 1405 * and so don't need to care about memory attributes. 1406 */ 1407 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 1408 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 1409 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 1410 .resetvalue = 0 }, 1411 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 1412 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 1413 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 1414 .resetvalue = 0 }, 1415 /* For non-long-descriptor page tables these are PRRR and NMRR; 1416 * regardless they still act as reads-as-written for QEMU. 1417 */ 1418 /* MAIR0/1 are defined separately from their 64-bit counterpart which 1419 * allows them to assign the correct fieldoffset based on the endianness 1420 * handled in the field definitions. 1421 */ 1422 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 1423 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 1424 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 1425 offsetof(CPUARMState, cp15.mair0_ns) }, 1426 .resetfn = arm_cp_reset_ignore }, 1427 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 1428 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 1429 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 1430 offsetof(CPUARMState, cp15.mair1_ns) }, 1431 .resetfn = arm_cp_reset_ignore }, 1432 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 1433 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 1434 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 1435 /* 32 bit ITLB invalidates */ 1436 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 1437 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1438 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 1439 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1440 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 1441 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1442 /* 32 bit DTLB invalidates */ 1443 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 1444 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1445 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 1446 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1447 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 1448 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1449 /* 32 bit TLB invalidates */ 1450 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 1451 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1452 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 1453 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1454 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 1455 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1456 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 1457 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 1458 REGINFO_SENTINEL 1459 }; 1460 1461 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 1462 /* 32 bit TLB invalidates, Inner Shareable */ 1463 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 1464 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 1465 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 1466 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 1467 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 1468 .type = ARM_CP_NO_RAW, .access = PL1_W, 1469 .writefn = tlbiasid_is_write }, 1470 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 1471 .type = ARM_CP_NO_RAW, .access = PL1_W, 1472 .writefn = tlbimvaa_is_write }, 1473 REGINFO_SENTINEL 1474 }; 1475 1476 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1477 uint64_t value) 1478 { 1479 value &= 1; 1480 env->teecr = value; 1481 } 1482 1483 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1484 bool isread) 1485 { 1486 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 1487 return CP_ACCESS_TRAP; 1488 } 1489 return CP_ACCESS_OK; 1490 } 1491 1492 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 1493 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 1494 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 1495 .resetvalue = 0, 1496 .writefn = teecr_write }, 1497 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 1498 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 1499 .accessfn = teehbr_access, .resetvalue = 0 }, 1500 REGINFO_SENTINEL 1501 }; 1502 1503 static const ARMCPRegInfo v6k_cp_reginfo[] = { 1504 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 1505 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 1506 .access = PL0_RW, 1507 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 1508 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 1509 .access = PL0_RW, 1510 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 1511 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 1512 .resetfn = arm_cp_reset_ignore }, 1513 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 1514 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 1515 .access = PL0_R|PL1_W, 1516 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 1517 .resetvalue = 0}, 1518 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 1519 .access = PL0_R|PL1_W, 1520 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 1521 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 1522 .resetfn = arm_cp_reset_ignore }, 1523 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 1524 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 1525 .access = PL1_RW, 1526 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 1527 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 1528 .access = PL1_RW, 1529 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 1530 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 1531 .resetvalue = 0 }, 1532 REGINFO_SENTINEL 1533 }; 1534 1535 #ifndef CONFIG_USER_ONLY 1536 1537 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 1538 bool isread) 1539 { 1540 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 1541 * Writable only at the highest implemented exception level. 1542 */ 1543 int el = arm_current_el(env); 1544 1545 switch (el) { 1546 case 0: 1547 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 1548 return CP_ACCESS_TRAP; 1549 } 1550 break; 1551 case 1: 1552 if (!isread && ri->state == ARM_CP_STATE_AA32 && 1553 arm_is_secure_below_el3(env)) { 1554 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 1555 return CP_ACCESS_TRAP_UNCATEGORIZED; 1556 } 1557 break; 1558 case 2: 1559 case 3: 1560 break; 1561 } 1562 1563 if (!isread && el < arm_highest_el(env)) { 1564 return CP_ACCESS_TRAP_UNCATEGORIZED; 1565 } 1566 1567 return CP_ACCESS_OK; 1568 } 1569 1570 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 1571 bool isread) 1572 { 1573 unsigned int cur_el = arm_current_el(env); 1574 bool secure = arm_is_secure(env); 1575 1576 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 1577 if (cur_el == 0 && 1578 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 1579 return CP_ACCESS_TRAP; 1580 } 1581 1582 if (arm_feature(env, ARM_FEATURE_EL2) && 1583 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1584 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 1585 return CP_ACCESS_TRAP_EL2; 1586 } 1587 return CP_ACCESS_OK; 1588 } 1589 1590 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 1591 bool isread) 1592 { 1593 unsigned int cur_el = arm_current_el(env); 1594 bool secure = arm_is_secure(env); 1595 1596 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 1597 * EL0[PV]TEN is zero. 1598 */ 1599 if (cur_el == 0 && 1600 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 1601 return CP_ACCESS_TRAP; 1602 } 1603 1604 if (arm_feature(env, ARM_FEATURE_EL2) && 1605 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1606 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 1607 return CP_ACCESS_TRAP_EL2; 1608 } 1609 return CP_ACCESS_OK; 1610 } 1611 1612 static CPAccessResult gt_pct_access(CPUARMState *env, 1613 const ARMCPRegInfo *ri, 1614 bool isread) 1615 { 1616 return gt_counter_access(env, GTIMER_PHYS, isread); 1617 } 1618 1619 static CPAccessResult gt_vct_access(CPUARMState *env, 1620 const ARMCPRegInfo *ri, 1621 bool isread) 1622 { 1623 return gt_counter_access(env, GTIMER_VIRT, isread); 1624 } 1625 1626 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1627 bool isread) 1628 { 1629 return gt_timer_access(env, GTIMER_PHYS, isread); 1630 } 1631 1632 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1633 bool isread) 1634 { 1635 return gt_timer_access(env, GTIMER_VIRT, isread); 1636 } 1637 1638 static CPAccessResult gt_stimer_access(CPUARMState *env, 1639 const ARMCPRegInfo *ri, 1640 bool isread) 1641 { 1642 /* The AArch64 register view of the secure physical timer is 1643 * always accessible from EL3, and configurably accessible from 1644 * Secure EL1. 1645 */ 1646 switch (arm_current_el(env)) { 1647 case 1: 1648 if (!arm_is_secure(env)) { 1649 return CP_ACCESS_TRAP; 1650 } 1651 if (!(env->cp15.scr_el3 & SCR_ST)) { 1652 return CP_ACCESS_TRAP_EL3; 1653 } 1654 return CP_ACCESS_OK; 1655 case 0: 1656 case 2: 1657 return CP_ACCESS_TRAP; 1658 case 3: 1659 return CP_ACCESS_OK; 1660 default: 1661 g_assert_not_reached(); 1662 } 1663 } 1664 1665 static uint64_t gt_get_countervalue(CPUARMState *env) 1666 { 1667 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 1668 } 1669 1670 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 1671 { 1672 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 1673 1674 if (gt->ctl & 1) { 1675 /* Timer enabled: calculate and set current ISTATUS, irq, and 1676 * reset timer to when ISTATUS next has to change 1677 */ 1678 uint64_t offset = timeridx == GTIMER_VIRT ? 1679 cpu->env.cp15.cntvoff_el2 : 0; 1680 uint64_t count = gt_get_countervalue(&cpu->env); 1681 /* Note that this must be unsigned 64 bit arithmetic: */ 1682 int istatus = count - offset >= gt->cval; 1683 uint64_t nexttick; 1684 int irqstate; 1685 1686 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 1687 1688 irqstate = (istatus && !(gt->ctl & 2)); 1689 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1690 1691 if (istatus) { 1692 /* Next transition is when count rolls back over to zero */ 1693 nexttick = UINT64_MAX; 1694 } else { 1695 /* Next transition is when we hit cval */ 1696 nexttick = gt->cval + offset; 1697 } 1698 /* Note that the desired next expiry time might be beyond the 1699 * signed-64-bit range of a QEMUTimer -- in this case we just 1700 * set the timer for as far in the future as possible. When the 1701 * timer expires we will reset the timer for any remaining period. 1702 */ 1703 if (nexttick > INT64_MAX / GTIMER_SCALE) { 1704 nexttick = INT64_MAX / GTIMER_SCALE; 1705 } 1706 timer_mod(cpu->gt_timer[timeridx], nexttick); 1707 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 1708 } else { 1709 /* Timer disabled: ISTATUS and timer output always clear */ 1710 gt->ctl &= ~4; 1711 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 1712 timer_del(cpu->gt_timer[timeridx]); 1713 trace_arm_gt_recalc_disabled(timeridx); 1714 } 1715 } 1716 1717 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 1718 int timeridx) 1719 { 1720 ARMCPU *cpu = arm_env_get_cpu(env); 1721 1722 timer_del(cpu->gt_timer[timeridx]); 1723 } 1724 1725 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1726 { 1727 return gt_get_countervalue(env); 1728 } 1729 1730 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1731 { 1732 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 1733 } 1734 1735 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1736 int timeridx, 1737 uint64_t value) 1738 { 1739 trace_arm_gt_cval_write(timeridx, value); 1740 env->cp15.c14_timer[timeridx].cval = value; 1741 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1742 } 1743 1744 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 1745 int timeridx) 1746 { 1747 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1748 1749 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 1750 (gt_get_countervalue(env) - offset)); 1751 } 1752 1753 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1754 int timeridx, 1755 uint64_t value) 1756 { 1757 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1758 1759 trace_arm_gt_tval_write(timeridx, value); 1760 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 1761 sextract64(value, 0, 32); 1762 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1763 } 1764 1765 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1766 int timeridx, 1767 uint64_t value) 1768 { 1769 ARMCPU *cpu = arm_env_get_cpu(env); 1770 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 1771 1772 trace_arm_gt_ctl_write(timeridx, value); 1773 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 1774 if ((oldval ^ value) & 1) { 1775 /* Enable toggled */ 1776 gt_recalc_timer(cpu, timeridx); 1777 } else if ((oldval ^ value) & 2) { 1778 /* IMASK toggled: don't need to recalculate, 1779 * just set the interrupt line based on ISTATUS 1780 */ 1781 int irqstate = (oldval & 4) && !(value & 2); 1782 1783 trace_arm_gt_imask_toggle(timeridx, irqstate); 1784 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1785 } 1786 } 1787 1788 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1789 { 1790 gt_timer_reset(env, ri, GTIMER_PHYS); 1791 } 1792 1793 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1794 uint64_t value) 1795 { 1796 gt_cval_write(env, ri, GTIMER_PHYS, value); 1797 } 1798 1799 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1800 { 1801 return gt_tval_read(env, ri, GTIMER_PHYS); 1802 } 1803 1804 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1805 uint64_t value) 1806 { 1807 gt_tval_write(env, ri, GTIMER_PHYS, value); 1808 } 1809 1810 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1811 uint64_t value) 1812 { 1813 gt_ctl_write(env, ri, GTIMER_PHYS, value); 1814 } 1815 1816 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1817 { 1818 gt_timer_reset(env, ri, GTIMER_VIRT); 1819 } 1820 1821 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1822 uint64_t value) 1823 { 1824 gt_cval_write(env, ri, GTIMER_VIRT, value); 1825 } 1826 1827 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1828 { 1829 return gt_tval_read(env, ri, GTIMER_VIRT); 1830 } 1831 1832 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1833 uint64_t value) 1834 { 1835 gt_tval_write(env, ri, GTIMER_VIRT, value); 1836 } 1837 1838 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1839 uint64_t value) 1840 { 1841 gt_ctl_write(env, ri, GTIMER_VIRT, value); 1842 } 1843 1844 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 1845 uint64_t value) 1846 { 1847 ARMCPU *cpu = arm_env_get_cpu(env); 1848 1849 trace_arm_gt_cntvoff_write(value); 1850 raw_write(env, ri, value); 1851 gt_recalc_timer(cpu, GTIMER_VIRT); 1852 } 1853 1854 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1855 { 1856 gt_timer_reset(env, ri, GTIMER_HYP); 1857 } 1858 1859 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1860 uint64_t value) 1861 { 1862 gt_cval_write(env, ri, GTIMER_HYP, value); 1863 } 1864 1865 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1866 { 1867 return gt_tval_read(env, ri, GTIMER_HYP); 1868 } 1869 1870 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1871 uint64_t value) 1872 { 1873 gt_tval_write(env, ri, GTIMER_HYP, value); 1874 } 1875 1876 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1877 uint64_t value) 1878 { 1879 gt_ctl_write(env, ri, GTIMER_HYP, value); 1880 } 1881 1882 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1883 { 1884 gt_timer_reset(env, ri, GTIMER_SEC); 1885 } 1886 1887 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1888 uint64_t value) 1889 { 1890 gt_cval_write(env, ri, GTIMER_SEC, value); 1891 } 1892 1893 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1894 { 1895 return gt_tval_read(env, ri, GTIMER_SEC); 1896 } 1897 1898 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1899 uint64_t value) 1900 { 1901 gt_tval_write(env, ri, GTIMER_SEC, value); 1902 } 1903 1904 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1905 uint64_t value) 1906 { 1907 gt_ctl_write(env, ri, GTIMER_SEC, value); 1908 } 1909 1910 void arm_gt_ptimer_cb(void *opaque) 1911 { 1912 ARMCPU *cpu = opaque; 1913 1914 gt_recalc_timer(cpu, GTIMER_PHYS); 1915 } 1916 1917 void arm_gt_vtimer_cb(void *opaque) 1918 { 1919 ARMCPU *cpu = opaque; 1920 1921 gt_recalc_timer(cpu, GTIMER_VIRT); 1922 } 1923 1924 void arm_gt_htimer_cb(void *opaque) 1925 { 1926 ARMCPU *cpu = opaque; 1927 1928 gt_recalc_timer(cpu, GTIMER_HYP); 1929 } 1930 1931 void arm_gt_stimer_cb(void *opaque) 1932 { 1933 ARMCPU *cpu = opaque; 1934 1935 gt_recalc_timer(cpu, GTIMER_SEC); 1936 } 1937 1938 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 1939 /* Note that CNTFRQ is purely reads-as-written for the benefit 1940 * of software; writing it doesn't actually change the timer frequency. 1941 * Our reset value matches the fixed frequency we implement the timer at. 1942 */ 1943 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 1944 .type = ARM_CP_ALIAS, 1945 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1946 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 1947 }, 1948 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 1949 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 1950 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1951 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 1952 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 1953 }, 1954 /* overall control: mostly access permissions */ 1955 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 1956 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 1957 .access = PL1_RW, 1958 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 1959 .resetvalue = 0, 1960 }, 1961 /* per-timer control */ 1962 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1963 .secure = ARM_CP_SECSTATE_NS, 1964 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1965 .accessfn = gt_ptimer_access, 1966 .fieldoffset = offsetoflow32(CPUARMState, 1967 cp15.c14_timer[GTIMER_PHYS].ctl), 1968 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1969 }, 1970 { .name = "CNTP_CTL(S)", 1971 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1972 .secure = ARM_CP_SECSTATE_S, 1973 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1974 .accessfn = gt_ptimer_access, 1975 .fieldoffset = offsetoflow32(CPUARMState, 1976 cp15.c14_timer[GTIMER_SEC].ctl), 1977 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 1978 }, 1979 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 1980 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 1981 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1982 .accessfn = gt_ptimer_access, 1983 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 1984 .resetvalue = 0, 1985 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1986 }, 1987 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 1988 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1989 .accessfn = gt_vtimer_access, 1990 .fieldoffset = offsetoflow32(CPUARMState, 1991 cp15.c14_timer[GTIMER_VIRT].ctl), 1992 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 1993 }, 1994 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 1995 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 1996 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1997 .accessfn = gt_vtimer_access, 1998 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 1999 .resetvalue = 0, 2000 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2001 }, 2002 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2003 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2004 .secure = ARM_CP_SECSTATE_NS, 2005 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2006 .accessfn = gt_ptimer_access, 2007 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2008 }, 2009 { .name = "CNTP_TVAL(S)", 2010 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2011 .secure = ARM_CP_SECSTATE_S, 2012 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2013 .accessfn = gt_ptimer_access, 2014 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2015 }, 2016 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2017 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2018 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2019 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2020 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2021 }, 2022 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2023 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2024 .accessfn = gt_vtimer_access, 2025 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2026 }, 2027 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2028 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2029 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2030 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2031 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2032 }, 2033 /* The counter itself */ 2034 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2035 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2036 .accessfn = gt_pct_access, 2037 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2038 }, 2039 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2040 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2041 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2042 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2043 }, 2044 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2045 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2046 .accessfn = gt_vct_access, 2047 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2048 }, 2049 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2050 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2051 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2052 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2053 }, 2054 /* Comparison value, indicating when the timer goes off */ 2055 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2056 .secure = ARM_CP_SECSTATE_NS, 2057 .access = PL1_RW | PL0_R, 2058 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2059 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2060 .accessfn = gt_ptimer_access, 2061 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2062 }, 2063 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, 2064 .secure = ARM_CP_SECSTATE_S, 2065 .access = PL1_RW | PL0_R, 2066 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2067 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2068 .accessfn = gt_ptimer_access, 2069 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2070 }, 2071 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2072 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2073 .access = PL1_RW | PL0_R, 2074 .type = ARM_CP_IO, 2075 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2076 .resetvalue = 0, .accessfn = gt_ptimer_access, 2077 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2078 }, 2079 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2080 .access = PL1_RW | PL0_R, 2081 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2082 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2083 .accessfn = gt_vtimer_access, 2084 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2085 }, 2086 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2087 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2088 .access = PL1_RW | PL0_R, 2089 .type = ARM_CP_IO, 2090 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2091 .resetvalue = 0, .accessfn = gt_vtimer_access, 2092 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2093 }, 2094 /* Secure timer -- this is actually restricted to only EL3 2095 * and configurably Secure-EL1 via the accessfn. 2096 */ 2097 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2098 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2099 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2100 .accessfn = gt_stimer_access, 2101 .readfn = gt_sec_tval_read, 2102 .writefn = gt_sec_tval_write, 2103 .resetfn = gt_sec_timer_reset, 2104 }, 2105 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2106 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2107 .type = ARM_CP_IO, .access = PL1_RW, 2108 .accessfn = gt_stimer_access, 2109 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2110 .resetvalue = 0, 2111 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2112 }, 2113 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2114 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2115 .type = ARM_CP_IO, .access = PL1_RW, 2116 .accessfn = gt_stimer_access, 2117 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2118 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2119 }, 2120 REGINFO_SENTINEL 2121 }; 2122 2123 #else 2124 /* In user-mode none of the generic timer registers are accessible, 2125 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, 2126 * so instead just don't register any of them. 2127 */ 2128 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2129 REGINFO_SENTINEL 2130 }; 2131 2132 #endif 2133 2134 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2135 { 2136 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2137 raw_write(env, ri, value); 2138 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2139 raw_write(env, ri, value & 0xfffff6ff); 2140 } else { 2141 raw_write(env, ri, value & 0xfffff1ff); 2142 } 2143 } 2144 2145 #ifndef CONFIG_USER_ONLY 2146 /* get_phys_addr() isn't present for user-mode-only targets */ 2147 2148 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2149 bool isread) 2150 { 2151 if (ri->opc2 & 4) { 2152 /* The ATS12NSO* operations must trap to EL3 if executed in 2153 * Secure EL1 (which can only happen if EL3 is AArch64). 2154 * They are simply UNDEF if executed from NS EL1. 2155 * They function normally from EL2 or EL3. 2156 */ 2157 if (arm_current_el(env) == 1) { 2158 if (arm_is_secure_below_el3(env)) { 2159 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2160 } 2161 return CP_ACCESS_TRAP_UNCATEGORIZED; 2162 } 2163 } 2164 return CP_ACCESS_OK; 2165 } 2166 2167 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2168 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2169 { 2170 hwaddr phys_addr; 2171 target_ulong page_size; 2172 int prot; 2173 bool ret; 2174 uint64_t par64; 2175 bool format64 = false; 2176 MemTxAttrs attrs = {}; 2177 ARMMMUFaultInfo fi = {}; 2178 ARMCacheAttrs cacheattrs = {}; 2179 2180 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2181 &prot, &page_size, &fi, &cacheattrs); 2182 2183 if (is_a64(env)) { 2184 format64 = true; 2185 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 2186 /* 2187 * ATS1Cxx: 2188 * * TTBCR.EAE determines whether the result is returned using the 2189 * 32-bit or the 64-bit PAR format 2190 * * Instructions executed in Hyp mode always use the 64bit format 2191 * 2192 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 2193 * * The Non-secure TTBCR.EAE bit is set to 1 2194 * * The implementation includes EL2, and the value of HCR.VM is 1 2195 * 2196 * ATS1Hx always uses the 64bit format (not supported yet). 2197 */ 2198 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 2199 2200 if (arm_feature(env, ARM_FEATURE_EL2)) { 2201 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 2202 format64 |= env->cp15.hcr_el2 & HCR_VM; 2203 } else { 2204 format64 |= arm_current_el(env) == 2; 2205 } 2206 } 2207 } 2208 2209 if (format64) { 2210 /* Create a 64-bit PAR */ 2211 par64 = (1 << 11); /* LPAE bit always set */ 2212 if (!ret) { 2213 par64 |= phys_addr & ~0xfffULL; 2214 if (!attrs.secure) { 2215 par64 |= (1 << 9); /* NS */ 2216 } 2217 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 2218 par64 |= cacheattrs.shareability << 7; /* SH */ 2219 } else { 2220 uint32_t fsr = arm_fi_to_lfsc(&fi); 2221 2222 par64 |= 1; /* F */ 2223 par64 |= (fsr & 0x3f) << 1; /* FS */ 2224 /* Note that S2WLK and FSTAGE are always zero, because we don't 2225 * implement virtualization and therefore there can't be a stage 2 2226 * fault. 2227 */ 2228 } 2229 } else { 2230 /* fsr is a DFSR/IFSR value for the short descriptor 2231 * translation table format (with WnR always clear). 2232 * Convert it to a 32-bit PAR. 2233 */ 2234 if (!ret) { 2235 /* We do not set any attribute bits in the PAR */ 2236 if (page_size == (1 << 24) 2237 && arm_feature(env, ARM_FEATURE_V7)) { 2238 par64 = (phys_addr & 0xff000000) | (1 << 1); 2239 } else { 2240 par64 = phys_addr & 0xfffff000; 2241 } 2242 if (!attrs.secure) { 2243 par64 |= (1 << 9); /* NS */ 2244 } 2245 } else { 2246 uint32_t fsr = arm_fi_to_sfsc(&fi); 2247 2248 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 2249 ((fsr & 0xf) << 1) | 1; 2250 } 2251 } 2252 return par64; 2253 } 2254 2255 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2256 { 2257 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2258 uint64_t par64; 2259 ARMMMUIdx mmu_idx; 2260 int el = arm_current_el(env); 2261 bool secure = arm_is_secure_below_el3(env); 2262 2263 switch (ri->opc2 & 6) { 2264 case 0: 2265 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 2266 switch (el) { 2267 case 3: 2268 mmu_idx = ARMMMUIdx_S1E3; 2269 break; 2270 case 2: 2271 mmu_idx = ARMMMUIdx_S1NSE1; 2272 break; 2273 case 1: 2274 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2275 break; 2276 default: 2277 g_assert_not_reached(); 2278 } 2279 break; 2280 case 2: 2281 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 2282 switch (el) { 2283 case 3: 2284 mmu_idx = ARMMMUIdx_S1SE0; 2285 break; 2286 case 2: 2287 mmu_idx = ARMMMUIdx_S1NSE0; 2288 break; 2289 case 1: 2290 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2291 break; 2292 default: 2293 g_assert_not_reached(); 2294 } 2295 break; 2296 case 4: 2297 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 2298 mmu_idx = ARMMMUIdx_S12NSE1; 2299 break; 2300 case 6: 2301 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 2302 mmu_idx = ARMMMUIdx_S12NSE0; 2303 break; 2304 default: 2305 g_assert_not_reached(); 2306 } 2307 2308 par64 = do_ats_write(env, value, access_type, mmu_idx); 2309 2310 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2311 } 2312 2313 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 2314 uint64_t value) 2315 { 2316 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2317 uint64_t par64; 2318 2319 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); 2320 2321 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2322 } 2323 2324 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 2325 bool isread) 2326 { 2327 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 2328 return CP_ACCESS_TRAP; 2329 } 2330 return CP_ACCESS_OK; 2331 } 2332 2333 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 2334 uint64_t value) 2335 { 2336 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2337 ARMMMUIdx mmu_idx; 2338 int secure = arm_is_secure_below_el3(env); 2339 2340 switch (ri->opc2 & 6) { 2341 case 0: 2342 switch (ri->opc1) { 2343 case 0: /* AT S1E1R, AT S1E1W */ 2344 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2345 break; 2346 case 4: /* AT S1E2R, AT S1E2W */ 2347 mmu_idx = ARMMMUIdx_S1E2; 2348 break; 2349 case 6: /* AT S1E3R, AT S1E3W */ 2350 mmu_idx = ARMMMUIdx_S1E3; 2351 break; 2352 default: 2353 g_assert_not_reached(); 2354 } 2355 break; 2356 case 2: /* AT S1E0R, AT S1E0W */ 2357 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2358 break; 2359 case 4: /* AT S12E1R, AT S12E1W */ 2360 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 2361 break; 2362 case 6: /* AT S12E0R, AT S12E0W */ 2363 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 2364 break; 2365 default: 2366 g_assert_not_reached(); 2367 } 2368 2369 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 2370 } 2371 #endif 2372 2373 static const ARMCPRegInfo vapa_cp_reginfo[] = { 2374 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 2375 .access = PL1_RW, .resetvalue = 0, 2376 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 2377 offsetoflow32(CPUARMState, cp15.par_ns) }, 2378 .writefn = par_write }, 2379 #ifndef CONFIG_USER_ONLY 2380 /* This underdecoding is safe because the reginfo is NO_RAW. */ 2381 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 2382 .access = PL1_W, .accessfn = ats_access, 2383 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 2384 #endif 2385 REGINFO_SENTINEL 2386 }; 2387 2388 /* Return basic MPU access permission bits. */ 2389 static uint32_t simple_mpu_ap_bits(uint32_t val) 2390 { 2391 uint32_t ret; 2392 uint32_t mask; 2393 int i; 2394 ret = 0; 2395 mask = 3; 2396 for (i = 0; i < 16; i += 2) { 2397 ret |= (val >> i) & mask; 2398 mask <<= 2; 2399 } 2400 return ret; 2401 } 2402 2403 /* Pad basic MPU access permission bits to extended format. */ 2404 static uint32_t extended_mpu_ap_bits(uint32_t val) 2405 { 2406 uint32_t ret; 2407 uint32_t mask; 2408 int i; 2409 ret = 0; 2410 mask = 3; 2411 for (i = 0; i < 16; i += 2) { 2412 ret |= (val & mask) << i; 2413 mask <<= 2; 2414 } 2415 return ret; 2416 } 2417 2418 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2419 uint64_t value) 2420 { 2421 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 2422 } 2423 2424 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2425 { 2426 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 2427 } 2428 2429 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2430 uint64_t value) 2431 { 2432 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 2433 } 2434 2435 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2436 { 2437 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 2438 } 2439 2440 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 2441 { 2442 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2443 2444 if (!u32p) { 2445 return 0; 2446 } 2447 2448 u32p += env->pmsav7.rnr[M_REG_NS]; 2449 return *u32p; 2450 } 2451 2452 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 2453 uint64_t value) 2454 { 2455 ARMCPU *cpu = arm_env_get_cpu(env); 2456 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2457 2458 if (!u32p) { 2459 return; 2460 } 2461 2462 u32p += env->pmsav7.rnr[M_REG_NS]; 2463 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 2464 *u32p = value; 2465 } 2466 2467 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2468 uint64_t value) 2469 { 2470 ARMCPU *cpu = arm_env_get_cpu(env); 2471 uint32_t nrgs = cpu->pmsav7_dregion; 2472 2473 if (value >= nrgs) { 2474 qemu_log_mask(LOG_GUEST_ERROR, 2475 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 2476 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 2477 return; 2478 } 2479 2480 raw_write(env, ri, value); 2481 } 2482 2483 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 2484 /* Reset for all these registers is handled in arm_cpu_reset(), 2485 * because the PMSAv7 is also used by M-profile CPUs, which do 2486 * not register cpregs but still need the state to be reset. 2487 */ 2488 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 2489 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2490 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 2491 .readfn = pmsav7_read, .writefn = pmsav7_write, 2492 .resetfn = arm_cp_reset_ignore }, 2493 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 2494 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2495 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 2496 .readfn = pmsav7_read, .writefn = pmsav7_write, 2497 .resetfn = arm_cp_reset_ignore }, 2498 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 2499 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2500 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 2501 .readfn = pmsav7_read, .writefn = pmsav7_write, 2502 .resetfn = arm_cp_reset_ignore }, 2503 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 2504 .access = PL1_RW, 2505 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 2506 .writefn = pmsav7_rgnr_write, 2507 .resetfn = arm_cp_reset_ignore }, 2508 REGINFO_SENTINEL 2509 }; 2510 2511 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 2512 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2513 .access = PL1_RW, .type = ARM_CP_ALIAS, 2514 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2515 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 2516 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2517 .access = PL1_RW, .type = ARM_CP_ALIAS, 2518 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2519 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 2520 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 2521 .access = PL1_RW, 2522 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2523 .resetvalue = 0, }, 2524 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 2525 .access = PL1_RW, 2526 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2527 .resetvalue = 0, }, 2528 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 2529 .access = PL1_RW, 2530 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 2531 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 2532 .access = PL1_RW, 2533 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 2534 /* Protection region base and size registers */ 2535 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 2536 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2537 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 2538 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 2539 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2540 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 2541 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 2542 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2543 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 2544 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 2545 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2546 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 2547 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 2548 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2549 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 2550 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 2551 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2552 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 2553 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 2554 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2555 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 2556 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 2557 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2558 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 2559 REGINFO_SENTINEL 2560 }; 2561 2562 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 2563 uint64_t value) 2564 { 2565 TCR *tcr = raw_ptr(env, ri); 2566 int maskshift = extract32(value, 0, 3); 2567 2568 if (!arm_feature(env, ARM_FEATURE_V8)) { 2569 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 2570 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 2571 * using Long-desciptor translation table format */ 2572 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 2573 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 2574 /* In an implementation that includes the Security Extensions 2575 * TTBCR has additional fields PD0 [4] and PD1 [5] for 2576 * Short-descriptor translation table format. 2577 */ 2578 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 2579 } else { 2580 value &= TTBCR_N; 2581 } 2582 } 2583 2584 /* Update the masks corresponding to the TCR bank being written 2585 * Note that we always calculate mask and base_mask, but 2586 * they are only used for short-descriptor tables (ie if EAE is 0); 2587 * for long-descriptor tables the TCR fields are used differently 2588 * and the mask and base_mask values are meaningless. 2589 */ 2590 tcr->raw_tcr = value; 2591 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 2592 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 2593 } 2594 2595 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2596 uint64_t value) 2597 { 2598 ARMCPU *cpu = arm_env_get_cpu(env); 2599 2600 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2601 /* With LPAE the TTBCR could result in a change of ASID 2602 * via the TTBCR.A1 bit, so do a TLB flush. 2603 */ 2604 tlb_flush(CPU(cpu)); 2605 } 2606 vmsa_ttbcr_raw_write(env, ri, value); 2607 } 2608 2609 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2610 { 2611 TCR *tcr = raw_ptr(env, ri); 2612 2613 /* Reset both the TCR as well as the masks corresponding to the bank of 2614 * the TCR being reset. 2615 */ 2616 tcr->raw_tcr = 0; 2617 tcr->mask = 0; 2618 tcr->base_mask = 0xffffc000u; 2619 } 2620 2621 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2622 uint64_t value) 2623 { 2624 ARMCPU *cpu = arm_env_get_cpu(env); 2625 TCR *tcr = raw_ptr(env, ri); 2626 2627 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 2628 tlb_flush(CPU(cpu)); 2629 tcr->raw_tcr = value; 2630 } 2631 2632 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2633 uint64_t value) 2634 { 2635 /* 64 bit accesses to the TTBRs can change the ASID and so we 2636 * must flush the TLB. 2637 */ 2638 if (cpreg_field_is_64bit(ri)) { 2639 ARMCPU *cpu = arm_env_get_cpu(env); 2640 2641 tlb_flush(CPU(cpu)); 2642 } 2643 raw_write(env, ri, value); 2644 } 2645 2646 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2647 uint64_t value) 2648 { 2649 ARMCPU *cpu = arm_env_get_cpu(env); 2650 CPUState *cs = CPU(cpu); 2651 2652 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 2653 if (raw_read(env, ri) != value) { 2654 tlb_flush_by_mmuidx(cs, 2655 ARMMMUIdxBit_S12NSE1 | 2656 ARMMMUIdxBit_S12NSE0 | 2657 ARMMMUIdxBit_S2NS); 2658 raw_write(env, ri, value); 2659 } 2660 } 2661 2662 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 2663 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2664 .access = PL1_RW, .type = ARM_CP_ALIAS, 2665 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 2666 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 2667 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2668 .access = PL1_RW, .resetvalue = 0, 2669 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 2670 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 2671 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 2672 .access = PL1_RW, .resetvalue = 0, 2673 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 2674 offsetof(CPUARMState, cp15.dfar_ns) } }, 2675 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 2676 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 2677 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 2678 .resetvalue = 0, }, 2679 REGINFO_SENTINEL 2680 }; 2681 2682 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 2683 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 2684 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 2685 .access = PL1_RW, 2686 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 2687 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 2688 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 2689 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2690 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2691 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 2692 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 2693 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 2694 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2695 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2696 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 2697 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 2698 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2699 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 2700 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 2701 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 2702 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2703 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 2704 .raw_writefn = vmsa_ttbcr_raw_write, 2705 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 2706 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 2707 REGINFO_SENTINEL 2708 }; 2709 2710 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 2711 uint64_t value) 2712 { 2713 env->cp15.c15_ticonfig = value & 0xe7; 2714 /* The OS_TYPE bit in this register changes the reported CPUID! */ 2715 env->cp15.c0_cpuid = (value & (1 << 5)) ? 2716 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 2717 } 2718 2719 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 2720 uint64_t value) 2721 { 2722 env->cp15.c15_threadid = value & 0xffff; 2723 } 2724 2725 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 2726 uint64_t value) 2727 { 2728 /* Wait-for-interrupt (deprecated) */ 2729 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); 2730 } 2731 2732 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 2733 uint64_t value) 2734 { 2735 /* On OMAP there are registers indicating the max/min index of dcache lines 2736 * containing a dirty line; cache flush operations have to reset these. 2737 */ 2738 env->cp15.c15_i_max = 0x000; 2739 env->cp15.c15_i_min = 0xff0; 2740 } 2741 2742 static const ARMCPRegInfo omap_cp_reginfo[] = { 2743 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 2744 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 2745 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 2746 .resetvalue = 0, }, 2747 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 2748 .access = PL1_RW, .type = ARM_CP_NOP }, 2749 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 2750 .access = PL1_RW, 2751 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 2752 .writefn = omap_ticonfig_write }, 2753 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 2754 .access = PL1_RW, 2755 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 2756 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 2757 .access = PL1_RW, .resetvalue = 0xff0, 2758 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 2759 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 2760 .access = PL1_RW, 2761 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 2762 .writefn = omap_threadid_write }, 2763 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 2764 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2765 .type = ARM_CP_NO_RAW, 2766 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 2767 /* TODO: Peripheral port remap register: 2768 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 2769 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 2770 * when MMU is off. 2771 */ 2772 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 2773 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 2774 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 2775 .writefn = omap_cachemaint_write }, 2776 { .name = "C9", .cp = 15, .crn = 9, 2777 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 2778 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 2779 REGINFO_SENTINEL 2780 }; 2781 2782 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2783 uint64_t value) 2784 { 2785 env->cp15.c15_cpar = value & 0x3fff; 2786 } 2787 2788 static const ARMCPRegInfo xscale_cp_reginfo[] = { 2789 { .name = "XSCALE_CPAR", 2790 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2791 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 2792 .writefn = xscale_cpar_write, }, 2793 { .name = "XSCALE_AUXCR", 2794 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 2795 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 2796 .resetvalue = 0, }, 2797 /* XScale specific cache-lockdown: since we have no cache we NOP these 2798 * and hope the guest does not really rely on cache behaviour. 