xref: /openbmc/qemu/target/arm/helper.c (revision dc5bd18f)
1 #include "qemu/osdep.h"
2 #include "target/arm/idau.h"
3 #include "trace.h"
4 #include "cpu.h"
5 #include "internals.h"
6 #include "exec/gdbstub.h"
7 #include "exec/helper-proto.h"
8 #include "qemu/host-utils.h"
9 #include "sysemu/arch_init.h"
10 #include "sysemu/sysemu.h"
11 #include "qemu/bitops.h"
12 #include "qemu/crc32c.h"
13 #include "exec/exec-all.h"
14 #include "exec/cpu_ldst.h"
15 #include "arm_ldst.h"
16 #include <zlib.h> /* For crc32 */
17 #include "exec/semihost.h"
18 #include "sysemu/kvm.h"
19 #include "fpu/softfloat.h"
20 
21 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
22 
23 #ifndef CONFIG_USER_ONLY
24 /* Cacheability and shareability attributes for a memory access */
25 typedef struct ARMCacheAttrs {
26     unsigned int attrs:8; /* as in the MAIR register encoding */
27     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
28 } ARMCacheAttrs;
29 
30 static bool get_phys_addr(CPUARMState *env, target_ulong address,
31                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
32                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
33                           target_ulong *page_size,
34                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
35 
36 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
37                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
38                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
39                                target_ulong *page_size_ptr,
40                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
41 
42 /* Security attributes for an address, as returned by v8m_security_lookup. */
43 typedef struct V8M_SAttributes {
44     bool ns;
45     bool nsc;
46     uint8_t sregion;
47     bool srvalid;
48     uint8_t iregion;
49     bool irvalid;
50 } V8M_SAttributes;
51 
52 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
53                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
54                                 V8M_SAttributes *sattrs);
55 
56 /* Definitions for the PMCCNTR and PMCR registers */
57 #define PMCRD   0x8
58 #define PMCRC   0x4
59 #define PMCRE   0x1
60 #endif
61 
62 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
63 {
64     int nregs;
65 
66     /* VFP data registers are always little-endian.  */
67     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
68     if (reg < nregs) {
69         stq_le_p(buf, *aa32_vfp_dreg(env, reg));
70         return 8;
71     }
72     if (arm_feature(env, ARM_FEATURE_NEON)) {
73         /* Aliases for Q regs.  */
74         nregs += 16;
75         if (reg < nregs) {
76             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
77             stq_le_p(buf, q[0]);
78             stq_le_p(buf + 8, q[1]);
79             return 16;
80         }
81     }
82     switch (reg - nregs) {
83     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
84     case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
85     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
86     }
87     return 0;
88 }
89 
90 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
91 {
92     int nregs;
93 
94     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
95     if (reg < nregs) {
96         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
97         return 8;
98     }
99     if (arm_feature(env, ARM_FEATURE_NEON)) {
100         nregs += 16;
101         if (reg < nregs) {
102             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
103             q[0] = ldq_le_p(buf);
104             q[1] = ldq_le_p(buf + 8);
105             return 16;
106         }
107     }
108     switch (reg - nregs) {
109     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
110     case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
111     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
112     }
113     return 0;
114 }
115 
116 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
117 {
118     switch (reg) {
119     case 0 ... 31:
120         /* 128 bit FP register */
121         {
122             uint64_t *q = aa64_vfp_qreg(env, reg);
123             stq_le_p(buf, q[0]);
124             stq_le_p(buf + 8, q[1]);
125             return 16;
126         }
127     case 32:
128         /* FPSR */
129         stl_p(buf, vfp_get_fpsr(env));
130         return 4;
131     case 33:
132         /* FPCR */
133         stl_p(buf, vfp_get_fpcr(env));
134         return 4;
135     default:
136         return 0;
137     }
138 }
139 
140 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
141 {
142     switch (reg) {
143     case 0 ... 31:
144         /* 128 bit FP register */
145         {
146             uint64_t *q = aa64_vfp_qreg(env, reg);
147             q[0] = ldq_le_p(buf);
148             q[1] = ldq_le_p(buf + 8);
149             return 16;
150         }
151     case 32:
152         /* FPSR */
153         vfp_set_fpsr(env, ldl_p(buf));
154         return 4;
155     case 33:
156         /* FPCR */
157         vfp_set_fpcr(env, ldl_p(buf));
158         return 4;
159     default:
160         return 0;
161     }
162 }
163 
164 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
165 {
166     assert(ri->fieldoffset);
167     if (cpreg_field_is_64bit(ri)) {
168         return CPREG_FIELD64(env, ri);
169     } else {
170         return CPREG_FIELD32(env, ri);
171     }
172 }
173 
174 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
175                       uint64_t value)
176 {
177     assert(ri->fieldoffset);
178     if (cpreg_field_is_64bit(ri)) {
179         CPREG_FIELD64(env, ri) = value;
180     } else {
181         CPREG_FIELD32(env, ri) = value;
182     }
183 }
184 
185 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
186 {
187     return (char *)env + ri->fieldoffset;
188 }
189 
190 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
191 {
192     /* Raw read of a coprocessor register (as needed for migration, etc). */
193     if (ri->type & ARM_CP_CONST) {
194         return ri->resetvalue;
195     } else if (ri->raw_readfn) {
196         return ri->raw_readfn(env, ri);
197     } else if (ri->readfn) {
198         return ri->readfn(env, ri);
199     } else {
200         return raw_read(env, ri);
201     }
202 }
203 
204 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
205                              uint64_t v)
206 {
207     /* Raw write of a coprocessor register (as needed for migration, etc).
208      * Note that constant registers are treated as write-ignored; the
209      * caller should check for success by whether a readback gives the
210      * value written.
211      */
212     if (ri->type & ARM_CP_CONST) {
213         return;
214     } else if (ri->raw_writefn) {
215         ri->raw_writefn(env, ri, v);
216     } else if (ri->writefn) {
217         ri->writefn(env, ri, v);
218     } else {
219         raw_write(env, ri, v);
220     }
221 }
222 
223 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
224 {
225    /* Return true if the regdef would cause an assertion if you called
226     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
227     * program bug for it not to have the NO_RAW flag).
228     * NB that returning false here doesn't necessarily mean that calling
229     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
230     * read/write access functions which are safe for raw use" from "has
231     * read/write access functions which have side effects but has forgotten
232     * to provide raw access functions".
233     * The tests here line up with the conditions in read/write_raw_cp_reg()
234     * and assertions in raw_read()/raw_write().
235     */
236     if ((ri->type & ARM_CP_CONST) ||
237         ri->fieldoffset ||
238         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
239         return false;
240     }
241     return true;
242 }
243 
244 bool write_cpustate_to_list(ARMCPU *cpu)
245 {
246     /* Write the coprocessor state from cpu->env to the (index,value) list. */
247     int i;
248     bool ok = true;
249 
250     for (i = 0; i < cpu->cpreg_array_len; i++) {
251         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
252         const ARMCPRegInfo *ri;
253 
254         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
255         if (!ri) {
256             ok = false;
257             continue;
258         }
259         if (ri->type & ARM_CP_NO_RAW) {
260             continue;
261         }
262         cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
263     }
264     return ok;
265 }
266 
267 bool write_list_to_cpustate(ARMCPU *cpu)
268 {
269     int i;
270     bool ok = true;
271 
272     for (i = 0; i < cpu->cpreg_array_len; i++) {
273         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
274         uint64_t v = cpu->cpreg_values[i];
275         const ARMCPRegInfo *ri;
276 
277         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
278         if (!ri) {
279             ok = false;
280             continue;
281         }
282         if (ri->type & ARM_CP_NO_RAW) {
283             continue;
284         }
285         /* Write value and confirm it reads back as written
286          * (to catch read-only registers and partially read-only
287          * registers where the incoming migration value doesn't match)
288          */
289         write_raw_cp_reg(&cpu->env, ri, v);
290         if (read_raw_cp_reg(&cpu->env, ri) != v) {
291             ok = false;
292         }
293     }
294     return ok;
295 }
296 
297 static void add_cpreg_to_list(gpointer key, gpointer opaque)
298 {
299     ARMCPU *cpu = opaque;
300     uint64_t regidx;
301     const ARMCPRegInfo *ri;
302 
303     regidx = *(uint32_t *)key;
304     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
305 
306     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
307         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
308         /* The value array need not be initialized at this point */
309         cpu->cpreg_array_len++;
310     }
311 }
312 
313 static void count_cpreg(gpointer key, gpointer opaque)
314 {
315     ARMCPU *cpu = opaque;
316     uint64_t regidx;
317     const ARMCPRegInfo *ri;
318 
319     regidx = *(uint32_t *)key;
320     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
321 
322     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
323         cpu->cpreg_array_len++;
324     }
325 }
326 
327 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
328 {
329     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
330     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
331 
332     if (aidx > bidx) {
333         return 1;
334     }
335     if (aidx < bidx) {
336         return -1;
337     }
338     return 0;
339 }
340 
341 void init_cpreg_list(ARMCPU *cpu)
342 {
343     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
344      * Note that we require cpreg_tuples[] to be sorted by key ID.
345      */
346     GList *keys;
347     int arraylen;
348 
349     keys = g_hash_table_get_keys(cpu->cp_regs);
350     keys = g_list_sort(keys, cpreg_key_compare);
351 
352     cpu->cpreg_array_len = 0;
353 
354     g_list_foreach(keys, count_cpreg, cpu);
355 
356     arraylen = cpu->cpreg_array_len;
357     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
358     cpu->cpreg_values = g_new(uint64_t, arraylen);
359     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
360     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
361     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
362     cpu->cpreg_array_len = 0;
363 
364     g_list_foreach(keys, add_cpreg_to_list, cpu);
365 
366     assert(cpu->cpreg_array_len == arraylen);
367 
368     g_list_free(keys);
369 }
370 
371 /*
372  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
373  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
374  *
375  * access_el3_aa32ns: Used to check AArch32 register views.
376  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
377  */
378 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
379                                         const ARMCPRegInfo *ri,
380                                         bool isread)
381 {
382     bool secure = arm_is_secure_below_el3(env);
383 
384     assert(!arm_el_is_aa64(env, 3));
385     if (secure) {
386         return CP_ACCESS_TRAP_UNCATEGORIZED;
387     }
388     return CP_ACCESS_OK;
389 }
390 
391 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
392                                                 const ARMCPRegInfo *ri,
393                                                 bool isread)
394 {
395     if (!arm_el_is_aa64(env, 3)) {
396         return access_el3_aa32ns(env, ri, isread);
397     }
398     return CP_ACCESS_OK;
399 }
400 
401 /* Some secure-only AArch32 registers trap to EL3 if used from
402  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
403  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
404  * We assume that the .access field is set to PL1_RW.
405  */
406 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
407                                             const ARMCPRegInfo *ri,
408                                             bool isread)
409 {
410     if (arm_current_el(env) == 3) {
411         return CP_ACCESS_OK;
412     }
413     if (arm_is_secure_below_el3(env)) {
414         return CP_ACCESS_TRAP_EL3;
415     }
416     /* This will be EL1 NS and EL2 NS, which just UNDEF */
417     return CP_ACCESS_TRAP_UNCATEGORIZED;
418 }
419 
420 /* Check for traps to "powerdown debug" registers, which are controlled
421  * by MDCR.TDOSA
422  */
423 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
424                                    bool isread)
425 {
426     int el = arm_current_el(env);
427 
428     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
429         && !arm_is_secure_below_el3(env)) {
430         return CP_ACCESS_TRAP_EL2;
431     }
432     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
433         return CP_ACCESS_TRAP_EL3;
434     }
435     return CP_ACCESS_OK;
436 }
437 
438 /* Check for traps to "debug ROM" registers, which are controlled
439  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
440  */
441 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
442                                   bool isread)
443 {
444     int el = arm_current_el(env);
445 
446     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
447         && !arm_is_secure_below_el3(env)) {
448         return CP_ACCESS_TRAP_EL2;
449     }
450     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
451         return CP_ACCESS_TRAP_EL3;
452     }
453     return CP_ACCESS_OK;
454 }
455 
456 /* Check for traps to general debug registers, which are controlled
457  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
458  */
459 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
460                                   bool isread)
461 {
462     int el = arm_current_el(env);
463 
464     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
465         && !arm_is_secure_below_el3(env)) {
466         return CP_ACCESS_TRAP_EL2;
467     }
468     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
469         return CP_ACCESS_TRAP_EL3;
470     }
471     return CP_ACCESS_OK;
472 }
473 
474 /* Check for traps to performance monitor registers, which are controlled
475  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
476  */
477 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
478                                  bool isread)
479 {
480     int el = arm_current_el(env);
481 
482     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
483         && !arm_is_secure_below_el3(env)) {
484         return CP_ACCESS_TRAP_EL2;
485     }
486     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
487         return CP_ACCESS_TRAP_EL3;
488     }
489     return CP_ACCESS_OK;
490 }
491 
492 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
493 {
494     ARMCPU *cpu = arm_env_get_cpu(env);
495 
496     raw_write(env, ri, value);
497     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
498 }
499 
500 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
501 {
502     ARMCPU *cpu = arm_env_get_cpu(env);
503 
504     if (raw_read(env, ri) != value) {
505         /* Unlike real hardware the qemu TLB uses virtual addresses,
506          * not modified virtual addresses, so this causes a TLB flush.
507          */
508         tlb_flush(CPU(cpu));
509         raw_write(env, ri, value);
510     }
511 }
512 
513 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
514                              uint64_t value)
515 {
516     ARMCPU *cpu = arm_env_get_cpu(env);
517 
518     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
519         && !extended_addresses_enabled(env)) {
520         /* For VMSA (when not using the LPAE long descriptor page table
521          * format) this register includes the ASID, so do a TLB flush.
522          * For PMSA it is purely a process ID and no action is needed.
523          */
524         tlb_flush(CPU(cpu));
525     }
526     raw_write(env, ri, value);
527 }
528 
529 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
530                           uint64_t value)
531 {
532     /* Invalidate all (TLBIALL) */
533     ARMCPU *cpu = arm_env_get_cpu(env);
534 
535     tlb_flush(CPU(cpu));
536 }
537 
538 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
539                           uint64_t value)
540 {
541     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
542     ARMCPU *cpu = arm_env_get_cpu(env);
543 
544     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
545 }
546 
547 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
548                            uint64_t value)
549 {
550     /* Invalidate by ASID (TLBIASID) */
551     ARMCPU *cpu = arm_env_get_cpu(env);
552 
553     tlb_flush(CPU(cpu));
554 }
555 
556 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
557                            uint64_t value)
558 {
559     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
560     ARMCPU *cpu = arm_env_get_cpu(env);
561 
562     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
563 }
564 
565 /* IS variants of TLB operations must affect all cores */
566 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
567                              uint64_t value)
568 {
569     CPUState *cs = ENV_GET_CPU(env);
570 
571     tlb_flush_all_cpus_synced(cs);
572 }
573 
574 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
575                              uint64_t value)
576 {
577     CPUState *cs = ENV_GET_CPU(env);
578 
579     tlb_flush_all_cpus_synced(cs);
580 }
581 
582 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
583                              uint64_t value)
584 {
585     CPUState *cs = ENV_GET_CPU(env);
586 
587     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
588 }
589 
590 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
591                              uint64_t value)
592 {
593     CPUState *cs = ENV_GET_CPU(env);
594 
595     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
596 }
597 
598 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
599                                uint64_t value)
600 {
601     CPUState *cs = ENV_GET_CPU(env);
602 
603     tlb_flush_by_mmuidx(cs,
604                         ARMMMUIdxBit_S12NSE1 |
605                         ARMMMUIdxBit_S12NSE0 |
606                         ARMMMUIdxBit_S2NS);
607 }
608 
609 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
610                                   uint64_t value)
611 {
612     CPUState *cs = ENV_GET_CPU(env);
613 
614     tlb_flush_by_mmuidx_all_cpus_synced(cs,
615                                         ARMMMUIdxBit_S12NSE1 |
616                                         ARMMMUIdxBit_S12NSE0 |
617                                         ARMMMUIdxBit_S2NS);
618 }
619 
620 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
621                             uint64_t value)
622 {
623     /* Invalidate by IPA. This has to invalidate any structures that
624      * contain only stage 2 translation information, but does not need
625      * to apply to structures that contain combined stage 1 and stage 2
626      * translation information.
627      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
628      */
629     CPUState *cs = ENV_GET_CPU(env);
630     uint64_t pageaddr;
631 
632     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
633         return;
634     }
635 
636     pageaddr = sextract64(value << 12, 0, 40);
637 
638     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
639 }
640 
641 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
642                                uint64_t value)
643 {
644     CPUState *cs = ENV_GET_CPU(env);
645     uint64_t pageaddr;
646 
647     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
648         return;
649     }
650 
651     pageaddr = sextract64(value << 12, 0, 40);
652 
653     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
654                                              ARMMMUIdxBit_S2NS);
655 }
656 
657 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
658                               uint64_t value)
659 {
660     CPUState *cs = ENV_GET_CPU(env);
661 
662     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
663 }
664 
665 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
666                                  uint64_t value)
667 {
668     CPUState *cs = ENV_GET_CPU(env);
669 
670     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
671 }
672 
673 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
674                               uint64_t value)
675 {
676     CPUState *cs = ENV_GET_CPU(env);
677     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
678 
679     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
680 }
681 
682 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
683                                  uint64_t value)
684 {
685     CPUState *cs = ENV_GET_CPU(env);
686     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
687 
688     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
689                                              ARMMMUIdxBit_S1E2);
690 }
691 
692 static const ARMCPRegInfo cp_reginfo[] = {
693     /* Define the secure and non-secure FCSE identifier CP registers
694      * separately because there is no secure bank in V8 (no _EL3).  This allows
695      * the secure register to be properly reset and migrated. There is also no
696      * v8 EL1 version of the register so the non-secure instance stands alone.
697      */
698     { .name = "FCSEIDR(NS)",
699       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
700       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
701       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
702       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
703     { .name = "FCSEIDR(S)",
704       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
705       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
706       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
707       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
708     /* Define the secure and non-secure context identifier CP registers
709      * separately because there is no secure bank in V8 (no _EL3).  This allows
710      * the secure register to be properly reset and migrated.  In the
711      * non-secure case, the 32-bit register will have reset and migration
712      * disabled during registration as it is handled by the 64-bit instance.
713      */
714     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
715       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
716       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
717       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
718       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
719     { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
720       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
721       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
722       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
723       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
724     REGINFO_SENTINEL
725 };
726 
727 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
728     /* NB: Some of these registers exist in v8 but with more precise
729      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
730      */
731     /* MMU Domain access control / MPU write buffer control */
732     { .name = "DACR",
733       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
734       .access = PL1_RW, .resetvalue = 0,
735       .writefn = dacr_write, .raw_writefn = raw_write,
736       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
737                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
738     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
739      * For v6 and v5, these mappings are overly broad.
740      */
741     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
742       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
743     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
744       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
745     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
746       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
747     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
748       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
749     /* Cache maintenance ops; some of this space may be overridden later. */
750     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
751       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
752       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
753     REGINFO_SENTINEL
754 };
755 
756 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
757     /* Not all pre-v6 cores implemented this WFI, so this is slightly
758      * over-broad.
759      */
760     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
761       .access = PL1_W, .type = ARM_CP_WFI },
762     REGINFO_SENTINEL
763 };
764 
765 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
766     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
767      * is UNPREDICTABLE; we choose to NOP as most implementations do).
768      */
769     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
770       .access = PL1_W, .type = ARM_CP_WFI },
771     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
772      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
773      * OMAPCP will override this space.
774      */
775     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
776       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
777       .resetvalue = 0 },
778     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
779       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
780       .resetvalue = 0 },
781     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
782     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
783       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
784       .resetvalue = 0 },
785     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
786      * implementing it as RAZ means the "debug architecture version" bits
787      * will read as a reserved value, which should cause Linux to not try
788      * to use the debug hardware.
789      */
790     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
791       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
792     /* MMU TLB control. Note that the wildcarding means we cover not just
793      * the unified TLB ops but also the dside/iside/inner-shareable variants.
794      */
795     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
796       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
797       .type = ARM_CP_NO_RAW },
798     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
799       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
800       .type = ARM_CP_NO_RAW },
801     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
802       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
803       .type = ARM_CP_NO_RAW },
804     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
805       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
806       .type = ARM_CP_NO_RAW },
807     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
808       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
809     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
810       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
811     REGINFO_SENTINEL
812 };
813 
814 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
815                         uint64_t value)
816 {
817     uint32_t mask = 0;
818 
819     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
820     if (!arm_feature(env, ARM_FEATURE_V8)) {
821         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
822          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
823          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
824          */
825         if (arm_feature(env, ARM_FEATURE_VFP)) {
826             /* VFP coprocessor: cp10 & cp11 [23:20] */
827             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
828 
829             if (!arm_feature(env, ARM_FEATURE_NEON)) {
830                 /* ASEDIS [31] bit is RAO/WI */
831                 value |= (1 << 31);
832             }
833 
834             /* VFPv3 and upwards with NEON implement 32 double precision
835              * registers (D0-D31).
836              */
837             if (!arm_feature(env, ARM_FEATURE_NEON) ||
838                     !arm_feature(env, ARM_FEATURE_VFP3)) {
839                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
840                 value |= (1 << 30);
841             }
842         }
843         value &= mask;
844     }
845     env->cp15.cpacr_el1 = value;
846 }
847 
848 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
849                                    bool isread)
850 {
851     if (arm_feature(env, ARM_FEATURE_V8)) {
852         /* Check if CPACR accesses are to be trapped to EL2 */
853         if (arm_current_el(env) == 1 &&
854             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
855             return CP_ACCESS_TRAP_EL2;
856         /* Check if CPACR accesses are to be trapped to EL3 */
857         } else if (arm_current_el(env) < 3 &&
858                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
859             return CP_ACCESS_TRAP_EL3;
860         }
861     }
862 
863     return CP_ACCESS_OK;
864 }
865 
866 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
867                                   bool isread)
868 {
869     /* Check if CPTR accesses are set to trap to EL3 */
870     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
871         return CP_ACCESS_TRAP_EL3;
872     }
873 
874     return CP_ACCESS_OK;
875 }
876 
877 static const ARMCPRegInfo v6_cp_reginfo[] = {
878     /* prefetch by MVA in v6, NOP in v7 */
879     { .name = "MVA_prefetch",
880       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
881       .access = PL1_W, .type = ARM_CP_NOP },
882     /* We need to break the TB after ISB to execute self-modifying code
883      * correctly and also to take any pending interrupts immediately.
884      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
885      */
886     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
887       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
888     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
889       .access = PL0_W, .type = ARM_CP_NOP },
890     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
891       .access = PL0_W, .type = ARM_CP_NOP },
892     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
893       .access = PL1_RW,
894       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
895                              offsetof(CPUARMState, cp15.ifar_ns) },
896       .resetvalue = 0, },
897     /* Watchpoint Fault Address Register : should actually only be present
898      * for 1136, 1176, 11MPCore.
899      */
900     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
901       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
902     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
903       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
904       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
905       .resetvalue = 0, .writefn = cpacr_write },
906     REGINFO_SENTINEL
907 };
908 
909 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
910                                    bool isread)
911 {
912     /* Performance monitor registers user accessibility is controlled
913      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
914      * trapping to EL2 or EL3 for other accesses.
915      */
916     int el = arm_current_el(env);
917 
918     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
919         return CP_ACCESS_TRAP;
920     }
921     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
922         && !arm_is_secure_below_el3(env)) {
923         return CP_ACCESS_TRAP_EL2;
924     }
925     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
926         return CP_ACCESS_TRAP_EL3;
927     }
928 
929     return CP_ACCESS_OK;
930 }
931 
932 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
933                                            const ARMCPRegInfo *ri,
934                                            bool isread)
935 {
936     /* ER: event counter read trap control */
937     if (arm_feature(env, ARM_FEATURE_V8)
938         && arm_current_el(env) == 0
939         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
940         && isread) {
941         return CP_ACCESS_OK;
942     }
943 
944     return pmreg_access(env, ri, isread);
945 }
946 
947 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
948                                          const ARMCPRegInfo *ri,
949                                          bool isread)
950 {
951     /* SW: software increment write trap control */
952     if (arm_feature(env, ARM_FEATURE_V8)
953         && arm_current_el(env) == 0
954         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
955         && !isread) {
956         return CP_ACCESS_OK;
957     }
958 
959     return pmreg_access(env, ri, isread);
960 }
961 
962 #ifndef CONFIG_USER_ONLY
963 
964 static CPAccessResult pmreg_access_selr(CPUARMState *env,
965                                         const ARMCPRegInfo *ri,
966                                         bool isread)
967 {
968     /* ER: event counter read trap control */
969     if (arm_feature(env, ARM_FEATURE_V8)
970         && arm_current_el(env) == 0
971         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
972         return CP_ACCESS_OK;
973     }
974 
975     return pmreg_access(env, ri, isread);
976 }
977 
978 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
979                                          const ARMCPRegInfo *ri,
980                                          bool isread)
981 {
982     /* CR: cycle counter read trap control */
983     if (arm_feature(env, ARM_FEATURE_V8)
984         && arm_current_el(env) == 0
985         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
986         && isread) {
987         return CP_ACCESS_OK;
988     }
989 
990     return pmreg_access(env, ri, isread);
991 }
992 
993 static inline bool arm_ccnt_enabled(CPUARMState *env)
994 {
995     /* This does not support checking PMCCFILTR_EL0 register */
996 
997     if (!(env->cp15.c9_pmcr & PMCRE)) {
998         return false;
999     }
1000 
1001     return true;
1002 }
1003 
1004 void pmccntr_sync(CPUARMState *env)
1005 {
1006     uint64_t temp_ticks;
1007 
1008     temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1009                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1010 
1011     if (env->cp15.c9_pmcr & PMCRD) {
1012         /* Increment once every 64 processor clock cycles */
1013         temp_ticks /= 64;
1014     }
1015 
1016     if (arm_ccnt_enabled(env)) {
1017         env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
1018     }
1019 }
1020 
1021 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1022                        uint64_t value)
1023 {
1024     pmccntr_sync(env);
1025 
1026     if (value & PMCRC) {
1027         /* The counter has been reset */
1028         env->cp15.c15_ccnt = 0;
1029     }
1030 
1031     /* only the DP, X, D and E bits are writable */
1032     env->cp15.c9_pmcr &= ~0x39;
1033     env->cp15.c9_pmcr |= (value & 0x39);
1034 
1035     pmccntr_sync(env);
1036 }
1037 
1038 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1039 {
1040     uint64_t total_ticks;
1041 
1042     if (!arm_ccnt_enabled(env)) {
1043         /* Counter is disabled, do not change value */
1044         return env->cp15.c15_ccnt;
1045     }
1046 
1047     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1048                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1049 
1050     if (env->cp15.c9_pmcr & PMCRD) {
1051         /* Increment once every 64 processor clock cycles */
1052         total_ticks /= 64;
1053     }
1054     return total_ticks - env->cp15.c15_ccnt;
1055 }
1056 
1057 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1058                          uint64_t value)
1059 {
1060     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1061      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1062      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1063      * accessed.
1064      */
1065     env->cp15.c9_pmselr = value & 0x1f;
1066 }
1067 
1068 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1069                         uint64_t value)
1070 {
1071     uint64_t total_ticks;
1072 
1073     if (!arm_ccnt_enabled(env)) {
1074         /* Counter is disabled, set the absolute value */
1075         env->cp15.c15_ccnt = value;
1076         return;
1077     }
1078 
1079     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1080                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1081 
1082     if (env->cp15.c9_pmcr & PMCRD) {
1083         /* Increment once every 64 processor clock cycles */
1084         total_ticks /= 64;
1085     }
1086     env->cp15.c15_ccnt = total_ticks - value;
1087 }
1088 
1089 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1090                             uint64_t value)
1091 {
1092     uint64_t cur_val = pmccntr_read(env, NULL);
1093 
1094     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1095 }
1096 
1097 #else /* CONFIG_USER_ONLY */
1098 
1099 void pmccntr_sync(CPUARMState *env)
1100 {
1101 }
1102 
1103 #endif
1104 
1105 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1106                             uint64_t value)
1107 {
1108     pmccntr_sync(env);
1109     env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1110     pmccntr_sync(env);
1111 }
1112 
1113 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1114                             uint64_t value)
1115 {
1116     value &= (1 << 31);
1117     env->cp15.c9_pmcnten |= value;
1118 }
1119 
1120 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1121                              uint64_t value)
1122 {
1123     value &= (1 << 31);
1124     env->cp15.c9_pmcnten &= ~value;
1125 }
1126 
1127 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1128                          uint64_t value)
1129 {
1130     env->cp15.c9_pmovsr &= ~value;
1131 }
1132 
1133 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1134                              uint64_t value)
1135 {
1136     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1137      * PMSELR value is equal to or greater than the number of implemented
1138      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1139      */
1140     if (env->cp15.c9_pmselr == 0x1f) {
1141         pmccfiltr_write(env, ri, value);
1142     }
1143 }
1144 
1145 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1146 {
1147     /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1148      * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1149      */
1150     if (env->cp15.c9_pmselr == 0x1f) {
1151         return env->cp15.pmccfiltr_el0;
1152     } else {
1153         return 0;
1154     }
1155 }
1156 
1157 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1158                             uint64_t value)
1159 {
1160     if (arm_feature(env, ARM_FEATURE_V8)) {
1161         env->cp15.c9_pmuserenr = value & 0xf;
1162     } else {
1163         env->cp15.c9_pmuserenr = value & 1;
1164     }
1165 }
1166 
1167 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1168                              uint64_t value)
1169 {
1170     /* We have no event counters so only the C bit can be changed */
1171     value &= (1 << 31);
1172     env->cp15.c9_pminten |= value;
1173 }
1174 
1175 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1176                              uint64_t value)
1177 {
1178     value &= (1 << 31);
1179     env->cp15.c9_pminten &= ~value;
1180 }
1181 
1182 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1183                        uint64_t value)
1184 {
1185     /* Note that even though the AArch64 view of this register has bits
1186      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1187      * architectural requirements for bits which are RES0 only in some
1188      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1189      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1190      */
1191     raw_write(env, ri, value & ~0x1FULL);
1192 }
1193 
1194 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1195 {
1196     /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1197      * For bits that vary between AArch32/64, code needs to check the
1198      * current execution mode before directly using the feature bit.
1199      */
1200     uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1201 
1202     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1203         valid_mask &= ~SCR_HCE;
1204 
1205         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1206          * supported if EL2 exists. The bit is UNK/SBZP when
1207          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1208          * when EL2 is unavailable.
1209          * On ARMv8, this bit is always available.
1210          */
1211         if (arm_feature(env, ARM_FEATURE_V7) &&
1212             !arm_feature(env, ARM_FEATURE_V8)) {
1213             valid_mask &= ~SCR_SMD;
1214         }
1215     }
1216 
1217     /* Clear all-context RES0 bits.  */
1218     value &= valid_mask;
1219     raw_write(env, ri, value);
1220 }
1221 
1222 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1223 {
1224     ARMCPU *cpu = arm_env_get_cpu(env);
1225 
1226     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1227      * bank
1228      */
1229     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1230                                         ri->secure & ARM_CP_SECSTATE_S);
1231 
1232     return cpu->ccsidr[index];
1233 }
1234 
1235 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1236                          uint64_t value)
1237 {
1238     raw_write(env, ri, value & 0xf);
1239 }
1240 
1241 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1242 {
1243     CPUState *cs = ENV_GET_CPU(env);
1244     uint64_t ret = 0;
1245 
1246     if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1247         ret |= CPSR_I;
1248     }
1249     if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1250         ret |= CPSR_F;
1251     }
1252     /* External aborts are not possible in QEMU so A bit is always clear */
1253     return ret;
1254 }
1255 
1256 static const ARMCPRegInfo v7_cp_reginfo[] = {
1257     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1258     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1259       .access = PL1_W, .type = ARM_CP_NOP },
1260     /* Performance monitors are implementation defined in v7,
1261      * but with an ARM recommended set of registers, which we
1262      * follow (although we don't actually implement any counters)
1263      *
1264      * Performance registers fall into three categories:
1265      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1266      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1267      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1268      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1269      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1270      */
1271     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1272       .access = PL0_RW, .type = ARM_CP_ALIAS,
1273       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1274       .writefn = pmcntenset_write,
1275       .accessfn = pmreg_access,
1276       .raw_writefn = raw_write },
1277     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1278       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1279       .access = PL0_RW, .accessfn = pmreg_access,
1280       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1281       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1282     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1283       .access = PL0_RW,
1284       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1285       .accessfn = pmreg_access,
1286       .writefn = pmcntenclr_write,
1287       .type = ARM_CP_ALIAS },
1288     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1289       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1290       .access = PL0_RW, .accessfn = pmreg_access,
1291       .type = ARM_CP_ALIAS,
1292       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1293       .writefn = pmcntenclr_write },
1294     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1295       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1296       .accessfn = pmreg_access,
1297       .writefn = pmovsr_write,
1298       .raw_writefn = raw_write },
1299     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1300       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1301       .access = PL0_RW, .accessfn = pmreg_access,
1302       .type = ARM_CP_ALIAS,
1303       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1304       .writefn = pmovsr_write,
1305       .raw_writefn = raw_write },
1306     /* Unimplemented so WI. */
1307     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1308       .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1309 #ifndef CONFIG_USER_ONLY
1310     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1311       .access = PL0_RW, .type = ARM_CP_ALIAS,
1312       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1313       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1314       .raw_writefn = raw_write},
1315     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1316       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1317       .access = PL0_RW, .accessfn = pmreg_access_selr,
1318       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1319       .writefn = pmselr_write, .raw_writefn = raw_write, },
1320     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1321       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1322       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1323       .accessfn = pmreg_access_ccntr },
1324     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1325       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1326       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1327       .type = ARM_CP_IO,
1328       .readfn = pmccntr_read, .writefn = pmccntr_write, },
1329 #endif
1330     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1331       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1332       .writefn = pmccfiltr_write,
1333       .access = PL0_RW, .accessfn = pmreg_access,
1334       .type = ARM_CP_IO,
1335       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1336       .resetvalue = 0, },
1337     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1338       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1339       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1340     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1341       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1342       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1343       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1344     /* Unimplemented, RAZ/WI. */
1345     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1346       .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1347       .accessfn = pmreg_access_xevcntr },
1348     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1349       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1350       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1351       .resetvalue = 0,
1352       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1353     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1354       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1355       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1356       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1357       .resetvalue = 0,
1358       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1359     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1360       .access = PL1_RW, .accessfn = access_tpm,
1361       .type = ARM_CP_ALIAS,
1362       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1363       .resetvalue = 0,
1364       .writefn = pmintenset_write, .raw_writefn = raw_write },
1365     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1366       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1367       .access = PL1_RW, .accessfn = access_tpm,
1368       .type = ARM_CP_IO,
1369       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1370       .writefn = pmintenset_write, .raw_writefn = raw_write,
1371       .resetvalue = 0x0 },
1372     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1373       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1374       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1375       .writefn = pmintenclr_write, },
1376     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1377       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1378       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1379       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1380       .writefn = pmintenclr_write },
1381     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1382       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1383       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1384     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1385       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1386       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1387       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1388                              offsetof(CPUARMState, cp15.csselr_ns) } },
1389     /* Auxiliary ID register: this actually has an IMPDEF value but for now
1390      * just RAZ for all cores:
1391      */
1392     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1393       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1394       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1395     /* Auxiliary fault status registers: these also are IMPDEF, and we
1396      * choose to RAZ/WI for all cores.
1397      */
1398     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1399       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1400       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1401     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1402       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1403       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1404     /* MAIR can just read-as-written because we don't implement caches
1405      * and so don't need to care about memory attributes.
1406      */
1407     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1408       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1409       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1410       .resetvalue = 0 },
1411     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1412       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1413       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1414       .resetvalue = 0 },
1415     /* For non-long-descriptor page tables these are PRRR and NMRR;
1416      * regardless they still act as reads-as-written for QEMU.
1417      */
1418      /* MAIR0/1 are defined separately from their 64-bit counterpart which
1419       * allows them to assign the correct fieldoffset based on the endianness
1420       * handled in the field definitions.
1421       */
1422     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1423       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1424       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1425                              offsetof(CPUARMState, cp15.mair0_ns) },
1426       .resetfn = arm_cp_reset_ignore },
1427     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1428       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1429       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1430                              offsetof(CPUARMState, cp15.mair1_ns) },
1431       .resetfn = arm_cp_reset_ignore },
1432     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1433       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1434       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1435     /* 32 bit ITLB invalidates */
1436     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1437       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1438     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1439       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1440     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1441       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1442     /* 32 bit DTLB invalidates */
1443     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1444       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1445     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1446       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1447     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1448       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1449     /* 32 bit TLB invalidates */
1450     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1451       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1452     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1453       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1454     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1455       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1456     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1457       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1458     REGINFO_SENTINEL
1459 };
1460 
1461 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1462     /* 32 bit TLB invalidates, Inner Shareable */
1463     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1464       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1465     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1466       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1467     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1468       .type = ARM_CP_NO_RAW, .access = PL1_W,
1469       .writefn = tlbiasid_is_write },
1470     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1471       .type = ARM_CP_NO_RAW, .access = PL1_W,
1472       .writefn = tlbimvaa_is_write },
1473     REGINFO_SENTINEL
1474 };
1475 
1476 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1477                         uint64_t value)
1478 {
1479     value &= 1;
1480     env->teecr = value;
1481 }
1482 
1483 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1484                                     bool isread)
1485 {
1486     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1487         return CP_ACCESS_TRAP;
1488     }
1489     return CP_ACCESS_OK;
1490 }
1491 
1492 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1493     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1494       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1495       .resetvalue = 0,
1496       .writefn = teecr_write },
1497     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1498       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1499       .accessfn = teehbr_access, .resetvalue = 0 },
1500     REGINFO_SENTINEL
1501 };
1502 
1503 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1504     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1505       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1506       .access = PL0_RW,
1507       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1508     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1509       .access = PL0_RW,
1510       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1511                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1512       .resetfn = arm_cp_reset_ignore },
1513     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1514       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1515       .access = PL0_R|PL1_W,
1516       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1517       .resetvalue = 0},
1518     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1519       .access = PL0_R|PL1_W,
1520       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1521                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1522       .resetfn = arm_cp_reset_ignore },
1523     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1524       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1525       .access = PL1_RW,
1526       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1527     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1528       .access = PL1_RW,
1529       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1530                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1531       .resetvalue = 0 },
1532     REGINFO_SENTINEL
1533 };
1534 
1535 #ifndef CONFIG_USER_ONLY
1536 
1537 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1538                                        bool isread)
1539 {
1540     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1541      * Writable only at the highest implemented exception level.
1542      */
1543     int el = arm_current_el(env);
1544 
1545     switch (el) {
1546     case 0:
1547         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1548             return CP_ACCESS_TRAP;
1549         }
1550         break;
1551     case 1:
1552         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1553             arm_is_secure_below_el3(env)) {
1554             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1555             return CP_ACCESS_TRAP_UNCATEGORIZED;
1556         }
1557         break;
1558     case 2:
1559     case 3:
1560         break;
1561     }
1562 
1563     if (!isread && el < arm_highest_el(env)) {
1564         return CP_ACCESS_TRAP_UNCATEGORIZED;
1565     }
1566 
1567     return CP_ACCESS_OK;
1568 }
1569 
1570 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1571                                         bool isread)
1572 {
1573     unsigned int cur_el = arm_current_el(env);
1574     bool secure = arm_is_secure(env);
1575 
1576     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1577     if (cur_el == 0 &&
1578         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1579         return CP_ACCESS_TRAP;
1580     }
1581 
1582     if (arm_feature(env, ARM_FEATURE_EL2) &&
1583         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1584         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1585         return CP_ACCESS_TRAP_EL2;
1586     }
1587     return CP_ACCESS_OK;
1588 }
1589 
1590 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1591                                       bool isread)
1592 {
1593     unsigned int cur_el = arm_current_el(env);
1594     bool secure = arm_is_secure(env);
1595 
1596     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1597      * EL0[PV]TEN is zero.
1598      */
1599     if (cur_el == 0 &&
1600         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1601         return CP_ACCESS_TRAP;
1602     }
1603 
1604     if (arm_feature(env, ARM_FEATURE_EL2) &&
1605         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1606         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1607         return CP_ACCESS_TRAP_EL2;
1608     }
1609     return CP_ACCESS_OK;
1610 }
1611 
1612 static CPAccessResult gt_pct_access(CPUARMState *env,
1613                                     const ARMCPRegInfo *ri,
1614                                     bool isread)
1615 {
1616     return gt_counter_access(env, GTIMER_PHYS, isread);
1617 }
1618 
1619 static CPAccessResult gt_vct_access(CPUARMState *env,
1620                                     const ARMCPRegInfo *ri,
1621                                     bool isread)
1622 {
1623     return gt_counter_access(env, GTIMER_VIRT, isread);
1624 }
1625 
1626 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1627                                        bool isread)
1628 {
1629     return gt_timer_access(env, GTIMER_PHYS, isread);
1630 }
1631 
1632 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1633                                        bool isread)
1634 {
1635     return gt_timer_access(env, GTIMER_VIRT, isread);
1636 }
1637 
1638 static CPAccessResult gt_stimer_access(CPUARMState *env,
1639                                        const ARMCPRegInfo *ri,
1640                                        bool isread)
1641 {
1642     /* The AArch64 register view of the secure physical timer is
1643      * always accessible from EL3, and configurably accessible from
1644      * Secure EL1.
1645      */
1646     switch (arm_current_el(env)) {
1647     case 1:
1648         if (!arm_is_secure(env)) {
1649             return CP_ACCESS_TRAP;
1650         }
1651         if (!(env->cp15.scr_el3 & SCR_ST)) {
1652             return CP_ACCESS_TRAP_EL3;
1653         }
1654         return CP_ACCESS_OK;
1655     case 0:
1656     case 2:
1657         return CP_ACCESS_TRAP;
1658     case 3:
1659         return CP_ACCESS_OK;
1660     default:
1661         g_assert_not_reached();
1662     }
1663 }
1664 
1665 static uint64_t gt_get_countervalue(CPUARMState *env)
1666 {
1667     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1668 }
1669 
1670 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1671 {
1672     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1673 
1674     if (gt->ctl & 1) {
1675         /* Timer enabled: calculate and set current ISTATUS, irq, and
1676          * reset timer to when ISTATUS next has to change
1677          */
1678         uint64_t offset = timeridx == GTIMER_VIRT ?
1679                                       cpu->env.cp15.cntvoff_el2 : 0;
1680         uint64_t count = gt_get_countervalue(&cpu->env);
1681         /* Note that this must be unsigned 64 bit arithmetic: */
1682         int istatus = count - offset >= gt->cval;
1683         uint64_t nexttick;
1684         int irqstate;
1685 
1686         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1687 
1688         irqstate = (istatus && !(gt->ctl & 2));
1689         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1690 
1691         if (istatus) {
1692             /* Next transition is when count rolls back over to zero */
1693             nexttick = UINT64_MAX;
1694         } else {
1695             /* Next transition is when we hit cval */
1696             nexttick = gt->cval + offset;
1697         }
1698         /* Note that the desired next expiry time might be beyond the
1699          * signed-64-bit range of a QEMUTimer -- in this case we just
1700          * set the timer for as far in the future as possible. When the
1701          * timer expires we will reset the timer for any remaining period.
1702          */
1703         if (nexttick > INT64_MAX / GTIMER_SCALE) {
1704             nexttick = INT64_MAX / GTIMER_SCALE;
1705         }
1706         timer_mod(cpu->gt_timer[timeridx], nexttick);
1707         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1708     } else {
1709         /* Timer disabled: ISTATUS and timer output always clear */
1710         gt->ctl &= ~4;
1711         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1712         timer_del(cpu->gt_timer[timeridx]);
1713         trace_arm_gt_recalc_disabled(timeridx);
1714     }
1715 }
1716 
1717 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1718                            int timeridx)
1719 {
1720     ARMCPU *cpu = arm_env_get_cpu(env);
1721 
1722     timer_del(cpu->gt_timer[timeridx]);
1723 }
1724 
1725 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1726 {
1727     return gt_get_countervalue(env);
1728 }
1729 
1730 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1731 {
1732     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1733 }
1734 
1735 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1736                           int timeridx,
1737                           uint64_t value)
1738 {
1739     trace_arm_gt_cval_write(timeridx, value);
1740     env->cp15.c14_timer[timeridx].cval = value;
1741     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1742 }
1743 
1744 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1745                              int timeridx)
1746 {
1747     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1748 
1749     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1750                       (gt_get_countervalue(env) - offset));
1751 }
1752 
1753 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1754                           int timeridx,
1755                           uint64_t value)
1756 {
1757     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1758 
1759     trace_arm_gt_tval_write(timeridx, value);
1760     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1761                                          sextract64(value, 0, 32);
1762     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1763 }
1764 
1765 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1766                          int timeridx,
1767                          uint64_t value)
1768 {
1769     ARMCPU *cpu = arm_env_get_cpu(env);
1770     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1771 
1772     trace_arm_gt_ctl_write(timeridx, value);
1773     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1774     if ((oldval ^ value) & 1) {
1775         /* Enable toggled */
1776         gt_recalc_timer(cpu, timeridx);
1777     } else if ((oldval ^ value) & 2) {
1778         /* IMASK toggled: don't need to recalculate,
1779          * just set the interrupt line based on ISTATUS
1780          */
1781         int irqstate = (oldval & 4) && !(value & 2);
1782 
1783         trace_arm_gt_imask_toggle(timeridx, irqstate);
1784         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1785     }
1786 }
1787 
1788 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1789 {
1790     gt_timer_reset(env, ri, GTIMER_PHYS);
1791 }
1792 
1793 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1794                                uint64_t value)
1795 {
1796     gt_cval_write(env, ri, GTIMER_PHYS, value);
1797 }
1798 
1799 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1800 {
1801     return gt_tval_read(env, ri, GTIMER_PHYS);
1802 }
1803 
1804 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1805                                uint64_t value)
1806 {
1807     gt_tval_write(env, ri, GTIMER_PHYS, value);
1808 }
1809 
1810 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1811                               uint64_t value)
1812 {
1813     gt_ctl_write(env, ri, GTIMER_PHYS, value);
1814 }
1815 
1816 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1817 {
1818     gt_timer_reset(env, ri, GTIMER_VIRT);
1819 }
1820 
1821 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1822                                uint64_t value)
1823 {
1824     gt_cval_write(env, ri, GTIMER_VIRT, value);
1825 }
1826 
1827 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1828 {
1829     return gt_tval_read(env, ri, GTIMER_VIRT);
1830 }
1831 
1832 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1833                                uint64_t value)
1834 {
1835     gt_tval_write(env, ri, GTIMER_VIRT, value);
1836 }
1837 
1838 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1839                               uint64_t value)
1840 {
1841     gt_ctl_write(env, ri, GTIMER_VIRT, value);
1842 }
1843 
1844 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1845                               uint64_t value)
1846 {
1847     ARMCPU *cpu = arm_env_get_cpu(env);
1848 
1849     trace_arm_gt_cntvoff_write(value);
1850     raw_write(env, ri, value);
1851     gt_recalc_timer(cpu, GTIMER_VIRT);
1852 }
1853 
1854 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1855 {
1856     gt_timer_reset(env, ri, GTIMER_HYP);
1857 }
1858 
1859 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1860                               uint64_t value)
1861 {
1862     gt_cval_write(env, ri, GTIMER_HYP, value);
1863 }
1864 
1865 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1866 {
1867     return gt_tval_read(env, ri, GTIMER_HYP);
1868 }
1869 
1870 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1871                               uint64_t value)
1872 {
1873     gt_tval_write(env, ri, GTIMER_HYP, value);
1874 }
1875 
1876 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1877                               uint64_t value)
1878 {
1879     gt_ctl_write(env, ri, GTIMER_HYP, value);
1880 }
1881 
1882 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1883 {
1884     gt_timer_reset(env, ri, GTIMER_SEC);
1885 }
1886 
1887 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1888                               uint64_t value)
1889 {
1890     gt_cval_write(env, ri, GTIMER_SEC, value);
1891 }
1892 
1893 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1894 {
1895     return gt_tval_read(env, ri, GTIMER_SEC);
1896 }
1897 
1898 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1899                               uint64_t value)
1900 {
1901     gt_tval_write(env, ri, GTIMER_SEC, value);
1902 }
1903 
1904 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1905                               uint64_t value)
1906 {
1907     gt_ctl_write(env, ri, GTIMER_SEC, value);
1908 }
1909 
1910 void arm_gt_ptimer_cb(void *opaque)
1911 {
1912     ARMCPU *cpu = opaque;
1913 
1914     gt_recalc_timer(cpu, GTIMER_PHYS);
1915 }
1916 
1917 void arm_gt_vtimer_cb(void *opaque)
1918 {
1919     ARMCPU *cpu = opaque;
1920 
1921     gt_recalc_timer(cpu, GTIMER_VIRT);
1922 }
1923 
1924 void arm_gt_htimer_cb(void *opaque)
1925 {
1926     ARMCPU *cpu = opaque;
1927 
1928     gt_recalc_timer(cpu, GTIMER_HYP);
1929 }
1930 
1931 void arm_gt_stimer_cb(void *opaque)
1932 {
1933     ARMCPU *cpu = opaque;
1934 
1935     gt_recalc_timer(cpu, GTIMER_SEC);
1936 }
1937 
1938 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1939     /* Note that CNTFRQ is purely reads-as-written for the benefit
1940      * of software; writing it doesn't actually change the timer frequency.
1941      * Our reset value matches the fixed frequency we implement the timer at.
1942      */
1943     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1944       .type = ARM_CP_ALIAS,
1945       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1946       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1947     },
1948     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1949       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1950       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1951       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1952       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1953     },
1954     /* overall control: mostly access permissions */
1955     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1956       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1957       .access = PL1_RW,
1958       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1959       .resetvalue = 0,
1960     },
1961     /* per-timer control */
1962     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1963       .secure = ARM_CP_SECSTATE_NS,
1964       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1965       .accessfn = gt_ptimer_access,
1966       .fieldoffset = offsetoflow32(CPUARMState,
1967                                    cp15.c14_timer[GTIMER_PHYS].ctl),
1968       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1969     },
1970     { .name = "CNTP_CTL(S)",
1971       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1972       .secure = ARM_CP_SECSTATE_S,
1973       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1974       .accessfn = gt_ptimer_access,
1975       .fieldoffset = offsetoflow32(CPUARMState,
1976                                    cp15.c14_timer[GTIMER_SEC].ctl),
1977       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1978     },
1979     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1980       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1981       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1982       .accessfn = gt_ptimer_access,
1983       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1984       .resetvalue = 0,
1985       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1986     },
1987     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1988       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1989       .accessfn = gt_vtimer_access,
1990       .fieldoffset = offsetoflow32(CPUARMState,
1991                                    cp15.c14_timer[GTIMER_VIRT].ctl),
1992       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1993     },
1994     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1995       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1996       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1997       .accessfn = gt_vtimer_access,
1998       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1999       .resetvalue = 0,
2000       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2001     },
2002     /* TimerValue views: a 32 bit downcounting view of the underlying state */
2003     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2004       .secure = ARM_CP_SECSTATE_NS,
2005       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2006       .accessfn = gt_ptimer_access,
2007       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2008     },
2009     { .name = "CNTP_TVAL(S)",
2010       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2011       .secure = ARM_CP_SECSTATE_S,
2012       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2013       .accessfn = gt_ptimer_access,
2014       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2015     },
2016     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2017       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2018       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2019       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2020       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2021     },
2022     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2023       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2024       .accessfn = gt_vtimer_access,
2025       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2026     },
2027     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2028       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2029       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2030       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2031       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2032     },
2033     /* The counter itself */
2034     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2035       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2036       .accessfn = gt_pct_access,
2037       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2038     },
2039     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2040       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2041       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2042       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2043     },
2044     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2045       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2046       .accessfn = gt_vct_access,
2047       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2048     },
2049     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2050       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2051       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2052       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2053     },
2054     /* Comparison value, indicating when the timer goes off */
2055     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2056       .secure = ARM_CP_SECSTATE_NS,
2057       .access = PL1_RW | PL0_R,
2058       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2059       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2060       .accessfn = gt_ptimer_access,
2061       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2062     },
2063     { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2064       .secure = ARM_CP_SECSTATE_S,
2065       .access = PL1_RW | PL0_R,
2066       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2067       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2068       .accessfn = gt_ptimer_access,
2069       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2070     },
2071     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2072       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2073       .access = PL1_RW | PL0_R,
2074       .type = ARM_CP_IO,
2075       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2076       .resetvalue = 0, .accessfn = gt_ptimer_access,
2077       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2078     },
2079     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2080       .access = PL1_RW | PL0_R,
2081       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2082       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2083       .accessfn = gt_vtimer_access,
2084       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2085     },
2086     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2087       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2088       .access = PL1_RW | PL0_R,
2089       .type = ARM_CP_IO,
2090       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2091       .resetvalue = 0, .accessfn = gt_vtimer_access,
2092       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2093     },
2094     /* Secure timer -- this is actually restricted to only EL3
2095      * and configurably Secure-EL1 via the accessfn.
2096      */
2097     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2098       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2099       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2100       .accessfn = gt_stimer_access,
2101       .readfn = gt_sec_tval_read,
2102       .writefn = gt_sec_tval_write,
2103       .resetfn = gt_sec_timer_reset,
2104     },
2105     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2106       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2107       .type = ARM_CP_IO, .access = PL1_RW,
2108       .accessfn = gt_stimer_access,
2109       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2110       .resetvalue = 0,
2111       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2112     },
2113     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2114       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2115       .type = ARM_CP_IO, .access = PL1_RW,
2116       .accessfn = gt_stimer_access,
2117       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2118       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2119     },
2120     REGINFO_SENTINEL
2121 };
2122 
2123 #else
2124 /* In user-mode none of the generic timer registers are accessible,
2125  * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2126  * so instead just don't register any of them.
2127  */
2128 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2129     REGINFO_SENTINEL
2130 };
2131 
2132 #endif
2133 
2134 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2135 {
2136     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2137         raw_write(env, ri, value);
2138     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2139         raw_write(env, ri, value & 0xfffff6ff);
2140     } else {
2141         raw_write(env, ri, value & 0xfffff1ff);
2142     }
2143 }
2144 
2145 #ifndef CONFIG_USER_ONLY
2146 /* get_phys_addr() isn't present for user-mode-only targets */
2147 
2148 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2149                                  bool isread)
2150 {
2151     if (ri->opc2 & 4) {
2152         /* The ATS12NSO* operations must trap to EL3 if executed in
2153          * Secure EL1 (which can only happen if EL3 is AArch64).
2154          * They are simply UNDEF if executed from NS EL1.
2155          * They function normally from EL2 or EL3.
2156          */
2157         if (arm_current_el(env) == 1) {
2158             if (arm_is_secure_below_el3(env)) {
2159                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2160             }
2161             return CP_ACCESS_TRAP_UNCATEGORIZED;
2162         }
2163     }
2164     return CP_ACCESS_OK;
2165 }
2166 
2167 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2168                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
2169 {
2170     hwaddr phys_addr;
2171     target_ulong page_size;
2172     int prot;
2173     bool ret;
2174     uint64_t par64;
2175     bool format64 = false;
2176     MemTxAttrs attrs = {};
2177     ARMMMUFaultInfo fi = {};
2178     ARMCacheAttrs cacheattrs = {};
2179 
2180     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2181                         &prot, &page_size, &fi, &cacheattrs);
2182 
2183     if (is_a64(env)) {
2184         format64 = true;
2185     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2186         /*
2187          * ATS1Cxx:
2188          * * TTBCR.EAE determines whether the result is returned using the
2189          *   32-bit or the 64-bit PAR format
2190          * * Instructions executed in Hyp mode always use the 64bit format
2191          *
2192          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2193          * * The Non-secure TTBCR.EAE bit is set to 1
2194          * * The implementation includes EL2, and the value of HCR.VM is 1
2195          *
2196          * ATS1Hx always uses the 64bit format (not supported yet).
2197          */
2198         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2199 
2200         if (arm_feature(env, ARM_FEATURE_EL2)) {
2201             if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2202                 format64 |= env->cp15.hcr_el2 & HCR_VM;
2203             } else {
2204                 format64 |= arm_current_el(env) == 2;
2205             }
2206         }
2207     }
2208 
2209     if (format64) {
2210         /* Create a 64-bit PAR */
2211         par64 = (1 << 11); /* LPAE bit always set */
2212         if (!ret) {
2213             par64 |= phys_addr & ~0xfffULL;
2214             if (!attrs.secure) {
2215                 par64 |= (1 << 9); /* NS */
2216             }
2217             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2218             par64 |= cacheattrs.shareability << 7; /* SH */
2219         } else {
2220             uint32_t fsr = arm_fi_to_lfsc(&fi);
2221 
2222             par64 |= 1; /* F */
2223             par64 |= (fsr & 0x3f) << 1; /* FS */
2224             /* Note that S2WLK and FSTAGE are always zero, because we don't
2225              * implement virtualization and therefore there can't be a stage 2
2226              * fault.
2227              */
2228         }
2229     } else {
2230         /* fsr is a DFSR/IFSR value for the short descriptor
2231          * translation table format (with WnR always clear).
2232          * Convert it to a 32-bit PAR.
2233          */
2234         if (!ret) {
2235             /* We do not set any attribute bits in the PAR */
2236             if (page_size == (1 << 24)
2237                 && arm_feature(env, ARM_FEATURE_V7)) {
2238                 par64 = (phys_addr & 0xff000000) | (1 << 1);
2239             } else {
2240                 par64 = phys_addr & 0xfffff000;
2241             }
2242             if (!attrs.secure) {
2243                 par64 |= (1 << 9); /* NS */
2244             }
2245         } else {
2246             uint32_t fsr = arm_fi_to_sfsc(&fi);
2247 
2248             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2249                     ((fsr & 0xf) << 1) | 1;
2250         }
2251     }
2252     return par64;
2253 }
2254 
2255 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2256 {
2257     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2258     uint64_t par64;
2259     ARMMMUIdx mmu_idx;
2260     int el = arm_current_el(env);
2261     bool secure = arm_is_secure_below_el3(env);
2262 
2263     switch (ri->opc2 & 6) {
2264     case 0:
2265         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2266         switch (el) {
2267         case 3:
2268             mmu_idx = ARMMMUIdx_S1E3;
2269             break;
2270         case 2:
2271             mmu_idx = ARMMMUIdx_S1NSE1;
2272             break;
2273         case 1:
2274             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2275             break;
2276         default:
2277             g_assert_not_reached();
2278         }
2279         break;
2280     case 2:
2281         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2282         switch (el) {
2283         case 3:
2284             mmu_idx = ARMMMUIdx_S1SE0;
2285             break;
2286         case 2:
2287             mmu_idx = ARMMMUIdx_S1NSE0;
2288             break;
2289         case 1:
2290             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2291             break;
2292         default:
2293             g_assert_not_reached();
2294         }
2295         break;
2296     case 4:
2297         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2298         mmu_idx = ARMMMUIdx_S12NSE1;
2299         break;
2300     case 6:
2301         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2302         mmu_idx = ARMMMUIdx_S12NSE0;
2303         break;
2304     default:
2305         g_assert_not_reached();
2306     }
2307 
2308     par64 = do_ats_write(env, value, access_type, mmu_idx);
2309 
2310     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2311 }
2312 
2313 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2314                         uint64_t value)
2315 {
2316     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2317     uint64_t par64;
2318 
2319     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2320 
2321     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2322 }
2323 
2324 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2325                                      bool isread)
2326 {
2327     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2328         return CP_ACCESS_TRAP;
2329     }
2330     return CP_ACCESS_OK;
2331 }
2332 
2333 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2334                         uint64_t value)
2335 {
2336     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2337     ARMMMUIdx mmu_idx;
2338     int secure = arm_is_secure_below_el3(env);
2339 
2340     switch (ri->opc2 & 6) {
2341     case 0:
2342         switch (ri->opc1) {
2343         case 0: /* AT S1E1R, AT S1E1W */
2344             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2345             break;
2346         case 4: /* AT S1E2R, AT S1E2W */
2347             mmu_idx = ARMMMUIdx_S1E2;
2348             break;
2349         case 6: /* AT S1E3R, AT S1E3W */
2350             mmu_idx = ARMMMUIdx_S1E3;
2351             break;
2352         default:
2353             g_assert_not_reached();
2354         }
2355         break;
2356     case 2: /* AT S1E0R, AT S1E0W */
2357         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2358         break;
2359     case 4: /* AT S12E1R, AT S12E1W */
2360         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2361         break;
2362     case 6: /* AT S12E0R, AT S12E0W */
2363         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2364         break;
2365     default:
2366         g_assert_not_reached();
2367     }
2368 
2369     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2370 }
2371 #endif
2372 
2373 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2374     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2375       .access = PL1_RW, .resetvalue = 0,
2376       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2377                              offsetoflow32(CPUARMState, cp15.par_ns) },
2378       .writefn = par_write },
2379 #ifndef CONFIG_USER_ONLY
2380     /* This underdecoding is safe because the reginfo is NO_RAW. */
2381     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2382       .access = PL1_W, .accessfn = ats_access,
2383       .writefn = ats_write, .type = ARM_CP_NO_RAW },
2384 #endif
2385     REGINFO_SENTINEL
2386 };
2387 
2388 /* Return basic MPU access permission bits.  */
2389 static uint32_t simple_mpu_ap_bits(uint32_t val)
2390 {
2391     uint32_t ret;
2392     uint32_t mask;
2393     int i;
2394     ret = 0;
2395     mask = 3;
2396     for (i = 0; i < 16; i += 2) {
2397         ret |= (val >> i) & mask;
2398         mask <<= 2;
2399     }
2400     return ret;
2401 }
2402 
2403 /* Pad basic MPU access permission bits to extended format.  */
2404 static uint32_t extended_mpu_ap_bits(uint32_t val)
2405 {
2406     uint32_t ret;
2407     uint32_t mask;
2408     int i;
2409     ret = 0;
2410     mask = 3;
2411     for (i = 0; i < 16; i += 2) {
2412         ret |= (val & mask) << i;
2413         mask <<= 2;
2414     }
2415     return ret;
2416 }
2417 
2418 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2419                                  uint64_t value)
2420 {
2421     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2422 }
2423 
2424 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2425 {
2426     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2427 }
2428 
2429 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2430                                  uint64_t value)
2431 {
2432     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2433 }
2434 
2435 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2436 {
2437     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2438 }
2439 
2440 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2441 {
2442     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2443 
2444     if (!u32p) {
2445         return 0;
2446     }
2447 
2448     u32p += env->pmsav7.rnr[M_REG_NS];
2449     return *u32p;
2450 }
2451 
2452 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2453                          uint64_t value)
2454 {
2455     ARMCPU *cpu = arm_env_get_cpu(env);
2456     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2457 
2458     if (!u32p) {
2459         return;
2460     }
2461 
2462     u32p += env->pmsav7.rnr[M_REG_NS];
2463     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2464     *u32p = value;
2465 }
2466 
2467 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2468                               uint64_t value)
2469 {
2470     ARMCPU *cpu = arm_env_get_cpu(env);
2471     uint32_t nrgs = cpu->pmsav7_dregion;
2472 
2473     if (value >= nrgs) {
2474         qemu_log_mask(LOG_GUEST_ERROR,
2475                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2476                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2477         return;
2478     }
2479 
2480     raw_write(env, ri, value);
2481 }
2482 
2483 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2484     /* Reset for all these registers is handled in arm_cpu_reset(),
2485      * because the PMSAv7 is also used by M-profile CPUs, which do
2486      * not register cpregs but still need the state to be reset.
2487      */
2488     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2489       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2490       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2491       .readfn = pmsav7_read, .writefn = pmsav7_write,
2492       .resetfn = arm_cp_reset_ignore },
2493     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2494       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2495       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2496       .readfn = pmsav7_read, .writefn = pmsav7_write,
2497       .resetfn = arm_cp_reset_ignore },
2498     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2499       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2500       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2501       .readfn = pmsav7_read, .writefn = pmsav7_write,
2502       .resetfn = arm_cp_reset_ignore },
2503     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2504       .access = PL1_RW,
2505       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2506       .writefn = pmsav7_rgnr_write,
2507       .resetfn = arm_cp_reset_ignore },
2508     REGINFO_SENTINEL
2509 };
2510 
2511 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2512     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2513       .access = PL1_RW, .type = ARM_CP_ALIAS,
2514       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2515       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2516     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2517       .access = PL1_RW, .type = ARM_CP_ALIAS,
2518       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2519       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2520     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2521       .access = PL1_RW,
2522       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2523       .resetvalue = 0, },
2524     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2525       .access = PL1_RW,
2526       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2527       .resetvalue = 0, },
2528     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2529       .access = PL1_RW,
2530       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2531     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2532       .access = PL1_RW,
2533       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2534     /* Protection region base and size registers */
2535     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2536       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2537       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2538     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2539       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2540       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2541     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2542       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2543       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2544     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2545       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2546       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2547     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2548       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2549       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2550     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2551       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2552       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2553     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2554       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2555       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2556     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2557       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2558       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2559     REGINFO_SENTINEL
2560 };
2561 
2562 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2563                                  uint64_t value)
2564 {
2565     TCR *tcr = raw_ptr(env, ri);
2566     int maskshift = extract32(value, 0, 3);
2567 
2568     if (!arm_feature(env, ARM_FEATURE_V8)) {
2569         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2570             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2571              * using Long-desciptor translation table format */
2572             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2573         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2574             /* In an implementation that includes the Security Extensions
2575              * TTBCR has additional fields PD0 [4] and PD1 [5] for
2576              * Short-descriptor translation table format.
2577              */
2578             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2579         } else {
2580             value &= TTBCR_N;
2581         }
2582     }
2583 
2584     /* Update the masks corresponding to the TCR bank being written
2585      * Note that we always calculate mask and base_mask, but
2586      * they are only used for short-descriptor tables (ie if EAE is 0);
2587      * for long-descriptor tables the TCR fields are used differently
2588      * and the mask and base_mask values are meaningless.
2589      */
2590     tcr->raw_tcr = value;
2591     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2592     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2593 }
2594 
2595 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2596                              uint64_t value)
2597 {
2598     ARMCPU *cpu = arm_env_get_cpu(env);
2599 
2600     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2601         /* With LPAE the TTBCR could result in a change of ASID
2602          * via the TTBCR.A1 bit, so do a TLB flush.
2603          */
2604         tlb_flush(CPU(cpu));
2605     }
2606     vmsa_ttbcr_raw_write(env, ri, value);
2607 }
2608 
2609 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2610 {
2611     TCR *tcr = raw_ptr(env, ri);
2612 
2613     /* Reset both the TCR as well as the masks corresponding to the bank of
2614      * the TCR being reset.
2615      */
2616     tcr->raw_tcr = 0;
2617     tcr->mask = 0;
2618     tcr->base_mask = 0xffffc000u;
2619 }
2620 
2621 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2622                                uint64_t value)
2623 {
2624     ARMCPU *cpu = arm_env_get_cpu(env);
2625     TCR *tcr = raw_ptr(env, ri);
2626 
2627     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2628     tlb_flush(CPU(cpu));
2629     tcr->raw_tcr = value;
2630 }
2631 
2632 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2633                             uint64_t value)
2634 {
2635     /* 64 bit accesses to the TTBRs can change the ASID and so we
2636      * must flush the TLB.
2637      */
2638     if (cpreg_field_is_64bit(ri)) {
2639         ARMCPU *cpu = arm_env_get_cpu(env);
2640 
2641         tlb_flush(CPU(cpu));
2642     }
2643     raw_write(env, ri, value);
2644 }
2645 
2646 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2647                         uint64_t value)
2648 {
2649     ARMCPU *cpu = arm_env_get_cpu(env);
2650     CPUState *cs = CPU(cpu);
2651 
2652     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
2653     if (raw_read(env, ri) != value) {
2654         tlb_flush_by_mmuidx(cs,
2655                             ARMMMUIdxBit_S12NSE1 |
2656                             ARMMMUIdxBit_S12NSE0 |
2657                             ARMMMUIdxBit_S2NS);
2658         raw_write(env, ri, value);
2659     }
2660 }
2661 
2662 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2663     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2664       .access = PL1_RW, .type = ARM_CP_ALIAS,
2665       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2666                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2667     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2668       .access = PL1_RW, .resetvalue = 0,
2669       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2670                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2671     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2672       .access = PL1_RW, .resetvalue = 0,
2673       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2674                              offsetof(CPUARMState, cp15.dfar_ns) } },
2675     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2676       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2677       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2678       .resetvalue = 0, },
2679     REGINFO_SENTINEL
2680 };
2681 
2682 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2683     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2684       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2685       .access = PL1_RW,
2686       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2687     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2688       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2689       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2690       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2691                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
2692     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2693       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2694       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2695       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2696                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
2697     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2698       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2699       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2700       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2701       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2702     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2703       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2704       .raw_writefn = vmsa_ttbcr_raw_write,
2705       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2706                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2707     REGINFO_SENTINEL
2708 };
2709 
2710 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2711                                 uint64_t value)
2712 {
2713     env->cp15.c15_ticonfig = value & 0xe7;
2714     /* The OS_TYPE bit in this register changes the reported CPUID! */
2715     env->cp15.c0_cpuid = (value & (1 << 5)) ?
2716         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2717 }
2718 
2719 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2720                                 uint64_t value)
2721 {
2722     env->cp15.c15_threadid = value & 0xffff;
2723 }
2724 
2725 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2726                            uint64_t value)
2727 {
2728     /* Wait-for-interrupt (deprecated) */
2729     cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2730 }
2731 
2732 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2733                                   uint64_t value)
2734 {
2735     /* On OMAP there are registers indicating the max/min index of dcache lines
2736      * containing a dirty line; cache flush operations have to reset these.
2737      */
2738     env->cp15.c15_i_max = 0x000;
2739     env->cp15.c15_i_min = 0xff0;
2740 }
2741 
2742 static const ARMCPRegInfo omap_cp_reginfo[] = {
2743     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2744       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2745       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2746       .resetvalue = 0, },
2747     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2748       .access = PL1_RW, .type = ARM_CP_NOP },
2749     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2750       .access = PL1_RW,
2751       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2752       .writefn = omap_ticonfig_write },
2753     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2754       .access = PL1_RW,
2755       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2756     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2757       .access = PL1_RW, .resetvalue = 0xff0,
2758       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2759     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2760       .access = PL1_RW,
2761       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2762       .writefn = omap_threadid_write },
2763     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2764       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2765       .type = ARM_CP_NO_RAW,
2766       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2767     /* TODO: Peripheral port remap register:
2768      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2769      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2770      * when MMU is off.
2771      */
2772     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2773       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2774       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2775       .writefn = omap_cachemaint_write },
2776     { .name = "C9", .cp = 15, .crn = 9,
2777       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2778       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2779     REGINFO_SENTINEL
2780 };
2781 
2782 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2783                               uint64_t value)
2784 {
2785     env->cp15.c15_cpar = value & 0x3fff;
2786 }
2787 
2788 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2789     { .name = "XSCALE_CPAR",
2790       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2791       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2792       .writefn = xscale_cpar_write, },
2793     { .name = "XSCALE_AUXCR",
2794       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2795       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2796       .resetvalue = 0, },
2797     /* XScale specific cache-lockdown: since we have no cache we NOP these
2798      * and hope the guest does not really rely on cache behaviour.
2799      */
2800     { .name = "XSCALE_LOCK_ICACHE_LINE",
2801       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2802       .access = PL1_W, .type = ARM_CP_NOP },
2803     { .name = "XSCALE_UNLOCK_ICACHE",
2804       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2805       .access = PL1_W, .type = ARM_CP_NOP },
2806     { .name = "XSCALE_DCACHE_LOCK",
2807       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2808       .access = PL1_RW, .type = ARM_CP_NOP },
2809     { .name = "XSCALE_UNLOCK_DCACHE",
2810       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2811       .access = PL1_W, .type = ARM_CP_NOP },
2812     REGINFO_SENTINEL
2813 };
2814 
2815 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2816     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2817      * implementation of this implementation-defined space.
2818      * Ideally this should eventually disappear in favour of actually
2819      * implementing the correct behaviour for all cores.
2820      */
2821     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2822       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2823       .access = PL1_RW,
2824       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2825       .resetvalue = 0 },
2826     REGINFO_SENTINEL
2827 };
2828 
2829 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2830     /* Cache status: RAZ because we have no cache so it's always clean */
2831     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2832       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2833       .resetvalue = 0 },
2834     REGINFO_SENTINEL
2835 };
2836 
2837 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2838     /* We never have a a block transfer operation in progress */
2839     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2840       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2841       .resetvalue = 0 },
2842     /* The cache ops themselves: these all NOP for QEMU */
2843     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2844       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2845     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2846       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2847     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2848       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2849     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2850       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2851     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2852       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2853     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2854       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2855     REGINFO_SENTINEL
2856 };
2857 
2858 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2859     /* The cache test-and-clean instructions always return (1 << 30)
2860      * to indicate that there are no dirty cache lines.
2861      */
2862     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2863       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2864       .resetvalue = (1 << 30) },
2865     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2866       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2867       .resetvalue = (1 << 30) },
2868     REGINFO_SENTINEL
2869 };
2870 
2871 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2872     /* Ignore ReadBuffer accesses */
2873     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2874       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2875       .access = PL1_RW, .resetvalue = 0,
2876       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2877     REGINFO_SENTINEL
2878 };
2879 
2880 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2881 {
2882     ARMCPU *cpu = arm_env_get_cpu(env);
2883     unsigned int cur_el = arm_current_el(env);
2884     bool secure = arm_is_secure(env);
2885 
2886     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2887         return env->cp15.vpidr_el2;
2888     }
2889     return raw_read(env, ri);
2890 }
2891 
2892 static uint64_t mpidr_read_val(CPUARMState *env)
2893 {
2894     ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2895     uint64_t mpidr = cpu->mp_affinity;
2896 
2897     if (arm_feature(env, ARM_FEATURE_V7MP)) {
2898         mpidr |= (1U << 31);
2899         /* Cores which are uniprocessor (non-coherent)
2900          * but still implement the MP extensions set
2901          * bit 30. (For instance, Cortex-R5).
2902          */
2903         if (cpu->mp_is_up) {
2904             mpidr |= (1u << 30);
2905         }
2906     }
2907     return mpidr;
2908 }
2909 
2910 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2911 {
2912     unsigned int cur_el = arm_current_el(env);
2913     bool secure = arm_is_secure(env);
2914 
2915     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2916         return env->cp15.vmpidr_el2;
2917     }
2918     return mpidr_read_val(env);
2919 }
2920 
2921 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2922     { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2923       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2924       .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2925     REGINFO_SENTINEL
2926 };
2927 
2928 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2929     /* NOP AMAIR0/1 */
2930     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2931       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2932       .access = PL1_RW, .type = ARM_CP_CONST,
2933       .resetvalue = 0 },
2934     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2935     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2936       .access = PL1_RW, .type = ARM_CP_CONST,
2937       .resetvalue = 0 },
2938     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2939       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2940       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2941                              offsetof(CPUARMState, cp15.par_ns)} },
2942     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2943       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2944       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2945                              offsetof(CPUARMState, cp15.ttbr0_ns) },
2946       .writefn = vmsa_ttbr_write, },
2947     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2948       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2949       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2950                              offsetof(CPUARMState, cp15.ttbr1_ns) },
2951       .writefn = vmsa_ttbr_write, },
2952     REGINFO_SENTINEL
2953 };
2954 
2955 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2956 {
2957     return vfp_get_fpcr(env);
2958 }
2959 
2960 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2961                             uint64_t value)
2962 {
2963     vfp_set_fpcr(env, value);
2964 }
2965 
2966 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2967 {
2968     return vfp_get_fpsr(env);
2969 }
2970 
2971 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2972                             uint64_t value)
2973 {
2974     vfp_set_fpsr(env, value);
2975 }
2976 
2977 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2978                                        bool isread)
2979 {
2980     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2981         return CP_ACCESS_TRAP;
2982     }
2983     return CP_ACCESS_OK;
2984 }
2985 
2986 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2987                             uint64_t value)
2988 {
2989     env->daif = value & PSTATE_DAIF;
2990 }
2991 
2992 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2993                                           const ARMCPRegInfo *ri,
2994                                           bool isread)
2995 {
2996     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2997      * SCTLR_EL1.UCI is set.
2998      */
2999     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3000         return CP_ACCESS_TRAP;
3001     }
3002     return CP_ACCESS_OK;
3003 }
3004 
3005 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3006  * Page D4-1736 (DDI0487A.b)
3007  */
3008 
3009 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3010                                     uint64_t value)
3011 {
3012     CPUState *cs = ENV_GET_CPU(env);
3013 
3014     if (arm_is_secure_below_el3(env)) {
3015         tlb_flush_by_mmuidx(cs,
3016                             ARMMMUIdxBit_S1SE1 |
3017                             ARMMMUIdxBit_S1SE0);
3018     } else {
3019         tlb_flush_by_mmuidx(cs,
3020                             ARMMMUIdxBit_S12NSE1 |
3021                             ARMMMUIdxBit_S12NSE0);
3022     }
3023 }
3024 
3025 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3026                                       uint64_t value)
3027 {
3028     CPUState *cs = ENV_GET_CPU(env);
3029     bool sec = arm_is_secure_below_el3(env);
3030 
3031     if (sec) {
3032         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3033                                             ARMMMUIdxBit_S1SE1 |
3034                                             ARMMMUIdxBit_S1SE0);
3035     } else {
3036         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3037                                             ARMMMUIdxBit_S12NSE1 |
3038                                             ARMMMUIdxBit_S12NSE0);
3039     }
3040 }
3041 
3042 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3043                                   uint64_t value)
3044 {
3045     /* Note that the 'ALL' scope must invalidate both stage 1 and
3046      * stage 2 translations, whereas most other scopes only invalidate
3047      * stage 1 translations.
3048      */
3049     ARMCPU *cpu = arm_env_get_cpu(env);
3050     CPUState *cs = CPU(cpu);
3051 
3052     if (arm_is_secure_below_el3(env)) {
3053         tlb_flush_by_mmuidx(cs,
3054                             ARMMMUIdxBit_S1SE1 |
3055                             ARMMMUIdxBit_S1SE0);
3056     } else {
3057         if (arm_feature(env, ARM_FEATURE_EL2)) {
3058             tlb_flush_by_mmuidx(cs,
3059                                 ARMMMUIdxBit_S12NSE1 |
3060                                 ARMMMUIdxBit_S12NSE0 |
3061                                 ARMMMUIdxBit_S2NS);
3062         } else {
3063             tlb_flush_by_mmuidx(cs,
3064                                 ARMMMUIdxBit_S12NSE1 |
3065                                 ARMMMUIdxBit_S12NSE0);
3066         }
3067     }
3068 }
3069 
3070 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3071                                   uint64_t value)
3072 {
3073     ARMCPU *cpu = arm_env_get_cpu(env);
3074     CPUState *cs = CPU(cpu);
3075 
3076     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3077 }
3078 
3079 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3080                                   uint64_t value)
3081 {
3082     ARMCPU *cpu = arm_env_get_cpu(env);
3083     CPUState *cs = CPU(cpu);
3084 
3085     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3086 }
3087 
3088 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3089                                     uint64_t value)
3090 {
3091     /* Note that the 'ALL' scope must invalidate both stage 1 and
3092      * stage 2 translations, whereas most other scopes only invalidate
3093      * stage 1 translations.
3094      */
3095     CPUState *cs = ENV_GET_CPU(env);
3096     bool sec = arm_is_secure_below_el3(env);
3097     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3098 
3099     if (sec) {
3100         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3101                                             ARMMMUIdxBit_S1SE1 |
3102                                             ARMMMUIdxBit_S1SE0);
3103     } else if (has_el2) {
3104         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3105                                             ARMMMUIdxBit_S12NSE1 |
3106                                             ARMMMUIdxBit_S12NSE0 |
3107                                             ARMMMUIdxBit_S2NS);
3108     } else {
3109           tlb_flush_by_mmuidx_all_cpus_synced(cs,
3110                                               ARMMMUIdxBit_S12NSE1 |
3111                                               ARMMMUIdxBit_S12NSE0);
3112     }
3113 }
3114 
3115 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3116                                     uint64_t value)
3117 {
3118     CPUState *cs = ENV_GET_CPU(env);
3119 
3120     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3121 }
3122 
3123 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3124                                     uint64_t value)
3125 {
3126     CPUState *cs = ENV_GET_CPU(env);
3127 
3128     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3129 }
3130 
3131 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3132                                  uint64_t value)
3133 {
3134     /* Invalidate by VA, EL1&0 (AArch64 version).
3135      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3136      * since we don't support flush-for-specific-ASID-only or
3137      * flush-last-level-only.
3138      */
3139     ARMCPU *cpu = arm_env_get_cpu(env);
3140     CPUState *cs = CPU(cpu);
3141     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3142 
3143     if (arm_is_secure_below_el3(env)) {
3144         tlb_flush_page_by_mmuidx(cs, pageaddr,
3145                                  ARMMMUIdxBit_S1SE1 |
3146                                  ARMMMUIdxBit_S1SE0);
3147     } else {
3148         tlb_flush_page_by_mmuidx(cs, pageaddr,
3149                                  ARMMMUIdxBit_S12NSE1 |
3150                                  ARMMMUIdxBit_S12NSE0);
3151     }
3152 }
3153 
3154 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3155                                  uint64_t value)
3156 {
3157     /* Invalidate by VA, EL2
3158      * Currently handles both VAE2 and VALE2, since we don't support
3159      * flush-last-level-only.
3160      */
3161     ARMCPU *cpu = arm_env_get_cpu(env);
3162     CPUState *cs = CPU(cpu);
3163     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3164 
3165     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3166 }
3167 
3168 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3169                                  uint64_t value)
3170 {
3171     /* Invalidate by VA, EL3
3172      * Currently handles both VAE3 and VALE3, since we don't support
3173      * flush-last-level-only.
3174      */
3175     ARMCPU *cpu = arm_env_get_cpu(env);
3176     CPUState *cs = CPU(cpu);
3177     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3178 
3179     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3180 }
3181 
3182 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3183                                    uint64_t value)
3184 {
3185     ARMCPU *cpu = arm_env_get_cpu(env);
3186     CPUState *cs = CPU(cpu);
3187     bool sec = arm_is_secure_below_el3(env);
3188     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3189 
3190     if (sec) {
3191         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3192                                                  ARMMMUIdxBit_S1SE1 |
3193                                                  ARMMMUIdxBit_S1SE0);
3194     } else {
3195         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3196                                                  ARMMMUIdxBit_S12NSE1 |
3197                                                  ARMMMUIdxBit_S12NSE0);
3198     }
3199 }
3200 
3201 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3202                                    uint64_t value)
3203 {
3204     CPUState *cs = ENV_GET_CPU(env);
3205     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3206 
3207     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3208                                              ARMMMUIdxBit_S1E2);
3209 }
3210 
3211 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3212                                    uint64_t value)
3213 {
3214     CPUState *cs = ENV_GET_CPU(env);
3215     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3216 
3217     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3218                                              ARMMMUIdxBit_S1E3);
3219 }
3220 
3221 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3222                                     uint64_t value)
3223 {
3224     /* Invalidate by IPA. This has to invalidate any structures that
3225      * contain only stage 2 translation information, but does not need
3226      * to apply to structures that contain combined stage 1 and stage 2
3227      * translation information.
3228      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3229      */
3230     ARMCPU *cpu = arm_env_get_cpu(env);
3231     CPUState *cs = CPU(cpu);
3232     uint64_t pageaddr;
3233 
3234     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3235         return;
3236     }
3237 
3238     pageaddr = sextract64(value << 12, 0, 48);
3239 
3240     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3241 }
3242 
3243 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3244                                       uint64_t value)
3245 {
3246     CPUState *cs = ENV_GET_CPU(env);
3247     uint64_t pageaddr;
3248 
3249     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3250         return;
3251     }
3252 
3253     pageaddr = sextract64(value << 12, 0, 48);
3254 
3255     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3256                                              ARMMMUIdxBit_S2NS);
3257 }
3258 
3259 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3260                                       bool isread)
3261 {
3262     /* We don't implement EL2, so the only control on DC ZVA is the
3263      * bit in the SCTLR which can prohibit access for EL0.
3264      */
3265     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3266         return CP_ACCESS_TRAP;
3267     }
3268     return CP_ACCESS_OK;
3269 }
3270 
3271 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3272 {
3273     ARMCPU *cpu = arm_env_get_cpu(env);
3274     int dzp_bit = 1 << 4;
3275 
3276     /* DZP indicates whether DC ZVA access is allowed */
3277     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3278         dzp_bit = 0;
3279     }
3280     return cpu->dcz_blocksize | dzp_bit;
3281 }
3282 
3283 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3284                                     bool isread)
3285 {
3286     if (!(env->pstate & PSTATE_SP)) {
3287         /* Access to SP_EL0 is undefined if it's being used as
3288          * the stack pointer.
3289          */
3290         return CP_ACCESS_TRAP_UNCATEGORIZED;
3291     }
3292     return CP_ACCESS_OK;
3293 }
3294 
3295 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3296 {
3297     return env->pstate & PSTATE_SP;
3298 }
3299 
3300 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3301 {
3302     update_spsel(env, val);
3303 }
3304 
3305 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3306                         uint64_t value)
3307 {
3308     ARMCPU *cpu = arm_env_get_cpu(env);
3309 
3310     if (raw_read(env, ri) == value) {
3311         /* Skip the TLB flush if nothing actually changed; Linux likes
3312          * to do a lot of pointless SCTLR writes.
3313          */
3314         return;
3315     }
3316 
3317     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3318         /* M bit is RAZ/WI for PMSA with no MPU implemented */
3319         value &= ~SCTLR_M;
3320     }
3321 
3322     raw_write(env, ri, value);
3323     /* ??? Lots of these bits are not implemented.  */
3324     /* This may enable/disable the MMU, so do a TLB flush.  */
3325     tlb_flush(CPU(cpu));
3326 }
3327 
3328 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3329                                      bool isread)
3330 {
3331     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3332         return CP_ACCESS_TRAP_FP_EL2;
3333     }
3334     if (env->cp15.cptr_el[3] & CPTR_TFP) {
3335         return CP_ACCESS_TRAP_FP_EL3;
3336     }
3337     return CP_ACCESS_OK;
3338 }
3339 
3340 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3341                        uint64_t value)
3342 {
3343     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3344 }
3345 
3346 static const ARMCPRegInfo v8_cp_reginfo[] = {
3347     /* Minimal set of EL0-visible registers. This will need to be expanded
3348      * significantly for system emulation of AArch64 CPUs.
3349      */
3350     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3351       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3352       .access = PL0_RW, .type = ARM_CP_NZCV },
3353     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3354       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3355       .type = ARM_CP_NO_RAW,
3356       .access = PL0_RW, .accessfn = aa64_daif_access,
3357       .fieldoffset = offsetof(CPUARMState, daif),
3358       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3359     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3360       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3361       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3362       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3363     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3364       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3365       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3366       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3367     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3368       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3369       .access = PL0_R, .type = ARM_CP_NO_RAW,
3370       .readfn = aa64_dczid_read },
3371     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3372       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3373       .access = PL0_W, .type = ARM_CP_DC_ZVA,
3374 #ifndef CONFIG_USER_ONLY
3375       /* Avoid overhead of an access check that always passes in user-mode */
3376       .accessfn = aa64_zva_access,
3377 #endif
3378     },
3379     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3380       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3381       .access = PL1_R, .type = ARM_CP_CURRENTEL },
3382     /* Cache ops: all NOPs since we don't emulate caches */
3383     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3384       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3385       .access = PL1_W, .type = ARM_CP_NOP },
3386     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3387       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3388       .access = PL1_W, .type = ARM_CP_NOP },
3389     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3390       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3391       .access = PL0_W, .type = ARM_CP_NOP,
3392       .accessfn = aa64_cacheop_access },
3393     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3394       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3395       .access = PL1_W, .type = ARM_CP_NOP },
3396     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3397       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3398       .access = PL1_W, .type = ARM_CP_NOP },
3399     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3400       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3401       .access = PL0_W, .type = ARM_CP_NOP,
3402       .accessfn = aa64_cacheop_access },
3403     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3404       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3405       .access = PL1_W, .type = ARM_CP_NOP },
3406     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3407       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3408       .access = PL0_W, .type = ARM_CP_NOP,
3409       .accessfn = aa64_cacheop_access },
3410     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3411       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3412       .access = PL0_W, .type = ARM_CP_NOP,
3413       .accessfn = aa64_cacheop_access },
3414     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3415       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3416       .access = PL1_W, .type = ARM_CP_NOP },
3417     /* TLBI operations */
3418     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3419       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3420       .access = PL1_W, .type = ARM_CP_NO_RAW,
3421       .writefn = tlbi_aa64_vmalle1is_write },
3422     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3423       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3424       .access = PL1_W, .type = ARM_CP_NO_RAW,
3425       .writefn = tlbi_aa64_vae1is_write },
3426     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3427       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3428       .access = PL1_W, .type = ARM_CP_NO_RAW,
3429       .writefn = tlbi_aa64_vmalle1is_write },
3430     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3431       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3432       .access = PL1_W, .type = ARM_CP_NO_RAW,
3433       .writefn = tlbi_aa64_vae1is_write },
3434     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3435       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3436       .access = PL1_W, .type = ARM_CP_NO_RAW,
3437       .writefn = tlbi_aa64_vae1is_write },
3438     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3439       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3440       .access = PL1_W, .type = ARM_CP_NO_RAW,
3441       .writefn = tlbi_aa64_vae1is_write },
3442     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3443       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3444       .access = PL1_W, .type = ARM_CP_NO_RAW,
3445       .writefn = tlbi_aa64_vmalle1_write },
3446     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3447       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3448       .access = PL1_W, .type = ARM_CP_NO_RAW,
3449       .writefn = tlbi_aa64_vae1_write },
3450     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3451       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3452       .access = PL1_W, .type = ARM_CP_NO_RAW,
3453       .writefn = tlbi_aa64_vmalle1_write },
3454     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3455       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3456       .access = PL1_W, .type = ARM_CP_NO_RAW,
3457       .writefn = tlbi_aa64_vae1_write },
3458     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3459       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3460       .access = PL1_W, .type = ARM_CP_NO_RAW,
3461       .writefn = tlbi_aa64_vae1_write },
3462     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3463       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3464       .access = PL1_W, .type = ARM_CP_NO_RAW,
3465       .writefn = tlbi_aa64_vae1_write },
3466     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3467       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3468       .access = PL2_W, .type = ARM_CP_NO_RAW,
3469       .writefn = tlbi_aa64_ipas2e1is_write },
3470     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3471       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3472       .access = PL2_W, .type = ARM_CP_NO_RAW,
3473       .writefn = tlbi_aa64_ipas2e1is_write },
3474     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3475       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3476       .access = PL2_W, .type = ARM_CP_NO_RAW,
3477       .writefn = tlbi_aa64_alle1is_write },
3478     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3479       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3480       .access = PL2_W, .type = ARM_CP_NO_RAW,
3481       .writefn = tlbi_aa64_alle1is_write },
3482     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3483       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3484       .access = PL2_W, .type = ARM_CP_NO_RAW,
3485       .writefn = tlbi_aa64_ipas2e1_write },
3486     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3487       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3488       .access = PL2_W, .type = ARM_CP_NO_RAW,
3489       .writefn = tlbi_aa64_ipas2e1_write },
3490     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3491       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3492       .access = PL2_W, .type = ARM_CP_NO_RAW,
3493       .writefn = tlbi_aa64_alle1_write },
3494     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3495       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3496       .access = PL2_W, .type = ARM_CP_NO_RAW,
3497       .writefn = tlbi_aa64_alle1is_write },
3498 #ifndef CONFIG_USER_ONLY
3499     /* 64 bit address translation operations */
3500     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3501       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3502       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3503     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3504       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3505       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3506     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3507       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3508       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3509     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3510       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3511       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3512     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3513       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3514       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3515     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3516       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3517       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3518     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3519       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3520       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3521     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3522       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3523       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3524     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3525     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3526       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3527       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3528     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3529       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3530       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3531     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3532       .type = ARM_CP_ALIAS,
3533       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3534       .access = PL1_RW, .resetvalue = 0,
3535       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3536       .writefn = par_write },
3537 #endif
3538     /* TLB invalidate last level of translation table walk */
3539     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3540       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3541     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3542       .type = ARM_CP_NO_RAW, .access = PL1_W,
3543       .writefn = tlbimvaa_is_write },
3544     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3545       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3546     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3547       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3548     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3549       .type = ARM_CP_NO_RAW, .access = PL2_W,
3550       .writefn = tlbimva_hyp_write },
3551     { .name = "TLBIMVALHIS",
3552       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3553       .type = ARM_CP_NO_RAW, .access = PL2_W,
3554       .writefn = tlbimva_hyp_is_write },
3555     { .name = "TLBIIPAS2",
3556       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3557       .type = ARM_CP_NO_RAW, .access = PL2_W,
3558       .writefn = tlbiipas2_write },
3559     { .name = "TLBIIPAS2IS",
3560       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3561       .type = ARM_CP_NO_RAW, .access = PL2_W,
3562       .writefn = tlbiipas2_is_write },
3563     { .name = "TLBIIPAS2L",
3564       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3565       .type = ARM_CP_NO_RAW, .access = PL2_W,
3566       .writefn = tlbiipas2_write },
3567     { .name = "TLBIIPAS2LIS",
3568       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3569       .type = ARM_CP_NO_RAW, .access = PL2_W,
3570       .writefn = tlbiipas2_is_write },
3571     /* 32 bit cache operations */
3572     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3573       .type = ARM_CP_NOP, .access = PL1_W },
3574     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3575       .type = ARM_CP_NOP, .access = PL1_W },
3576     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3577       .type = ARM_CP_NOP, .access = PL1_W },
3578     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3579       .type = ARM_CP_NOP, .access = PL1_W },
3580     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3581       .type = ARM_CP_NOP, .access = PL1_W },
3582     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3583       .type = ARM_CP_NOP, .access = PL1_W },
3584     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3585       .type = ARM_CP_NOP, .access = PL1_W },
3586     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3587       .type = ARM_CP_NOP, .access = PL1_W },
3588     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3589       .type = ARM_CP_NOP, .access = PL1_W },
3590     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3591       .type = ARM_CP_NOP, .access = PL1_W },
3592     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3593       .type = ARM_CP_NOP, .access = PL1_W },
3594     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3595       .type = ARM_CP_NOP, .access = PL1_W },
3596     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3597       .type = ARM_CP_NOP, .access = PL1_W },
3598     /* MMU Domain access control / MPU write buffer control */
3599     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3600       .access = PL1_RW, .resetvalue = 0,
3601       .writefn = dacr_write, .raw_writefn = raw_write,
3602       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3603                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3604     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3605       .type = ARM_CP_ALIAS,
3606       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3607       .access = PL1_RW,
3608       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3609     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3610       .type = ARM_CP_ALIAS,
3611       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3612       .access = PL1_RW,
3613       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3614     /* We rely on the access checks not allowing the guest to write to the
3615      * state field when SPSel indicates that it's being used as the stack
3616      * pointer.