2799 */ 2800 { .name = "XSCALE_LOCK_ICACHE_LINE", 2801 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 2802 .access = PL1_W, .type = ARM_CP_NOP }, 2803 { .name = "XSCALE_UNLOCK_ICACHE", 2804 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 2805 .access = PL1_W, .type = ARM_CP_NOP }, 2806 { .name = "XSCALE_DCACHE_LOCK", 2807 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 2808 .access = PL1_RW, .type = ARM_CP_NOP }, 2809 { .name = "XSCALE_UNLOCK_DCACHE", 2810 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 2811 .access = PL1_W, .type = ARM_CP_NOP }, 2812 REGINFO_SENTINEL 2813 }; 2814 2815 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 2816 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 2817 * implementation of this implementation-defined space. 2818 * Ideally this should eventually disappear in favour of actually 2819 * implementing the correct behaviour for all cores. 2820 */ 2821 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 2822 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2823 .access = PL1_RW, 2824 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 2825 .resetvalue = 0 }, 2826 REGINFO_SENTINEL 2827 }; 2828 2829 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 2830 /* Cache status: RAZ because we have no cache so it's always clean */ 2831 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 2832 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2833 .resetvalue = 0 }, 2834 REGINFO_SENTINEL 2835 }; 2836 2837 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 2838 /* We never have a a block transfer operation in progress */ 2839 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 2840 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2841 .resetvalue = 0 }, 2842 /* The cache ops themselves: these all NOP for QEMU */ 2843 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 2844 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2845 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 2846 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2847 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 2848 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2849 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 2850 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2851 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 2852 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2853 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 2854 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2855 REGINFO_SENTINEL 2856 }; 2857 2858 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 2859 /* The cache test-and-clean instructions always return (1 << 30) 2860 * to indicate that there are no dirty cache lines. 2861 */ 2862 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 2863 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2864 .resetvalue = (1 << 30) }, 2865 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 2866 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2867 .resetvalue = (1 << 30) }, 2868 REGINFO_SENTINEL 2869 }; 2870 2871 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 2872 /* Ignore ReadBuffer accesses */ 2873 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 2874 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2875 .access = PL1_RW, .resetvalue = 0, 2876 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 2877 REGINFO_SENTINEL 2878 }; 2879 2880 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2881 { 2882 ARMCPU *cpu = arm_env_get_cpu(env); 2883 unsigned int cur_el = arm_current_el(env); 2884 bool secure = arm_is_secure(env); 2885 2886 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2887 return env->cp15.vpidr_el2; 2888 } 2889 return raw_read(env, ri); 2890 } 2891 2892 static uint64_t mpidr_read_val(CPUARMState *env) 2893 { 2894 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); 2895 uint64_t mpidr = cpu->mp_affinity; 2896 2897 if (arm_feature(env, ARM_FEATURE_V7MP)) { 2898 mpidr |= (1U << 31); 2899 /* Cores which are uniprocessor (non-coherent) 2900 * but still implement the MP extensions set 2901 * bit 30. (For instance, Cortex-R5). 2902 */ 2903 if (cpu->mp_is_up) { 2904 mpidr |= (1u << 30); 2905 } 2906 } 2907 return mpidr; 2908 } 2909 2910 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2911 { 2912 unsigned int cur_el = arm_current_el(env); 2913 bool secure = arm_is_secure(env); 2914 2915 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2916 return env->cp15.vmpidr_el2; 2917 } 2918 return mpidr_read_val(env); 2919 } 2920 2921 static const ARMCPRegInfo mpidr_cp_reginfo[] = { 2922 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, 2923 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 2924 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 2925 REGINFO_SENTINEL 2926 }; 2927 2928 static const ARMCPRegInfo lpae_cp_reginfo[] = { 2929 /* NOP AMAIR0/1 */ 2930 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 2931 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 2932 .access = PL1_RW, .type = ARM_CP_CONST, 2933 .resetvalue = 0 }, 2934 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 2935 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 2936 .access = PL1_RW, .type = ARM_CP_CONST, 2937 .resetvalue = 0 }, 2938 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 2939 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 2940 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 2941 offsetof(CPUARMState, cp15.par_ns)} }, 2942 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 2943 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2944 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2945 offsetof(CPUARMState, cp15.ttbr0_ns) }, 2946 .writefn = vmsa_ttbr_write, }, 2947 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 2948 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2949 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2950 offsetof(CPUARMState, cp15.ttbr1_ns) }, 2951 .writefn = vmsa_ttbr_write, }, 2952 REGINFO_SENTINEL 2953 }; 2954 2955 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2956 { 2957 return vfp_get_fpcr(env); 2958 } 2959 2960 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2961 uint64_t value) 2962 { 2963 vfp_set_fpcr(env, value); 2964 } 2965 2966 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2967 { 2968 return vfp_get_fpsr(env); 2969 } 2970 2971 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2972 uint64_t value) 2973 { 2974 vfp_set_fpsr(env, value); 2975 } 2976 2977 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 2978 bool isread) 2979 { 2980 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 2981 return CP_ACCESS_TRAP; 2982 } 2983 return CP_ACCESS_OK; 2984 } 2985 2986 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 2987 uint64_t value) 2988 { 2989 env->daif = value & PSTATE_DAIF; 2990 } 2991 2992 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 2993 const ARMCPRegInfo *ri, 2994 bool isread) 2995 { 2996 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 2997 * SCTLR_EL1.UCI is set. 2998 */ 2999 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 3000 return CP_ACCESS_TRAP; 3001 } 3002 return CP_ACCESS_OK; 3003 } 3004 3005 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 3006 * Page D4-1736 (DDI0487A.b) 3007 */ 3008 3009 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3010 uint64_t value) 3011 { 3012 CPUState *cs = ENV_GET_CPU(env); 3013 3014 if (arm_is_secure_below_el3(env)) { 3015 tlb_flush_by_mmuidx(cs, 3016 ARMMMUIdxBit_S1SE1 | 3017 ARMMMUIdxBit_S1SE0); 3018 } else { 3019 tlb_flush_by_mmuidx(cs, 3020 ARMMMUIdxBit_S12NSE1 | 3021 ARMMMUIdxBit_S12NSE0); 3022 } 3023 } 3024 3025 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3026 uint64_t value) 3027 { 3028 CPUState *cs = ENV_GET_CPU(env); 3029 bool sec = arm_is_secure_below_el3(env); 3030 3031 if (sec) { 3032 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3033 ARMMMUIdxBit_S1SE1 | 3034 ARMMMUIdxBit_S1SE0); 3035 } else { 3036 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3037 ARMMMUIdxBit_S12NSE1 | 3038 ARMMMUIdxBit_S12NSE0); 3039 } 3040 } 3041 3042 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3043 uint64_t value) 3044 { 3045 /* Note that the 'ALL' scope must invalidate both stage 1 and 3046 * stage 2 translations, whereas most other scopes only invalidate 3047 * stage 1 translations. 3048 */ 3049 ARMCPU *cpu = arm_env_get_cpu(env); 3050 CPUState *cs = CPU(cpu); 3051 3052 if (arm_is_secure_below_el3(env)) { 3053 tlb_flush_by_mmuidx(cs, 3054 ARMMMUIdxBit_S1SE1 | 3055 ARMMMUIdxBit_S1SE0); 3056 } else { 3057 if (arm_feature(env, ARM_FEATURE_EL2)) { 3058 tlb_flush_by_mmuidx(cs, 3059 ARMMMUIdxBit_S12NSE1 | 3060 ARMMMUIdxBit_S12NSE0 | 3061 ARMMMUIdxBit_S2NS); 3062 } else { 3063 tlb_flush_by_mmuidx(cs, 3064 ARMMMUIdxBit_S12NSE1 | 3065 ARMMMUIdxBit_S12NSE0); 3066 } 3067 } 3068 } 3069 3070 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3071 uint64_t value) 3072 { 3073 ARMCPU *cpu = arm_env_get_cpu(env); 3074 CPUState *cs = CPU(cpu); 3075 3076 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3077 } 3078 3079 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3080 uint64_t value) 3081 { 3082 ARMCPU *cpu = arm_env_get_cpu(env); 3083 CPUState *cs = CPU(cpu); 3084 3085 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3086 } 3087 3088 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3089 uint64_t value) 3090 { 3091 /* Note that the 'ALL' scope must invalidate both stage 1 and 3092 * stage 2 translations, whereas most other scopes only invalidate 3093 * stage 1 translations. 3094 */ 3095 CPUState *cs = ENV_GET_CPU(env); 3096 bool sec = arm_is_secure_below_el3(env); 3097 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3098 3099 if (sec) { 3100 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3101 ARMMMUIdxBit_S1SE1 | 3102 ARMMMUIdxBit_S1SE0); 3103 } else if (has_el2) { 3104 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3105 ARMMMUIdxBit_S12NSE1 | 3106 ARMMMUIdxBit_S12NSE0 | 3107 ARMMMUIdxBit_S2NS); 3108 } else { 3109 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3110 ARMMMUIdxBit_S12NSE1 | 3111 ARMMMUIdxBit_S12NSE0); 3112 } 3113 } 3114 3115 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3116 uint64_t value) 3117 { 3118 CPUState *cs = ENV_GET_CPU(env); 3119 3120 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3121 } 3122 3123 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3124 uint64_t value) 3125 { 3126 CPUState *cs = ENV_GET_CPU(env); 3127 3128 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3129 } 3130 3131 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3132 uint64_t value) 3133 { 3134 /* Invalidate by VA, EL1&0 (AArch64 version). 3135 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 3136 * since we don't support flush-for-specific-ASID-only or 3137 * flush-last-level-only. 3138 */ 3139 ARMCPU *cpu = arm_env_get_cpu(env); 3140 CPUState *cs = CPU(cpu); 3141 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3142 3143 if (arm_is_secure_below_el3(env)) { 3144 tlb_flush_page_by_mmuidx(cs, pageaddr, 3145 ARMMMUIdxBit_S1SE1 | 3146 ARMMMUIdxBit_S1SE0); 3147 } else { 3148 tlb_flush_page_by_mmuidx(cs, pageaddr, 3149 ARMMMUIdxBit_S12NSE1 | 3150 ARMMMUIdxBit_S12NSE0); 3151 } 3152 } 3153 3154 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3155 uint64_t value) 3156 { 3157 /* Invalidate by VA, EL2 3158 * Currently handles both VAE2 and VALE2, since we don't support 3159 * flush-last-level-only. 3160 */ 3161 ARMCPU *cpu = arm_env_get_cpu(env); 3162 CPUState *cs = CPU(cpu); 3163 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3164 3165 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3166 } 3167 3168 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3169 uint64_t value) 3170 { 3171 /* Invalidate by VA, EL3 3172 * Currently handles both VAE3 and VALE3, since we don't support 3173 * flush-last-level-only. 3174 */ 3175 ARMCPU *cpu = arm_env_get_cpu(env); 3176 CPUState *cs = CPU(cpu); 3177 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3178 3179 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 3180 } 3181 3182 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3183 uint64_t value) 3184 { 3185 ARMCPU *cpu = arm_env_get_cpu(env); 3186 CPUState *cs = CPU(cpu); 3187 bool sec = arm_is_secure_below_el3(env); 3188 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3189 3190 if (sec) { 3191 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3192 ARMMMUIdxBit_S1SE1 | 3193 ARMMMUIdxBit_S1SE0); 3194 } else { 3195 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3196 ARMMMUIdxBit_S12NSE1 | 3197 ARMMMUIdxBit_S12NSE0); 3198 } 3199 } 3200 3201 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3202 uint64_t value) 3203 { 3204 CPUState *cs = ENV_GET_CPU(env); 3205 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3206 3207 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3208 ARMMMUIdxBit_S1E2); 3209 } 3210 3211 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3212 uint64_t value) 3213 { 3214 CPUState *cs = ENV_GET_CPU(env); 3215 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3216 3217 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3218 ARMMMUIdxBit_S1E3); 3219 } 3220 3221 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3222 uint64_t value) 3223 { 3224 /* Invalidate by IPA. This has to invalidate any structures that 3225 * contain only stage 2 translation information, but does not need 3226 * to apply to structures that contain combined stage 1 and stage 2 3227 * translation information. 3228 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 3229 */ 3230 ARMCPU *cpu = arm_env_get_cpu(env); 3231 CPUState *cs = CPU(cpu); 3232 uint64_t pageaddr; 3233 3234 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3235 return; 3236 } 3237 3238 pageaddr = sextract64(value << 12, 0, 48); 3239 3240 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 3241 } 3242 3243 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3244 uint64_t value) 3245 { 3246 CPUState *cs = ENV_GET_CPU(env); 3247 uint64_t pageaddr; 3248 3249 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3250 return; 3251 } 3252 3253 pageaddr = sextract64(value << 12, 0, 48); 3254 3255 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3256 ARMMMUIdxBit_S2NS); 3257 } 3258 3259 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 3260 bool isread) 3261 { 3262 /* We don't implement EL2, so the only control on DC ZVA is the 3263 * bit in the SCTLR which can prohibit access for EL0. 3264 */ 3265 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 3266 return CP_ACCESS_TRAP; 3267 } 3268 return CP_ACCESS_OK; 3269 } 3270 3271 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 3272 { 3273 ARMCPU *cpu = arm_env_get_cpu(env); 3274 int dzp_bit = 1 << 4; 3275 3276 /* DZP indicates whether DC ZVA access is allowed */ 3277 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 3278 dzp_bit = 0; 3279 } 3280 return cpu->dcz_blocksize | dzp_bit; 3281 } 3282 3283 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 3284 bool isread) 3285 { 3286 if (!(env->pstate & PSTATE_SP)) { 3287 /* Access to SP_EL0 is undefined if it's being used as 3288 * the stack pointer. 3289 */ 3290 return CP_ACCESS_TRAP_UNCATEGORIZED; 3291 } 3292 return CP_ACCESS_OK; 3293 } 3294 3295 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 3296 { 3297 return env->pstate & PSTATE_SP; 3298 } 3299 3300 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 3301 { 3302 update_spsel(env, val); 3303 } 3304 3305 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3306 uint64_t value) 3307 { 3308 ARMCPU *cpu = arm_env_get_cpu(env); 3309 3310 if (raw_read(env, ri) == value) { 3311 /* Skip the TLB flush if nothing actually changed; Linux likes 3312 * to do a lot of pointless SCTLR writes. 3313 */ 3314 return; 3315 } 3316 3317 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 3318 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 3319 value &= ~SCTLR_M; 3320 } 3321 3322 raw_write(env, ri, value); 3323 /* ??? Lots of these bits are not implemented. */ 3324 /* This may enable/disable the MMU, so do a TLB flush. */ 3325 tlb_flush(CPU(cpu)); 3326 } 3327 3328 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 3329 bool isread) 3330 { 3331 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 3332 return CP_ACCESS_TRAP_FP_EL2; 3333 } 3334 if (env->cp15.cptr_el[3] & CPTR_TFP) { 3335 return CP_ACCESS_TRAP_FP_EL3; 3336 } 3337 return CP_ACCESS_OK; 3338 } 3339 3340 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3341 uint64_t value) 3342 { 3343 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 3344 } 3345 3346 static const ARMCPRegInfo v8_cp_reginfo[] = { 3347 /* Minimal set of EL0-visible registers. This will need to be expanded 3348 * significantly for system emulation of AArch64 CPUs. 3349 */ 3350 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 3351 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 3352 .access = PL0_RW, .type = ARM_CP_NZCV }, 3353 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 3354 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 3355 .type = ARM_CP_NO_RAW, 3356 .access = PL0_RW, .accessfn = aa64_daif_access, 3357 .fieldoffset = offsetof(CPUARMState, daif), 3358 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 3359 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 3360 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 3361 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 3362 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 3363 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 3364 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 3365 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 3366 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 3367 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 3368 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 3369 .access = PL0_R, .type = ARM_CP_NO_RAW, 3370 .readfn = aa64_dczid_read }, 3371 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 3372 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 3373 .access = PL0_W, .type = ARM_CP_DC_ZVA, 3374 #ifndef CONFIG_USER_ONLY 3375 /* Avoid overhead of an access check that always passes in user-mode */ 3376 .accessfn = aa64_zva_access, 3377 #endif 3378 }, 3379 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 3380 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 3381 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 3382 /* Cache ops: all NOPs since we don't emulate caches */ 3383 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 3384 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3385 .access = PL1_W, .type = ARM_CP_NOP }, 3386 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 3387 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3388 .access = PL1_W, .type = ARM_CP_NOP }, 3389 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 3390 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 3391 .access = PL0_W, .type = ARM_CP_NOP, 3392 .accessfn = aa64_cacheop_access }, 3393 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 3394 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3395 .access = PL1_W, .type = ARM_CP_NOP }, 3396 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 3397 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3398 .access = PL1_W, .type = ARM_CP_NOP }, 3399 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 3400 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 3401 .access = PL0_W, .type = ARM_CP_NOP, 3402 .accessfn = aa64_cacheop_access }, 3403 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 3404 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3405 .access = PL1_W, .type = ARM_CP_NOP }, 3406 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 3407 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 3408 .access = PL0_W, .type = ARM_CP_NOP, 3409 .accessfn = aa64_cacheop_access }, 3410 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 3411 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 3412 .access = PL0_W, .type = ARM_CP_NOP, 3413 .accessfn = aa64_cacheop_access }, 3414 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 3415 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3416 .access = PL1_W, .type = ARM_CP_NOP }, 3417 /* TLBI operations */ 3418 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 3419 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 3420 .access = PL1_W, .type = ARM_CP_NO_RAW, 3421 .writefn = tlbi_aa64_vmalle1is_write }, 3422 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 3423 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 3424 .access = PL1_W, .type = ARM_CP_NO_RAW, 3425 .writefn = tlbi_aa64_vae1is_write }, 3426 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 3427 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 3428 .access = PL1_W, .type = ARM_CP_NO_RAW, 3429 .writefn = tlbi_aa64_vmalle1is_write }, 3430 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 3431 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 3432 .access = PL1_W, .type = ARM_CP_NO_RAW, 3433 .writefn = tlbi_aa64_vae1is_write }, 3434 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 3435 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3436 .access = PL1_W, .type = ARM_CP_NO_RAW, 3437 .writefn = tlbi_aa64_vae1is_write }, 3438 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 3439 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3440 .access = PL1_W, .type = ARM_CP_NO_RAW, 3441 .writefn = tlbi_aa64_vae1is_write }, 3442 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 3443 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 3444 .access = PL1_W, .type = ARM_CP_NO_RAW, 3445 .writefn = tlbi_aa64_vmalle1_write }, 3446 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 3447 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 3448 .access = PL1_W, .type = ARM_CP_NO_RAW, 3449 .writefn = tlbi_aa64_vae1_write }, 3450 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 3451 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 3452 .access = PL1_W, .type = ARM_CP_NO_RAW, 3453 .writefn = tlbi_aa64_vmalle1_write }, 3454 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 3455 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 3456 .access = PL1_W, .type = ARM_CP_NO_RAW, 3457 .writefn = tlbi_aa64_vae1_write }, 3458 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 3459 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3460 .access = PL1_W, .type = ARM_CP_NO_RAW, 3461 .writefn = tlbi_aa64_vae1_write }, 3462 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 3463 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3464 .access = PL1_W, .type = ARM_CP_NO_RAW, 3465 .writefn = tlbi_aa64_vae1_write }, 3466 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 3467 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3468 .access = PL2_W, .type = ARM_CP_NO_RAW, 3469 .writefn = tlbi_aa64_ipas2e1is_write }, 3470 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 3471 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3472 .access = PL2_W, .type = ARM_CP_NO_RAW, 3473 .writefn = tlbi_aa64_ipas2e1is_write }, 3474 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 3475 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3476 .access = PL2_W, .type = ARM_CP_NO_RAW, 3477 .writefn = tlbi_aa64_alle1is_write }, 3478 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 3479 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 3480 .access = PL2_W, .type = ARM_CP_NO_RAW, 3481 .writefn = tlbi_aa64_alle1is_write }, 3482 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 3483 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3484 .access = PL2_W, .type = ARM_CP_NO_RAW, 3485 .writefn = tlbi_aa64_ipas2e1_write }, 3486 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 3487 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3488 .access = PL2_W, .type = ARM_CP_NO_RAW, 3489 .writefn = tlbi_aa64_ipas2e1_write }, 3490 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 3491 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3492 .access = PL2_W, .type = ARM_CP_NO_RAW, 3493 .writefn = tlbi_aa64_alle1_write }, 3494 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 3495 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 3496 .access = PL2_W, .type = ARM_CP_NO_RAW, 3497 .writefn = tlbi_aa64_alle1is_write }, 3498 #ifndef CONFIG_USER_ONLY 3499 /* 64 bit address translation operations */ 3500 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 3501 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 3502 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3503 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 3504 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 3505 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3506 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 3507 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 3508 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3509 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 3510 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 3511 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3512 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 3513 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 3514 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3515 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 3516 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 3517 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3518 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 3519 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 3520 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3521 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 3522 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 3523 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3524 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 3525 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 3526 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 3527 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3528 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 3529 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 3530 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3531 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 3532 .type = ARM_CP_ALIAS, 3533 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 3534 .access = PL1_RW, .resetvalue = 0, 3535 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 3536 .writefn = par_write }, 3537 #endif 3538 /* TLB invalidate last level of translation table walk */ 3539 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3540 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 3541 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3542 .type = ARM_CP_NO_RAW, .access = PL1_W, 3543 .writefn = tlbimvaa_is_write }, 3544 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3545 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 3546 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3547 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 3548 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3549 .type = ARM_CP_NO_RAW, .access = PL2_W, 3550 .writefn = tlbimva_hyp_write }, 3551 { .name = "TLBIMVALHIS", 3552 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3553 .type = ARM_CP_NO_RAW, .access = PL2_W, 3554 .writefn = tlbimva_hyp_is_write }, 3555 { .name = "TLBIIPAS2", 3556 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3557 .type = ARM_CP_NO_RAW, .access = PL2_W, 3558 .writefn = tlbiipas2_write }, 3559 { .name = "TLBIIPAS2IS", 3560 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3561 .type = ARM_CP_NO_RAW, .access = PL2_W, 3562 .writefn = tlbiipas2_is_write }, 3563 { .name = "TLBIIPAS2L", 3564 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3565 .type = ARM_CP_NO_RAW, .access = PL2_W, 3566 .writefn = tlbiipas2_write }, 3567 { .name = "TLBIIPAS2LIS", 3568 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3569 .type = ARM_CP_NO_RAW, .access = PL2_W, 3570 .writefn = tlbiipas2_is_write }, 3571 /* 32 bit cache operations */ 3572 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3573 .type = ARM_CP_NOP, .access = PL1_W }, 3574 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 3575 .type = ARM_CP_NOP, .access = PL1_W }, 3576 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3577 .type = ARM_CP_NOP, .access = PL1_W }, 3578 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 3579 .type = ARM_CP_NOP, .access = PL1_W }, 3580 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 3581 .type = ARM_CP_NOP, .access = PL1_W }, 3582 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 3583 .type = ARM_CP_NOP, .access = PL1_W }, 3584 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3585 .type = ARM_CP_NOP, .access = PL1_W }, 3586 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3587 .type = ARM_CP_NOP, .access = PL1_W }, 3588 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 3589 .type = ARM_CP_NOP, .access = PL1_W }, 3590 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3591 .type = ARM_CP_NOP, .access = PL1_W }, 3592 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 3593 .type = ARM_CP_NOP, .access = PL1_W }, 3594 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 3595 .type = ARM_CP_NOP, .access = PL1_W }, 3596 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3597 .type = ARM_CP_NOP, .access = PL1_W }, 3598 /* MMU Domain access control / MPU write buffer control */ 3599 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 3600 .access = PL1_RW, .resetvalue = 0, 3601 .writefn = dacr_write, .raw_writefn = raw_write, 3602 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 3603 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 3604 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 3605 .type = ARM_CP_ALIAS, 3606 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 3607 .access = PL1_RW, 3608 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 3609 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 3610 .type = ARM_CP_ALIAS, 3611 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 3612 .access = PL1_RW, 3613 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 3614 /* We rely on the access checks not allowing the guest to write to the 3615 * state field when SPSel indicates that it's being used as the stack 3616 * pointer. 3617 */ 3618 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 3619 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 3620 .access = PL1_RW, .accessfn = sp_el0_access, 3621 .type = ARM_CP_ALIAS, 3622 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 3623 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 3624 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 3625 .access = PL2_RW, .type = ARM_CP_ALIAS, 3626 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 3627 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 3628 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 3629 .type = ARM_CP_NO_RAW, 3630 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 3631 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 3632 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 3633 .type = ARM_CP_ALIAS, 3634 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 3635 .access = PL2_RW, .accessfn = fpexc32_access }, 3636 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 3637 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 3638 .access = PL2_RW, .resetvalue = 0, 3639 .writefn = dacr_write, .raw_writefn = raw_write, 3640 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 3641 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 3642 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 3643 .access = PL2_RW, .resetvalue = 0, 3644 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 3645 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 3646 .type = ARM_CP_ALIAS, 3647 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 3648 .access = PL2_RW, 3649 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 3650 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 3651 .type = ARM_CP_ALIAS, 3652 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 3653 .access = PL2_RW, 3654 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 3655 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 3656 .type = ARM_CP_ALIAS, 3657 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 3658 .access = PL2_RW, 3659 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 3660 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 3661 .type = ARM_CP_ALIAS, 3662 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 3663 .access = PL2_RW, 3664 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 3665 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 3666 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 3667 .resetvalue = 0, 3668 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 3669 { .name = "SDCR", .type = ARM_CP_ALIAS, 3670 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 3671 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3672 .writefn = sdcr_write, 3673 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 3674 REGINFO_SENTINEL 3675 }; 3676 3677 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 3678 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 3679 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3680 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3681 .access = PL2_RW, 3682 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3683 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3684 .type = ARM_CP_NO_RAW, 3685 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3686 .access = PL2_RW, 3687 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3688 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3689 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3690 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3691 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3692 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3693 .access = PL2_RW, .type = ARM_CP_CONST, 3694 .resetvalue = 0 }, 3695 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3696 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3697 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3698 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3699 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3700 .access = PL2_RW, .type = ARM_CP_CONST, 3701 .resetvalue = 0 }, 3702 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3703 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3704 .access = PL2_RW, .type = ARM_CP_CONST, 3705 .resetvalue = 0 }, 3706 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3707 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3708 .access = PL2_RW, .type = ARM_CP_CONST, 3709 .resetvalue = 0 }, 3710 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3711 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3712 .access = PL2_RW, .type = ARM_CP_CONST, 3713 .resetvalue = 0 }, 3714 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3715 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3716 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3717 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 3718 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3719 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3720 .type = ARM_CP_CONST, .resetvalue = 0 }, 3721 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3722 .cp = 15, .opc1 = 6, .crm = 2, 3723 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3724 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 3725 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3726 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3727 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3728 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3729 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3730 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3731 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3732 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3733 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3734 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3735 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3736 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3737 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3738 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3739 .resetvalue = 0 }, 3740 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3741 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3742 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3743 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3744 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3745 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3746 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3747 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3748 .resetvalue = 0 }, 3749 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3750 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3751 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3752 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3753 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3754 .resetvalue = 0 }, 3755 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3756 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3757 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3758 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3759 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3760 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3761 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3762 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3763 .access = PL2_RW, .accessfn = access_tda, 3764 .type = ARM_CP_CONST, .resetvalue = 0 }, 3765 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 3766 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3767 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3768 .type = ARM_CP_CONST, .resetvalue = 0 }, 3769 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3770 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3771 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3772 REGINFO_SENTINEL 3773 }; 3774 3775 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3776 { 3777 ARMCPU *cpu = arm_env_get_cpu(env); 3778 uint64_t valid_mask = HCR_MASK; 3779 3780 if (arm_feature(env, ARM_FEATURE_EL3)) { 3781 valid_mask &= ~HCR_HCD; 3782 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 3783 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 3784 * However, if we're using the SMC PSCI conduit then QEMU is 3785 * effectively acting like EL3 firmware and so the guest at 3786 * EL2 should retain the ability to prevent EL1 from being 3787 * able to make SMC calls into the ersatz firmware, so in 3788 * that case HCR.TSC should be read/write. 3789 */ 3790 valid_mask &= ~HCR_TSC; 3791 } 3792 3793 /* Clear RES0 bits. */ 3794 value &= valid_mask; 3795 3796 /* These bits change the MMU setup: 3797 * HCR_VM enables stage 2 translation 3798 * HCR_PTW forbids certain page-table setups 3799 * HCR_DC Disables stage1 and enables stage2 translation 3800 */ 3801 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 3802 tlb_flush(CPU(cpu)); 3803 } 3804 raw_write(env, ri, value); 3805 } 3806 3807 static const ARMCPRegInfo el2_cp_reginfo[] = { 3808 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3809 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3810 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 3811 .writefn = hcr_write }, 3812 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 3813 .type = ARM_CP_ALIAS, 3814 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 3815 .access = PL2_RW, 3816 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 3817 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, 3818 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 3819 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 3820 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, 3821 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 3822 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 3823 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 3824 .type = ARM_CP_ALIAS, 3825 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 3826 .access = PL2_RW, 3827 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 3828 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3829 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3830 .access = PL2_RW, .writefn = vbar_write, 3831 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 3832 .resetvalue = 0 }, 3833 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 3834 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 3835 .access = PL3_RW, .type = ARM_CP_ALIAS, 3836 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 3837 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3838 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3839 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 3840 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, 3841 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3842 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3843 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 3844 .resetvalue = 0 }, 3845 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3846 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3847 .access = PL2_RW, .type = ARM_CP_ALIAS, 3848 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 3849 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3850 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3851 .access = PL2_RW, .type = ARM_CP_CONST, 3852 .resetvalue = 0 }, 3853 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 3854 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3855 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3856 .access = PL2_RW, .type = ARM_CP_CONST, 3857 .resetvalue = 0 }, 3858 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3859 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3860 .access = PL2_RW, .type = ARM_CP_CONST, 3861 .resetvalue = 0 }, 3862 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3863 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3864 .access = PL2_RW, .type = ARM_CP_CONST, 3865 .resetvalue = 0 }, 3866 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3867 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3868 .access = PL2_RW, 3869 /* no .writefn needed as this can't cause an ASID change; 3870 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3871 */ 3872 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 3873 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 3874 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3875 .type = ARM_CP_ALIAS, 3876 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3877 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3878 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 3879 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3880 .access = PL2_RW, 3881 /* no .writefn needed as this can't cause an ASID change; 3882 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3883 */ 3884 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3885 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3886 .cp = 15, .opc1 = 6, .crm = 2, 3887 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3888 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3889 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 3890 .writefn = vttbr_write }, 3891 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3892 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3893 .access = PL2_RW, .writefn = vttbr_write, 3894 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 3895 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3896 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3897 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 3898 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 3899 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3900 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3901 .access = PL2_RW, .resetvalue = 0, 3902 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 3903 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3904 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3905 .access = PL2_RW, .resetvalue = 0, 3906 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3907 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3908 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3909 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3910 { .name = "TLBIALLNSNH", 3911 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3912 .type = ARM_CP_NO_RAW, .access = PL2_W, 3913 .writefn = tlbiall_nsnh_write }, 3914 { .name = "TLBIALLNSNHIS", 3915 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3916 .type = ARM_CP_NO_RAW, .access = PL2_W, 3917 .writefn = tlbiall_nsnh_is_write }, 3918 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3919 .type = ARM_CP_NO_RAW, .access = PL2_W, 3920 .writefn = tlbiall_hyp_write }, 3921 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3922 .type = ARM_CP_NO_RAW, .access = PL2_W, 3923 .writefn = tlbiall_hyp_is_write }, 3924 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3925 .type = ARM_CP_NO_RAW, .access = PL2_W, 3926 .writefn = tlbimva_hyp_write }, 3927 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3928 .type = ARM_CP_NO_RAW, .access = PL2_W, 3929 .writefn = tlbimva_hyp_is_write }, 3930 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 3931 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3932 .type = ARM_CP_NO_RAW, .access = PL2_W, 3933 .writefn = tlbi_aa64_alle2_write }, 3934 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 3935 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3936 .type = ARM_CP_NO_RAW, .access = PL2_W, 3937 .writefn = tlbi_aa64_vae2_write }, 3938 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 3939 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3940 .access = PL2_W, .type = ARM_CP_NO_RAW, 3941 .writefn = tlbi_aa64_vae2_write }, 3942 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 3943 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3944 .access = PL2_W, .type = ARM_CP_NO_RAW, 3945 .writefn = tlbi_aa64_alle2is_write }, 3946 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 3947 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3948 .type = ARM_CP_NO_RAW, .access = PL2_W, 3949 .writefn = tlbi_aa64_vae2is_write }, 3950 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 3951 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3952 .access = PL2_W, .type = ARM_CP_NO_RAW, 3953 .writefn = tlbi_aa64_vae2is_write }, 3954 #ifndef CONFIG_USER_ONLY 3955 /* Unlike the other EL2-related AT operations, these must 3956 * UNDEF from EL3 if EL2 is not implemented, which is why we 3957 * define them here rather than with the rest of the AT ops. 3958 */ 3959 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 3960 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3961 .access = PL2_W, .accessfn = at_s1e2_access, 3962 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3963 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 3964 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3965 .access = PL2_W, .accessfn = at_s1e2_access, 3966 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3967 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 3968 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 3969 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 3970 * to behave as if SCR.NS was 1. 3971 */ 3972 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3973 .access = PL2_W, 3974 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3975 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3976 .access = PL2_W, 3977 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3978 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3979 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3980 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 3981 * reset values as IMPDEF. We choose to reset to 3 to comply with 3982 * both ARMv7 and ARMv8. 3983 */ 3984 .access = PL2_RW, .resetvalue = 3, 3985 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 3986 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3987 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3988 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3989 .writefn = gt_cntvoff_write, 3990 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 3991 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3992 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 3993 .writefn = gt_cntvoff_write, 3994 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 3995 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3996 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3997 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 3998 .type = ARM_CP_IO, .access = PL2_RW, 3999 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4000 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4001 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4002 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 4003 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4004 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4005 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4006 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 4007 .resetfn = gt_hyp_timer_reset, 4008 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 4009 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4010 .type = ARM_CP_IO, 4011 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4012 .access = PL2_RW, 4013 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 4014 .resetvalue = 0, 4015 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 4016 #endif 4017 /* The only field of MDCR_EL2 that has a defined architectural reset value 4018 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 4019 * don't impelment any PMU event counters, so using zero as a reset 4020 * value for MDCR_EL2 is okay 4021 */ 4022 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4023 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4024 .access = PL2_RW, .resetvalue = 0, 4025 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 4026 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 4027 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4028 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4029 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4030 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 4031 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4032 .access = PL2_RW, 4033 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4034 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4035 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4036 .access = PL2_RW, 4037 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 4038 REGINFO_SENTINEL 4039 }; 4040 4041 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 4042 bool isread) 4043 { 4044 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 4045 * At Secure EL1 it traps to EL3. 4046 */ 4047 if (arm_current_el(env) == 3) { 4048 return CP_ACCESS_OK; 4049 } 4050 if (arm_is_secure_below_el3(env)) { 4051 return CP_ACCESS_TRAP_EL3; 4052 } 4053 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 4054 if (isread) { 4055 return CP_ACCESS_OK; 4056 } 4057 return CP_ACCESS_TRAP_UNCATEGORIZED; 4058 } 4059 4060 static const ARMCPRegInfo el3_cp_reginfo[] = { 4061 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 4062 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 4063 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 4064 .resetvalue = 0, .writefn = scr_write }, 4065 { .name = "SCR", .type = ARM_CP_ALIAS, 4066 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 4067 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4068 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 4069 .writefn = scr_write }, 4070 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 4071 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 4072 .access = PL3_RW, .resetvalue = 0, 4073 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 4074 { .name = "SDER", 4075 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 4076 .access = PL3_RW, .resetvalue = 0, 4077 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 4078 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4079 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4080 .writefn = vbar_write, .resetvalue = 0, 4081 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 4082 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 4083 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 4084 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 4085 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 4086 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 4087 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 4088 .access = PL3_RW, 4089 /* no .writefn needed as this can't cause an ASID change; 4090 * we must provide a .raw_writefn and .resetfn because we handle 4091 * reset and migration for the AArch32 TTBCR(S), which might be 4092 * using mask and base_mask. 4093 */ 4094 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 4095 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 4096 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 4097 .type = ARM_CP_ALIAS, 4098 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 4099 .access = PL3_RW, 4100 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 4101 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 4102 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 4103 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 4104 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 4105 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 4106 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 4107 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 4108 .type = ARM_CP_ALIAS, 4109 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 4110 .access = PL3_RW, 4111 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 4112 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 4113 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 4114 .access = PL3_RW, .writefn = vbar_write, 4115 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 4116 .resetvalue = 0 }, 4117 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 4118 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 4119 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 4120 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 4121 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 4122 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 4123 .access = PL3_RW, .resetvalue = 0, 4124 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 4125 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 4126 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 4127 .access = PL3_RW, .type = ARM_CP_CONST, 4128 .resetvalue = 0 }, 4129 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 4130 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 4131 .access = PL3_RW, .type = ARM_CP_CONST, 4132 .resetvalue = 0 }, 4133 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 4134 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 4135 .access = PL3_RW, .type = ARM_CP_CONST, 4136 .resetvalue = 0 }, 4137 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 4138 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 4139 .access = PL3_W, .type = ARM_CP_NO_RAW, 4140 .writefn = tlbi_aa64_alle3is_write }, 4141 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 4142 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 4143 .access = PL3_W, .type = ARM_CP_NO_RAW, 4144 .writefn = tlbi_aa64_vae3is_write }, 4145 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 4146 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 4147 .access = PL3_W, .type = ARM_CP_NO_RAW, 4148 .writefn = tlbi_aa64_vae3is_write }, 4149 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 4150 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 4151 .access = PL3_W, .type = ARM_CP_NO_RAW, 4152 .writefn = tlbi_aa64_alle3_write }, 4153 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 4154 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 4155 .access = PL3_W, .type = ARM_CP_NO_RAW, 4156 .writefn = tlbi_aa64_vae3_write }, 4157 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 4158 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 4159 .access = PL3_W, .type = ARM_CP_NO_RAW, 4160 .writefn = tlbi_aa64_vae3_write }, 4161 REGINFO_SENTINEL 4162 }; 4163 4164 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4165 bool isread) 4166 { 4167 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 4168 * but the AArch32 CTR has its own reginfo struct) 4169 */ 4170 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 4171 return CP_ACCESS_TRAP; 4172 } 4173 return CP_ACCESS_OK; 4174 } 4175 4176 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4177 uint64_t value) 4178 { 4179 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 4180 * read via a bit in OSLSR_EL1. 4181 */ 4182 int oslock; 4183 4184 if (ri->state == ARM_CP_STATE_AA32) { 4185 oslock = (value == 0xC5ACCE55); 4186 } else { 4187 oslock = value & 1; 4188 } 4189 4190 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 4191 } 4192 4193 static const ARMCPRegInfo debug_cp_reginfo[] = { 4194 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 4195 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 4196 * unlike DBGDRAR it is never accessible from EL0. 4197 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 4198 * accessor. 4199 */ 4200 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 4201 .access = PL0_R, .accessfn = access_tdra, 4202 .type = ARM_CP_CONST, .resetvalue = 0 }, 4203 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 4204 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 4205 .access = PL1_R, .accessfn = access_tdra, 4206 .type = ARM_CP_CONST, .resetvalue = 0 }, 4207 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4208 .access = PL0_R, .accessfn = access_tdra, 4209 .type = ARM_CP_CONST, .resetvalue = 0 }, 4210 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 4211 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 4212 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4213 .access = PL1_RW, .accessfn = access_tda, 4214 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 4215 .resetvalue = 0 }, 4216 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 4217 * We don't implement the configurable EL0 access. 4218 */ 4219 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 4220 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4221 .type = ARM_CP_ALIAS, 4222 .access = PL1_R, .accessfn = access_tda, 4223 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 4224 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 4225 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 4226 .access = PL1_W, .type = ARM_CP_NO_RAW, 4227 .accessfn = access_tdosa, 4228 .writefn = oslar_write }, 4229 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 4230 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 4231 .access = PL1_R, .resetvalue = 10, 4232 .accessfn = access_tdosa, 4233 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 4234 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 4235 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 4236 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 4237 .access = PL1_RW, .accessfn = access_tdosa, 4238 .type = ARM_CP_NOP }, 4239 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 4240 * implement vector catch debug events yet. 4241 */ 4242 { .name = "DBGVCR", 4243 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4244 .access = PL1_RW, .accessfn = access_tda, 4245 .type = ARM_CP_NOP }, 4246 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 4247 * to save and restore a 32-bit guest's DBGVCR) 4248 */ 4249 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 4250 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 4251 .access = PL2_RW, .accessfn = access_tda, 4252 .type = ARM_CP_NOP }, 4253 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 4254 * Channel but Linux may try to access this register. The 32-bit 4255 * alias is DBGDCCINT. 4256 */ 4257 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 4258 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4259 .access = PL1_RW, .accessfn = access_tda, 4260 .type = ARM_CP_NOP }, 4261 REGINFO_SENTINEL 4262 }; 4263 4264 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 4265 /* 64 bit access versions of the (dummy) debug registers */ 4266 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 4267 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4268 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 4269 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4270 REGINFO_SENTINEL 4271 }; 4272 4273 /* Return the exception level to which SVE-disabled exceptions should 4274 * be taken, or 0 if SVE is enabled. 4275 */ 4276 static int sve_exception_el(CPUARMState *env) 4277 { 4278 #ifndef CONFIG_USER_ONLY 4279 unsigned current_el = arm_current_el(env); 4280 4281 /* The CPACR.ZEN controls traps to EL1: 4282 * 0, 2 : trap EL0 and EL1 accesses 4283 * 1 : trap only EL0 accesses 4284 * 3 : trap no accesses 4285 */ 4286 switch (extract32(env->cp15.cpacr_el1, 16, 2)) { 4287 default: 4288 if (current_el <= 1) { 4289 /* Trap to PL1, which might be EL1 or EL3 */ 4290 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 4291 return 3; 4292 } 4293 return 1; 4294 } 4295 break; 4296 case 1: 4297 if (current_el == 0) { 4298 return 1; 4299 } 4300 break; 4301 case 3: 4302 break; 4303 } 4304 4305 /* Similarly for CPACR.FPEN, after having checked ZEN. */ 4306 switch (extract32(env->cp15.cpacr_el1, 20, 2)) { 4307 default: 4308 if (current_el <= 1) { 4309 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 4310 return 3; 4311 } 4312 return 1; 4313 } 4314 break; 4315 case 1: 4316 if (current_el == 0) { 4317 return 1; 4318 } 4319 break; 4320 case 3: 4321 break; 4322 } 4323 4324 /* CPTR_EL2. Check both TZ and TFP. */ 4325 if (current_el <= 2 4326 && (env->cp15.cptr_el[2] & (CPTR_TFP | CPTR_TZ)) 4327 && !arm_is_secure_below_el3(env)) { 4328 return 2; 4329 } 4330 4331 /* CPTR_EL3. Check both EZ and TFP. */ 4332 if (!(env->cp15.cptr_el[3] & CPTR_EZ) 4333 || (env->cp15.cptr_el[3] & CPTR_TFP)) { 4334 return 3; 4335 } 4336 #endif 4337 return 0; 4338 } 4339 4340 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4341 uint64_t value) 4342 { 4343 /* Bits other than [3:0] are RAZ/WI. */ 4344 raw_write(env, ri, value & 0xf); 4345 } 4346 4347 static const ARMCPRegInfo zcr_el1_reginfo = { 4348 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 4349 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 4350 .access = PL1_RW, .type = ARM_CP_SVE | ARM_CP_FPU, 4351 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 4352 .writefn = zcr_write, .raw_writefn = raw_write 4353 }; 4354 4355 static const ARMCPRegInfo zcr_el2_reginfo = { 4356 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 4357 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 4358 .access = PL2_RW, .type = ARM_CP_SVE | ARM_CP_FPU, 4359 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 4360 .writefn = zcr_write, .raw_writefn = raw_write 4361 }; 4362 4363 static const ARMCPRegInfo zcr_no_el2_reginfo = { 4364 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 4365 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 4366 .access = PL2_RW, .type = ARM_CP_SVE | ARM_CP_FPU, 4367 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 4368 }; 4369 4370 static const ARMCPRegInfo zcr_el3_reginfo = { 4371 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 4372 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 4373 .access = PL3_RW, .type = ARM_CP_SVE | ARM_CP_FPU, 4374 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 4375 .writefn = zcr_write, .raw_writefn = raw_write 4376 }; 4377 4378 void hw_watchpoint_update(ARMCPU *cpu, int n) 4379 { 4380 CPUARMState *env = &cpu->env; 4381 vaddr len = 0; 4382 vaddr wvr = env->cp15.dbgwvr[n]; 4383 uint64_t wcr = env->cp15.dbgwcr[n]; 4384 int mask; 4385 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 4386 4387 if (env->cpu_watchpoint[n]) { 4388 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 4389 env->cpu_watchpoint[n] = NULL; 4390 } 4391 4392 if (!extract64(wcr, 0, 1)) { 4393 /* E bit clear : watchpoint disabled */ 4394 return; 4395 } 4396 4397 switch (extract64(wcr, 3, 2)) { 4398 case 0: 4399 /* LSC 00 is reserved and must behave as if the wp is disabled */ 4400 return; 4401 case 1: 4402 flags |= BP_MEM_READ; 4403 break; 4404 case 2: 4405 flags |= BP_MEM_WRITE; 4406 break; 4407 case 3: 4408 flags |= BP_MEM_ACCESS; 4409 break; 4410 } 4411 4412 /* Attempts to use both MASK and BAS fields simultaneously are 4413 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 4414 * thus generating a watchpoint for every byte in the masked region. 4415 */ 4416 mask = extract64(wcr, 24, 4); 4417 if (mask == 1 || mask == 2) { 4418 /* Reserved values of MASK; we must act as if the mask value was 4419 * some non-reserved value, or as if the watchpoint were disabled. 4420 * We choose the latter. 4421 */ 4422 return; 4423 } else if (mask) { 4424 /* Watchpoint covers an aligned area up to 2GB in size */ 4425 len = 1ULL << mask; 4426 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 4427 * whether the watchpoint fires when the unmasked bits match; we opt 4428 * to generate the exceptions. 4429 */ 4430 wvr &= ~(len - 1); 4431 } else { 4432 /* Watchpoint covers bytes defined by the byte address select bits */ 4433 int bas = extract64(wcr, 5, 8); 4434 int basstart; 4435 4436 if (bas == 0) { 4437 /* This must act as if the watchpoint is disabled */ 4438 return; 4439 } 4440 4441 if (extract64(wvr, 2, 1)) { 4442 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 4443 * ignored, and BAS[3:0] define which bytes to watch. 4444 */ 4445 bas &= 0xf; 4446 } 4447 /* The BAS bits are supposed to be programmed to indicate a contiguous 4448 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 4449 * we fire for each byte in the word/doubleword addressed by the WVR. 4450 * We choose to ignore any non-zero bits after the first range of 1s. 4451 */ 4452 basstart = ctz32(bas); 4453 len = cto32(bas >> basstart); 4454 wvr += basstart; 4455 } 4456 4457 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 4458 &env->cpu_watchpoint[n]); 4459 } 4460 4461 void hw_watchpoint_update_all(ARMCPU *cpu) 4462 { 4463 int i; 4464 CPUARMState *env = &cpu->env; 4465 4466 /* Completely clear out existing QEMU watchpoints and our array, to 4467 * avoid possible stale entries following migration load. 4468 */ 4469 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 4470 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 4471 4472 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 4473 hw_watchpoint_update(cpu, i); 4474 } 4475 } 4476 4477 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4478 uint64_t value) 4479 { 4480 ARMCPU *cpu = arm_env_get_cpu(env); 4481 int i = ri->crm; 4482 4483 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 4484 * register reads and behaves as if values written are sign extended. 4485 * Bits [1:0] are RES0. 4486 */ 4487 value = sextract64(value, 0, 49) & ~3ULL; 4488 4489 raw_write(env, ri, value); 4490 hw_watchpoint_update(cpu, i); 4491 } 4492 4493 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4494 uint64_t value) 4495 { 4496 ARMCPU *cpu = arm_env_get_cpu(env); 4497 int i = ri->crm; 4498 4499 raw_write(env, ri, value); 4500 hw_watchpoint_update(cpu, i); 4501 } 4502 4503 void hw_breakpoint_update(ARMCPU *cpu, int n) 4504 { 4505 CPUARMState *env = &cpu->env; 4506 uint64_t bvr = env->cp15.dbgbvr[n]; 4507 uint64_t bcr = env->cp15.dbgbcr[n]; 4508 vaddr addr; 4509 int bt; 4510 int flags = BP_CPU; 4511 4512 if (env->cpu_breakpoint[n]) { 4513 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 4514 env->cpu_breakpoint[n] = NULL; 4515 } 4516 4517 if (!extract64(bcr, 0, 1)) { 4518 /* E bit clear : watchpoint disabled */ 4519 return; 4520 } 4521 4522 bt = extract64(bcr, 20, 4); 4523 4524 switch (bt) { 4525 case 4: /* unlinked address mismatch (reserved if AArch64) */ 4526 case 5: /* linked address mismatch (reserved if AArch64) */ 4527 qemu_log_mask(LOG_UNIMP, 4528 "arm: address mismatch breakpoint types not implemented"); 4529 return; 4530 case 0: /* unlinked address match */ 4531 case 1: /* linked address match */ 4532 { 4533 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 4534 * we behave as if the register was sign extended. Bits [1:0] are 4535 * RES0. The BAS field is used to allow setting breakpoints on 16 4536 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 4537 * a bp will fire if the addresses covered by the bp and the addresses 4538 * covered by the insn overlap but the insn doesn't start at the 4539 * start of the bp address range. We choose to require the insn and 4540 * the bp to have the same address. The constraints on writing to 4541 * BAS enforced in dbgbcr_write mean we have only four cases: 4542 * 0b0000 => no breakpoint 4543 * 0b0011 => breakpoint on addr 4544 * 0b1100 => breakpoint on addr + 2 4545 * 0b1111 => breakpoint on addr 4546 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 4547 */ 4548 int bas = extract64(bcr, 5, 4); 4549 addr = sextract64(bvr, 0, 49) & ~3ULL; 4550 if (bas == 0) { 4551 return; 4552 } 4553 if (bas == 0xc) { 4554 addr += 2; 4555 } 4556 break; 4557 } 4558 case 2: /* unlinked context ID match */ 4559 case 8: /* unlinked VMID match (reserved if no EL2) */ 4560 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 4561 qemu_log_mask(LOG_UNIMP, 4562 "arm: unlinked context breakpoint types not implemented"); 4563 return; 4564 case 9: /* linked VMID match (reserved if no EL2) */ 4565 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 4566 case 3: /* linked context ID match */ 4567 default: 4568 /* We must generate no events for Linked context matches (unless 4569 * they are linked to by some other bp/wp, which is handled in 4570 * updates for the linking bp/wp). We choose to also generate no events 4571 * for reserved values. 4572 */ 4573 return; 4574 } 4575 4576 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 4577 } 4578 4579 void hw_breakpoint_update_all(ARMCPU *cpu) 4580 { 4581 int i; 4582 CPUARMState *env = &cpu->env; 4583 4584 /* Completely clear out existing QEMU breakpoints and our array, to 4585 * avoid possible stale entries following migration load. 4586 */ 4587 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 4588 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 4589 4590 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 4591 hw_breakpoint_update(cpu, i); 4592 } 4593 } 4594 4595 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4596 uint64_t value) 4597 { 4598 ARMCPU *cpu = arm_env_get_cpu(env); 4599 int i = ri->crm; 4600 4601 raw_write(env, ri, value); 4602 hw_breakpoint_update(cpu, i); 4603 } 4604 4605 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4606 uint64_t value) 4607 { 4608 ARMCPU *cpu = arm_env_get_cpu(env); 4609 int i = ri->crm; 4610 4611 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 4612 * copy of BAS[0]. 4613 */ 4614 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 4615 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 4616 4617 raw_write(env, ri, value); 4618 hw_breakpoint_update(cpu, i); 4619 } 4620 4621 static void define_debug_regs(ARMCPU *cpu) 4622 { 4623 /* Define v7 and v8 architectural debug registers. 4624 * These are just dummy implementations for now. 4625 */ 4626 int i; 4627 int wrps, brps, ctx_cmps; 4628 ARMCPRegInfo dbgdidr = { 4629 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 4630 .access = PL0_R, .accessfn = access_tda, 4631 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 4632 }; 4633 4634 /* Note that all these register fields hold "number of Xs minus 1". */ 4635 brps = extract32(cpu->dbgdidr, 24, 4); 4636 wrps = extract32(cpu->dbgdidr, 28, 4); 4637 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 4638 4639 assert(ctx_cmps <= brps); 4640 4641 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 4642 * of the debug registers such as number of breakpoints; 4643 * check that if they both exist then they agree. 4644 */ 4645 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 4646 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 4647 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 4648 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 4649 } 4650 4651 define_one_arm_cp_reg(cpu, &dbgdidr); 4652 define_arm_cp_regs(cpu, debug_cp_reginfo); 4653 4654 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 4655 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 4656 } 4657 4658 for (i = 0; i < brps + 1; i++) { 4659 ARMCPRegInfo dbgregs[] = { 4660 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 4661 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 4662 .access = PL1_RW, .accessfn = access_tda, 4663 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 4664 .writefn = dbgbvr_write, .raw_writefn = raw_write 4665 }, 4666 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 4667 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 4668 .access = PL1_RW, .accessfn = access_tda, 4669 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 4670 .writefn = dbgbcr_write, .raw_writefn = raw_write 4671 }, 4672 REGINFO_SENTINEL 4673 }; 4674 define_arm_cp_regs(cpu, dbgregs); 4675 } 4676 4677 for (i = 0; i < wrps + 1; i++) { 4678 ARMCPRegInfo dbgregs[] = { 4679 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 4680 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 4681 .access = PL1_RW, .accessfn = access_tda, 4682 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 4683 .writefn = dbgwvr_write, .raw_writefn = raw_write 4684 }, 4685 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 4686 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 4687 .access = PL1_RW, .accessfn = access_tda, 4688 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 4689 .writefn = dbgwcr_write, .raw_writefn = raw_write 4690 }, 4691 REGINFO_SENTINEL 4692 }; 4693 define_arm_cp_regs(cpu, dbgregs); 4694 } 4695 } 4696 4697 /* We don't know until after realize whether there's a GICv3 4698 * attached, and that is what registers the gicv3 sysregs. 4699 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 4700 * at runtime. 4701 */ 4702 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 4703 { 4704 ARMCPU *cpu = arm_env_get_cpu(env); 4705 uint64_t pfr1 = cpu->id_pfr1; 4706 4707 if (env->gicv3state) { 4708 pfr1 |= 1 << 28; 4709 } 4710 return pfr1; 4711 } 4712 4713 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 4714 { 4715 ARMCPU *cpu = arm_env_get_cpu(env); 4716 uint64_t pfr0 = cpu->id_aa64pfr0; 4717 4718 if (env->gicv3state) { 4719 pfr0 |= 1 << 24; 4720 } 4721 return pfr0; 4722 } 4723 4724 void register_cp_regs_for_features(ARMCPU *cpu) 4725 { 4726 /* Register all the coprocessor registers based on feature bits */ 4727 CPUARMState *env = &cpu->env; 4728 if (arm_feature(env, ARM_FEATURE_M)) { 4729 /* M profile has no coprocessor registers */ 4730 return; 4731 } 4732 4733 define_arm_cp_regs(cpu, cp_reginfo); 4734 if (!arm_feature(env, ARM_FEATURE_V8)) { 4735 /* Must go early as it is full of wildcards that may be 4736 * overridden by later definitions. 4737 */ 4738 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 4739 } 4740 4741 if (arm_feature(env, ARM_FEATURE_V6)) { 4742 /* The ID registers all have impdef reset values */ 4743 ARMCPRegInfo v6_idregs[] = { 4744 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 4745 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4746 .access = PL1_R, .type = ARM_CP_CONST, 4747 .resetvalue = cpu->id_pfr0 }, 4748 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 4749 * the value of the GIC field until after we define these regs. 4750 */ 4751 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 4752 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 4753 .access = PL1_R, .type = ARM_CP_NO_RAW, 4754 .readfn = id_pfr1_read, 4755 .writefn = arm_cp_write_ignore }, 4756 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 4757 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 4758 .access = PL1_R, .type = ARM_CP_CONST, 4759 .resetvalue = cpu->id_dfr0 }, 4760 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 4761 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 4762 .access = PL1_R, .type = ARM_CP_CONST, 4763 .resetvalue = cpu->id_afr0 }, 4764 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 4765 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 4766 .access = PL1_R, .type = ARM_CP_CONST, 4767 .resetvalue = cpu->id_mmfr0 }, 4768 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 4769 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 4770 .access = PL1_R, .type = ARM_CP_CONST, 4771 .resetvalue = cpu->id_mmfr1 }, 4772 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 4773 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 4774 .access = PL1_R, .type = ARM_CP_CONST, 4775 .resetvalue = cpu->id_mmfr2 }, 4776 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 4777 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 4778 .access = PL1_R, .type = ARM_CP_CONST, 4779 .resetvalue = cpu->id_mmfr3 }, 4780 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 4781 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4782 .access = PL1_R, .type = ARM_CP_CONST, 4783 .resetvalue = cpu->id_isar0 }, 4784 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 4785 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 4786 .access = PL1_R, .type = ARM_CP_CONST, 4787 .resetvalue = cpu->id_isar1 }, 4788 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 4789 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4790 .access = PL1_R, .type = ARM_CP_CONST, 4791 .resetvalue = cpu->id_isar2 }, 4792 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 4793 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 4794 .access = PL1_R, .type = ARM_CP_CONST, 4795 .resetvalue = cpu->id_isar3 }, 4796 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 4797 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 4798 .access = PL1_R, .type = ARM_CP_CONST, 4799 .resetvalue = cpu->id_isar4 }, 4800 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 4801 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 4802 .access = PL1_R, .type = ARM_CP_CONST, 4803 .resetvalue = cpu->id_isar5 }, 4804 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 4805 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 4806 .access = PL1_R, .type = ARM_CP_CONST, 4807 .resetvalue = cpu->id_mmfr4 }, 4808 /* 7 is as yet unallocated and must RAZ */ 4809 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH, 4810 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 4811 .access = PL1_R, .type = ARM_CP_CONST, 4812 .resetvalue = 0 }, 4813 REGINFO_SENTINEL 4814 }; 4815 define_arm_cp_regs(cpu, v6_idregs); 4816 define_arm_cp_regs(cpu, v6_cp_reginfo); 4817 } else { 4818 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 4819 } 4820 if (arm_feature(env, ARM_FEATURE_V6K)) { 4821 define_arm_cp_regs(cpu, v6k_cp_reginfo); 4822 } 4823 if (arm_feature(env, ARM_FEATURE_V7MP) && 4824 !arm_feature(env, ARM_FEATURE_PMSA)) { 4825 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 4826 } 4827 if (arm_feature(env, ARM_FEATURE_V7)) { 4828 /* v7 performance monitor control register: same implementor 4829 * field as main ID register, and we implement only the cycle 4830 * count register. 4831 */ 4832 #ifndef CONFIG_USER_ONLY 4833 ARMCPRegInfo pmcr = { 4834 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 4835 .access = PL0_RW, 4836 .type = ARM_CP_IO | ARM_CP_ALIAS, 4837 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 4838 .accessfn = pmreg_access, .writefn = pmcr_write, 4839 .raw_writefn = raw_write, 4840 }; 4841 ARMCPRegInfo pmcr64 = { 4842 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 4843 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 4844 .access = PL0_RW, .accessfn = pmreg_access, 4845 .type = ARM_CP_IO, 4846 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 4847 .resetvalue = cpu->midr & 0xff000000, 4848 .writefn = pmcr_write, .raw_writefn = raw_write, 4849 }; 4850 define_one_arm_cp_reg(cpu, &pmcr); 4851 define_one_arm_cp_reg(cpu, &pmcr64); 4852 #endif 4853 ARMCPRegInfo clidr = { 4854 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 4855 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 4856 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 4857 }; 4858 define_one_arm_cp_reg(cpu, &clidr); 4859 define_arm_cp_regs(cpu, v7_cp_reginfo); 4860 define_debug_regs(cpu); 4861 } else { 4862 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 4863 } 4864 if (arm_feature(env, ARM_FEATURE_V8)) { 4865 /* AArch64 ID registers, which all have impdef reset values. 4866 * Note that within the ID register ranges the unused slots 4867 * must all RAZ, not UNDEF; future architecture versions may 4868 * define new registers here. 4869 */ 4870 ARMCPRegInfo v8_idregs[] = { 4871 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 4872 * know the right value for the GIC field until after we 4873 * define these regs. 4874 */ 4875 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 4876 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 4877 .access = PL1_R, .type = ARM_CP_NO_RAW, 4878 .readfn = id_aa64pfr0_read, 4879 .writefn = arm_cp_write_ignore }, 4880 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 4881 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 4882 .access = PL1_R, .type = ARM_CP_CONST, 4883 .resetvalue = cpu->id_aa64pfr1}, 4884 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4885 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 4886 .access = PL1_R, .type = ARM_CP_CONST, 4887 .resetvalue = 0 }, 4888 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4889 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 4890 .access = PL1_R, .type = ARM_CP_CONST, 4891 .resetvalue = 0 }, 4892 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4893 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 4894 .access = PL1_R, .type = ARM_CP_CONST, 4895 .resetvalue = 0 }, 4896 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4897 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 4898 .access = PL1_R, .type = ARM_CP_CONST, 4899 .resetvalue = 0 }, 4900 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4901 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 4902 .access = PL1_R, .type = ARM_CP_CONST, 4903 .resetvalue = 0 }, 4904 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4905 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 4906 .access = PL1_R, .type = ARM_CP_CONST, 4907 .resetvalue = 0 }, 4908 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 4909 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 4910 .access = PL1_R, .type = ARM_CP_CONST, 4911 .resetvalue = cpu->id_aa64dfr0 }, 4912 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 4913 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 4914 .access = PL1_R, .type = ARM_CP_CONST, 4915 .resetvalue = cpu->id_aa64dfr1 }, 4916 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4917 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 4918 .access = PL1_R, .type = ARM_CP_CONST, 4919 .resetvalue = 0 }, 4920 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4921 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 4922 .access = PL1_R, .type = ARM_CP_CONST, 4923 .resetvalue = 0 }, 4924 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 4925 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 4926 .access = PL1_R, .type = ARM_CP_CONST, 4927 .resetvalue = cpu->id_aa64afr0 }, 4928 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 4929 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 4930 .access = PL1_R, .type = ARM_CP_CONST, 4931 .resetvalue = cpu->id_aa64afr1 }, 4932 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4933 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 4934 .access = PL1_R, .type = ARM_CP_CONST, 4935 .resetvalue = 0 }, 4936 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4937 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 4938 .access = PL1_R, .type = ARM_CP_CONST, 4939 .resetvalue = 0 }, 4940 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 4941 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 4942 .access = PL1_R, .type = ARM_CP_CONST, 4943 .resetvalue = cpu->id_aa64isar0 }, 4944 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 4945 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 4946 .access = PL1_R, .type = ARM_CP_CONST, 4947 .resetvalue = cpu->id_aa64isar1 }, 4948 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4949 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 4950 .access = PL1_R, .type = ARM_CP_CONST, 4951 .resetvalue = 0 }, 4952 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4953 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 4954 .access = PL1_R, .type = ARM_CP_CONST, 4955 .resetvalue = 0 }, 4956 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4957 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 4958 .access = PL1_R, .type = ARM_CP_CONST, 4959 .resetvalue = 0 }, 4960 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4961 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 4962 .access = PL1_R, .type = ARM_CP_CONST, 4963 .resetvalue = 0 }, 4964 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4965 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 4966 .access = PL1_R, .type = ARM_CP_CONST, 4967 .resetvalue = 0 }, 4968 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4969 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 4970 .access = PL1_R, .type = ARM_CP_CONST, 4971 .resetvalue = 0 }, 4972 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 4973 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4974 .access = PL1_R, .type = ARM_CP_CONST, 4975 .resetvalue = cpu->id_aa64mmfr0 }, 4976 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 4977 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 4978 .access = PL1_R, .type = ARM_CP_CONST, 4979 .resetvalue = cpu->id_aa64mmfr1 }, 4980 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4981 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 4982 .access = PL1_R, .type = ARM_CP_CONST, 4983 .resetvalue = 0 }, 4984 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4985 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 4986 .access = PL1_R, .type = ARM_CP_CONST, 4987 .resetvalue = 0 }, 4988 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4989 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 4990 .access = PL1_R, .type = ARM_CP_CONST, 4991 .resetvalue = 0 }, 4992 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4993 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 4994 .access = PL1_R, .type = ARM_CP_CONST, 4995 .resetvalue = 0 }, 4996 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4997 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 4998 .access = PL1_R, .type = ARM_CP_CONST, 4999 .resetvalue = 0 }, 5000 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5001 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 5002 .access = PL1_R, .type = ARM_CP_CONST, 5003 .resetvalue = 0 }, 5004 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 5005 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 5006 .access = PL1_R, .type = ARM_CP_CONST, 5007 .resetvalue = cpu->mvfr0 }, 5008 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 5009 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 5010 .access = PL1_R, .type = ARM_CP_CONST, 5011 .resetvalue = cpu->mvfr1 }, 5012 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 5013 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 5014 .access = PL1_R, .type = ARM_CP_CONST, 5015 .resetvalue = cpu->mvfr2 }, 5016 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5017 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 5018 .access = PL1_R, .type = ARM_CP_CONST, 5019 .resetvalue = 0 }, 5020 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5021 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 5022 .access = PL1_R, .type = ARM_CP_CONST, 5023 .resetvalue = 0 }, 5024 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5025 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 5026 .access = PL1_R, .type = ARM_CP_CONST, 5027 .resetvalue = 0 }, 5028 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5029 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 5030 .access = PL1_R, .type = ARM_CP_CONST, 5031 .resetvalue = 0 }, 5032 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5033 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 5034 .access = PL1_R, .type = ARM_CP_CONST, 5035 .resetvalue = 0 }, 5036 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 5037 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 5038 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5039 .resetvalue = cpu->pmceid0 }, 5040 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 5041 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 5042 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5043 .resetvalue = cpu->pmceid0 }, 5044 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 5045 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 5046 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5047 .resetvalue = cpu->pmceid1 }, 5048 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 5049 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 5050 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5051 .resetvalue = cpu->pmceid1 }, 5052 REGINFO_SENTINEL 5053 }; 5054 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 5055 if (!arm_feature(env, ARM_FEATURE_EL3) && 5056 !arm_feature(env, ARM_FEATURE_EL2)) { 5057 ARMCPRegInfo rvbar = { 5058 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 5059 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5060 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 5061 }; 5062 define_one_arm_cp_reg(cpu, &rvbar); 5063 } 5064 define_arm_cp_regs(cpu, v8_idregs); 5065 define_arm_cp_regs(cpu, v8_cp_reginfo); 5066 } 5067 if (arm_feature(env, ARM_FEATURE_EL2)) { 5068 uint64_t vmpidr_def = mpidr_read_val(env); 5069 ARMCPRegInfo vpidr_regs[] = { 5070 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 5071 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5072 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5073 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 5074 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 5075 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 5076 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5077 .access = PL2_RW, .resetvalue = cpu->midr, 5078 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 5079 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 5080 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5081 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5082 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 5083 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 5084 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 5085 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5086 .access = PL2_RW, 5087 .resetvalue = vmpidr_def, 5088 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 5089 REGINFO_SENTINEL 5090 }; 5091 define_arm_cp_regs(cpu, vpidr_regs); 5092 define_arm_cp_regs(cpu, el2_cp_reginfo); 5093 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 5094 if (!arm_feature(env, ARM_FEATURE_EL3)) { 5095 ARMCPRegInfo rvbar = { 5096 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 5097 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 5098 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 5099 }; 5100 define_one_arm_cp_reg(cpu, &rvbar); 5101 } 5102 } else { 5103 /* If EL2 is missing but higher ELs are enabled, we need to 5104 * register the no_el2 reginfos. 