3617      */
3618     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3619       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3620       .access = PL1_RW, .accessfn = sp_el0_access,
3621       .type = ARM_CP_ALIAS,
3622       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3623     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3624       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3625       .access = PL2_RW, .type = ARM_CP_ALIAS,
3626       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3627     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3628       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3629       .type = ARM_CP_NO_RAW,
3630       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3631     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3632       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3633       .type = ARM_CP_ALIAS,
3634       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3635       .access = PL2_RW, .accessfn = fpexc32_access },
3636     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3637       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3638       .access = PL2_RW, .resetvalue = 0,
3639       .writefn = dacr_write, .raw_writefn = raw_write,
3640       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3641     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3642       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3643       .access = PL2_RW, .resetvalue = 0,
3644       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3645     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3646       .type = ARM_CP_ALIAS,
3647       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3648       .access = PL2_RW,
3649       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3650     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3651       .type = ARM_CP_ALIAS,
3652       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3653       .access = PL2_RW,
3654       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3655     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3656       .type = ARM_CP_ALIAS,
3657       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3658       .access = PL2_RW,
3659       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3660     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3661       .type = ARM_CP_ALIAS,
3662       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3663       .access = PL2_RW,
3664       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3665     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3666       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3667       .resetvalue = 0,
3668       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3669     { .name = "SDCR", .type = ARM_CP_ALIAS,
3670       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3671       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3672       .writefn = sdcr_write,
3673       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3674     REGINFO_SENTINEL
3675 };
3676 
3677 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
3678 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3679     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3680       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3681       .access = PL2_RW,
3682       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3683     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3684       .type = ARM_CP_NO_RAW,
3685       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3686       .access = PL2_RW,
3687       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3688     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3689       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3690       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3691     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3692       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3693       .access = PL2_RW, .type = ARM_CP_CONST,
3694       .resetvalue = 0 },
3695     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3696       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3697       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3698     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3699       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3700       .access = PL2_RW, .type = ARM_CP_CONST,
3701       .resetvalue = 0 },
3702     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3703       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3704       .access = PL2_RW, .type = ARM_CP_CONST,
3705       .resetvalue = 0 },
3706     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3707       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3708       .access = PL2_RW, .type = ARM_CP_CONST,
3709       .resetvalue = 0 },
3710     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3711       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3712       .access = PL2_RW, .type = ARM_CP_CONST,
3713       .resetvalue = 0 },
3714     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3715       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3716       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3717     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3718       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3719       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3720       .type = ARM_CP_CONST, .resetvalue = 0 },
3721     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3722       .cp = 15, .opc1 = 6, .crm = 2,
3723       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3724       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3725     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3726       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3727       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3728     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3729       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3730       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3731     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3732       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3733       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3734     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3735       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3736       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3737     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3738       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3739       .resetvalue = 0 },
3740     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3741       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3742       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3743     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3744       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3745       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3746     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3747       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3748       .resetvalue = 0 },
3749     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3750       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3751       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3752     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3753       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3754       .resetvalue = 0 },
3755     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3756       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3757       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3758     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3759       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3760       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3761     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3762       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3763       .access = PL2_RW, .accessfn = access_tda,
3764       .type = ARM_CP_CONST, .resetvalue = 0 },
3765     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3766       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3767       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3768       .type = ARM_CP_CONST, .resetvalue = 0 },
3769     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3770       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3771       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3772     REGINFO_SENTINEL
3773 };
3774 
3775 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3776 {
3777     ARMCPU *cpu = arm_env_get_cpu(env);
3778     uint64_t valid_mask = HCR_MASK;
3779 
3780     if (arm_feature(env, ARM_FEATURE_EL3)) {
3781         valid_mask &= ~HCR_HCD;
3782     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3783         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3784          * However, if we're using the SMC PSCI conduit then QEMU is
3785          * effectively acting like EL3 firmware and so the guest at
3786          * EL2 should retain the ability to prevent EL1 from being
3787          * able to make SMC calls into the ersatz firmware, so in
3788          * that case HCR.TSC should be read/write.
3789          */
3790         valid_mask &= ~HCR_TSC;
3791     }
3792 
3793     /* Clear RES0 bits.  */
3794     value &= valid_mask;
3795 
3796     /* These bits change the MMU setup:
3797      * HCR_VM enables stage 2 translation
3798      * HCR_PTW forbids certain page-table setups
3799      * HCR_DC Disables stage1 and enables stage2 translation
3800      */
3801     if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3802         tlb_flush(CPU(cpu));
3803     }
3804     raw_write(env, ri, value);
3805 }
3806 
3807 static const ARMCPRegInfo el2_cp_reginfo[] = {
3808     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3809       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3810       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3811       .writefn = hcr_write },
3812     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3813       .type = ARM_CP_ALIAS,
3814       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3815       .access = PL2_RW,
3816       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3817     { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3818       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3819       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3820     { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3821       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3822       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3823     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3824       .type = ARM_CP_ALIAS,
3825       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3826       .access = PL2_RW,
3827       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3828     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3829       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3830       .access = PL2_RW, .writefn = vbar_write,
3831       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3832       .resetvalue = 0 },
3833     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3834       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3835       .access = PL3_RW, .type = ARM_CP_ALIAS,
3836       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3837     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3838       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3839       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3840       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3841     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3842       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3843       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3844       .resetvalue = 0 },
3845     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3846       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3847       .access = PL2_RW, .type = ARM_CP_ALIAS,
3848       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3849     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3850       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3851       .access = PL2_RW, .type = ARM_CP_CONST,
3852       .resetvalue = 0 },
3853     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3854     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3855       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3856       .access = PL2_RW, .type = ARM_CP_CONST,
3857       .resetvalue = 0 },
3858     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3859       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3860       .access = PL2_RW, .type = ARM_CP_CONST,
3861       .resetvalue = 0 },
3862     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3863       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3864       .access = PL2_RW, .type = ARM_CP_CONST,
3865       .resetvalue = 0 },
3866     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3867       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3868       .access = PL2_RW,
3869       /* no .writefn needed as this can't cause an ASID change;
3870        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3871        */
3872       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3873     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3874       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3875       .type = ARM_CP_ALIAS,
3876       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3877       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3878     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3879       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3880       .access = PL2_RW,
3881       /* no .writefn needed as this can't cause an ASID change;
3882        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3883        */
3884       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3885     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3886       .cp = 15, .opc1 = 6, .crm = 2,
3887       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3888       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3889       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3890       .writefn = vttbr_write },
3891     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3892       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3893       .access = PL2_RW, .writefn = vttbr_write,
3894       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3895     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3896       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3897       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3898       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3899     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3900       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3901       .access = PL2_RW, .resetvalue = 0,
3902       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3903     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3904       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3905       .access = PL2_RW, .resetvalue = 0,
3906       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3907     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3908       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3909       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3910     { .name = "TLBIALLNSNH",
3911       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3912       .type = ARM_CP_NO_RAW, .access = PL2_W,
3913       .writefn = tlbiall_nsnh_write },
3914     { .name = "TLBIALLNSNHIS",
3915       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3916       .type = ARM_CP_NO_RAW, .access = PL2_W,
3917       .writefn = tlbiall_nsnh_is_write },
3918     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3919       .type = ARM_CP_NO_RAW, .access = PL2_W,
3920       .writefn = tlbiall_hyp_write },
3921     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3922       .type = ARM_CP_NO_RAW, .access = PL2_W,
3923       .writefn = tlbiall_hyp_is_write },
3924     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3925       .type = ARM_CP_NO_RAW, .access = PL2_W,
3926       .writefn = tlbimva_hyp_write },
3927     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3928       .type = ARM_CP_NO_RAW, .access = PL2_W,
3929       .writefn = tlbimva_hyp_is_write },
3930     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3931       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3932       .type = ARM_CP_NO_RAW, .access = PL2_W,
3933       .writefn = tlbi_aa64_alle2_write },
3934     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3935       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3936       .type = ARM_CP_NO_RAW, .access = PL2_W,
3937       .writefn = tlbi_aa64_vae2_write },
3938     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3939       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3940       .access = PL2_W, .type = ARM_CP_NO_RAW,
3941       .writefn = tlbi_aa64_vae2_write },
3942     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3943       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3944       .access = PL2_W, .type = ARM_CP_NO_RAW,
3945       .writefn = tlbi_aa64_alle2is_write },
3946     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3947       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3948       .type = ARM_CP_NO_RAW, .access = PL2_W,
3949       .writefn = tlbi_aa64_vae2is_write },
3950     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3951       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3952       .access = PL2_W, .type = ARM_CP_NO_RAW,
3953       .writefn = tlbi_aa64_vae2is_write },
3954 #ifndef CONFIG_USER_ONLY
3955     /* Unlike the other EL2-related AT operations, these must
3956      * UNDEF from EL3 if EL2 is not implemented, which is why we
3957      * define them here rather than with the rest of the AT ops.
3958      */
3959     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3960       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3961       .access = PL2_W, .accessfn = at_s1e2_access,
3962       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3963     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3964       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3965       .access = PL2_W, .accessfn = at_s1e2_access,
3966       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3967     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3968      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3969      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3970      * to behave as if SCR.NS was 1.
3971      */
3972     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3973       .access = PL2_W,
3974       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3975     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3976       .access = PL2_W,
3977       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3978     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3979       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3980       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3981        * reset values as IMPDEF. We choose to reset to 3 to comply with
3982        * both ARMv7 and ARMv8.
3983        */
3984       .access = PL2_RW, .resetvalue = 3,
3985       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3986     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3987       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3988       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3989       .writefn = gt_cntvoff_write,
3990       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3991     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3992       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3993       .writefn = gt_cntvoff_write,
3994       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3995     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3996       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3997       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3998       .type = ARM_CP_IO, .access = PL2_RW,
3999       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4000     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4001       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4002       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4003       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4004     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4005       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4006       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4007       .resetfn = gt_hyp_timer_reset,
4008       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4009     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4010       .type = ARM_CP_IO,
4011       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4012       .access = PL2_RW,
4013       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4014       .resetvalue = 0,
4015       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4016 #endif
4017     /* The only field of MDCR_EL2 that has a defined architectural reset value
4018      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4019      * don't impelment any PMU event counters, so using zero as a reset
4020      * value for MDCR_EL2 is okay
4021      */
4022     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4023       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4024       .access = PL2_RW, .resetvalue = 0,
4025       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4026     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4027       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4028       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4029       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4030     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4031       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4032       .access = PL2_RW,
4033       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4034     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4035       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4036       .access = PL2_RW,
4037       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4038     REGINFO_SENTINEL
4039 };
4040 
4041 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4042                                    bool isread)
4043 {
4044     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4045      * At Secure EL1 it traps to EL3.
4046      */
4047     if (arm_current_el(env) == 3) {
4048         return CP_ACCESS_OK;
4049     }
4050     if (arm_is_secure_below_el3(env)) {
4051         return CP_ACCESS_TRAP_EL3;
4052     }
4053     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4054     if (isread) {
4055         return CP_ACCESS_OK;
4056     }
4057     return CP_ACCESS_TRAP_UNCATEGORIZED;
4058 }
4059 
4060 static const ARMCPRegInfo el3_cp_reginfo[] = {
4061     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4062       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4063       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4064       .resetvalue = 0, .writefn = scr_write },
4065     { .name = "SCR",  .type = ARM_CP_ALIAS,
4066       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4067       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4068       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4069       .writefn = scr_write },
4070     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4071       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4072       .access = PL3_RW, .resetvalue = 0,
4073       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4074     { .name = "SDER",
4075       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4076       .access = PL3_RW, .resetvalue = 0,
4077       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4078     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4079       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4080       .writefn = vbar_write, .resetvalue = 0,
4081       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4082     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4083       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4084       .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4085       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4086     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4087       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4088       .access = PL3_RW,
4089       /* no .writefn needed as this can't cause an ASID change;
4090        * we must provide a .raw_writefn and .resetfn because we handle
4091        * reset and migration for the AArch32 TTBCR(S), which might be
4092        * using mask and base_mask.
4093        */
4094       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4095       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4096     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4097       .type = ARM_CP_ALIAS,
4098       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4099       .access = PL3_RW,
4100       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4101     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4102       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4103       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4104     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4105       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4106       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4107     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4108       .type = ARM_CP_ALIAS,
4109       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4110       .access = PL3_RW,
4111       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4112     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4113       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4114       .access = PL3_RW, .writefn = vbar_write,
4115       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4116       .resetvalue = 0 },
4117     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4118       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4119       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4120       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4121     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4122       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4123       .access = PL3_RW, .resetvalue = 0,
4124       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4125     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4126       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4127       .access = PL3_RW, .type = ARM_CP_CONST,
4128       .resetvalue = 0 },
4129     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4130       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4131       .access = PL3_RW, .type = ARM_CP_CONST,
4132       .resetvalue = 0 },
4133     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4134       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4135       .access = PL3_RW, .type = ARM_CP_CONST,
4136       .resetvalue = 0 },
4137     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4138       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4139       .access = PL3_W, .type = ARM_CP_NO_RAW,
4140       .writefn = tlbi_aa64_alle3is_write },
4141     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4142       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4143       .access = PL3_W, .type = ARM_CP_NO_RAW,
4144       .writefn = tlbi_aa64_vae3is_write },
4145     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4146       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4147       .access = PL3_W, .type = ARM_CP_NO_RAW,
4148       .writefn = tlbi_aa64_vae3is_write },
4149     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4150       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4151       .access = PL3_W, .type = ARM_CP_NO_RAW,
4152       .writefn = tlbi_aa64_alle3_write },
4153     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4154       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4155       .access = PL3_W, .type = ARM_CP_NO_RAW,
4156       .writefn = tlbi_aa64_vae3_write },
4157     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4158       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4159       .access = PL3_W, .type = ARM_CP_NO_RAW,
4160       .writefn = tlbi_aa64_vae3_write },
4161     REGINFO_SENTINEL
4162 };
4163 
4164 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4165                                      bool isread)
4166 {
4167     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4168      * but the AArch32 CTR has its own reginfo struct)
4169      */
4170     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4171         return CP_ACCESS_TRAP;
4172     }
4173     return CP_ACCESS_OK;
4174 }
4175 
4176 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4177                         uint64_t value)
4178 {
4179     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4180      * read via a bit in OSLSR_EL1.
4181      */
4182     int oslock;
4183 
4184     if (ri->state == ARM_CP_STATE_AA32) {
4185         oslock = (value == 0xC5ACCE55);
4186     } else {
4187         oslock = value & 1;
4188     }
4189 
4190     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4191 }
4192 
4193 static const ARMCPRegInfo debug_cp_reginfo[] = {
4194     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4195      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4196      * unlike DBGDRAR it is never accessible from EL0.
4197      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4198      * accessor.
4199      */
4200     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4201       .access = PL0_R, .accessfn = access_tdra,
4202       .type = ARM_CP_CONST, .resetvalue = 0 },
4203     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4204       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4205       .access = PL1_R, .accessfn = access_tdra,
4206       .type = ARM_CP_CONST, .resetvalue = 0 },
4207     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4208       .access = PL0_R, .accessfn = access_tdra,
4209       .type = ARM_CP_CONST, .resetvalue = 0 },
4210     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4211     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4212       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4213       .access = PL1_RW, .accessfn = access_tda,
4214       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4215       .resetvalue = 0 },
4216     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4217      * We don't implement the configurable EL0 access.
4218      */
4219     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4220       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4221       .type = ARM_CP_ALIAS,
4222       .access = PL1_R, .accessfn = access_tda,
4223       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4224     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4225       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4226       .access = PL1_W, .type = ARM_CP_NO_RAW,
4227       .accessfn = access_tdosa,
4228       .writefn = oslar_write },
4229     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4230       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4231       .access = PL1_R, .resetvalue = 10,
4232       .accessfn = access_tdosa,
4233       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4234     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4235     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4236       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4237       .access = PL1_RW, .accessfn = access_tdosa,
4238       .type = ARM_CP_NOP },
4239     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4240      * implement vector catch debug events yet.
4241      */
4242     { .name = "DBGVCR",
4243       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4244       .access = PL1_RW, .accessfn = access_tda,
4245       .type = ARM_CP_NOP },
4246     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4247      * to save and restore a 32-bit guest's DBGVCR)
4248      */
4249     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4250       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4251       .access = PL2_RW, .accessfn = access_tda,
4252       .type = ARM_CP_NOP },
4253     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4254      * Channel but Linux may try to access this register. The 32-bit
4255      * alias is DBGDCCINT.
4256      */
4257     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4258       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4259       .access = PL1_RW, .accessfn = access_tda,
4260       .type = ARM_CP_NOP },
4261     REGINFO_SENTINEL
4262 };
4263 
4264 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4265     /* 64 bit access versions of the (dummy) debug registers */
4266     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4267       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4268     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4269       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4270     REGINFO_SENTINEL
4271 };
4272 
4273 /* Return the exception level to which SVE-disabled exceptions should
4274  * be taken, or 0 if SVE is enabled.
4275  */
4276 static int sve_exception_el(CPUARMState *env)
4277 {
4278 #ifndef CONFIG_USER_ONLY
4279     unsigned current_el = arm_current_el(env);
4280 
4281     /* The CPACR.ZEN controls traps to EL1:
4282      * 0, 2 : trap EL0 and EL1 accesses
4283      * 1    : trap only EL0 accesses
4284      * 3    : trap no accesses
4285      */
4286     switch (extract32(env->cp15.cpacr_el1, 16, 2)) {
4287     default:
4288         if (current_el <= 1) {
4289             /* Trap to PL1, which might be EL1 or EL3 */
4290             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
4291                 return 3;
4292             }
4293             return 1;
4294         }
4295         break;
4296     case 1:
4297         if (current_el == 0) {
4298             return 1;
4299         }
4300         break;
4301     case 3:
4302         break;
4303     }
4304 
4305     /* Similarly for CPACR.FPEN, after having checked ZEN.  */
4306     switch (extract32(env->cp15.cpacr_el1, 20, 2)) {
4307     default:
4308         if (current_el <= 1) {
4309             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
4310                 return 3;
4311             }
4312             return 1;
4313         }
4314         break;
4315     case 1:
4316         if (current_el == 0) {
4317             return 1;
4318         }
4319         break;
4320     case 3:
4321         break;
4322     }
4323 
4324     /* CPTR_EL2.  Check both TZ and TFP.  */
4325     if (current_el <= 2
4326         && (env->cp15.cptr_el[2] & (CPTR_TFP | CPTR_TZ))
4327         && !arm_is_secure_below_el3(env)) {
4328         return 2;
4329     }
4330 
4331     /* CPTR_EL3.  Check both EZ and TFP.  */
4332     if (!(env->cp15.cptr_el[3] & CPTR_EZ)
4333         || (env->cp15.cptr_el[3] & CPTR_TFP)) {
4334         return 3;
4335     }
4336 #endif
4337     return 0;
4338 }
4339 
4340 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4341                       uint64_t value)
4342 {
4343     /* Bits other than [3:0] are RAZ/WI.  */
4344     raw_write(env, ri, value & 0xf);
4345 }
4346 
4347 static const ARMCPRegInfo zcr_el1_reginfo = {
4348     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
4349     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
4350     .access = PL1_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
4351     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
4352     .writefn = zcr_write, .raw_writefn = raw_write
4353 };
4354 
4355 static const ARMCPRegInfo zcr_el2_reginfo = {
4356     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4357     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4358     .access = PL2_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
4359     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
4360     .writefn = zcr_write, .raw_writefn = raw_write
4361 };
4362 
4363 static const ARMCPRegInfo zcr_no_el2_reginfo = {
4364     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4365     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4366     .access = PL2_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
4367     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
4368 };
4369 
4370 static const ARMCPRegInfo zcr_el3_reginfo = {
4371     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
4372     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
4373     .access = PL3_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
4374     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
4375     .writefn = zcr_write, .raw_writefn = raw_write
4376 };
4377 
4378 void hw_watchpoint_update(ARMCPU *cpu, int n)
4379 {
4380     CPUARMState *env = &cpu->env;
4381     vaddr len = 0;
4382     vaddr wvr = env->cp15.dbgwvr[n];
4383     uint64_t wcr = env->cp15.dbgwcr[n];
4384     int mask;
4385     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4386 
4387     if (env->cpu_watchpoint[n]) {
4388         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4389         env->cpu_watchpoint[n] = NULL;
4390     }
4391 
4392     if (!extract64(wcr, 0, 1)) {
4393         /* E bit clear : watchpoint disabled */
4394         return;
4395     }
4396 
4397     switch (extract64(wcr, 3, 2)) {
4398     case 0:
4399         /* LSC 00 is reserved and must behave as if the wp is disabled */
4400         return;
4401     case 1:
4402         flags |= BP_MEM_READ;
4403         break;
4404     case 2:
4405         flags |= BP_MEM_WRITE;
4406         break;
4407     case 3:
4408         flags |= BP_MEM_ACCESS;
4409         break;
4410     }
4411 
4412     /* Attempts to use both MASK and BAS fields simultaneously are
4413      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4414      * thus generating a watchpoint for every byte in the masked region.
4415      */
4416     mask = extract64(wcr, 24, 4);
4417     if (mask == 1 || mask == 2) {
4418         /* Reserved values of MASK; we must act as if the mask value was
4419          * some non-reserved value, or as if the watchpoint were disabled.
4420          * We choose the latter.
4421          */
4422         return;
4423     } else if (mask) {
4424         /* Watchpoint covers an aligned area up to 2GB in size */
4425         len = 1ULL << mask;
4426         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4427          * whether the watchpoint fires when the unmasked bits match; we opt
4428          * to generate the exceptions.
4429          */
4430         wvr &= ~(len - 1);
4431     } else {
4432         /* Watchpoint covers bytes defined by the byte address select bits */
4433         int bas = extract64(wcr, 5, 8);
4434         int basstart;
4435 
4436         if (bas == 0) {
4437             /* This must act as if the watchpoint is disabled */
4438             return;
4439         }
4440 
4441         if (extract64(wvr, 2, 1)) {
4442             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4443              * ignored, and BAS[3:0] define which bytes to watch.
4444              */
4445             bas &= 0xf;
4446         }
4447         /* The BAS bits are supposed to be programmed to indicate a contiguous
4448          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4449          * we fire for each byte in the word/doubleword addressed by the WVR.
4450          * We choose to ignore any non-zero bits after the first range of 1s.
4451          */
4452         basstart = ctz32(bas);
4453         len = cto32(bas >> basstart);
4454         wvr += basstart;
4455     }
4456 
4457     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4458                           &env->cpu_watchpoint[n]);
4459 }
4460 
4461 void hw_watchpoint_update_all(ARMCPU *cpu)
4462 {
4463     int i;
4464     CPUARMState *env = &cpu->env;
4465 
4466     /* Completely clear out existing QEMU watchpoints and our array, to
4467      * avoid possible stale entries following migration load.
4468      */
4469     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4470     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4471 
4472     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4473         hw_watchpoint_update(cpu, i);
4474     }
4475 }
4476 
4477 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4478                          uint64_t value)
4479 {
4480     ARMCPU *cpu = arm_env_get_cpu(env);
4481     int i = ri->crm;
4482 
4483     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4484      * register reads and behaves as if values written are sign extended.
4485      * Bits [1:0] are RES0.
4486      */
4487     value = sextract64(value, 0, 49) & ~3ULL;
4488 
4489     raw_write(env, ri, value);
4490     hw_watchpoint_update(cpu, i);
4491 }
4492 
4493 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4494                          uint64_t value)
4495 {
4496     ARMCPU *cpu = arm_env_get_cpu(env);
4497     int i = ri->crm;
4498 
4499     raw_write(env, ri, value);
4500     hw_watchpoint_update(cpu, i);
4501 }
4502 
4503 void hw_breakpoint_update(ARMCPU *cpu, int n)
4504 {
4505     CPUARMState *env = &cpu->env;
4506     uint64_t bvr = env->cp15.dbgbvr[n];
4507     uint64_t bcr = env->cp15.dbgbcr[n];
4508     vaddr addr;
4509     int bt;
4510     int flags = BP_CPU;
4511 
4512     if (env->cpu_breakpoint[n]) {
4513         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4514         env->cpu_breakpoint[n] = NULL;
4515     }
4516 
4517     if (!extract64(bcr, 0, 1)) {
4518         /* E bit clear : watchpoint disabled */
4519         return;
4520     }
4521 
4522     bt = extract64(bcr, 20, 4);
4523 
4524     switch (bt) {
4525     case 4: /* unlinked address mismatch (reserved if AArch64) */
4526     case 5: /* linked address mismatch (reserved if AArch64) */
4527         qemu_log_mask(LOG_UNIMP,
4528                       "arm: address mismatch breakpoint types not implemented");
4529         return;
4530     case 0: /* unlinked address match */
4531     case 1: /* linked address match */
4532     {
4533         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4534          * we behave as if the register was sign extended. Bits [1:0] are
4535          * RES0. The BAS field is used to allow setting breakpoints on 16
4536          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4537          * a bp will fire if the addresses covered by the bp and the addresses
4538          * covered by the insn overlap but the insn doesn't start at the
4539          * start of the bp address range. We choose to require the insn and
4540          * the bp to have the same address. The constraints on writing to
4541          * BAS enforced in dbgbcr_write mean we have only four cases:
4542          *  0b0000  => no breakpoint
4543          *  0b0011  => breakpoint on addr
4544          *  0b1100  => breakpoint on addr + 2
4545          *  0b1111  => breakpoint on addr
4546          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4547          */
4548         int bas = extract64(bcr, 5, 4);
4549         addr = sextract64(bvr, 0, 49) & ~3ULL;
4550         if (bas == 0) {
4551             return;
4552         }
4553         if (bas == 0xc) {
4554             addr += 2;
4555         }
4556         break;
4557     }
4558     case 2: /* unlinked context ID match */
4559     case 8: /* unlinked VMID match (reserved if no EL2) */
4560     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4561         qemu_log_mask(LOG_UNIMP,
4562                       "arm: unlinked context breakpoint types not implemented");
4563         return;
4564     case 9: /* linked VMID match (reserved if no EL2) */
4565     case 11: /* linked context ID and VMID match (reserved if no EL2) */
4566     case 3: /* linked context ID match */
4567     default:
4568         /* We must generate no events for Linked context matches (unless
4569          * they are linked to by some other bp/wp, which is handled in
4570          * updates for the linking bp/wp). We choose to also generate no events
4571          * for reserved values.
4572          */
4573         return;
4574     }
4575 
4576     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4577 }
4578 
4579 void hw_breakpoint_update_all(ARMCPU *cpu)
4580 {
4581     int i;
4582     CPUARMState *env = &cpu->env;
4583 
4584     /* Completely clear out existing QEMU breakpoints and our array, to
4585      * avoid possible stale entries following migration load.
4586      */
4587     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4588     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4589 
4590     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4591         hw_breakpoint_update(cpu, i);
4592     }
4593 }
4594 
4595 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4596                          uint64_t value)
4597 {
4598     ARMCPU *cpu = arm_env_get_cpu(env);
4599     int i = ri->crm;
4600 
4601     raw_write(env, ri, value);
4602     hw_breakpoint_update(cpu, i);
4603 }
4604 
4605 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4606                          uint64_t value)
4607 {
4608     ARMCPU *cpu = arm_env_get_cpu(env);
4609     int i = ri->crm;
4610 
4611     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4612      * copy of BAS[0].
4613      */
4614     value = deposit64(value, 6, 1, extract64(value, 5, 1));
4615     value = deposit64(value, 8, 1, extract64(value, 7, 1));
4616 
4617     raw_write(env, ri, value);
4618     hw_breakpoint_update(cpu, i);
4619 }
4620 
4621 static void define_debug_regs(ARMCPU *cpu)
4622 {
4623     /* Define v7 and v8 architectural debug registers.
4624      * These are just dummy implementations for now.
4625      */
4626     int i;
4627     int wrps, brps, ctx_cmps;
4628     ARMCPRegInfo dbgdidr = {
4629         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4630         .access = PL0_R, .accessfn = access_tda,
4631         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4632     };
4633 
4634     /* Note that all these register fields hold "number of Xs minus 1". */
4635     brps = extract32(cpu->dbgdidr, 24, 4);
4636     wrps = extract32(cpu->dbgdidr, 28, 4);
4637     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4638 
4639     assert(ctx_cmps <= brps);
4640 
4641     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4642      * of the debug registers such as number of breakpoints;
4643      * check that if they both exist then they agree.
4644      */
4645     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4646         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4647         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4648         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4649     }
4650 
4651     define_one_arm_cp_reg(cpu, &dbgdidr);
4652     define_arm_cp_regs(cpu, debug_cp_reginfo);
4653 
4654     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4655         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4656     }
4657 
4658     for (i = 0; i < brps + 1; i++) {
4659         ARMCPRegInfo dbgregs[] = {
4660             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4661               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4662               .access = PL1_RW, .accessfn = access_tda,
4663               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4664               .writefn = dbgbvr_write, .raw_writefn = raw_write
4665             },
4666             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4667               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4668               .access = PL1_RW, .accessfn = access_tda,
4669               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4670               .writefn = dbgbcr_write, .raw_writefn = raw_write
4671             },
4672             REGINFO_SENTINEL
4673         };
4674         define_arm_cp_regs(cpu, dbgregs);
4675     }
4676 
4677     for (i = 0; i < wrps + 1; i++) {
4678         ARMCPRegInfo dbgregs[] = {
4679             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4680               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4681               .access = PL1_RW, .accessfn = access_tda,
4682               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4683               .writefn = dbgwvr_write, .raw_writefn = raw_write
4684             },
4685             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4686               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4687               .access = PL1_RW, .accessfn = access_tda,
4688               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4689               .writefn = dbgwcr_write, .raw_writefn = raw_write
4690             },
4691             REGINFO_SENTINEL
4692         };
4693         define_arm_cp_regs(cpu, dbgregs);
4694     }
4695 }
4696 
4697 /* We don't know until after realize whether there's a GICv3
4698  * attached, and that is what registers the gicv3 sysregs.
4699  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
4700  * at runtime.
4701  */
4702 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
4703 {
4704     ARMCPU *cpu = arm_env_get_cpu(env);
4705     uint64_t pfr1 = cpu->id_pfr1;
4706 
4707     if (env->gicv3state) {
4708         pfr1 |= 1 << 28;
4709     }
4710     return pfr1;
4711 }
4712 
4713 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
4714 {
4715     ARMCPU *cpu = arm_env_get_cpu(env);
4716     uint64_t pfr0 = cpu->id_aa64pfr0;
4717 
4718     if (env->gicv3state) {
4719         pfr0 |= 1 << 24;
4720     }
4721     return pfr0;
4722 }
4723 
4724 void register_cp_regs_for_features(ARMCPU *cpu)
4725 {
4726     /* Register all the coprocessor registers based on feature bits */
4727     CPUARMState *env = &cpu->env;
4728     if (arm_feature(env, ARM_FEATURE_M)) {
4729         /* M profile has no coprocessor registers */
4730         return;
4731     }
4732 
4733     define_arm_cp_regs(cpu, cp_reginfo);
4734     if (!arm_feature(env, ARM_FEATURE_V8)) {
4735         /* Must go early as it is full of wildcards that may be
4736          * overridden by later definitions.
4737          */
4738         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4739     }
4740 
4741     if (arm_feature(env, ARM_FEATURE_V6)) {
4742         /* The ID registers all have impdef reset values */
4743         ARMCPRegInfo v6_idregs[] = {
4744             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4745               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4746               .access = PL1_R, .type = ARM_CP_CONST,
4747               .resetvalue = cpu->id_pfr0 },
4748             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
4749              * the value of the GIC field until after we define these regs.
4750              */
4751             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4752               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4753               .access = PL1_R, .type = ARM_CP_NO_RAW,
4754               .readfn = id_pfr1_read,
4755               .writefn = arm_cp_write_ignore },
4756             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4757               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4758               .access = PL1_R, .type = ARM_CP_CONST,
4759               .resetvalue = cpu->id_dfr0 },
4760             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4761               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4762               .access = PL1_R, .type = ARM_CP_CONST,
4763               .resetvalue = cpu->id_afr0 },
4764             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4765               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4766               .access = PL1_R, .type = ARM_CP_CONST,
4767               .resetvalue = cpu->id_mmfr0 },
4768             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4769               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4770               .access = PL1_R, .type = ARM_CP_CONST,
4771               .resetvalue = cpu->id_mmfr1 },
4772             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4773               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4774               .access = PL1_R, .type = ARM_CP_CONST,
4775               .resetvalue = cpu->id_mmfr2 },
4776             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4777               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4778               .access = PL1_R, .type = ARM_CP_CONST,
4779               .resetvalue = cpu->id_mmfr3 },
4780             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4781               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4782               .access = PL1_R, .type = ARM_CP_CONST,
4783               .resetvalue = cpu->id_isar0 },
4784             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4785               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4786               .access = PL1_R, .type = ARM_CP_CONST,
4787               .resetvalue = cpu->id_isar1 },
4788             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4789               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4790               .access = PL1_R, .type = ARM_CP_CONST,
4791               .resetvalue = cpu->id_isar2 },
4792             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4793               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4794               .access = PL1_R, .type = ARM_CP_CONST,
4795               .resetvalue = cpu->id_isar3 },
4796             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4797               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4798               .access = PL1_R, .type = ARM_CP_CONST,
4799               .resetvalue = cpu->id_isar4 },
4800             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4801               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4802               .access = PL1_R, .type = ARM_CP_CONST,
4803               .resetvalue = cpu->id_isar5 },
4804             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4805               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4806               .access = PL1_R, .type = ARM_CP_CONST,
4807               .resetvalue = cpu->id_mmfr4 },
4808             /* 7 is as yet unallocated and must RAZ */
4809             { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4810               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4811               .access = PL1_R, .type = ARM_CP_CONST,
4812               .resetvalue = 0 },
4813             REGINFO_SENTINEL
4814         };
4815         define_arm_cp_regs(cpu, v6_idregs);
4816         define_arm_cp_regs(cpu, v6_cp_reginfo);
4817     } else {
4818         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4819     }
4820     if (arm_feature(env, ARM_FEATURE_V6K)) {
4821         define_arm_cp_regs(cpu, v6k_cp_reginfo);
4822     }
4823     if (arm_feature(env, ARM_FEATURE_V7MP) &&
4824         !arm_feature(env, ARM_FEATURE_PMSA)) {
4825         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4826     }
4827     if (arm_feature(env, ARM_FEATURE_V7)) {
4828         /* v7 performance monitor control register: same implementor
4829          * field as main ID register, and we implement only the cycle
4830          * count register.
4831          */
4832 #ifndef CONFIG_USER_ONLY
4833         ARMCPRegInfo pmcr = {
4834             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4835             .access = PL0_RW,
4836             .type = ARM_CP_IO | ARM_CP_ALIAS,
4837             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4838             .accessfn = pmreg_access, .writefn = pmcr_write,
4839             .raw_writefn = raw_write,
4840         };
4841         ARMCPRegInfo pmcr64 = {
4842             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4843             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4844             .access = PL0_RW, .accessfn = pmreg_access,
4845             .type = ARM_CP_IO,
4846             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4847             .resetvalue = cpu->midr & 0xff000000,
4848             .writefn = pmcr_write, .raw_writefn = raw_write,
4849         };
4850         define_one_arm_cp_reg(cpu, &pmcr);
4851         define_one_arm_cp_reg(cpu, &pmcr64);
4852 #endif
4853         ARMCPRegInfo clidr = {
4854             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4855             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4856             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4857         };
4858         define_one_arm_cp_reg(cpu, &clidr);
4859         define_arm_cp_regs(cpu, v7_cp_reginfo);
4860         define_debug_regs(cpu);
4861     } else {
4862         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4863     }
4864     if (arm_feature(env, ARM_FEATURE_V8)) {
4865         /* AArch64 ID registers, which all have impdef reset values.
4866          * Note that within the ID register ranges the unused slots
4867          * must all RAZ, not UNDEF; future architecture versions may
4868          * define new registers here.
4869          */
4870         ARMCPRegInfo v8_idregs[] = {
4871             /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
4872              * know the right value for the GIC field until after we
4873              * define these regs.
4874              */
4875             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4876               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4877               .access = PL1_R, .type = ARM_CP_NO_RAW,
4878               .readfn = id_aa64pfr0_read,
4879               .writefn = arm_cp_write_ignore },
4880             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4881               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4882               .access = PL1_R, .type = ARM_CP_CONST,
4883               .resetvalue = cpu->id_aa64pfr1},
4884             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4885               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4886               .access = PL1_R, .type = ARM_CP_CONST,
4887               .resetvalue = 0 },
4888             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4889               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4890               .access = PL1_R, .type = ARM_CP_CONST,
4891               .resetvalue = 0 },
4892             { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4893               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4894               .access = PL1_R, .type = ARM_CP_CONST,
4895               .resetvalue = 0 },
4896             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4897               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4898               .access = PL1_R, .type = ARM_CP_CONST,
4899               .resetvalue = 0 },
4900             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4901               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4902               .access = PL1_R, .type = ARM_CP_CONST,
4903               .resetvalue = 0 },
4904             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4905               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4906               .access = PL1_R, .type = ARM_CP_CONST,
4907               .resetvalue = 0 },
4908             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4909               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4910               .access = PL1_R, .type = ARM_CP_CONST,
4911               .resetvalue = cpu->id_aa64dfr0 },
4912             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4913               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4914               .access = PL1_R, .type = ARM_CP_CONST,
4915               .resetvalue = cpu->id_aa64dfr1 },
4916             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4917               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4918               .access = PL1_R, .type = ARM_CP_CONST,
4919               .resetvalue = 0 },
4920             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4921               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4922               .access = PL1_R, .type = ARM_CP_CONST,
4923               .resetvalue = 0 },
4924             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4925               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4926               .access = PL1_R, .type = ARM_CP_CONST,
4927               .resetvalue = cpu->id_aa64afr0 },
4928             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4929               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4930               .access = PL1_R, .type = ARM_CP_CONST,
4931               .resetvalue = cpu->id_aa64afr1 },
4932             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4933               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4934               .access = PL1_R, .type = ARM_CP_CONST,
4935               .resetvalue = 0 },
4936             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4937               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4938               .access = PL1_R, .type = ARM_CP_CONST,
4939               .resetvalue = 0 },
4940             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4941               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4942               .access = PL1_R, .type = ARM_CP_CONST,
4943               .resetvalue = cpu->id_aa64isar0 },
4944             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4945               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4946               .access = PL1_R, .type = ARM_CP_CONST,
4947               .resetvalue = cpu->id_aa64isar1 },
4948             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4949               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4950               .access = PL1_R, .type = ARM_CP_CONST,
4951               .resetvalue = 0 },
4952             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4953               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4954               .access = PL1_R, .type = ARM_CP_CONST,
4955               .resetvalue = 0 },
4956             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4957               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4958               .access = PL1_R, .type = ARM_CP_CONST,
4959               .resetvalue = 0 },
4960             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4961               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4962               .access = PL1_R, .type = ARM_CP_CONST,
4963               .resetvalue = 0 },
4964             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4965               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4966               .access = PL1_R, .type = ARM_CP_CONST,
4967               .resetvalue = 0 },
4968             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4969               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4970               .access = PL1_R, .type = ARM_CP_CONST,
4971               .resetvalue = 0 },
4972             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4973               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4974               .access = PL1_R, .type = ARM_CP_CONST,
4975               .resetvalue = cpu->id_aa64mmfr0 },
4976             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4977               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4978               .access = PL1_R, .type = ARM_CP_CONST,
4979               .resetvalue = cpu->id_aa64mmfr1 },
4980             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4981               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4982               .access = PL1_R, .type = ARM_CP_CONST,
4983               .resetvalue = 0 },
4984             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4985               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4986               .access = PL1_R, .type = ARM_CP_CONST,
4987               .resetvalue = 0 },
4988             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4989               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4990               .access = PL1_R, .type = ARM_CP_CONST,
4991               .resetvalue = 0 },
4992             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4993               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4994               .access = PL1_R, .type = ARM_CP_CONST,
4995               .resetvalue = 0 },
4996             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4997               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4998               .access = PL1_R, .type = ARM_CP_CONST,
4999               .resetvalue = 0 },
5000             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5001               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
5002               .access = PL1_R, .type = ARM_CP_CONST,
5003               .resetvalue = 0 },
5004             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
5005               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
5006               .access = PL1_R, .type = ARM_CP_CONST,
5007               .resetvalue = cpu->mvfr0 },
5008             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
5009               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
5010               .access = PL1_R, .type = ARM_CP_CONST,
5011               .resetvalue = cpu->mvfr1 },
5012             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
5013               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
5014               .access = PL1_R, .type = ARM_CP_CONST,
5015               .resetvalue = cpu->mvfr2 },
5016             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5017               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
5018               .access = PL1_R, .type = ARM_CP_CONST,
5019               .resetvalue = 0 },
5020             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5021               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
5022               .access = PL1_R, .type = ARM_CP_CONST,
5023               .resetvalue = 0 },
5024             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5025               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
5026               .access = PL1_R, .type = ARM_CP_CONST,
5027               .resetvalue = 0 },
5028             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5029               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
5030               .access = PL1_R, .type = ARM_CP_CONST,
5031               .resetvalue = 0 },
5032             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5033               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
5034               .access = PL1_R, .type = ARM_CP_CONST,
5035               .resetvalue = 0 },
5036             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
5037               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
5038               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5039               .resetvalue = cpu->pmceid0 },
5040             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
5041               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
5042               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5043               .resetvalue = cpu->pmceid0 },
5044             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
5045               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
5046               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5047               .resetvalue = cpu->pmceid1 },
5048             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
5049               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
5050               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5051               .resetvalue = cpu->pmceid1 },
5052             REGINFO_SENTINEL
5053         };
5054         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
5055         if (!arm_feature(env, ARM_FEATURE_EL3) &&
5056             !arm_feature(env, ARM_FEATURE_EL2)) {
5057             ARMCPRegInfo rvbar = {
5058                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
5059                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5060                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
5061             };
5062             define_one_arm_cp_reg(cpu, &rvbar);
5063         }
5064         define_arm_cp_regs(cpu, v8_idregs);
5065         define_arm_cp_regs(cpu, v8_cp_reginfo);
5066     }
5067     if (arm_feature(env, ARM_FEATURE_EL2)) {
5068         uint64_t vmpidr_def = mpidr_read_val(env);
5069         ARMCPRegInfo vpidr_regs[] = {
5070             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
5071               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5072               .access = PL2_RW, .accessfn = access_el3_aa32ns,
5073               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
5074               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
5075             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
5076               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5077               .access = PL2_RW, .resetvalue = cpu->midr,
5078               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5079             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
5080               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5081               .access = PL2_RW, .accessfn = access_el3_aa32ns,
5082               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
5083               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
5084             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
5085               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5086               .access = PL2_RW,
5087               .resetvalue = vmpidr_def,
5088               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
5089             REGINFO_SENTINEL
5090         };
5091         define_arm_cp_regs(cpu, vpidr_regs);
5092         define_arm_cp_regs(cpu, el2_cp_reginfo);
5093         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
5094         if (!arm_feature(env, ARM_FEATURE_EL3)) {
5095             ARMCPRegInfo rvbar = {
5096                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
5097                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
5098                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
5099             };
5100             define_one_arm_cp_reg(cpu, &rvbar);
5101         }
5102     } else {
5103         /* If EL2 is missing but higher ELs are enabled, we need to
5104          * register the no_el2 reginfos.