5105 */ 5106 if (arm_feature(env, ARM_FEATURE_EL3)) { 5107 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 5108 * of MIDR_EL1 and MPIDR_EL1. 5109 */ 5110 ARMCPRegInfo vpidr_regs[] = { 5111 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5112 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5113 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5114 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 5115 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 5116 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5117 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5118 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5119 .type = ARM_CP_NO_RAW, 5120 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 5121 REGINFO_SENTINEL 5122 }; 5123 define_arm_cp_regs(cpu, vpidr_regs); 5124 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 5125 } 5126 } 5127 if (arm_feature(env, ARM_FEATURE_EL3)) { 5128 define_arm_cp_regs(cpu, el3_cp_reginfo); 5129 ARMCPRegInfo el3_regs[] = { 5130 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 5131 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 5132 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 5133 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 5134 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 5135 .access = PL3_RW, 5136 .raw_writefn = raw_write, .writefn = sctlr_write, 5137 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 5138 .resetvalue = cpu->reset_sctlr }, 5139 REGINFO_SENTINEL 5140 }; 5141 5142 define_arm_cp_regs(cpu, el3_regs); 5143 } 5144 /* The behaviour of NSACR is sufficiently various that we don't 5145 * try to describe it in a single reginfo: 5146 * if EL3 is 64 bit, then trap to EL3 from S EL1, 5147 * reads as constant 0xc00 from NS EL1 and NS EL2 5148 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 5149 * if v7 without EL3, register doesn't exist 5150 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 5151 */ 5152 if (arm_feature(env, ARM_FEATURE_EL3)) { 5153 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5154 ARMCPRegInfo nsacr = { 5155 .name = "NSACR", .type = ARM_CP_CONST, 5156 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5157 .access = PL1_RW, .accessfn = nsacr_access, 5158 .resetvalue = 0xc00 5159 }; 5160 define_one_arm_cp_reg(cpu, &nsacr); 5161 } else { 5162 ARMCPRegInfo nsacr = { 5163 .name = "NSACR", 5164 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5165 .access = PL3_RW | PL1_R, 5166 .resetvalue = 0, 5167 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 5168 }; 5169 define_one_arm_cp_reg(cpu, &nsacr); 5170 } 5171 } else { 5172 if (arm_feature(env, ARM_FEATURE_V8)) { 5173 ARMCPRegInfo nsacr = { 5174 .name = "NSACR", .type = ARM_CP_CONST, 5175 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5176 .access = PL1_R, 5177 .resetvalue = 0xc00 5178 }; 5179 define_one_arm_cp_reg(cpu, &nsacr); 5180 } 5181 } 5182 5183 if (arm_feature(env, ARM_FEATURE_PMSA)) { 5184 if (arm_feature(env, ARM_FEATURE_V6)) { 5185 /* PMSAv6 not implemented */ 5186 assert(arm_feature(env, ARM_FEATURE_V7)); 5187 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5188 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 5189 } else { 5190 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 5191 } 5192 } else { 5193 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5194 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 5195 } 5196 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 5197 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 5198 } 5199 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 5200 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 5201 } 5202 if (arm_feature(env, ARM_FEATURE_VAPA)) { 5203 define_arm_cp_regs(cpu, vapa_cp_reginfo); 5204 } 5205 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 5206 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 5207 } 5208 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 5209 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 5210 } 5211 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 5212 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 5213 } 5214 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 5215 define_arm_cp_regs(cpu, omap_cp_reginfo); 5216 } 5217 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 5218 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 5219 } 5220 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5221 define_arm_cp_regs(cpu, xscale_cp_reginfo); 5222 } 5223 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 5224 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 5225 } 5226 if (arm_feature(env, ARM_FEATURE_LPAE)) { 5227 define_arm_cp_regs(cpu, lpae_cp_reginfo); 5228 } 5229 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 5230 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 5231 * be read-only (ie write causes UNDEF exception). 5232 */ 5233 { 5234 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 5235 /* Pre-v8 MIDR space. 5236 * Note that the MIDR isn't a simple constant register because 5237 * of the TI925 behaviour where writes to another register can 5238 * cause the MIDR value to change. 5239 * 5240 * Unimplemented registers in the c15 0 0 0 space default to 5241 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 5242 * and friends override accordingly. 5243 */ 5244 { .name = "MIDR", 5245 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 5246 .access = PL1_R, .resetvalue = cpu->midr, 5247 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 5248 .readfn = midr_read, 5249 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5250 .type = ARM_CP_OVERRIDE }, 5251 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 5252 { .name = "DUMMY", 5253 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 5254 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5255 { .name = "DUMMY", 5256 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 5257 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5258 { .name = "DUMMY", 5259 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 5260 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5261 { .name = "DUMMY", 5262 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 5263 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5264 { .name = "DUMMY", 5265 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 5266 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5267 REGINFO_SENTINEL 5268 }; 5269 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 5270 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 5271 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 5272 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 5273 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5274 .readfn = midr_read }, 5275 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 5276 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5277 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5278 .access = PL1_R, .resetvalue = cpu->midr }, 5279 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5280 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 5281 .access = PL1_R, .resetvalue = cpu->midr }, 5282 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 5283 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 5284 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 5285 REGINFO_SENTINEL 5286 }; 5287 ARMCPRegInfo id_cp_reginfo[] = { 5288 /* These are common to v8 and pre-v8 */ 5289 { .name = "CTR", 5290 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 5291 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5292 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 5293 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 5294 .access = PL0_R, .accessfn = ctr_el0_access, 5295 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5296 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 5297 { .name = "TCMTR", 5298 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 5299 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5300 REGINFO_SENTINEL 5301 }; 5302 /* TLBTR is specific to VMSA */ 5303 ARMCPRegInfo id_tlbtr_reginfo = { 5304 .name = "TLBTR", 5305 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 5306 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 5307 }; 5308 /* MPUIR is specific to PMSA V6+ */ 5309 ARMCPRegInfo id_mpuir_reginfo = { 5310 .name = "MPUIR", 5311 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5312 .access = PL1_R, .type = ARM_CP_CONST, 5313 .resetvalue = cpu->pmsav7_dregion << 8 5314 }; 5315 ARMCPRegInfo crn0_wi_reginfo = { 5316 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 5317 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 5318 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 5319 }; 5320 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 5321 arm_feature(env, ARM_FEATURE_STRONGARM)) { 5322 ARMCPRegInfo *r; 5323 /* Register the blanket "writes ignored" value first to cover the 5324 * whole space. Then update the specific ID registers to allow write 5325 * access, so that they ignore writes rather than causing them to 5326 * UNDEF. 5327 */ 5328 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 5329 for (r = id_pre_v8_midr_cp_reginfo; 5330 r->type != ARM_CP_SENTINEL; r++) { 5331 r->access = PL1_RW; 5332 } 5333 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 5334 r->access = PL1_RW; 5335 } 5336 id_tlbtr_reginfo.access = PL1_RW; 5337 id_tlbtr_reginfo.access = PL1_RW; 5338 } 5339 if (arm_feature(env, ARM_FEATURE_V8)) { 5340 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 5341 } else { 5342 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 5343 } 5344 define_arm_cp_regs(cpu, id_cp_reginfo); 5345 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 5346 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 5347 } else if (arm_feature(env, ARM_FEATURE_V7)) { 5348 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 5349 } 5350 } 5351 5352 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 5353 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 5354 } 5355 5356 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 5357 ARMCPRegInfo auxcr_reginfo[] = { 5358 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 5359 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 5360 .access = PL1_RW, .type = ARM_CP_CONST, 5361 .resetvalue = cpu->reset_auxcr }, 5362 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 5363 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 5364 .access = PL2_RW, .type = ARM_CP_CONST, 5365 .resetvalue = 0 }, 5366 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 5367 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 5368 .access = PL3_RW, .type = ARM_CP_CONST, 5369 .resetvalue = 0 }, 5370 REGINFO_SENTINEL 5371 }; 5372 define_arm_cp_regs(cpu, auxcr_reginfo); 5373 } 5374 5375 if (arm_feature(env, ARM_FEATURE_CBAR)) { 5376 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5377 /* 32 bit view is [31:18] 0...0 [43:32]. */ 5378 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 5379 | extract64(cpu->reset_cbar, 32, 12); 5380 ARMCPRegInfo cbar_reginfo[] = { 5381 { .name = "CBAR", 5382 .type = ARM_CP_CONST, 5383 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5384 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 5385 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 5386 .type = ARM_CP_CONST, 5387 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 5388 .access = PL1_R, .resetvalue = cbar32 }, 5389 REGINFO_SENTINEL 5390 }; 5391 /* We don't implement a r/w 64 bit CBAR currently */ 5392 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 5393 define_arm_cp_regs(cpu, cbar_reginfo); 5394 } else { 5395 ARMCPRegInfo cbar = { 5396 .name = "CBAR", 5397 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5398 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 5399 .fieldoffset = offsetof(CPUARMState, 5400 cp15.c15_config_base_address) 5401 }; 5402 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 5403 cbar.access = PL1_R; 5404 cbar.fieldoffset = 0; 5405 cbar.type = ARM_CP_CONST; 5406 } 5407 define_one_arm_cp_reg(cpu, &cbar); 5408 } 5409 } 5410 5411 if (arm_feature(env, ARM_FEATURE_VBAR)) { 5412 ARMCPRegInfo vbar_cp_reginfo[] = { 5413 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 5414 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 5415 .access = PL1_RW, .writefn = vbar_write, 5416 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 5417 offsetof(CPUARMState, cp15.vbar_ns) }, 5418 .resetvalue = 0 }, 5419 REGINFO_SENTINEL 5420 }; 5421 define_arm_cp_regs(cpu, vbar_cp_reginfo); 5422 } 5423 5424 /* Generic registers whose values depend on the implementation */ 5425 { 5426 ARMCPRegInfo sctlr = { 5427 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 5428 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5429 .access = PL1_RW, 5430 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 5431 offsetof(CPUARMState, cp15.sctlr_ns) }, 5432 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 5433 .raw_writefn = raw_write, 5434 }; 5435 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5436 /* Normally we would always end the TB on an SCTLR write, but Linux 5437 * arch/arm/mach-pxa/sleep.S expects two instructions following 5438 * an MMU enable to execute from cache. Imitate this behaviour. 5439 */ 5440 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 5441 } 5442 define_one_arm_cp_reg(cpu, &sctlr); 5443 } 5444 5445 if (arm_feature(env, ARM_FEATURE_SVE)) { 5446 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 5447 if (arm_feature(env, ARM_FEATURE_EL2)) { 5448 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 5449 } else { 5450 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 5451 } 5452 if (arm_feature(env, ARM_FEATURE_EL3)) { 5453 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 5454 } 5455 } 5456 } 5457 5458 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 5459 { 5460 CPUState *cs = CPU(cpu); 5461 CPUARMState *env = &cpu->env; 5462 5463 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5464 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 5465 aarch64_fpu_gdb_set_reg, 5466 34, "aarch64-fpu.xml", 0); 5467 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 5468 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5469 51, "arm-neon.xml", 0); 5470 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 5471 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5472 35, "arm-vfp3.xml", 0); 5473 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 5474 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5475 19, "arm-vfp.xml", 0); 5476 } 5477 } 5478 5479 /* Sort alphabetically by type name, except for "any". */ 5480 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 5481 { 5482 ObjectClass *class_a = (ObjectClass *)a; 5483 ObjectClass *class_b = (ObjectClass *)b; 5484 const char *name_a, *name_b; 5485 5486 name_a = object_class_get_name(class_a); 5487 name_b = object_class_get_name(class_b); 5488 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 5489 return 1; 5490 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 5491 return -1; 5492 } else { 5493 return strcmp(name_a, name_b); 5494 } 5495 } 5496 5497 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 5498 { 5499 ObjectClass *oc = data; 5500 CPUListState *s = user_data; 5501 const char *typename; 5502 char *name; 5503 5504 typename = object_class_get_name(oc); 5505 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5506 (*s->cpu_fprintf)(s->file, " %s\n", 5507 name); 5508 g_free(name); 5509 } 5510 5511 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) 5512 { 5513 CPUListState s = { 5514 .file = f, 5515 .cpu_fprintf = cpu_fprintf, 5516 }; 5517 GSList *list; 5518 5519 list = object_class_get_list(TYPE_ARM_CPU, false); 5520 list = g_slist_sort(list, arm_cpu_list_compare); 5521 (*cpu_fprintf)(f, "Available CPUs:\n"); 5522 g_slist_foreach(list, arm_cpu_list_entry, &s); 5523 g_slist_free(list); 5524 #ifdef CONFIG_KVM 5525 /* The 'host' CPU type is dynamically registered only if KVM is 5526 * enabled, so we have to special-case it here: 5527 */ 5528 (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); 5529 #endif 5530 } 5531 5532 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 5533 { 5534 ObjectClass *oc = data; 5535 CpuDefinitionInfoList **cpu_list = user_data; 5536 CpuDefinitionInfoList *entry; 5537 CpuDefinitionInfo *info; 5538 const char *typename; 5539 5540 typename = object_class_get_name(oc); 5541 info = g_malloc0(sizeof(*info)); 5542 info->name = g_strndup(typename, 5543 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5544 info->q_typename = g_strdup(typename); 5545 5546 entry = g_malloc0(sizeof(*entry)); 5547 entry->value = info; 5548 entry->next = *cpu_list; 5549 *cpu_list = entry; 5550 } 5551 5552 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) 5553 { 5554 CpuDefinitionInfoList *cpu_list = NULL; 5555 GSList *list; 5556 5557 list = object_class_get_list(TYPE_ARM_CPU, false); 5558 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 5559 g_slist_free(list); 5560 5561 return cpu_list; 5562 } 5563 5564 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 5565 void *opaque, int state, int secstate, 5566 int crm, int opc1, int opc2) 5567 { 5568 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 5569 * add a single reginfo struct to the hash table. 5570 */ 5571 uint32_t *key = g_new(uint32_t, 1); 5572 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 5573 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 5574 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 5575 5576 /* Reset the secure state to the specific incoming state. This is 5577 * necessary as the register may have been defined with both states. 5578 */ 5579 r2->secure = secstate; 5580 5581 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5582 /* Register is banked (using both entries in array). 5583 * Overwriting fieldoffset as the array is only used to define 5584 * banked registers but later only fieldoffset is used. 5585 */ 5586 r2->fieldoffset = r->bank_fieldoffsets[ns]; 5587 } 5588 5589 if (state == ARM_CP_STATE_AA32) { 5590 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5591 /* If the register is banked then we don't need to migrate or 5592 * reset the 32-bit instance in certain cases: 5593 * 5594 * 1) If the register has both 32-bit and 64-bit instances then we 5595 * can count on the 64-bit instance taking care of the 5596 * non-secure bank. 5597 * 2) If ARMv8 is enabled then we can count on a 64-bit version 5598 * taking care of the secure bank. This requires that separate 5599 * 32 and 64-bit definitions are provided. 5600 */ 5601 if ((r->state == ARM_CP_STATE_BOTH && ns) || 5602 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 5603 r2->type |= ARM_CP_ALIAS; 5604 } 5605 } else if ((secstate != r->secure) && !ns) { 5606 /* The register is not banked so we only want to allow migration of 5607 * the non-secure instance. 5608 */ 5609 r2->type |= ARM_CP_ALIAS; 5610 } 5611 5612 if (r->state == ARM_CP_STATE_BOTH) { 5613 /* We assume it is a cp15 register if the .cp field is left unset. 5614 */ 5615 if (r2->cp == 0) { 5616 r2->cp = 15; 5617 } 5618 5619 #ifdef HOST_WORDS_BIGENDIAN 5620 if (r2->fieldoffset) { 5621 r2->fieldoffset += sizeof(uint32_t); 5622 } 5623 #endif 5624 } 5625 } 5626 if (state == ARM_CP_STATE_AA64) { 5627 /* To allow abbreviation of ARMCPRegInfo 5628 * definitions, we treat cp == 0 as equivalent to 5629 * the value for "standard guest-visible sysreg". 5630 * STATE_BOTH definitions are also always "standard 5631 * sysreg" in their AArch64 view (the .cp value may 5632 * be non-zero for the benefit of the AArch32 view). 5633 */ 5634 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 5635 r2->cp = CP_REG_ARM64_SYSREG_CP; 5636 } 5637 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 5638 r2->opc0, opc1, opc2); 5639 } else { 5640 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 5641 } 5642 if (opaque) { 5643 r2->opaque = opaque; 5644 } 5645 /* reginfo passed to helpers is correct for the actual access, 5646 * and is never ARM_CP_STATE_BOTH: 5647 */ 5648 r2->state = state; 5649 /* Make sure reginfo passed to helpers for wildcarded regs 5650 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 5651 */ 5652 r2->crm = crm; 5653 r2->opc1 = opc1; 5654 r2->opc2 = opc2; 5655 /* By convention, for wildcarded registers only the first 5656 * entry is used for migration; the others are marked as 5657 * ALIAS so we don't try to transfer the register 5658 * multiple times. Special registers (ie NOP/WFI) are 5659 * never migratable and not even raw-accessible. 5660 */ 5661 if ((r->type & ARM_CP_SPECIAL)) { 5662 r2->type |= ARM_CP_NO_RAW; 5663 } 5664 if (((r->crm == CP_ANY) && crm != 0) || 5665 ((r->opc1 == CP_ANY) && opc1 != 0) || 5666 ((r->opc2 == CP_ANY) && opc2 != 0)) { 5667 r2->type |= ARM_CP_ALIAS; 5668 } 5669 5670 /* Check that raw accesses are either forbidden or handled. Note that 5671 * we can't assert this earlier because the setup of fieldoffset for 5672 * banked registers has to be done first. 5673 */ 5674 if (!(r2->type & ARM_CP_NO_RAW)) { 5675 assert(!raw_accessors_invalid(r2)); 5676 } 5677 5678 /* Overriding of an existing definition must be explicitly 5679 * requested. 5680 */ 5681 if (!(r->type & ARM_CP_OVERRIDE)) { 5682 ARMCPRegInfo *oldreg; 5683 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 5684 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 5685 fprintf(stderr, "Register redefined: cp=%d %d bit " 5686 "crn=%d crm=%d opc1=%d opc2=%d, " 5687 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 5688 r2->crn, r2->crm, r2->opc1, r2->opc2, 5689 oldreg->name, r2->name); 5690 g_assert_not_reached(); 5691 } 5692 } 5693 g_hash_table_insert(cpu->cp_regs, key, r2); 5694 } 5695 5696 5697 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 5698 const ARMCPRegInfo *r, void *opaque) 5699 { 5700 /* Define implementations of coprocessor registers. 5701 * We store these in a hashtable because typically 5702 * there are less than 150 registers in a space which 5703 * is 16*16*16*8*8 = 262144 in size. 5704 * Wildcarding is supported for the crm, opc1 and opc2 fields. 5705 * If a register is defined twice then the second definition is 5706 * used, so this can be used to define some generic registers and 5707 * then override them with implementation specific variations. 5708 * At least one of the original and the second definition should 5709 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 5710 * against accidental use. 5711 * 5712 * The state field defines whether the register is to be 5713 * visible in the AArch32 or AArch64 execution state. If the 5714 * state is set to ARM_CP_STATE_BOTH then we synthesise a 5715 * reginfo structure for the AArch32 view, which sees the lower 5716 * 32 bits of the 64 bit register. 5717 * 5718 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 5719 * be wildcarded. AArch64 registers are always considered to be 64 5720 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 5721 * the register, if any. 5722 */ 5723 int crm, opc1, opc2, state; 5724 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 5725 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 5726 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 5727 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 5728 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 5729 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 5730 /* 64 bit registers have only CRm and Opc1 fields */ 5731 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 5732 /* op0 only exists in the AArch64 encodings */ 5733 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 5734 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 5735 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 5736 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 5737 * encodes a minimum access level for the register. We roll this 5738 * runtime check into our general permission check code, so check 5739 * here that the reginfo's specified permissions are strict enough 5740 * to encompass the generic architectural permission check. 5741 */ 5742 if (r->state != ARM_CP_STATE_AA32) { 5743 int mask = 0; 5744 switch (r->opc1) { 5745 case 0: case 1: case 2: 5746 /* min_EL EL1 */ 5747 mask = PL1_RW; 5748 break; 5749 case 3: 5750 /* min_EL EL0 */ 5751 mask = PL0_RW; 5752 break; 5753 case 4: 5754 /* min_EL EL2 */ 5755 mask = PL2_RW; 5756 break; 5757 case 5: 5758 /* unallocated encoding, so not possible */ 5759 assert(false); 5760 break; 5761 case 6: 5762 /* min_EL EL3 */ 5763 mask = PL3_RW; 5764 break; 5765 case 7: 5766 /* min_EL EL1, secure mode only (we don't check the latter) */ 5767 mask = PL1_RW; 5768 break; 5769 default: 5770 /* broken reginfo with out-of-range opc1 */ 5771 assert(false); 5772 break; 5773 } 5774 /* assert our permissions are not too lax (stricter is fine) */ 5775 assert((r->access & ~mask) == 0); 5776 } 5777 5778 /* Check that the register definition has enough info to handle 5779 * reads and writes if they are permitted. 5780 */ 5781 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 5782 if (r->access & PL3_R) { 5783 assert((r->fieldoffset || 5784 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5785 r->readfn); 5786 } 5787 if (r->access & PL3_W) { 5788 assert((r->fieldoffset || 5789 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5790 r->writefn); 5791 } 5792 } 5793 /* Bad type field probably means missing sentinel at end of reg list */ 5794 assert(cptype_valid(r->type)); 5795 for (crm = crmmin; crm <= crmmax; crm++) { 5796 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 5797 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 5798 for (state = ARM_CP_STATE_AA32; 5799 state <= ARM_CP_STATE_AA64; state++) { 5800 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 5801 continue; 5802 } 5803 if (state == ARM_CP_STATE_AA32) { 5804 /* Under AArch32 CP registers can be common 5805 * (same for secure and non-secure world) or banked. 5806 */ 5807 switch (r->secure) { 5808 case ARM_CP_SECSTATE_S: 5809 case ARM_CP_SECSTATE_NS: 5810 add_cpreg_to_hashtable(cpu, r, opaque, state, 5811 r->secure, crm, opc1, opc2); 5812 break; 5813 default: 5814 add_cpreg_to_hashtable(cpu, r, opaque, state, 5815 ARM_CP_SECSTATE_S, 5816 crm, opc1, opc2); 5817 add_cpreg_to_hashtable(cpu, r, opaque, state, 5818 ARM_CP_SECSTATE_NS, 5819 crm, opc1, opc2); 5820 break; 5821 } 5822 } else { 5823 /* AArch64 registers get mapped to non-secure instance 5824 * of AArch32 */ 5825 add_cpreg_to_hashtable(cpu, r, opaque, state, 5826 ARM_CP_SECSTATE_NS, 5827 crm, opc1, opc2); 5828 } 5829 } 5830 } 5831 } 5832 } 5833 } 5834 5835 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 5836 const ARMCPRegInfo *regs, void *opaque) 5837 { 5838 /* Define a whole list of registers */ 5839 const ARMCPRegInfo *r; 5840 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 5841 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 5842 } 5843 } 5844 5845 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 5846 { 5847 return g_hash_table_lookup(cpregs, &encoded_cp); 5848 } 5849 5850 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 5851 uint64_t value) 5852 { 5853 /* Helper coprocessor write function for write-ignore registers */ 5854 } 5855 5856 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 5857 { 5858 /* Helper coprocessor write function for read-as-zero registers */ 5859 return 0; 5860 } 5861 5862 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 5863 { 5864 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 5865 } 5866 5867 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 5868 { 5869 /* Return true if it is not valid for us to switch to 5870 * this CPU mode (ie all the UNPREDICTABLE cases in 5871 * the ARM ARM CPSRWriteByInstr pseudocode). 5872 */ 5873 5874 /* Changes to or from Hyp via MSR and CPS are illegal. */ 5875 if (write_type == CPSRWriteByInstr && 5876 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 5877 mode == ARM_CPU_MODE_HYP)) { 5878 return 1; 5879 } 5880 5881 switch (mode) { 5882 case ARM_CPU_MODE_USR: 5883 return 0; 5884 case ARM_CPU_MODE_SYS: 5885 case ARM_CPU_MODE_SVC: 5886 case ARM_CPU_MODE_ABT: 5887 case ARM_CPU_MODE_UND: 5888 case ARM_CPU_MODE_IRQ: 5889 case ARM_CPU_MODE_FIQ: 5890 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 5891 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 5892 */ 5893 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 5894 * and CPS are treated as illegal mode changes. 5895 */ 5896 if (write_type == CPSRWriteByInstr && 5897 (env->cp15.hcr_el2 & HCR_TGE) && 5898 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 5899 !arm_is_secure_below_el3(env)) { 5900 return 1; 5901 } 5902 return 0; 5903 case ARM_CPU_MODE_HYP: 5904 return !arm_feature(env, ARM_FEATURE_EL2) 5905 || arm_current_el(env) < 2 || arm_is_secure(env); 5906 case ARM_CPU_MODE_MON: 5907 return arm_current_el(env) < 3; 5908 default: 5909 return 1; 5910 } 5911 } 5912 5913 uint32_t cpsr_read(CPUARMState *env) 5914 { 5915 int ZF; 5916 ZF = (env->ZF == 0); 5917 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 5918 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 5919 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 5920 | ((env->condexec_bits & 0xfc) << 8) 5921 | (env->GE << 16) | (env->daif & CPSR_AIF); 5922 } 5923 5924 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 5925 CPSRWriteType write_type) 5926 { 5927 uint32_t changed_daif; 5928 5929 if (mask & CPSR_NZCV) { 5930 env->ZF = (~val) & CPSR_Z; 5931 env->NF = val; 5932 env->CF = (val >> 29) & 1; 5933 env->VF = (val << 3) & 0x80000000; 5934 } 5935 if (mask & CPSR_Q) 5936 env->QF = ((val & CPSR_Q) != 0); 5937 if (mask & CPSR_T) 5938 env->thumb = ((val & CPSR_T) != 0); 5939 if (mask & CPSR_IT_0_1) { 5940 env->condexec_bits &= ~3; 5941 env->condexec_bits |= (val >> 25) & 3; 5942 } 5943 if (mask & CPSR_IT_2_7) { 5944 env->condexec_bits &= 3; 5945 env->condexec_bits |= (val >> 8) & 0xfc; 5946 } 5947 if (mask & CPSR_GE) { 5948 env->GE = (val >> 16) & 0xf; 5949 } 5950 5951 /* In a V7 implementation that includes the security extensions but does 5952 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 5953 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 5954 * bits respectively. 5955 * 5956 * In a V8 implementation, it is permitted for privileged software to 5957 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 5958 */ 5959 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 5960 arm_feature(env, ARM_FEATURE_EL3) && 5961 !arm_feature(env, ARM_FEATURE_EL2) && 5962 !arm_is_secure(env)) { 5963 5964 changed_daif = (env->daif ^ val) & mask; 5965 5966 if (changed_daif & CPSR_A) { 5967 /* Check to see if we are allowed to change the masking of async 5968 * abort exceptions from a non-secure state. 5969 */ 5970 if (!(env->cp15.scr_el3 & SCR_AW)) { 5971 qemu_log_mask(LOG_GUEST_ERROR, 5972 "Ignoring attempt to switch CPSR_A flag from " 5973 "non-secure world with SCR.AW bit clear\n"); 5974 mask &= ~CPSR_A; 5975 } 5976 } 5977 5978 if (changed_daif & CPSR_F) { 5979 /* Check to see if we are allowed to change the masking of FIQ 5980 * exceptions from a non-secure state. 5981 */ 5982 if (!(env->cp15.scr_el3 & SCR_FW)) { 5983 qemu_log_mask(LOG_GUEST_ERROR, 5984 "Ignoring attempt to switch CPSR_F flag from " 5985 "non-secure world with SCR.FW bit clear\n"); 5986 mask &= ~CPSR_F; 5987 } 5988 5989 /* Check whether non-maskable FIQ (NMFI) support is enabled. 5990 * If this bit is set software is not allowed to mask 5991 * FIQs, but is allowed to set CPSR_F to 0. 5992 */ 5993 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 5994 (val & CPSR_F)) { 5995 qemu_log_mask(LOG_GUEST_ERROR, 5996 "Ignoring attempt to enable CPSR_F flag " 5997 "(non-maskable FIQ [NMFI] support enabled)\n"); 5998 mask &= ~CPSR_F; 5999 } 6000 } 6001 } 6002 6003 env->daif &= ~(CPSR_AIF & mask); 6004 env->daif |= val & CPSR_AIF & mask; 6005 6006 if (write_type != CPSRWriteRaw && 6007 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 6008 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 6009 /* Note that we can only get here in USR mode if this is a 6010 * gdb stub write; for this case we follow the architectural 6011 * behaviour for guest writes in USR mode of ignoring an attempt 6012 * to switch mode. (Those are caught by translate.c for writes 6013 * triggered by guest instructions.) 6014 */ 6015 mask &= ~CPSR_M; 6016 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 6017 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 6018 * v7, and has defined behaviour in v8: 6019 * + leave CPSR.M untouched 6020 * + allow changes to the other CPSR fields 6021 * + set PSTATE.IL 6022 * For user changes via the GDB stub, we don't set PSTATE.IL, 6023 * as this would be unnecessarily harsh for a user error. 6024 */ 6025 mask &= ~CPSR_M; 6026 if (write_type != CPSRWriteByGDBStub && 6027 arm_feature(env, ARM_FEATURE_V8)) { 6028 mask |= CPSR_IL; 6029 val |= CPSR_IL; 6030 } 6031 } else { 6032 switch_mode(env, val & CPSR_M); 6033 } 6034 } 6035 mask &= ~CACHED_CPSR_BITS; 6036 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 6037 } 6038 6039 /* Sign/zero extend */ 6040 uint32_t HELPER(sxtb16)(uint32_t x) 6041 { 6042 uint32_t res; 6043 res = (uint16_t)(int8_t)x; 6044 res |= (uint32_t)(int8_t)(x >> 16) << 16; 6045 return res; 6046 } 6047 6048 uint32_t HELPER(uxtb16)(uint32_t x) 6049 { 6050 uint32_t res; 6051 res = (uint16_t)(uint8_t)x; 6052 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 6053 return res; 6054 } 6055 6056 int32_t HELPER(sdiv)(int32_t num, int32_t den) 6057 { 6058 if (den == 0) 6059 return 0; 6060 if (num == INT_MIN && den == -1) 6061 return INT_MIN; 6062 return num / den; 6063 } 6064 6065 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 6066 { 6067 if (den == 0) 6068 return 0; 6069 return num / den; 6070 } 6071 6072 uint32_t HELPER(rbit)(uint32_t x) 6073 { 6074 return revbit32(x); 6075 } 6076 6077 #if defined(CONFIG_USER_ONLY) 6078 6079 /* These should probably raise undefined insn exceptions. */ 6080 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 6081 { 6082 ARMCPU *cpu = arm_env_get_cpu(env); 6083 6084 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 6085 } 6086 6087 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 6088 { 6089 ARMCPU *cpu = arm_env_get_cpu(env); 6090 6091 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 6092 return 0; 6093 } 6094 6095 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6096 { 6097 /* translate.c should never generate calls here in user-only mode */ 6098 g_assert_not_reached(); 6099 } 6100 6101 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6102 { 6103 /* translate.c should never generate calls here in user-only mode */ 6104 g_assert_not_reached(); 6105 } 6106 6107 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 6108 { 6109 /* The TT instructions can be used by unprivileged code, but in 6110 * user-only emulation we don't have the MPU. 6111 * Luckily since we know we are NonSecure unprivileged (and that in 6112 * turn means that the A flag wasn't specified), all the bits in the 6113 * register must be zero: 6114 * IREGION: 0 because IRVALID is 0 6115 * IRVALID: 0 because NS 6116 * S: 0 because NS 6117 * NSRW: 0 because NS 6118 * NSR: 0 because NS 6119 * RW: 0 because unpriv and A flag not set 6120 * R: 0 because unpriv and A flag not set 6121 * SRVALID: 0 because NS 6122 * MRVALID: 0 because unpriv and A flag not set 6123 * SREGION: 0 becaus SRVALID is 0 6124 * MREGION: 0 because MRVALID is 0 6125 */ 6126 return 0; 6127 } 6128 6129 void switch_mode(CPUARMState *env, int mode) 6130 { 6131 ARMCPU *cpu = arm_env_get_cpu(env); 6132 6133 if (mode != ARM_CPU_MODE_USR) { 6134 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 6135 } 6136 } 6137 6138 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6139 uint32_t cur_el, bool secure) 6140 { 6141 return 1; 6142 } 6143 6144 void aarch64_sync_64_to_32(CPUARMState *env) 6145 { 6146 g_assert_not_reached(); 6147 } 6148 6149 #else 6150 6151 void switch_mode(CPUARMState *env, int mode) 6152 { 6153 int old_mode; 6154 int i; 6155 6156 old_mode = env->uncached_cpsr & CPSR_M; 6157 if (mode == old_mode) 6158 return; 6159 6160 if (old_mode == ARM_CPU_MODE_FIQ) { 6161 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6162 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 6163 } else if (mode == ARM_CPU_MODE_FIQ) { 6164 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6165 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 6166 } 6167 6168 i = bank_number(old_mode); 6169 env->banked_r13[i] = env->regs[13]; 6170 env->banked_r14[i] = env->regs[14]; 6171 env->banked_spsr[i] = env->spsr; 6172 6173 i = bank_number(mode); 6174 env->regs[13] = env->banked_r13[i]; 6175 env->regs[14] = env->banked_r14[i]; 6176 env->spsr = env->banked_spsr[i]; 6177 } 6178 6179 /* Physical Interrupt Target EL Lookup Table 6180 * 6181 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 6182 * 6183 * The below multi-dimensional table is used for looking up the target 6184 * exception level given numerous condition criteria. Specifically, the 6185 * target EL is based on SCR and HCR routing controls as well as the 6186 * currently executing EL and secure state. 6187 * 6188 * Dimensions: 6189 * target_el_table[2][2][2][2][2][4] 6190 * | | | | | +--- Current EL 6191 * | | | | +------ Non-secure(0)/Secure(1) 6192 * | | | +--------- HCR mask override 6193 * | | +------------ SCR exec state control 6194 * | +--------------- SCR mask override 6195 * +------------------ 32-bit(0)/64-bit(1) EL3 6196 * 6197 * The table values are as such: 6198 * 0-3 = EL0-EL3 6199 * -1 = Cannot occur 6200 * 6201 * The ARM ARM target EL table includes entries indicating that an "exception 6202 * is not taken". The two cases where this is applicable are: 6203 * 1) An exception is taken from EL3 but the SCR does not have the exception 6204 * routed to EL3. 6205 * 2) An exception is taken from EL2 but the HCR does not have the exception 6206 * routed to EL2. 6207 * In these two cases, the below table contain a target of EL1. This value is 6208 * returned as it is expected that the consumer of the table data will check 6209 * for "target EL >= current EL" to ensure the exception is not taken. 6210 * 6211 * SCR HCR 6212 * 64 EA AMO From 6213 * BIT IRQ IMO Non-secure Secure 6214 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 6215 */ 6216 static const int8_t target_el_table[2][2][2][2][2][4] = { 6217 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6218 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 6219 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6220 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 6221 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6222 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 6223 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6224 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 6225 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 6226 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 6227 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 6228 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 6229 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6230 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 6231 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6232 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 6233 }; 6234 6235 /* 6236 * Determine the target EL for physical exceptions 6237 */ 6238 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6239 uint32_t cur_el, bool secure) 6240 { 6241 CPUARMState *env = cs->env_ptr; 6242 int rw; 6243 int scr; 6244 int hcr; 6245 int target_el; 6246 /* Is the highest EL AArch64? */ 6247 int is64 = arm_feature(env, ARM_FEATURE_AARCH64); 6248 6249 if (arm_feature(env, ARM_FEATURE_EL3)) { 6250 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 6251 } else { 6252 /* Either EL2 is the highest EL (and so the EL2 register width 6253 * is given by is64); or there is no EL2 or EL3, in which case 6254 * the value of 'rw' does not affect the table lookup anyway. 6255 */ 6256 rw = is64; 6257 } 6258 6259 switch (excp_idx) { 6260 case EXCP_IRQ: 6261 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 6262 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); 6263 break; 6264 case EXCP_FIQ: 6265 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 6266 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); 6267 break; 6268 default: 6269 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 6270 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); 6271 break; 6272 }; 6273 6274 /* If HCR.TGE is set then HCR is treated as being 1 */ 6275 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); 6276 6277 /* Perform a table-lookup for the target EL given the current state */ 6278 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 6279 6280 assert(target_el > 0); 6281 6282 return target_el; 6283 } 6284 6285 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value, 6286 ARMMMUIdx mmu_idx, bool ignfault) 6287 { 6288 CPUState *cs = CPU(cpu); 6289 CPUARMState *env = &cpu->env; 6290 MemTxAttrs attrs = {}; 6291 MemTxResult txres; 6292 target_ulong page_size; 6293 hwaddr physaddr; 6294 int prot; 6295 ARMMMUFaultInfo fi; 6296 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 6297 int exc; 6298 bool exc_secure; 6299 6300 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr, 6301 &attrs, &prot, &page_size, &fi, NULL)) { 6302 /* MPU/SAU lookup failed */ 6303 if (fi.type == ARMFault_QEMU_SFault) { 6304 qemu_log_mask(CPU_LOG_INT, 6305 "...SecureFault with SFSR.AUVIOL during stacking\n"); 6306 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 6307 env->v7m.sfar = addr; 6308 exc = ARMV7M_EXCP_SECURE; 6309 exc_secure = false; 6310 } else { 6311 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n"); 6312 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK; 6313 exc = ARMV7M_EXCP_MEM; 6314 exc_secure = secure; 6315 } 6316 goto pend_fault; 6317 } 6318 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value, 6319 attrs, &txres); 6320 if (txres != MEMTX_OK) { 6321 /* BusFault trying to write the data */ 6322 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n"); 6323 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK; 6324 exc = ARMV7M_EXCP_BUS; 6325 exc_secure = false; 6326 goto pend_fault; 6327 } 6328 return true; 6329 6330 pend_fault: 6331 /* By pending the exception at this point we are making 6332 * the IMPDEF choice "overridden exceptions pended" (see the 6333 * MergeExcInfo() pseudocode). The other choice would be to not 6334 * pend them now and then make a choice about which to throw away 6335 * later if we have two derived exceptions. 6336 * The only case when we must not pend the exception but instead 6337 * throw it away is if we are doing the push of the callee registers 6338 * and we've already generated a derived exception. Even in this 6339 * case we will still update the fault status registers. 6340 */ 6341 if (!ignfault) { 6342 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure); 6343 } 6344 return false; 6345 } 6346 6347 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr, 6348 ARMMMUIdx mmu_idx) 6349 { 6350 CPUState *cs = CPU(cpu); 6351 CPUARMState *env = &cpu->env; 6352 MemTxAttrs attrs = {}; 6353 MemTxResult txres; 6354 target_ulong page_size; 6355 hwaddr physaddr; 6356 int prot; 6357 ARMMMUFaultInfo fi; 6358 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 6359 int exc; 6360 bool exc_secure; 6361 uint32_t value; 6362 6363 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr, 6364 &attrs, &prot, &page_size, &fi, NULL)) { 6365 /* MPU/SAU lookup failed */ 6366 if (fi.type == ARMFault_QEMU_SFault) { 6367 qemu_log_mask(CPU_LOG_INT, 6368 "...SecureFault with SFSR.AUVIOL during unstack\n"); 6369 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 6370 env->v7m.sfar = addr; 6371 exc = ARMV7M_EXCP_SECURE; 6372 exc_secure = false; 6373 } else { 6374 qemu_log_mask(CPU_LOG_INT, 6375 "...MemManageFault with CFSR.MUNSTKERR\n"); 6376 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK; 6377 exc = ARMV7M_EXCP_MEM; 6378 exc_secure = secure; 6379 } 6380 goto pend_fault; 6381 } 6382 6383 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr, 6384 attrs, &txres); 6385 if (txres != MEMTX_OK) { 6386 /* BusFault trying to read the data */ 6387 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n"); 6388 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK; 6389 exc = ARMV7M_EXCP_BUS; 6390 exc_secure = false; 6391 goto pend_fault; 6392 } 6393 6394 *dest = value; 6395 return true; 6396 6397 pend_fault: 6398 /* By pending the exception at this point we are making 6399 * the IMPDEF choice "overridden exceptions pended" (see the 6400 * MergeExcInfo() pseudocode). The other choice would be to not 6401 * pend them now and then make a choice about which to throw away 6402 * later if we have two derived exceptions. 