5105          */
5106         if (arm_feature(env, ARM_FEATURE_EL3)) {
5107             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
5108              * of MIDR_EL1 and MPIDR_EL1.
5109              */
5110             ARMCPRegInfo vpidr_regs[] = {
5111                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5112                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5113                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5114                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
5115                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5116                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5117                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5118                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5119                   .type = ARM_CP_NO_RAW,
5120                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
5121                 REGINFO_SENTINEL
5122             };
5123             define_arm_cp_regs(cpu, vpidr_regs);
5124             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
5125         }
5126     }
5127     if (arm_feature(env, ARM_FEATURE_EL3)) {
5128         define_arm_cp_regs(cpu, el3_cp_reginfo);
5129         ARMCPRegInfo el3_regs[] = {
5130             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
5131               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
5132               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
5133             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
5134               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
5135               .access = PL3_RW,
5136               .raw_writefn = raw_write, .writefn = sctlr_write,
5137               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
5138               .resetvalue = cpu->reset_sctlr },
5139             REGINFO_SENTINEL
5140         };
5141 
5142         define_arm_cp_regs(cpu, el3_regs);
5143     }
5144     /* The behaviour of NSACR is sufficiently various that we don't
5145      * try to describe it in a single reginfo:
5146      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
5147      *     reads as constant 0xc00 from NS EL1 and NS EL2
5148      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
5149      *  if v7 without EL3, register doesn't exist
5150      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
5151      */
5152     if (arm_feature(env, ARM_FEATURE_EL3)) {
5153         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5154             ARMCPRegInfo nsacr = {
5155                 .name = "NSACR", .type = ARM_CP_CONST,
5156                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5157                 .access = PL1_RW, .accessfn = nsacr_access,
5158                 .resetvalue = 0xc00
5159             };
5160             define_one_arm_cp_reg(cpu, &nsacr);
5161         } else {
5162             ARMCPRegInfo nsacr = {
5163                 .name = "NSACR",
5164                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5165                 .access = PL3_RW | PL1_R,
5166                 .resetvalue = 0,
5167                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
5168             };
5169             define_one_arm_cp_reg(cpu, &nsacr);
5170         }
5171     } else {
5172         if (arm_feature(env, ARM_FEATURE_V8)) {
5173             ARMCPRegInfo nsacr = {
5174                 .name = "NSACR", .type = ARM_CP_CONST,
5175                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5176                 .access = PL1_R,
5177                 .resetvalue = 0xc00
5178             };
5179             define_one_arm_cp_reg(cpu, &nsacr);
5180         }
5181     }
5182 
5183     if (arm_feature(env, ARM_FEATURE_PMSA)) {
5184         if (arm_feature(env, ARM_FEATURE_V6)) {
5185             /* PMSAv6 not implemented */
5186             assert(arm_feature(env, ARM_FEATURE_V7));
5187             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5188             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
5189         } else {
5190             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
5191         }
5192     } else {
5193         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5194         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
5195     }
5196     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
5197         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
5198     }
5199     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
5200         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
5201     }
5202     if (arm_feature(env, ARM_FEATURE_VAPA)) {
5203         define_arm_cp_regs(cpu, vapa_cp_reginfo);
5204     }
5205     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5206         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5207     }
5208     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5209         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5210     }
5211     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5212         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5213     }
5214     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5215         define_arm_cp_regs(cpu, omap_cp_reginfo);
5216     }
5217     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5218         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5219     }
5220     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5221         define_arm_cp_regs(cpu, xscale_cp_reginfo);
5222     }
5223     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5224         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5225     }
5226     if (arm_feature(env, ARM_FEATURE_LPAE)) {
5227         define_arm_cp_regs(cpu, lpae_cp_reginfo);
5228     }
5229     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5230      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5231      * be read-only (ie write causes UNDEF exception).
5232      */
5233     {
5234         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5235             /* Pre-v8 MIDR space.
5236              * Note that the MIDR isn't a simple constant register because
5237              * of the TI925 behaviour where writes to another register can
5238              * cause the MIDR value to change.
5239              *
5240              * Unimplemented registers in the c15 0 0 0 space default to
5241              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5242              * and friends override accordingly.
5243              */
5244             { .name = "MIDR",
5245               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5246               .access = PL1_R, .resetvalue = cpu->midr,
5247               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5248               .readfn = midr_read,
5249               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5250               .type = ARM_CP_OVERRIDE },
5251             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5252             { .name = "DUMMY",
5253               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5254               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5255             { .name = "DUMMY",
5256               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5257               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5258             { .name = "DUMMY",
5259               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5260               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5261             { .name = "DUMMY",
5262               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5263               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5264             { .name = "DUMMY",
5265               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5266               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5267             REGINFO_SENTINEL
5268         };
5269         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5270             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5271               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5272               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5273               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5274               .readfn = midr_read },
5275             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5276             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5277               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5278               .access = PL1_R, .resetvalue = cpu->midr },
5279             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5280               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5281               .access = PL1_R, .resetvalue = cpu->midr },
5282             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5283               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5284               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5285             REGINFO_SENTINEL
5286         };
5287         ARMCPRegInfo id_cp_reginfo[] = {
5288             /* These are common to v8 and pre-v8 */
5289             { .name = "CTR",
5290               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5291               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5292             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5293               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5294               .access = PL0_R, .accessfn = ctr_el0_access,
5295               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5296             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5297             { .name = "TCMTR",
5298               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5299               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5300             REGINFO_SENTINEL
5301         };
5302         /* TLBTR is specific to VMSA */
5303         ARMCPRegInfo id_tlbtr_reginfo = {
5304               .name = "TLBTR",
5305               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5306               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5307         };
5308         /* MPUIR is specific to PMSA V6+ */
5309         ARMCPRegInfo id_mpuir_reginfo = {
5310               .name = "MPUIR",
5311               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5312               .access = PL1_R, .type = ARM_CP_CONST,
5313               .resetvalue = cpu->pmsav7_dregion << 8
5314         };
5315         ARMCPRegInfo crn0_wi_reginfo = {
5316             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5317             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5318             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5319         };
5320         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5321             arm_feature(env, ARM_FEATURE_STRONGARM)) {
5322             ARMCPRegInfo *r;
5323             /* Register the blanket "writes ignored" value first to cover the
5324              * whole space. Then update the specific ID registers to allow write
5325              * access, so that they ignore writes rather than causing them to
5326              * UNDEF.
5327              */
5328             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5329             for (r = id_pre_v8_midr_cp_reginfo;
5330                  r->type != ARM_CP_SENTINEL; r++) {
5331                 r->access = PL1_RW;
5332             }
5333             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5334                 r->access = PL1_RW;
5335             }
5336             id_tlbtr_reginfo.access = PL1_RW;
5337             id_tlbtr_reginfo.access = PL1_RW;
5338         }
5339         if (arm_feature(env, ARM_FEATURE_V8)) {
5340             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5341         } else {
5342             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5343         }
5344         define_arm_cp_regs(cpu, id_cp_reginfo);
5345         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5346             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5347         } else if (arm_feature(env, ARM_FEATURE_V7)) {
5348             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5349         }
5350     }
5351 
5352     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5353         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5354     }
5355 
5356     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5357         ARMCPRegInfo auxcr_reginfo[] = {
5358             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5359               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5360               .access = PL1_RW, .type = ARM_CP_CONST,
5361               .resetvalue = cpu->reset_auxcr },
5362             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5363               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5364               .access = PL2_RW, .type = ARM_CP_CONST,
5365               .resetvalue = 0 },
5366             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5367               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5368               .access = PL3_RW, .type = ARM_CP_CONST,
5369               .resetvalue = 0 },
5370             REGINFO_SENTINEL
5371         };
5372         define_arm_cp_regs(cpu, auxcr_reginfo);
5373     }
5374 
5375     if (arm_feature(env, ARM_FEATURE_CBAR)) {
5376         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5377             /* 32 bit view is [31:18] 0...0 [43:32]. */
5378             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5379                 | extract64(cpu->reset_cbar, 32, 12);
5380             ARMCPRegInfo cbar_reginfo[] = {
5381                 { .name = "CBAR",
5382                   .type = ARM_CP_CONST,
5383                   .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5384                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
5385                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5386                   .type = ARM_CP_CONST,
5387                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5388                   .access = PL1_R, .resetvalue = cbar32 },
5389                 REGINFO_SENTINEL
5390             };
5391             /* We don't implement a r/w 64 bit CBAR currently */
5392             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5393             define_arm_cp_regs(cpu, cbar_reginfo);
5394         } else {
5395             ARMCPRegInfo cbar = {
5396                 .name = "CBAR",
5397                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5398                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5399                 .fieldoffset = offsetof(CPUARMState,
5400                                         cp15.c15_config_base_address)
5401             };
5402             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5403                 cbar.access = PL1_R;
5404                 cbar.fieldoffset = 0;
5405                 cbar.type = ARM_CP_CONST;
5406             }
5407             define_one_arm_cp_reg(cpu, &cbar);
5408         }
5409     }
5410 
5411     if (arm_feature(env, ARM_FEATURE_VBAR)) {
5412         ARMCPRegInfo vbar_cp_reginfo[] = {
5413             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5414               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5415               .access = PL1_RW, .writefn = vbar_write,
5416               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5417                                      offsetof(CPUARMState, cp15.vbar_ns) },
5418               .resetvalue = 0 },
5419             REGINFO_SENTINEL
5420         };
5421         define_arm_cp_regs(cpu, vbar_cp_reginfo);
5422     }
5423 
5424     /* Generic registers whose values depend on the implementation */
5425     {
5426         ARMCPRegInfo sctlr = {
5427             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5428             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5429             .access = PL1_RW,
5430             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5431                                    offsetof(CPUARMState, cp15.sctlr_ns) },
5432             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5433             .raw_writefn = raw_write,
5434         };
5435         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5436             /* Normally we would always end the TB on an SCTLR write, but Linux
5437              * arch/arm/mach-pxa/sleep.S expects two instructions following
5438              * an MMU enable to execute from cache.  Imitate this behaviour.
5439              */
5440             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5441         }
5442         define_one_arm_cp_reg(cpu, &sctlr);
5443     }
5444 
5445     if (arm_feature(env, ARM_FEATURE_SVE)) {
5446         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
5447         if (arm_feature(env, ARM_FEATURE_EL2)) {
5448             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
5449         } else {
5450             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
5451         }
5452         if (arm_feature(env, ARM_FEATURE_EL3)) {
5453             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
5454         }
5455     }
5456 }
5457 
5458 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5459 {
5460     CPUState *cs = CPU(cpu);
5461     CPUARMState *env = &cpu->env;
5462 
5463     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5464         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5465                                  aarch64_fpu_gdb_set_reg,
5466                                  34, "aarch64-fpu.xml", 0);
5467     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5468         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5469                                  51, "arm-neon.xml", 0);
5470     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5471         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5472                                  35, "arm-vfp3.xml", 0);
5473     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5474         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5475                                  19, "arm-vfp.xml", 0);
5476     }
5477 }
5478 
5479 /* Sort alphabetically by type name, except for "any". */
5480 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5481 {
5482     ObjectClass *class_a = (ObjectClass *)a;
5483     ObjectClass *class_b = (ObjectClass *)b;
5484     const char *name_a, *name_b;
5485 
5486     name_a = object_class_get_name(class_a);
5487     name_b = object_class_get_name(class_b);
5488     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5489         return 1;
5490     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5491         return -1;
5492     } else {
5493         return strcmp(name_a, name_b);
5494     }
5495 }
5496 
5497 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5498 {
5499     ObjectClass *oc = data;
5500     CPUListState *s = user_data;
5501     const char *typename;
5502     char *name;
5503 
5504     typename = object_class_get_name(oc);
5505     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5506     (*s->cpu_fprintf)(s->file, "  %s\n",
5507                       name);
5508     g_free(name);
5509 }
5510 
5511 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5512 {
5513     CPUListState s = {
5514         .file = f,
5515         .cpu_fprintf = cpu_fprintf,
5516     };
5517     GSList *list;
5518 
5519     list = object_class_get_list(TYPE_ARM_CPU, false);
5520     list = g_slist_sort(list, arm_cpu_list_compare);
5521     (*cpu_fprintf)(f, "Available CPUs:\n");
5522     g_slist_foreach(list, arm_cpu_list_entry, &s);
5523     g_slist_free(list);
5524 #ifdef CONFIG_KVM
5525     /* The 'host' CPU type is dynamically registered only if KVM is
5526      * enabled, so we have to special-case it here:
5527      */
5528     (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
5529 #endif
5530 }
5531 
5532 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5533 {
5534     ObjectClass *oc = data;
5535     CpuDefinitionInfoList **cpu_list = user_data;
5536     CpuDefinitionInfoList *entry;
5537     CpuDefinitionInfo *info;
5538     const char *typename;
5539 
5540     typename = object_class_get_name(oc);
5541     info = g_malloc0(sizeof(*info));
5542     info->name = g_strndup(typename,
5543                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
5544     info->q_typename = g_strdup(typename);
5545 
5546     entry = g_malloc0(sizeof(*entry));
5547     entry->value = info;
5548     entry->next = *cpu_list;
5549     *cpu_list = entry;
5550 }
5551 
5552 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5553 {
5554     CpuDefinitionInfoList *cpu_list = NULL;
5555     GSList *list;
5556 
5557     list = object_class_get_list(TYPE_ARM_CPU, false);
5558     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5559     g_slist_free(list);
5560 
5561     return cpu_list;
5562 }
5563 
5564 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5565                                    void *opaque, int state, int secstate,
5566                                    int crm, int opc1, int opc2)
5567 {
5568     /* Private utility function for define_one_arm_cp_reg_with_opaque():
5569      * add a single reginfo struct to the hash table.
5570      */
5571     uint32_t *key = g_new(uint32_t, 1);
5572     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5573     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5574     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5575 
5576     /* Reset the secure state to the specific incoming state.  This is
5577      * necessary as the register may have been defined with both states.
5578      */
5579     r2->secure = secstate;
5580 
5581     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5582         /* Register is banked (using both entries in array).
5583          * Overwriting fieldoffset as the array is only used to define
5584          * banked registers but later only fieldoffset is used.
5585          */
5586         r2->fieldoffset = r->bank_fieldoffsets[ns];
5587     }
5588 
5589     if (state == ARM_CP_STATE_AA32) {
5590         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5591             /* If the register is banked then we don't need to migrate or
5592              * reset the 32-bit instance in certain cases:
5593              *
5594              * 1) If the register has both 32-bit and 64-bit instances then we
5595              *    can count on the 64-bit instance taking care of the
5596              *    non-secure bank.
5597              * 2) If ARMv8 is enabled then we can count on a 64-bit version
5598              *    taking care of the secure bank.  This requires that separate
5599              *    32 and 64-bit definitions are provided.
5600              */
5601             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5602                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5603                 r2->type |= ARM_CP_ALIAS;
5604             }
5605         } else if ((secstate != r->secure) && !ns) {
5606             /* The register is not banked so we only want to allow migration of
5607              * the non-secure instance.
5608              */
5609             r2->type |= ARM_CP_ALIAS;
5610         }
5611 
5612         if (r->state == ARM_CP_STATE_BOTH) {
5613             /* We assume it is a cp15 register if the .cp field is left unset.
5614              */
5615             if (r2->cp == 0) {
5616                 r2->cp = 15;
5617             }
5618 
5619 #ifdef HOST_WORDS_BIGENDIAN
5620             if (r2->fieldoffset) {
5621                 r2->fieldoffset += sizeof(uint32_t);
5622             }
5623 #endif
5624         }
5625     }
5626     if (state == ARM_CP_STATE_AA64) {
5627         /* To allow abbreviation of ARMCPRegInfo
5628          * definitions, we treat cp == 0 as equivalent to
5629          * the value for "standard guest-visible sysreg".
5630          * STATE_BOTH definitions are also always "standard
5631          * sysreg" in their AArch64 view (the .cp value may
5632          * be non-zero for the benefit of the AArch32 view).
5633          */
5634         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5635             r2->cp = CP_REG_ARM64_SYSREG_CP;
5636         }
5637         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5638                                   r2->opc0, opc1, opc2);
5639     } else {
5640         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5641     }
5642     if (opaque) {
5643         r2->opaque = opaque;
5644     }
5645     /* reginfo passed to helpers is correct for the actual access,
5646      * and is never ARM_CP_STATE_BOTH:
5647      */
5648     r2->state = state;
5649     /* Make sure reginfo passed to helpers for wildcarded regs
5650      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5651      */
5652     r2->crm = crm;
5653     r2->opc1 = opc1;
5654     r2->opc2 = opc2;
5655     /* By convention, for wildcarded registers only the first
5656      * entry is used for migration; the others are marked as
5657      * ALIAS so we don't try to transfer the register
5658      * multiple times. Special registers (ie NOP/WFI) are
5659      * never migratable and not even raw-accessible.
5660      */
5661     if ((r->type & ARM_CP_SPECIAL)) {
5662         r2->type |= ARM_CP_NO_RAW;
5663     }
5664     if (((r->crm == CP_ANY) && crm != 0) ||
5665         ((r->opc1 == CP_ANY) && opc1 != 0) ||
5666         ((r->opc2 == CP_ANY) && opc2 != 0)) {
5667         r2->type |= ARM_CP_ALIAS;
5668     }
5669 
5670     /* Check that raw accesses are either forbidden or handled. Note that
5671      * we can't assert this earlier because the setup of fieldoffset for
5672      * banked registers has to be done first.
5673      */
5674     if (!(r2->type & ARM_CP_NO_RAW)) {
5675         assert(!raw_accessors_invalid(r2));
5676     }
5677 
5678     /* Overriding of an existing definition must be explicitly
5679      * requested.
5680      */
5681     if (!(r->type & ARM_CP_OVERRIDE)) {
5682         ARMCPRegInfo *oldreg;
5683         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5684         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5685             fprintf(stderr, "Register redefined: cp=%d %d bit "
5686                     "crn=%d crm=%d opc1=%d opc2=%d, "
5687                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5688                     r2->crn, r2->crm, r2->opc1, r2->opc2,
5689                     oldreg->name, r2->name);
5690             g_assert_not_reached();
5691         }
5692     }
5693     g_hash_table_insert(cpu->cp_regs, key, r2);
5694 }
5695 
5696 
5697 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5698                                        const ARMCPRegInfo *r, void *opaque)
5699 {
5700     /* Define implementations of coprocessor registers.
5701      * We store these in a hashtable because typically
5702      * there are less than 150 registers in a space which
5703      * is 16*16*16*8*8 = 262144 in size.
5704      * Wildcarding is supported for the crm, opc1 and opc2 fields.
5705      * If a register is defined twice then the second definition is
5706      * used, so this can be used to define some generic registers and
5707      * then override them with implementation specific variations.
5708      * At least one of the original and the second definition should
5709      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5710      * against accidental use.
5711      *
5712      * The state field defines whether the register is to be
5713      * visible in the AArch32 or AArch64 execution state. If the
5714      * state is set to ARM_CP_STATE_BOTH then we synthesise a
5715      * reginfo structure for the AArch32 view, which sees the lower
5716      * 32 bits of the 64 bit register.
5717      *
5718      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5719      * be wildcarded. AArch64 registers are always considered to be 64
5720      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5721      * the register, if any.
5722      */
5723     int crm, opc1, opc2, state;
5724     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5725     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5726     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5727     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5728     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5729     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5730     /* 64 bit registers have only CRm and Opc1 fields */
5731     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5732     /* op0 only exists in the AArch64 encodings */
5733     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5734     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5735     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5736     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5737      * encodes a minimum access level for the register. We roll this
5738      * runtime check into our general permission check code, so check
5739      * here that the reginfo's specified permissions are strict enough
5740      * to encompass the generic architectural permission check.
5741      */
5742     if (r->state != ARM_CP_STATE_AA32) {
5743         int mask = 0;
5744         switch (r->opc1) {
5745         case 0: case 1: case 2:
5746             /* min_EL EL1 */
5747             mask = PL1_RW;
5748             break;
5749         case 3:
5750             /* min_EL EL0 */
5751             mask = PL0_RW;
5752             break;
5753         case 4:
5754             /* min_EL EL2 */
5755             mask = PL2_RW;
5756             break;
5757         case 5:
5758             /* unallocated encoding, so not possible */
5759             assert(false);
5760             break;
5761         case 6:
5762             /* min_EL EL3 */
5763             mask = PL3_RW;
5764             break;
5765         case 7:
5766             /* min_EL EL1, secure mode only (we don't check the latter) */
5767             mask = PL1_RW;
5768             break;
5769         default:
5770             /* broken reginfo with out-of-range opc1 */
5771             assert(false);
5772             break;
5773         }
5774         /* assert our permissions are not too lax (stricter is fine) */
5775         assert((r->access & ~mask) == 0);
5776     }
5777 
5778     /* Check that the register definition has enough info to handle
5779      * reads and writes if they are permitted.
5780      */
5781     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5782         if (r->access & PL3_R) {
5783             assert((r->fieldoffset ||
5784                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5785                    r->readfn);
5786         }
5787         if (r->access & PL3_W) {
5788             assert((r->fieldoffset ||
5789                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5790                    r->writefn);
5791         }
5792     }
5793     /* Bad type field probably means missing sentinel at end of reg list */
5794     assert(cptype_valid(r->type));
5795     for (crm = crmmin; crm <= crmmax; crm++) {
5796         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5797             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5798                 for (state = ARM_CP_STATE_AA32;
5799                      state <= ARM_CP_STATE_AA64; state++) {
5800                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5801                         continue;
5802                     }
5803                     if (state == ARM_CP_STATE_AA32) {
5804                         /* Under AArch32 CP registers can be common
5805                          * (same for secure and non-secure world) or banked.
5806                          */
5807                         switch (r->secure) {
5808                         case ARM_CP_SECSTATE_S:
5809                         case ARM_CP_SECSTATE_NS:
5810                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5811                                                    r->secure, crm, opc1, opc2);
5812                             break;
5813                         default:
5814                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5815                                                    ARM_CP_SECSTATE_S,
5816                                                    crm, opc1, opc2);
5817                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5818                                                    ARM_CP_SECSTATE_NS,
5819                                                    crm, opc1, opc2);
5820                             break;
5821                         }
5822                     } else {
5823                         /* AArch64 registers get mapped to non-secure instance
5824                          * of AArch32 */
5825                         add_cpreg_to_hashtable(cpu, r, opaque, state,
5826                                                ARM_CP_SECSTATE_NS,
5827                                                crm, opc1, opc2);
5828                     }
5829                 }
5830             }
5831         }
5832     }
5833 }
5834 
5835 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5836                                     const ARMCPRegInfo *regs, void *opaque)
5837 {
5838     /* Define a whole list of registers */
5839     const ARMCPRegInfo *r;
5840     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5841         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5842     }
5843 }
5844 
5845 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5846 {
5847     return g_hash_table_lookup(cpregs, &encoded_cp);
5848 }
5849 
5850 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5851                          uint64_t value)
5852 {
5853     /* Helper coprocessor write function for write-ignore registers */
5854 }
5855 
5856 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5857 {
5858     /* Helper coprocessor write function for read-as-zero registers */
5859     return 0;
5860 }
5861 
5862 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5863 {
5864     /* Helper coprocessor reset function for do-nothing-on-reset registers */
5865 }
5866 
5867 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5868 {
5869     /* Return true if it is not valid for us to switch to
5870      * this CPU mode (ie all the UNPREDICTABLE cases in
5871      * the ARM ARM CPSRWriteByInstr pseudocode).
5872      */
5873 
5874     /* Changes to or from Hyp via MSR and CPS are illegal. */
5875     if (write_type == CPSRWriteByInstr &&
5876         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5877          mode == ARM_CPU_MODE_HYP)) {
5878         return 1;
5879     }
5880 
5881     switch (mode) {
5882     case ARM_CPU_MODE_USR:
5883         return 0;
5884     case ARM_CPU_MODE_SYS:
5885     case ARM_CPU_MODE_SVC:
5886     case ARM_CPU_MODE_ABT:
5887     case ARM_CPU_MODE_UND:
5888     case ARM_CPU_MODE_IRQ:
5889     case ARM_CPU_MODE_FIQ:
5890         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5891          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5892          */
5893         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5894          * and CPS are treated as illegal mode changes.
5895          */
5896         if (write_type == CPSRWriteByInstr &&
5897             (env->cp15.hcr_el2 & HCR_TGE) &&
5898             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5899             !arm_is_secure_below_el3(env)) {
5900             return 1;
5901         }
5902         return 0;
5903     case ARM_CPU_MODE_HYP:
5904         return !arm_feature(env, ARM_FEATURE_EL2)
5905             || arm_current_el(env) < 2 || arm_is_secure(env);
5906     case ARM_CPU_MODE_MON:
5907         return arm_current_el(env) < 3;
5908     default:
5909         return 1;
5910     }
5911 }
5912 
5913 uint32_t cpsr_read(CPUARMState *env)
5914 {
5915     int ZF;
5916     ZF = (env->ZF == 0);
5917     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5918         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5919         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5920         | ((env->condexec_bits & 0xfc) << 8)
5921         | (env->GE << 16) | (env->daif & CPSR_AIF);
5922 }
5923 
5924 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5925                 CPSRWriteType write_type)
5926 {
5927     uint32_t changed_daif;
5928 
5929     if (mask & CPSR_NZCV) {
5930         env->ZF = (~val) & CPSR_Z;
5931         env->NF = val;
5932         env->CF = (val >> 29) & 1;
5933         env->VF = (val << 3) & 0x80000000;
5934     }
5935     if (mask & CPSR_Q)
5936         env->QF = ((val & CPSR_Q) != 0);
5937     if (mask & CPSR_T)
5938         env->thumb = ((val & CPSR_T) != 0);
5939     if (mask & CPSR_IT_0_1) {
5940         env->condexec_bits &= ~3;
5941         env->condexec_bits |= (val >> 25) & 3;
5942     }
5943     if (mask & CPSR_IT_2_7) {
5944         env->condexec_bits &= 3;
5945         env->condexec_bits |= (val >> 8) & 0xfc;
5946     }
5947     if (mask & CPSR_GE) {
5948         env->GE = (val >> 16) & 0xf;
5949     }
5950 
5951     /* In a V7 implementation that includes the security extensions but does
5952      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5953      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5954      * bits respectively.
5955      *
5956      * In a V8 implementation, it is permitted for privileged software to
5957      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5958      */
5959     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5960         arm_feature(env, ARM_FEATURE_EL3) &&
5961         !arm_feature(env, ARM_FEATURE_EL2) &&
5962         !arm_is_secure(env)) {
5963 
5964         changed_daif = (env->daif ^ val) & mask;
5965 
5966         if (changed_daif & CPSR_A) {
5967             /* Check to see if we are allowed to change the masking of async
5968              * abort exceptions from a non-secure state.
5969              */
5970             if (!(env->cp15.scr_el3 & SCR_AW)) {
5971                 qemu_log_mask(LOG_GUEST_ERROR,
5972                               "Ignoring attempt to switch CPSR_A flag from "
5973                               "non-secure world with SCR.AW bit clear\n");
5974                 mask &= ~CPSR_A;
5975             }
5976         }
5977 
5978         if (changed_daif & CPSR_F) {
5979             /* Check to see if we are allowed to change the masking of FIQ
5980              * exceptions from a non-secure state.
5981              */
5982             if (!(env->cp15.scr_el3 & SCR_FW)) {
5983                 qemu_log_mask(LOG_GUEST_ERROR,
5984                               "Ignoring attempt to switch CPSR_F flag from "
5985                               "non-secure world with SCR.FW bit clear\n");
5986                 mask &= ~CPSR_F;
5987             }
5988 
5989             /* Check whether non-maskable FIQ (NMFI) support is enabled.
5990              * If this bit is set software is not allowed to mask
5991              * FIQs, but is allowed to set CPSR_F to 0.
5992              */
5993             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5994                 (val & CPSR_F)) {
5995                 qemu_log_mask(LOG_GUEST_ERROR,
5996                               "Ignoring attempt to enable CPSR_F flag "
5997                               "(non-maskable FIQ [NMFI] support enabled)\n");
5998                 mask &= ~CPSR_F;
5999             }
6000         }
6001     }
6002 
6003     env->daif &= ~(CPSR_AIF & mask);
6004     env->daif |= val & CPSR_AIF & mask;
6005 
6006     if (write_type != CPSRWriteRaw &&
6007         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
6008         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
6009             /* Note that we can only get here in USR mode if this is a
6010              * gdb stub write; for this case we follow the architectural
6011              * behaviour for guest writes in USR mode of ignoring an attempt
6012              * to switch mode. (Those are caught by translate.c for writes
6013              * triggered by guest instructions.)
6014              */
6015             mask &= ~CPSR_M;
6016         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
6017             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
6018              * v7, and has defined behaviour in v8:
6019              *  + leave CPSR.M untouched
6020              *  + allow changes to the other CPSR fields
6021              *  + set PSTATE.IL
6022              * For user changes via the GDB stub, we don't set PSTATE.IL,
6023              * as this would be unnecessarily harsh for a user error.
6024              */
6025             mask &= ~CPSR_M;
6026             if (write_type != CPSRWriteByGDBStub &&
6027                 arm_feature(env, ARM_FEATURE_V8)) {
6028                 mask |= CPSR_IL;
6029                 val |= CPSR_IL;
6030             }
6031         } else {
6032             switch_mode(env, val & CPSR_M);
6033         }
6034     }
6035     mask &= ~CACHED_CPSR_BITS;
6036     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
6037 }
6038 
6039 /* Sign/zero extend */
6040 uint32_t HELPER(sxtb16)(uint32_t x)
6041 {
6042     uint32_t res;
6043     res = (uint16_t)(int8_t)x;
6044     res |= (uint32_t)(int8_t)(x >> 16) << 16;
6045     return res;
6046 }
6047 
6048 uint32_t HELPER(uxtb16)(uint32_t x)
6049 {
6050     uint32_t res;
6051     res = (uint16_t)(uint8_t)x;
6052     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
6053     return res;
6054 }
6055 
6056 int32_t HELPER(sdiv)(int32_t num, int32_t den)
6057 {
6058     if (den == 0)
6059       return 0;
6060     if (num == INT_MIN && den == -1)
6061       return INT_MIN;
6062     return num / den;
6063 }
6064 
6065 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
6066 {
6067     if (den == 0)
6068       return 0;
6069     return num / den;
6070 }
6071 
6072 uint32_t HELPER(rbit)(uint32_t x)
6073 {
6074     return revbit32(x);
6075 }
6076 
6077 #if defined(CONFIG_USER_ONLY)
6078 
6079 /* These should probably raise undefined insn exceptions.  */
6080 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
6081 {
6082     ARMCPU *cpu = arm_env_get_cpu(env);
6083 
6084     cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
6085 }
6086 
6087 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
6088 {
6089     ARMCPU *cpu = arm_env_get_cpu(env);
6090 
6091     cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
6092     return 0;
6093 }
6094 
6095 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6096 {
6097     /* translate.c should never generate calls here in user-only mode */
6098     g_assert_not_reached();
6099 }
6100 
6101 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6102 {
6103     /* translate.c should never generate calls here in user-only mode */
6104     g_assert_not_reached();
6105 }
6106 
6107 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
6108 {
6109     /* The TT instructions can be used by unprivileged code, but in
6110      * user-only emulation we don't have the MPU.
6111      * Luckily since we know we are NonSecure unprivileged (and that in
6112      * turn means that the A flag wasn't specified), all the bits in the
6113      * register must be zero:
6114      *  IREGION: 0 because IRVALID is 0
6115      *  IRVALID: 0 because NS
6116      *  S: 0 because NS
6117      *  NSRW: 0 because NS
6118      *  NSR: 0 because NS
6119      *  RW: 0 because unpriv and A flag not set
6120      *  R: 0 because unpriv and A flag not set
6121      *  SRVALID: 0 because NS
6122      *  MRVALID: 0 because unpriv and A flag not set
6123      *  SREGION: 0 becaus SRVALID is 0
6124      *  MREGION: 0 because MRVALID is 0
6125      */
6126     return 0;
6127 }
6128 
6129 void switch_mode(CPUARMState *env, int mode)
6130 {
6131     ARMCPU *cpu = arm_env_get_cpu(env);
6132 
6133     if (mode != ARM_CPU_MODE_USR) {
6134         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
6135     }
6136 }
6137 
6138 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6139                                  uint32_t cur_el, bool secure)
6140 {
6141     return 1;
6142 }
6143 
6144 void aarch64_sync_64_to_32(CPUARMState *env)
6145 {
6146     g_assert_not_reached();
6147 }
6148 
6149 #else
6150 
6151 void switch_mode(CPUARMState *env, int mode)
6152 {
6153     int old_mode;
6154     int i;
6155 
6156     old_mode = env->uncached_cpsr & CPSR_M;
6157     if (mode == old_mode)
6158         return;
6159 
6160     if (old_mode == ARM_CPU_MODE_FIQ) {
6161         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
6162         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
6163     } else if (mode == ARM_CPU_MODE_FIQ) {
6164         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
6165         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
6166     }
6167 
6168     i = bank_number(old_mode);
6169     env->banked_r13[i] = env->regs[13];
6170     env->banked_r14[i] = env->regs[14];
6171     env->banked_spsr[i] = env->spsr;
6172 
6173     i = bank_number(mode);
6174     env->regs[13] = env->banked_r13[i];
6175     env->regs[14] = env->banked_r14[i];
6176     env->spsr = env->banked_spsr[i];
6177 }
6178 
6179 /* Physical Interrupt Target EL Lookup Table
6180  *
6181  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
6182  *
6183  * The below multi-dimensional table is used for looking up the target
6184  * exception level given numerous condition criteria.  Specifically, the
6185  * target EL is based on SCR and HCR routing controls as well as the
6186  * currently executing EL and secure state.
6187  *
6188  *    Dimensions:
6189  *    target_el_table[2][2][2][2][2][4]
6190  *                    |  |  |  |  |  +--- Current EL
6191  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
6192  *                    |  |  |  +--------- HCR mask override
6193  *                    |  |  +------------ SCR exec state control
6194  *                    |  +--------------- SCR mask override
6195  *                    +------------------ 32-bit(0)/64-bit(1) EL3
6196  *
6197  *    The table values are as such:
6198  *    0-3 = EL0-EL3
6199  *     -1 = Cannot occur
6200  *
6201  * The ARM ARM target EL table includes entries indicating that an "exception
6202  * is not taken".  The two cases where this is applicable are:
6203  *    1) An exception is taken from EL3 but the SCR does not have the exception
6204  *    routed to EL3.
6205  *    2) An exception is taken from EL2 but the HCR does not have the exception
6206  *    routed to EL2.
6207  * In these two cases, the below table contain a target of EL1.  This value is
6208  * returned as it is expected that the consumer of the table data will check
6209  * for "target EL >= current EL" to ensure the exception is not taken.
6210  *
6211  *            SCR     HCR
6212  *         64  EA     AMO                 From
6213  *        BIT IRQ     IMO      Non-secure         Secure
6214  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
6215  */
6216 static const int8_t target_el_table[2][2][2][2][2][4] = {
6217     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
6218        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
6219       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
6220        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
6221      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
6222        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
6223       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
6224        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
6225     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
6226        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
6227       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
6228        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
6229      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
6230        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
6231       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
6232        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
6233 };
6234 
6235 /*
6236  * Determine the target EL for physical exceptions
6237  */
6238 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6239                                  uint32_t cur_el, bool secure)
6240 {
6241     CPUARMState *env = cs->env_ptr;
6242     int rw;
6243     int scr;
6244     int hcr;
6245     int target_el;
6246     /* Is the highest EL AArch64? */
6247     int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6248 
6249     if (arm_feature(env, ARM_FEATURE_EL3)) {
6250         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6251     } else {
6252         /* Either EL2 is the highest EL (and so the EL2 register width
6253          * is given by is64); or there is no EL2 or EL3, in which case
6254          * the value of 'rw' does not affect the table lookup anyway.
6255          */
6256         rw = is64;
6257     }
6258 
6259     switch (excp_idx) {
6260     case EXCP_IRQ:
6261         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6262         hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6263         break;
6264     case EXCP_FIQ:
6265         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6266         hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6267         break;
6268     default:
6269         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6270         hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6271         break;
6272     };
6273 
6274     /* If HCR.TGE is set then HCR is treated as being 1 */
6275     hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6276 
6277     /* Perform a table-lookup for the target EL given the current state */
6278     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6279 
6280     assert(target_el > 0);
6281 
6282     return target_el;
6283 }
6284 
6285 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
6286                             ARMMMUIdx mmu_idx, bool ignfault)
6287 {
6288     CPUState *cs = CPU(cpu);
6289     CPUARMState *env = &cpu->env;
6290     MemTxAttrs attrs = {};
6291     MemTxResult txres;
6292     target_ulong page_size;
6293     hwaddr physaddr;
6294     int prot;
6295     ARMMMUFaultInfo fi;
6296     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6297     int exc;
6298     bool exc_secure;
6299 
6300     if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
6301                       &attrs, &prot, &page_size, &fi, NULL)) {
6302         /* MPU/SAU lookup failed */
6303         if (fi.type == ARMFault_QEMU_SFault) {
6304             qemu_log_mask(CPU_LOG_INT,
6305                           "...SecureFault with SFSR.AUVIOL during stacking\n");
6306             env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6307             env->v7m.sfar = addr;
6308             exc = ARMV7M_EXCP_SECURE;
6309             exc_secure = false;
6310         } else {
6311             qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
6312             env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
6313             exc = ARMV7M_EXCP_MEM;
6314             exc_secure = secure;
6315         }
6316         goto pend_fault;
6317     }
6318     address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
6319                          attrs, &txres);
6320     if (txres != MEMTX_OK) {
6321         /* BusFault trying to write the data */
6322         qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
6323         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
6324         exc = ARMV7M_EXCP_BUS;
6325         exc_secure = false;
6326         goto pend_fault;
6327     }
6328     return true;
6329 
6330 pend_fault:
6331     /* By pending the exception at this point we are making
6332      * the IMPDEF choice "overridden exceptions pended" (see the
6333      * MergeExcInfo() pseudocode). The other choice would be to not
6334      * pend them now and then make a choice about which to throw away
6335      * later if we have two derived exceptions.
6336      * The only case when we must not pend the exception but instead
6337      * throw it away is if we are doing the push of the callee registers
6338      * and we've already generated a derived exception. Even in this
6339      * case we will still update the fault status registers.
6340      */
6341     if (!ignfault) {
6342         armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
6343     }
6344     return false;
6345 }
6346 
6347 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
6348                            ARMMMUIdx mmu_idx)
6349 {
6350     CPUState *cs = CPU(cpu);
6351     CPUARMState *env = &cpu->env;
6352     MemTxAttrs attrs = {};
6353     MemTxResult txres;
6354     target_ulong page_size;
6355     hwaddr physaddr;
6356     int prot;
6357     ARMMMUFaultInfo fi;
6358     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6359     int exc;
6360     bool exc_secure;
6361     uint32_t value;
6362 
6363     if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
6364                       &attrs, &prot, &page_size, &fi, NULL)) {
6365         /* MPU/SAU lookup failed */
6366         if (fi.type == ARMFault_QEMU_SFault) {
6367             qemu_log_mask(CPU_LOG_INT,
6368                           "...SecureFault with SFSR.AUVIOL during unstack\n");
6369             env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6370             env->v7m.sfar = addr;
6371             exc = ARMV7M_EXCP_SECURE;
6372             exc_secure = false;
6373         } else {
6374             qemu_log_mask(CPU_LOG_INT,
6375                           "...MemManageFault with CFSR.MUNSTKERR\n");
6376             env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
6377             exc = ARMV7M_EXCP_MEM;
6378             exc_secure = secure;
6379         }
6380         goto pend_fault;
6381     }
6382 
6383     value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
6384                               attrs, &txres);
6385     if (txres != MEMTX_OK) {
6386         /* BusFault trying to read the data */
6387         qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
6388         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
6389         exc = ARMV7M_EXCP_BUS;
6390         exc_secure = false;
6391         goto pend_fault;
6392     }
6393 
6394     *dest = value;
6395     return true;
6396 
6397 pend_fault:
6398     /* By pending the exception at this point we are making
6399      * the IMPDEF choice "overridden exceptions pended" (see the
6400      * MergeExcInfo() pseudocode). The other choice would be to not
6401      * pend them now and then make a choice about which to throw away
6402      * later if we have two derived exceptions.
6403      */
6404     armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
6405     return false;
6406 }
6407 
6408 /* Return true if we're using the process stack pointer (not the MSP) */
6409 static bool v7m_using_psp(CPUARMState *env)
6410 {
6411     /* Handler mode always uses the main stack; for thread mode
6412      * the CONTROL.SPSEL bit determines the answer.
6413      * Note that in v7M it is not possible to be in Handler mode with
6414      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6415      */
6416     return !arm_v7m_is_handler_mode(env) &&
6417         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6418 }
6419 
6420 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6421  * This may change the current stack pointer between Main and Process
6422  * stack pointers if it is done for the CONTROL register for the current
6423  * security state.
6424  */
6425 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6426                                                  bool new_spsel,
6427                                                  bool secstate)
6428 {
6429     bool old_is_psp = v7m_using_psp(env);
6430 
6431     env->v7m.control[secstate] =
6432         deposit32(env->v7m.control[secstate],
6433                   R_V7M_CONTROL_SPSEL_SHIFT,
6434                   R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6435 
6436     if (secstate == env->v7m.secure) {
6437         bool new_is_psp = v7m_using_psp(env);
6438         uint32_t tmp;
6439 
6440         if (old_is_psp != new_is_psp) {
6441             tmp = env->v7m.other_sp;
6442             env->v7m.other_sp = env->regs[13];
6443             env->regs[13] = tmp;
6444         }
6445     }
6446 }
6447 
6448 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6449  * stack pointer between Main and Process stack pointers.
6450  */
6451 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6452 {
6453     write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6454 }
6455 
6456 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6457 {
6458     /* Write a new value to v7m.exception, thus transitioning into or out
6459      * of Handler mode; this may result in a change of active stack pointer.
6460      */
6461     bool new_is_psp, old_is_psp = v7m_using_psp(env);
6462     uint32_t tmp;
6463 
6464     env->v7m.exception = new_exc;
6465 
6466     new_is_psp = v7m_using_psp(env);
6467 
6468     if (old_is_psp != new_is_psp) {
6469         tmp = env->v7m.other_sp;
6470         env->v7m.other_sp = env->regs[13];
6471         env->regs[13] = tmp;
6472     }
6473 }
6474 
6475 /* Switch M profile security state between NS and S */
6476 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6477 {
6478     uint32_t new_ss_msp, new_ss_psp;
6479 
6480     if (env->v7m.secure == new_secstate) {
6481         return;
6482     }
6483 
6484     /* All the banked state is accessed by looking at env->v7m.secure
6485      * except for the stack pointer; rearrange the SP appropriately.
6486      */
6487     new_ss_msp = env->v7m.other_ss_msp;
6488     new_ss_psp = env->v7m.other_ss_psp;
6489 
6490     if (v7m_using_psp(env)) {
6491         env->v7m.other_ss_psp = env->regs[13];
6492         env->v7m.other_ss_msp = env->v7m.other_sp;
6493     } else {
6494         env->v7m.other_ss_msp = env->regs[13];
6495         env->v7m.other_ss_psp = env->v7m.other_sp;
6496     }
6497 
6498     env->v7m.secure = new_secstate;
6499 
6500     if (v7m_using_psp(env)) {
6501         env->regs[13] = new_ss_psp;
6502         env->v7m.other_sp = new_ss_msp;
6503     } else {
6504         env->regs[13] = new_ss_msp;
6505         env->v7m.other_sp = new_ss_psp;
6506     }
6507 }
6508 
6509 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6510 {
6511     /* Handle v7M BXNS:
6512      *  - if the return value is a magic value, do exception return (like BX)
6513      *  - otherwise bit 0 of the return value is the target security state
6514      */
6515     uint32_t min_magic;
6516 
6517     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6518         /* Covers FNC_RETURN and EXC_RETURN magic */
6519         min_magic = FNC_RETURN_MIN_MAGIC;
6520     } else {
6521         /* EXC_RETURN magic only */
6522         min_magic = EXC_RETURN_MIN_MAGIC;
6523     }
6524 
6525     if (dest >= min_magic) {
6526         /* This is an exception return magic value; put it where
6527          * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6528          * Note that if we ever add gen_ss_advance() singlestep support to
6529          * M profile this should count as an "instruction execution complete"
6530          * event (compare gen_bx_excret_final_code()).
6531          */
6532         env->regs[15] = dest & ~1;
6533         env->thumb = dest & 1;
6534         HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6535         /* notreached */
6536     }
6537 
6538     /* translate.c should have made BXNS UNDEF unless we're secure */
6539     assert(env->v7m.secure);
6540 
6541     switch_v7m_security_state(env, dest & 1);
6542     env->thumb = 1;
6543     env->regs[15] = dest & ~1;
6544 }
6545 
6546 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6547 {
6548     /* Handle v7M BLXNS:
6549      *  - bit 0 of the destination address is the target security state
6550      */
6551 
6552     /* At this point regs[15] is the address just after the BLXNS */
6553     uint32_t nextinst = env->regs[15] | 1;
6554     uint32_t sp = env->regs[13] - 8;
6555     uint32_t saved_psr;
6556 
6557     /* translate.c will have made BLXNS UNDEF unless we're secure */
6558     assert(env->v7m.secure);
6559 
6560     if (dest & 1) {
6561         /* target is Secure, so this is just a normal BLX,
6562          * except that the low bit doesn't indicate Thumb/not.
6563          */
6564         env->regs[14] = nextinst;
6565         env->thumb = 1;
6566         env->regs[15] = dest & ~1;
6567         return;
6568     }
6569 
6570     /* Target is non-secure: first push a stack frame */
6571     if (!QEMU_IS_ALIGNED(sp, 8)) {
6572         qemu_log_mask(LOG_GUEST_ERROR,
6573                       "BLXNS with misaligned SP is UNPREDICTABLE\n");
6574     }
6575 
6576     saved_psr = env->v7m.exception;
6577     if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
6578         saved_psr |= XPSR_SFPA;
6579     }
6580 
6581     /* Note that these stores can throw exceptions on MPU faults */
6582     cpu_stl_data(env, sp, nextinst);
6583     cpu_stl_data(env, sp + 4, saved_psr);
6584 
6585     env->regs[13] = sp;
6586     env->regs[14] = 0xfeffffff;
6587     if (arm_v7m_is_handler_mode(env)) {
6588         /* Write a dummy value to IPSR, to avoid leaking the current secure
6589          * exception number to non-secure code. This is guaranteed not
6590          * to cause write_v7m_exception() to actually change stacks.
6591          */
6592         write_v7m_exception(env, 1);
6593     }
6594     switch_v7m_security_state(env, 0);
6595     env->thumb = 1;
6596     env->regs[15] = dest;
6597 }
6598 
6599 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6600                                 bool spsel)
6601 {
6602     /* Return a pointer to the location where we currently store the
6603      * stack pointer for the requested security state and thread mode.
6604      * This pointer will become invalid if the CPU state is updated
6605      * such that the stack pointers are switched around (eg changing
6606      * the SPSEL control bit).
6607      * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6608      * Unlike that pseudocode, we require the caller to pass us in the
6609      * SPSEL control bit value; this is because we also use this
6610      * function in handling of pushing of the callee-saves registers
6611      * part of the v8M stack frame (pseudocode PushCalleeStack()),
6612      * and in the tailchain codepath the SPSEL bit comes from the exception
6613      * return magic LR value from the previous exception. The pseudocode
6614      * opencodes the stack-selection in PushCalleeStack(), but we prefer
6615      * to make this utility function generic enough to do the job.
6616      */
6617     bool want_psp = threadmode && spsel;
6618 
6619     if (secure == env->v7m.secure) {
6620         if (want_psp == v7m_using_psp(env)) {
6621             return &env->regs[13];
6622         } else {
6623             return &env->v7m.other_sp;
6624         }
6625     } else {
6626         if (want_psp) {
6627             return &env->v7m.other_ss_psp;
6628         } else {
6629             return &env->v7m.other_ss_msp;
6630         }
6631     }
6632 }
6633 
6634 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
6635                                 uint32_t *pvec)
6636 {
6637     CPUState *cs = CPU(cpu);
6638     CPUARMState *env = &cpu->env;
6639     MemTxResult result;
6640     uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
6641     uint32_t vector_entry;
6642     MemTxAttrs attrs = {};
6643     ARMMMUIdx mmu_idx;
6644     bool exc_secure;
6645 
6646     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
6647 
6648     /* We don't do a get_phys_addr() here because the rules for vector
6649      * loads are special: they always use the default memory map, and
6650      * the default memory map permits reads from all addresses.
6651      * Since there's no easy way to pass through to pmsav8_mpu_lookup()
6652      * that we want this special case which would always say "yes",
6653      * we just do the SAU lookup here followed by a direct physical load.
6654      */
6655     attrs.secure = targets_secure;
6656     attrs.user = false;
6657 
6658     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6659         V8M_SAttributes sattrs = {};
6660 
6661         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
6662         if (sattrs.ns) {
6663             attrs.secure = false;
6664         } else if (!targets_secure) {
6665             /* NS access to S memory */
6666             goto load_fail;
6667         }
6668     }
6669 
6670     vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
6671                                      attrs, &result);
6672     if (result != MEMTX_OK) {
6673         goto load_fail;
6674     }
6675     *pvec = vector_entry;
6676     return true;
6677 
6678 load_fail:
6679     /* All vector table fetch fails are reported as HardFault, with
6680      * HFSR.VECTTBL and .FORCED set. (FORCED is set because
6681      * technically the underlying exception is a MemManage or BusFault
6682      * that is escalated to HardFault.) This is a terminal exception,
6683      * so we will either take the HardFault immediately or else enter
6684      * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
6685      */
6686     exc_secure = targets_secure ||
6687         !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
6688     env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
6689     armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
6690     return false;
6691 }
6692 
6693 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6694                                   bool ignore_faults)
6695 {
6696     /* For v8M, push the callee-saves register part of the stack frame.
6697      * Compare the v8M pseudocode PushCalleeStack().
6698      * In the tailchaining case this may not be the current stack.
6699      */
6700     CPUARMState *env = &cpu->env;
6701     uint32_t *frame_sp_p;
6702     uint32_t frameptr;
6703     ARMMMUIdx mmu_idx;
6704     bool stacked_ok;
6705 
6706     if (dotailchain) {
6707         bool mode = lr & R_V7M_EXCRET_MODE_MASK;
6708         bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
6709             !mode;
6710 
6711         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
6712         frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
6713                                     lr & R_V7M_EXCRET_SPSEL_MASK);
6714     } else {
6715         mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6716         frame_sp_p = &env->regs[13];
6717     }
6718 
6719     frameptr = *frame_sp_p - 0x28;
6720 
6721     /* Write as much of the stack frame as we can. A write failure may
6722      * cause us to pend a derived exception.
6723      */
6724     stacked_ok =
6725         v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
6726         v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
6727                         ignore_faults) &&
6728         v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
6729                         ignore_faults) &&
6730         v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
6731                         ignore_faults) &&
6732         v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
6733                         ignore_faults) &&
6734         v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
6735                         ignore_faults) &&
6736         v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
6737                         ignore_faults) &&
6738         v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
6739                         ignore_faults) &&
6740         v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
6741                         ignore_faults);
6742 
6743     /* Update SP regardless of whether any of the stack accesses failed.
6744      * When we implement v8M stack limit checking then this attempt to
6745      * update SP might also fail and result in a derived exception.
6746      */
6747     *frame_sp_p = frameptr;
6748 
6749     return !stacked_ok;
6750 }
6751 
6752 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6753                                 bool ignore_stackfaults)
6754 {
6755     /* Do the "take the exception" parts of exception entry,
6756      * but not the pushing of state to the stack. This is
6757      * similar to the pseudocode ExceptionTaken() function.
6758      */
6759     CPUARMState *env = &cpu->env;
6760     uint32_t addr;
6761     bool targets_secure;
6762     int exc;
6763     bool push_failed = false;
6764 
6765     armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
6766 
6767     if (arm_feature(env, ARM_FEATURE_V8)) {
6768         if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6769             (lr & R_V7M_EXCRET_S_MASK)) {
6770             /* The background code (the owner of the registers in the
6771              * exception frame) is Secure. This means it may either already
6772              * have or now needs to push callee-saves registers.
6773              */
6774             if (targets_secure) {
6775                 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
6776                     /* We took an exception from Secure to NonSecure
6777                      * (which means the callee-saved registers got stacked)
6778                      * and are now tailchaining to a Secure exception.
6779                      * Clear DCRS so eventual return from this Secure
6780                      * exception unstacks the callee-saved registers.
6781                      */
6782                     lr &= ~R_V7M_EXCRET_DCRS_MASK;
6783                 }
6784             } else {
6785                 /* We're going to a non-secure exception; push the
6786                  * callee-saves registers to the stack now, if they're
6787                  * not already saved.
6788                  */
6789                 if (lr & R_V7M_EXCRET_DCRS_MASK &&
6790                     !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) {
6791                     push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
6792                                                         ignore_stackfaults);
6793                 }
6794                 lr |= R_V7M_EXCRET_DCRS_MASK;
6795             }
6796         }
6797 
6798         lr &= ~R_V7M_EXCRET_ES_MASK;
6799         if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6800             lr |= R_V7M_EXCRET_ES_MASK;
6801         }
6802         lr &= ~R_V7M_EXCRET_SPSEL_MASK;
6803         if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
6804             lr |= R_V7M_EXCRET_SPSEL_MASK;
6805         }
6806 
6807         /* Clear registers if necessary to prevent non-secure exception
6808          * code being able to see register values from secure code.
6809          * Where register values become architecturally UNKNOWN we leave
6810          * them with their previous values.
6811          */
6812         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6813             if (!targets_secure) {
6814                 /* Always clear the caller-saved registers (they have been
6815                  * pushed to the stack earlier in v7m_push_stack()).
6816                  * Clear callee-saved registers if the background code is
6817                  * Secure (in which case these regs were saved in
6818                  * v7m_push_callee_stack()).
6819                  */
6820                 int i;
6821 
6822                 for (i = 0; i < 13; i++) {
6823                     /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
6824                     if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
6825                         env->regs[i] = 0;
6826                     }
6827                 }
6828                 /* Clear EAPSR */
6829                 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
6830             }
6831         }
6832     }
6833 
6834     if (push_failed && !ignore_stackfaults) {
6835         /* Derived exception on callee-saves register stacking:
6836          * we might now want to take a different exception which
6837          * targets a different security state, so try again from the top.
6838          */
6839         v7m_exception_taken(cpu, lr, true, true);
6840         return;
6841     }
6842 
6843     if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
6844         /* Vector load failed: derived exception */
6845         v7m_exception_taken(cpu, lr, true, true);
6846         return;
6847     }
6848 
6849     /* Now we've done everything that might cause a derived exception
6850      * we can go ahead and activate whichever exception we're going to
6851      * take (which might now be the derived exception).
6852      */
6853     armv7m_nvic_acknowledge_irq(env->nvic);
6854 
6855     /* Switch to target security state -- must do this before writing SPSEL */
6856     switch_v7m_security_state(env, targets_secure);
6857     write_v7m_control_spsel(env, 0);
6858     arm_clear_exclusive(env);
6859     /* Clear IT bits */
6860     env->condexec_bits = 0;
6861     env->regs[14] = lr;
6862     env->regs[15] = addr & 0xfffffffe;
6863     env->thumb = addr & 1;
6864 }
6865 
6866 static bool v7m_push_stack(ARMCPU *cpu)
6867 {
6868     /* Do the "set up stack frame" part of exception entry,
6869      * similar to pseudocode PushStack().
6870      * Return true if we generate a derived exception (and so
6871      * should ignore further stack faults trying to process
6872      * that derived exception.)
6873      */
6874     bool stacked_ok;
6875     CPUARMState *env = &cpu->env;
6876     uint32_t xpsr = xpsr_read(env);
6877     uint32_t frameptr = env->regs[13];
6878     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6879 
6880     /* Align stack pointer if the guest wants that */
6881     if ((frameptr & 4) &&
6882         (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6883         frameptr -= 4;
6884         xpsr |= XPSR_SPREALIGN;
6885     }
6886 
6887     frameptr -= 0x20;
6888 
6889     /* Write as much of the stack frame as we can. If we fail a stack
6890      * write this will result in a derived exception being pended
6891      * (which may be taken in preference to the one we started with
6892      * if it has higher priority).
6893      */
6894     stacked_ok =
6895         v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
6896         v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
6897         v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
6898         v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
6899         v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
6900         v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
6901         v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
6902         v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
6903 
6904     /* Update SP regardless of whether any of the stack accesses failed.
6905      * When we implement v8M stack limit checking then this attempt to
6906      * update SP might also fail and result in a derived exception.
6907      */
6908     env->regs[13] = frameptr;
6909 
6910     return !stacked_ok;
6911 }
6912 
6913 static void do_v7m_exception_exit(ARMCPU *cpu)
6914 {
6915     CPUARMState *env = &cpu->env;
6916     CPUState *cs = CPU(cpu);
6917     uint32_t excret;
6918     uint32_t xpsr;
6919     bool ufault = false;
6920     bool sfault = false;
6921     bool return_to_sp_process;
6922     bool return_to_handler;
6923     bool rettobase = false;
6924     bool exc_secure = false;
6925     bool return_to_secure;
6926 
6927     /* If we're not in Handler mode then jumps to magic exception-exit
6928      * addresses don't have magic behaviour. However for the v8M
6929      * security extensions the magic secure-function-return has to
6930      * work in thread mode too, so to avoid doing an extra check in
6931      * the generated code we allow exception-exit magic to also cause the
6932      * internal exception and bring us here in thread mode. Correct code
6933      * will never try to do this (the following insn fetch will always
6934      * fault) so we the overhead of having taken an unnecessary exception
6935      * doesn't matter.
6936      */
6937     if (!arm_v7m_is_handler_mode(env)) {
6938         return;
6939     }
6940 
6941     /* In the spec pseudocode ExceptionReturn() is called directly
6942      * from BXWritePC() and gets the full target PC value including
6943      * bit zero. In QEMU's implementation we treat it as a normal
6944      * jump-to-register (which is then caught later on), and so split
6945      * the target value up between env->regs[15] and env->thumb in
6946      * gen_bx(). Reconstitute it.
6947      */
6948     excret = env->regs[15];
6949     if (env->thumb) {
6950         excret |= 1;
6951     }
6952 
6953     qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6954                   " previous exception %d\n",
6955                   excret, env->v7m.exception);
6956 
6957     if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
6958         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6959                       "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
6960                       excret);
6961     }
6962 
6963     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6964         /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
6965          * we pick which FAULTMASK to clear.
6966          */
6967         if (!env->v7m.secure &&
6968             ((excret & R_V7M_EXCRET_ES_MASK) ||
6969              !(excret & R_V7M_EXCRET_DCRS_MASK))) {
6970             sfault = 1;
6971             /* For all other purposes, treat ES as 0 (R_HXSR) */
6972             excret &= ~R_V7M_EXCRET_ES_MASK;
6973         }
6974     }
6975 
6976     if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6977         /* Auto-clear FAULTMASK on return from other than NMI.
6978          * If the security extension is implemented then this only
6979          * happens if the raw execution priority is >= 0; the
6980          * value of the ES bit in the exception return value indicates
6981          * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
6982          */
6983         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6984             exc_secure = excret & R_V7M_EXCRET_ES_MASK;
6985             if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
6986                 env->v7m.faultmask[exc_secure] = 0;
6987             }
6988         } else {
6989             env->v7m.faultmask[M_REG_NS] = 0;
6990         }
6991     }
6992 
6993     switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
6994                                      exc_secure)) {
6995     case -1:
6996         /* attempt to exit an exception that isn't active */
6997         ufault = true;
6998         break;
6999     case 0:
7000         /* still an irq active now */
7001         break;
7002     case 1:
7003         /* we returned to base exception level, no nesting.
7004          * (In the pseudocode this is written using "NestedActivation != 1"
7005          * where we have 'rettobase == false'.)
7006          */
7007         rettobase = true;
7008         break;
7009     default:
7010         g_assert_not_reached();
7011     }
7012 
7013     return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
7014     return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
7015     return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
7016         (excret & R_V7M_EXCRET_S_MASK);
7017 
7018     if (arm_feature(env, ARM_FEATURE_V8)) {
7019         if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7020             /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
7021              * we choose to take the UsageFault.
7022              */
7023             if ((excret & R_V7M_EXCRET_S_MASK) ||
7024                 (excret & R_V7M_EXCRET_ES_MASK) ||
7025                 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
7026                 ufault = true;
7027             }
7028         }
7029         if (excret & R_V7M_EXCRET_RES0_MASK) {
7030             ufault = true;
7031         }
7032     } else {
7033         /* For v7M we only recognize certain combinations of the low bits */
7034         switch (excret & 0xf) {
7035         case 1: /* Return to Handler */
7036             break;
7037         case 13: /* Return to Thread using Process stack */
7038         case 9: /* Return to Thread using Main stack */
7039             /* We only need to check NONBASETHRDENA for v7M, because in
7040              * v8M this bit does not exist (it is RES1).
7041              */
7042             if (!rettobase &&
7043                 !(env->v7m.ccr[env->v7m.secure] &
7044                   R_V7M_CCR_NONBASETHRDENA_MASK)) {
7045                 ufault = true;
7046             }
7047             break;
7048         default:
7049             ufault = true;
7050         }
7051     }
7052 
7053     if (sfault) {
7054         env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
7055         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7056         v7m_exception_taken(cpu, excret, true, false);
7057         qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7058                       "stackframe: failed EXC_RETURN.ES validity check\n");
7059         return;
7060     }
7061 
7062     if (ufault) {
7063         /* Bad exception return: instead of popping the exception
7064          * stack, directly take a usage fault on the current stack.
7065          */
7066         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7067         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7068         v7m_exception_taken(cpu, excret, true, false);
7069         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7070                       "stackframe: failed exception return integrity check\n");
7071         return;
7072     }
7073 
7074     /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
7075      * Handler mode (and will be until we write the new XPSR.Interrupt
7076      * field) this does not switch around the current stack pointer.
7077      */
7078     write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
7079 
7080     switch_v7m_security_state(env, return_to_secure);
7081 
7082     {
7083         /* The stack pointer we should be reading the exception frame from
7084          * depends on bits in the magic exception return type value (and
7085          * for v8M isn't necessarily the stack pointer we will eventually
7086          * end up resuming execution with). Get a pointer to the location
7087          * in the CPU state struct where the SP we need is currently being
7088          * stored; we will use and modify it in place.
7089          * We use this limited C variable scope so we don't accidentally
7090          * use 'frame_sp_p' after we do something that makes it invalid.
7091          */
7092         uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
7093                                               return_to_secure,
7094                                               !return_to_handler,
7095                                               return_to_sp_process);
7096         uint32_t frameptr = *frame_sp_p;
7097         bool pop_ok = true;
7098         ARMMMUIdx mmu_idx;
7099 
7100         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
7101                                                         !return_to_handler);
7102 
7103         if (!QEMU_IS_ALIGNED(frameptr, 8) &&
7104             arm_feature(env, ARM_FEATURE_V8)) {
7105             qemu_log_mask(LOG_GUEST_ERROR,
7106                           "M profile exception return with non-8-aligned SP "
7107                           "for destination state is UNPREDICTABLE\n");
7108         }
7109 
7110         /* Do we need to pop callee-saved registers? */
7111         if (return_to_secure &&
7112             ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
7113              (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
7114             uint32_t expected_sig = 0xfefa125b;
7115             uint32_t actual_sig = ldl_phys(cs->as, frameptr);
7116 
7117             if (expected_sig != actual_sig) {
7118                 /* Take a SecureFault on the current stack */
7119                 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
7120                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7121                 v7m_exception_taken(cpu, excret, true, false);
7122                 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7123                               "stackframe: failed exception return integrity "
7124                               "signature check\n");
7125                 return;
7126             }
7127 
7128             pop_ok =
7129                 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
7130                 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
7131                 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
7132                 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
7133                 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
7134                 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
7135                 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
7136                 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
7137                 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
7138 
7139             frameptr += 0x28;
7140         }
7141 
7142         /* Pop registers */
7143         pop_ok = pop_ok &&
7144             v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
7145             v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
7146             v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
7147             v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
7148             v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
7149             v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
7150             v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
7151             v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
7152 
7153         if (!pop_ok) {
7154             /* v7m_stack_read() pended a fault, so take it (as a tail
7155              * chained exception on the same stack frame)
7156              */
7157             v7m_exception_taken(cpu, excret, true, false);
7158             return;
7159         }
7160 
7161         /* Returning from an exception with a PC with bit 0 set is defined
7162          * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
7163          * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
7164          * the lsbit, and there are several RTOSes out there which incorrectly
7165          * assume the r15 in the stack frame should be a Thumb-style "lsbit
7166          * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
7167          * complain about the badly behaved guest.
7168          */
7169         if (env->regs[15] & 1) {
7170             env->regs[15] &= ~1U;
7171             if (!arm_feature(env, ARM_FEATURE_V8)) {
7172                 qemu_log_mask(LOG_GUEST_ERROR,
7173                               "M profile return from interrupt with misaligned "
7174                               "PC is UNPREDICTABLE on v7M\n");
7175             }
7176         }
7177 
7178         if (arm_feature(env, ARM_FEATURE_V8)) {
7179             /* For v8M we have to check whether the xPSR exception field
7180              * matches the EXCRET value for return to handler/thread
7181              * before we commit to changing the SP and xPSR.
7182              */
7183             bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
7184             if (return_to_handler != will_be_handler) {
7185                 /* Take an INVPC UsageFault on the current stack.
7186                  * By this point we will have switched to the security state
7187                  * for the background state, so this UsageFault will target
7188                  * that state.
7189                  */
7190                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7191                                         env->v7m.secure);
7192                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7193                 v7m_exception_taken(cpu, excret, true, false);
7194                 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7195                               "stackframe: failed exception return integrity "
7196                               "check\n");
7197                 return;
7198             }
7199         }
7200 
7201         /* Commit to consuming the stack frame */
7202         frameptr += 0x20;
7203         /* Undo stack alignment (the SPREALIGN bit indicates that the original
7204          * pre-exception SP was not 8-aligned and we added a padding word to
7205          * align it, so we undo this by ORing in the bit that increases it
7206          * from the current 8-aligned value to the 8-unaligned value. (Adding 4
7207          * would work too but a logical OR is how the pseudocode specifies it.)
7208          */
7209         if (xpsr & XPSR_SPREALIGN) {
7210             frameptr |= 4;
7211         }
7212         *frame_sp_p = frameptr;
7213     }
7214     /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
7215     xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
7216 
7217     /* The restored xPSR exception field will be zero if we're
7218      * resuming in Thread mode. If that doesn't match what the
7219      * exception return excret specified then this is a UsageFault.
7220      * v7M requires we make this check here; v8M did it earlier.
7221      */
7222     if (return_to_handler != arm_v7m_is_handler_mode(env)) {
7223         /* Take an INVPC UsageFault by pushing the stack again;
7224          * we know we're v7M so this is never a Secure UsageFault.
7225          */
7226         bool ignore_stackfaults;
7227 
7228         assert(!arm_feature(env, ARM_FEATURE_V8));
7229         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
7230         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7231         ignore_stackfaults = v7m_push_stack(cpu);
7232         v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
7233         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
7234                       "failed exception return integrity check\n");
7235         return;
7236     }
7237 
7238     /* Otherwise, we have a successful exception exit. */
7239     arm_clear_exclusive(env);
7240     qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
7241 }
7242 
7243 static bool do_v7m_function_return(ARMCPU *cpu)
7244 {
7245     /* v8M security extensions magic function return.
7246      * We may either:
7247      *  (1) throw an exception (longjump)
7248      *  (2) return true if we successfully handled the function return
7249      *  (3) return false if we failed a consistency check and have
7250      *      pended a UsageFault that needs to be taken now
7251      *
7252      * At this point the magic return value is split between env->regs[15]
7253      * and env->thumb. We don't bother to reconstitute it because we don't
7254      * need it (all values are handled the same way).
7255      */
7256     CPUARMState *env = &cpu->env;
7257     uint32_t newpc, newpsr, newpsr_exc;
7258 
7259     qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
7260 
7261     {
7262         bool threadmode, spsel;
7263         TCGMemOpIdx oi;
7264         ARMMMUIdx mmu_idx;
7265         uint32_t *frame_sp_p;
7266         uint32_t frameptr;
7267 
7268         /* Pull the return address and IPSR from the Secure stack */
7269         threadmode = !arm_v7m_is_handler_mode(env);
7270         spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
7271 
7272         frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
7273         frameptr = *frame_sp_p;
7274 
7275         /* These loads may throw an exception (for MPU faults). We want to
7276          * do them as secure, so work out what MMU index that is.
7277          */
7278         mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7279         oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
7280         newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
7281         newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
7282 
7283         /* Consistency checks on new IPSR */
7284         newpsr_exc = newpsr & XPSR_EXCP;
7285         if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
7286               (env->v7m.exception == 1 && newpsr_exc != 0))) {
7287             /* Pend the fault and tell our caller to take it */
7288             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7289             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7290                                     env->v7m.secure);
7291             qemu_log_mask(CPU_LOG_INT,
7292                           "...taking INVPC UsageFault: "
7293                           "IPSR consistency check failed\n");
7294             return false;
7295         }
7296 
7297         *frame_sp_p = frameptr + 8;
7298     }
7299 
7300     /* This invalidates frame_sp_p */
7301     switch_v7m_security_state(env, true);
7302     env->v7m.exception = newpsr_exc;
7303     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
7304     if (newpsr & XPSR_SFPA) {
7305         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
7306     }
7307     xpsr_write(env, 0, XPSR_IT);
7308     env->thumb = newpc & 1;
7309     env->regs[15] = newpc & ~1;
7310 
7311     qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
7312     return true;
7313 }
7314 
7315 static void arm_log_exception(int idx)
7316 {
7317     if (qemu_loglevel_mask(CPU_LOG_INT)) {
7318         const char *exc = NULL;
7319         static const char * const excnames[] = {
7320             [EXCP_UDEF] = "Undefined Instruction",
7321             [EXCP_SWI] = "SVC",
7322             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7323             [EXCP_DATA_ABORT] = "Data Abort",
7324             [EXCP_IRQ] = "IRQ",
7325             [EXCP_FIQ] = "FIQ",
7326             [EXCP_BKPT] = "Breakpoint",
7327             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7328             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7329             [EXCP_HVC] = "Hypervisor Call",
7330             [EXCP_HYP_TRAP] = "Hypervisor Trap",
7331             [EXCP_SMC] = "Secure Monitor Call",
7332             [EXCP_VIRQ] = "Virtual IRQ",
7333             [EXCP_VFIQ] = "Virtual FIQ",
7334             [EXCP_SEMIHOST] = "Semihosting call",
7335             [EXCP_NOCP] = "v7M NOCP UsageFault",
7336             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7337         };
7338 
7339         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
7340             exc = excnames[idx];
7341         }
7342         if (!exc) {
7343             exc = "unknown";
7344         }
7345         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
7346     }
7347 }
7348 
7349 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
7350                                uint32_t addr, uint16_t *insn)
7351 {
7352     /* Load a 16-bit portion of a v7M instruction, returning true on success,
7353      * or false on failure (in which case we will have pended the appropriate
7354      * exception).
7355      * We need to do the instruction fetch's MPU and SAU checks
7356      * like this because there is no MMU index that would allow
7357      * doing the load with a single function call. Instead we must
7358      * first check that the security attributes permit the load
7359      * and that they don't mismatch on the two halves of the instruction,
7360      * and then we do the load as a secure load (ie using the security
7361      * attributes of the address, not the CPU, as architecturally required).
7362      */
7363     CPUState *cs = CPU(cpu);
7364     CPUARMState *env = &cpu->env;
7365     V8M_SAttributes sattrs = {};
7366     MemTxAttrs attrs = {};
7367     ARMMMUFaultInfo fi = {};
7368     MemTxResult txres;
7369     target_ulong page_size;
7370     hwaddr physaddr;
7371     int prot;
7372 
7373     v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
7374     if (!sattrs.nsc || sattrs.ns) {
7375         /* This must be the second half of the insn, and it straddles a
7376          * region boundary with the second half not being S&NSC.
7377          */
7378         env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7379         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7380         qemu_log_mask(CPU_LOG_INT,
7381                       "...really SecureFault with SFSR.INVEP\n");
7382         return false;
7383     }
7384     if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
7385                       &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
7386         /* the MPU lookup failed */
7387         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7388         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
7389         qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
7390         return false;
7391     }
7392     *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
7393                                  attrs, &txres);
7394     if (txres != MEMTX_OK) {
7395         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7396         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7397         qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
7398         return false;
7399     }
7400     return true;
7401 }
7402 
7403 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
7404 {
7405     /* Check whether this attempt to execute code in a Secure & NS-Callable
7406      * memory region is for an SG instruction; if so, then emulate the
7407      * effect of the SG instruction and return true. Otherwise pend
7408      * the correct kind of exception and return false.
7409      */
7410     CPUARMState *env = &cpu->env;
7411     ARMMMUIdx mmu_idx;
7412     uint16_t insn;
7413 
7414     /* We should never get here unless get_phys_addr_pmsav8() caused
7415      * an exception for NS executing in S&NSC memory.
7416      */
7417     assert(!env->v7m.secure);
7418     assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7419 
7420     /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
7421     mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7422 
7423     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
7424         return false;
7425     }
7426 
7427     if (!env->thumb) {
7428         goto gen_invep;
7429     }
7430 
7431     if (insn != 0xe97f) {
7432         /* Not an SG instruction first half (we choose the IMPDEF
7433          * early-SG-check option).
7434          */
7435         goto gen_invep;
7436     }
7437 
7438     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
7439         return false;
7440     }
7441 
7442     if (insn != 0xe97f) {
7443         /* Not an SG instruction second half (yes, both halves of the SG
7444          * insn have the same hex value)
7445          */
7446         goto gen_invep;
7447     }
7448 
7449     /* OK, we have confirmed that we really have an SG instruction.
7450      * We know we're NS in S memory so don't need to repeat those checks.
7451      */
7452     qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
7453                   ", executing it\n", env->regs[15]);
7454     env->regs[14] &= ~1;
7455     switch_v7m_security_state(env, true);
7456     xpsr_write(env, 0, XPSR_IT);
7457     env->regs[15] += 4;
7458     return true;
7459 
7460 gen_invep:
7461     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7462     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7463     qemu_log_mask(CPU_LOG_INT,
7464                   "...really SecureFault with SFSR.INVEP\n");
7465     return false;
7466 }
7467 
7468 void arm_v7m_cpu_do_interrupt(CPUState *cs)
7469 {
7470     ARMCPU *cpu = ARM_CPU(cs);
7471     CPUARMState *env = &cpu->env;
7472     uint32_t lr;
7473     bool ignore_stackfaults;
7474 
7475     arm_log_exception(cs->exception_index);
7476 
7477     /* For exceptions we just mark as pending on the NVIC, and let that
7478        handle it.  */
7479     switch (cs->exception_index) {
7480     case EXCP_UDEF:
7481         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7482         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
7483         break;
7484     case EXCP_NOCP:
7485         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7486         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
7487         break;
7488     case EXCP_INVSTATE:
7489         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7490         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
7491         break;
7492     case EXCP_SWI:
7493         /* The PC already points to the next instruction.  */
7494         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
7495         break;
7496     case EXCP_PREFETCH_ABORT:
7497     case EXCP_DATA_ABORT:
7498         /* Note that for M profile we don't have a guest facing FSR, but
7499          * the env->exception.fsr will be populated by the code that
7500          * raises the fault, in the A profile short-descriptor format.
7501          */
7502         switch (env->exception.fsr & 0xf) {
7503         case M_FAKE_FSR_NSC_EXEC:
7504             /* Exception generated when we try to execute code at an address
7505              * which is marked as Secure & Non-Secure Callable and the CPU
7506              * is in the Non-Secure state. The only instruction which can
7507              * be executed like this is SG (and that only if both halves of
7508              * the SG instruction have the same security attributes.)
7509              * Everything else must generate an INVEP SecureFault, so we
7510              * emulate the SG instruction here.
7511              */
7512             if (v7m_handle_execute_nsc(cpu)) {
7513                 return;
7514             }
7515             break;
7516         case M_FAKE_FSR_SFAULT:
7517             /* Various flavours of SecureFault for attempts to execute or
7518              * access data in the wrong security state.
7519              */
7520             switch (cs->exception_index) {
7521             case EXCP_PREFETCH_ABORT:
7522                 if (env->v7m.secure) {
7523                     env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
7524                     qemu_log_mask(CPU_LOG_INT,
7525                                   "...really SecureFault with SFSR.INVTRAN\n");
7526                 } else {
7527                     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7528                     qemu_log_mask(CPU_LOG_INT,
7529                                   "...really SecureFault with SFSR.INVEP\n");
7530                 }
7531                 break;
7532             case EXCP_DATA_ABORT:
7533                 /* This must be an NS access to S memory */
7534                 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7535                 qemu_log_mask(CPU_LOG_INT,
7536                               "...really SecureFault with SFSR.AUVIOL\n");
7537                 break;
7538             }
7539             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7540             break;
7541         case 0x8: /* External Abort */
7542             switch (cs->exception_index) {
7543             case EXCP_PREFETCH_ABORT:
7544                 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7545                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
7546                 break;
7547             case EXCP_DATA_ABORT:
7548                 env->v7m.cfsr[M_REG_NS] |=
7549                     (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
7550                 env->v7m.bfar = env->exception.vaddress;
7551                 qemu_log_mask(CPU_LOG_INT,
7552                               "...with CFSR.PRECISERR and BFAR 0x%x\n",
7553                               env->v7m.bfar);
7554                 break;
7555             }
7556             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7557             break;
7558         default:
7559             /* All other FSR values are either MPU faults or "can't happen
7560              * for M profile" cases.
7561              */
7562             switch (cs->exception_index) {
7563             case EXCP_PREFETCH_ABORT:
7564                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7565                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
7566                 break;
7567             case EXCP_DATA_ABORT:
7568                 env->v7m.cfsr[env->v7m.secure] |=
7569                     (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
7570                 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
7571                 qemu_log_mask(CPU_LOG_INT,
7572                               "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
7573                               env->v7m.mmfar[env->v7m.secure]);
7574                 break;
7575             }
7576             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
7577                                     env->v7m.secure);
7578             break;
7579         }
7580         break;
7581     case EXCP_BKPT:
7582         if (semihosting_enabled()) {
7583             int nr;
7584             nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
7585             if (nr == 0xab) {
7586                 env->regs[15] += 2;
7587                 qemu_log_mask(CPU_LOG_INT,
7588                               "...handling as semihosting call 0x%x\n",
7589                               env->regs[0]);
7590                 env->regs[0] = do_arm_semihosting(env);
7591                 return;
7592             }
7593         }
7594         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
7595         break;
7596     case EXCP_IRQ:
7597         break;
7598     case EXCP_EXCEPTION_EXIT:
7599         if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
7600             /* Must be v8M security extension function return */
7601             assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
7602             assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7603             if (do_v7m_function_return(cpu)) {
7604                 return;
7605             }
7606         } else {
7607             do_v7m_exception_exit(cpu);
7608             return;
7609         }
7610         break;
7611     default:
7612         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7613         return; /* Never happens.  Keep compiler happy.  */
7614     }
7615 
7616     if (arm_feature(env, ARM_FEATURE_V8)) {
7617         lr = R_V7M_EXCRET_RES1_MASK |
7618             R_V7M_EXCRET_DCRS_MASK |
7619             R_V7M_EXCRET_FTYPE_MASK;
7620         /* The S bit indicates whether we should return to Secure
7621          * or NonSecure (ie our current state).
7622          * The ES bit indicates whether we're taking this exception
7623          * to Secure or NonSecure (ie our target state). We set it
7624          * later, in v7m_exception_taken().
7625          * The SPSEL bit is also set in v7m_exception_taken() for v8M.
7626          * This corresponds to the ARM ARM pseudocode for v8M setting
7627          * some LR bits in PushStack() and some in ExceptionTaken();
7628          * the distinction matters for the tailchain cases where we
7629          * can take an exception without pushing the stack.
7630          */
7631         if (env->v7m.secure) {
7632             lr |= R_V7M_EXCRET_S_MASK;
7633         }
7634     } else {
7635         lr = R_V7M_EXCRET_RES1_MASK |
7636             R_V7M_EXCRET_S_MASK |
7637             R_V7M_EXCRET_DCRS_MASK |
7638             R_V7M_EXCRET_FTYPE_MASK |
7639             R_V7M_EXCRET_ES_MASK;
7640         if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
7641             lr |= R_V7M_EXCRET_SPSEL_MASK;
7642         }
7643     }
7644     if (!arm_v7m_is_handler_mode(env)) {
7645         lr |= R_V7M_EXCRET_MODE_MASK;
7646     }
7647 
7648     ignore_stackfaults = v7m_push_stack(cpu);
7649     v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
7650     qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
7651 }
7652 
7653 /* Function used to synchronize QEMU's AArch64 register set with AArch32
7654  * register set.  This is necessary when switching between AArch32 and AArch64
7655  * execution state.
7656  */
7657 void aarch64_sync_32_to_64(CPUARMState *env)
7658 {
7659     int i;
7660     uint32_t mode = env->uncached_cpsr & CPSR_M;
7661 
7662     /* We can blanket copy R[0:7] to X[0:7] */
7663     for (i = 0; i < 8; i++) {
7664         env->xregs[i] = env->regs[i];
7665     }
7666 
7667     /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7668      * Otherwise, they come from the banked user regs.
7669      */
7670     if (mode == ARM_CPU_MODE_FIQ) {
7671         for (i = 8; i < 13; i++) {
7672             env->xregs[i] = env->usr_regs[i - 8];
7673         }
7674     } else {
7675         for (i = 8; i < 13; i++) {
7676             env->xregs[i] = env->regs[i];
7677         }
7678     }
7679 
7680     /* Registers x13-x23 are the various mode SP and FP registers. Registers
7681      * r13 and r14 are only copied if we are in that mode, otherwise we copy
7682      * from the mode banked register.
7683      */
7684     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7685         env->xregs[13] = env->regs[13];
7686         env->xregs[14] = env->regs[14];
7687     } else {
7688         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7689         /* HYP is an exception in that it is copied from r14 */
7690         if (mode == ARM_CPU_MODE_HYP) {
7691             env->xregs[14] = env->regs[14];
7692         } else {
7693             env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
7694         }
7695     }
7696 
7697     if (mode == ARM_CPU_MODE_HYP) {
7698         env->xregs[15] = env->regs[13];
7699     } else {
7700         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7701     }
7702 
7703     if (mode == ARM_CPU_MODE_IRQ) {
7704         env->xregs[16] = env->regs[14];
7705         env->xregs[17] = env->regs[13];
7706     } else {
7707         env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
7708         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7709     }
7710 
7711     if (mode == ARM_CPU_MODE_SVC) {
7712         env->xregs[18] = env->regs[14];
7713         env->xregs[19] = env->regs[13];
7714     } else {
7715         env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
7716         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7717     }
7718 
7719     if (mode == ARM_CPU_MODE_ABT) {
7720         env->xregs[20] = env->regs[14];
7721         env->xregs[21] = env->regs[13];
7722     } else {
7723         env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
7724         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7725     }
7726 
7727     if (mode == ARM_CPU_MODE_UND) {
7728         env->xregs[22] = env->regs[14];
7729         env->xregs[23] = env->regs[13];
7730     } else {
7731         env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
7732         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7733     }
7734 
7735     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7736      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
7737      * FIQ bank for r8-r14.
7738      */
7739     if (mode == ARM_CPU_MODE_FIQ) {
7740         for (i = 24; i < 31; i++) {
7741             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
7742         }
7743     } else {
7744         for (i = 24; i < 29; i++) {
7745             env->xregs[i] = env->fiq_regs[i - 24];
7746         }
7747         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7748         env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
7749     }
7750 
7751     env->pc = env->regs[15];
7752 }
7753 
7754 /* Function used to synchronize QEMU's AArch32 register set with AArch64
7755  * register set.  This is necessary when switching between AArch32 and AArch64
7756  * execution state.
7757  */
7758 void aarch64_sync_64_to_32(CPUARMState *env)
7759 {
7760     int i;
7761     uint32_t mode = env->uncached_cpsr & CPSR_M;
7762 
7763     /* We can blanket copy X[0:7] to R[0:7] */
7764     for (i = 0; i < 8; i++) {
7765         env->regs[i] = env->xregs[i];
7766     }
7767 
7768     /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7769      * Otherwise, we copy x8-x12 into the banked user regs.
7770      */
7771     if (mode == ARM_CPU_MODE_FIQ) {
7772         for (i = 8; i < 13; i++) {
7773             env->usr_regs[i - 8] = env->xregs[i];
7774         }
7775     } else {
7776         for (i = 8; i < 13; i++) {
7777             env->regs[i] = env->xregs[i];
7778         }
7779     }
7780 
7781     /* Registers r13 & r14 depend on the current mode.
7782      * If we are in a given mode, we copy the corresponding x registers to r13
7783      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
7784      * for the mode.
7785      */
7786     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7787         env->regs[13] = env->xregs[13];
7788         env->regs[14] = env->xregs[14];
7789     } else {
7790         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7791 
7792         /* HYP is an exception in that it does not have its own banked r14 but
7793          * shares the USR r14
7794          */
7795         if (mode == ARM_CPU_MODE_HYP) {
7796             env->regs[14] = env->xregs[14];
7797         } else {
7798             env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7799         }
7800     }
7801 
7802     if (mode == ARM_CPU_MODE_HYP) {
7803         env->regs[13] = env->xregs[15];
7804     } else {
7805         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7806     }
7807 
7808     if (mode == ARM_CPU_MODE_IRQ) {
7809         env->regs[14] = env->xregs[16];
7810         env->regs[13] = env->xregs[17];
7811     } else {
7812         env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7813         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7814     }
7815 
7816     if (mode == ARM_CPU_MODE_SVC) {
7817         env->regs[14] = env->xregs[18];
7818         env->regs[13] = env->xregs[19];
7819     } else {
7820         env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7821         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7822     }
7823 
7824     if (mode == ARM_CPU_MODE_ABT) {
7825         env->regs[14] = env->xregs[20];
7826         env->regs[13] = env->xregs[21];
7827     } else {
7828         env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7829         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7830     }
7831 
7832     if (mode == ARM_CPU_MODE_UND) {
7833         env->regs[14] = env->xregs[22];
7834         env->regs[13] = env->xregs[23];
7835     } else {
7836         env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7837         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7838     }
7839 
7840     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7841      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
7842      * FIQ bank for r8-r14.
7843      */
7844     if (mode == ARM_CPU_MODE_FIQ) {
7845         for (i = 24; i < 31; i++) {
7846             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
7847         }
7848     } else {
7849         for (i = 24; i < 29; i++) {
7850             env->fiq_regs[i - 24] = env->xregs[i];
7851         }
7852         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7853         env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7854     }
7855 
7856     env->regs[15] = env->pc;
7857 }
7858 
7859 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
7860 {
7861     ARMCPU *cpu = ARM_CPU(cs);
7862     CPUARMState *env = &cpu->env;
7863     uint32_t addr;
7864     uint32_t mask;
7865     int new_mode;
7866     uint32_t offset;
7867     uint32_t moe;
7868 
7869     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
7870     switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
7871     case EC_BREAKPOINT:
7872     case EC_BREAKPOINT_SAME_EL:
7873         moe = 1;
7874         break;
7875     case EC_WATCHPOINT:
7876     case EC_WATCHPOINT_SAME_EL:
7877         moe = 10;
7878         break;
7879     case EC_AA32_BKPT:
7880         moe = 3;
7881         break;
7882     case EC_VECTORCATCH:
7883         moe = 5;
7884         break;
7885     default:
7886         moe = 0;
7887         break;
7888     }
7889 
7890     if (moe) {
7891         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
7892     }
7893 
7894     /* TODO: Vectored interrupt controller.  */
7895     switch (cs->exception_index) {
7896     case EXCP_UDEF:
7897         new_mode = ARM_CPU_MODE_UND;
7898         addr = 0x04;
7899         mask = CPSR_I;
7900         if (env->thumb)
7901             offset = 2;
7902         else
7903             offset = 4;
7904         break;
7905     case EXCP_SWI:
7906         new_mode = ARM_CPU_MODE_SVC;
7907         addr = 0x08;
7908         mask = CPSR_I;
7909         /* The PC already points to the next instruction.  */
7910         offset = 0;
7911         break;
7912     case EXCP_BKPT:
7913         env->exception.fsr = 2;
7914         /* Fall through to prefetch abort.  */
7915     case EXCP_PREFETCH_ABORT:
7916         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
7917         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
7918         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
7919                       env->exception.fsr, (uint32_t)env->exception.vaddress);
7920         new_mode = ARM_CPU_MODE_ABT;
7921         addr = 0x0c;
7922         mask = CPSR_A | CPSR_I;
7923         offset = 4;
7924         break;
7925     case EXCP_DATA_ABORT:
7926         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
7927         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
7928         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
7929                       env->exception.fsr,
7930                       (uint32_t)env->exception.vaddress);
7931         new_mode = ARM_CPU_MODE_ABT;
7932         addr = 0x10;
7933         mask = CPSR_A | CPSR_I;
7934         offset = 8;
7935         break;
7936     case EXCP_IRQ:
7937         new_mode = ARM_CPU_MODE_IRQ;
7938         addr = 0x18;
7939         /* Disable IRQ and imprecise data aborts.  */
7940         mask = CPSR_A | CPSR_I;
7941         offset = 4;
7942         if (env->cp15.scr_el3 & SCR_IRQ) {
7943             /* IRQ routed to monitor mode */
7944             new_mode = ARM_CPU_MODE_MON;
7945             mask |= CPSR_F;
7946         }
7947         break;
7948     case EXCP_FIQ:
7949         new_mode = ARM_CPU_MODE_FIQ;
7950         addr = 0x1c;
7951         /* Disable FIQ, IRQ and imprecise data aborts.  */
7952         mask = CPSR_A | CPSR_I | CPSR_F;
7953         if (env->cp15.scr_el3 & SCR_FIQ) {
7954             /* FIQ routed to monitor mode */
7955             new_mode = ARM_CPU_MODE_MON;
7956         }
7957         offset = 4;
7958         break;
7959     case EXCP_VIRQ:
7960         new_mode = ARM_CPU_MODE_IRQ;
7961         addr = 0x18;
7962         /* Disable IRQ and imprecise data aborts.  */
7963         mask = CPSR_A | CPSR_I;
7964         offset = 4;
7965         break;
7966     case EXCP_VFIQ:
7967         new_mode = ARM_CPU_MODE_FIQ;
7968         addr = 0x1c;
7969         /* Disable FIQ, IRQ and imprecise data aborts.  */
7970         mask = CPSR_A | CPSR_I | CPSR_F;
7971         offset = 4;
7972         break;
7973     case EXCP_SMC:
7974         new_mode = ARM_CPU_MODE_MON;
7975         addr = 0x08;
7976         mask = CPSR_A | CPSR_I | CPSR_F;
7977         offset = 0;
7978         break;
7979     default:
7980         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7981         return; /* Never happens.  Keep compiler happy.  */
7982     }
7983 
7984     if (new_mode == ARM_CPU_MODE_MON) {
7985         addr += env->cp15.mvbar;
7986     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
7987         /* High vectors. When enabled, base address cannot be remapped. */
7988         addr += 0xffff0000;
7989     } else {
7990         /* ARM v7 architectures provide a vector base address register to remap
7991          * the interrupt vector table.