6403 */ 6404 armv7m_nvic_set_pending(env->nvic, exc, exc_secure); 6405 return false; 6406 } 6407 6408 /* Return true if we're using the process stack pointer (not the MSP) */ 6409 static bool v7m_using_psp(CPUARMState *env) 6410 { 6411 /* Handler mode always uses the main stack; for thread mode 6412 * the CONTROL.SPSEL bit determines the answer. 6413 * Note that in v7M it is not possible to be in Handler mode with 6414 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 6415 */ 6416 return !arm_v7m_is_handler_mode(env) && 6417 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 6418 } 6419 6420 /* Write to v7M CONTROL.SPSEL bit for the specified security bank. 6421 * This may change the current stack pointer between Main and Process 6422 * stack pointers if it is done for the CONTROL register for the current 6423 * security state. 6424 */ 6425 static void write_v7m_control_spsel_for_secstate(CPUARMState *env, 6426 bool new_spsel, 6427 bool secstate) 6428 { 6429 bool old_is_psp = v7m_using_psp(env); 6430 6431 env->v7m.control[secstate] = 6432 deposit32(env->v7m.control[secstate], 6433 R_V7M_CONTROL_SPSEL_SHIFT, 6434 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); 6435 6436 if (secstate == env->v7m.secure) { 6437 bool new_is_psp = v7m_using_psp(env); 6438 uint32_t tmp; 6439 6440 if (old_is_psp != new_is_psp) { 6441 tmp = env->v7m.other_sp; 6442 env->v7m.other_sp = env->regs[13]; 6443 env->regs[13] = tmp; 6444 } 6445 } 6446 } 6447 6448 /* Write to v7M CONTROL.SPSEL bit. This may change the current 6449 * stack pointer between Main and Process stack pointers. 6450 */ 6451 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) 6452 { 6453 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); 6454 } 6455 6456 void write_v7m_exception(CPUARMState *env, uint32_t new_exc) 6457 { 6458 /* Write a new value to v7m.exception, thus transitioning into or out 6459 * of Handler mode; this may result in a change of active stack pointer. 6460 */ 6461 bool new_is_psp, old_is_psp = v7m_using_psp(env); 6462 uint32_t tmp; 6463 6464 env->v7m.exception = new_exc; 6465 6466 new_is_psp = v7m_using_psp(env); 6467 6468 if (old_is_psp != new_is_psp) { 6469 tmp = env->v7m.other_sp; 6470 env->v7m.other_sp = env->regs[13]; 6471 env->regs[13] = tmp; 6472 } 6473 } 6474 6475 /* Switch M profile security state between NS and S */ 6476 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) 6477 { 6478 uint32_t new_ss_msp, new_ss_psp; 6479 6480 if (env->v7m.secure == new_secstate) { 6481 return; 6482 } 6483 6484 /* All the banked state is accessed by looking at env->v7m.secure 6485 * except for the stack pointer; rearrange the SP appropriately. 6486 */ 6487 new_ss_msp = env->v7m.other_ss_msp; 6488 new_ss_psp = env->v7m.other_ss_psp; 6489 6490 if (v7m_using_psp(env)) { 6491 env->v7m.other_ss_psp = env->regs[13]; 6492 env->v7m.other_ss_msp = env->v7m.other_sp; 6493 } else { 6494 env->v7m.other_ss_msp = env->regs[13]; 6495 env->v7m.other_ss_psp = env->v7m.other_sp; 6496 } 6497 6498 env->v7m.secure = new_secstate; 6499 6500 if (v7m_using_psp(env)) { 6501 env->regs[13] = new_ss_psp; 6502 env->v7m.other_sp = new_ss_msp; 6503 } else { 6504 env->regs[13] = new_ss_msp; 6505 env->v7m.other_sp = new_ss_psp; 6506 } 6507 } 6508 6509 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6510 { 6511 /* Handle v7M BXNS: 6512 * - if the return value is a magic value, do exception return (like BX) 6513 * - otherwise bit 0 of the return value is the target security state 6514 */ 6515 uint32_t min_magic; 6516 6517 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6518 /* Covers FNC_RETURN and EXC_RETURN magic */ 6519 min_magic = FNC_RETURN_MIN_MAGIC; 6520 } else { 6521 /* EXC_RETURN magic only */ 6522 min_magic = EXC_RETURN_MIN_MAGIC; 6523 } 6524 6525 if (dest >= min_magic) { 6526 /* This is an exception return magic value; put it where 6527 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. 6528 * Note that if we ever add gen_ss_advance() singlestep support to 6529 * M profile this should count as an "instruction execution complete" 6530 * event (compare gen_bx_excret_final_code()). 6531 */ 6532 env->regs[15] = dest & ~1; 6533 env->thumb = dest & 1; 6534 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); 6535 /* notreached */ 6536 } 6537 6538 /* translate.c should have made BXNS UNDEF unless we're secure */ 6539 assert(env->v7m.secure); 6540 6541 switch_v7m_security_state(env, dest & 1); 6542 env->thumb = 1; 6543 env->regs[15] = dest & ~1; 6544 } 6545 6546 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6547 { 6548 /* Handle v7M BLXNS: 6549 * - bit 0 of the destination address is the target security state 6550 */ 6551 6552 /* At this point regs[15] is the address just after the BLXNS */ 6553 uint32_t nextinst = env->regs[15] | 1; 6554 uint32_t sp = env->regs[13] - 8; 6555 uint32_t saved_psr; 6556 6557 /* translate.c will have made BLXNS UNDEF unless we're secure */ 6558 assert(env->v7m.secure); 6559 6560 if (dest & 1) { 6561 /* target is Secure, so this is just a normal BLX, 6562 * except that the low bit doesn't indicate Thumb/not. 6563 */ 6564 env->regs[14] = nextinst; 6565 env->thumb = 1; 6566 env->regs[15] = dest & ~1; 6567 return; 6568 } 6569 6570 /* Target is non-secure: first push a stack frame */ 6571 if (!QEMU_IS_ALIGNED(sp, 8)) { 6572 qemu_log_mask(LOG_GUEST_ERROR, 6573 "BLXNS with misaligned SP is UNPREDICTABLE\n"); 6574 } 6575 6576 saved_psr = env->v7m.exception; 6577 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { 6578 saved_psr |= XPSR_SFPA; 6579 } 6580 6581 /* Note that these stores can throw exceptions on MPU faults */ 6582 cpu_stl_data(env, sp, nextinst); 6583 cpu_stl_data(env, sp + 4, saved_psr); 6584 6585 env->regs[13] = sp; 6586 env->regs[14] = 0xfeffffff; 6587 if (arm_v7m_is_handler_mode(env)) { 6588 /* Write a dummy value to IPSR, to avoid leaking the current secure 6589 * exception number to non-secure code. This is guaranteed not 6590 * to cause write_v7m_exception() to actually change stacks. 6591 */ 6592 write_v7m_exception(env, 1); 6593 } 6594 switch_v7m_security_state(env, 0); 6595 env->thumb = 1; 6596 env->regs[15] = dest; 6597 } 6598 6599 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, 6600 bool spsel) 6601 { 6602 /* Return a pointer to the location where we currently store the 6603 * stack pointer for the requested security state and thread mode. 6604 * This pointer will become invalid if the CPU state is updated 6605 * such that the stack pointers are switched around (eg changing 6606 * the SPSEL control bit). 6607 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). 6608 * Unlike that pseudocode, we require the caller to pass us in the 6609 * SPSEL control bit value; this is because we also use this 6610 * function in handling of pushing of the callee-saves registers 6611 * part of the v8M stack frame (pseudocode PushCalleeStack()), 6612 * and in the tailchain codepath the SPSEL bit comes from the exception 6613 * return magic LR value from the previous exception. The pseudocode 6614 * opencodes the stack-selection in PushCalleeStack(), but we prefer 6615 * to make this utility function generic enough to do the job. 6616 */ 6617 bool want_psp = threadmode && spsel; 6618 6619 if (secure == env->v7m.secure) { 6620 if (want_psp == v7m_using_psp(env)) { 6621 return &env->regs[13]; 6622 } else { 6623 return &env->v7m.other_sp; 6624 } 6625 } else { 6626 if (want_psp) { 6627 return &env->v7m.other_ss_psp; 6628 } else { 6629 return &env->v7m.other_ss_msp; 6630 } 6631 } 6632 } 6633 6634 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure, 6635 uint32_t *pvec) 6636 { 6637 CPUState *cs = CPU(cpu); 6638 CPUARMState *env = &cpu->env; 6639 MemTxResult result; 6640 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4; 6641 uint32_t vector_entry; 6642 MemTxAttrs attrs = {}; 6643 ARMMMUIdx mmu_idx; 6644 bool exc_secure; 6645 6646 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true); 6647 6648 /* We don't do a get_phys_addr() here because the rules for vector 6649 * loads are special: they always use the default memory map, and 6650 * the default memory map permits reads from all addresses. 6651 * Since there's no easy way to pass through to pmsav8_mpu_lookup() 6652 * that we want this special case which would always say "yes", 6653 * we just do the SAU lookup here followed by a direct physical load. 6654 */ 6655 attrs.secure = targets_secure; 6656 attrs.user = false; 6657 6658 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6659 V8M_SAttributes sattrs = {}; 6660 6661 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 6662 if (sattrs.ns) { 6663 attrs.secure = false; 6664 } else if (!targets_secure) { 6665 /* NS access to S memory */ 6666 goto load_fail; 6667 } 6668 } 6669 6670 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr, 6671 attrs, &result); 6672 if (result != MEMTX_OK) { 6673 goto load_fail; 6674 } 6675 *pvec = vector_entry; 6676 return true; 6677 6678 load_fail: 6679 /* All vector table fetch fails are reported as HardFault, with 6680 * HFSR.VECTTBL and .FORCED set. (FORCED is set because 6681 * technically the underlying exception is a MemManage or BusFault 6682 * that is escalated to HardFault.) This is a terminal exception, 6683 * so we will either take the HardFault immediately or else enter 6684 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()). 6685 */ 6686 exc_secure = targets_secure || 6687 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 6688 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK; 6689 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure); 6690 return false; 6691 } 6692 6693 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain, 6694 bool ignore_faults) 6695 { 6696 /* For v8M, push the callee-saves register part of the stack frame. 6697 * Compare the v8M pseudocode PushCalleeStack(). 6698 * In the tailchaining case this may not be the current stack. 6699 */ 6700 CPUARMState *env = &cpu->env; 6701 uint32_t *frame_sp_p; 6702 uint32_t frameptr; 6703 ARMMMUIdx mmu_idx; 6704 bool stacked_ok; 6705 6706 if (dotailchain) { 6707 bool mode = lr & R_V7M_EXCRET_MODE_MASK; 6708 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) || 6709 !mode; 6710 6711 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv); 6712 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode, 6713 lr & R_V7M_EXCRET_SPSEL_MASK); 6714 } else { 6715 mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 6716 frame_sp_p = &env->regs[13]; 6717 } 6718 6719 frameptr = *frame_sp_p - 0x28; 6720 6721 /* Write as much of the stack frame as we can. A write failure may 6722 * cause us to pend a derived exception. 6723 */ 6724 stacked_ok = 6725 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) && 6726 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, 6727 ignore_faults) && 6728 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, 6729 ignore_faults) && 6730 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, 6731 ignore_faults) && 6732 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, 6733 ignore_faults) && 6734 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, 6735 ignore_faults) && 6736 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, 6737 ignore_faults) && 6738 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, 6739 ignore_faults) && 6740 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, 6741 ignore_faults); 6742 6743 /* Update SP regardless of whether any of the stack accesses failed. 6744 * When we implement v8M stack limit checking then this attempt to 6745 * update SP might also fail and result in a derived exception. 6746 */ 6747 *frame_sp_p = frameptr; 6748 6749 return !stacked_ok; 6750 } 6751 6752 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain, 6753 bool ignore_stackfaults) 6754 { 6755 /* Do the "take the exception" parts of exception entry, 6756 * but not the pushing of state to the stack. This is 6757 * similar to the pseudocode ExceptionTaken() function. 6758 */ 6759 CPUARMState *env = &cpu->env; 6760 uint32_t addr; 6761 bool targets_secure; 6762 int exc; 6763 bool push_failed = false; 6764 6765 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure); 6766 6767 if (arm_feature(env, ARM_FEATURE_V8)) { 6768 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 6769 (lr & R_V7M_EXCRET_S_MASK)) { 6770 /* The background code (the owner of the registers in the 6771 * exception frame) is Secure. This means it may either already 6772 * have or now needs to push callee-saves registers. 6773 */ 6774 if (targets_secure) { 6775 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { 6776 /* We took an exception from Secure to NonSecure 6777 * (which means the callee-saved registers got stacked) 6778 * and are now tailchaining to a Secure exception. 6779 * Clear DCRS so eventual return from this Secure 6780 * exception unstacks the callee-saved registers. 6781 */ 6782 lr &= ~R_V7M_EXCRET_DCRS_MASK; 6783 } 6784 } else { 6785 /* We're going to a non-secure exception; push the 6786 * callee-saves registers to the stack now, if they're 6787 * not already saved. 6788 */ 6789 if (lr & R_V7M_EXCRET_DCRS_MASK && 6790 !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) { 6791 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain, 6792 ignore_stackfaults); 6793 } 6794 lr |= R_V7M_EXCRET_DCRS_MASK; 6795 } 6796 } 6797 6798 lr &= ~R_V7M_EXCRET_ES_MASK; 6799 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6800 lr |= R_V7M_EXCRET_ES_MASK; 6801 } 6802 lr &= ~R_V7M_EXCRET_SPSEL_MASK; 6803 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { 6804 lr |= R_V7M_EXCRET_SPSEL_MASK; 6805 } 6806 6807 /* Clear registers if necessary to prevent non-secure exception 6808 * code being able to see register values from secure code. 6809 * Where register values become architecturally UNKNOWN we leave 6810 * them with their previous values. 6811 */ 6812 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6813 if (!targets_secure) { 6814 /* Always clear the caller-saved registers (they have been 6815 * pushed to the stack earlier in v7m_push_stack()). 6816 * Clear callee-saved registers if the background code is 6817 * Secure (in which case these regs were saved in 6818 * v7m_push_callee_stack()). 6819 */ 6820 int i; 6821 6822 for (i = 0; i < 13; i++) { 6823 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ 6824 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { 6825 env->regs[i] = 0; 6826 } 6827 } 6828 /* Clear EAPSR */ 6829 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); 6830 } 6831 } 6832 } 6833 6834 if (push_failed && !ignore_stackfaults) { 6835 /* Derived exception on callee-saves register stacking: 6836 * we might now want to take a different exception which 6837 * targets a different security state, so try again from the top. 6838 */ 6839 v7m_exception_taken(cpu, lr, true, true); 6840 return; 6841 } 6842 6843 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) { 6844 /* Vector load failed: derived exception */ 6845 v7m_exception_taken(cpu, lr, true, true); 6846 return; 6847 } 6848 6849 /* Now we've done everything that might cause a derived exception 6850 * we can go ahead and activate whichever exception we're going to 6851 * take (which might now be the derived exception). 6852 */ 6853 armv7m_nvic_acknowledge_irq(env->nvic); 6854 6855 /* Switch to target security state -- must do this before writing SPSEL */ 6856 switch_v7m_security_state(env, targets_secure); 6857 write_v7m_control_spsel(env, 0); 6858 arm_clear_exclusive(env); 6859 /* Clear IT bits */ 6860 env->condexec_bits = 0; 6861 env->regs[14] = lr; 6862 env->regs[15] = addr & 0xfffffffe; 6863 env->thumb = addr & 1; 6864 } 6865 6866 static bool v7m_push_stack(ARMCPU *cpu) 6867 { 6868 /* Do the "set up stack frame" part of exception entry, 6869 * similar to pseudocode PushStack(). 6870 * Return true if we generate a derived exception (and so 6871 * should ignore further stack faults trying to process 6872 * that derived exception.) 6873 */ 6874 bool stacked_ok; 6875 CPUARMState *env = &cpu->env; 6876 uint32_t xpsr = xpsr_read(env); 6877 uint32_t frameptr = env->regs[13]; 6878 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 6879 6880 /* Align stack pointer if the guest wants that */ 6881 if ((frameptr & 4) && 6882 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { 6883 frameptr -= 4; 6884 xpsr |= XPSR_SPREALIGN; 6885 } 6886 6887 frameptr -= 0x20; 6888 6889 /* Write as much of the stack frame as we can. If we fail a stack 6890 * write this will result in a derived exception being pended 6891 * (which may be taken in preference to the one we started with 6892 * if it has higher priority). 6893 */ 6894 stacked_ok = 6895 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) && 6896 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) && 6897 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) && 6898 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) && 6899 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) && 6900 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) && 6901 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) && 6902 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false); 6903 6904 /* Update SP regardless of whether any of the stack accesses failed. 6905 * When we implement v8M stack limit checking then this attempt to 6906 * update SP might also fail and result in a derived exception. 6907 */ 6908 env->regs[13] = frameptr; 6909 6910 return !stacked_ok; 6911 } 6912 6913 static void do_v7m_exception_exit(ARMCPU *cpu) 6914 { 6915 CPUARMState *env = &cpu->env; 6916 CPUState *cs = CPU(cpu); 6917 uint32_t excret; 6918 uint32_t xpsr; 6919 bool ufault = false; 6920 bool sfault = false; 6921 bool return_to_sp_process; 6922 bool return_to_handler; 6923 bool rettobase = false; 6924 bool exc_secure = false; 6925 bool return_to_secure; 6926 6927 /* If we're not in Handler mode then jumps to magic exception-exit 6928 * addresses don't have magic behaviour. However for the v8M 6929 * security extensions the magic secure-function-return has to 6930 * work in thread mode too, so to avoid doing an extra check in 6931 * the generated code we allow exception-exit magic to also cause the 6932 * internal exception and bring us here in thread mode. Correct code 6933 * will never try to do this (the following insn fetch will always 6934 * fault) so we the overhead of having taken an unnecessary exception 6935 * doesn't matter. 6936 */ 6937 if (!arm_v7m_is_handler_mode(env)) { 6938 return; 6939 } 6940 6941 /* In the spec pseudocode ExceptionReturn() is called directly 6942 * from BXWritePC() and gets the full target PC value including 6943 * bit zero. In QEMU's implementation we treat it as a normal 6944 * jump-to-register (which is then caught later on), and so split 6945 * the target value up between env->regs[15] and env->thumb in 6946 * gen_bx(). Reconstitute it. 6947 */ 6948 excret = env->regs[15]; 6949 if (env->thumb) { 6950 excret |= 1; 6951 } 6952 6953 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 6954 " previous exception %d\n", 6955 excret, env->v7m.exception); 6956 6957 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { 6958 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " 6959 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", 6960 excret); 6961 } 6962 6963 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6964 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before 6965 * we pick which FAULTMASK to clear. 6966 */ 6967 if (!env->v7m.secure && 6968 ((excret & R_V7M_EXCRET_ES_MASK) || 6969 !(excret & R_V7M_EXCRET_DCRS_MASK))) { 6970 sfault = 1; 6971 /* For all other purposes, treat ES as 0 (R_HXSR) */ 6972 excret &= ~R_V7M_EXCRET_ES_MASK; 6973 } 6974 } 6975 6976 if (env->v7m.exception != ARMV7M_EXCP_NMI) { 6977 /* Auto-clear FAULTMASK on return from other than NMI. 6978 * If the security extension is implemented then this only 6979 * happens if the raw execution priority is >= 0; the 6980 * value of the ES bit in the exception return value indicates 6981 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) 6982 */ 6983 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6984 exc_secure = excret & R_V7M_EXCRET_ES_MASK; 6985 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { 6986 env->v7m.faultmask[exc_secure] = 0; 6987 } 6988 } else { 6989 env->v7m.faultmask[M_REG_NS] = 0; 6990 } 6991 } 6992 6993 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, 6994 exc_secure)) { 6995 case -1: 6996 /* attempt to exit an exception that isn't active */ 6997 ufault = true; 6998 break; 6999 case 0: 7000 /* still an irq active now */ 7001 break; 7002 case 1: 7003 /* we returned to base exception level, no nesting. 7004 * (In the pseudocode this is written using "NestedActivation != 1" 7005 * where we have 'rettobase == false'.) 7006 */ 7007 rettobase = true; 7008 break; 7009 default: 7010 g_assert_not_reached(); 7011 } 7012 7013 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); 7014 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; 7015 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && 7016 (excret & R_V7M_EXCRET_S_MASK); 7017 7018 if (arm_feature(env, ARM_FEATURE_V8)) { 7019 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7020 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); 7021 * we choose to take the UsageFault. 7022 */ 7023 if ((excret & R_V7M_EXCRET_S_MASK) || 7024 (excret & R_V7M_EXCRET_ES_MASK) || 7025 !(excret & R_V7M_EXCRET_DCRS_MASK)) { 7026 ufault = true; 7027 } 7028 } 7029 if (excret & R_V7M_EXCRET_RES0_MASK) { 7030 ufault = true; 7031 } 7032 } else { 7033 /* For v7M we only recognize certain combinations of the low bits */ 7034 switch (excret & 0xf) { 7035 case 1: /* Return to Handler */ 7036 break; 7037 case 13: /* Return to Thread using Process stack */ 7038 case 9: /* Return to Thread using Main stack */ 7039 /* We only need to check NONBASETHRDENA for v7M, because in 7040 * v8M this bit does not exist (it is RES1). 7041 */ 7042 if (!rettobase && 7043 !(env->v7m.ccr[env->v7m.secure] & 7044 R_V7M_CCR_NONBASETHRDENA_MASK)) { 7045 ufault = true; 7046 } 7047 break; 7048 default: 7049 ufault = true; 7050 } 7051 } 7052 7053 if (sfault) { 7054 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; 7055 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7056 v7m_exception_taken(cpu, excret, true, false); 7057 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 7058 "stackframe: failed EXC_RETURN.ES validity check\n"); 7059 return; 7060 } 7061 7062 if (ufault) { 7063 /* Bad exception return: instead of popping the exception 7064 * stack, directly take a usage fault on the current stack. 7065 */ 7066 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7067 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7068 v7m_exception_taken(cpu, excret, true, false); 7069 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 7070 "stackframe: failed exception return integrity check\n"); 7071 return; 7072 } 7073 7074 /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in 7075 * Handler mode (and will be until we write the new XPSR.Interrupt 7076 * field) this does not switch around the current stack pointer. 7077 */ 7078 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); 7079 7080 switch_v7m_security_state(env, return_to_secure); 7081 7082 { 7083 /* The stack pointer we should be reading the exception frame from 7084 * depends on bits in the magic exception return type value (and 7085 * for v8M isn't necessarily the stack pointer we will eventually 7086 * end up resuming execution with). Get a pointer to the location 7087 * in the CPU state struct where the SP we need is currently being 7088 * stored; we will use and modify it in place. 7089 * We use this limited C variable scope so we don't accidentally 7090 * use 'frame_sp_p' after we do something that makes it invalid. 7091 */ 7092 uint32_t *frame_sp_p = get_v7m_sp_ptr(env, 7093 return_to_secure, 7094 !return_to_handler, 7095 return_to_sp_process); 7096 uint32_t frameptr = *frame_sp_p; 7097 bool pop_ok = true; 7098 ARMMMUIdx mmu_idx; 7099 7100 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure, 7101 !return_to_handler); 7102 7103 if (!QEMU_IS_ALIGNED(frameptr, 8) && 7104 arm_feature(env, ARM_FEATURE_V8)) { 7105 qemu_log_mask(LOG_GUEST_ERROR, 7106 "M profile exception return with non-8-aligned SP " 7107 "for destination state is UNPREDICTABLE\n"); 7108 } 7109 7110 /* Do we need to pop callee-saved registers? */ 7111 if (return_to_secure && 7112 ((excret & R_V7M_EXCRET_ES_MASK) == 0 || 7113 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { 7114 uint32_t expected_sig = 0xfefa125b; 7115 uint32_t actual_sig = ldl_phys(cs->as, frameptr); 7116 7117 if (expected_sig != actual_sig) { 7118 /* Take a SecureFault on the current stack */ 7119 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; 7120 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7121 v7m_exception_taken(cpu, excret, true, false); 7122 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 7123 "stackframe: failed exception return integrity " 7124 "signature check\n"); 7125 return; 7126 } 7127 7128 pop_ok = 7129 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && 7130 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && 7131 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) && 7132 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) && 7133 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) && 7134 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) && 7135 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) && 7136 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) && 7137 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx); 7138 7139 frameptr += 0x28; 7140 } 7141 7142 /* Pop registers */ 7143 pop_ok = pop_ok && 7144 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) && 7145 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) && 7146 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) && 7147 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) && 7148 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) && 7149 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) && 7150 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) && 7151 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx); 7152 7153 if (!pop_ok) { 7154 /* v7m_stack_read() pended a fault, so take it (as a tail 7155 * chained exception on the same stack frame) 7156 */ 7157 v7m_exception_taken(cpu, excret, true, false); 7158 return; 7159 } 7160 7161 /* Returning from an exception with a PC with bit 0 set is defined 7162 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified 7163 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore 7164 * the lsbit, and there are several RTOSes out there which incorrectly 7165 * assume the r15 in the stack frame should be a Thumb-style "lsbit 7166 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but 7167 * complain about the badly behaved guest. 7168 */ 7169 if (env->regs[15] & 1) { 7170 env->regs[15] &= ~1U; 7171 if (!arm_feature(env, ARM_FEATURE_V8)) { 7172 qemu_log_mask(LOG_GUEST_ERROR, 7173 "M profile return from interrupt with misaligned " 7174 "PC is UNPREDICTABLE on v7M\n"); 7175 } 7176 } 7177 7178 if (arm_feature(env, ARM_FEATURE_V8)) { 7179 /* For v8M we have to check whether the xPSR exception field 7180 * matches the EXCRET value for return to handler/thread 7181 * before we commit to changing the SP and xPSR. 7182 */ 7183 bool will_be_handler = (xpsr & XPSR_EXCP) != 0; 7184 if (return_to_handler != will_be_handler) { 7185 /* Take an INVPC UsageFault on the current stack. 7186 * By this point we will have switched to the security state 7187 * for the background state, so this UsageFault will target 7188 * that state. 7189 */ 7190 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7191 env->v7m.secure); 7192 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7193 v7m_exception_taken(cpu, excret, true, false); 7194 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 7195 "stackframe: failed exception return integrity " 7196 "check\n"); 7197 return; 7198 } 7199 } 7200 7201 /* Commit to consuming the stack frame */ 7202 frameptr += 0x20; 7203 /* Undo stack alignment (the SPREALIGN bit indicates that the original 7204 * pre-exception SP was not 8-aligned and we added a padding word to 7205 * align it, so we undo this by ORing in the bit that increases it 7206 * from the current 8-aligned value to the 8-unaligned value. (Adding 4 7207 * would work too but a logical OR is how the pseudocode specifies it.) 7208 */ 7209 if (xpsr & XPSR_SPREALIGN) { 7210 frameptr |= 4; 7211 } 7212 *frame_sp_p = frameptr; 7213 } 7214 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ 7215 xpsr_write(env, xpsr, ~XPSR_SPREALIGN); 7216 7217 /* The restored xPSR exception field will be zero if we're 7218 * resuming in Thread mode. If that doesn't match what the 7219 * exception return excret specified then this is a UsageFault. 7220 * v7M requires we make this check here; v8M did it earlier. 7221 */ 7222 if (return_to_handler != arm_v7m_is_handler_mode(env)) { 7223 /* Take an INVPC UsageFault by pushing the stack again; 7224 * we know we're v7M so this is never a Secure UsageFault. 7225 */ 7226 bool ignore_stackfaults; 7227 7228 assert(!arm_feature(env, ARM_FEATURE_V8)); 7229 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); 7230 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7231 ignore_stackfaults = v7m_push_stack(cpu); 7232 v7m_exception_taken(cpu, excret, false, ignore_stackfaults); 7233 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " 7234 "failed exception return integrity check\n"); 7235 return; 7236 } 7237 7238 /* Otherwise, we have a successful exception exit. */ 7239 arm_clear_exclusive(env); 7240 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); 7241 } 7242 7243 static bool do_v7m_function_return(ARMCPU *cpu) 7244 { 7245 /* v8M security extensions magic function return. 7246 * We may either: 7247 * (1) throw an exception (longjump) 7248 * (2) return true if we successfully handled the function return 7249 * (3) return false if we failed a consistency check and have 7250 * pended a UsageFault that needs to be taken now 7251 * 7252 * At this point the magic return value is split between env->regs[15] 7253 * and env->thumb. We don't bother to reconstitute it because we don't 7254 * need it (all values are handled the same way). 7255 */ 7256 CPUARMState *env = &cpu->env; 7257 uint32_t newpc, newpsr, newpsr_exc; 7258 7259 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); 7260 7261 { 7262 bool threadmode, spsel; 7263 TCGMemOpIdx oi; 7264 ARMMMUIdx mmu_idx; 7265 uint32_t *frame_sp_p; 7266 uint32_t frameptr; 7267 7268 /* Pull the return address and IPSR from the Secure stack */ 7269 threadmode = !arm_v7m_is_handler_mode(env); 7270 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; 7271 7272 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); 7273 frameptr = *frame_sp_p; 7274 7275 /* These loads may throw an exception (for MPU faults). We want to 7276 * do them as secure, so work out what MMU index that is. 7277 */ 7278 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7279 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); 7280 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); 7281 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); 7282 7283 /* Consistency checks on new IPSR */ 7284 newpsr_exc = newpsr & XPSR_EXCP; 7285 if (!((env->v7m.exception == 0 && newpsr_exc == 0) || 7286 (env->v7m.exception == 1 && newpsr_exc != 0))) { 7287 /* Pend the fault and tell our caller to take it */ 7288 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7289 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7290 env->v7m.secure); 7291 qemu_log_mask(CPU_LOG_INT, 7292 "...taking INVPC UsageFault: " 7293 "IPSR consistency check failed\n"); 7294 return false; 7295 } 7296 7297 *frame_sp_p = frameptr + 8; 7298 } 7299 7300 /* This invalidates frame_sp_p */ 7301 switch_v7m_security_state(env, true); 7302 env->v7m.exception = newpsr_exc; 7303 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 7304 if (newpsr & XPSR_SFPA) { 7305 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; 7306 } 7307 xpsr_write(env, 0, XPSR_IT); 7308 env->thumb = newpc & 1; 7309 env->regs[15] = newpc & ~1; 7310 7311 qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); 7312 return true; 7313 } 7314 7315 static void arm_log_exception(int idx) 7316 { 7317 if (qemu_loglevel_mask(CPU_LOG_INT)) { 7318 const char *exc = NULL; 7319 static const char * const excnames[] = { 7320 [EXCP_UDEF] = "Undefined Instruction", 7321 [EXCP_SWI] = "SVC", 7322 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 7323 [EXCP_DATA_ABORT] = "Data Abort", 7324 [EXCP_IRQ] = "IRQ", 7325 [EXCP_FIQ] = "FIQ", 7326 [EXCP_BKPT] = "Breakpoint", 7327 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 7328 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 7329 [EXCP_HVC] = "Hypervisor Call", 7330 [EXCP_HYP_TRAP] = "Hypervisor Trap", 7331 [EXCP_SMC] = "Secure Monitor Call", 7332 [EXCP_VIRQ] = "Virtual IRQ", 7333 [EXCP_VFIQ] = "Virtual FIQ", 7334 [EXCP_SEMIHOST] = "Semihosting call", 7335 [EXCP_NOCP] = "v7M NOCP UsageFault", 7336 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 7337 }; 7338 7339 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 7340 exc = excnames[idx]; 7341 } 7342 if (!exc) { 7343 exc = "unknown"; 7344 } 7345 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 7346 } 7347 } 7348 7349 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, 7350 uint32_t addr, uint16_t *insn) 7351 { 7352 /* Load a 16-bit portion of a v7M instruction, returning true on success, 7353 * or false on failure (in which case we will have pended the appropriate 7354 * exception). 7355 * We need to do the instruction fetch's MPU and SAU checks 7356 * like this because there is no MMU index that would allow 7357 * doing the load with a single function call. Instead we must 7358 * first check that the security attributes permit the load 7359 * and that they don't mismatch on the two halves of the instruction, 7360 * and then we do the load as a secure load (ie using the security 7361 * attributes of the address, not the CPU, as architecturally required). 7362 */ 7363 CPUState *cs = CPU(cpu); 7364 CPUARMState *env = &cpu->env; 7365 V8M_SAttributes sattrs = {}; 7366 MemTxAttrs attrs = {}; 7367 ARMMMUFaultInfo fi = {}; 7368 MemTxResult txres; 7369 target_ulong page_size; 7370 hwaddr physaddr; 7371 int prot; 7372 7373 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); 7374 if (!sattrs.nsc || sattrs.ns) { 7375 /* This must be the second half of the insn, and it straddles a 7376 * region boundary with the second half not being S&NSC. 7377 */ 7378 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7379 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7380 qemu_log_mask(CPU_LOG_INT, 7381 "...really SecureFault with SFSR.INVEP\n"); 7382 return false; 7383 } 7384 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, 7385 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) { 7386 /* the MPU lookup failed */ 7387 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7388 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); 7389 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); 7390 return false; 7391 } 7392 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, 7393 attrs, &txres); 7394 if (txres != MEMTX_OK) { 7395 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7396 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7397 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); 7398 return false; 7399 } 7400 return true; 7401 } 7402 7403 static bool v7m_handle_execute_nsc(ARMCPU *cpu) 7404 { 7405 /* Check whether this attempt to execute code in a Secure & NS-Callable 7406 * memory region is for an SG instruction; if so, then emulate the 7407 * effect of the SG instruction and return true. Otherwise pend 7408 * the correct kind of exception and return false. 7409 */ 7410 CPUARMState *env = &cpu->env; 7411 ARMMMUIdx mmu_idx; 7412 uint16_t insn; 7413 7414 /* We should never get here unless get_phys_addr_pmsav8() caused 7415 * an exception for NS executing in S&NSC memory. 7416 */ 7417 assert(!env->v7m.secure); 7418 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7419 7420 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ 7421 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7422 7423 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { 7424 return false; 7425 } 7426 7427 if (!env->thumb) { 7428 goto gen_invep; 7429 } 7430 7431 if (insn != 0xe97f) { 7432 /* Not an SG instruction first half (we choose the IMPDEF 7433 * early-SG-check option). 7434 */ 7435 goto gen_invep; 7436 } 7437 7438 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { 7439 return false; 7440 } 7441 7442 if (insn != 0xe97f) { 7443 /* Not an SG instruction second half (yes, both halves of the SG 7444 * insn have the same hex value) 7445 */ 7446 goto gen_invep; 7447 } 7448 7449 /* OK, we have confirmed that we really have an SG instruction. 7450 * We know we're NS in S memory so don't need to repeat those checks. 7451 */ 7452 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 7453 ", executing it\n", env->regs[15]); 7454 env->regs[14] &= ~1; 7455 switch_v7m_security_state(env, true); 7456 xpsr_write(env, 0, XPSR_IT); 7457 env->regs[15] += 4; 7458 return true; 7459 7460 gen_invep: 7461 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7462 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7463 qemu_log_mask(CPU_LOG_INT, 7464 "...really SecureFault with SFSR.INVEP\n"); 7465 return false; 7466 } 7467 7468 void arm_v7m_cpu_do_interrupt(CPUState *cs) 7469 { 7470 ARMCPU *cpu = ARM_CPU(cs); 7471 CPUARMState *env = &cpu->env; 7472 uint32_t lr; 7473 bool ignore_stackfaults; 7474 7475 arm_log_exception(cs->exception_index); 7476 7477 /* For exceptions we just mark as pending on the NVIC, and let that 7478 handle it. */ 7479 switch (cs->exception_index) { 7480 case EXCP_UDEF: 7481 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7482 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; 7483 break; 7484 case EXCP_NOCP: 7485 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7486 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; 7487 break; 7488 case EXCP_INVSTATE: 7489 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7490 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; 7491 break; 7492 case EXCP_SWI: 7493 /* The PC already points to the next instruction. */ 7494 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); 7495 break; 7496 case EXCP_PREFETCH_ABORT: 7497 case EXCP_DATA_ABORT: 7498 /* Note that for M profile we don't have a guest facing FSR, but 7499 * the env->exception.fsr will be populated by the code that 7500 * raises the fault, in the A profile short-descriptor format. 7501 */ 7502 switch (env->exception.fsr & 0xf) { 7503 case M_FAKE_FSR_NSC_EXEC: 7504 /* Exception generated when we try to execute code at an address 7505 * which is marked as Secure & Non-Secure Callable and the CPU 7506 * is in the Non-Secure state. The only instruction which can 7507 * be executed like this is SG (and that only if both halves of 7508 * the SG instruction have the same security attributes.) 7509 * Everything else must generate an INVEP SecureFault, so we 7510 * emulate the SG instruction here. 7511 */ 7512 if (v7m_handle_execute_nsc(cpu)) { 7513 return; 7514 } 7515 break; 7516 case M_FAKE_FSR_SFAULT: 7517 /* Various flavours of SecureFault for attempts to execute or 7518 * access data in the wrong security state. 7519 */ 7520 switch (cs->exception_index) { 7521 case EXCP_PREFETCH_ABORT: 7522 if (env->v7m.secure) { 7523 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; 7524 qemu_log_mask(CPU_LOG_INT, 7525 "...really SecureFault with SFSR.INVTRAN\n"); 7526 } else { 7527 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7528 qemu_log_mask(CPU_LOG_INT, 7529 "...really SecureFault with SFSR.INVEP\n"); 7530 } 7531 break; 7532 case EXCP_DATA_ABORT: 7533 /* This must be an NS access to S memory */ 7534 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; 7535 qemu_log_mask(CPU_LOG_INT, 7536 "...really SecureFault with SFSR.AUVIOL\n"); 7537 break; 7538 } 7539 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7540 break; 7541 case 0x8: /* External Abort */ 7542 switch (cs->exception_index) { 7543 case EXCP_PREFETCH_ABORT: 7544 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7545 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); 7546 break; 7547 case EXCP_DATA_ABORT: 7548 env->v7m.cfsr[M_REG_NS] |= 7549 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); 7550 env->v7m.bfar = env->exception.vaddress; 7551 qemu_log_mask(CPU_LOG_INT, 7552 "...with CFSR.PRECISERR and BFAR 0x%x\n", 7553 env->v7m.bfar); 7554 break; 7555 } 7556 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7557 break; 7558 default: 7559 /* All other FSR values are either MPU faults or "can't happen 7560 * for M profile" cases. 7561 */ 7562 switch (cs->exception_index) { 7563 case EXCP_PREFETCH_ABORT: 7564 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7565 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); 7566 break; 7567 case EXCP_DATA_ABORT: 7568 env->v7m.cfsr[env->v7m.secure] |= 7569 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); 7570 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; 7571 qemu_log_mask(CPU_LOG_INT, 7572 "...with CFSR.DACCVIOL and MMFAR 0x%x\n", 7573 env->v7m.mmfar[env->v7m.secure]); 7574 break; 7575 } 7576 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, 7577 env->v7m.secure); 7578 break; 7579 } 7580 break; 7581 case EXCP_BKPT: 7582 if (semihosting_enabled()) { 7583 int nr; 7584 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 7585 if (nr == 0xab) { 7586 env->regs[15] += 2; 7587 qemu_log_mask(CPU_LOG_INT, 7588 "...handling as semihosting call 0x%x\n", 7589 env->regs[0]); 7590 env->regs[0] = do_arm_semihosting(env); 7591 return; 7592 } 7593 } 7594 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); 7595 break; 7596 case EXCP_IRQ: 7597 break; 7598 case EXCP_EXCEPTION_EXIT: 7599 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { 7600 /* Must be v8M security extension function return */ 7601 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); 7602 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7603 if (do_v7m_function_return(cpu)) { 7604 return; 7605 } 7606 } else { 7607 do_v7m_exception_exit(cpu); 7608 return; 7609 } 7610 break; 7611 default: 7612 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7613 return; /* Never happens. Keep compiler happy. */ 7614 } 7615 7616 if (arm_feature(env, ARM_FEATURE_V8)) { 7617 lr = R_V7M_EXCRET_RES1_MASK | 7618 R_V7M_EXCRET_DCRS_MASK | 7619 R_V7M_EXCRET_FTYPE_MASK; 7620 /* The S bit indicates whether we should return to Secure 7621 * or NonSecure (ie our current state). 7622 * The ES bit indicates whether we're taking this exception 7623 * to Secure or NonSecure (ie our target state). We set it 7624 * later, in v7m_exception_taken(). 7625 * The SPSEL bit is also set in v7m_exception_taken() for v8M. 7626 * This corresponds to the ARM ARM pseudocode for v8M setting 7627 * some LR bits in PushStack() and some in ExceptionTaken(); 7628 * the distinction matters for the tailchain cases where we 7629 * can take an exception without pushing the stack. 7630 */ 7631 if (env->v7m.secure) { 7632 lr |= R_V7M_EXCRET_S_MASK; 7633 } 7634 } else { 7635 lr = R_V7M_EXCRET_RES1_MASK | 7636 R_V7M_EXCRET_S_MASK | 7637 R_V7M_EXCRET_DCRS_MASK | 7638 R_V7M_EXCRET_FTYPE_MASK | 7639 R_V7M_EXCRET_ES_MASK; 7640 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { 7641 lr |= R_V7M_EXCRET_SPSEL_MASK; 7642 } 7643 } 7644 if (!arm_v7m_is_handler_mode(env)) { 7645 lr |= R_V7M_EXCRET_MODE_MASK; 7646 } 7647 7648 ignore_stackfaults = v7m_push_stack(cpu); 7649 v7m_exception_taken(cpu, lr, false, ignore_stackfaults); 7650 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception); 7651 } 7652 7653 /* Function used to synchronize QEMU's AArch64 register set with AArch32 7654 * register set. This is necessary when switching between AArch32 and AArch64 7655 * execution state. 7656 */ 7657 void aarch64_sync_32_to_64(CPUARMState *env) 7658 { 7659 int i; 7660 uint32_t mode = env->uncached_cpsr & CPSR_M; 7661 7662 /* We can blanket copy R[0:7] to X[0:7] */ 7663 for (i = 0; i < 8; i++) { 7664 env->xregs[i] = env->regs[i]; 7665 } 7666 7667 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 7668 * Otherwise, they come from the banked user regs. 7669 */ 7670 if (mode == ARM_CPU_MODE_FIQ) { 7671 for (i = 8; i < 13; i++) { 7672 env->xregs[i] = env->usr_regs[i - 8]; 7673 } 7674 } else { 7675 for (i = 8; i < 13; i++) { 7676 env->xregs[i] = env->regs[i]; 7677 } 7678 } 7679 7680 /* Registers x13-x23 are the various mode SP and FP registers. Registers 7681 * r13 and r14 are only copied if we are in that mode, otherwise we copy 7682 * from the mode banked register. 7683 */ 7684 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7685 env->xregs[13] = env->regs[13]; 7686 env->xregs[14] = env->regs[14]; 7687 } else { 7688 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 7689 /* HYP is an exception in that it is copied from r14 */ 7690 if (mode == ARM_CPU_MODE_HYP) { 7691 env->xregs[14] = env->regs[14]; 7692 } else { 7693 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; 7694 } 7695 } 7696 7697 if (mode == ARM_CPU_MODE_HYP) { 7698 env->xregs[15] = env->regs[13]; 7699 } else { 7700 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 7701 } 7702 7703 if (mode == ARM_CPU_MODE_IRQ) { 7704 env->xregs[16] = env->regs[14]; 7705 env->xregs[17] = env->regs[13]; 7706 } else { 7707 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; 7708 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 7709 } 7710 7711 if (mode == ARM_CPU_MODE_SVC) { 7712 env->xregs[18] = env->regs[14]; 7713 env->xregs[19] = env->regs[13]; 7714 } else { 7715 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; 7716 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 7717 } 7718 7719 if (mode == ARM_CPU_MODE_ABT) { 7720 env->xregs[20] = env->regs[14]; 7721 env->xregs[21] = env->regs[13]; 7722 } else { 7723 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; 7724 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 7725 } 7726 7727 if (mode == ARM_CPU_MODE_UND) { 7728 env->xregs[22] = env->regs[14]; 7729 env->xregs[23] = env->regs[13]; 7730 } else { 7731 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; 7732 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 7733 } 7734 7735 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7736 * mode, then we can copy from r8-r14. Otherwise, we copy from the 7737 * FIQ bank for r8-r14. 7738 */ 7739 if (mode == ARM_CPU_MODE_FIQ) { 7740 for (i = 24; i < 31; i++) { 7741 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 7742 } 7743 } else { 7744 for (i = 24; i < 29; i++) { 7745 env->xregs[i] = env->fiq_regs[i - 24]; 7746 } 7747 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 7748 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; 7749 } 7750 7751 env->pc = env->regs[15]; 7752 } 7753 7754 /* Function used to synchronize QEMU's AArch32 register set with AArch64 7755 * register set. This is necessary when switching between AArch32 and AArch64 7756 * execution state. 7757 */ 7758 void aarch64_sync_64_to_32(CPUARMState *env) 7759 { 7760 int i; 7761 uint32_t mode = env->uncached_cpsr & CPSR_M; 7762 7763 /* We can blanket copy X[0:7] to R[0:7] */ 7764 for (i = 0; i < 8; i++) { 7765 env->regs[i] = env->xregs[i]; 7766 } 7767 7768 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 7769 * Otherwise, we copy x8-x12 into the banked user regs. 7770 */ 7771 if (mode == ARM_CPU_MODE_FIQ) { 7772 for (i = 8; i < 13; i++) { 7773 env->usr_regs[i - 8] = env->xregs[i]; 7774 } 7775 } else { 7776 for (i = 8; i < 13; i++) { 7777 env->regs[i] = env->xregs[i]; 7778 } 7779 } 7780 7781 /* Registers r13 & r14 depend on the current mode. 7782 * If we are in a given mode, we copy the corresponding x registers to r13 7783 * and r14. Otherwise, we copy the x register to the banked r13 and r14 7784 * for the mode. 7785 */ 7786 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7787 env->regs[13] = env->xregs[13]; 7788 env->regs[14] = env->xregs[14]; 7789 } else { 7790 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 7791 7792 /* HYP is an exception in that it does not have its own banked r14 but 7793 * shares the USR r14 7794 */ 7795 if (mode == ARM_CPU_MODE_HYP) { 7796 env->regs[14] = env->xregs[14]; 7797 } else { 7798 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 7799 } 7800 } 7801 7802 if (mode == ARM_CPU_MODE_HYP) { 7803 env->regs[13] = env->xregs[15]; 7804 } else { 7805 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 7806 } 7807 7808 if (mode == ARM_CPU_MODE_IRQ) { 7809 env->regs[14] = env->xregs[16]; 7810 env->regs[13] = env->xregs[17]; 7811 } else { 7812 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 7813 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 7814 } 7815 7816 if (mode == ARM_CPU_MODE_SVC) { 7817 env->regs[14] = env->xregs[18]; 7818 env->regs[13] = env->xregs[19]; 7819 } else { 7820 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 7821 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 7822 } 7823 7824 if (mode == ARM_CPU_MODE_ABT) { 7825 env->regs[14] = env->xregs[20]; 7826 env->regs[13] = env->xregs[21]; 7827 } else { 7828 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 7829 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 7830 } 7831 7832 if (mode == ARM_CPU_MODE_UND) { 7833 env->regs[14] = env->xregs[22]; 7834 env->regs[13] = env->xregs[23]; 7835 } else { 7836 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 7837 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 7838 } 7839 7840 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7841 * mode, then we can copy to r8-r14. Otherwise, we copy to the 7842 * FIQ bank for r8-r14. 7843 */ 7844 if (mode == ARM_CPU_MODE_FIQ) { 7845 for (i = 24; i < 31; i++) { 7846 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 7847 } 7848 } else { 7849 for (i = 24; i < 29; i++) { 7850 env->fiq_regs[i - 24] = env->xregs[i]; 7851 } 7852 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 7853 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 7854 } 7855 7856 env->regs[15] = env->pc; 7857 } 7858 7859 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 7860 { 7861 ARMCPU *cpu = ARM_CPU(cs); 7862 CPUARMState *env = &cpu->env; 7863 uint32_t addr; 7864 uint32_t mask; 7865 int new_mode; 7866 uint32_t offset; 7867 uint32_t moe; 7868 7869 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 7870 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { 7871 case EC_BREAKPOINT: 7872 case EC_BREAKPOINT_SAME_EL: 7873 moe = 1; 7874 break; 7875 case EC_WATCHPOINT: 7876 case EC_WATCHPOINT_SAME_EL: 7877 moe = 10; 7878 break; 7879 case EC_AA32_BKPT: 7880 moe = 3; 7881 break; 7882 case EC_VECTORCATCH: 7883 moe = 5; 7884 break; 7885 default: 7886 moe = 0; 7887 break; 7888 } 7889 7890 if (moe) { 7891 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 7892 } 7893 7894 /* TODO: Vectored interrupt controller. */ 7895 switch (cs->exception_index) { 7896 case EXCP_UDEF: 7897 new_mode = ARM_CPU_MODE_UND; 7898 addr = 0x04; 7899 mask = CPSR_I; 7900 if (env->thumb) 7901 offset = 2; 7902 else 7903 offset = 4; 7904 break; 7905 case EXCP_SWI: 7906 new_mode = ARM_CPU_MODE_SVC; 7907 addr = 0x08; 7908 mask = CPSR_I; 7909 /* The PC already points to the next instruction. */ 7910 offset = 0; 7911 break; 7912 case EXCP_BKPT: 7913 /* Fall through to prefetch abort. */ 7914 case EXCP_PREFETCH_ABORT: 7915 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 7916 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 7917 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 7918 env->exception.fsr, (uint32_t)env->exception.vaddress); 7919 new_mode = ARM_CPU_MODE_ABT; 7920 addr = 0x0c; 7921 mask = CPSR_A | CPSR_I; 7922 offset = 4; 7923 break; 7924 case EXCP_DATA_ABORT: 7925 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 7926 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 7927 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 7928 env->exception.fsr, 7929 (uint32_t)env->exception.vaddress); 7930 new_mode = ARM_CPU_MODE_ABT; 7931 addr = 0x10; 7932 mask = CPSR_A | CPSR_I; 7933 offset = 8; 7934 break; 7935 case EXCP_IRQ: 7936 new_mode = ARM_CPU_MODE_IRQ; 7937 addr = 0x18; 7938 /* Disable IRQ and imprecise data aborts. */ 7939 mask = CPSR_A | CPSR_I; 7940 offset = 4; 7941 if (env->cp15.scr_el3 & SCR_IRQ) { 7942 /* IRQ routed to monitor mode */ 7943 new_mode = ARM_CPU_MODE_MON; 7944 mask |= CPSR_F; 7945 } 7946 break; 7947 case EXCP_FIQ: 7948 new_mode = ARM_CPU_MODE_FIQ; 7949 addr = 0x1c; 7950 /* Disable FIQ, IRQ and imprecise data aborts. */ 7951 mask = CPSR_A | CPSR_I | CPSR_F; 7952 if (env->cp15.scr_el3 & SCR_FIQ) { 7953 /* FIQ routed to monitor mode */ 7954 new_mode = ARM_CPU_MODE_MON; 7955 } 7956 offset = 4; 7957 break; 7958 case EXCP_VIRQ: 7959 new_mode = ARM_CPU_MODE_IRQ; 7960 addr = 0x18; 7961 /* Disable IRQ and imprecise data aborts. */ 7962 mask = CPSR_A | CPSR_I; 7963 offset = 4; 7964 break; 7965 case EXCP_VFIQ: 7966 new_mode = ARM_CPU_MODE_FIQ; 7967 addr = 0x1c; 7968 /* Disable FIQ, IRQ and imprecise data aborts. */ 7969 mask = CPSR_A | CPSR_I | CPSR_F; 7970 offset = 4; 7971 break; 7972 case EXCP_SMC: 7973 new_mode = ARM_CPU_MODE_MON; 7974 addr = 0x08; 7975 mask = CPSR_A | CPSR_I | CPSR_F; 7976 offset = 0; 7977 break; 7978 default: 7979 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7980 return; /* Never happens. Keep compiler happy. */ 7981 } 7982 7983 if (new_mode == ARM_CPU_MODE_MON) { 7984 addr += env->cp15.mvbar; 7985 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 7986 /* High vectors. When enabled, base address cannot be remapped. */ 7987 addr += 0xffff0000; 7988 } else { 7989 /* ARM v7 architectures provide a vector base address register to remap 7990 * the interrupt vector table. 7991 * This register is only followed in non-monitor mode, and is banked. 7992 * Note: only bits 31:5 are valid. 7993 */ 7994 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 7995 } 7996 7997 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 7998 env->cp15.scr_el3 &= ~SCR_NS; 7999 } 8000 8001 switch_mode (env, new_mode); 8002 /* For exceptions taken to AArch32 we must clear the SS bit in both 8003 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 8004 */ 8005 env->uncached_cpsr &= ~PSTATE_SS; 8006 env->spsr = cpsr_read(env); 8007 /* Clear IT bits. */ 8008 env->condexec_bits = 0; 8009 /* Switch to the new mode, and to the correct instruction set. */ 8010 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 8011 /* Set new mode endianness */ 8012 env->uncached_cpsr &= ~CPSR_E; 8013 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 8014 env->uncached_cpsr |= CPSR_E; 8015 } 8016 env->daif |= mask; 8017 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares 8018 * and we should just guard the thumb mode on V4 */ 8019 if (arm_feature(env, ARM_FEATURE_V4T)) { 8020 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 8021 } 8022 env->regs[14] = env->regs[15] + offset; 8023 env->regs[15] = addr; 8024 } 8025 8026 /* Handle exception entry to a target EL which is using AArch64 */ 8027 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 8028 { 8029 ARMCPU *cpu = ARM_CPU(cs); 8030 CPUARMState *env = &cpu->env; 8031 unsigned int new_el = env->exception.target_el; 8032 target_ulong addr = env->cp15.vbar_el[new_el]; 8033 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 8034 8035 if (arm_current_el(env) < new_el) { 8036 /* Entry vector offset depends on whether the implemented EL 8037 * immediately lower than the target level is using AArch32 or AArch64 8038 */ 8039 bool is_aa64; 8040 8041 switch (new_el) { 8042 case 3: 8043 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 8044 break; 8045 case 2: 8046 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 8047 break; 8048 case 1: 8049 is_aa64 = is_a64(env); 8050 break; 8051 default: 8052 g_assert_not_reached(); 8053 } 8054 8055 if (is_aa64) { 8056 addr += 0x400; 8057 } else { 8058 addr += 0x600; 8059 } 8060 } else if (pstate_read(env) & PSTATE_SP) { 8061 addr += 0x200; 8062 } 8063 8064 switch (cs->exception_index) { 8065 case EXCP_PREFETCH_ABORT: 8066 case EXCP_DATA_ABORT: 8067 env->cp15.far_el[new_el] = env->exception.vaddress; 8068 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 8069 env->cp15.far_el[new_el]); 8070 /* fall through */ 8071 case EXCP_BKPT: 8072 case EXCP_UDEF: 8073 case EXCP_SWI: 8074 case EXCP_HVC: 8075 case EXCP_HYP_TRAP: 8076 case EXCP_SMC: 8077 env->cp15.esr_el[new_el] = env->exception.syndrome; 8078 break; 8079 case EXCP_IRQ: 8080 case EXCP_VIRQ: 8081 addr += 0x80; 8082 break; 8083 case EXCP_FIQ: 8084 case EXCP_VFIQ: 8085 addr += 0x100; 8086 break; 8087 case EXCP_SEMIHOST: 8088 qemu_log_mask(CPU_LOG_INT, 8089 "...handling as semihosting call 0x%" PRIx64 "\n", 8090 env->xregs[0]); 8091 env->xregs[0] = do_arm_semihosting(env); 8092 return; 8093 default: 8094 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8095 } 8096 8097 if (is_a64(env)) { 8098 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 8099 aarch64_save_sp(env, arm_current_el(env)); 8100 env->elr_el[new_el] = env->pc; 8101 } else { 8102 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 8103 env->elr_el[new_el] = env->regs[15]; 8104 8105 aarch64_sync_32_to_64(env); 8106 8107 env->condexec_bits = 0; 8108 } 8109 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 8110 env->elr_el[new_el]); 8111 8112 pstate_write(env, PSTATE_DAIF | new_mode); 8113 env->aarch64 = 1; 8114 aarch64_restore_sp(env, new_el); 8115 8116 env->pc = addr; 8117 8118 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 8119 new_el, env->pc, pstate_read(env)); 8120 } 8121 8122 static inline bool check_for_semihosting(CPUState *cs) 8123 { 8124 /* Check whether this exception is a semihosting call; if so 8125 * then handle it and return true; otherwise return false. 8126 */ 8127 ARMCPU *cpu = ARM_CPU(cs); 8128 CPUARMState *env = &cpu->env; 8129 8130 if (is_a64(env)) { 8131 if (cs->exception_index == EXCP_SEMIHOST) { 8132 /* This is always the 64-bit semihosting exception. 8133 * The "is this usermode" and "is semihosting enabled" 8134 * checks have been done at translate time. 8135 */ 8136 qemu_log_mask(CPU_LOG_INT, 8137 "...handling as semihosting call 0x%" PRIx64 "\n", 8138 env->xregs[0]); 8139 env->xregs[0] = do_arm_semihosting(env); 8140 return true; 8141 } 8142 return false; 8143 } else { 8144 uint32_t imm; 8145 8146 /* Only intercept calls from privileged modes, to provide some 8147 * semblance of security. 8148 */ 8149 if (cs->exception_index != EXCP_SEMIHOST && 8150 (!semihosting_enabled() || 8151 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 8152 return false; 8153 } 8154 8155 switch (cs->exception_index) { 8156 case EXCP_SEMIHOST: 8157 /* This is always a semihosting call; the "is this usermode" 8158 * and "is semihosting enabled" checks have been done at 8159 * translate time. 8160 */ 8161 break; 8162 case EXCP_SWI: 8163 /* Check for semihosting interrupt. */ 8164 if (env->thumb) { 8165 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 8166 & 0xff; 8167 if (imm == 0xab) { 8168 break; 8169 } 8170 } else { 8171 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 8172 & 0xffffff; 8173 if (imm == 0x123456) { 8174 break; 8175 } 8176 } 8177 return false; 8178 case EXCP_BKPT: 8179 /* See if this is a semihosting syscall. */ 8180 if (env->thumb) { 8181 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 8182 & 0xff; 8183 if (imm == 0xab) { 8184 env->regs[15] += 2; 8185 break; 8186 } 8187 } 8188 return false; 8189 default: 8190 return false; 8191 } 8192 8193 qemu_log_mask(CPU_LOG_INT, 8194 "...handling as semihosting call 0x%x\n", 8195 env->regs[0]); 8196 env->regs[0] = do_arm_semihosting(env); 8197 return true; 8198 } 8199 } 8200 8201 /* Handle a CPU exception for A and R profile CPUs. 8202 * Do any appropriate logging, handle PSCI calls, and then hand off 8203 * to the AArch64-entry or AArch32-entry function depending on the 8204 * target exception level's register width. 8205 */ 8206 void arm_cpu_do_interrupt(CPUState *cs) 8207 { 8208 ARMCPU *cpu = ARM_CPU(cs); 8209 CPUARMState *env = &cpu->env; 8210 unsigned int new_el = env->exception.target_el; 8211 8212 assert(!arm_feature(env, ARM_FEATURE_M)); 8213 8214 arm_log_exception(cs->exception_index); 8215 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 8216 new_el); 8217 if (qemu_loglevel_mask(CPU_LOG_INT) 8218 && !excp_is_internal(cs->exception_index)) { 8219 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 8220 env->exception.syndrome >> ARM_EL_EC_SHIFT, 8221 env->exception.syndrome); 8222 } 8223 8224 if (arm_is_psci_call(cpu, cs->exception_index)) { 8225 arm_handle_psci_call(cpu); 8226 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 8227 return; 8228 } 8229 8230 /* Semihosting semantics depend on the register width of the 8231 * code that caused the exception, not the target exception level, 8232 * so must be handled here. 8233 */ 8234 if (check_for_semihosting(cs)) { 8235 return; 8236 } 8237 8238 assert(!excp_is_internal(cs->exception_index)); 8239 if (arm_el_is_aa64(env, new_el)) { 8240 arm_cpu_do_interrupt_aarch64(cs); 8241 } else { 8242 arm_cpu_do_interrupt_aarch32(cs); 8243 } 8244 8245 /* Hooks may change global state so BQL should be held, also the 8246 * BQL needs to be held for any modification of 8247 * cs->interrupt_request. 8248 */ 8249 g_assert(qemu_mutex_iothread_locked()); 8250 8251 arm_call_el_change_hook(cpu); 8252 8253 if (!kvm_enabled()) { 8254 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 8255 } 8256 } 8257 8258 /* Return the exception level which controls this address translation regime */ 8259 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 8260 { 8261 switch (mmu_idx) { 8262 case ARMMMUIdx_S2NS: 8263 case ARMMMUIdx_S1E2: 8264 return 2; 8265 case ARMMMUIdx_S1E3: 8266 return 3; 8267 case ARMMMUIdx_S1SE0: 8268 return arm_el_is_aa64(env, 3) ? 1 : 3; 8269 case ARMMMUIdx_S1SE1: 8270 case ARMMMUIdx_S1NSE0: 8271 case ARMMMUIdx_S1NSE1: 8272 case ARMMMUIdx_MPrivNegPri: 8273 case ARMMMUIdx_MUserNegPri: 8274 case ARMMMUIdx_MPriv: 8275 case ARMMMUIdx_MUser: 8276 case ARMMMUIdx_MSPrivNegPri: 8277 case ARMMMUIdx_MSUserNegPri: 8278 case ARMMMUIdx_MSPriv: 8279 case ARMMMUIdx_MSUser: 8280 return 1; 8281 default: 8282 g_assert_not_reached(); 8283 } 8284 } 8285 8286 /* Return the SCTLR value which controls this address translation regime */ 8287 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 8288 { 8289 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 8290 } 8291 8292 /* Return true if the specified stage of address translation is disabled */ 8293 static inline bool regime_translation_disabled(CPUARMState *env, 8294 ARMMMUIdx mmu_idx) 8295 { 8296 if (arm_feature(env, ARM_FEATURE_M)) { 8297 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 8298 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 8299 case R_V7M_MPU_CTRL_ENABLE_MASK: 8300 /* Enabled, but not for HardFault and NMI */ 8301 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 8302 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 8303 /* Enabled for all cases */ 8304 return false; 8305 case 0: 8306 default: 8307 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 8308 * we warned about that in armv7m_nvic.c when the guest set it. 8309 */ 8310 return true; 8311 } 8312 } 8313 8314 if (mmu_idx == ARMMMUIdx_S2NS) { 8315 return (env->cp15.hcr_el2 & HCR_VM) == 0; 8316 } 8317 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 8318 } 8319 8320 static inline bool regime_translation_big_endian(CPUARMState *env, 8321 ARMMMUIdx mmu_idx) 8322 { 8323 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 8324 } 8325 8326 /* Return the TCR controlling this translation regime */ 8327 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 8328 { 8329 if (mmu_idx == ARMMMUIdx_S2NS) { 8330 return &env->cp15.vtcr_el2; 8331 } 8332 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 8333 } 8334 8335 /* Convert a possible stage1+2 MMU index into the appropriate 8336 * stage 1 MMU index 8337 */ 8338 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 8339 { 8340 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 8341 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 8342 } 8343 return mmu_idx; 8344 } 8345 8346 /* Returns TBI0 value for current regime el */ 8347 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 8348 { 8349 TCR *tcr; 8350 uint32_t el; 8351 8352 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 8353 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 8354 */ 8355 mmu_idx = stage_1_mmu_idx(mmu_idx); 8356 8357 tcr = regime_tcr(env, mmu_idx); 8358 el = regime_el(env, mmu_idx); 8359 8360 if (el > 1) { 8361 return extract64(tcr->raw_tcr, 20, 1); 8362 } else { 8363 return extract64(tcr->raw_tcr, 37, 1); 8364 } 8365 } 8366 8367 /* Returns TBI1 value for current regime el */ 8368 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 8369 { 8370 TCR *tcr; 8371 uint32_t el; 8372 8373 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 8374 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 8375 */ 8376 mmu_idx = stage_1_mmu_idx(mmu_idx); 8377 8378 tcr = regime_tcr(env, mmu_idx); 8379 el = regime_el(env, mmu_idx); 8380 8381 if (el > 1) { 8382 return 0; 8383 } else { 8384 return extract64(tcr->raw_tcr, 38, 1); 8385 } 8386 } 8387 8388 /* Return the TTBR associated with this translation regime */ 8389 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 8390 int ttbrn) 8391 { 8392 if (mmu_idx == ARMMMUIdx_S2NS) { 8393 return env->cp15.vttbr_el2; 8394 } 8395 if (ttbrn == 0) { 8396 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 8397 } else { 8398 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 8399 } 8400 } 8401 8402 /* Return true if the translation regime is using LPAE format page tables */ 8403 static inline bool regime_using_lpae_format(CPUARMState *env, 8404 ARMMMUIdx mmu_idx) 8405 { 8406 int el = regime_el(env, mmu_idx); 8407 if (el == 2 || arm_el_is_aa64(env, el)) { 8408 return true; 8409 } 8410 if (arm_feature(env, ARM_FEATURE_LPAE) 8411 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 8412 return true; 8413 } 8414 return false; 8415 } 8416 8417 /* Returns true if the stage 1 translation regime is using LPAE format page 8418 * tables. Used when raising alignment exceptions, whose FSR changes depending 8419 * on whether the long or short descriptor format is in use. */ 8420 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 8421 { 8422 mmu_idx = stage_1_mmu_idx(mmu_idx); 8423 8424 return regime_using_lpae_format(env, mmu_idx); 8425 } 8426 8427 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 8428 { 8429 switch (mmu_idx) { 8430 case ARMMMUIdx_S1SE0: 8431 case ARMMMUIdx_S1NSE0: 8432 case ARMMMUIdx_MUser: 8433 case ARMMMUIdx_MSUser: 8434 case ARMMMUIdx_MUserNegPri: 8435 case ARMMMUIdx_MSUserNegPri: 8436 return true; 8437 default: 8438 return false; 8439 case ARMMMUIdx_S12NSE0: 8440 case ARMMMUIdx_S12NSE1: 8441 g_assert_not_reached(); 8442 } 8443 } 8444 8445 /* Translate section/page access permissions to page 8446 * R/W protection flags 8447 * 8448 * @env: CPUARMState 8449 * @mmu_idx: MMU index indicating required translation regime 8450 * @ap: The 3-bit access permissions (AP[2:0]) 8451 * @domain_prot: The 2-bit domain access permissions 8452 */ 8453 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 8454 int ap, int domain_prot) 8455 { 8456 bool is_user = regime_is_user(env, mmu_idx); 8457 8458 if (domain_prot == 3) { 8459 return PAGE_READ | PAGE_WRITE; 8460 } 8461 8462 switch (ap) { 8463 case 0: 8464 if (arm_feature(env, ARM_FEATURE_V7)) { 8465 return 0; 8466 } 8467 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 8468 case SCTLR_S: 8469 return is_user ? 0 : PAGE_READ; 8470 case SCTLR_R: 8471 return PAGE_READ; 8472 default: 8473 return 0; 8474 } 8475 case 1: 8476 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8477 case 2: 8478 if (is_user) { 8479 return PAGE_READ; 8480 } else { 8481 return PAGE_READ | PAGE_WRITE; 8482 } 8483 case 3: 8484 return PAGE_READ | PAGE_WRITE; 8485 case 4: /* Reserved. */ 8486 return 0; 8487 case 5: 8488 return is_user ? 0 : PAGE_READ; 8489 case 6: 8490 return PAGE_READ; 8491 case 7: 8492 if (!arm_feature(env, ARM_FEATURE_V6K)) { 8493 return 0; 8494 } 8495 return PAGE_READ; 8496 default: 8497 g_assert_not_reached(); 8498 } 8499 } 8500 8501 /* Translate section/page access permissions to page 8502 * R/W protection flags. 8503 * 8504 * @ap: The 2-bit simple AP (AP[2:1]) 8505 * @is_user: TRUE if accessing from PL0 8506 */ 8507 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 8508 { 8509 switch (ap) { 8510 case 0: 8511 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8512 case 1: 8513 return PAGE_READ | PAGE_WRITE; 8514 case 2: 8515 return is_user ? 0 : PAGE_READ; 8516 case 3: 8517 return PAGE_READ; 8518 default: 8519 g_assert_not_reached(); 8520 } 8521 } 8522 8523 static inline int 8524 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 8525 { 8526 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 8527 } 8528 8529 /* Translate S2 section/page access permissions to protection flags 8530 * 8531 * @env: CPUARMState 8532 * @s2ap: The 2-bit stage2 access permissions (S2AP) 8533 * @xn: XN (execute-never) bit 8534 */ 8535 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 8536 { 8537 int prot = 0; 8538 8539 if (s2ap & 1) { 8540 prot |= PAGE_READ; 8541 } 8542 if (s2ap & 2) { 8543 prot |= PAGE_WRITE; 8544 } 8545 if (!xn) { 8546 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 8547 prot |= PAGE_EXEC; 8548 } 8549 } 8550 return prot; 8551 } 8552 8553 /* Translate section/page access permissions to protection flags 8554 * 8555 * @env: CPUARMState 8556 * @mmu_idx: MMU index indicating required translation regime 8557 * @is_aa64: TRUE if AArch64 8558 * @ap: The 2-bit simple AP (AP[2:1]) 8559 * @ns: NS (non-secure) bit 8560 * @xn: XN (execute-never) bit 8561 * @pxn: PXN (privileged execute-never) bit 8562 */ 8563 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 8564 int ap, int ns, int xn, int pxn) 8565 { 8566 bool is_user = regime_is_user(env, mmu_idx); 8567 int prot_rw, user_rw; 8568 bool have_wxn; 8569 int wxn = 0; 8570 8571 assert(mmu_idx != ARMMMUIdx_S2NS); 8572 8573 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 8574 if (is_user) { 8575 prot_rw = user_rw; 8576 } else { 8577 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 8578 } 8579 8580 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 8581 return prot_rw; 8582 } 8583 8584 /* TODO have_wxn should be replaced with 8585 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 8586 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 8587 * compatible processors have EL2, which is required for [U]WXN. 8588 */ 8589 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 8590 8591 if (have_wxn) { 8592 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 8593 } 8594 8595 if (is_aa64) { 8596 switch (regime_el(env, mmu_idx)) { 8597 case 1: 8598 if (!is_user) { 8599 xn = pxn || (user_rw & PAGE_WRITE); 8600 } 8601 break; 8602 case 2: 8603 case 3: 8604 break; 8605 } 8606 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8607 switch (regime_el(env, mmu_idx)) { 8608 case 1: 8609 case 3: 8610 if (is_user) { 8611 xn = xn || !(user_rw & PAGE_READ); 8612 } else { 8613 int uwxn = 0; 8614 if (have_wxn) { 8615 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 8616 } 8617 xn = xn || !(prot_rw & PAGE_READ) || pxn || 8618 (uwxn && (user_rw & PAGE_WRITE)); 8619 } 8620 break; 8621 case 2: 8622 break; 8623 } 8624 } else { 8625 xn = wxn = 0; 8626 } 8627 8628 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 8629 return prot_rw; 8630 } 8631 return prot_rw | PAGE_EXEC; 8632 } 8633 8634 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 8635 uint32_t *table, uint32_t address) 8636 { 8637 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 8638 TCR *tcr = regime_tcr(env, mmu_idx); 8639 8640 if (address & tcr->mask) { 8641 if (tcr->raw_tcr & TTBCR_PD1) { 8642 /* Translation table walk disabled for TTBR1 */ 8643 return false; 8644 } 8645 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 8646 } else { 8647 if (tcr->raw_tcr & TTBCR_PD0) { 8648 /* Translation table walk disabled for TTBR0 */ 8649 return false; 8650 } 8651 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 8652 } 8653 *table |= (address >> 18) & 0x3ffc; 8654 return true; 8655 } 8656 8657 /* Translate a S1 pagetable walk through S2 if needed. */ 8658 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 8659 hwaddr addr, MemTxAttrs txattrs, 8660 ARMMMUFaultInfo *fi) 8661 { 8662 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 8663 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 8664 target_ulong s2size; 8665 hwaddr s2pa; 8666 int s2prot; 8667 int ret; 8668 8669 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 8670 &txattrs, &s2prot, &s2size, fi, NULL); 8671 if (ret) { 8672 assert(fi->type != ARMFault_None); 8673 fi->s2addr = addr; 8674 fi->stage2 = true; 8675 fi->s1ptw = true; 8676 return ~0; 8677 } 8678 addr = s2pa; 8679 } 8680 return addr; 8681 } 8682 8683 /* All loads done in the course of a page table walk go through here. 8684 * TODO: rather than ignoring errors from physical memory reads (which 8685 * are external aborts in ARM terminology) we should propagate this 8686 * error out so that we can turn it into a Data Abort if this walk 8687 * was being done for a CPU load/store or an address translation instruction 8688 * (but not if it was for a debug access). 8689 */ 8690 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8691 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8692 { 8693 ARMCPU *cpu = ARM_CPU(cs); 8694 CPUARMState *env = &cpu->env; 8695 MemTxAttrs attrs = {}; 8696 MemTxResult result = MEMTX_OK; 8697 AddressSpace *as; 8698 uint32_t data; 8699 8700 attrs.secure = is_secure; 8701 as = arm_addressspace(cs, attrs); 8702 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8703 if (fi->s1ptw) { 8704 return 0; 8705 } 8706 if (regime_translation_big_endian(env, mmu_idx)) { 8707 data = address_space_ldl_be(as, addr, attrs, &result); 8708 } else { 8709 data = address_space_ldl_le(as, addr, attrs, &result); 8710 } 8711 if (result == MEMTX_OK) { 8712 return data; 8713 } 8714 fi->type = ARMFault_SyncExternalOnWalk; 8715 fi->ea = arm_extabort_type(result); 8716 return 0; 8717 } 8718 8719 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8720 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8721 { 8722 ARMCPU *cpu = ARM_CPU(cs); 8723 CPUARMState *env = &cpu->env; 8724 MemTxAttrs attrs = {}; 8725 MemTxResult result = MEMTX_OK; 8726 AddressSpace *as; 8727 uint64_t data; 8728 8729 attrs.secure = is_secure; 8730 as = arm_addressspace(cs, attrs); 8731 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8732 if (fi->s1ptw) { 8733 return 0; 8734 } 8735 if (regime_translation_big_endian(env, mmu_idx)) { 8736 data = address_space_ldq_be(as, addr, attrs, &result); 8737 } else { 8738 data = address_space_ldq_le(as, addr, attrs, &result); 8739 } 8740 if (result == MEMTX_OK) { 8741 return data; 8742 } 8743 fi->type = ARMFault_SyncExternalOnWalk; 8744 fi->ea = arm_extabort_type(result); 8745 return 0; 8746 } 8747 8748 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 8749 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8750 hwaddr *phys_ptr, int *prot, 8751 target_ulong *page_size, 8752 ARMMMUFaultInfo *fi) 8753 { 8754 CPUState *cs = CPU(arm_env_get_cpu(env)); 8755 int level = 1; 8756 uint32_t table; 8757 uint32_t desc; 8758 int type; 8759 int ap; 8760 int domain = 0; 8761 int domain_prot; 8762 hwaddr phys_addr; 8763 uint32_t dacr; 8764 8765 /* Pagetable walk. */ 8766 /* Lookup l1 descriptor. */ 8767 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8768 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8769 fi->type = ARMFault_Translation; 8770 goto do_fault; 8771 } 8772 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8773 mmu_idx, fi); 8774 if (fi->type != ARMFault_None) { 8775 goto do_fault; 8776 } 8777 type = (desc & 3); 8778 domain = (desc >> 5) & 0x0f; 8779 if (regime_el(env, mmu_idx) == 1) { 8780 dacr = env->cp15.dacr_ns; 8781 } else { 8782 dacr = env->cp15.dacr_s; 8783 } 8784 domain_prot = (dacr >> (domain * 2)) & 3; 8785 if (type == 0) { 8786 /* Section translation fault. */ 8787 fi->type = ARMFault_Translation; 8788 goto do_fault; 8789 } 8790 if (type != 2) { 8791 level = 2; 8792 } 8793 if (domain_prot == 0 || domain_prot == 2) { 8794 fi->type = ARMFault_Domain; 8795 goto do_fault; 8796 } 8797 if (type == 2) { 8798 /* 1Mb section. */ 8799 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8800 ap = (desc >> 10) & 3; 8801 *page_size = 1024 * 1024; 8802 } else { 8803 /* Lookup l2 entry. */ 8804 if (type == 1) { 8805 /* Coarse pagetable. */ 8806 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8807 } else { 8808 /* Fine pagetable. */ 8809 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 8810 } 8811 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8812 mmu_idx, fi); 8813 if (fi->type != ARMFault_None) { 8814 goto do_fault; 8815 } 8816 switch (desc & 3) { 8817 case 0: /* Page translation fault. */ 8818 fi->type = ARMFault_Translation; 8819 goto do_fault; 8820 case 1: /* 64k page. */ 8821 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 8822 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 8823 *page_size = 0x10000; 8824 break; 8825 case 2: /* 4k page. */ 8826 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8827 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 8828 *page_size = 0x1000; 8829 break; 8830 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 8831 if (type == 1) { 8832 /* ARMv6/XScale extended small page format */ 8833 if (arm_feature(env, ARM_FEATURE_XSCALE) 8834 || arm_feature(env, ARM_FEATURE_V6)) { 8835 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8836 *page_size = 0x1000; 8837 } else { 8838 /* UNPREDICTABLE in ARMv5; we choose to take a 8839 * page translation fault. 8840 */ 8841 fi->type = ARMFault_Translation; 8842 goto do_fault; 8843 } 8844 } else { 8845 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 8846 *page_size = 0x400; 8847 } 8848 ap = (desc >> 4) & 3; 8849 break; 8850 default: 8851 /* Never happens, but compiler isn't smart enough to tell. */ 8852 abort(); 8853 } 8854 } 8855 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 8856 *prot |= *prot ? PAGE_EXEC : 0; 8857 if (!(*prot & (1 << access_type))) { 8858 /* Access permission fault. */ 8859 fi->type = ARMFault_Permission; 8860 goto do_fault; 8861 } 8862 *phys_ptr = phys_addr; 8863 return false; 8864 do_fault: 8865 fi->domain = domain; 8866 fi->level = level; 8867 return true; 8868 } 8869 8870 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 8871 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8872 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 8873 target_ulong *page_size, ARMMMUFaultInfo *fi) 8874 { 8875 CPUState *cs = CPU(arm_env_get_cpu(env)); 8876 int level = 1; 8877 uint32_t table; 8878 uint32_t desc; 8879 uint32_t xn; 8880 uint32_t pxn = 0; 8881 int type; 8882 int ap; 8883 int domain = 0; 8884 int domain_prot; 8885 hwaddr phys_addr; 8886 uint32_t dacr; 8887 bool ns; 8888 8889 /* Pagetable walk. */ 8890 /* Lookup l1 descriptor. */ 8891 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8892 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8893 fi->type = ARMFault_Translation; 8894 goto do_fault; 8895 } 8896 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8897 mmu_idx, fi); 8898 if (fi->type != ARMFault_None) { 8899 goto do_fault; 8900 } 8901 type = (desc & 3); 8902 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 8903 /* Section translation fault, or attempt to use the encoding 8904 * which is Reserved on implementations without PXN. 8905 */ 8906 fi->type = ARMFault_Translation; 8907 goto do_fault; 8908 } 8909 if ((type == 1) || !(desc & (1 << 18))) { 8910 /* Page or Section. */ 8911 domain = (desc >> 5) & 0x0f; 8912 } 8913 if (regime_el(env, mmu_idx) == 1) { 8914 dacr = env->cp15.dacr_ns; 8915 } else { 8916 dacr = env->cp15.dacr_s; 8917 } 8918 if (type == 1) { 8919 level = 2; 8920 } 8921 domain_prot = (dacr >> (domain * 2)) & 3; 8922 if (domain_prot == 0 || domain_prot == 2) { 8923 /* Section or Page domain fault */ 8924 fi->type = ARMFault_Domain; 8925 goto do_fault; 8926 } 8927 if (type != 1) { 8928 if (desc & (1 << 18)) { 8929 /* Supersection. */ 8930 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 8931 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 8932 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 8933 *page_size = 0x1000000; 8934 } else { 8935 /* Section. */ 8936 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8937 *page_size = 0x100000; 8938 } 8939 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 8940 xn = desc & (1 << 4); 8941 pxn = desc & 1; 8942 ns = extract32(desc, 19, 1); 8943 } else { 8944 if (arm_feature(env, ARM_FEATURE_PXN)) { 8945 pxn = (desc >> 2) & 1; 8946 } 8947 ns = extract32(desc, 3, 1); 8948 /* Lookup l2 entry. */ 8949 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8950 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8951 mmu_idx, fi); 8952 if (fi->type != ARMFault_None) { 8953 goto do_fault; 8954 } 8955 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 8956 switch (desc & 3) { 8957 case 0: /* Page translation fault. */ 8958 fi->type = ARMFault_Translation; 8959 goto do_fault; 8960 case 1: /* 64k page. */ 8961 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 8962 xn = desc & (1 << 15); 8963 *page_size = 0x10000; 8964 break; 8965 case 2: case 3: /* 4k page. */ 8966 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8967 xn = desc & 1; 8968 *page_size = 0x1000; 8969 break; 8970 default: 8971 /* Never happens, but compiler isn't smart enough to tell. */ 8972 abort(); 8973 } 8974 } 8975 if (domain_prot == 3) { 8976 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 8977 } else { 8978 if (pxn && !regime_is_user(env, mmu_idx)) { 8979 xn = 1; 8980 } 8981 if (xn && access_type == MMU_INST_FETCH) { 8982 fi->type = ARMFault_Permission; 8983 goto do_fault; 8984 } 8985 8986 if (arm_feature(env, ARM_FEATURE_V6K) && 8987 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 8988 /* The simplified model uses AP[0] as an access control bit. */ 8989 if ((ap & 1) == 0) { 8990 /* Access flag fault. */ 8991 fi->type = ARMFault_AccessFlag; 8992 goto do_fault; 8993 } 8994 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 8995 } else { 8996 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 8997 } 8998 if (*prot && !xn) { 8999 *prot |= PAGE_EXEC; 9000 } 9001 if (!(*prot & (1 << access_type))) { 9002 /* Access permission fault. */ 9003 fi->type = ARMFault_Permission; 9004 goto do_fault; 9005 } 9006 } 9007 if (ns) { 9008 /* The NS bit will (as required by the architecture) have no effect if 9009 * the CPU doesn't support TZ or this is a non-secure translation 9010 * regime, because the attribute will already be non-secure. 9011 */ 9012 attrs->secure = false; 9013 } 9014 *phys_ptr = phys_addr; 9015 return false; 9016 do_fault: 9017 fi->domain = domain; 9018 fi->level = level; 9019 return true; 9020 } 9021 9022 /* 9023 * check_s2_mmu_setup 9024 * @cpu: ARMCPU 9025 * @is_aa64: True if the translation regime is in AArch64 state 9026 * @startlevel: Suggested starting level 9027 * @inputsize: Bitsize of IPAs 9028 * @stride: Page-table stride (See the ARM ARM) 9029 * 9030 * Returns true if the suggested S2 translation parameters are OK and 9031 * false otherwise. 9032 */ 9033 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 9034 int inputsize, int stride) 9035 { 9036 const int grainsize = stride + 3; 9037 int startsizecheck; 9038 9039 /* Negative levels are never allowed. */ 9040 if (level < 0) { 9041 return false; 9042 } 9043 9044 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 9045 if (startsizecheck < 1 || startsizecheck > stride + 4) { 9046 return false; 9047 } 9048 9049 if (is_aa64) { 9050 CPUARMState *env = &cpu->env; 9051 unsigned int pamax = arm_pamax(cpu); 9052 9053 switch (stride) { 9054 case 13: /* 64KB Pages. */ 9055 if (level == 0 || (level == 1 && pamax <= 42)) { 9056 return false; 9057 } 9058 break; 9059 case 11: /* 16KB Pages. */ 9060 if (level == 0 || (level == 1 && pamax <= 40)) { 9061 return false; 9062 } 9063 break; 9064 case 9: /* 4KB Pages. */ 9065 if (level == 0 && pamax <= 42) { 9066 return false; 9067 } 9068 break; 9069 default: 9070 g_assert_not_reached(); 9071 } 9072 9073 /* Inputsize checks. */ 9074 if (inputsize > pamax && 9075 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 9076 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 9077 return false; 9078 } 9079 } else { 9080 /* AArch32 only supports 4KB pages. Assert on that. */ 9081 assert(stride == 9); 9082 9083 if (level == 0) { 9084 return false; 9085 } 9086 } 9087 return true; 9088 } 9089 9090 /* Translate from the 4-bit stage 2 representation of 9091 * memory attributes (without cache-allocation hints) to 9092 * the 8-bit representation of the stage 1 MAIR registers 9093 * (which includes allocation hints). 9094 * 9095 * ref: shared/translation/attrs/S2AttrDecode() 9096 * .../S2ConvertAttrsHints() 9097 */ 9098 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 9099 { 9100 uint8_t hiattr = extract32(s2attrs, 2, 2); 9101 uint8_t loattr = extract32(s2attrs, 0, 2); 9102 uint8_t hihint = 0, lohint = 0; 9103 9104 if (hiattr != 0) { /* normal memory */ 9105 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 9106 hiattr = loattr = 1; /* non-cacheable */ 9107 } else { 9108 if (hiattr != 1) { /* Write-through or write-back */ 9109 hihint = 3; /* RW allocate */ 9110 } 9111 if (loattr != 1) { /* Write-through or write-back */ 9112 lohint = 3; /* RW allocate */ 9113 } 9114 } 9115 } 9116 9117 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 9118 } 9119 9120 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 9121 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9122 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 9123 target_ulong *page_size_ptr, 9124 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 9125 { 9126 ARMCPU *cpu = arm_env_get_cpu(env); 9127 CPUState *cs = CPU(cpu); 9128 /* Read an LPAE long-descriptor translation table. */ 9129 ARMFaultType fault_type = ARMFault_Translation; 9130 uint32_t level; 9131 uint32_t epd = 0; 9132 int32_t t0sz, t1sz; 9133 uint32_t tg; 9134 uint64_t ttbr; 9135 int ttbr_select; 9136 hwaddr descaddr, indexmask, indexmask_grainsize; 9137 uint32_t tableattrs; 9138 target_ulong page_size; 9139 uint32_t attrs; 9140 int32_t stride = 9; 9141 int32_t addrsize; 9142 int inputsize; 9143 int32_t tbi = 0; 9144 TCR *tcr = regime_tcr(env, mmu_idx); 9145 int ap, ns, xn, pxn; 9146 uint32_t el = regime_el(env, mmu_idx); 9147 bool ttbr1_valid = true; 9148 uint64_t descaddrmask; 9149 bool aarch64 = arm_el_is_aa64(env, el); 9150 9151 /* TODO: 9152 * This code does not handle the different format TCR for VTCR_EL2. 9153 * This code also does not support shareability levels. 9154 * Attribute and permission bit handling should also be checked when adding 9155 * support for those page table walks. 9156 */ 9157 if (aarch64) { 9158 level = 0; 9159 addrsize = 64; 9160 if (el > 1) { 9161 if (mmu_idx != ARMMMUIdx_S2NS) { 9162 tbi = extract64(tcr->raw_tcr, 20, 1); 9163 } 9164 } else { 9165 if (extract64(address, 55, 1)) { 9166 tbi = extract64(tcr->raw_tcr, 38, 1); 9167 } else { 9168 tbi = extract64(tcr->raw_tcr, 37, 1); 9169 } 9170 } 9171 tbi *= 8; 9172 9173 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 9174 * invalid. 9175 */ 9176 if (el > 1) { 9177 ttbr1_valid = false; 9178 } 9179 } else { 9180 level = 1; 9181 addrsize = 32; 9182 /* There is no TTBR1 for EL2 */ 9183 if (el == 2) { 9184 ttbr1_valid = false; 9185 } 9186 } 9187 9188 /* Determine whether this address is in the region controlled by 9189 * TTBR0 or TTBR1 (or if it is in neither region and should fault). 9190 * This is a Non-secure PL0/1 stage 1 translation, so controlled by 9191 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: 9192 */ 9193 if (aarch64) { 9194 /* AArch64 translation. */ 9195 t0sz = extract32(tcr->raw_tcr, 0, 6); 9196 t0sz = MIN(t0sz, 39); 9197 t0sz = MAX(t0sz, 16); 9198 } else if (mmu_idx != ARMMMUIdx_S2NS) { 9199 /* AArch32 stage 1 translation. */ 9200 t0sz = extract32(tcr->raw_tcr, 0, 3); 9201 } else { 9202 /* AArch32 stage 2 translation. */ 9203 bool sext = extract32(tcr->raw_tcr, 4, 1); 9204 bool sign = extract32(tcr->raw_tcr, 3, 1); 9205 /* Address size is 40-bit for a stage 2 translation, 9206 * and t0sz can be negative (from -8 to 7), 9207 * so we need to adjust it to use the TTBR selecting logic below. 9208 */ 9209 addrsize = 40; 9210 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; 9211 9212 /* If the sign-extend bit is not the same as t0sz[3], the result 9213 * is unpredictable. Flag this as a guest error. */ 9214 if (sign != sext) { 9215 qemu_log_mask(LOG_GUEST_ERROR, 9216 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 9217 } 9218 } 9219 t1sz = extract32(tcr->raw_tcr, 16, 6); 9220 if (aarch64) { 9221 t1sz = MIN(t1sz, 39); 9222 t1sz = MAX(t1sz, 16); 9223 } 9224 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { 9225 /* there is a ttbr0 region and we are in it (high bits all zero) */ 9226 ttbr_select = 0; 9227 } else if (ttbr1_valid && t1sz && 9228 !extract64(~address, addrsize - t1sz, t1sz - tbi)) { 9229 /* there is a ttbr1 region and we are in it (high bits all one) */ 9230 ttbr_select = 1; 9231 } else if (!t0sz) { 9232 /* ttbr0 region is "everything not in the ttbr1 region" */ 9233 ttbr_select = 0; 9234 } else if (!t1sz && ttbr1_valid) { 9235 /* ttbr1 region is "everything not in the ttbr0 region" */ 9236 ttbr_select = 1; 9237 } else { 9238 /* in the gap between the two regions, this is a Translation fault */ 9239 fault_type = ARMFault_Translation; 9240 goto do_fault; 9241 } 9242 9243 /* Note that QEMU ignores shareability and cacheability attributes, 9244 * so we don't need to do anything with the SH, ORGN, IRGN fields 9245 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 9246 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 9247 * implement any ASID-like capability so we can ignore it (instead 9248 * we will always flush the TLB any time the ASID is changed). 9249 */ 9250 if (ttbr_select == 0) { 9251 ttbr = regime_ttbr(env, mmu_idx, 0); 9252 if (el < 2) { 9253 epd = extract32(tcr->raw_tcr, 7, 1); 9254 } 9255 inputsize = addrsize - t0sz; 9256 9257 tg = extract32(tcr->raw_tcr, 14, 2); 9258 if (tg == 1) { /* 64KB pages */ 9259 stride = 13; 9260 } 9261 if (tg == 2) { /* 16KB pages */ 9262 stride = 11; 9263 } 9264 } else { 9265 /* We should only be here if TTBR1 is valid */ 9266 assert(ttbr1_valid); 9267 9268 ttbr = regime_ttbr(env, mmu_idx, 1); 9269 epd = extract32(tcr->raw_tcr, 23, 1); 9270 inputsize = addrsize - t1sz; 9271 9272 tg = extract32(tcr->raw_tcr, 30, 2); 9273 if (tg == 3) { /* 64KB pages */ 9274 stride = 13; 9275 } 9276 if (tg == 1) { /* 16KB pages */ 9277 stride = 11; 9278 } 9279 } 9280 9281 /* Here we should have set up all the parameters for the translation: 9282 * inputsize, ttbr, epd, stride, tbi 9283 */ 9284 9285 if (epd) { 9286 /* Translation table walk disabled => Translation fault on TLB miss 9287 * Note: This is always 0 on 64-bit EL2 and EL3. 