7992          * This register is only followed in non-monitor mode, and is banked.
7993          * Note: only bits 31:5 are valid.
7994          */
7995         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
7996     }
7997 
7998     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
7999         env->cp15.scr_el3 &= ~SCR_NS;
8000     }
8001 
8002     switch_mode (env, new_mode);
8003     /* For exceptions taken to AArch32 we must clear the SS bit in both
8004      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8005      */
8006     env->uncached_cpsr &= ~PSTATE_SS;
8007     env->spsr = cpsr_read(env);
8008     /* Clear IT bits.  */
8009     env->condexec_bits = 0;
8010     /* Switch to the new mode, and to the correct instruction set.  */
8011     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8012     /* Set new mode endianness */
8013     env->uncached_cpsr &= ~CPSR_E;
8014     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
8015         env->uncached_cpsr |= CPSR_E;
8016     }
8017     env->daif |= mask;
8018     /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
8019      * and we should just guard the thumb mode on V4 */
8020     if (arm_feature(env, ARM_FEATURE_V4T)) {
8021         env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8022     }
8023     env->regs[14] = env->regs[15] + offset;
8024     env->regs[15] = addr;
8025 }
8026 
8027 /* Handle exception entry to a target EL which is using AArch64 */
8028 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8029 {
8030     ARMCPU *cpu = ARM_CPU(cs);
8031     CPUARMState *env = &cpu->env;
8032     unsigned int new_el = env->exception.target_el;
8033     target_ulong addr = env->cp15.vbar_el[new_el];
8034     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
8035 
8036     if (arm_current_el(env) < new_el) {
8037         /* Entry vector offset depends on whether the implemented EL
8038          * immediately lower than the target level is using AArch32 or AArch64
8039          */
8040         bool is_aa64;
8041 
8042         switch (new_el) {
8043         case 3:
8044             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
8045             break;
8046         case 2:
8047             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
8048             break;
8049         case 1:
8050             is_aa64 = is_a64(env);
8051             break;
8052         default:
8053             g_assert_not_reached();
8054         }
8055 
8056         if (is_aa64) {
8057             addr += 0x400;
8058         } else {
8059             addr += 0x600;
8060         }
8061     } else if (pstate_read(env) & PSTATE_SP) {
8062         addr += 0x200;
8063     }
8064 
8065     switch (cs->exception_index) {
8066     case EXCP_PREFETCH_ABORT:
8067     case EXCP_DATA_ABORT:
8068         env->cp15.far_el[new_el] = env->exception.vaddress;
8069         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8070                       env->cp15.far_el[new_el]);
8071         /* fall through */
8072     case EXCP_BKPT:
8073     case EXCP_UDEF:
8074     case EXCP_SWI:
8075     case EXCP_HVC:
8076     case EXCP_HYP_TRAP:
8077     case EXCP_SMC:
8078         env->cp15.esr_el[new_el] = env->exception.syndrome;
8079         break;
8080     case EXCP_IRQ:
8081     case EXCP_VIRQ:
8082         addr += 0x80;
8083         break;
8084     case EXCP_FIQ:
8085     case EXCP_VFIQ:
8086         addr += 0x100;
8087         break;
8088     case EXCP_SEMIHOST:
8089         qemu_log_mask(CPU_LOG_INT,
8090                       "...handling as semihosting call 0x%" PRIx64 "\n",
8091                       env->xregs[0]);
8092         env->xregs[0] = do_arm_semihosting(env);
8093         return;
8094     default:
8095         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8096     }
8097 
8098     if (is_a64(env)) {
8099         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
8100         aarch64_save_sp(env, arm_current_el(env));
8101         env->elr_el[new_el] = env->pc;
8102     } else {
8103         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
8104         env->elr_el[new_el] = env->regs[15];
8105 
8106         aarch64_sync_32_to_64(env);
8107 
8108         env->condexec_bits = 0;
8109     }
8110     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
8111                   env->elr_el[new_el]);
8112 
8113     pstate_write(env, PSTATE_DAIF | new_mode);
8114     env->aarch64 = 1;
8115     aarch64_restore_sp(env, new_el);
8116 
8117     env->pc = addr;
8118 
8119     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
8120                   new_el, env->pc, pstate_read(env));
8121 }
8122 
8123 static inline bool check_for_semihosting(CPUState *cs)
8124 {
8125     /* Check whether this exception is a semihosting call; if so
8126      * then handle it and return true; otherwise return false.
8127      */
8128     ARMCPU *cpu = ARM_CPU(cs);
8129     CPUARMState *env = &cpu->env;
8130 
8131     if (is_a64(env)) {
8132         if (cs->exception_index == EXCP_SEMIHOST) {
8133             /* This is always the 64-bit semihosting exception.
8134              * The "is this usermode" and "is semihosting enabled"
8135              * checks have been done at translate time.
8136              */
8137             qemu_log_mask(CPU_LOG_INT,
8138                           "...handling as semihosting call 0x%" PRIx64 "\n",
8139                           env->xregs[0]);
8140             env->xregs[0] = do_arm_semihosting(env);
8141             return true;
8142         }
8143         return false;
8144     } else {
8145         uint32_t imm;
8146 
8147         /* Only intercept calls from privileged modes, to provide some
8148          * semblance of security.
8149          */
8150         if (cs->exception_index != EXCP_SEMIHOST &&
8151             (!semihosting_enabled() ||
8152              ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
8153             return false;
8154         }
8155 
8156         switch (cs->exception_index) {
8157         case EXCP_SEMIHOST:
8158             /* This is always a semihosting call; the "is this usermode"
8159              * and "is semihosting enabled" checks have been done at
8160              * translate time.
8161              */
8162             break;
8163         case EXCP_SWI:
8164             /* Check for semihosting interrupt.  */
8165             if (env->thumb) {
8166                 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
8167                     & 0xff;
8168                 if (imm == 0xab) {
8169                     break;
8170                 }
8171             } else {
8172                 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
8173                     & 0xffffff;
8174                 if (imm == 0x123456) {
8175                     break;
8176                 }
8177             }
8178             return false;
8179         case EXCP_BKPT:
8180             /* See if this is a semihosting syscall.  */
8181             if (env->thumb) {
8182                 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
8183                     & 0xff;
8184                 if (imm == 0xab) {
8185                     env->regs[15] += 2;
8186                     break;
8187                 }
8188             }
8189             return false;
8190         default:
8191             return false;
8192         }
8193 
8194         qemu_log_mask(CPU_LOG_INT,
8195                       "...handling as semihosting call 0x%x\n",
8196                       env->regs[0]);
8197         env->regs[0] = do_arm_semihosting(env);
8198         return true;
8199     }
8200 }
8201 
8202 /* Handle a CPU exception for A and R profile CPUs.
8203  * Do any appropriate logging, handle PSCI calls, and then hand off
8204  * to the AArch64-entry or AArch32-entry function depending on the
8205  * target exception level's register width.
8206  */
8207 void arm_cpu_do_interrupt(CPUState *cs)
8208 {
8209     ARMCPU *cpu = ARM_CPU(cs);
8210     CPUARMState *env = &cpu->env;
8211     unsigned int new_el = env->exception.target_el;
8212 
8213     assert(!arm_feature(env, ARM_FEATURE_M));
8214 
8215     arm_log_exception(cs->exception_index);
8216     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
8217                   new_el);
8218     if (qemu_loglevel_mask(CPU_LOG_INT)
8219         && !excp_is_internal(cs->exception_index)) {
8220         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8221                       env->exception.syndrome >> ARM_EL_EC_SHIFT,
8222                       env->exception.syndrome);
8223     }
8224 
8225     if (arm_is_psci_call(cpu, cs->exception_index)) {
8226         arm_handle_psci_call(cpu);
8227         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
8228         return;
8229     }
8230 
8231     /* Semihosting semantics depend on the register width of the
8232      * code that caused the exception, not the target exception level,
8233      * so must be handled here.
8234      */
8235     if (check_for_semihosting(cs)) {
8236         return;
8237     }
8238 
8239     assert(!excp_is_internal(cs->exception_index));
8240     if (arm_el_is_aa64(env, new_el)) {
8241         arm_cpu_do_interrupt_aarch64(cs);
8242     } else {
8243         arm_cpu_do_interrupt_aarch32(cs);
8244     }
8245 
8246     /* Hooks may change global state so BQL should be held, also the
8247      * BQL needs to be held for any modification of
8248      * cs->interrupt_request.
8249      */
8250     g_assert(qemu_mutex_iothread_locked());
8251 
8252     arm_call_el_change_hook(cpu);
8253 
8254     if (!kvm_enabled()) {
8255         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
8256     }
8257 }
8258 
8259 /* Return the exception level which controls this address translation regime */
8260 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
8261 {
8262     switch (mmu_idx) {
8263     case ARMMMUIdx_S2NS:
8264     case ARMMMUIdx_S1E2:
8265         return 2;
8266     case ARMMMUIdx_S1E3:
8267         return 3;
8268     case ARMMMUIdx_S1SE0:
8269         return arm_el_is_aa64(env, 3) ? 1 : 3;
8270     case ARMMMUIdx_S1SE1:
8271     case ARMMMUIdx_S1NSE0:
8272     case ARMMMUIdx_S1NSE1:
8273     case ARMMMUIdx_MPrivNegPri:
8274     case ARMMMUIdx_MUserNegPri:
8275     case ARMMMUIdx_MPriv:
8276     case ARMMMUIdx_MUser:
8277     case ARMMMUIdx_MSPrivNegPri:
8278     case ARMMMUIdx_MSUserNegPri:
8279     case ARMMMUIdx_MSPriv:
8280     case ARMMMUIdx_MSUser:
8281         return 1;
8282     default:
8283         g_assert_not_reached();
8284     }
8285 }
8286 
8287 /* Return the SCTLR value which controls this address translation regime */
8288 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
8289 {
8290     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
8291 }
8292 
8293 /* Return true if the specified stage of address translation is disabled */
8294 static inline bool regime_translation_disabled(CPUARMState *env,
8295                                                ARMMMUIdx mmu_idx)
8296 {
8297     if (arm_feature(env, ARM_FEATURE_M)) {
8298         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8299                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
8300         case R_V7M_MPU_CTRL_ENABLE_MASK:
8301             /* Enabled, but not for HardFault and NMI */
8302             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8303         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
8304             /* Enabled for all cases */
8305             return false;
8306         case 0:
8307         default:
8308             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8309              * we warned about that in armv7m_nvic.c when the guest set it.
8310              */
8311             return true;
8312         }
8313     }
8314 
8315     if (mmu_idx == ARMMMUIdx_S2NS) {
8316         return (env->cp15.hcr_el2 & HCR_VM) == 0;
8317     }
8318     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
8319 }
8320 
8321 static inline bool regime_translation_big_endian(CPUARMState *env,
8322                                                  ARMMMUIdx mmu_idx)
8323 {
8324     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
8325 }
8326 
8327 /* Return the TCR controlling this translation regime */
8328 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
8329 {
8330     if (mmu_idx == ARMMMUIdx_S2NS) {
8331         return &env->cp15.vtcr_el2;
8332     }
8333     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
8334 }
8335 
8336 /* Convert a possible stage1+2 MMU index into the appropriate
8337  * stage 1 MMU index
8338  */
8339 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
8340 {
8341     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8342         mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
8343     }
8344     return mmu_idx;
8345 }
8346 
8347 /* Returns TBI0 value for current regime el */
8348 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
8349 {
8350     TCR *tcr;
8351     uint32_t el;
8352 
8353     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8354      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8355      */
8356     mmu_idx = stage_1_mmu_idx(mmu_idx);
8357 
8358     tcr = regime_tcr(env, mmu_idx);
8359     el = regime_el(env, mmu_idx);
8360 
8361     if (el > 1) {
8362         return extract64(tcr->raw_tcr, 20, 1);
8363     } else {
8364         return extract64(tcr->raw_tcr, 37, 1);
8365     }
8366 }
8367 
8368 /* Returns TBI1 value for current regime el */
8369 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
8370 {
8371     TCR *tcr;
8372     uint32_t el;
8373 
8374     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8375      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8376      */
8377     mmu_idx = stage_1_mmu_idx(mmu_idx);
8378 
8379     tcr = regime_tcr(env, mmu_idx);
8380     el = regime_el(env, mmu_idx);
8381 
8382     if (el > 1) {
8383         return 0;
8384     } else {
8385         return extract64(tcr->raw_tcr, 38, 1);
8386     }
8387 }
8388 
8389 /* Return the TTBR associated with this translation regime */
8390 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8391                                    int ttbrn)
8392 {
8393     if (mmu_idx == ARMMMUIdx_S2NS) {
8394         return env->cp15.vttbr_el2;
8395     }
8396     if (ttbrn == 0) {
8397         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8398     } else {
8399         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8400     }
8401 }
8402 
8403 /* Return true if the translation regime is using LPAE format page tables */
8404 static inline bool regime_using_lpae_format(CPUARMState *env,
8405                                             ARMMMUIdx mmu_idx)
8406 {
8407     int el = regime_el(env, mmu_idx);
8408     if (el == 2 || arm_el_is_aa64(env, el)) {
8409         return true;
8410     }
8411     if (arm_feature(env, ARM_FEATURE_LPAE)
8412         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8413         return true;
8414     }
8415     return false;
8416 }
8417 
8418 /* Returns true if the stage 1 translation regime is using LPAE format page
8419  * tables. Used when raising alignment exceptions, whose FSR changes depending
8420  * on whether the long or short descriptor format is in use. */
8421 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8422 {
8423     mmu_idx = stage_1_mmu_idx(mmu_idx);
8424 
8425     return regime_using_lpae_format(env, mmu_idx);
8426 }
8427 
8428 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8429 {
8430     switch (mmu_idx) {
8431     case ARMMMUIdx_S1SE0:
8432     case ARMMMUIdx_S1NSE0:
8433     case ARMMMUIdx_MUser:
8434     case ARMMMUIdx_MSUser:
8435     case ARMMMUIdx_MUserNegPri:
8436     case ARMMMUIdx_MSUserNegPri:
8437         return true;
8438     default:
8439         return false;
8440     case ARMMMUIdx_S12NSE0:
8441     case ARMMMUIdx_S12NSE1:
8442         g_assert_not_reached();
8443     }
8444 }
8445 
8446 /* Translate section/page access permissions to page
8447  * R/W protection flags
8448  *
8449  * @env:         CPUARMState
8450  * @mmu_idx:     MMU index indicating required translation regime
8451  * @ap:          The 3-bit access permissions (AP[2:0])
8452  * @domain_prot: The 2-bit domain access permissions
8453  */
8454 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8455                                 int ap, int domain_prot)
8456 {
8457     bool is_user = regime_is_user(env, mmu_idx);
8458 
8459     if (domain_prot == 3) {
8460         return PAGE_READ | PAGE_WRITE;
8461     }
8462 
8463     switch (ap) {
8464     case 0:
8465         if (arm_feature(env, ARM_FEATURE_V7)) {
8466             return 0;
8467         }
8468         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8469         case SCTLR_S:
8470             return is_user ? 0 : PAGE_READ;
8471         case SCTLR_R:
8472             return PAGE_READ;
8473         default:
8474             return 0;
8475         }
8476     case 1:
8477         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8478     case 2:
8479         if (is_user) {
8480             return PAGE_READ;
8481         } else {
8482             return PAGE_READ | PAGE_WRITE;
8483         }
8484     case 3:
8485         return PAGE_READ | PAGE_WRITE;
8486     case 4: /* Reserved.  */
8487         return 0;
8488     case 5:
8489         return is_user ? 0 : PAGE_READ;
8490     case 6:
8491         return PAGE_READ;
8492     case 7:
8493         if (!arm_feature(env, ARM_FEATURE_V6K)) {
8494             return 0;
8495         }
8496         return PAGE_READ;
8497     default:
8498         g_assert_not_reached();
8499     }
8500 }
8501 
8502 /* Translate section/page access permissions to page
8503  * R/W protection flags.
8504  *
8505  * @ap:      The 2-bit simple AP (AP[2:1])
8506  * @is_user: TRUE if accessing from PL0
8507  */
8508 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8509 {
8510     switch (ap) {
8511     case 0:
8512         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8513     case 1:
8514         return PAGE_READ | PAGE_WRITE;
8515     case 2:
8516         return is_user ? 0 : PAGE_READ;
8517     case 3:
8518         return PAGE_READ;
8519     default:
8520         g_assert_not_reached();
8521     }
8522 }
8523 
8524 static inline int
8525 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8526 {
8527     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8528 }
8529 
8530 /* Translate S2 section/page access permissions to protection flags
8531  *
8532  * @env:     CPUARMState
8533  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
8534  * @xn:      XN (execute-never) bit
8535  */
8536 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8537 {
8538     int prot = 0;
8539 
8540     if (s2ap & 1) {
8541         prot |= PAGE_READ;
8542     }
8543     if (s2ap & 2) {
8544         prot |= PAGE_WRITE;
8545     }
8546     if (!xn) {
8547         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8548             prot |= PAGE_EXEC;
8549         }
8550     }
8551     return prot;
8552 }
8553 
8554 /* Translate section/page access permissions to protection flags
8555  *
8556  * @env:     CPUARMState
8557  * @mmu_idx: MMU index indicating required translation regime
8558  * @is_aa64: TRUE if AArch64
8559  * @ap:      The 2-bit simple AP (AP[2:1])
8560  * @ns:      NS (non-secure) bit
8561  * @xn:      XN (execute-never) bit
8562  * @pxn:     PXN (privileged execute-never) bit
8563  */
8564 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8565                       int ap, int ns, int xn, int pxn)
8566 {
8567     bool is_user = regime_is_user(env, mmu_idx);
8568     int prot_rw, user_rw;
8569     bool have_wxn;
8570     int wxn = 0;
8571 
8572     assert(mmu_idx != ARMMMUIdx_S2NS);
8573 
8574     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8575     if (is_user) {
8576         prot_rw = user_rw;
8577     } else {
8578         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8579     }
8580 
8581     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8582         return prot_rw;
8583     }
8584 
8585     /* TODO have_wxn should be replaced with
8586      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8587      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8588      * compatible processors have EL2, which is required for [U]WXN.
8589      */
8590     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8591 
8592     if (have_wxn) {
8593         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8594     }
8595 
8596     if (is_aa64) {
8597         switch (regime_el(env, mmu_idx)) {
8598         case 1:
8599             if (!is_user) {
8600                 xn = pxn || (user_rw & PAGE_WRITE);
8601             }
8602             break;
8603         case 2:
8604         case 3:
8605             break;
8606         }
8607     } else if (arm_feature(env, ARM_FEATURE_V7)) {
8608         switch (regime_el(env, mmu_idx)) {
8609         case 1:
8610         case 3:
8611             if (is_user) {
8612                 xn = xn || !(user_rw & PAGE_READ);
8613             } else {
8614                 int uwxn = 0;
8615                 if (have_wxn) {
8616                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8617                 }
8618                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8619                      (uwxn && (user_rw & PAGE_WRITE));
8620             }
8621             break;
8622         case 2:
8623             break;
8624         }
8625     } else {
8626         xn = wxn = 0;
8627     }
8628 
8629     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8630         return prot_rw;
8631     }
8632     return prot_rw | PAGE_EXEC;
8633 }
8634 
8635 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8636                                      uint32_t *table, uint32_t address)
8637 {
8638     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8639     TCR *tcr = regime_tcr(env, mmu_idx);
8640 
8641     if (address & tcr->mask) {
8642         if (tcr->raw_tcr & TTBCR_PD1) {
8643             /* Translation table walk disabled for TTBR1 */
8644             return false;
8645         }
8646         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8647     } else {
8648         if (tcr->raw_tcr & TTBCR_PD0) {
8649             /* Translation table walk disabled for TTBR0 */
8650             return false;
8651         }
8652         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8653     }
8654     *table |= (address >> 18) & 0x3ffc;
8655     return true;
8656 }
8657 
8658 /* Translate a S1 pagetable walk through S2 if needed.  */
8659 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8660                                hwaddr addr, MemTxAttrs txattrs,
8661                                ARMMMUFaultInfo *fi)
8662 {
8663     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8664         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8665         target_ulong s2size;
8666         hwaddr s2pa;
8667         int s2prot;
8668         int ret;
8669 
8670         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8671                                  &txattrs, &s2prot, &s2size, fi, NULL);
8672         if (ret) {
8673             assert(fi->type != ARMFault_None);
8674             fi->s2addr = addr;
8675             fi->stage2 = true;
8676             fi->s1ptw = true;
8677             return ~0;
8678         }
8679         addr = s2pa;
8680     }
8681     return addr;
8682 }
8683 
8684 /* All loads done in the course of a page table walk go through here.
8685  * TODO: rather than ignoring errors from physical memory reads (which
8686  * are external aborts in ARM terminology) we should propagate this
8687  * error out so that we can turn it into a Data Abort if this walk
8688  * was being done for a CPU load/store or an address translation instruction
8689  * (but not if it was for a debug access).
8690  */
8691 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8692                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8693 {
8694     ARMCPU *cpu = ARM_CPU(cs);
8695     CPUARMState *env = &cpu->env;
8696     MemTxAttrs attrs = {};
8697     MemTxResult result = MEMTX_OK;
8698     AddressSpace *as;
8699     uint32_t data;
8700 
8701     attrs.secure = is_secure;
8702     as = arm_addressspace(cs, attrs);
8703     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8704     if (fi->s1ptw) {
8705         return 0;
8706     }
8707     if (regime_translation_big_endian(env, mmu_idx)) {
8708         data = address_space_ldl_be(as, addr, attrs, &result);
8709     } else {
8710         data = address_space_ldl_le(as, addr, attrs, &result);
8711     }
8712     if (result == MEMTX_OK) {
8713         return data;
8714     }
8715     fi->type = ARMFault_SyncExternalOnWalk;
8716     fi->ea = arm_extabort_type(result);
8717     return 0;
8718 }
8719 
8720 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8721                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8722 {
8723     ARMCPU *cpu = ARM_CPU(cs);
8724     CPUARMState *env = &cpu->env;
8725     MemTxAttrs attrs = {};
8726     MemTxResult result = MEMTX_OK;
8727     AddressSpace *as;
8728     uint64_t data;
8729 
8730     attrs.secure = is_secure;
8731     as = arm_addressspace(cs, attrs);
8732     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8733     if (fi->s1ptw) {
8734         return 0;
8735     }
8736     if (regime_translation_big_endian(env, mmu_idx)) {
8737         data = address_space_ldq_be(as, addr, attrs, &result);
8738     } else {
8739         data = address_space_ldq_le(as, addr, attrs, &result);
8740     }
8741     if (result == MEMTX_OK) {
8742         return data;
8743     }
8744     fi->type = ARMFault_SyncExternalOnWalk;
8745     fi->ea = arm_extabort_type(result);
8746     return 0;
8747 }
8748 
8749 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
8750                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
8751                              hwaddr *phys_ptr, int *prot,
8752                              target_ulong *page_size,
8753                              ARMMMUFaultInfo *fi)
8754 {
8755     CPUState *cs = CPU(arm_env_get_cpu(env));
8756     int level = 1;
8757     uint32_t table;
8758     uint32_t desc;
8759     int type;
8760     int ap;
8761     int domain = 0;
8762     int domain_prot;
8763     hwaddr phys_addr;
8764     uint32_t dacr;
8765 
8766     /* Pagetable walk.  */
8767     /* Lookup l1 descriptor.  */
8768     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8769         /* Section translation fault if page walk is disabled by PD0 or PD1 */
8770         fi->type = ARMFault_Translation;
8771         goto do_fault;
8772     }
8773     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8774                        mmu_idx, fi);
8775     if (fi->type != ARMFault_None) {
8776         goto do_fault;
8777     }
8778     type = (desc & 3);
8779     domain = (desc >> 5) & 0x0f;
8780     if (regime_el(env, mmu_idx) == 1) {
8781         dacr = env->cp15.dacr_ns;
8782     } else {
8783         dacr = env->cp15.dacr_s;
8784     }
8785     domain_prot = (dacr >> (domain * 2)) & 3;
8786     if (type == 0) {
8787         /* Section translation fault.  */
8788         fi->type = ARMFault_Translation;
8789         goto do_fault;
8790     }
8791     if (type != 2) {
8792         level = 2;
8793     }
8794     if (domain_prot == 0 || domain_prot == 2) {
8795         fi->type = ARMFault_Domain;
8796         goto do_fault;
8797     }
8798     if (type == 2) {
8799         /* 1Mb section.  */
8800         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8801         ap = (desc >> 10) & 3;
8802         *page_size = 1024 * 1024;
8803     } else {
8804         /* Lookup l2 entry.  */
8805         if (type == 1) {
8806             /* Coarse pagetable.  */
8807             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8808         } else {
8809             /* Fine pagetable.  */
8810             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
8811         }
8812         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8813                            mmu_idx, fi);
8814         if (fi->type != ARMFault_None) {
8815             goto do_fault;
8816         }
8817         switch (desc & 3) {
8818         case 0: /* Page translation fault.  */
8819             fi->type = ARMFault_Translation;
8820             goto do_fault;
8821         case 1: /* 64k page.  */
8822             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8823             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
8824             *page_size = 0x10000;
8825             break;
8826         case 2: /* 4k page.  */
8827             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8828             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
8829             *page_size = 0x1000;
8830             break;
8831         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8832             if (type == 1) {
8833                 /* ARMv6/XScale extended small page format */
8834                 if (arm_feature(env, ARM_FEATURE_XSCALE)
8835                     || arm_feature(env, ARM_FEATURE_V6)) {
8836                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8837                     *page_size = 0x1000;
8838                 } else {
8839                     /* UNPREDICTABLE in ARMv5; we choose to take a
8840                      * page translation fault.
8841                      */
8842                     fi->type = ARMFault_Translation;
8843                     goto do_fault;
8844                 }
8845             } else {
8846                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
8847                 *page_size = 0x400;
8848             }
8849             ap = (desc >> 4) & 3;
8850             break;
8851         default:
8852             /* Never happens, but compiler isn't smart enough to tell.  */
8853             abort();
8854         }
8855     }
8856     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8857     *prot |= *prot ? PAGE_EXEC : 0;
8858     if (!(*prot & (1 << access_type))) {
8859         /* Access permission fault.  */
8860         fi->type = ARMFault_Permission;
8861         goto do_fault;
8862     }
8863     *phys_ptr = phys_addr;
8864     return false;
8865 do_fault:
8866     fi->domain = domain;
8867     fi->level = level;
8868     return true;
8869 }
8870 
8871 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
8872                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
8873                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8874                              target_ulong *page_size, ARMMMUFaultInfo *fi)
8875 {
8876     CPUState *cs = CPU(arm_env_get_cpu(env));
8877     int level = 1;
8878     uint32_t table;
8879     uint32_t desc;
8880     uint32_t xn;
8881     uint32_t pxn = 0;
8882     int type;
8883     int ap;
8884     int domain = 0;
8885     int domain_prot;
8886     hwaddr phys_addr;
8887     uint32_t dacr;
8888     bool ns;
8889 
8890     /* Pagetable walk.  */
8891     /* Lookup l1 descriptor.  */
8892     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8893         /* Section translation fault if page walk is disabled by PD0 or PD1 */
8894         fi->type = ARMFault_Translation;
8895         goto do_fault;
8896     }
8897     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8898                        mmu_idx, fi);
8899     if (fi->type != ARMFault_None) {
8900         goto do_fault;
8901     }
8902     type = (desc & 3);
8903     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
8904         /* Section translation fault, or attempt to use the encoding
8905          * which is Reserved on implementations without PXN.
8906          */
8907         fi->type = ARMFault_Translation;
8908         goto do_fault;
8909     }
8910     if ((type == 1) || !(desc & (1 << 18))) {
8911         /* Page or Section.  */
8912         domain = (desc >> 5) & 0x0f;
8913     }
8914     if (regime_el(env, mmu_idx) == 1) {
8915         dacr = env->cp15.dacr_ns;
8916     } else {
8917         dacr = env->cp15.dacr_s;
8918     }
8919     if (type == 1) {
8920         level = 2;
8921     }
8922     domain_prot = (dacr >> (domain * 2)) & 3;
8923     if (domain_prot == 0 || domain_prot == 2) {
8924         /* Section or Page domain fault */
8925         fi->type = ARMFault_Domain;
8926         goto do_fault;
8927     }
8928     if (type != 1) {
8929         if (desc & (1 << 18)) {
8930             /* Supersection.  */
8931             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
8932             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
8933             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
8934             *page_size = 0x1000000;
8935         } else {
8936             /* Section.  */
8937             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8938             *page_size = 0x100000;
8939         }
8940         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
8941         xn = desc & (1 << 4);
8942         pxn = desc & 1;
8943         ns = extract32(desc, 19, 1);
8944     } else {
8945         if (arm_feature(env, ARM_FEATURE_PXN)) {
8946             pxn = (desc >> 2) & 1;
8947         }
8948         ns = extract32(desc, 3, 1);
8949         /* Lookup l2 entry.  */
8950         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8951         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8952                            mmu_idx, fi);
8953         if (fi->type != ARMFault_None) {
8954             goto do_fault;
8955         }
8956         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
8957         switch (desc & 3) {
8958         case 0: /* Page translation fault.  */
8959             fi->type = ARMFault_Translation;
8960             goto do_fault;
8961         case 1: /* 64k page.  */
8962             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8963             xn = desc & (1 << 15);
8964             *page_size = 0x10000;
8965             break;
8966         case 2: case 3: /* 4k page.  */
8967             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8968             xn = desc & 1;
8969             *page_size = 0x1000;
8970             break;
8971         default:
8972             /* Never happens, but compiler isn't smart enough to tell.  */
8973             abort();
8974         }
8975     }
8976     if (domain_prot == 3) {
8977         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8978     } else {
8979         if (pxn && !regime_is_user(env, mmu_idx)) {
8980             xn = 1;
8981         }
8982         if (xn && access_type == MMU_INST_FETCH) {
8983             fi->type = ARMFault_Permission;
8984             goto do_fault;
8985         }
8986 
8987         if (arm_feature(env, ARM_FEATURE_V6K) &&
8988                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
8989             /* The simplified model uses AP[0] as an access control bit.  */
8990             if ((ap & 1) == 0) {
8991                 /* Access flag fault.  */
8992                 fi->type = ARMFault_AccessFlag;
8993                 goto do_fault;
8994             }
8995             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
8996         } else {
8997             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8998         }
8999         if (*prot && !xn) {
9000             *prot |= PAGE_EXEC;
9001         }
9002         if (!(*prot & (1 << access_type))) {
9003             /* Access permission fault.  */
9004             fi->type = ARMFault_Permission;
9005             goto do_fault;
9006         }
9007     }
9008     if (ns) {
9009         /* The NS bit will (as required by the architecture) have no effect if
9010          * the CPU doesn't support TZ or this is a non-secure translation
9011          * regime, because the attribute will already be non-secure.
9012          */
9013         attrs->secure = false;
9014     }
9015     *phys_ptr = phys_addr;
9016     return false;
9017 do_fault:
9018     fi->domain = domain;
9019     fi->level = level;
9020     return true;
9021 }
9022 
9023 /*
9024  * check_s2_mmu_setup
9025  * @cpu:        ARMCPU
9026  * @is_aa64:    True if the translation regime is in AArch64 state
9027  * @startlevel: Suggested starting level
9028  * @inputsize:  Bitsize of IPAs
9029  * @stride:     Page-table stride (See the ARM ARM)
9030  *
9031  * Returns true if the suggested S2 translation parameters are OK and
9032  * false otherwise.
9033  */
9034 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9035                                int inputsize, int stride)
9036 {
9037     const int grainsize = stride + 3;
9038     int startsizecheck;
9039 
9040     /* Negative levels are never allowed.  */
9041     if (level < 0) {
9042         return false;
9043     }
9044 
9045     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9046     if (startsizecheck < 1 || startsizecheck > stride + 4) {
9047         return false;
9048     }
9049 
9050     if (is_aa64) {
9051         CPUARMState *env = &cpu->env;
9052         unsigned int pamax = arm_pamax(cpu);
9053 
9054         switch (stride) {
9055         case 13: /* 64KB Pages.  */
9056             if (level == 0 || (level == 1 && pamax <= 42)) {
9057                 return false;
9058             }
9059             break;
9060         case 11: /* 16KB Pages.  */
9061             if (level == 0 || (level == 1 && pamax <= 40)) {
9062                 return false;
9063             }
9064             break;
9065         case 9: /* 4KB Pages.  */
9066             if (level == 0 && pamax <= 42) {
9067                 return false;
9068             }
9069             break;
9070         default:
9071             g_assert_not_reached();
9072         }
9073 
9074         /* Inputsize checks.  */
9075         if (inputsize > pamax &&
9076             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
9077             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
9078             return false;
9079         }
9080     } else {
9081         /* AArch32 only supports 4KB pages. Assert on that.  */
9082         assert(stride == 9);
9083 
9084         if (level == 0) {
9085             return false;
9086         }
9087     }
9088     return true;
9089 }
9090 
9091 /* Translate from the 4-bit stage 2 representation of
9092  * memory attributes (without cache-allocation hints) to
9093  * the 8-bit representation of the stage 1 MAIR registers
9094  * (which includes allocation hints).
9095  *
9096  * ref: shared/translation/attrs/S2AttrDecode()
9097  *      .../S2ConvertAttrsHints()
9098  */
9099 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
9100 {
9101     uint8_t hiattr = extract32(s2attrs, 2, 2);
9102     uint8_t loattr = extract32(s2attrs, 0, 2);
9103     uint8_t hihint = 0, lohint = 0;
9104 
9105     if (hiattr != 0) { /* normal memory */
9106         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
9107             hiattr = loattr = 1; /* non-cacheable */
9108         } else {
9109             if (hiattr != 1) { /* Write-through or write-back */
9110                 hihint = 3; /* RW allocate */
9111             }
9112             if (loattr != 1) { /* Write-through or write-back */
9113                 lohint = 3; /* RW allocate */
9114             }
9115         }
9116     }
9117 
9118     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
9119 }
9120 
9121 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9122                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
9123                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9124                                target_ulong *page_size_ptr,
9125                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9126 {
9127     ARMCPU *cpu = arm_env_get_cpu(env);
9128     CPUState *cs = CPU(cpu);
9129     /* Read an LPAE long-descriptor translation table. */
9130     ARMFaultType fault_type = ARMFault_Translation;
9131     uint32_t level;
9132     uint32_t epd = 0;
9133     int32_t t0sz, t1sz;
9134     uint32_t tg;
9135     uint64_t ttbr;
9136     int ttbr_select;
9137     hwaddr descaddr, indexmask, indexmask_grainsize;
9138     uint32_t tableattrs;
9139     target_ulong page_size;
9140     uint32_t attrs;
9141     int32_t stride = 9;
9142     int32_t addrsize;
9143     int inputsize;
9144     int32_t tbi = 0;
9145     TCR *tcr = regime_tcr(env, mmu_idx);
9146     int ap, ns, xn, pxn;
9147     uint32_t el = regime_el(env, mmu_idx);
9148     bool ttbr1_valid = true;
9149     uint64_t descaddrmask;
9150     bool aarch64 = arm_el_is_aa64(env, el);
9151 
9152     /* TODO:
9153      * This code does not handle the different format TCR for VTCR_EL2.
9154      * This code also does not support shareability levels.
9155      * Attribute and permission bit handling should also be checked when adding
9156      * support for those page table walks.
9157      */
9158     if (aarch64) {
9159         level = 0;
9160         addrsize = 64;
9161         if (el > 1) {
9162             if (mmu_idx != ARMMMUIdx_S2NS) {
9163                 tbi = extract64(tcr->raw_tcr, 20, 1);
9164             }
9165         } else {
9166             if (extract64(address, 55, 1)) {
9167                 tbi = extract64(tcr->raw_tcr, 38, 1);
9168             } else {
9169                 tbi = extract64(tcr->raw_tcr, 37, 1);
9170             }
9171         }
9172         tbi *= 8;
9173 
9174         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9175          * invalid.
9176          */
9177         if (el > 1) {
9178             ttbr1_valid = false;
9179         }
9180     } else {
9181         level = 1;
9182         addrsize = 32;
9183         /* There is no TTBR1 for EL2 */
9184         if (el == 2) {
9185             ttbr1_valid = false;
9186         }
9187     }
9188 
9189     /* Determine whether this address is in the region controlled by
9190      * TTBR0 or TTBR1 (or if it is in neither region and should fault).
9191      * This is a Non-secure PL0/1 stage 1 translation, so controlled by
9192      * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
9193      */
9194     if (aarch64) {
9195         /* AArch64 translation.  */
9196         t0sz = extract32(tcr->raw_tcr, 0, 6);
9197         t0sz = MIN(t0sz, 39);
9198         t0sz = MAX(t0sz, 16);
9199     } else if (mmu_idx != ARMMMUIdx_S2NS) {
9200         /* AArch32 stage 1 translation.  */
9201         t0sz = extract32(tcr->raw_tcr, 0, 3);
9202     } else {
9203         /* AArch32 stage 2 translation.  */
9204         bool sext = extract32(tcr->raw_tcr, 4, 1);
9205         bool sign = extract32(tcr->raw_tcr, 3, 1);
9206         /* Address size is 40-bit for a stage 2 translation,
9207          * and t0sz can be negative (from -8 to 7),
9208          * so we need to adjust it to use the TTBR selecting logic below.
9209          */
9210         addrsize = 40;
9211         t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
9212 
9213         /* If the sign-extend bit is not the same as t0sz[3], the result
9214          * is unpredictable. Flag this as a guest error.  */
9215         if (sign != sext) {
9216             qemu_log_mask(LOG_GUEST_ERROR,
9217                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9218         }
9219     }
9220     t1sz = extract32(tcr->raw_tcr, 16, 6);
9221     if (aarch64) {
9222         t1sz = MIN(t1sz, 39);
9223         t1sz = MAX(t1sz, 16);
9224     }
9225     if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
9226         /* there is a ttbr0 region and we are in it (high bits all zero) */
9227         ttbr_select = 0;
9228     } else if (ttbr1_valid && t1sz &&
9229                !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
9230         /* there is a ttbr1 region and we are in it (high bits all one) */
9231         ttbr_select = 1;
9232     } else if (!t0sz) {
9233         /* ttbr0 region is "everything not in the ttbr1 region" */
9234         ttbr_select = 0;
9235     } else if (!t1sz && ttbr1_valid) {
9236         /* ttbr1 region is "everything not in the ttbr0 region" */
9237         ttbr_select = 1;
9238     } else {
9239         /* in the gap between the two regions, this is a Translation fault */
9240         fault_type = ARMFault_Translation;
9241         goto do_fault;
9242     }
9243 
9244     /* Note that QEMU ignores shareability and cacheability attributes,
9245      * so we don't need to do anything with the SH, ORGN, IRGN fields
9246      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
9247      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9248      * implement any ASID-like capability so we can ignore it (instead
9249      * we will always flush the TLB any time the ASID is changed).
9250      */
9251     if (ttbr_select == 0) {
9252         ttbr = regime_ttbr(env, mmu_idx, 0);
9253         if (el < 2) {
9254             epd = extract32(tcr->raw_tcr, 7, 1);
9255         }
9256         inputsize = addrsize - t0sz;
9257 
9258         tg = extract32(tcr->raw_tcr, 14, 2);
9259         if (tg == 1) { /* 64KB pages */
9260             stride = 13;
9261         }
9262         if (tg == 2) { /* 16KB pages */
9263             stride = 11;
9264         }
9265     } else {
9266         /* We should only be here if TTBR1 is valid */
9267         assert(ttbr1_valid);
9268 
9269         ttbr = regime_ttbr(env, mmu_idx, 1);
9270         epd = extract32(tcr->raw_tcr, 23, 1);
9271         inputsize = addrsize - t1sz;
9272 
9273         tg = extract32(tcr->raw_tcr, 30, 2);
9274         if (tg == 3)  { /* 64KB pages */
9275             stride = 13;
9276         }
9277         if (tg == 1) { /* 16KB pages */
9278             stride = 11;
9279         }
9280     }
9281 
9282     /* Here we should have set up all the parameters for the translation:
9283      * inputsize, ttbr, epd, stride, tbi
9284      */
9285 
9286     if (epd) {
9287         /* Translation table walk disabled => Translation fault on TLB miss
9288          * Note: This is always 0 on 64-bit EL2 and EL3.
9289          */
9290         goto do_fault;
9291     }
9292 
9293     if (mmu_idx != ARMMMUIdx_S2NS) {
9294         /* The starting level depends on the virtual address size (which can
9295          * be up to 48 bits) and the translation granule size. It indicates
9296          * the number of strides (stride bits at a time) needed to
9297          * consume the bits of the input address. In the pseudocode this is:
9298          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
9299          * where their 'inputsize' is our 'inputsize', 'grainsize' is
9300          * our 'stride + 3' and 'stride' is our 'stride'.
9301          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9302          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9303          * = 4 - (inputsize - 4) / stride;
9304          */
9305         level = 4 - (inputsize - 4) / stride;
9306     } else {
9307         /* For stage 2 translations the starting level is specified by the
9308          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9309          */
9310         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
9311         uint32_t startlevel;
9312         bool ok;
9313 
9314         if (!aarch64 || stride == 9) {
9315             /* AArch32 or 4KB pages */
9316             startlevel = 2 - sl0;
9317         } else {
9318             /* 16KB or 64KB pages */
9319             startlevel = 3 - sl0;
9320         }
9321 
9322         /* Check that the starting level is valid. */
9323         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9324                                 inputsize, stride);
9325         if (!ok) {
9326             fault_type = ARMFault_Translation;
9327             goto do_fault;
9328         }
9329         level = startlevel;
9330     }
9331 
9332     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
9333     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9334 
9335     /* Now we can extract the actual base address from the TTBR */
9336     descaddr = extract64(ttbr, 0, 48);
9337     descaddr &= ~indexmask;
9338 
9339     /* The address field in the descriptor goes up to bit 39 for ARMv7
9340      * but up to bit 47 for ARMv8, but we use the descaddrmask
9341      * up to bit 39 for AArch32, because we don't need other bits in that case
9342      * to construct next descriptor address (anyway they should be all zeroes).
9343      */
9344     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9345                    ~indexmask_grainsize;
9346 
9347     /* Secure accesses start with the page table in secure memory and
9348      * can be downgraded to non-secure at any step. Non-secure accesses
9349      * remain non-secure. We implement this by just ORing in the NSTable/NS
9350      * bits at each step.
9351      */
9352     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9353     for (;;) {
9354         uint64_t descriptor;
9355         bool nstable;
9356 
9357         descaddr |= (address >> (stride * (4 - level))) & indexmask;
9358         descaddr &= ~7ULL;
9359         nstable = extract32(tableattrs, 4, 1);
9360         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
9361         if (fi->type != ARMFault_None) {
9362             goto do_fault;
9363         }
9364 
9365         if (!(descriptor & 1) ||
9366             (!(descriptor & 2) && (level == 3))) {
9367             /* Invalid, or the Reserved level 3 encoding */
9368             goto do_fault;
9369         }
9370         descaddr = descriptor & descaddrmask;
9371 
9372         if ((descriptor & 2) && (level < 3)) {
9373             /* Table entry. The top five bits are attributes which  may
9374              * propagate down through lower levels of the table (and
9375              * which are all arranged so that 0 means "no effect", so
9376              * we can gather them up by ORing in the bits at each level).
9377              */
9378             tableattrs |= extract64(descriptor, 59, 5);
9379             level++;
9380             indexmask = indexmask_grainsize;
9381             continue;
9382         }
9383         /* Block entry at level 1 or 2, or page entry at level 3.