9288 */ 9289 goto do_fault; 9290 } 9291 9292 if (mmu_idx != ARMMMUIdx_S2NS) { 9293 /* The starting level depends on the virtual address size (which can 9294 * be up to 48 bits) and the translation granule size. It indicates 9295 * the number of strides (stride bits at a time) needed to 9296 * consume the bits of the input address. In the pseudocode this is: 9297 * level = 4 - RoundUp((inputsize - grainsize) / stride) 9298 * where their 'inputsize' is our 'inputsize', 'grainsize' is 9299 * our 'stride + 3' and 'stride' is our 'stride'. 9300 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 9301 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 9302 * = 4 - (inputsize - 4) / stride; 9303 */ 9304 level = 4 - (inputsize - 4) / stride; 9305 } else { 9306 /* For stage 2 translations the starting level is specified by the 9307 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 9308 */ 9309 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 9310 uint32_t startlevel; 9311 bool ok; 9312 9313 if (!aarch64 || stride == 9) { 9314 /* AArch32 or 4KB pages */ 9315 startlevel = 2 - sl0; 9316 } else { 9317 /* 16KB or 64KB pages */ 9318 startlevel = 3 - sl0; 9319 } 9320 9321 /* Check that the starting level is valid. */ 9322 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 9323 inputsize, stride); 9324 if (!ok) { 9325 fault_type = ARMFault_Translation; 9326 goto do_fault; 9327 } 9328 level = startlevel; 9329 } 9330 9331 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 9332 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 9333 9334 /* Now we can extract the actual base address from the TTBR */ 9335 descaddr = extract64(ttbr, 0, 48); 9336 descaddr &= ~indexmask; 9337 9338 /* The address field in the descriptor goes up to bit 39 for ARMv7 9339 * but up to bit 47 for ARMv8, but we use the descaddrmask 9340 * up to bit 39 for AArch32, because we don't need other bits in that case 9341 * to construct next descriptor address (anyway they should be all zeroes). 9342 */ 9343 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 9344 ~indexmask_grainsize; 9345 9346 /* Secure accesses start with the page table in secure memory and 9347 * can be downgraded to non-secure at any step. Non-secure accesses 9348 * remain non-secure. We implement this by just ORing in the NSTable/NS 9349 * bits at each step. 9350 */ 9351 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 9352 for (;;) { 9353 uint64_t descriptor; 9354 bool nstable; 9355 9356 descaddr |= (address >> (stride * (4 - level))) & indexmask; 9357 descaddr &= ~7ULL; 9358 nstable = extract32(tableattrs, 4, 1); 9359 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 9360 if (fi->type != ARMFault_None) { 9361 goto do_fault; 9362 } 9363 9364 if (!(descriptor & 1) || 9365 (!(descriptor & 2) && (level == 3))) { 9366 /* Invalid, or the Reserved level 3 encoding */ 9367 goto do_fault; 9368 } 9369 descaddr = descriptor & descaddrmask; 9370 9371 if ((descriptor & 2) && (level < 3)) { 9372 /* Table entry. The top five bits are attributes which may 9373 * propagate down through lower levels of the table (and 9374 * which are all arranged so that 0 means "no effect", so 9375 * we can gather them up by ORing in the bits at each level). 9376 */ 9377 tableattrs |= extract64(descriptor, 59, 5); 9378 level++; 9379 indexmask = indexmask_grainsize; 9380 continue; 9381 } 9382 /* Block entry at level 1 or 2, or page entry at level 3. 9383 * These are basically the same thing, although the number 9384 * of bits we pull in from the vaddr varies. 9385 */ 9386 page_size = (1ULL << ((stride * (4 - level)) + 3)); 9387 descaddr |= (address & (page_size - 1)); 9388 /* Extract attributes from the descriptor */ 9389 attrs = extract64(descriptor, 2, 10) 9390 | (extract64(descriptor, 52, 12) << 10); 9391 9392 if (mmu_idx == ARMMMUIdx_S2NS) { 9393 /* Stage 2 table descriptors do not include any attribute fields */ 9394 break; 9395 } 9396 /* Merge in attributes from table descriptors */ 9397 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 9398 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ 9399 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 9400 * means "force PL1 access only", which means forcing AP[1] to 0. 9401 */ 9402 if (extract32(tableattrs, 2, 1)) { 9403 attrs &= ~(1 << 4); 9404 } 9405 attrs |= nstable << 3; /* NS */ 9406 break; 9407 } 9408 /* Here descaddr is the final physical address, and attributes 9409 * are all in attrs. 9410 */ 9411 fault_type = ARMFault_AccessFlag; 9412 if ((attrs & (1 << 8)) == 0) { 9413 /* Access flag */ 9414 goto do_fault; 9415 } 9416 9417 ap = extract32(attrs, 4, 2); 9418 xn = extract32(attrs, 12, 1); 9419 9420 if (mmu_idx == ARMMMUIdx_S2NS) { 9421 ns = true; 9422 *prot = get_S2prot(env, ap, xn); 9423 } else { 9424 ns = extract32(attrs, 3, 1); 9425 pxn = extract32(attrs, 11, 1); 9426 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 9427 } 9428 9429 fault_type = ARMFault_Permission; 9430 if (!(*prot & (1 << access_type))) { 9431 goto do_fault; 9432 } 9433 9434 if (ns) { 9435 /* The NS bit will (as required by the architecture) have no effect if 9436 * the CPU doesn't support TZ or this is a non-secure translation 9437 * regime, because the attribute will already be non-secure. 9438 */ 9439 txattrs->secure = false; 9440 } 9441 9442 if (cacheattrs != NULL) { 9443 if (mmu_idx == ARMMMUIdx_S2NS) { 9444 cacheattrs->attrs = convert_stage2_attrs(env, 9445 extract32(attrs, 0, 4)); 9446 } else { 9447 /* Index into MAIR registers for cache attributes */ 9448 uint8_t attrindx = extract32(attrs, 0, 3); 9449 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 9450 assert(attrindx <= 7); 9451 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 9452 } 9453 cacheattrs->shareability = extract32(attrs, 6, 2); 9454 } 9455 9456 *phys_ptr = descaddr; 9457 *page_size_ptr = page_size; 9458 return false; 9459 9460 do_fault: 9461 fi->type = fault_type; 9462 fi->level = level; 9463 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 9464 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 9465 return true; 9466 } 9467 9468 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 9469 ARMMMUIdx mmu_idx, 9470 int32_t address, int *prot) 9471 { 9472 if (!arm_feature(env, ARM_FEATURE_M)) { 9473 *prot = PAGE_READ | PAGE_WRITE; 9474 switch (address) { 9475 case 0xF0000000 ... 0xFFFFFFFF: 9476 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 9477 /* hivecs execing is ok */ 9478 *prot |= PAGE_EXEC; 9479 } 9480 break; 9481 case 0x00000000 ... 0x7FFFFFFF: 9482 *prot |= PAGE_EXEC; 9483 break; 9484 } 9485 } else { 9486 /* Default system address map for M profile cores. 9487 * The architecture specifies which regions are execute-never; 9488 * at the MPU level no other checks are defined. 9489 */ 9490 switch (address) { 9491 case 0x00000000 ... 0x1fffffff: /* ROM */ 9492 case 0x20000000 ... 0x3fffffff: /* SRAM */ 9493 case 0x60000000 ... 0x7fffffff: /* RAM */ 9494 case 0x80000000 ... 0x9fffffff: /* RAM */ 9495 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9496 break; 9497 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 9498 case 0xa0000000 ... 0xbfffffff: /* Device */ 9499 case 0xc0000000 ... 0xdfffffff: /* Device */ 9500 case 0xe0000000 ... 0xffffffff: /* System */ 9501 *prot = PAGE_READ | PAGE_WRITE; 9502 break; 9503 default: 9504 g_assert_not_reached(); 9505 } 9506 } 9507 } 9508 9509 static bool pmsav7_use_background_region(ARMCPU *cpu, 9510 ARMMMUIdx mmu_idx, bool is_user) 9511 { 9512 /* Return true if we should use the default memory map as a 9513 * "background" region if there are no hits against any MPU regions. 9514 */ 9515 CPUARMState *env = &cpu->env; 9516 9517 if (is_user) { 9518 return false; 9519 } 9520 9521 if (arm_feature(env, ARM_FEATURE_M)) { 9522 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 9523 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 9524 } else { 9525 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 9526 } 9527 } 9528 9529 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 9530 { 9531 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 9532 return arm_feature(env, ARM_FEATURE_M) && 9533 extract32(address, 20, 12) == 0xe00; 9534 } 9535 9536 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 9537 { 9538 /* True if address is in the M profile system region 9539 * 0xe0000000 - 0xffffffff 9540 */ 9541 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 9542 } 9543 9544 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 9545 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9546 hwaddr *phys_ptr, int *prot, 9547 ARMMMUFaultInfo *fi) 9548 { 9549 ARMCPU *cpu = arm_env_get_cpu(env); 9550 int n; 9551 bool is_user = regime_is_user(env, mmu_idx); 9552 9553 *phys_ptr = address; 9554 *prot = 0; 9555 9556 if (regime_translation_disabled(env, mmu_idx) || 9557 m_is_ppb_region(env, address)) { 9558 /* MPU disabled or M profile PPB access: use default memory map. 9559 * The other case which uses the default memory map in the 9560 * v7M ARM ARM pseudocode is exception vector reads from the vector 9561 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 9562 * which always does a direct read using address_space_ldl(), rather 9563 * than going via this function, so we don't need to check that here. 9564 */ 9565 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9566 } else { /* MPU enabled */ 9567 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9568 /* region search */ 9569 uint32_t base = env->pmsav7.drbar[n]; 9570 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 9571 uint32_t rmask; 9572 bool srdis = false; 9573 9574 if (!(env->pmsav7.drsr[n] & 0x1)) { 9575 continue; 9576 } 9577 9578 if (!rsize) { 9579 qemu_log_mask(LOG_GUEST_ERROR, 9580 "DRSR[%d]: Rsize field cannot be 0\n", n); 9581 continue; 9582 } 9583 rsize++; 9584 rmask = (1ull << rsize) - 1; 9585 9586 if (base & rmask) { 9587 qemu_log_mask(LOG_GUEST_ERROR, 9588 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 9589 "to DRSR region size, mask = 0x%" PRIx32 "\n", 9590 n, base, rmask); 9591 continue; 9592 } 9593 9594 if (address < base || address > base + rmask) { 9595 continue; 9596 } 9597 9598 /* Region matched */ 9599 9600 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 9601 int i, snd; 9602 uint32_t srdis_mask; 9603 9604 rsize -= 3; /* sub region size (power of 2) */ 9605 snd = ((address - base) >> rsize) & 0x7; 9606 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 9607 9608 srdis_mask = srdis ? 0x3 : 0x0; 9609 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 9610 /* This will check in groups of 2, 4 and then 8, whether 9611 * the subregion bits are consistent. rsize is incremented 9612 * back up to give the region size, considering consistent 9613 * adjacent subregions as one region. Stop testing if rsize 9614 * is already big enough for an entire QEMU page. 9615 */ 9616 int snd_rounded = snd & ~(i - 1); 9617 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 9618 snd_rounded + 8, i); 9619 if (srdis_mask ^ srdis_multi) { 9620 break; 9621 } 9622 srdis_mask = (srdis_mask << i) | srdis_mask; 9623 rsize++; 9624 } 9625 } 9626 if (rsize < TARGET_PAGE_BITS) { 9627 qemu_log_mask(LOG_UNIMP, 9628 "DRSR[%d]: No support for MPU (sub)region " 9629 "alignment of %" PRIu32 " bits. Minimum is %d\n", 9630 n, rsize, TARGET_PAGE_BITS); 9631 continue; 9632 } 9633 if (srdis) { 9634 continue; 9635 } 9636 break; 9637 } 9638 9639 if (n == -1) { /* no hits */ 9640 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9641 /* background fault */ 9642 fi->type = ARMFault_Background; 9643 return true; 9644 } 9645 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9646 } else { /* a MPU hit! */ 9647 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 9648 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 9649 9650 if (m_is_system_region(env, address)) { 9651 /* System space is always execute never */ 9652 xn = 1; 9653 } 9654 9655 if (is_user) { /* User mode AP bit decoding */ 9656 switch (ap) { 9657 case 0: 9658 case 1: 9659 case 5: 9660 break; /* no access */ 9661 case 3: 9662 *prot |= PAGE_WRITE; 9663 /* fall through */ 9664 case 2: 9665 case 6: 9666 *prot |= PAGE_READ | PAGE_EXEC; 9667 break; 9668 case 7: 9669 /* for v7M, same as 6; for R profile a reserved value */ 9670 if (arm_feature(env, ARM_FEATURE_M)) { 9671 *prot |= PAGE_READ | PAGE_EXEC; 9672 break; 9673 } 9674 /* fall through */ 9675 default: 9676 qemu_log_mask(LOG_GUEST_ERROR, 9677 "DRACR[%d]: Bad value for AP bits: 0x%" 9678 PRIx32 "\n", n, ap); 9679 } 9680 } else { /* Priv. mode AP bits decoding */ 9681 switch (ap) { 9682 case 0: 9683 break; /* no access */ 9684 case 1: 9685 case 2: 9686 case 3: 9687 *prot |= PAGE_WRITE; 9688 /* fall through */ 9689 case 5: 9690 case 6: 9691 *prot |= PAGE_READ | PAGE_EXEC; 9692 break; 9693 case 7: 9694 /* for v7M, same as 6; for R profile a reserved value */ 9695 if (arm_feature(env, ARM_FEATURE_M)) { 9696 *prot |= PAGE_READ | PAGE_EXEC; 9697 break; 9698 } 9699 /* fall through */ 9700 default: 9701 qemu_log_mask(LOG_GUEST_ERROR, 9702 "DRACR[%d]: Bad value for AP bits: 0x%" 9703 PRIx32 "\n", n, ap); 9704 } 9705 } 9706 9707 /* execute never */ 9708 if (xn) { 9709 *prot &= ~PAGE_EXEC; 9710 } 9711 } 9712 } 9713 9714 fi->type = ARMFault_Permission; 9715 fi->level = 1; 9716 return !(*prot & (1 << access_type)); 9717 } 9718 9719 static bool v8m_is_sau_exempt(CPUARMState *env, 9720 uint32_t address, MMUAccessType access_type) 9721 { 9722 /* The architecture specifies that certain address ranges are 9723 * exempt from v8M SAU/IDAU checks. 9724 */ 9725 return 9726 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 9727 (address >= 0xe0000000 && address <= 0xe0002fff) || 9728 (address >= 0xe000e000 && address <= 0xe000efff) || 9729 (address >= 0xe002e000 && address <= 0xe002efff) || 9730 (address >= 0xe0040000 && address <= 0xe0041fff) || 9731 (address >= 0xe00ff000 && address <= 0xe00fffff); 9732 } 9733 9734 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 9735 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9736 V8M_SAttributes *sattrs) 9737 { 9738 /* Look up the security attributes for this address. Compare the 9739 * pseudocode SecurityCheck() function. 9740 * We assume the caller has zero-initialized *sattrs. 9741 */ 9742 ARMCPU *cpu = arm_env_get_cpu(env); 9743 int r; 9744 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 9745 int idau_region = IREGION_NOTVALID; 9746 9747 if (cpu->idau) { 9748 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 9749 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 9750 9751 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 9752 &idau_nsc); 9753 } 9754 9755 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 9756 /* 0xf0000000..0xffffffff is always S for insn fetches */ 9757 return; 9758 } 9759 9760 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 9761 sattrs->ns = !regime_is_secure(env, mmu_idx); 9762 return; 9763 } 9764 9765 if (idau_region != IREGION_NOTVALID) { 9766 sattrs->irvalid = true; 9767 sattrs->iregion = idau_region; 9768 } 9769 9770 switch (env->sau.ctrl & 3) { 9771 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 9772 break; 9773 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 9774 sattrs->ns = true; 9775 break; 9776 default: /* SAU.ENABLE == 1 */ 9777 for (r = 0; r < cpu->sau_sregion; r++) { 9778 if (env->sau.rlar[r] & 1) { 9779 uint32_t base = env->sau.rbar[r] & ~0x1f; 9780 uint32_t limit = env->sau.rlar[r] | 0x1f; 9781 9782 if (base <= address && limit >= address) { 9783 if (sattrs->srvalid) { 9784 /* If we hit in more than one region then we must report 9785 * as Secure, not NS-Callable, with no valid region 9786 * number info. 9787 */ 9788 sattrs->ns = false; 9789 sattrs->nsc = false; 9790 sattrs->sregion = 0; 9791 sattrs->srvalid = false; 9792 break; 9793 } else { 9794 if (env->sau.rlar[r] & 2) { 9795 sattrs->nsc = true; 9796 } else { 9797 sattrs->ns = true; 9798 } 9799 sattrs->srvalid = true; 9800 sattrs->sregion = r; 9801 } 9802 } 9803 } 9804 } 9805 9806 /* The IDAU will override the SAU lookup results if it specifies 9807 * higher security than the SAU does. 9808 */ 9809 if (!idau_ns) { 9810 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 9811 sattrs->ns = false; 9812 sattrs->nsc = idau_nsc; 9813 } 9814 } 9815 break; 9816 } 9817 } 9818 9819 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 9820 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9821 hwaddr *phys_ptr, MemTxAttrs *txattrs, 9822 int *prot, ARMMMUFaultInfo *fi, uint32_t *mregion) 9823 { 9824 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 9825 * that a full phys-to-virt translation does). 9826 * mregion is (if not NULL) set to the region number which matched, 9827 * or -1 if no region number is returned (MPU off, address did not 9828 * hit a region, address hit in multiple regions). 9829 */ 9830 ARMCPU *cpu = arm_env_get_cpu(env); 9831 bool is_user = regime_is_user(env, mmu_idx); 9832 uint32_t secure = regime_is_secure(env, mmu_idx); 9833 int n; 9834 int matchregion = -1; 9835 bool hit = false; 9836 9837 *phys_ptr = address; 9838 *prot = 0; 9839 if (mregion) { 9840 *mregion = -1; 9841 } 9842 9843 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 9844 * was an exception vector read from the vector table (which is always 9845 * done using the default system address map), because those accesses 9846 * are done in arm_v7m_load_vector(), which always does a direct 9847 * read using address_space_ldl(), rather than going via this function. 9848 */ 9849 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 9850 hit = true; 9851 } else if (m_is_ppb_region(env, address)) { 9852 hit = true; 9853 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9854 hit = true; 9855 } else { 9856 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9857 /* region search */ 9858 /* Note that the base address is bits [31:5] from the register 9859 * with bits [4:0] all zeroes, but the limit address is bits 9860 * [31:5] from the register with bits [4:0] all ones. 9861 */ 9862 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 9863 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 9864 9865 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 9866 /* Region disabled */ 9867 continue; 9868 } 9869 9870 if (address < base || address > limit) { 9871 continue; 9872 } 9873 9874 if (hit) { 9875 /* Multiple regions match -- always a failure (unlike 9876 * PMSAv7 where highest-numbered-region wins) 9877 */ 9878 fi->type = ARMFault_Permission; 9879 fi->level = 1; 9880 return true; 9881 } 9882 9883 matchregion = n; 9884 hit = true; 9885 9886 if (base & ~TARGET_PAGE_MASK) { 9887 qemu_log_mask(LOG_UNIMP, 9888 "MPU_RBAR[%d]: No support for MPU region base" 9889 "address of 0x%" PRIx32 ". Minimum alignment is " 9890 "%d\n", 9891 n, base, TARGET_PAGE_BITS); 9892 continue; 9893 } 9894 if ((limit + 1) & ~TARGET_PAGE_MASK) { 9895 qemu_log_mask(LOG_UNIMP, 9896 "MPU_RBAR[%d]: No support for MPU region limit" 9897 "address of 0x%" PRIx32 ". Minimum alignment is " 9898 "%d\n", 9899 n, limit, TARGET_PAGE_BITS); 9900 continue; 9901 } 9902 } 9903 } 9904 9905 if (!hit) { 9906 /* background fault */ 9907 fi->type = ARMFault_Background; 9908 return true; 9909 } 9910 9911 if (matchregion == -1) { 9912 /* hit using the background region */ 9913 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9914 } else { 9915 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 9916 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 9917 9918 if (m_is_system_region(env, address)) { 9919 /* System space is always execute never */ 9920 xn = 1; 9921 } 9922 9923 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 9924 if (*prot && !xn) { 9925 *prot |= PAGE_EXEC; 9926 } 9927 /* We don't need to look the attribute up in the MAIR0/MAIR1 9928 * registers because that only tells us about cacheability. 9929 */ 9930 if (mregion) { 9931 *mregion = matchregion; 9932 } 9933 } 9934 9935 fi->type = ARMFault_Permission; 9936 fi->level = 1; 9937 return !(*prot & (1 << access_type)); 9938 } 9939 9940 9941 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 9942 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9943 hwaddr *phys_ptr, MemTxAttrs *txattrs, 9944 int *prot, ARMMMUFaultInfo *fi) 9945 { 9946 uint32_t secure = regime_is_secure(env, mmu_idx); 9947 V8M_SAttributes sattrs = {}; 9948 9949 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 9950 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 9951 if (access_type == MMU_INST_FETCH) { 9952 /* Instruction fetches always use the MMU bank and the 9953 * transaction attribute determined by the fetch address, 9954 * regardless of CPU state. This is painful for QEMU 9955 * to handle, because it would mean we need to encode 9956 * into the mmu_idx not just the (user, negpri) information 9957 * for the current security state but also that for the 9958 * other security state, which would balloon the number 9959 * of mmu_idx values needed alarmingly. 9960 * Fortunately we can avoid this because it's not actually 9961 * possible to arbitrarily execute code from memory with 9962 * the wrong security attribute: it will always generate 9963 * an exception of some kind or another, apart from the 9964 * special case of an NS CPU executing an SG instruction 9965 * in S&NSC memory. So we always just fail the translation 9966 * here and sort things out in the exception handler 9967 * (including possibly emulating an SG instruction). 9968 */ 9969 if (sattrs.ns != !secure) { 9970 if (sattrs.nsc) { 9971 fi->type = ARMFault_QEMU_NSCExec; 9972 } else { 9973 fi->type = ARMFault_QEMU_SFault; 9974 } 9975 *phys_ptr = address; 9976 *prot = 0; 9977 return true; 9978 } 9979 } else { 9980 /* For data accesses we always use the MMU bank indicated 9981 * by the current CPU state, but the security attributes 9982 * might downgrade a secure access to nonsecure. 9983 */ 9984 if (sattrs.ns) { 9985 txattrs->secure = false; 9986 } else if (!secure) { 9987 /* NS access to S memory must fault. 9988 * Architecturally we should first check whether the 9989 * MPU information for this address indicates that we 9990 * are doing an unaligned access to Device memory, which 9991 * should generate a UsageFault instead. QEMU does not 9992 * currently check for that kind of unaligned access though. 9993 * If we added it we would need to do so as a special case 9994 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 9995 */ 9996 fi->type = ARMFault_QEMU_SFault; 9997 *phys_ptr = address; 9998 *prot = 0; 9999 return true; 10000 } 10001 } 10002 } 10003 10004 return pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 10005 txattrs, prot, fi, NULL); 10006 } 10007 10008 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 10009 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10010 hwaddr *phys_ptr, int *prot, 10011 ARMMMUFaultInfo *fi) 10012 { 10013 int n; 10014 uint32_t mask; 10015 uint32_t base; 10016 bool is_user = regime_is_user(env, mmu_idx); 10017 10018 if (regime_translation_disabled(env, mmu_idx)) { 10019 /* MPU disabled. */ 10020 *phys_ptr = address; 10021 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10022 return false; 10023 } 10024 10025 *phys_ptr = address; 10026 for (n = 7; n >= 0; n--) { 10027 base = env->cp15.c6_region[n]; 10028 if ((base & 1) == 0) { 10029 continue; 10030 } 10031 mask = 1 << ((base >> 1) & 0x1f); 10032 /* Keep this shift separate from the above to avoid an 10033 (undefined) << 32. */ 10034 mask = (mask << 1) - 1; 10035 if (((base ^ address) & ~mask) == 0) { 10036 break; 10037 } 10038 } 10039 if (n < 0) { 10040 fi->type = ARMFault_Background; 10041 return true; 10042 } 10043 10044 if (access_type == MMU_INST_FETCH) { 10045 mask = env->cp15.pmsav5_insn_ap; 10046 } else { 10047 mask = env->cp15.pmsav5_data_ap; 10048 } 10049 mask = (mask >> (n * 4)) & 0xf; 10050 switch (mask) { 10051 case 0: 10052 fi->type = ARMFault_Permission; 10053 fi->level = 1; 10054 return true; 10055 case 1: 10056 if (is_user) { 10057 fi->type = ARMFault_Permission; 10058 fi->level = 1; 10059 return true; 10060 } 10061 *prot = PAGE_READ | PAGE_WRITE; 10062 break; 10063 case 2: 10064 *prot = PAGE_READ; 10065 if (!is_user) { 10066 *prot |= PAGE_WRITE; 10067 } 10068 break; 10069 case 3: 10070 *prot = PAGE_READ | PAGE_WRITE; 10071 break; 10072 case 5: 10073 if (is_user) { 10074 fi->type = ARMFault_Permission; 10075 fi->level = 1; 10076 return true; 10077 } 10078 *prot = PAGE_READ; 10079 break; 10080 case 6: 10081 *prot = PAGE_READ; 10082 break; 10083 default: 10084 /* Bad permission. */ 10085 fi->type = ARMFault_Permission; 10086 fi->level = 1; 10087 return true; 10088 } 10089 *prot |= PAGE_EXEC; 10090 return false; 10091 } 10092 10093 /* Combine either inner or outer cacheability attributes for normal 10094 * memory, according to table D4-42 and pseudocode procedure 10095 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 10096 * 10097 * NB: only stage 1 includes allocation hints (RW bits), leading to 10098 * some asymmetry. 10099 */ 10100 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 10101 { 10102 if (s1 == 4 || s2 == 4) { 10103 /* non-cacheable has precedence */ 10104 return 4; 10105 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 10106 /* stage 1 write-through takes precedence */ 10107 return s1; 10108 } else if (extract32(s2, 2, 2) == 2) { 10109 /* stage 2 write-through takes precedence, but the allocation hint 10110 * is still taken from stage 1 10111 */ 10112 return (2 << 2) | extract32(s1, 0, 2); 10113 } else { /* write-back */ 10114 return s1; 10115 } 10116 } 10117 10118 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 10119 * and CombineS1S2Desc() 10120 * 10121 * @s1: Attributes from stage 1 walk 10122 * @s2: Attributes from stage 2 walk 10123 */ 10124 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 10125 { 10126 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 10127 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 10128 ARMCacheAttrs ret; 10129 10130 /* Combine shareability attributes (table D4-43) */ 10131 if (s1.shareability == 2 || s2.shareability == 2) { 10132 /* if either are outer-shareable, the result is outer-shareable */ 10133 ret.shareability = 2; 10134 } else if (s1.shareability == 3 || s2.shareability == 3) { 10135 /* if either are inner-shareable, the result is inner-shareable */ 10136 ret.shareability = 3; 10137 } else { 10138 /* both non-shareable */ 10139 ret.shareability = 0; 10140 } 10141 10142 /* Combine memory type and cacheability attributes */ 10143 if (s1hi == 0 || s2hi == 0) { 10144 /* Device has precedence over normal */ 10145 if (s1lo == 0 || s2lo == 0) { 10146 /* nGnRnE has precedence over anything */ 10147 ret.attrs = 0; 10148 } else if (s1lo == 4 || s2lo == 4) { 10149 /* non-Reordering has precedence over Reordering */ 10150 ret.attrs = 4; /* nGnRE */ 10151 } else if (s1lo == 8 || s2lo == 8) { 10152 /* non-Gathering has precedence over Gathering */ 10153 ret.attrs = 8; /* nGRE */ 10154 } else { 10155 ret.attrs = 0xc; /* GRE */ 10156 } 10157 10158 /* Any location for which the resultant memory type is any 10159 * type of Device memory is always treated as Outer Shareable. 10160 */ 10161 ret.shareability = 2; 10162 } else { /* Normal memory */ 10163 /* Outer/inner cacheability combine independently */ 10164 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 10165 | combine_cacheattr_nibble(s1lo, s2lo); 10166 10167 if (ret.attrs == 0x44) { 10168 /* Any location for which the resultant memory type is Normal 10169 * Inner Non-cacheable, Outer Non-cacheable is always treated 10170 * as Outer Shareable. 10171 */ 10172 ret.shareability = 2; 10173 } 10174 } 10175 10176 return ret; 10177 } 10178 10179 10180 /* get_phys_addr - get the physical address for this virtual address 10181 * 10182 * Find the physical address corresponding to the given virtual address, 10183 * by doing a translation table walk on MMU based systems or using the 10184 * MPU state on MPU based systems. 10185 * 10186 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10187 * prot and page_size may not be filled in, and the populated fsr value provides 10188 * information on why the translation aborted, in the format of a 10189 * DFSR/IFSR fault register, with the following caveats: 10190 * * we honour the short vs long DFSR format differences. 10191 * * the WnR bit is never set (the caller must do this). 10192 * * for PSMAv5 based systems we don't bother to return a full FSR format 10193 * value. 10194 * 10195 * @env: CPUARMState 10196 * @address: virtual address to get physical address for 10197 * @access_type: 0 for read, 1 for write, 2 for execute 10198 * @mmu_idx: MMU index indicating required translation regime 10199 * @phys_ptr: set to the physical address corresponding to the virtual address 10200 * @attrs: set to the memory transaction attributes to use 10201 * @prot: set to the permissions for the page containing phys_ptr 10202 * @page_size: set to the size of the page containing phys_ptr 10203 * @fi: set to fault info if the translation fails 10204 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 10205 */ 10206 static bool get_phys_addr(CPUARMState *env, target_ulong address, 10207 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10208 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10209 target_ulong *page_size, 10210 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10211 { 10212 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 10213 /* Call ourselves recursively to do the stage 1 and then stage 2 10214 * translations. 10215 */ 10216 if (arm_feature(env, ARM_FEATURE_EL2)) { 10217 hwaddr ipa; 10218 int s2_prot; 10219 int ret; 10220 ARMCacheAttrs cacheattrs2 = {}; 10221 10222 ret = get_phys_addr(env, address, access_type, 10223 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 10224 prot, page_size, fi, cacheattrs); 10225 10226 /* If S1 fails or S2 is disabled, return early. */ 10227 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 10228 *phys_ptr = ipa; 10229 return ret; 10230 } 10231 10232 /* S1 is done. Now do S2 translation. */ 10233 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 10234 phys_ptr, attrs, &s2_prot, 10235 page_size, fi, 10236 cacheattrs != NULL ? &cacheattrs2 : NULL); 10237 fi->s2addr = ipa; 10238 /* Combine the S1 and S2 perms. */ 10239 *prot &= s2_prot; 10240 10241 /* Combine the S1 and S2 cache attributes, if needed */ 10242 if (!ret && cacheattrs != NULL) { 10243 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 10244 } 10245 10246 return ret; 10247 } else { 10248 /* 10249 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 10250 */ 10251 mmu_idx = stage_1_mmu_idx(mmu_idx); 10252 } 10253 } 10254 10255 /* The page table entries may downgrade secure to non-secure, but 10256 * cannot upgrade an non-secure translation regime's attributes 10257 * to secure. 10258 */ 10259 attrs->secure = regime_is_secure(env, mmu_idx); 10260 attrs->user = regime_is_user(env, mmu_idx); 10261 10262 /* Fast Context Switch Extension. This doesn't exist at all in v8. 10263 * In v7 and earlier it affects all stage 1 translations. 10264 */ 10265 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 10266 && !arm_feature(env, ARM_FEATURE_V8)) { 10267 if (regime_el(env, mmu_idx) == 3) { 10268 address += env->cp15.fcseidr_s; 10269 } else { 10270 address += env->cp15.fcseidr_ns; 10271 } 10272 } 10273 10274 if (arm_feature(env, ARM_FEATURE_PMSA)) { 10275 bool ret; 10276 *page_size = TARGET_PAGE_SIZE; 10277 10278 if (arm_feature(env, ARM_FEATURE_V8)) { 10279 /* PMSAv8 */ 10280 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 10281 phys_ptr, attrs, prot, fi); 10282 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10283 /* PMSAv7 */ 10284 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 10285 phys_ptr, prot, fi); 10286 } else { 10287 /* Pre-v7 MPU */ 10288 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 10289 phys_ptr, prot, fi); 10290 } 10291 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 10292 " mmu_idx %u -> %s (prot %c%c%c)\n", 10293 access_type == MMU_DATA_LOAD ? "reading" : 10294 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 10295 (uint32_t)address, mmu_idx, 10296 ret ? "Miss" : "Hit", 10297 *prot & PAGE_READ ? 'r' : '-', 10298 *prot & PAGE_WRITE ? 'w' : '-', 10299 *prot & PAGE_EXEC ? 'x' : '-'); 10300 10301 return ret; 10302 } 10303 10304 /* Definitely a real MMU, not an MPU */ 10305 10306 if (regime_translation_disabled(env, mmu_idx)) { 10307 /* MMU disabled. */ 10308 *phys_ptr = address; 10309 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10310 *page_size = TARGET_PAGE_SIZE; 10311 return 0; 10312 } 10313 10314 if (regime_using_lpae_format(env, mmu_idx)) { 10315 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 10316 phys_ptr, attrs, prot, page_size, 10317 fi, cacheattrs); 10318 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 10319 return get_phys_addr_v6(env, address, access_type, mmu_idx, 10320 phys_ptr, attrs, prot, page_size, fi); 10321 } else { 10322 return get_phys_addr_v5(env, address, access_type, mmu_idx, 10323 phys_ptr, prot, page_size, fi); 10324 } 10325 } 10326 10327 /* Walk the page table and (if the mapping exists) add the page 10328 * to the TLB. Return false on success, or true on failure. Populate 10329 * fsr with ARM DFSR/IFSR fault register format value on failure. 10330 */ 10331 bool arm_tlb_fill(CPUState *cs, vaddr address, 10332 MMUAccessType access_type, int mmu_idx, 10333 ARMMMUFaultInfo *fi) 10334 { 10335 ARMCPU *cpu = ARM_CPU(cs); 10336 CPUARMState *env = &cpu->env; 10337 hwaddr phys_addr; 10338 target_ulong page_size; 10339 int prot; 10340 int ret; 10341 MemTxAttrs attrs = {}; 10342 10343 ret = get_phys_addr(env, address, access_type, 10344 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr, 10345 &attrs, &prot, &page_size, fi, NULL); 10346 if (!ret) { 10347 /* Map a single [sub]page. */ 10348 phys_addr &= TARGET_PAGE_MASK; 10349 address &= TARGET_PAGE_MASK; 10350 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 10351 prot, mmu_idx, page_size); 10352 return 0; 10353 } 10354 10355 return ret; 10356 } 10357 10358 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 10359 MemTxAttrs *attrs) 10360 { 10361 ARMCPU *cpu = ARM_CPU(cs); 10362 CPUARMState *env = &cpu->env; 10363 hwaddr phys_addr; 10364 target_ulong page_size; 10365 int prot; 10366 bool ret; 10367 ARMMMUFaultInfo fi = {}; 10368 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 10369 10370 *attrs = (MemTxAttrs) {}; 10371 10372 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 10373 attrs, &prot, &page_size, &fi, NULL); 10374 10375 if (ret) { 10376 return -1; 10377 } 10378 return phys_addr; 10379 } 10380 10381 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 10382 { 10383 uint32_t mask; 10384 unsigned el = arm_current_el(env); 10385 10386 /* First handle registers which unprivileged can read */ 10387 10388 switch (reg) { 10389 case 0 ... 7: /* xPSR sub-fields */ 10390 mask = 0; 10391 if ((reg & 1) && el) { 10392 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ 10393 } 10394 if (!(reg & 4)) { 10395 mask |= XPSR_NZCV | XPSR_Q; /* APSR */ 10396 } 10397 /* EPSR reads as zero */ 10398 return xpsr_read(env) & mask; 10399 break; 10400 case 20: /* CONTROL */ 10401 return env->v7m.control[env->v7m.secure]; 10402 case 0x94: /* CONTROL_NS */ 10403 /* We have to handle this here because unprivileged Secure code 10404 * can read the NS CONTROL register. 10405 */ 10406 if (!env->v7m.secure) { 10407 return 0; 10408 } 10409 return env->v7m.control[M_REG_NS]; 10410 } 10411 10412 if (el == 0) { 10413 return 0; /* unprivileged reads others as zero */ 10414 } 10415 10416 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10417 switch (reg) { 10418 case 0x88: /* MSP_NS */ 10419 if (!env->v7m.secure) { 10420 return 0; 10421 } 10422 return env->v7m.other_ss_msp; 10423 case 0x89: /* PSP_NS */ 10424 if (!env->v7m.secure) { 10425 return 0; 10426 } 10427 return env->v7m.other_ss_psp; 10428 case 0x8a: /* MSPLIM_NS */ 10429 if (!env->v7m.secure) { 10430 return 0; 10431 } 10432 return env->v7m.msplim[M_REG_NS]; 10433 case 0x8b: /* PSPLIM_NS */ 10434 if (!env->v7m.secure) { 10435 return 0; 10436 } 10437 return env->v7m.psplim[M_REG_NS]; 10438 case 0x90: /* PRIMASK_NS */ 10439 if (!env->v7m.secure) { 10440 return 0; 10441 } 10442 return env->v7m.primask[M_REG_NS]; 10443 case 0x91: /* BASEPRI_NS */ 10444 if (!env->v7m.secure) { 10445 return 0; 10446 } 10447 return env->v7m.basepri[M_REG_NS]; 10448 case 0x93: /* FAULTMASK_NS */ 10449 if (!env->v7m.secure) { 10450 return 0; 10451 } 10452 return env->v7m.faultmask[M_REG_NS]; 10453 case 0x98: /* SP_NS */ 10454 { 10455 /* This gives the non-secure SP selected based on whether we're 10456 * currently in handler mode or not, using the NS CONTROL.SPSEL. 10457 */ 10458 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 10459 10460 if (!env->v7m.secure) { 10461 return 0; 10462 } 10463 if (!arm_v7m_is_handler_mode(env) && spsel) { 10464 return env->v7m.other_ss_psp; 10465 } else { 10466 return env->v7m.other_ss_msp; 10467 } 10468 } 10469 default: 10470 break; 10471 } 10472 } 10473 10474 switch (reg) { 10475 case 8: /* MSP */ 10476 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13]; 10477 case 9: /* PSP */ 10478 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp; 10479 case 10: /* MSPLIM */ 10480 if (!arm_feature(env, ARM_FEATURE_V8)) { 10481 goto bad_reg; 10482 } 10483 return env->v7m.msplim[env->v7m.secure]; 10484 case 11: /* PSPLIM */ 10485 if (!arm_feature(env, ARM_FEATURE_V8)) { 10486 goto bad_reg; 10487 } 10488 return env->v7m.psplim[env->v7m.secure]; 10489 case 16: /* PRIMASK */ 10490 return env->v7m.primask[env->v7m.secure]; 10491 case 17: /* BASEPRI */ 10492 case 18: /* BASEPRI_MAX */ 10493 return env->v7m.basepri[env->v7m.secure]; 10494 case 19: /* FAULTMASK */ 10495 return env->v7m.faultmask[env->v7m.secure]; 10496 default: 10497 bad_reg: 10498 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" 10499 " register %d\n", reg); 10500 return 0; 10501 } 10502 } 10503 10504 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) 10505 { 10506 /* We're passed bits [11..0] of the instruction; extract 10507 * SYSm and the mask bits. 10508 * Invalid combinations of SYSm and mask are UNPREDICTABLE; 10509 * we choose to treat them as if the mask bits were valid. 10510 * NB that the pseudocode 'mask' variable is bits [11..10], 10511 * whereas ours is [11..8]. 10512 */ 10513 uint32_t mask = extract32(maskreg, 8, 4); 10514 uint32_t reg = extract32(maskreg, 0, 8); 10515 10516 if (arm_current_el(env) == 0 && reg > 7) { 10517 /* only xPSR sub-fields may be written by unprivileged */ 10518 return; 10519 } 10520 10521 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10522 switch (reg) { 10523 case 0x88: /* MSP_NS */ 10524 if (!env->v7m.secure) { 10525 return; 10526 } 10527 env->v7m.other_ss_msp = val; 10528 return; 10529 case 0x89: /* PSP_NS */ 10530 if (!env->v7m.secure) { 10531 return; 10532 } 10533 env->v7m.other_ss_psp = val; 10534 return; 10535 case 0x8a: /* MSPLIM_NS */ 10536 if (!env->v7m.secure) { 10537 return; 10538 } 10539 env->v7m.msplim[M_REG_NS] = val & ~7; 10540 return; 10541 case 0x8b: /* PSPLIM_NS */ 10542 if (!env->v7m.secure) { 10543 return; 10544 } 10545 env->v7m.psplim[M_REG_NS] = val & ~7; 10546 return; 10547 case 0x90: /* PRIMASK_NS */ 10548 if (!env->v7m.secure) { 10549 return; 10550 } 10551 env->v7m.primask[M_REG_NS] = val & 1; 10552 return; 10553 case 0x91: /* BASEPRI_NS */ 10554 if (!env->v7m.secure) { 10555 return; 10556 } 10557 env->v7m.basepri[M_REG_NS] = val & 0xff; 10558 return; 10559 case 0x93: /* FAULTMASK_NS */ 10560 if (!env->v7m.secure) { 10561 return; 10562 } 10563 env->v7m.faultmask[M_REG_NS] = val & 1; 10564 return; 10565 case 0x94: /* CONTROL_NS */ 10566 if (!env->v7m.secure) { 10567 return; 10568 } 10569 write_v7m_control_spsel_for_secstate(env, 10570 val & R_V7M_CONTROL_SPSEL_MASK, 10571 M_REG_NS); 10572 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK; 10573 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK; 10574 return; 10575 case 0x98: /* SP_NS */ 10576 { 10577 /* This gives the non-secure SP selected based on whether we're 10578 * currently in handler mode or not, using the NS CONTROL.SPSEL. 10579 */ 10580 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 10581 10582 if (!env->v7m.secure) { 10583 return; 10584 } 10585 if (!arm_v7m_is_handler_mode(env) && spsel) { 10586 env->v7m.other_ss_psp = val; 10587 } else { 10588 env->v7m.other_ss_msp = val; 10589 } 10590 return; 10591 } 10592 default: 10593 break; 10594 } 10595 } 10596 10597 switch (reg) { 10598 case 0 ... 7: /* xPSR sub-fields */ 10599 /* only APSR is actually writable */ 10600 if (!(reg & 4)) { 10601 uint32_t apsrmask = 0; 10602 10603 if (mask & 8) { 10604 apsrmask |= XPSR_NZCV | XPSR_Q; 10605 } 10606 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 10607 apsrmask |= XPSR_GE; 10608 } 10609 xpsr_write(env, val, apsrmask); 10610 } 10611 break; 10612 case 8: /* MSP */ 10613 if (v7m_using_psp(env)) { 10614 env->v7m.other_sp = val; 10615 } else { 10616 env->regs[13] = val; 10617 } 10618 break; 10619 case 9: /* PSP */ 10620 if (v7m_using_psp(env)) { 10621 env->regs[13] = val; 10622 } else { 10623 env->v7m.other_sp = val; 10624 } 10625 break; 10626 case 10: /* MSPLIM */ 10627 if (!arm_feature(env, ARM_FEATURE_V8)) { 10628 goto bad_reg; 10629 } 10630 env->v7m.msplim[env->v7m.secure] = val & ~7; 10631 break; 10632 case 11: /* PSPLIM */ 10633 if (!arm_feature(env, ARM_FEATURE_V8)) { 10634 goto bad_reg; 10635 } 10636 env->v7m.psplim[env->v7m.secure] = val & ~7; 10637 break; 10638 case 16: /* PRIMASK */ 10639 env->v7m.primask[env->v7m.secure] = val & 1; 10640 break; 10641 case 17: /* BASEPRI */ 10642 env->v7m.basepri[env->v7m.secure] = val & 0xff; 10643 break; 10644 case 18: /* BASEPRI_MAX */ 10645 val &= 0xff; 10646 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] 10647 || env->v7m.basepri[env->v7m.secure] == 0)) { 10648 env->v7m.basepri[env->v7m.secure] = val; 10649 } 10650 break; 10651 case 19: /* FAULTMASK */ 10652 env->v7m.faultmask[env->v7m.secure] = val & 1; 10653 break; 10654 case 20: /* CONTROL */ 10655 /* Writing to the SPSEL bit only has an effect if we are in 10656 * thread mode; other bits can be updated by any privileged code. 10657 * write_v7m_control_spsel() deals with updating the SPSEL bit in 10658 * env->v7m.control, so we only need update the others. 10659 * For v7M, we must just ignore explicit writes to SPSEL in handler 10660 * mode; for v8M the write is permitted but will have no effect. 10661 */ 10662 if (arm_feature(env, ARM_FEATURE_V8) || 10663 !arm_v7m_is_handler_mode(env)) { 10664 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); 10665 } 10666 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; 10667 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; 10668 break; 10669 default: 10670 bad_reg: 10671 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" 10672 " register %d\n", reg); 10673 return; 10674 } 10675 } 10676 10677 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 10678 { 10679 /* Implement the TT instruction. op is bits [7:6] of the insn. */ 10680 bool forceunpriv = op & 1; 10681 bool alt = op & 2; 10682 V8M_SAttributes sattrs = {}; 10683 uint32_t tt_resp; 10684 bool r, rw, nsr, nsrw, mrvalid; 10685 int prot; 10686 ARMMMUFaultInfo fi = {}; 10687 MemTxAttrs attrs = {}; 10688 hwaddr phys_addr; 10689 ARMMMUIdx mmu_idx; 10690 uint32_t mregion; 10691 bool targetpriv; 10692 bool targetsec = env->v7m.secure; 10693 10694 /* Work out what the security state and privilege level we're 10695 * interested in is... 10696 */ 10697 if (alt) { 10698 targetsec = !targetsec; 10699 } 10700 10701 if (forceunpriv) { 10702 targetpriv = false; 10703 } else { 10704 targetpriv = arm_v7m_is_handler_mode(env) || 10705 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK); 10706 } 10707 10708 /* ...and then figure out which MMU index this is */ 10709 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv); 10710 10711 /* We know that the MPU and SAU don't care about the access type 10712 * for our purposes beyond that we don't want to claim to be 10713 * an insn fetch, so we arbitrarily call this a read. 10714 */ 10715 10716 /* MPU region info only available for privileged or if 10717 * inspecting the other MPU state. 10718 */ 10719 if (arm_current_el(env) != 0 || alt) { 10720 /* We can ignore the return value as prot is always set */ 10721 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, 10722 &phys_addr, &attrs, &prot, &fi, &mregion); 10723 if (mregion == -1) { 10724 mrvalid = false; 10725 mregion = 0; 10726 } else { 10727 mrvalid = true; 10728 } 10729 r = prot & PAGE_READ; 10730 rw = prot & PAGE_WRITE; 10731 } else { 10732 r = false; 10733 rw = false; 10734 mrvalid = false; 10735 mregion = 0; 10736 } 10737 10738 if (env->v7m.secure) { 10739 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 10740 nsr = sattrs.ns && r; 10741 nsrw = sattrs.ns && rw; 10742 } else { 10743 sattrs.ns = true; 10744 nsr = false; 10745 nsrw = false; 10746 } 10747 10748 tt_resp = (sattrs.iregion << 24) | 10749 (sattrs.irvalid << 23) | 10750 ((!sattrs.ns) << 22) | 10751 (nsrw << 21) | 10752 (nsr << 20) | 10753 (rw << 19) | 10754 (r << 18) | 10755 (sattrs.srvalid << 17) | 10756 (mrvalid << 16) | 10757 (sattrs.sregion << 8) | 10758 mregion; 10759 10760 return tt_resp; 10761 } 10762 10763 #endif 10764 10765 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 10766 { 10767 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 10768 * Note that we do not implement the (architecturally mandated) 10769 * alignment fault for attempts to use this on Device memory 10770 * (which matches the usual QEMU behaviour of not implementing either 10771 * alignment faults or any memory attribute handling). 10772 */ 10773 10774 ARMCPU *cpu = arm_env_get_cpu(env); 10775 uint64_t blocklen = 4 << cpu->dcz_blocksize; 10776 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 10777 10778 #ifndef CONFIG_USER_ONLY 10779 { 10780 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 10781 * the block size so we might have to do more than one TLB lookup. 10782 * We know that in fact for any v8 CPU the page size is at least 4K 10783 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 10784 * 1K as an artefact of legacy v5 subpage support being present in the 10785 * same QEMU executable. 10786 */ 10787 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 10788 void *hostaddr[maxidx]; 10789 int try, i; 10790 unsigned mmu_idx = cpu_mmu_index(env, false); 10791 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 10792 10793 for (try = 0; try < 2; try++) { 10794 10795 for (i = 0; i < maxidx; i++) { 10796 hostaddr[i] = tlb_vaddr_to_host(env, 10797 vaddr + TARGET_PAGE_SIZE * i, 10798 1, mmu_idx); 10799 if (!hostaddr[i]) { 10800 break; 10801 } 10802 } 10803 if (i == maxidx) { 10804 /* If it's all in the TLB it's fair game for just writing to; 10805 * we know we don't need to update dirty status, etc. 10806 */ 10807 for (i = 0; i < maxidx - 1; i++) { 10808 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 10809 } 10810 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 10811 return; 10812 } 10813 /* OK, try a store and see if we can populate the tlb. This 10814 * might cause an exception if the memory isn't writable, 10815 * in which case we will longjmp out of here. We must for 10816 * this purpose use the actual register value passed to us 10817 * so that we get the fault address right. 10818 */ 10819 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 10820 /* Now we can populate the other TLB entries, if any */ 10821 for (i = 0; i < maxidx; i++) { 10822 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 10823 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 10824 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 10825 } 10826 } 10827 } 10828 10829 /* Slow path (probably attempt to do this to an I/O device or 10830 * similar, or clearing of a block of code we have translations 10831 * cached for). Just do a series of byte writes as the architecture 10832 * demands. It's not worth trying to use a cpu_physical_memory_map(), 10833 * memset(), unmap() sequence here because: 10834 * + we'd need to account for the blocksize being larger than a page 10835 * + the direct-RAM access case is almost always going to be dealt 10836 * with in the fastpath code above, so there's no speed benefit 10837 * + we would have to deal with the map returning NULL because the 10838 * bounce buffer was in use 10839 */ 10840 for (i = 0; i < blocklen; i++) { 10841 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 10842 } 10843 } 10844 #else 10845 memset(g2h(vaddr), 0, blocklen); 10846 #endif 10847 } 10848 10849 /* Note that signed overflow is undefined in C. The following routines are 10850 careful to use unsigned types where modulo arithmetic is required. 10851 Failure to do so _will_ break on newer gcc. */ 10852 10853 /* Signed saturating arithmetic. */ 10854 10855 /* Perform 16-bit signed saturating addition. */ 10856 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10857 { 10858 uint16_t res; 10859 10860 res = a + b; 10861 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10862 if (a & 0x8000) 10863 res = 0x8000; 10864 else 10865 res = 0x7fff; 10866 } 10867 return res; 10868 } 10869 10870 /* Perform 8-bit signed saturating addition. */ 10871 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10872 { 10873 uint8_t res; 10874 10875 res = a + b; 10876 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10877 if (a & 0x80) 10878 res = 0x80; 10879 else 10880 res = 0x7f; 10881 } 10882 return res; 10883 } 10884 10885 /* Perform 16-bit signed saturating subtraction. */ 10886 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10887 { 10888 uint16_t res; 10889 10890 res = a - b; 10891 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10892 if (a & 0x8000) 10893 res = 0x8000; 10894 else 10895 res = 0x7fff; 10896 } 10897 return res; 10898 } 10899 10900 /* Perform 8-bit signed saturating subtraction. */ 10901 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10902 { 10903 uint8_t res; 10904 10905 res = a - b; 10906 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10907 if (a & 0x80) 10908 res = 0x80; 10909 else 10910 res = 0x7f; 10911 } 10912 return res; 10913 } 10914 10915 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10916 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10917 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10918 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10919 #define PFX q 10920 10921 #include "op_addsub.h" 10922 10923 /* Unsigned saturating arithmetic. */ 10924 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10925 { 10926 uint16_t res; 10927 res = a + b; 10928 if (res < a) 10929 res = 0xffff; 10930 return res; 10931 } 10932 10933 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10934 { 10935 if (a > b) 10936 return a - b; 10937 else 10938 return 0; 10939 } 10940 10941 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10942 { 10943 uint8_t res; 10944 res = a + b; 10945 if (res < a) 10946 res = 0xff; 10947 return res; 10948 } 10949 10950 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10951 { 10952 if (a > b) 10953 return a - b; 10954 else 10955 return 0; 10956 } 10957 10958 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 10959 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 10960 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 10961 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 10962 #define PFX uq 10963 10964 #include "op_addsub.h" 10965 10966 /* Signed modulo arithmetic. */ 10967 #define SARITH16(a, b, n, op) do { \ 10968 int32_t sum; \ 10969 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 10970 RESULT(sum, n, 16); \ 10971 if (sum >= 0) \ 10972 ge |= 3 << (n * 2); \ 10973 } while(0) 10974 10975 #define SARITH8(a, b, n, op) do { \ 10976 int32_t sum; \ 10977 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 10978 RESULT(sum, n, 8); \ 10979 if (sum >= 0) \ 10980 ge |= 1 << n; \ 10981 } while(0) 10982 10983 10984 #define ADD16(a, b, n) SARITH16(a, b, n, +) 10985 #define SUB16(a, b, n) SARITH16(a, b, n, -) 10986 #define ADD8(a, b, n) SARITH8(a, b, n, +) 10987 #define SUB8(a, b, n) SARITH8(a, b, n, -) 10988 #define PFX s 10989 #define ARITH_GE 10990 10991 #include "op_addsub.h" 10992 10993 /* Unsigned modulo arithmetic. */ 10994 #define ADD16(a, b, n) do { \ 10995 uint32_t sum; \ 10996 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 10997 RESULT(sum, n, 16); \ 10998 if ((sum >> 16) == 1) \ 10999 ge |= 3 << (n * 2); \ 11000 } while(0) 11001 11002 #define ADD8(a, b, n) do { \ 11003 uint32_t sum; \ 11004 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11005 RESULT(sum, n, 8); \ 11006 if ((sum >> 8) == 1) \ 11007 ge |= 1 << n; \ 11008 } while(0) 11009 11010 #define SUB16(a, b, n) do { \ 11011 uint32_t sum; \ 11012 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11013 RESULT(sum, n, 16); \ 11014 if ((sum >> 16) == 0) \ 11015 ge |= 3 << (n * 2); \ 11016 } while(0) 11017 11018 #define SUB8(a, b, n) do { \ 11019 uint32_t sum; \ 11020 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11021 RESULT(sum, n, 8); \ 11022 if ((sum >> 8) == 0) \ 11023 ge |= 1 << n; \ 11024 } while(0) 11025 11026 #define PFX u 11027 #define ARITH_GE 11028 11029 #include "op_addsub.h" 11030 11031 /* Halved signed arithmetic. */ 11032 #define ADD16(a, b, n) \ 11033 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11034 #define SUB16(a, b, n) \ 11035 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11036 #define ADD8(a, b, n) \ 11037 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11038 #define SUB8(a, b, n) \ 11039 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11040 #define PFX sh 11041 11042 #include "op_addsub.h" 11043 11044 /* Halved unsigned arithmetic. */ 11045 #define ADD16(a, b, n) \ 11046 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11047 #define SUB16(a, b, n) \ 11048 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11049 #define ADD8(a, b, n) \ 11050 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11051 #define SUB8(a, b, n) \ 11052 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11053 #define PFX uh 11054 11055 #include "op_addsub.h" 11056 11057 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11058 { 11059 if (a > b) 11060 return a - b; 11061 else 11062 return b - a; 11063 } 11064 11065 /* Unsigned sum of absolute byte differences. */ 11066 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11067 { 11068 uint32_t sum; 11069 sum = do_usad(a, b); 11070 sum += do_usad(a >> 8, b >> 8); 11071 sum += do_usad(a >> 16, b >>16); 11072 sum += do_usad(a >> 24, b >> 24); 11073 return sum; 11074 } 11075 11076 /* For ARMv6 SEL instruction. */ 11077 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11078 { 11079 uint32_t mask; 11080 11081 mask = 0; 11082 if (flags & 1) 11083 mask |= 0xff; 11084 if (flags & 2) 11085 mask |= 0xff00; 11086 if (flags & 4) 11087 mask |= 0xff0000; 11088 if (flags & 8) 11089 mask |= 0xff000000; 11090 return (a & mask) | (b & ~mask); 11091 } 11092 11093 /* VFP support. We follow the convention used for VFP instructions: 11094 Single precision routines have a "s" suffix, double precision a 11095 "d" suffix. */ 11096 11097 /* Convert host exception flags to vfp form. */ 11098 static inline int vfp_exceptbits_from_host(int host_bits) 11099 { 11100 int target_bits = 0; 11101 11102 if (host_bits & float_flag_invalid) 11103 target_bits |= 1; 11104 if (host_bits & float_flag_divbyzero) 11105 target_bits |= 2; 11106 if (host_bits & float_flag_overflow) 11107 target_bits |= 4; 11108 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) 11109 target_bits |= 8; 11110 if (host_bits & float_flag_inexact) 11111 target_bits |= 0x10; 11112 if (host_bits & float_flag_input_denormal) 11113 target_bits |= 0x80; 11114 return target_bits; 11115 } 11116 11117 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) 11118 { 11119 int i; 11120 uint32_t fpscr; 11121 11122 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) 11123 | (env->vfp.vec_len << 16) 11124 | (env->vfp.vec_stride << 20); 11125 i = get_float_exception_flags(&env->vfp.fp_status); 11126 i |= get_float_exception_flags(&env->vfp.standard_fp_status); 11127 i |= get_float_exception_flags(&env->vfp.fp_status_f16); 11128 fpscr |= vfp_exceptbits_from_host(i); 11129 return fpscr; 11130 } 11131 11132 uint32_t vfp_get_fpscr(CPUARMState *env) 11133 { 11134 return HELPER(vfp_get_fpscr)(env); 11135 } 11136 11137 /* Convert vfp exception flags to target form. */ 11138 static inline int vfp_exceptbits_to_host(int target_bits) 11139 { 11140 int host_bits = 0; 11141 11142 if (target_bits & 1) 11143 host_bits |= float_flag_invalid; 11144 if (target_bits & 2) 11145 host_bits |= float_flag_divbyzero; 11146 if (target_bits & 4) 11147 host_bits |= float_flag_overflow; 11148 if (target_bits & 8) 11149 host_bits |= float_flag_underflow; 11150 if (target_bits & 0x10) 11151 host_bits |= float_flag_inexact; 11152 if (target_bits & 0x80) 11153 host_bits |= float_flag_input_denormal; 11154 return host_bits; 11155 } 11156 11157 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) 11158 { 11159 int i; 11160 uint32_t changed; 11161 11162 changed = env->vfp.xregs[ARM_VFP_FPSCR]; 11163 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); 11164 env->vfp.vec_len = (val >> 16) & 7; 11165 env->vfp.vec_stride = (val >> 20) & 3; 11166 11167 changed ^= val; 11168 if (changed & (3 << 22)) { 11169 i = (val >> 22) & 3; 11170 switch (i) { 11171 case FPROUNDING_TIEEVEN: 11172 i = float_round_nearest_even; 11173 break; 11174 case FPROUNDING_POSINF: 11175 i = float_round_up; 11176 break; 11177 case FPROUNDING_NEGINF: 11178 i = float_round_down; 11179 break; 11180 case FPROUNDING_ZERO: 11181 i = float_round_to_zero; 11182 break; 11183 } 11184 set_float_rounding_mode(i, &env->vfp.fp_status); 11185 set_float_rounding_mode(i, &env->vfp.fp_status_f16); 11186 } 11187 if (changed & FPCR_FZ16) { 11188 bool ftz_enabled = val & FPCR_FZ16; 11189 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 11190 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 11191 } 11192 if (changed & FPCR_FZ) { 11193 bool ftz_enabled = val & FPCR_FZ; 11194 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status); 11195 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status); 11196 } 11197 if (changed & FPCR_DN) { 11198 bool dnan_enabled = val & FPCR_DN; 11199 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status); 11200 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16); 11201 } 11202 11203 /* The exception flags are ORed together when we read fpscr so we 11204 * only need to preserve the current state in one of our 11205 * float_status values. 11206 */ 11207 i = vfp_exceptbits_to_host(val); 11208 set_float_exception_flags(i, &env->vfp.fp_status); 11209 set_float_exception_flags(0, &env->vfp.fp_status_f16); 11210 set_float_exception_flags(0, &env->vfp.standard_fp_status); 11211 } 11212 11213 void vfp_set_fpscr(CPUARMState *env, uint32_t val) 11214 { 11215 HELPER(vfp_set_fpscr)(env, val); 11216 } 11217 11218 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) 11219 11220 #define VFP_BINOP(name) \ 11221 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ 11222 { \ 11223 float_status *fpst = fpstp; \ 11224 return float32_ ## name(a, b, fpst); \ 11225 } \ 11226 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ 11227 { \ 11228 float_status *fpst = fpstp; \ 11229 return float64_ ## name(a, b, fpst); \ 11230 } 11231 VFP_BINOP(add) 11232 VFP_BINOP(sub) 11233 VFP_BINOP(mul) 11234 VFP_BINOP(div) 11235 VFP_BINOP(min) 11236 VFP_BINOP(max) 11237 VFP_BINOP(minnum) 11238 VFP_BINOP(maxnum) 11239 #undef VFP_BINOP 11240 11241 float32 VFP_HELPER(neg, s)(float32 a) 11242 { 11243 return float32_chs(a); 11244 } 11245 11246 float64 VFP_HELPER(neg, d)(float64 a) 11247 { 11248 return float64_chs(a); 11249 } 11250 11251 float32 VFP_HELPER(abs, s)(float32 a) 11252 { 11253 return float32_abs(a); 11254 } 11255 11256 float64 VFP_HELPER(abs, d)(float64 a) 11257 { 11258 return float64_abs(a); 11259 } 11260 11261 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) 11262 { 11263 return float32_sqrt(a, &env->vfp.fp_status); 11264 } 11265 11266 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) 11267 { 11268 return float64_sqrt(a, &env->vfp.fp_status); 11269 } 11270 11271 /* XXX: check quiet/signaling case */ 11272 #define DO_VFP_cmp(p, type) \ 11273 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ 11274 { \ 11275 uint32_t flags; \ 11276 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ 11277 case 0: flags = 0x6; break; \ 11278 case -1: flags = 0x8; break; \ 11279 case 1: flags = 0x2; break; \ 11280 default: case 2: flags = 0x3; break; \ 11281 } \ 11282 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 11283 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 11284 } \ 11285 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ 11286 { \ 11287 uint32_t flags; \ 11288 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ 11289 case 0: flags = 0x6; break; \ 11290 case -1: flags = 0x8; break; \ 11291 case 1: flags = 0x2; break; \ 11292 default: case 2: flags = 0x3; break; \ 11293 } \ 11294 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 11295 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 11296 } 11297 DO_VFP_cmp(s, float32) 11298 DO_VFP_cmp(d, float64) 11299 #undef DO_VFP_cmp 11300 11301 /* Integer to float and float to integer conversions */ 11302 11303 #define CONV_ITOF(name, fsz, sign) \ 11304 float##fsz HELPER(name)(uint32_t x, void *fpstp) \ 11305 { \ 11306 float_status *fpst = fpstp; \ 11307 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ 11308 } 11309 11310 #define CONV_FTOI(name, fsz, sign, round) \ 11311 uint32_t HELPER(name)(float##fsz x, void *fpstp) \ 11312 { \ 11313 float_status *fpst = fpstp; \ 11314 if (float##fsz##_is_any_nan(x)) { \ 11315 float_raise(float_flag_invalid, fpst); \ 11316 return 0; \ 11317 } \ 11318 return float##fsz##_to_##sign##int32##round(x, fpst); \ 11319 } 11320 11321 #define FLOAT_CONVS(name, p, fsz, sign) \ 11322 CONV_ITOF(vfp_##name##to##p, fsz, sign) \ 11323 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ 11324 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) 11325 11326 FLOAT_CONVS(si, h, 16, ) 11327 FLOAT_CONVS(si, s, 32, ) 11328 FLOAT_CONVS(si, d, 64, ) 11329 FLOAT_CONVS(ui, h, 16, u) 11330 FLOAT_CONVS(ui, s, 32, u) 11331 FLOAT_CONVS(ui, d, 64, u) 11332 11333 #undef CONV_ITOF 11334 #undef CONV_FTOI 11335 #undef FLOAT_CONVS 11336 11337 /* floating point conversion */ 11338 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) 11339 { 11340 float64 r = float32_to_float64(x, &env->vfp.fp_status); 11341 /* ARM requires that S<->D conversion of any kind of NaN generates 11342 * a quiet NaN by forcing the most significant frac bit to 1. 11343 */ 11344 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 11345 } 11346 11347 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) 11348 { 11349 float32 r = float64_to_float32(x, &env->vfp.fp_status); 11350 /* ARM requires that S<->D conversion of any kind of NaN generates 11351 * a quiet NaN by forcing the most significant frac bit to 1. 11352 */ 11353 return float32_maybe_silence_nan(r, &env->vfp.fp_status); 11354 } 11355 11356 /* VFP3 fixed point conversion. */ 11357 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11358 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ 11359 void *fpstp) \ 11360 { \ 11361 float_status *fpst = fpstp; \ 11362 float##fsz tmp; \ 11363 tmp = itype##_to_##float##fsz(x, fpst); \ 11364 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ 11365 } 11366 11367 /* Notice that we want only input-denormal exception flags from the 11368 * scalbn operation: the other possible flags (overflow+inexact if 11369 * we overflow to infinity, output-denormal) aren't correct for the 11370 * complete scale-and-convert operation. 11371 */ 11372 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ 11373 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ 11374 uint32_t shift, \ 11375 void *fpstp) \ 11376 { \ 11377 float_status *fpst = fpstp; \ 11378 int old_exc_flags = get_float_exception_flags(fpst); \ 11379 float##fsz tmp; \ 11380 if (float##fsz##_is_any_nan(x)) { \ 11381 float_raise(float_flag_invalid, fpst); \ 11382 return 0; \ 11383 } \ 11384 tmp = float##fsz##_scalbn(x, shift, fpst); \ 11385 old_exc_flags |= get_float_exception_flags(fpst) \ 11386 & float_flag_input_denormal; \ 11387 set_float_exception_flags(old_exc_flags, fpst); \ 11388 return float##fsz##_to_##itype##round(tmp, fpst); \ 11389 } 11390 11391 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ 11392 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11393 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ 11394 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 11395 11396 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ 11397 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11398 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 11399 11400 VFP_CONV_FIX(sh, d, 64, 64, int16) 11401 VFP_CONV_FIX(sl, d, 64, 64, int32) 11402 VFP_CONV_FIX_A64(sq, d, 64, 64, int64) 11403 VFP_CONV_FIX(uh, d, 64, 64, uint16) 11404 VFP_CONV_FIX(ul, d, 64, 64, uint32) 11405 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) 11406 VFP_CONV_FIX(sh, s, 32, 32, int16) 11407 VFP_CONV_FIX(sl, s, 32, 32, int32) 11408 VFP_CONV_FIX_A64(sq, s, 32, 64, int64) 11409 VFP_CONV_FIX(uh, s, 32, 32, uint16) 11410 VFP_CONV_FIX(ul, s, 32, 32, uint32) 11411 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) 11412 VFP_CONV_FIX_A64(sl, h, 16, 32, int32) 11413 VFP_CONV_FIX_A64(ul, h, 16, 32, uint32) 11414 #undef VFP_CONV_FIX 11415 #undef VFP_CONV_FIX_FLOAT 11416 #undef VFP_CONV_FLOAT_FIX_ROUND 11417 11418 /* Set the current fp rounding mode and return the old one. 11419 * The argument is a softfloat float_round_ value. 11420 */ 11421 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp) 11422 { 11423 float_status *fp_status = fpstp; 11424 11425 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 11426 set_float_rounding_mode(rmode, fp_status); 11427 11428 return prev_rmode; 11429 } 11430 11431 /* Set the current fp rounding mode in the standard fp status and return 11432 * the old one. This is for NEON instructions that need to change the 11433 * rounding mode but wish to use the standard FPSCR values for everything 11434 * else. Always set the rounding mode back to the correct value after 11435 * modifying it. 11436 * The argument is a softfloat float_round_ value. 11437 */ 11438 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) 11439 { 11440 float_status *fp_status = &env->vfp.standard_fp_status; 11441 11442 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 11443 set_float_rounding_mode(rmode, fp_status); 11444 11445 return prev_rmode; 11446 } 11447 11448 /* Half precision conversions. */ 11449 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) 11450 { 11451 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 11452 float32 r = float16_to_float32(make_float16(a), ieee, s); 11453 if (ieee) { 11454 return float32_maybe_silence_nan(r, s); 11455 } 11456 return r; 11457 } 11458 11459 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) 11460 { 11461 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 11462 float16 r = float32_to_float16(a, ieee, s); 11463 if (ieee) { 11464 r = float16_maybe_silence_nan(r, s); 11465 } 11466 return float16_val(r); 11467 } 11468 11469 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 11470 { 11471 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); 11472 } 11473 11474 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 11475 { 11476 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); 11477 } 11478 11479 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 11480 { 11481 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); 11482 } 11483 11484 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 11485 { 11486 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); 11487 } 11488 11489 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) 11490 { 11491 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 11492 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); 11493 if (ieee) { 11494 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 11495 } 11496 return r; 11497 } 11498 11499 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) 11500 { 11501 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 11502 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); 11503 if (ieee) { 11504 r = float16_maybe_silence_nan(r, &env->vfp.fp_status); 11505 } 11506 return float16_val(r); 11507 } 11508 11509 #define float32_two make_float32(0x40000000) 11510 #define float32_three make_float32(0x40400000) 11511 #define float32_one_point_five make_float32(0x3fc00000) 11512 11513 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) 11514 { 11515 float_status *s = &env->vfp.standard_fp_status; 11516 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 11517 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 11518 if (!(float32_is_zero(a) || float32_is_zero(b))) { 11519 float_raise(float_flag_input_denormal, s); 11520 } 11521 return float32_two; 11522 } 11523 return float32_sub(float32_two, float32_mul(a, b, s), s); 11524 } 11525 11526 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) 11527 { 11528 float_status *s = &env->vfp.standard_fp_status; 11529 float32 product; 11530 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 11531 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 11532 if (!(float32_is_zero(a) || float32_is_zero(b))) { 11533 float_raise(float_flag_input_denormal, s); 11534 } 11535 return float32_one_point_five; 11536 } 11537 product = float32_mul(a, b, s); 11538 return float32_div(float32_sub(float32_three, product, s), float32_two, s); 11539 } 11540 11541 /* NEON helpers. */ 11542 11543 /* Constants 256 and 512 are used in some helpers; we avoid relying on 11544 * int->float conversions at run-time. */ 11545 #define float64_256 make_float64(0x4070000000000000LL) 11546 #define float64_512 make_float64(0x4080000000000000LL) 11547 #define float16_maxnorm make_float16(0x7bff) 11548 #define float32_maxnorm make_float32(0x7f7fffff) 11549 #define float64_maxnorm make_float64(0x7fefffffffffffffLL) 11550 11551 /* Reciprocal functions 11552 * 11553 * The algorithm that must be used to calculate the estimate 11554 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate 11555 */ 11556 11557 /* See RecipEstimate() 11558 * 11559 * input is a 9 bit fixed point number 11560 * input range 256 .. 511 for a number from 0.5 <= x < 1.0. 11561 * result range 256 .. 511 for a number from 1.0 to 511/256. 11562 */ 11563 11564 static int recip_estimate(int input) 11565 { 11566 int a, b, r; 11567 assert(256 <= input && input < 512); 11568 a = (input * 2) + 1; 11569 b = (1 << 19) / a; 11570 r = (b + 1) >> 1; 11571 assert(256 <= r && r < 512); 11572 return r; 11573 } 11574 11575 /* 11576 * Common wrapper to call recip_estimate 11577 * 11578 * The parameters are exponent and 64 bit fraction (without implicit 11579 * bit) where the binary point is nominally at bit 52. Returns a 11580 * float64 which can then be rounded to the appropriate size by the 11581 * callee. 11582 */ 11583 11584 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac) 11585 { 11586 uint32_t scaled, estimate; 11587 uint64_t result_frac; 11588 int result_exp; 11589 11590 /* Handle sub-normals */ 11591 if (*exp == 0) { 11592 if (extract64(frac, 51, 1) == 0) { 11593 *exp = -1; 11594 frac <<= 2; 11595 } else { 11596 frac <<= 1; 11597 } 11598 } 11599 11600 /* scaled = UInt('1':fraction<51:44>) */ 11601 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 11602 estimate = recip_estimate(scaled); 11603 11604 result_exp = exp_off - *exp; 11605 result_frac = deposit64(0, 44, 8, estimate); 11606 if (result_exp == 0) { 11607 result_frac = deposit64(result_frac >> 1, 51, 1, 1); 11608 } else if (result_exp == -1) { 11609 result_frac = deposit64(result_frac >> 2, 50, 2, 1); 11610 result_exp = 0; 11611 } 11612 11613 *exp = result_exp; 11614 11615 return result_frac; 11616 } 11617 11618 static bool round_to_inf(float_status *fpst, bool sign_bit) 11619 { 11620 switch (fpst->float_rounding_mode) { 11621 case float_round_nearest_even: /* Round to Nearest */ 11622 return true; 11623 case float_round_up: /* Round to +Inf */ 11624 return !sign_bit; 11625 case float_round_down: /* Round to -Inf */ 11626 return sign_bit; 11627 case float_round_to_zero: /* Round to Zero */ 11628 return false; 11629 } 11630 11631 g_assert_not_reached(); 11632 } 11633 11634 float16 HELPER(recpe_f16)(float16 input, void *fpstp) 11635 { 11636 float_status *fpst = fpstp; 11637 float16 f16 = float16_squash_input_denormal(input, fpst); 11638 uint32_t f16_val = float16_val(f16); 11639 uint32_t f16_sign = float16_is_neg(f16); 11640 int f16_exp = extract32(f16_val, 10, 5); 11641 uint32_t f16_frac = extract32(f16_val, 0, 10); 11642 uint64_t f64_frac; 11643 11644 if (float16_is_any_nan(f16)) { 11645 float16 nan = f16; 11646 if (float16_is_signaling_nan(f16, fpst)) { 11647 float_raise(float_flag_invalid, fpst); 11648 nan = float16_maybe_silence_nan(f16, fpst); 11649 } 11650 if (fpst->default_nan_mode) { 11651 nan = float16_default_nan(fpst); 11652 } 11653 return nan; 11654 } else if (float16_is_infinity(f16)) { 11655 return float16_set_sign(float16_zero, float16_is_neg(f16)); 11656 } else if (float16_is_zero(f16)) { 11657 float_raise(float_flag_divbyzero, fpst); 11658 return float16_set_sign(float16_infinity, float16_is_neg(f16)); 11659 } else if (float16_abs(f16) < (1 << 8)) { 11660 /* Abs(value) < 2.0^-16 */ 11661 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11662 if (round_to_inf(fpst, f16_sign)) { 11663 return float16_set_sign(float16_infinity, f16_sign); 11664 } else { 11665 return float16_set_sign(float16_maxnorm, f16_sign); 11666 } 11667 } else if (f16_exp >= 29 && fpst->flush_to_zero) { 11668 float_raise(float_flag_underflow, fpst); 11669 return float16_set_sign(float16_zero, float16_is_neg(f16)); 11670 } 11671 11672 f64_frac = call_recip_estimate(&f16_exp, 29, 11673 ((uint64_t) f16_frac) << (52 - 10)); 11674 11675 /* result = sign : result_exp<4:0> : fraction<51:42> */ 11676 f16_val = deposit32(0, 15, 1, f16_sign); 11677 f16_val = deposit32(f16_val, 10, 5, f16_exp); 11678 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10)); 11679 return make_float16(f16_val); 11680 } 11681 11682 float32 HELPER(recpe_f32)(float32 input, void *fpstp) 11683 { 11684 float_status *fpst = fpstp; 11685 float32 f32 = float32_squash_input_denormal(input, fpst); 11686 uint32_t f32_val = float32_val(f32); 11687 bool f32_sign = float32_is_neg(f32); 11688 int f32_exp = extract32(f32_val, 23, 8); 11689 uint32_t f32_frac = extract32(f32_val, 0, 23); 11690 uint64_t f64_frac; 11691 11692 if (float32_is_any_nan(f32)) { 11693 float32 nan = f32; 11694 if (float32_is_signaling_nan(f32, fpst)) { 11695 float_raise(float_flag_invalid, fpst); 11696 nan = float32_maybe_silence_nan(f32, fpst); 11697 } 11698 if (fpst->default_nan_mode) { 11699 nan = float32_default_nan(fpst); 11700 } 11701 return nan; 11702 } else if (float32_is_infinity(f32)) { 11703 return float32_set_sign(float32_zero, float32_is_neg(f32)); 11704 } else if (float32_is_zero(f32)) { 11705 float_raise(float_flag_divbyzero, fpst); 11706 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 11707 } else if (float32_abs(f32) < (1ULL << 21)) { 11708 /* Abs(value) < 2.0^-128 */ 11709 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11710 if (round_to_inf(fpst, f32_sign)) { 11711 return float32_set_sign(float32_infinity, f32_sign); 11712 } else { 11713 return float32_set_sign(float32_maxnorm, f32_sign); 11714 } 11715 } else if (f32_exp >= 253 && fpst->flush_to_zero) { 11716 float_raise(float_flag_underflow, fpst); 11717 return float32_set_sign(float32_zero, float32_is_neg(f32)); 11718 } 11719 11720 f64_frac = call_recip_estimate(&f32_exp, 253, 11721 ((uint64_t) f32_frac) << (52 - 23)); 11722 11723 /* result = sign : result_exp<7:0> : fraction<51:29> */ 11724 f32_val = deposit32(0, 31, 1, f32_sign); 11725 f32_val = deposit32(f32_val, 23, 8, f32_exp); 11726 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23)); 11727 return make_float32(f32_val); 11728 } 11729 11730 float64 HELPER(recpe_f64)(float64 input, void *fpstp) 11731 { 11732 float_status *fpst = fpstp; 11733 float64 f64 = float64_squash_input_denormal(input, fpst); 11734 uint64_t f64_val = float64_val(f64); 11735 bool f64_sign = float64_is_neg(f64); 11736 int f64_exp = extract64(f64_val, 52, 11); 11737 uint64_t f64_frac = extract64(f64_val, 0, 52); 11738 11739 /* Deal with any special cases */ 11740 if (float64_is_any_nan(f64)) { 11741 float64 nan = f64; 11742 if (float64_is_signaling_nan(f64, fpst)) { 11743 float_raise(float_flag_invalid, fpst); 11744 nan = float64_maybe_silence_nan(f64, fpst); 11745 } 11746 if (fpst->default_nan_mode) { 11747 nan = float64_default_nan(fpst); 11748 } 11749 return nan; 11750 } else if (float64_is_infinity(f64)) { 11751 return float64_set_sign(float64_zero, float64_is_neg(f64)); 11752 } else if (float64_is_zero(f64)) { 11753 float_raise(float_flag_divbyzero, fpst); 11754 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11755 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { 11756 /* Abs(value) < 2.0^-1024 */ 11757 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11758 if (round_to_inf(fpst, f64_sign)) { 11759 return float64_set_sign(float64_infinity, f64_sign); 11760 } else { 11761 return float64_set_sign(float64_maxnorm, f64_sign); 11762 } 11763 } else if (f64_exp >= 2045 && fpst->flush_to_zero) { 11764 float_raise(float_flag_underflow, fpst); 11765 return float64_set_sign(float64_zero, float64_is_neg(f64)); 11766 } 11767 11768 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac); 11769 11770 /* result = sign : result_exp<10:0> : fraction<51:0>; */ 11771 f64_val = deposit64(0, 63, 1, f64_sign); 11772 f64_val = deposit64(f64_val, 52, 11, f64_exp); 11773 f64_val = deposit64(f64_val, 0, 52, f64_frac); 11774 return make_float64(f64_val); 11775 } 11776 11777 /* The algorithm that must be used to calculate the estimate 11778 * is specified by the ARM ARM. 11779 */ 11780 11781 static int do_recip_sqrt_estimate(int a) 11782 { 11783 int b, estimate; 11784 11785 assert(128 <= a && a < 512); 11786 if (a < 256) { 11787 a = a * 2 + 1; 11788 } else { 11789 a = (a >> 1) << 1; 11790 a = (a + 1) * 2; 11791 } 11792 b = 512; 11793 while (a * (b + 1) * (b + 1) < (1 << 28)) { 11794 b += 1; 11795 } 11796 estimate = (b + 1) / 2; 11797 assert(256 <= estimate && estimate < 512); 11798 11799 return estimate; 11800 } 11801 11802 11803 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac) 11804 { 11805 int estimate; 11806 uint32_t scaled; 11807 11808 if (*exp == 0) { 11809 while (extract64(frac, 51, 1) == 0) { 11810 frac = frac << 1; 11811 *exp -= 1; 11812 } 11813 frac = extract64(frac, 0, 51) << 1; 11814 } 11815 11816 if (*exp & 1) { 11817 /* scaled = UInt('01':fraction<51:45>) */ 11818 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7)); 11819 } else { 11820 /* scaled = UInt('1':fraction<51:44>) */ 11821 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 11822 } 11823 estimate = do_recip_sqrt_estimate(scaled); 11824 11825 *exp = (exp_off - *exp) / 2; 11826 return extract64(estimate, 0, 8) << 44; 11827 } 11828 11829 float16 HELPER(rsqrte_f16)(float16 input, void *fpstp) 11830 { 11831 float_status *s = fpstp; 11832 float16 f16 = float16_squash_input_denormal(input, s); 11833 uint16_t val = float16_val(f16); 11834 bool f16_sign = float16_is_neg(f16); 11835 int f16_exp = extract32(val, 10, 5); 11836 uint16_t f16_frac = extract32(val, 0, 10); 11837 uint64_t f64_frac; 11838 11839 if (float16_is_any_nan(f16)) { 11840 float16 nan = f16; 11841 if (float16_is_signaling_nan(f16, s)) { 11842 float_raise(float_flag_invalid, s); 11843 nan = float16_maybe_silence_nan(f16, s); 11844 } 11845 if (s->default_nan_mode) { 11846 nan = float16_default_nan(s); 11847 } 11848 return nan; 11849 } else if (float16_is_zero(f16)) { 11850 float_raise(float_flag_divbyzero, s); 11851 return float16_set_sign(float16_infinity, f16_sign); 11852 } else if (f16_sign) { 11853 float_raise(float_flag_invalid, s); 11854 return float16_default_nan(s); 11855 } else if (float16_is_infinity(f16)) { 11856 return float16_zero; 11857 } 11858 11859 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 11860 * preserving the parity of the exponent. */ 11861 11862 f64_frac = ((uint64_t) f16_frac) << (52 - 10); 11863 11864 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac); 11865 11866 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */ 11867 val = deposit32(0, 15, 1, f16_sign); 11868 val = deposit32(val, 10, 5, f16_exp); 11869 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8)); 11870 return make_float16(val); 11871 } 11872 11873 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) 11874 { 11875 float_status *s = fpstp; 11876 float32 f32 = float32_squash_input_denormal(input, s); 11877 uint32_t val = float32_val(f32); 11878 uint32_t f32_sign = float32_is_neg(f32); 11879 int f32_exp = extract32(val, 23, 8); 11880 uint32_t f32_frac = extract32(val, 0, 23); 11881 uint64_t f64_frac; 11882 11883 if (float32_is_any_nan(f32)) { 11884 float32 nan = f32; 11885 if (float32_is_signaling_nan(f32, s)) { 11886 float_raise(float_flag_invalid, s); 11887 nan = float32_maybe_silence_nan(f32, s); 11888 } 11889 if (s->default_nan_mode) { 11890 nan = float32_default_nan(s); 11891 } 11892 return nan; 11893 } else if (float32_is_zero(f32)) { 11894 float_raise(float_flag_divbyzero, s); 11895 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 11896 } else if (float32_is_neg(f32)) { 11897 float_raise(float_flag_invalid, s); 11898 return float32_default_nan(s); 11899 } else if (float32_is_infinity(f32)) { 11900 return float32_zero; 11901 } 11902 11903 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 11904 * preserving the parity of the exponent. */ 11905 11906 f64_frac = ((uint64_t) f32_frac) << 29; 11907 11908 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac); 11909 11910 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */ 11911 val = deposit32(0, 31, 1, f32_sign); 11912 val = deposit32(val, 23, 8, f32_exp); 11913 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8)); 11914 return make_float32(val); 11915 } 11916 11917 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) 11918 { 11919 float_status *s = fpstp; 11920 float64 f64 = float64_squash_input_denormal(input, s); 11921 uint64_t val = float64_val(f64); 11922 bool f64_sign = float64_is_neg(f64); 11923 int f64_exp = extract64(val, 52, 11); 11924 uint64_t f64_frac = extract64(val, 0, 52); 11925 11926 if (float64_is_any_nan(f64)) { 11927 float64 nan = f64; 11928 if (float64_is_signaling_nan(f64, s)) { 11929 float_raise(float_flag_invalid, s); 11930 nan = float64_maybe_silence_nan(f64, s); 11931 } 11932 if (s->default_nan_mode) { 11933 nan = float64_default_nan(s); 11934 } 11935 return nan; 11936 } else if (float64_is_zero(f64)) { 11937 float_raise(float_flag_divbyzero, s); 11938 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11939 } else if (float64_is_neg(f64)) { 11940 float_raise(float_flag_invalid, s); 11941 return float64_default_nan(s); 11942 } else if (float64_is_infinity(f64)) { 11943 return float64_zero; 11944 } 11945 11946 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac); 11947 11948 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */ 11949 val = deposit64(0, 61, 1, f64_sign); 11950 val = deposit64(val, 52, 11, f64_exp); 11951 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8)); 11952 return make_float64(val); 11953 } 11954 11955 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) 11956 { 11957 /* float_status *s = fpstp; */ 11958 int input, estimate; 11959 11960 if ((a & 0x80000000) == 0) { 11961 return 0xffffffff; 11962 } 11963 11964 input = extract32(a, 23, 9); 11965 estimate = recip_estimate(input); 11966 11967 return deposit32(0, (32 - 9), 9, estimate); 11968 } 11969 11970 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) 11971 { 11972 int estimate; 11973 11974 if ((a & 0xc0000000) == 0) { 11975 return 0xffffffff; 11976 } 11977 11978 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9)); 11979 11980 return deposit32(0, 23, 9, estimate); 11981 } 11982 11983 /* VFPv4 fused multiply-accumulate */ 11984 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) 11985 { 11986 float_status *fpst = fpstp; 11987 return float32_muladd(a, b, c, 0, fpst); 11988 } 11989 11990 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) 11991 { 11992 float_status *fpst = fpstp; 11993 return float64_muladd(a, b, c, 0, fpst); 11994 } 11995 11996 /* ARMv8 round to integral */ 11997 float32 HELPER(rints_exact)(float32 x, void *fp_status) 11998 { 11999 return float32_round_to_int(x, fp_status); 12000 } 12001 12002 float64 HELPER(rintd_exact)(float64 x, void *fp_status) 12003 { 12004 return float64_round_to_int(x, fp_status); 12005 } 12006 12007 float32 HELPER(rints)(float32 x, void *fp_status) 12008 { 12009 int old_flags = get_float_exception_flags(fp_status), new_flags; 12010 float32 ret; 12011 12012 ret = float32_round_to_int(x, fp_status); 12013 12014 /* Suppress any inexact exceptions the conversion produced */ 12015 if (!(old_flags & float_flag_inexact)) { 12016 new_flags = get_float_exception_flags(fp_status); 12017 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 12018 } 12019 12020 return ret; 12021 } 12022 12023 float64 HELPER(rintd)(float64 x, void *fp_status) 12024 { 12025 int old_flags = get_float_exception_flags(fp_status), new_flags; 12026 float64 ret; 12027 12028 ret = float64_round_to_int(x, fp_status); 12029 12030 new_flags = get_float_exception_flags(fp_status); 12031 12032 /* Suppress any inexact exceptions the conversion produced */ 12033 if (!(old_flags & float_flag_inexact)) { 12034 new_flags = get_float_exception_flags(fp_status); 12035 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 12036 } 12037 12038 return ret; 12039 } 12040 12041 /* Convert ARM rounding mode to softfloat */ 12042 int arm_rmode_to_sf(int rmode) 12043 { 12044 switch (rmode) { 12045 case FPROUNDING_TIEAWAY: 12046 rmode = float_round_ties_away; 12047 break; 12048 case FPROUNDING_ODD: 12049 /* FIXME: add support for TIEAWAY and ODD */ 12050 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", 12051 rmode); 12052 case FPROUNDING_TIEEVEN: 12053 default: 12054 rmode = float_round_nearest_even; 12055 break; 12056 case FPROUNDING_POSINF: 12057 rmode = float_round_up; 12058 break; 12059 case FPROUNDING_NEGINF: 12060 rmode = float_round_down; 12061 break; 12062 case FPROUNDING_ZERO: 12063 rmode = float_round_to_zero; 12064 break; 12065 } 12066 return rmode; 12067 } 12068 12069 /* CRC helpers. 12070 * The upper bytes of val (above the number specified by 'bytes') must have 12071 * been zeroed out by the caller. 12072 */ 12073 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12074 { 12075 uint8_t buf[4]; 12076 12077 stl_le_p(buf, val); 12078 12079 /* zlib crc32 converts the accumulator and output to one's complement. */ 12080 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12081 } 12082 12083 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12084 { 12085 uint8_t buf[4]; 12086 12087 stl_le_p(buf, val); 12088 12089 /* Linux crc32c converts the output to one's complement. */ 12090 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12091 } 12092 12093 /* Return the exception level to which FP-disabled exceptions should 12094 * be taken, or 0 if FP is enabled. 12095 */ 12096 static inline int fp_exception_el(CPUARMState *env) 12097 { 12098 #ifndef CONFIG_USER_ONLY 12099 int fpen; 12100 int cur_el = arm_current_el(env); 12101 12102 /* CPACR and the CPTR registers don't exist before v6, so FP is 12103 * always accessible 12104 */ 12105 if (!arm_feature(env, ARM_FEATURE_V6)) { 12106 return 0; 12107 } 12108 12109 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12110 * 0, 2 : trap EL0 and EL1/PL1 accesses 12111 * 1 : trap only EL0 accesses 12112 * 3 : trap no accesses 12113 */ 12114 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12115 switch (fpen) { 12116 case 0: 12117 case 2: 12118 if (cur_el == 0 || cur_el == 1) { 12119 /* Trap to PL1, which might be EL1 or EL3 */ 12120 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12121 return 3; 12122 } 12123 return 1; 12124 } 12125 if (cur_el == 3 && !is_a64(env)) { 12126 /* Secure PL1 running at EL3 */ 12127 return 3; 12128 } 12129 break; 12130 case 1: 12131 if (cur_el == 0) { 12132 return 1; 12133 } 12134 break; 12135 case 3: 12136 break; 12137 } 12138 12139 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12140 * check because zero bits in the registers mean "don't trap". 12141 */ 12142 12143 /* CPTR_EL2 : present in v7VE or v8 */ 12144 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12145 && !arm_is_secure_below_el3(env)) { 12146 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12147 return 2; 12148 } 12149 12150 /* CPTR_EL3 : present in v8 */ 12151 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12152 /* Trap all FP ops to EL3 */ 12153 return 3; 12154 } 12155 #endif 12156 return 0; 12157 } 12158 12159 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 12160 target_ulong *cs_base, uint32_t *pflags) 12161 { 12162 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 12163 int fp_el = fp_exception_el(env); 12164 uint32_t flags; 12165 12166 if (is_a64(env)) { 12167 int sve_el = sve_exception_el(env); 12168 uint32_t zcr_len; 12169 12170 *pc = env->pc; 12171 flags = ARM_TBFLAG_AARCH64_STATE_MASK; 12172 /* Get control bits for tagged addresses */ 12173 flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT); 12174 flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT); 12175 flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT; 12176 12177 /* If SVE is disabled, but FP is enabled, 12178 then the effective len is 0. */ 12179 if (sve_el != 0 && fp_el == 0) { 12180 zcr_len = 0; 12181 } else { 12182 int current_el = arm_current_el(env); 12183 12184 zcr_len = env->vfp.zcr_el[current_el <= 1 ? 1 : current_el]; 12185 zcr_len &= 0xf; 12186 if (current_el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 12187 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 12188 } 12189 if (current_el < 3 && arm_feature(env, ARM_FEATURE_EL3)) { 12190 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 12191 } 12192 } 12193 flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT; 12194 } else { 12195 *pc = env->regs[15]; 12196 flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT) 12197 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT) 12198 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT) 12199 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT) 12200 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT); 12201 if (!(access_secure_reg(env))) { 12202 flags |= ARM_TBFLAG_NS_MASK; 12203 } 12204 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) 12205 || arm_el_is_aa64(env, 1)) { 12206 flags |= ARM_TBFLAG_VFPEN_MASK; 12207 } 12208 flags |= (extract32(env->cp15.c15_cpar, 0, 2) 12209 << ARM_TBFLAG_XSCALE_CPAR_SHIFT); 12210 } 12211 12212 flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT); 12213 12214 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12215 * states defined in the ARM ARM for software singlestep: 12216 * SS_ACTIVE PSTATE.SS State 12217 * 0 x Inactive (the TB flag for SS is always 0) 12218 * 1 0 Active-pending 12219 * 1 1 Active-not-pending 12220 */ 12221 if (arm_singlestep_active(env)) { 12222 flags |= ARM_TBFLAG_SS_ACTIVE_MASK; 12223 if (is_a64(env)) { 12224 if (env->pstate & PSTATE_SS) { 12225 flags |= ARM_TBFLAG_PSTATE_SS_MASK; 12226 } 12227 } else { 12228 if (env->uncached_cpsr & PSTATE_SS) { 12229 flags |= ARM_TBFLAG_PSTATE_SS_MASK; 12230 } 12231 } 12232 } 12233 if (arm_cpu_data_is_big_endian(env)) { 12234 flags |= ARM_TBFLAG_BE_DATA_MASK; 12235 } 12236 flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT; 12237 12238 if (arm_v7m_is_handler_mode(env)) { 12239 flags |= ARM_TBFLAG_HANDLER_MASK; 12240 } 12241 12242 *pflags = flags; 12243 *cs_base = 0; 12244 } 12245