9384          * These are basically the same thing, although the number
9385          * of bits we pull in from the vaddr varies.
9386          */
9387         page_size = (1ULL << ((stride * (4 - level)) + 3));
9388         descaddr |= (address & (page_size - 1));
9389         /* Extract attributes from the descriptor */
9390         attrs = extract64(descriptor, 2, 10)
9391             | (extract64(descriptor, 52, 12) << 10);
9392 
9393         if (mmu_idx == ARMMMUIdx_S2NS) {
9394             /* Stage 2 table descriptors do not include any attribute fields */
9395             break;
9396         }
9397         /* Merge in attributes from table descriptors */
9398         attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
9399         attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
9400         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9401          * means "force PL1 access only", which means forcing AP[1] to 0.
9402          */
9403         if (extract32(tableattrs, 2, 1)) {
9404             attrs &= ~(1 << 4);
9405         }
9406         attrs |= nstable << 3; /* NS */
9407         break;
9408     }
9409     /* Here descaddr is the final physical address, and attributes
9410      * are all in attrs.
9411      */
9412     fault_type = ARMFault_AccessFlag;
9413     if ((attrs & (1 << 8)) == 0) {
9414         /* Access flag */
9415         goto do_fault;
9416     }
9417 
9418     ap = extract32(attrs, 4, 2);
9419     xn = extract32(attrs, 12, 1);
9420 
9421     if (mmu_idx == ARMMMUIdx_S2NS) {
9422         ns = true;
9423         *prot = get_S2prot(env, ap, xn);
9424     } else {
9425         ns = extract32(attrs, 3, 1);
9426         pxn = extract32(attrs, 11, 1);
9427         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9428     }
9429 
9430     fault_type = ARMFault_Permission;
9431     if (!(*prot & (1 << access_type))) {
9432         goto do_fault;
9433     }
9434 
9435     if (ns) {
9436         /* The NS bit will (as required by the architecture) have no effect if
9437          * the CPU doesn't support TZ or this is a non-secure translation
9438          * regime, because the attribute will already be non-secure.
9439          */
9440         txattrs->secure = false;
9441     }
9442 
9443     if (cacheattrs != NULL) {
9444         if (mmu_idx == ARMMMUIdx_S2NS) {
9445             cacheattrs->attrs = convert_stage2_attrs(env,
9446                                                      extract32(attrs, 0, 4));
9447         } else {
9448             /* Index into MAIR registers for cache attributes */
9449             uint8_t attrindx = extract32(attrs, 0, 3);
9450             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9451             assert(attrindx <= 7);
9452             cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9453         }
9454         cacheattrs->shareability = extract32(attrs, 6, 2);
9455     }
9456 
9457     *phys_ptr = descaddr;
9458     *page_size_ptr = page_size;
9459     return false;
9460 
9461 do_fault:
9462     fi->type = fault_type;
9463     fi->level = level;
9464     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
9465     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9466     return true;
9467 }
9468 
9469 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9470                                                 ARMMMUIdx mmu_idx,
9471                                                 int32_t address, int *prot)
9472 {
9473     if (!arm_feature(env, ARM_FEATURE_M)) {
9474         *prot = PAGE_READ | PAGE_WRITE;
9475         switch (address) {
9476         case 0xF0000000 ... 0xFFFFFFFF:
9477             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9478                 /* hivecs execing is ok */
9479                 *prot |= PAGE_EXEC;
9480             }
9481             break;
9482         case 0x00000000 ... 0x7FFFFFFF:
9483             *prot |= PAGE_EXEC;
9484             break;
9485         }
9486     } else {
9487         /* Default system address map for M profile cores.
9488          * The architecture specifies which regions are execute-never;
9489          * at the MPU level no other checks are defined.
9490          */
9491         switch (address) {
9492         case 0x00000000 ... 0x1fffffff: /* ROM */
9493         case 0x20000000 ... 0x3fffffff: /* SRAM */
9494         case 0x60000000 ... 0x7fffffff: /* RAM */
9495         case 0x80000000 ... 0x9fffffff: /* RAM */
9496             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9497             break;
9498         case 0x40000000 ... 0x5fffffff: /* Peripheral */
9499         case 0xa0000000 ... 0xbfffffff: /* Device */
9500         case 0xc0000000 ... 0xdfffffff: /* Device */
9501         case 0xe0000000 ... 0xffffffff: /* System */
9502             *prot = PAGE_READ | PAGE_WRITE;
9503             break;
9504         default:
9505             g_assert_not_reached();
9506         }
9507     }
9508 }
9509 
9510 static bool pmsav7_use_background_region(ARMCPU *cpu,
9511                                          ARMMMUIdx mmu_idx, bool is_user)
9512 {
9513     /* Return true if we should use the default memory map as a
9514      * "background" region if there are no hits against any MPU regions.
9515      */
9516     CPUARMState *env = &cpu->env;
9517 
9518     if (is_user) {
9519         return false;
9520     }
9521 
9522     if (arm_feature(env, ARM_FEATURE_M)) {
9523         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9524             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9525     } else {
9526         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9527     }
9528 }
9529 
9530 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9531 {
9532     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9533     return arm_feature(env, ARM_FEATURE_M) &&
9534         extract32(address, 20, 12) == 0xe00;
9535 }
9536 
9537 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9538 {
9539     /* True if address is in the M profile system region
9540      * 0xe0000000 - 0xffffffff
9541      */
9542     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9543 }
9544 
9545 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9546                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9547                                  hwaddr *phys_ptr, int *prot,
9548                                  ARMMMUFaultInfo *fi)
9549 {
9550     ARMCPU *cpu = arm_env_get_cpu(env);
9551     int n;
9552     bool is_user = regime_is_user(env, mmu_idx);
9553 
9554     *phys_ptr = address;
9555     *prot = 0;
9556 
9557     if (regime_translation_disabled(env, mmu_idx) ||
9558         m_is_ppb_region(env, address)) {
9559         /* MPU disabled or M profile PPB access: use default memory map.
9560          * The other case which uses the default memory map in the
9561          * v7M ARM ARM pseudocode is exception vector reads from the vector
9562          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9563          * which always does a direct read using address_space_ldl(), rather
9564          * than going via this function, so we don't need to check that here.
9565          */
9566         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9567     } else { /* MPU enabled */
9568         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9569             /* region search */
9570             uint32_t base = env->pmsav7.drbar[n];
9571             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9572             uint32_t rmask;
9573             bool srdis = false;
9574 
9575             if (!(env->pmsav7.drsr[n] & 0x1)) {
9576                 continue;
9577             }
9578 
9579             if (!rsize) {
9580                 qemu_log_mask(LOG_GUEST_ERROR,
9581                               "DRSR[%d]: Rsize field cannot be 0\n", n);
9582                 continue;
9583             }
9584             rsize++;
9585             rmask = (1ull << rsize) - 1;
9586 
9587             if (base & rmask) {
9588                 qemu_log_mask(LOG_GUEST_ERROR,
9589                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9590                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
9591                               n, base, rmask);
9592                 continue;
9593             }
9594 
9595             if (address < base || address > base + rmask) {
9596                 continue;
9597             }
9598 
9599             /* Region matched */
9600 
9601             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9602                 int i, snd;
9603                 uint32_t srdis_mask;
9604 
9605                 rsize -= 3; /* sub region size (power of 2) */
9606                 snd = ((address - base) >> rsize) & 0x7;
9607                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9608 
9609                 srdis_mask = srdis ? 0x3 : 0x0;
9610                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9611                     /* This will check in groups of 2, 4 and then 8, whether
9612                      * the subregion bits are consistent. rsize is incremented
9613                      * back up to give the region size, considering consistent
9614                      * adjacent subregions as one region. Stop testing if rsize
9615                      * is already big enough for an entire QEMU page.
9616                      */
9617                     int snd_rounded = snd & ~(i - 1);
9618                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9619                                                      snd_rounded + 8, i);
9620                     if (srdis_mask ^ srdis_multi) {
9621                         break;
9622                     }
9623                     srdis_mask = (srdis_mask << i) | srdis_mask;
9624                     rsize++;
9625                 }
9626             }
9627             if (rsize < TARGET_PAGE_BITS) {
9628                 qemu_log_mask(LOG_UNIMP,
9629                               "DRSR[%d]: No support for MPU (sub)region "
9630                               "alignment of %" PRIu32 " bits. Minimum is %d\n",
9631                               n, rsize, TARGET_PAGE_BITS);
9632                 continue;
9633             }
9634             if (srdis) {
9635                 continue;
9636             }
9637             break;
9638         }
9639 
9640         if (n == -1) { /* no hits */
9641             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9642                 /* background fault */
9643                 fi->type = ARMFault_Background;
9644                 return true;
9645             }
9646             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9647         } else { /* a MPU hit! */
9648             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
9649             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
9650 
9651             if (m_is_system_region(env, address)) {
9652                 /* System space is always execute never */
9653                 xn = 1;
9654             }
9655 
9656             if (is_user) { /* User mode AP bit decoding */
9657                 switch (ap) {
9658                 case 0:
9659                 case 1:
9660                 case 5:
9661                     break; /* no access */
9662                 case 3:
9663                     *prot |= PAGE_WRITE;
9664                     /* fall through */
9665                 case 2:
9666                 case 6:
9667                     *prot |= PAGE_READ | PAGE_EXEC;
9668                     break;
9669                 case 7:
9670                     /* for v7M, same as 6; for R profile a reserved value */
9671                     if (arm_feature(env, ARM_FEATURE_M)) {
9672                         *prot |= PAGE_READ | PAGE_EXEC;
9673                         break;
9674                     }
9675                     /* fall through */
9676                 default:
9677                     qemu_log_mask(LOG_GUEST_ERROR,
9678                                   "DRACR[%d]: Bad value for AP bits: 0x%"
9679                                   PRIx32 "\n", n, ap);
9680                 }
9681             } else { /* Priv. mode AP bits decoding */
9682                 switch (ap) {
9683                 case 0:
9684                     break; /* no access */
9685                 case 1:
9686                 case 2:
9687                 case 3:
9688                     *prot |= PAGE_WRITE;
9689                     /* fall through */
9690                 case 5:
9691                 case 6:
9692                     *prot |= PAGE_READ | PAGE_EXEC;
9693                     break;
9694                 case 7:
9695                     /* for v7M, same as 6; for R profile a reserved value */
9696                     if (arm_feature(env, ARM_FEATURE_M)) {
9697                         *prot |= PAGE_READ | PAGE_EXEC;
9698                         break;
9699                     }
9700                     /* fall through */
9701                 default:
9702                     qemu_log_mask(LOG_GUEST_ERROR,
9703                                   "DRACR[%d]: Bad value for AP bits: 0x%"
9704                                   PRIx32 "\n", n, ap);
9705                 }
9706             }
9707 
9708             /* execute never */
9709             if (xn) {
9710                 *prot &= ~PAGE_EXEC;
9711             }
9712         }
9713     }
9714 
9715     fi->type = ARMFault_Permission;
9716     fi->level = 1;
9717     return !(*prot & (1 << access_type));
9718 }
9719 
9720 static bool v8m_is_sau_exempt(CPUARMState *env,
9721                               uint32_t address, MMUAccessType access_type)
9722 {
9723     /* The architecture specifies that certain address ranges are
9724      * exempt from v8M SAU/IDAU checks.
9725      */
9726     return
9727         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
9728         (address >= 0xe0000000 && address <= 0xe0002fff) ||
9729         (address >= 0xe000e000 && address <= 0xe000efff) ||
9730         (address >= 0xe002e000 && address <= 0xe002efff) ||
9731         (address >= 0xe0040000 && address <= 0xe0041fff) ||
9732         (address >= 0xe00ff000 && address <= 0xe00fffff);
9733 }
9734 
9735 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
9736                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9737                                 V8M_SAttributes *sattrs)
9738 {
9739     /* Look up the security attributes for this address. Compare the
9740      * pseudocode SecurityCheck() function.
9741      * We assume the caller has zero-initialized *sattrs.
9742      */
9743     ARMCPU *cpu = arm_env_get_cpu(env);
9744     int r;
9745     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
9746     int idau_region = IREGION_NOTVALID;
9747 
9748     if (cpu->idau) {
9749         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
9750         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
9751 
9752         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
9753                    &idau_nsc);
9754     }
9755 
9756     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
9757         /* 0xf0000000..0xffffffff is always S for insn fetches */
9758         return;
9759     }
9760 
9761     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
9762         sattrs->ns = !regime_is_secure(env, mmu_idx);
9763         return;
9764     }
9765 
9766     if (idau_region != IREGION_NOTVALID) {
9767         sattrs->irvalid = true;
9768         sattrs->iregion = idau_region;
9769     }
9770 
9771     switch (env->sau.ctrl & 3) {
9772     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
9773         break;
9774     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
9775         sattrs->ns = true;
9776         break;
9777     default: /* SAU.ENABLE == 1 */
9778         for (r = 0; r < cpu->sau_sregion; r++) {
9779             if (env->sau.rlar[r] & 1) {
9780                 uint32_t base = env->sau.rbar[r] & ~0x1f;
9781                 uint32_t limit = env->sau.rlar[r] | 0x1f;
9782 
9783                 if (base <= address && limit >= address) {
9784                     if (sattrs->srvalid) {
9785                         /* If we hit in more than one region then we must report
9786                          * as Secure, not NS-Callable, with no valid region
9787                          * number info.
9788                          */
9789                         sattrs->ns = false;
9790                         sattrs->nsc = false;
9791                         sattrs->sregion = 0;
9792                         sattrs->srvalid = false;
9793                         break;
9794                     } else {
9795                         if (env->sau.rlar[r] & 2) {
9796                             sattrs->nsc = true;
9797                         } else {
9798                             sattrs->ns = true;
9799                         }
9800                         sattrs->srvalid = true;
9801                         sattrs->sregion = r;
9802                     }
9803                 }
9804             }
9805         }
9806 
9807         /* The IDAU will override the SAU lookup results if it specifies
9808          * higher security than the SAU does.
9809          */
9810         if (!idau_ns) {
9811             if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
9812                 sattrs->ns = false;
9813                 sattrs->nsc = idau_nsc;
9814             }
9815         }
9816         break;
9817     }
9818 }
9819 
9820 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
9821                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
9822                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
9823                               int *prot, ARMMMUFaultInfo *fi, uint32_t *mregion)
9824 {
9825     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
9826      * that a full phys-to-virt translation does).
9827      * mregion is (if not NULL) set to the region number which matched,
9828      * or -1 if no region number is returned (MPU off, address did not
9829      * hit a region, address hit in multiple regions).
9830      */
9831     ARMCPU *cpu = arm_env_get_cpu(env);
9832     bool is_user = regime_is_user(env, mmu_idx);
9833     uint32_t secure = regime_is_secure(env, mmu_idx);
9834     int n;
9835     int matchregion = -1;
9836     bool hit = false;
9837 
9838     *phys_ptr = address;
9839     *prot = 0;
9840     if (mregion) {
9841         *mregion = -1;
9842     }
9843 
9844     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
9845      * was an exception vector read from the vector table (which is always
9846      * done using the default system address map), because those accesses
9847      * are done in arm_v7m_load_vector(), which always does a direct
9848      * read using address_space_ldl(), rather than going via this function.
9849      */
9850     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
9851         hit = true;
9852     } else if (m_is_ppb_region(env, address)) {
9853         hit = true;
9854     } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9855         hit = true;
9856     } else {
9857         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9858             /* region search */
9859             /* Note that the base address is bits [31:5] from the register
9860              * with bits [4:0] all zeroes, but the limit address is bits
9861              * [31:5] from the register with bits [4:0] all ones.
9862              */
9863             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
9864             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
9865 
9866             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
9867                 /* Region disabled */
9868                 continue;
9869             }
9870 
9871             if (address < base || address > limit) {
9872                 continue;
9873             }
9874 
9875             if (hit) {
9876                 /* Multiple regions match -- always a failure (unlike
9877                  * PMSAv7 where highest-numbered-region wins)
9878                  */
9879                 fi->type = ARMFault_Permission;
9880                 fi->level = 1;
9881                 return true;
9882             }
9883 
9884             matchregion = n;
9885             hit = true;
9886 
9887             if (base & ~TARGET_PAGE_MASK) {
9888                 qemu_log_mask(LOG_UNIMP,
9889                               "MPU_RBAR[%d]: No support for MPU region base"
9890                               "address of 0x%" PRIx32 ". Minimum alignment is "
9891                               "%d\n",
9892                               n, base, TARGET_PAGE_BITS);
9893                 continue;
9894             }
9895             if ((limit + 1) & ~TARGET_PAGE_MASK) {
9896                 qemu_log_mask(LOG_UNIMP,
9897                               "MPU_RBAR[%d]: No support for MPU region limit"
9898                               "address of 0x%" PRIx32 ". Minimum alignment is "
9899                               "%d\n",
9900                               n, limit, TARGET_PAGE_BITS);
9901                 continue;
9902             }
9903         }
9904     }
9905 
9906     if (!hit) {
9907         /* background fault */
9908         fi->type = ARMFault_Background;
9909         return true;
9910     }
9911 
9912     if (matchregion == -1) {
9913         /* hit using the background region */
9914         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9915     } else {
9916         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
9917         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
9918 
9919         if (m_is_system_region(env, address)) {
9920             /* System space is always execute never */
9921             xn = 1;
9922         }
9923 
9924         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
9925         if (*prot && !xn) {
9926             *prot |= PAGE_EXEC;
9927         }
9928         /* We don't need to look the attribute up in the MAIR0/MAIR1
9929          * registers because that only tells us about cacheability.
9930          */
9931         if (mregion) {
9932             *mregion = matchregion;
9933         }
9934     }
9935 
9936     fi->type = ARMFault_Permission;
9937     fi->level = 1;
9938     return !(*prot & (1 << access_type));
9939 }
9940 
9941 
9942 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
9943                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9944                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
9945                                  int *prot, ARMMMUFaultInfo *fi)
9946 {
9947     uint32_t secure = regime_is_secure(env, mmu_idx);
9948     V8M_SAttributes sattrs = {};
9949 
9950     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9951         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
9952         if (access_type == MMU_INST_FETCH) {
9953             /* Instruction fetches always use the MMU bank and the
9954              * transaction attribute determined by the fetch address,
9955              * regardless of CPU state. This is painful for QEMU
9956              * to handle, because it would mean we need to encode
9957              * into the mmu_idx not just the (user, negpri) information
9958              * for the current security state but also that for the
9959              * other security state, which would balloon the number
9960              * of mmu_idx values needed alarmingly.
9961              * Fortunately we can avoid this because it's not actually
9962              * possible to arbitrarily execute code from memory with
9963              * the wrong security attribute: it will always generate
9964              * an exception of some kind or another, apart from the
9965              * special case of an NS CPU executing an SG instruction
9966              * in S&NSC memory. So we always just fail the translation
9967              * here and sort things out in the exception handler
9968              * (including possibly emulating an SG instruction).
9969              */
9970             if (sattrs.ns != !secure) {
9971                 if (sattrs.nsc) {
9972                     fi->type = ARMFault_QEMU_NSCExec;
9973                 } else {
9974                     fi->type = ARMFault_QEMU_SFault;
9975                 }
9976                 *phys_ptr = address;
9977                 *prot = 0;
9978                 return true;
9979             }
9980         } else {
9981             /* For data accesses we always use the MMU bank indicated
9982              * by the current CPU state, but the security attributes
9983              * might downgrade a secure access to nonsecure.
9984              */
9985             if (sattrs.ns) {
9986                 txattrs->secure = false;
9987             } else if (!secure) {
9988                 /* NS access to S memory must fault.
9989                  * Architecturally we should first check whether the
9990                  * MPU information for this address indicates that we
9991                  * are doing an unaligned access to Device memory, which
9992                  * should generate a UsageFault instead. QEMU does not
9993                  * currently check for that kind of unaligned access though.
9994                  * If we added it we would need to do so as a special case
9995                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
9996                  */
9997                 fi->type = ARMFault_QEMU_SFault;
9998                 *phys_ptr = address;
9999                 *prot = 0;
10000                 return true;
10001             }
10002         }
10003     }
10004 
10005     return pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
10006                              txattrs, prot, fi, NULL);
10007 }
10008 
10009 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
10010                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
10011                                  hwaddr *phys_ptr, int *prot,
10012                                  ARMMMUFaultInfo *fi)
10013 {
10014     int n;
10015     uint32_t mask;
10016     uint32_t base;
10017     bool is_user = regime_is_user(env, mmu_idx);
10018 
10019     if (regime_translation_disabled(env, mmu_idx)) {
10020         /* MPU disabled.  */
10021         *phys_ptr = address;
10022         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10023         return false;
10024     }
10025 
10026     *phys_ptr = address;
10027     for (n = 7; n >= 0; n--) {
10028         base = env->cp15.c6_region[n];
10029         if ((base & 1) == 0) {
10030             continue;
10031         }
10032         mask = 1 << ((base >> 1) & 0x1f);
10033         /* Keep this shift separate from the above to avoid an
10034            (undefined) << 32.  */
10035         mask = (mask << 1) - 1;
10036         if (((base ^ address) & ~mask) == 0) {
10037             break;
10038         }
10039     }
10040     if (n < 0) {
10041         fi->type = ARMFault_Background;
10042         return true;
10043     }
10044 
10045     if (access_type == MMU_INST_FETCH) {
10046         mask = env->cp15.pmsav5_insn_ap;
10047     } else {
10048         mask = env->cp15.pmsav5_data_ap;
10049     }
10050     mask = (mask >> (n * 4)) & 0xf;
10051     switch (mask) {
10052     case 0:
10053         fi->type = ARMFault_Permission;
10054         fi->level = 1;
10055         return true;
10056     case 1:
10057         if (is_user) {
10058             fi->type = ARMFault_Permission;
10059             fi->level = 1;
10060             return true;
10061         }
10062         *prot = PAGE_READ | PAGE_WRITE;
10063         break;
10064     case 2:
10065         *prot = PAGE_READ;
10066         if (!is_user) {
10067             *prot |= PAGE_WRITE;
10068         }
10069         break;
10070     case 3:
10071         *prot = PAGE_READ | PAGE_WRITE;
10072         break;
10073     case 5:
10074         if (is_user) {
10075             fi->type = ARMFault_Permission;
10076             fi->level = 1;
10077             return true;
10078         }
10079         *prot = PAGE_READ;
10080         break;
10081     case 6:
10082         *prot = PAGE_READ;
10083         break;
10084     default:
10085         /* Bad permission.  */
10086         fi->type = ARMFault_Permission;
10087         fi->level = 1;
10088         return true;
10089     }
10090     *prot |= PAGE_EXEC;
10091     return false;
10092 }
10093 
10094 /* Combine either inner or outer cacheability attributes for normal
10095  * memory, according to table D4-42 and pseudocode procedure
10096  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10097  *
10098  * NB: only stage 1 includes allocation hints (RW bits), leading to
10099  * some asymmetry.
10100  */
10101 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
10102 {
10103     if (s1 == 4 || s2 == 4) {
10104         /* non-cacheable has precedence */
10105         return 4;
10106     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
10107         /* stage 1 write-through takes precedence */
10108         return s1;
10109     } else if (extract32(s2, 2, 2) == 2) {
10110         /* stage 2 write-through takes precedence, but the allocation hint
10111          * is still taken from stage 1
10112          */
10113         return (2 << 2) | extract32(s1, 0, 2);
10114     } else { /* write-back */
10115         return s1;
10116     }
10117 }
10118 
10119 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10120  * and CombineS1S2Desc()
10121  *
10122  * @s1:      Attributes from stage 1 walk
10123  * @s2:      Attributes from stage 2 walk
10124  */
10125 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
10126 {
10127     uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
10128     uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
10129     ARMCacheAttrs ret;
10130 
10131     /* Combine shareability attributes (table D4-43) */
10132     if (s1.shareability == 2 || s2.shareability == 2) {
10133         /* if either are outer-shareable, the result is outer-shareable */
10134         ret.shareability = 2;
10135     } else if (s1.shareability == 3 || s2.shareability == 3) {
10136         /* if either are inner-shareable, the result is inner-shareable */
10137         ret.shareability = 3;
10138     } else {
10139         /* both non-shareable */
10140         ret.shareability = 0;
10141     }
10142 
10143     /* Combine memory type and cacheability attributes */
10144     if (s1hi == 0 || s2hi == 0) {
10145         /* Device has precedence over normal */
10146         if (s1lo == 0 || s2lo == 0) {
10147             /* nGnRnE has precedence over anything */
10148             ret.attrs = 0;
10149         } else if (s1lo == 4 || s2lo == 4) {
10150             /* non-Reordering has precedence over Reordering */
10151             ret.attrs = 4;  /* nGnRE */
10152         } else if (s1lo == 8 || s2lo == 8) {
10153             /* non-Gathering has precedence over Gathering */
10154             ret.attrs = 8;  /* nGRE */
10155         } else {
10156             ret.attrs = 0xc; /* GRE */
10157         }
10158 
10159         /* Any location for which the resultant memory type is any
10160          * type of Device memory is always treated as Outer Shareable.
10161          */
10162         ret.shareability = 2;
10163     } else { /* Normal memory */
10164         /* Outer/inner cacheability combine independently */
10165         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
10166                   | combine_cacheattr_nibble(s1lo, s2lo);
10167 
10168         if (ret.attrs == 0x44) {
10169             /* Any location for which the resultant memory type is Normal
10170              * Inner Non-cacheable, Outer Non-cacheable is always treated
10171              * as Outer Shareable.
10172              */
10173             ret.shareability = 2;
10174         }
10175     }
10176 
10177     return ret;
10178 }
10179 
10180 
10181 /* get_phys_addr - get the physical address for this virtual address
10182  *
10183  * Find the physical address corresponding to the given virtual address,
10184  * by doing a translation table walk on MMU based systems or using the
10185  * MPU state on MPU based systems.
10186  *
10187  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10188  * prot and page_size may not be filled in, and the populated fsr value provides
10189  * information on why the translation aborted, in the format of a
10190  * DFSR/IFSR fault register, with the following caveats:
10191  *  * we honour the short vs long DFSR format differences.
10192  *  * the WnR bit is never set (the caller must do this).
10193  *  * for PSMAv5 based systems we don't bother to return a full FSR format
10194  *    value.
10195  *
10196  * @env: CPUARMState
10197  * @address: virtual address to get physical address for
10198  * @access_type: 0 for read, 1 for write, 2 for execute
10199  * @mmu_idx: MMU index indicating required translation regime
10200  * @phys_ptr: set to the physical address corresponding to the virtual address
10201  * @attrs: set to the memory transaction attributes to use
10202  * @prot: set to the permissions for the page containing phys_ptr
10203  * @page_size: set to the size of the page containing phys_ptr
10204  * @fi: set to fault info if the translation fails
10205  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10206  */
10207 static bool get_phys_addr(CPUARMState *env, target_ulong address,
10208                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
10209                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10210                           target_ulong *page_size,
10211                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10212 {
10213     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10214         /* Call ourselves recursively to do the stage 1 and then stage 2
10215          * translations.
10216          */
10217         if (arm_feature(env, ARM_FEATURE_EL2)) {
10218             hwaddr ipa;
10219             int s2_prot;
10220             int ret;
10221             ARMCacheAttrs cacheattrs2 = {};
10222 
10223             ret = get_phys_addr(env, address, access_type,
10224                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10225                                 prot, page_size, fi, cacheattrs);
10226 
10227             /* If S1 fails or S2 is disabled, return early.  */
10228             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10229                 *phys_ptr = ipa;
10230                 return ret;
10231             }
10232 
10233             /* S1 is done. Now do S2 translation.  */
10234             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
10235                                      phys_ptr, attrs, &s2_prot,
10236                                      page_size, fi,
10237                                      cacheattrs != NULL ? &cacheattrs2 : NULL);
10238             fi->s2addr = ipa;
10239             /* Combine the S1 and S2 perms.  */
10240             *prot &= s2_prot;
10241 
10242             /* Combine the S1 and S2 cache attributes, if needed */
10243             if (!ret && cacheattrs != NULL) {
10244                 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
10245             }
10246 
10247             return ret;
10248         } else {
10249             /*
10250              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10251              */
10252             mmu_idx = stage_1_mmu_idx(mmu_idx);
10253         }
10254     }
10255 
10256     /* The page table entries may downgrade secure to non-secure, but
10257      * cannot upgrade an non-secure translation regime's attributes
10258      * to secure.
10259      */
10260     attrs->secure = regime_is_secure(env, mmu_idx);
10261     attrs->user = regime_is_user(env, mmu_idx);
10262 
10263     /* Fast Context Switch Extension. This doesn't exist at all in v8.
10264      * In v7 and earlier it affects all stage 1 translations.
10265      */
10266     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
10267         && !arm_feature(env, ARM_FEATURE_V8)) {
10268         if (regime_el(env, mmu_idx) == 3) {
10269             address += env->cp15.fcseidr_s;
10270         } else {
10271             address += env->cp15.fcseidr_ns;
10272         }
10273     }
10274 
10275     if (arm_feature(env, ARM_FEATURE_PMSA)) {
10276         bool ret;
10277         *page_size = TARGET_PAGE_SIZE;
10278 
10279         if (arm_feature(env, ARM_FEATURE_V8)) {
10280             /* PMSAv8 */
10281             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10282                                        phys_ptr, attrs, prot, fi);
10283         } else if (arm_feature(env, ARM_FEATURE_V7)) {
10284             /* PMSAv7 */
10285             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10286                                        phys_ptr, prot, fi);
10287         } else {
10288             /* Pre-v7 MPU */
10289             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10290                                        phys_ptr, prot, fi);
10291         }
10292         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10293                       " mmu_idx %u -> %s (prot %c%c%c)\n",
10294                       access_type == MMU_DATA_LOAD ? "reading" :
10295                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10296                       (uint32_t)address, mmu_idx,
10297                       ret ? "Miss" : "Hit",
10298                       *prot & PAGE_READ ? 'r' : '-',
10299                       *prot & PAGE_WRITE ? 'w' : '-',
10300                       *prot & PAGE_EXEC ? 'x' : '-');
10301 
10302         return ret;
10303     }
10304 
10305     /* Definitely a real MMU, not an MPU */
10306 
10307     if (regime_translation_disabled(env, mmu_idx)) {
10308         /* MMU disabled. */
10309         *phys_ptr = address;
10310         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10311         *page_size = TARGET_PAGE_SIZE;
10312         return 0;
10313     }
10314 
10315     if (regime_using_lpae_format(env, mmu_idx)) {
10316         return get_phys_addr_lpae(env, address, access_type, mmu_idx,
10317                                   phys_ptr, attrs, prot, page_size,
10318                                   fi, cacheattrs);
10319     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
10320         return get_phys_addr_v6(env, address, access_type, mmu_idx,
10321                                 phys_ptr, attrs, prot, page_size, fi);
10322     } else {
10323         return get_phys_addr_v5(env, address, access_type, mmu_idx,
10324                                     phys_ptr, prot, page_size, fi);
10325     }
10326 }
10327 
10328 /* Walk the page table and (if the mapping exists) add the page
10329  * to the TLB. Return false on success, or true on failure. Populate
10330  * fsr with ARM DFSR/IFSR fault register format value on failure.
10331  */
10332 bool arm_tlb_fill(CPUState *cs, vaddr address,
10333                   MMUAccessType access_type, int mmu_idx,
10334                   ARMMMUFaultInfo *fi)
10335 {
10336     ARMCPU *cpu = ARM_CPU(cs);
10337     CPUARMState *env = &cpu->env;
10338     hwaddr phys_addr;
10339     target_ulong page_size;
10340     int prot;
10341     int ret;
10342     MemTxAttrs attrs = {};
10343 
10344     ret = get_phys_addr(env, address, access_type,
10345                         core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
10346                         &attrs, &prot, &page_size, fi, NULL);
10347     if (!ret) {
10348         /* Map a single [sub]page.  */
10349         phys_addr &= TARGET_PAGE_MASK;
10350         address &= TARGET_PAGE_MASK;
10351         tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
10352                                 prot, mmu_idx, page_size);
10353         return 0;
10354     }
10355 
10356     return ret;
10357 }
10358 
10359 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
10360                                          MemTxAttrs *attrs)
10361 {
10362     ARMCPU *cpu = ARM_CPU(cs);
10363     CPUARMState *env = &cpu->env;
10364     hwaddr phys_addr;
10365     target_ulong page_size;
10366     int prot;
10367     bool ret;
10368     ARMMMUFaultInfo fi = {};
10369     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
10370 
10371     *attrs = (MemTxAttrs) {};
10372 
10373     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
10374                         attrs, &prot, &page_size, &fi, NULL);
10375 
10376     if (ret) {
10377         return -1;
10378     }
10379     return phys_addr;
10380 }
10381 
10382 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
10383 {
10384     uint32_t mask;
10385     unsigned el = arm_current_el(env);
10386 
10387     /* First handle registers which unprivileged can read */
10388 
10389     switch (reg) {
10390     case 0 ... 7: /* xPSR sub-fields */
10391         mask = 0;
10392         if ((reg & 1) && el) {
10393             mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
10394         }
10395         if (!(reg & 4)) {
10396             mask |= XPSR_NZCV | XPSR_Q; /* APSR */
10397         }
10398         /* EPSR reads as zero */
10399         return xpsr_read(env) & mask;
10400         break;
10401     case 20: /* CONTROL */
10402         return env->v7m.control[env->v7m.secure];
10403     case 0x94: /* CONTROL_NS */
10404         /* We have to handle this here because unprivileged Secure code
10405          * can read the NS CONTROL register.
10406          */
10407         if (!env->v7m.secure) {
10408             return 0;
10409         }
10410         return env->v7m.control[M_REG_NS];
10411     }
10412 
10413     if (el == 0) {
10414         return 0; /* unprivileged reads others as zero */
10415     }
10416 
10417     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10418         switch (reg) {
10419         case 0x88: /* MSP_NS */
10420             if (!env->v7m.secure) {
10421                 return 0;
10422             }
10423             return env->v7m.other_ss_msp;
10424         case 0x89: /* PSP_NS */
10425             if (!env->v7m.secure) {
10426                 return 0;
10427             }
10428             return env->v7m.other_ss_psp;
10429         case 0x8a: /* MSPLIM_NS */
10430             if (!env->v7m.secure) {
10431                 return 0;
10432             }
10433             return env->v7m.msplim[M_REG_NS];
10434         case 0x8b: /* PSPLIM_NS */
10435             if (!env->v7m.secure) {
10436                 return 0;
10437             }
10438             return env->v7m.psplim[M_REG_NS];
10439         case 0x90: /* PRIMASK_NS */
10440             if (!env->v7m.secure) {
10441                 return 0;
10442             }
10443             return env->v7m.primask[M_REG_NS];
10444         case 0x91: /* BASEPRI_NS */
10445             if (!env->v7m.secure) {
10446                 return 0;
10447             }
10448             return env->v7m.basepri[M_REG_NS];
10449         case 0x93: /* FAULTMASK_NS */
10450             if (!env->v7m.secure) {
10451                 return 0;
10452             }
10453             return env->v7m.faultmask[M_REG_NS];
10454         case 0x98: /* SP_NS */
10455         {
10456             /* This gives the non-secure SP selected based on whether we're
10457              * currently in handler mode or not, using the NS CONTROL.SPSEL.
10458              */
10459             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10460 
10461             if (!env->v7m.secure) {
10462                 return 0;
10463             }
10464             if (!arm_v7m_is_handler_mode(env) && spsel) {
10465                 return env->v7m.other_ss_psp;
10466             } else {
10467                 return env->v7m.other_ss_msp;
10468             }
10469         }
10470         default:
10471             break;
10472         }
10473     }
10474 
10475     switch (reg) {
10476     case 8: /* MSP */
10477         return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
10478     case 9: /* PSP */
10479         return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
10480     case 10: /* MSPLIM */
10481         if (!arm_feature(env, ARM_FEATURE_V8)) {
10482             goto bad_reg;
10483         }
10484         return env->v7m.msplim[env->v7m.secure];
10485     case 11: /* PSPLIM */
10486         if (!arm_feature(env, ARM_FEATURE_V8)) {
10487             goto bad_reg;
10488         }
10489         return env->v7m.psplim[env->v7m.secure];
10490     case 16: /* PRIMASK */
10491         return env->v7m.primask[env->v7m.secure];
10492     case 17: /* BASEPRI */
10493     case 18: /* BASEPRI_MAX */
10494         return env->v7m.basepri[env->v7m.secure];
10495     case 19: /* FAULTMASK */
10496         return env->v7m.faultmask[env->v7m.secure];
10497     default:
10498     bad_reg:
10499         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
10500                                        " register %d\n", reg);
10501         return 0;
10502     }
10503 }
10504 
10505 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
10506 {
10507     /* We're passed bits [11..0] of the instruction; extract
10508      * SYSm and the mask bits.
10509      * Invalid combinations of SYSm and mask are UNPREDICTABLE;
10510      * we choose to treat them as if the mask bits were valid.
10511      * NB that the pseudocode 'mask' variable is bits [11..10],
10512      * whereas ours is [11..8].
10513      */
10514     uint32_t mask = extract32(maskreg, 8, 4);
10515     uint32_t reg = extract32(maskreg, 0, 8);
10516 
10517     if (arm_current_el(env) == 0 && reg > 7) {
10518         /* only xPSR sub-fields may be written by unprivileged */
10519         return;
10520     }
10521 
10522     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10523         switch (reg) {
10524         case 0x88: /* MSP_NS */
10525             if (!env->v7m.secure) {
10526                 return;
10527             }
10528             env->v7m.other_ss_msp = val;
10529             return;
10530         case 0x89: /* PSP_NS */
10531             if (!env->v7m.secure) {
10532                 return;
10533             }
10534             env->v7m.other_ss_psp = val;
10535             return;
10536         case 0x8a: /* MSPLIM_NS */
10537             if (!env->v7m.secure) {
10538                 return;
10539             }
10540             env->v7m.msplim[M_REG_NS] = val & ~7;
10541             return;
10542         case 0x8b: /* PSPLIM_NS */
10543             if (!env->v7m.secure) {
10544                 return;
10545             }
10546             env->v7m.psplim[M_REG_NS] = val & ~7;
10547             return;
10548         case 0x90: /* PRIMASK_NS */
10549             if (!env->v7m.secure) {
10550                 return;
10551             }
10552             env->v7m.primask[M_REG_NS] = val & 1;
10553             return;
10554         case 0x91: /* BASEPRI_NS */
10555             if (!env->v7m.secure) {
10556                 return;
10557             }
10558             env->v7m.basepri[M_REG_NS] = val & 0xff;
10559             return;
10560         case 0x93: /* FAULTMASK_NS */
10561             if (!env->v7m.secure) {
10562                 return;
10563             }
10564             env->v7m.faultmask[M_REG_NS] = val & 1;
10565             return;
10566         case 0x94: /* CONTROL_NS */
10567             if (!env->v7m.secure) {
10568                 return;
10569             }
10570             write_v7m_control_spsel_for_secstate(env,
10571                                                  val & R_V7M_CONTROL_SPSEL_MASK,
10572                                                  M_REG_NS);
10573             env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
10574             env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
10575             return;
10576         case 0x98: /* SP_NS */
10577         {
10578             /* This gives the non-secure SP selected based on whether we're
10579              * currently in handler mode or not, using the NS CONTROL.SPSEL.
10580              */
10581             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10582 
10583             if (!env->v7m.secure) {
10584                 return;
10585             }
10586             if (!arm_v7m_is_handler_mode(env) && spsel) {
10587                 env->v7m.other_ss_psp = val;
10588             } else {
10589                 env->v7m.other_ss_msp = val;
10590             }
10591             return;
10592         }
10593         default:
10594             break;
10595         }
10596     }
10597 
10598     switch (reg) {
10599     case 0 ... 7: /* xPSR sub-fields */
10600         /* only APSR is actually writable */
10601         if (!(reg & 4)) {
10602             uint32_t apsrmask = 0;
10603 
10604             if (mask & 8) {
10605                 apsrmask |= XPSR_NZCV | XPSR_Q;
10606             }
10607             if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
10608                 apsrmask |= XPSR_GE;
10609             }
10610             xpsr_write(env, val, apsrmask);
10611         }
10612         break;
10613     case 8: /* MSP */
10614         if (v7m_using_psp(env)) {
10615             env->v7m.other_sp = val;
10616         } else {
10617             env->regs[13] = val;
10618         }
10619         break;
10620     case 9: /* PSP */
10621         if (v7m_using_psp(env)) {
10622             env->regs[13] = val;
10623         } else {
10624             env->v7m.other_sp = val;
10625         }
10626         break;
10627     case 10: /* MSPLIM */
10628         if (!arm_feature(env, ARM_FEATURE_V8)) {
10629             goto bad_reg;
10630         }
10631         env->v7m.msplim[env->v7m.secure] = val & ~7;
10632         break;
10633     case 11: /* PSPLIM */
10634         if (!arm_feature(env, ARM_FEATURE_V8)) {
10635             goto bad_reg;
10636         }
10637         env->v7m.psplim[env->v7m.secure] = val & ~7;
10638         break;
10639     case 16: /* PRIMASK */
10640         env->v7m.primask[env->v7m.secure] = val & 1;
10641         break;
10642     case 17: /* BASEPRI */
10643         env->v7m.basepri[env->v7m.secure] = val & 0xff;
10644         break;
10645     case 18: /* BASEPRI_MAX */
10646         val &= 0xff;
10647         if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
10648                          || env->v7m.basepri[env->v7m.secure] == 0)) {
10649             env->v7m.basepri[env->v7m.secure] = val;
10650         }
10651         break;
10652     case 19: /* FAULTMASK */
10653         env->v7m.faultmask[env->v7m.secure] = val & 1;
10654         break;
10655     case 20: /* CONTROL */
10656         /* Writing to the SPSEL bit only has an effect if we are in
10657          * thread mode; other bits can be updated by any privileged code.
10658          * write_v7m_control_spsel() deals with updating the SPSEL bit in
10659          * env->v7m.control, so we only need update the others.
10660          * For v7M, we must just ignore explicit writes to SPSEL in handler
10661          * mode; for v8M the write is permitted but will have no effect.
10662          */
10663         if (arm_feature(env, ARM_FEATURE_V8) ||
10664             !arm_v7m_is_handler_mode(env)) {
10665             write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
10666         }
10667         env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
10668         env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
10669         break;
10670     default:
10671     bad_reg:
10672         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
10673                                        " register %d\n", reg);
10674         return;
10675     }
10676 }
10677 
10678 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
10679 {
10680     /* Implement the TT instruction. op is bits [7:6] of the insn. */
10681     bool forceunpriv = op & 1;
10682     bool alt = op & 2;
10683     V8M_SAttributes sattrs = {};
10684     uint32_t tt_resp;
10685     bool r, rw, nsr, nsrw, mrvalid;
10686     int prot;
10687     ARMMMUFaultInfo fi = {};
10688     MemTxAttrs attrs = {};
10689     hwaddr phys_addr;
10690     ARMMMUIdx mmu_idx;
10691     uint32_t mregion;
10692     bool targetpriv;
10693     bool targetsec = env->v7m.secure;
10694 
10695     /* Work out what the security state and privilege level we're
10696      * interested in is...
10697      */
10698     if (alt) {
10699         targetsec = !targetsec;
10700     }
10701 
10702     if (forceunpriv) {
10703         targetpriv = false;
10704     } else {
10705         targetpriv = arm_v7m_is_handler_mode(env) ||
10706             !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
10707     }
10708 
10709     /* ...and then figure out which MMU index this is */
10710     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
10711 
10712     /* We know that the MPU and SAU don't care about the access type
10713      * for our purposes beyond that we don't want to claim to be
10714      * an insn fetch, so we arbitrarily call this a read.
10715      */
10716 
10717     /* MPU region info only available for privileged or if
10718      * inspecting the other MPU state.
10719      */
10720     if (arm_current_el(env) != 0 || alt) {
10721         /* We can ignore the return value as prot is always set */
10722         pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
10723                           &phys_addr, &attrs, &prot, &fi, &mregion);
10724         if (mregion == -1) {
10725             mrvalid = false;
10726             mregion = 0;
10727         } else {
10728             mrvalid = true;
10729         }
10730         r = prot & PAGE_READ;
10731         rw = prot & PAGE_WRITE;
10732     } else {
10733         r = false;
10734         rw = false;
10735         mrvalid = false;
10736         mregion = 0;
10737     }
10738 
10739     if (env->v7m.secure) {
10740         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
10741         nsr = sattrs.ns && r;
10742         nsrw = sattrs.ns && rw;
10743     } else {
10744         sattrs.ns = true;
10745         nsr = false;
10746         nsrw = false;
10747     }
10748 
10749     tt_resp = (sattrs.iregion << 24) |
10750         (sattrs.irvalid << 23) |
10751         ((!sattrs.ns) << 22) |
10752         (nsrw << 21) |
10753         (nsr << 20) |
10754         (rw << 19) |
10755         (r << 18) |
10756         (sattrs.srvalid << 17) |
10757         (mrvalid << 16) |
10758         (sattrs.sregion << 8) |
10759         mregion;
10760 
10761     return tt_resp;
10762 }
10763 
10764 #endif
10765 
10766 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
10767 {
10768     /* Implement DC ZVA, which zeroes a fixed-length block of memory.
10769      * Note that we do not implement the (architecturally mandated)
10770      * alignment fault for attempts to use this on Device memory
10771      * (which matches the usual QEMU behaviour of not implementing either
10772      * alignment faults or any memory attribute handling).
10773      */
10774 
10775     ARMCPU *cpu = arm_env_get_cpu(env);
10776     uint64_t blocklen = 4 << cpu->dcz_blocksize;
10777     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
10778 
10779 #ifndef CONFIG_USER_ONLY
10780     {
10781         /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
10782          * the block size so we might have to do more than one TLB lookup.
10783          * We know that in fact for any v8 CPU the page size is at least 4K
10784          * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
10785          * 1K as an artefact of legacy v5 subpage support being present in the
10786          * same QEMU executable.
10787          */
10788         int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
10789         void *hostaddr[maxidx];
10790         int try, i;
10791         unsigned mmu_idx = cpu_mmu_index(env, false);
10792         TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
10793 
10794         for (try = 0; try < 2; try++) {
10795 
10796             for (i = 0; i < maxidx; i++) {
10797                 hostaddr[i] = tlb_vaddr_to_host(env,
10798                                                 vaddr + TARGET_PAGE_SIZE * i,
10799                                                 1, mmu_idx);
10800                 if (!hostaddr[i]) {
10801                     break;
10802                 }
10803             }
10804             if (i == maxidx) {
10805                 /* If it's all in the TLB it's fair game for just writing to;
10806                  * we know we don't need to update dirty status, etc.
10807                  */
10808                 for (i = 0; i < maxidx - 1; i++) {
10809                     memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
10810                 }
10811                 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
10812                 return;
10813             }
10814             /* OK, try a store and see if we can populate the tlb. This
10815              * might cause an exception if the memory isn't writable,
10816              * in which case we will longjmp out of here. We must for
10817              * this purpose use the actual register value passed to us
10818              * so that we get the fault address right.
10819              */
10820             helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
10821             /* Now we can populate the other TLB entries, if any */
10822             for (i = 0; i < maxidx; i++) {
10823                 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
10824                 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
10825                     helper_ret_stb_mmu(env, va, 0, oi, GETPC());
10826                 }
10827             }
10828         }
10829 
10830         /* Slow path (probably attempt to do this to an I/O device or
10831          * similar, or clearing of a block of code we have translations
10832          * cached for). Just do a series of byte writes as the architecture
10833          * demands. It's not worth trying to use a cpu_physical_memory_map(),
10834          * memset(), unmap() sequence here because:
10835          *  + we'd need to account for the blocksize being larger than a page
10836          *  + the direct-RAM access case is almost always going to be dealt
10837          *    with in the fastpath code above, so there's no speed benefit
10838          *  + we would have to deal with the map returning NULL because the
10839          *    bounce buffer was in use
10840          */
10841         for (i = 0; i < blocklen; i++) {
10842             helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
10843         }
10844     }
10845 #else
10846     memset(g2h(vaddr), 0, blocklen);
10847 #endif
10848 }
10849 
10850 /* Note that signed overflow is undefined in C.  The following routines are
10851    careful to use unsigned types where modulo arithmetic is required.
10852    Failure to do so _will_ break on newer gcc.  */
10853 
10854 /* Signed saturating arithmetic.  */
10855 
10856 /* Perform 16-bit signed saturating addition.  */
10857 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10858 {
10859     uint16_t res;
10860 
10861     res = a + b;
10862     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10863         if (a & 0x8000)
10864             res = 0x8000;
10865         else
10866             res = 0x7fff;
10867     }
10868     return res;
10869 }
10870 
10871 /* Perform 8-bit signed saturating addition.  */
10872 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10873 {
10874     uint8_t res;
10875 
10876     res = a + b;
10877     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10878         if (a & 0x80)
10879             res = 0x80;
10880         else
10881             res = 0x7f;
10882     }
10883     return res;
10884 }
10885 
10886 /* Perform 16-bit signed saturating subtraction.  */
10887 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10888 {
10889     uint16_t res;
10890 
10891     res = a - b;
10892     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10893         if (a & 0x8000)
10894             res = 0x8000;
10895         else
10896             res = 0x7fff;
10897     }
10898     return res;
10899 }
10900 
10901 /* Perform 8-bit signed saturating subtraction.  */
10902 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10903 {
10904     uint8_t res;
10905 
10906     res = a - b;
10907     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10908         if (a & 0x80)
10909             res = 0x80;
10910         else
10911             res = 0x7f;
10912     }
10913     return res;
10914 }
10915 
10916 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10917 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10918 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
10919 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
10920 #define PFX q
10921 
10922 #include "op_addsub.h"
10923 
10924 /* Unsigned saturating arithmetic.  */
10925 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10926 {
10927     uint16_t res;
10928     res = a + b;
10929     if (res < a)
10930         res = 0xffff;
10931     return res;
10932 }
10933 
10934 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10935 {
10936     if (a > b)
10937         return a - b;
10938     else
10939         return 0;
10940 }
10941 
10942 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10943 {
10944     uint8_t res;
10945     res = a + b;
10946     if (res < a)
10947         res = 0xff;
10948     return res;
10949 }
10950 
10951 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10952 {
10953     if (a > b)
10954         return a - b;
10955     else
10956         return 0;
10957 }
10958 
10959 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10960 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10961 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
10962 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
10963 #define PFX uq
10964 
10965 #include "op_addsub.h"
10966 
10967 /* Signed modulo arithmetic.  */
10968 #define SARITH16(a, b, n, op) do { \
10969     int32_t sum; \
10970     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10971     RESULT(sum, n, 16); \
10972     if (sum >= 0) \
10973         ge |= 3 << (n * 2); \
10974     } while(0)
10975 
10976 #define SARITH8(a, b, n, op) do { \
10977     int32_t sum; \
10978     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10979     RESULT(sum, n, 8); \
10980     if (sum >= 0) \
10981         ge |= 1 << n; \
10982     } while(0)
10983 
10984 
10985 #define ADD16(a, b, n) SARITH16(a, b, n, +)
10986 #define SUB16(a, b, n) SARITH16(a, b, n, -)
10987 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
10988 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
10989 #define PFX s
10990 #define ARITH_GE
10991 
10992 #include "op_addsub.h"
10993 
10994 /* Unsigned modulo arithmetic.  */
10995 #define ADD16(a, b, n) do { \
10996     uint32_t sum; \
10997     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10998     RESULT(sum, n, 16); \
10999     if ((sum >> 16) == 1) \
11000         ge |= 3 << (n * 2); \
11001     } while(0)
11002 
11003 #define ADD8(a, b, n) do { \
11004     uint32_t sum; \
11005     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11006     RESULT(sum, n, 8); \
11007     if ((sum >> 8) == 1) \
11008         ge |= 1 << n; \
11009     } while(0)
11010 
11011 #define SUB16(a, b, n) do { \
11012     uint32_t sum; \
11013     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11014     RESULT(sum, n, 16); \
11015     if ((sum >> 16) == 0) \
11016         ge |= 3 << (n * 2); \
11017     } while(0)
11018 
11019 #define SUB8(a, b, n) do { \
11020     uint32_t sum; \
11021     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11022     RESULT(sum, n, 8); \
11023     if ((sum >> 8) == 0) \
11024         ge |= 1 << n; \
11025     } while(0)
11026 
11027 #define PFX u
11028 #define ARITH_GE
11029 
11030 #include "op_addsub.h"
11031 
11032 /* Halved signed arithmetic.  */
11033 #define ADD16(a, b, n) \
11034   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11035 #define SUB16(a, b, n) \
11036   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11037 #define ADD8(a, b, n) \
11038   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11039 #define SUB8(a, b, n) \
11040   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11041 #define PFX sh
11042 
11043 #include "op_addsub.h"
11044 
11045 /* Halved unsigned arithmetic.  */
11046 #define ADD16(a, b, n) \
11047   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11048 #define SUB16(a, b, n) \
11049   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11050 #define ADD8(a, b, n) \
11051   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11052 #define SUB8(a, b, n) \
11053   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11054 #define PFX uh
11055 
11056 #include "op_addsub.h"
11057 
11058 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11059 {
11060     if (a > b)
11061         return a - b;
11062     else
11063         return b - a;
11064 }
11065 
11066 /* Unsigned sum of absolute byte differences.  */
11067 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11068 {
11069     uint32_t sum;
11070     sum = do_usad(a, b);
11071     sum += do_usad(a >> 8, b >> 8);
11072     sum += do_usad(a >> 16, b >>16);
11073     sum += do_usad(a >> 24, b >> 24);
11074     return sum;
11075 }
11076 
11077 /* For ARMv6 SEL instruction.  */
11078 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11079 {
11080     uint32_t mask;
11081 
11082     mask = 0;
11083     if (flags & 1)
11084         mask |= 0xff;
11085     if (flags & 2)
11086         mask |= 0xff00;
11087     if (flags & 4)
11088         mask |= 0xff0000;
11089     if (flags & 8)
11090         mask |= 0xff000000;
11091     return (a & mask) | (b & ~mask);
11092 }
11093 
11094 /* VFP support.  We follow the convention used for VFP instructions:
11095    Single precision routines have a "s" suffix, double precision a
11096    "d" suffix.  */
11097 
11098 /* Convert host exception flags to vfp form.  */
11099 static inline int vfp_exceptbits_from_host(int host_bits)
11100 {
11101     int target_bits = 0;
11102 
11103     if (host_bits & float_flag_invalid)
11104         target_bits |= 1;
11105     if (host_bits & float_flag_divbyzero)
11106         target_bits |= 2;
11107     if (host_bits & float_flag_overflow)
11108         target_bits |= 4;
11109     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
11110         target_bits |= 8;
11111     if (host_bits & float_flag_inexact)
11112         target_bits |= 0x10;
11113     if (host_bits & float_flag_input_denormal)
11114         target_bits |= 0x80;
11115     return target_bits;
11116 }
11117 
11118 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
11119 {
11120     int i;
11121     uint32_t fpscr;
11122 
11123     fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
11124             | (env->vfp.vec_len << 16)
11125             | (env->vfp.vec_stride << 20);
11126     i = get_float_exception_flags(&env->vfp.fp_status);
11127     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
11128     i |= get_float_exception_flags(&env->vfp.fp_status_f16);
11129     fpscr |= vfp_exceptbits_from_host(i);
11130     return fpscr;
11131 }
11132 
11133 uint32_t vfp_get_fpscr(CPUARMState *env)
11134 {
11135     return HELPER(vfp_get_fpscr)(env);
11136 }
11137 
11138 /* Convert vfp exception flags to target form.  */
11139 static inline int vfp_exceptbits_to_host(int target_bits)
11140 {
11141     int host_bits = 0;
11142 
11143     if (target_bits & 1)
11144         host_bits |= float_flag_invalid;
11145     if (target_bits & 2)
11146         host_bits |= float_flag_divbyzero;
11147     if (target_bits & 4)
11148         host_bits |= float_flag_overflow;
11149     if (target_bits & 8)
11150         host_bits |= float_flag_underflow;
11151     if (target_bits & 0x10)
11152         host_bits |= float_flag_inexact;
11153     if (target_bits & 0x80)
11154         host_bits |= float_flag_input_denormal;
11155     return host_bits;
11156 }
11157 
11158 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
11159 {
11160     int i;
11161     uint32_t changed;
11162 
11163     changed = env->vfp.xregs[ARM_VFP_FPSCR];
11164     env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
11165     env->vfp.vec_len = (val >> 16) & 7;
11166     env->vfp.vec_stride = (val >> 20) & 3;
11167 
11168     changed ^= val;
11169     if (changed & (3 << 22)) {
11170         i = (val >> 22) & 3;
11171         switch (i) {
11172         case FPROUNDING_TIEEVEN:
11173             i = float_round_nearest_even;
11174             break;
11175         case FPROUNDING_POSINF:
11176             i = float_round_up;
11177             break;
11178         case FPROUNDING_NEGINF:
11179             i = float_round_down;
11180             break;
11181         case FPROUNDING_ZERO:
11182             i = float_round_to_zero;
11183             break;
11184         }
11185         set_float_rounding_mode(i, &env->vfp.fp_status);
11186         set_float_rounding_mode(i, &env->vfp.fp_status_f16);
11187     }
11188     if (changed & FPCR_FZ16) {
11189         bool ftz_enabled = val & FPCR_FZ16;
11190         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
11191         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
11192     }
11193     if (changed & FPCR_FZ) {
11194         bool ftz_enabled = val & FPCR_FZ;
11195         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
11196         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
11197     }
11198     if (changed & FPCR_DN) {
11199         bool dnan_enabled = val & FPCR_DN;
11200         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
11201         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
11202     }
11203 
11204     /* The exception flags are ORed together when we read fpscr so we
11205      * only need to preserve the current state in one of our
11206      * float_status values.
11207      */
11208     i = vfp_exceptbits_to_host(val);
11209     set_float_exception_flags(i, &env->vfp.fp_status);
11210     set_float_exception_flags(0, &env->vfp.fp_status_f16);
11211     set_float_exception_flags(0, &env->vfp.standard_fp_status);
11212 }
11213 
11214 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
11215 {
11216     HELPER(vfp_set_fpscr)(env, val);
11217 }
11218 
11219 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
11220 
11221 #define VFP_BINOP(name) \
11222 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
11223 { \
11224     float_status *fpst = fpstp; \
11225     return float32_ ## name(a, b, fpst); \
11226 } \
11227 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
11228 { \
11229     float_status *fpst = fpstp; \
11230     return float64_ ## name(a, b, fpst); \
11231 }
11232 VFP_BINOP(add)
11233 VFP_BINOP(sub)
11234 VFP_BINOP(mul)
11235 VFP_BINOP(div)
11236 VFP_BINOP(min)
11237 VFP_BINOP(max)
11238 VFP_BINOP(minnum)
11239 VFP_BINOP(maxnum)
11240 #undef VFP_BINOP
11241 
11242 float32 VFP_HELPER(neg, s)(float32 a)
11243 {
11244     return float32_chs(a);
11245 }
11246 
11247 float64 VFP_HELPER(neg, d)(float64 a)
11248 {
11249     return float64_chs(a);
11250 }
11251 
11252 float32 VFP_HELPER(abs, s)(float32 a)
11253 {
11254     return float32_abs(a);
11255 }
11256 
11257 float64 VFP_HELPER(abs, d)(float64 a)
11258 {
11259     return float64_abs(a);
11260 }
11261 
11262 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
11263 {
11264     return float32_sqrt(a, &env->vfp.fp_status);
11265 }
11266 
11267 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
11268 {
11269     return float64_sqrt(a, &env->vfp.fp_status);
11270 }
11271 
11272 /* XXX: check quiet/signaling case */
11273 #define DO_VFP_cmp(p, type) \
11274 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
11275 { \
11276     uint32_t flags; \
11277     switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
11278     case 0: flags = 0x6; break; \
11279     case -1: flags = 0x8; break; \
11280     case 1: flags = 0x2; break; \
11281     default: case 2: flags = 0x3; break; \
11282     } \
11283     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11284         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11285 } \
11286 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
11287 { \
11288     uint32_t flags; \
11289     switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
11290     case 0: flags = 0x6; break; \
11291     case -1: flags = 0x8; break; \
11292     case 1: flags = 0x2; break; \
11293     default: case 2: flags = 0x3; break; \
11294     } \
11295     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11296         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11297 }
11298 DO_VFP_cmp(s, float32)
11299 DO_VFP_cmp(d, float64)
11300 #undef DO_VFP_cmp
11301 
11302 /* Integer to float and float to integer conversions */
11303 
11304 #define CONV_ITOF(name, fsz, sign) \
11305     float##fsz HELPER(name)(uint32_t x, void *fpstp) \
11306 { \
11307     float_status *fpst = fpstp; \
11308     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
11309 }
11310 
11311 #define CONV_FTOI(name, fsz, sign, round) \
11312 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
11313 { \
11314     float_status *fpst = fpstp; \
11315     if (float##fsz##_is_any_nan(x)) { \
11316         float_raise(float_flag_invalid, fpst); \
11317         return 0; \
11318     } \
11319     return float##fsz##_to_##sign##int32##round(x, fpst); \
11320 }
11321 
11322 #define FLOAT_CONVS(name, p, fsz, sign) \
11323 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
11324 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
11325 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
11326 
11327 FLOAT_CONVS(si, h, 16, )
11328 FLOAT_CONVS(si, s, 32, )
11329 FLOAT_CONVS(si, d, 64, )
11330 FLOAT_CONVS(ui, h, 16, u)
11331 FLOAT_CONVS(ui, s, 32, u)
11332 FLOAT_CONVS(ui, d, 64, u)
11333 
11334 #undef CONV_ITOF
11335 #undef CONV_FTOI
11336 #undef FLOAT_CONVS
11337 
11338 /* floating point conversion */
11339 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
11340 {
11341     float64 r = float32_to_float64(x, &env->vfp.fp_status);
11342     /* ARM requires that S<->D conversion of any kind of NaN generates
11343      * a quiet NaN by forcing the most significant frac bit to 1.
11344      */
11345     return float64_maybe_silence_nan(r, &env->vfp.fp_status);
11346 }
11347 
11348 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
11349 {
11350     float32 r =  float64_to_float32(x, &env->vfp.fp_status);
11351     /* ARM requires that S<->D conversion of any kind of NaN generates
11352      * a quiet NaN by forcing the most significant frac bit to 1.
11353      */
11354     return float32_maybe_silence_nan(r, &env->vfp.fp_status);
11355 }
11356 
11357 /* VFP3 fixed point conversion.  */
11358 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11359 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
11360                                      void *fpstp) \
11361 { \
11362     float_status *fpst = fpstp; \
11363     float##fsz tmp; \
11364     tmp = itype##_to_##float##fsz(x, fpst); \
11365     return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
11366 }
11367 
11368 /* Notice that we want only input-denormal exception flags from the
11369  * scalbn operation: the other possible flags (overflow+inexact if
11370  * we overflow to infinity, output-denormal) aren't correct for the
11371  * complete scale-and-convert operation.
11372  */
11373 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
11374 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
11375                                              uint32_t shift, \
11376                                              void *fpstp) \
11377 { \
11378     float_status *fpst = fpstp; \
11379     int old_exc_flags = get_float_exception_flags(fpst); \
11380     float##fsz tmp; \
11381     if (float##fsz##_is_any_nan(x)) { \
11382         float_raise(float_flag_invalid, fpst); \
11383         return 0; \
11384     } \
11385     tmp = float##fsz##_scalbn(x, shift, fpst); \
11386     old_exc_flags |= get_float_exception_flags(fpst) \
11387         & float_flag_input_denormal; \
11388     set_float_exception_flags(old_exc_flags, fpst); \
11389     return float##fsz##_to_##itype##round(tmp, fpst); \
11390 }
11391 
11392 #define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
11393 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
11394 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
11395 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
11396 
11397 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
11398 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
11399 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
11400 
11401 VFP_CONV_FIX(sh, d, 64, 64, int16)
11402 VFP_CONV_FIX(sl, d, 64, 64, int32)
11403 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
11404 VFP_CONV_FIX(uh, d, 64, 64, uint16)
11405 VFP_CONV_FIX(ul, d, 64, 64, uint32)
11406 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
11407 VFP_CONV_FIX(sh, s, 32, 32, int16)
11408 VFP_CONV_FIX(sl, s, 32, 32, int32)
11409 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
11410 VFP_CONV_FIX(uh, s, 32, 32, uint16)
11411 VFP_CONV_FIX(ul, s, 32, 32, uint32)
11412 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
11413 VFP_CONV_FIX_A64(sl, h, 16, 32, int32)
11414 VFP_CONV_FIX_A64(ul, h, 16, 32, uint32)
11415 #undef VFP_CONV_FIX
11416 #undef VFP_CONV_FIX_FLOAT
11417 #undef VFP_CONV_FLOAT_FIX_ROUND
11418 
11419 /* Set the current fp rounding mode and return the old one.
11420  * The argument is a softfloat float_round_ value.
11421  */
11422 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
11423 {
11424     float_status *fp_status = fpstp;
11425 
11426     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
11427     set_float_rounding_mode(rmode, fp_status);
11428 
11429     return prev_rmode;
11430 }
11431 
11432 /* Set the current fp rounding mode in the standard fp status and return
11433  * the old one. This is for NEON instructions that need to change the
11434  * rounding mode but wish to use the standard FPSCR values for everything
11435  * else. Always set the rounding mode back to the correct value after
11436  * modifying it.
11437  * The argument is a softfloat float_round_ value.
11438  */
11439 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
11440 {
11441     float_status *fp_status = &env->vfp.standard_fp_status;
11442 
11443     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
11444     set_float_rounding_mode(rmode, fp_status);
11445 
11446     return prev_rmode;
11447 }
11448 
11449 /* Half precision conversions.  */
11450 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
11451 {
11452     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
11453     float32 r = float16_to_float32(make_float16(a), ieee, s);
11454     if (ieee) {
11455         return float32_maybe_silence_nan(r, s);
11456     }
11457     return r;
11458 }
11459 
11460 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
11461 {
11462     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
11463     float16 r = float32_to_float16(a, ieee, s);
11464     if (ieee) {
11465         r = float16_maybe_silence_nan(r, s);
11466     }
11467     return float16_val(r);
11468 }
11469 
11470 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
11471 {
11472     return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
11473 }
11474 
11475 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
11476 {
11477     return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
11478 }
11479 
11480 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
11481 {
11482     return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
11483 }
11484 
11485 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
11486 {
11487     return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
11488 }
11489 
11490 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
11491 {
11492     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
11493     float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
11494     if (ieee) {
11495         return float64_maybe_silence_nan(r, &env->vfp.fp_status);
11496     }
11497     return r;
11498 }
11499 
11500 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
11501 {
11502     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
11503     float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
11504     if (ieee) {
11505         r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
11506     }
11507     return float16_val(r);
11508 }
11509 
11510 #define float32_two make_float32(0x40000000)
11511 #define float32_three make_float32(0x40400000)
11512 #define float32_one_point_five make_float32(0x3fc00000)
11513 
11514 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
11515 {
11516     float_status *s = &env->vfp.standard_fp_status;
11517     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11518         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11519         if (!(float32_is_zero(a) || float32_is_zero(b))) {
11520             float_raise(float_flag_input_denormal, s);
11521         }
11522         return float32_two;
11523     }
11524     return float32_sub(float32_two, float32_mul(a, b, s), s);
11525 }
11526 
11527 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
11528 {
11529     float_status *s = &env->vfp.standard_fp_status;
11530     float32 product;
11531     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11532         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11533         if (!(float32_is_zero(a) || float32_is_zero(b))) {
11534             float_raise(float_flag_input_denormal, s);
11535         }
11536         return float32_one_point_five;
11537     }
11538     product = float32_mul(a, b, s);
11539     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
11540 }
11541 
11542 /* NEON helpers.  */
11543 
11544 /* Constants 256 and 512 are used in some helpers; we avoid relying on
11545  * int->float conversions at run-time.  */
11546 #define float64_256 make_float64(0x4070000000000000LL)
11547 #define float64_512 make_float64(0x4080000000000000LL)
11548 #define float16_maxnorm make_float16(0x7bff)
11549 #define float32_maxnorm make_float32(0x7f7fffff)
11550 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
11551 
11552 /* Reciprocal functions
11553  *
11554  * The algorithm that must be used to calculate the estimate
11555  * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
11556  */
11557 
11558 /* See RecipEstimate()
11559  *
11560  * input is a 9 bit fixed point number
11561  * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
11562  * result range 256 .. 511 for a number from 1.0 to 511/256.
11563  */
11564 
11565 static int recip_estimate(int input)
11566 {
11567     int a, b, r;
11568     assert(256 <= input && input < 512);
11569     a = (input * 2) + 1;
11570     b = (1 << 19) / a;
11571     r = (b + 1) >> 1;
11572     assert(256 <= r && r < 512);
11573     return r;
11574 }
11575 
11576 /*
11577  * Common wrapper to call recip_estimate
11578  *
11579  * The parameters are exponent and 64 bit fraction (without implicit
11580  * bit) where the binary point is nominally at bit 52. Returns a
11581  * float64 which can then be rounded to the appropriate size by the
11582  * callee.
11583  */
11584 
11585 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
11586 {
11587     uint32_t scaled, estimate;
11588     uint64_t result_frac;
11589     int result_exp;
11590 
11591     /* Handle sub-normals */
11592     if (*exp == 0) {
11593         if (extract64(frac, 51, 1) == 0) {
11594             *exp = -1;
11595             frac <<= 2;
11596         } else {
11597             frac <<= 1;
11598         }
11599     }
11600 
11601     /* scaled = UInt('1':fraction<51:44>) */
11602     scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
11603     estimate = recip_estimate(scaled);
11604 
11605     result_exp = exp_off - *exp;
11606     result_frac = deposit64(0, 44, 8, estimate);
11607     if (result_exp == 0) {
11608         result_frac = deposit64(result_frac >> 1, 51, 1, 1);
11609     } else if (result_exp == -1) {
11610         result_frac = deposit64(result_frac >> 2, 50, 2, 1);
11611         result_exp = 0;
11612     }
11613 
11614     *exp = result_exp;
11615 
11616     return result_frac;
11617 }
11618 
11619 static bool round_to_inf(float_status *fpst, bool sign_bit)
11620 {
11621     switch (fpst->float_rounding_mode) {
11622     case float_round_nearest_even: /* Round to Nearest */
11623         return true;
11624     case float_round_up: /* Round to +Inf */
11625         return !sign_bit;
11626     case float_round_down: /* Round to -Inf */
11627         return sign_bit;
11628     case float_round_to_zero: /* Round to Zero */
11629         return false;
11630     }
11631 
11632     g_assert_not_reached();
11633 }
11634 
11635 float16 HELPER(recpe_f16)(float16 input, void *fpstp)
11636 {
11637     float_status *fpst = fpstp;
11638     float16 f16 = float16_squash_input_denormal(input, fpst);
11639     uint32_t f16_val = float16_val(f16);
11640     uint32_t f16_sign = float16_is_neg(f16);
11641     int f16_exp = extract32(f16_val, 10, 5);
11642     uint32_t f16_frac = extract32(f16_val, 0, 10);
11643     uint64_t f64_frac;
11644 
11645     if (float16_is_any_nan(f16)) {
11646         float16 nan = f16;
11647         if (float16_is_signaling_nan(f16, fpst)) {
11648             float_raise(float_flag_invalid, fpst);
11649             nan = float16_maybe_silence_nan(f16, fpst);
11650         }
11651         if (fpst->default_nan_mode) {
11652             nan =  float16_default_nan(fpst);
11653         }
11654         return nan;
11655     } else if (float16_is_infinity(f16)) {
11656         return float16_set_sign(float16_zero, float16_is_neg(f16));
11657     } else if (float16_is_zero(f16)) {
11658         float_raise(float_flag_divbyzero, fpst);
11659         return float16_set_sign(float16_infinity, float16_is_neg(f16));
11660     } else if (float16_abs(f16) < (1 << 8)) {
11661         /* Abs(value) < 2.0^-16 */
11662         float_raise(float_flag_overflow | float_flag_inexact, fpst);
11663         if (round_to_inf(fpst, f16_sign)) {
11664             return float16_set_sign(float16_infinity, f16_sign);
11665         } else {
11666             return float16_set_sign(float16_maxnorm, f16_sign);
11667         }
11668     } else if (f16_exp >= 29 && fpst->flush_to_zero) {
11669         float_raise(float_flag_underflow, fpst);
11670         return float16_set_sign(float16_zero, float16_is_neg(f16));
11671     }
11672 
11673     f64_frac = call_recip_estimate(&f16_exp, 29,
11674                                    ((uint64_t) f16_frac) << (52 - 10));
11675 
11676     /* result = sign : result_exp<4:0> : fraction<51:42> */
11677     f16_val = deposit32(0, 15, 1, f16_sign);
11678     f16_val = deposit32(f16_val, 10, 5, f16_exp);
11679     f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
11680     return make_float16(f16_val);
11681 }
11682 
11683 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
11684 {
11685     float_status *fpst = fpstp;
11686     float32 f32 = float32_squash_input_denormal(input, fpst);
11687     uint32_t f32_val = float32_val(f32);
11688     bool f32_sign = float32_is_neg(f32);
11689     int f32_exp = extract32(f32_val, 23, 8);
11690     uint32_t f32_frac = extract32(f32_val, 0, 23);
11691     uint64_t f64_frac;
11692 
11693     if (float32_is_any_nan(f32)) {
11694         float32 nan = f32;
11695         if (float32_is_signaling_nan(f32, fpst)) {
11696             float_raise(float_flag_invalid, fpst);
11697             nan = float32_maybe_silence_nan(f32, fpst);
11698         }
11699         if (fpst->default_nan_mode) {
11700             nan =  float32_default_nan(fpst);
11701         }
11702         return nan;
11703     } else if (float32_is_infinity(f32)) {
11704         return float32_set_sign(float32_zero, float32_is_neg(f32));
11705     } else if (float32_is_zero(f32)) {
11706         float_raise(float_flag_divbyzero, fpst);
11707         return float32_set_sign(float32_infinity, float32_is_neg(f32));
11708     } else if (float32_abs(f32) < (1ULL << 21)) {
11709         /* Abs(value) < 2.0^-128 */
11710         float_raise(float_flag_overflow | float_flag_inexact, fpst);
11711         if (round_to_inf(fpst, f32_sign)) {
11712             return float32_set_sign(float32_infinity, f32_sign);
11713         } else {
11714             return float32_set_sign(float32_maxnorm, f32_sign);
11715         }
11716     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
11717         float_raise(float_flag_underflow, fpst);
11718         return float32_set_sign(float32_zero, float32_is_neg(f32));
11719     }
11720 
11721     f64_frac = call_recip_estimate(&f32_exp, 253,
11722                                    ((uint64_t) f32_frac) << (52 - 23));
11723 
11724     /* result = sign : result_exp<7:0> : fraction<51:29> */
11725     f32_val = deposit32(0, 31, 1, f32_sign);
11726     f32_val = deposit32(f32_val, 23, 8, f32_exp);
11727     f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
11728     return make_float32(f32_val);
11729 }
11730 
11731 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
11732 {
11733     float_status *fpst = fpstp;
11734     float64 f64 = float64_squash_input_denormal(input, fpst);
11735     uint64_t f64_val = float64_val(f64);
11736     bool f64_sign = float64_is_neg(f64);
11737     int f64_exp = extract64(f64_val, 52, 11);
11738     uint64_t f64_frac = extract64(f64_val, 0, 52);
11739 
11740     /* Deal with any special cases */
11741     if (float64_is_any_nan(f64)) {
11742         float64 nan = f64;
11743         if (float64_is_signaling_nan(f64, fpst)) {
11744             float_raise(float_flag_invalid, fpst);
11745             nan = float64_maybe_silence_nan(f64, fpst);
11746         }
11747         if (fpst->default_nan_mode) {
11748             nan =  float64_default_nan(fpst);
11749         }
11750         return nan;
11751     } else if (float64_is_infinity(f64)) {
11752         return float64_set_sign(float64_zero, float64_is_neg(f64));
11753     } else if (float64_is_zero(f64)) {
11754         float_raise(float_flag_divbyzero, fpst);
11755         return float64_set_sign(float64_infinity, float64_is_neg(f64));
11756     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
11757         /* Abs(value) < 2.0^-1024 */
11758         float_raise(float_flag_overflow | float_flag_inexact, fpst);
11759         if (round_to_inf(fpst, f64_sign)) {
11760             return float64_set_sign(float64_infinity, f64_sign);
11761         } else {
11762             return float64_set_sign(float64_maxnorm, f64_sign);
11763         }
11764     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
11765         float_raise(float_flag_underflow, fpst);
11766         return float64_set_sign(float64_zero, float64_is_neg(f64));
11767     }
11768 
11769     f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
11770 
11771     /* result = sign : result_exp<10:0> : fraction<51:0>; */
11772     f64_val = deposit64(0, 63, 1, f64_sign);
11773     f64_val = deposit64(f64_val, 52, 11, f64_exp);
11774     f64_val = deposit64(f64_val, 0, 52, f64_frac);
11775     return make_float64(f64_val);
11776 }
11777 
11778 /* The algorithm that must be used to calculate the estimate
11779  * is specified by the ARM ARM.
11780  */
11781 
11782 static int do_recip_sqrt_estimate(int a)
11783 {
11784     int b, estimate;
11785 
11786     assert(128 <= a && a < 512);
11787     if (a < 256) {
11788         a = a * 2 + 1;
11789     } else {
11790         a = (a >> 1) << 1;
11791         a = (a + 1) * 2;
11792     }
11793     b = 512;
11794     while (a * (b + 1) * (b + 1) < (1 << 28)) {
11795         b += 1;
11796     }
11797     estimate = (b + 1) / 2;
11798     assert(256 <= estimate && estimate < 512);
11799 
11800     return estimate;
11801 }
11802 
11803 
11804 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
11805 {
11806     int estimate;
11807     uint32_t scaled;
11808 
11809     if (*exp == 0) {
11810         while (extract64(frac, 51, 1) == 0) {
11811             frac = frac << 1;
11812             *exp -= 1;
11813         }
11814         frac = extract64(frac, 0, 51) << 1;
11815     }
11816 
11817     if (*exp & 1) {
11818         /* scaled = UInt('01':fraction<51:45>) */
11819         scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
11820     } else {
11821         /* scaled = UInt('1':fraction<51:44>) */
11822         scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
11823     }
11824     estimate = do_recip_sqrt_estimate(scaled);
11825 
11826     *exp = (exp_off - *exp) / 2;
11827     return extract64(estimate, 0, 8) << 44;
11828 }
11829 
11830 float16 HELPER(rsqrte_f16)(float16 input, void *fpstp)
11831 {
11832     float_status *s = fpstp;
11833     float16 f16 = float16_squash_input_denormal(input, s);
11834     uint16_t val = float16_val(f16);
11835     bool f16_sign = float16_is_neg(f16);
11836     int f16_exp = extract32(val, 10, 5);
11837     uint16_t f16_frac = extract32(val, 0, 10);
11838     uint64_t f64_frac;
11839 
11840     if (float16_is_any_nan(f16)) {
11841         float16 nan = f16;
11842         if (float16_is_signaling_nan(f16, s)) {
11843             float_raise(float_flag_invalid, s);
11844             nan = float16_maybe_silence_nan(f16, s);
11845         }
11846         if (s->default_nan_mode) {
11847             nan =  float16_default_nan(s);
11848         }
11849         return nan;
11850     } else if (float16_is_zero(f16)) {
11851         float_raise(float_flag_divbyzero, s);
11852         return float16_set_sign(float16_infinity, f16_sign);
11853     } else if (f16_sign) {
11854         float_raise(float_flag_invalid, s);
11855         return float16_default_nan(s);
11856     } else if (float16_is_infinity(f16)) {
11857         return float16_zero;
11858     }
11859 
11860     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11861      * preserving the parity of the exponent.  */
11862 
11863     f64_frac = ((uint64_t) f16_frac) << (52 - 10);
11864 
11865     f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
11866 
11867     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
11868     val = deposit32(0, 15, 1, f16_sign);
11869     val = deposit32(val, 10, 5, f16_exp);
11870     val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
11871     return make_float16(val);
11872 }
11873 
11874 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
11875 {
11876     float_status *s = fpstp;
11877     float32 f32 = float32_squash_input_denormal(input, s);
11878     uint32_t val = float32_val(f32);
11879     uint32_t f32_sign = float32_is_neg(f32);
11880     int f32_exp = extract32(val, 23, 8);
11881     uint32_t f32_frac = extract32(val, 0, 23);
11882     uint64_t f64_frac;
11883 
11884     if (float32_is_any_nan(f32)) {
11885         float32 nan = f32;
11886         if (float32_is_signaling_nan(f32, s)) {
11887             float_raise(float_flag_invalid, s);
11888             nan = float32_maybe_silence_nan(f32, s);
11889         }
11890         if (s->default_nan_mode) {
11891             nan =  float32_default_nan(s);
11892         }
11893         return nan;
11894     } else if (float32_is_zero(f32)) {
11895         float_raise(float_flag_divbyzero, s);
11896         return float32_set_sign(float32_infinity, float32_is_neg(f32));
11897     } else if (float32_is_neg(f32)) {
11898         float_raise(float_flag_invalid, s);
11899         return float32_default_nan(s);
11900     } else if (float32_is_infinity(f32)) {
11901         return float32_zero;
11902     }
11903 
11904     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11905      * preserving the parity of the exponent.  */
11906 
11907     f64_frac = ((uint64_t) f32_frac) << 29;
11908 
11909     f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
11910 
11911     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
11912     val = deposit32(0, 31, 1, f32_sign);
11913     val = deposit32(val, 23, 8, f32_exp);
11914     val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
11915     return make_float32(val);
11916 }
11917 
11918 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
11919 {
11920     float_status *s = fpstp;
11921     float64 f64 = float64_squash_input_denormal(input, s);
11922     uint64_t val = float64_val(f64);
11923     bool f64_sign = float64_is_neg(f64);
11924     int f64_exp = extract64(val, 52, 11);
11925     uint64_t f64_frac = extract64(val, 0, 52);
11926 
11927     if (float64_is_any_nan(f64)) {
11928         float64 nan = f64;
11929         if (float64_is_signaling_nan(f64, s)) {
11930             float_raise(float_flag_invalid, s);
11931             nan = float64_maybe_silence_nan(f64, s);
11932         }
11933         if (s->default_nan_mode) {
11934             nan =  float64_default_nan(s);
11935         }
11936         return nan;
11937     } else if (float64_is_zero(f64)) {
11938         float_raise(float_flag_divbyzero, s);
11939         return float64_set_sign(float64_infinity, float64_is_neg(f64));
11940     } else if (float64_is_neg(f64)) {
11941         float_raise(float_flag_invalid, s);
11942         return float64_default_nan(s);
11943     } else if (float64_is_infinity(f64)) {
11944         return float64_zero;
11945     }
11946 
11947     f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
11948 
11949     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
11950     val = deposit64(0, 61, 1, f64_sign);
11951     val = deposit64(val, 52, 11, f64_exp);
11952     val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
11953     return make_float64(val);
11954 }
11955 
11956 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
11957 {
11958     /* float_status *s = fpstp; */
11959     int input, estimate;
11960 
11961     if ((a & 0x80000000) == 0) {
11962         return 0xffffffff;
11963     }
11964 
11965     input = extract32(a, 23, 9);
11966     estimate = recip_estimate(input);
11967 
11968     return deposit32(0, (32 - 9), 9, estimate);
11969 }
11970 
11971 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
11972 {
11973     int estimate;
11974 
11975     if ((a & 0xc0000000) == 0) {
11976         return 0xffffffff;
11977     }
11978 
11979     estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
11980 
11981     return deposit32(0, 23, 9, estimate);
11982 }
11983 
11984 /* VFPv4 fused multiply-accumulate */
11985 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
11986 {
11987     float_status *fpst = fpstp;
11988     return float32_muladd(a, b, c, 0, fpst);
11989 }
11990 
11991 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
11992 {
11993     float_status *fpst = fpstp;
11994     return float64_muladd(a, b, c, 0, fpst);
11995 }
11996 
11997 /* ARMv8 round to integral */
11998 float32 HELPER(rints_exact)(float32 x, void *fp_status)
11999 {
12000     return float32_round_to_int(x, fp_status);
12001 }
12002 
12003 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
12004 {
12005     return float64_round_to_int(x, fp_status);
12006 }
12007 
12008 float32 HELPER(rints)(float32 x, void *fp_status)
12009 {
12010     int old_flags = get_float_exception_flags(fp_status), new_flags;
12011     float32 ret;
12012 
12013     ret = float32_round_to_int(x, fp_status);
12014 
12015     /* Suppress any inexact exceptions the conversion produced */
12016     if (!(old_flags & float_flag_inexact)) {
12017         new_flags = get_float_exception_flags(fp_status);
12018         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
12019     }
12020 
12021     return ret;
12022 }
12023 
12024 float64 HELPER(rintd)(float64 x, void *fp_status)
12025 {
12026     int old_flags = get_float_exception_flags(fp_status), new_flags;
12027     float64 ret;
12028 
12029     ret = float64_round_to_int(x, fp_status);
12030 
12031     new_flags = get_float_exception_flags(fp_status);
12032 
12033     /* Suppress any inexact exceptions the conversion produced */
12034     if (!(old_flags & float_flag_inexact)) {
12035         new_flags = get_float_exception_flags(fp_status);
12036         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
12037     }
12038 
12039     return ret;
12040 }
12041 
12042 /* Convert ARM rounding mode to softfloat */
12043 int arm_rmode_to_sf(int rmode)
12044 {
12045     switch (rmode) {
12046     case FPROUNDING_TIEAWAY:
12047         rmode = float_round_ties_away;
12048         break;
12049     case FPROUNDING_ODD:
12050         /* FIXME: add support for TIEAWAY and ODD */
12051         qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
12052                       rmode);
12053     case FPROUNDING_TIEEVEN:
12054     default:
12055         rmode = float_round_nearest_even;
12056         break;
12057     case FPROUNDING_POSINF:
12058         rmode = float_round_up;
12059         break;
12060     case FPROUNDING_NEGINF:
12061         rmode = float_round_down;
12062         break;
12063     case FPROUNDING_ZERO:
12064         rmode = float_round_to_zero;
12065         break;
12066     }
12067     return rmode;
12068 }
12069 
12070 /* CRC helpers.
12071  * The upper bytes of val (above the number specified by 'bytes') must have
12072  * been zeroed out by the caller.
12073  */
12074 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12075 {
12076     uint8_t buf[4];
12077 
12078     stl_le_p(buf, val);
12079 
12080     /* zlib crc32 converts the accumulator and output to one's complement.  */
12081     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12082 }
12083 
12084 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12085 {
12086     uint8_t buf[4];
12087 
12088     stl_le_p(buf, val);
12089 
12090     /* Linux crc32c converts the output to one's complement.  */
12091     return crc32c(acc, buf, bytes) ^ 0xffffffff;
12092 }
12093 
12094 /* Return the exception level to which FP-disabled exceptions should
12095  * be taken, or 0 if FP is enabled.
12096  */
12097 static inline int fp_exception_el(CPUARMState *env)
12098 {
12099 #ifndef CONFIG_USER_ONLY
12100     int fpen;
12101     int cur_el = arm_current_el(env);
12102 
12103     /* CPACR and the CPTR registers don't exist before v6, so FP is
12104      * always accessible
12105      */
12106     if (!arm_feature(env, ARM_FEATURE_V6)) {
12107         return 0;
12108     }
12109 
12110     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12111      * 0, 2 : trap EL0 and EL1/PL1 accesses
12112      * 1    : trap only EL0 accesses
12113      * 3    : trap no accesses
12114      */
12115     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12116     switch (fpen) {
12117     case 0:
12118     case 2:
12119         if (cur_el == 0 || cur_el == 1) {
12120             /* Trap to PL1, which might be EL1 or EL3 */
12121             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12122                 return 3;
12123             }
12124             return 1;
12125         }
12126         if (cur_el == 3 && !is_a64(env)) {
12127             /* Secure PL1 running at EL3 */
12128             return 3;
12129         }
12130         break;
12131     case 1:
12132         if (cur_el == 0) {
12133             return 1;
12134         }
12135         break;
12136     case 3:
12137         break;
12138     }
12139 
12140     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12141      * check because zero bits in the registers mean "don't trap".
12142      */
12143 
12144     /* CPTR_EL2 : present in v7VE or v8 */
12145     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12146         && !arm_is_secure_below_el3(env)) {
12147         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12148         return 2;
12149     }
12150 
12151     /* CPTR_EL3 : present in v8 */
12152     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12153         /* Trap all FP ops to EL3 */
12154         return 3;
12155     }
12156 #endif
12157     return 0;
12158 }
12159 
12160 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12161                           target_ulong *cs_base, uint32_t *pflags)
12162 {
12163     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
12164     int fp_el = fp_exception_el(env);
12165     uint32_t flags;
12166 
12167     if (is_a64(env)) {
12168         int sve_el = sve_exception_el(env);
12169         uint32_t zcr_len;
12170 
12171         *pc = env->pc;
12172         flags = ARM_TBFLAG_AARCH64_STATE_MASK;
12173         /* Get control bits for tagged addresses */
12174         flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
12175         flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
12176         flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT;
12177 
12178         /* If SVE is disabled, but FP is enabled,
12179            then the effective len is 0.  */
12180         if (sve_el != 0 && fp_el == 0) {
12181             zcr_len = 0;
12182         } else {
12183             int current_el = arm_current_el(env);
12184 
12185             zcr_len = env->vfp.zcr_el[current_el <= 1 ? 1 : current_el];
12186             zcr_len &= 0xf;
12187             if (current_el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
12188                 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
12189             }
12190             if (current_el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
12191                 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
12192             }
12193         }
12194         flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT;
12195     } else {
12196         *pc = env->regs[15];
12197         flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
12198             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
12199             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
12200             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
12201             | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
12202         if (!(access_secure_reg(env))) {
12203             flags |= ARM_TBFLAG_NS_MASK;
12204         }
12205         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
12206             || arm_el_is_aa64(env, 1)) {
12207             flags |= ARM_TBFLAG_VFPEN_MASK;
12208         }
12209         flags |= (extract32(env->cp15.c15_cpar, 0, 2)
12210                   << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
12211     }
12212 
12213     flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
12214 
12215     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12216      * states defined in the ARM ARM for software singlestep:
12217      *  SS_ACTIVE   PSTATE.SS   State
12218      *     0            x       Inactive (the TB flag for SS is always 0)
12219      *     1            0       Active-pending
12220      *     1            1       Active-not-pending
12221      */
12222     if (arm_singlestep_active(env)) {
12223         flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
12224         if (is_a64(env)) {
12225             if (env->pstate & PSTATE_SS) {
12226                 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12227             }
12228         } else {
12229             if (env->uncached_cpsr & PSTATE_SS) {
12230                 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12231             }
12232         }
12233     }
12234     if (arm_cpu_data_is_big_endian(env)) {
12235         flags |= ARM_TBFLAG_BE_DATA_MASK;
12236     }
12237     flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT;
12238 
12239     if (arm_v7m_is_handler_mode(env)) {
12240         flags |= ARM_TBFLAG_HANDLER_MASK;
12241     }
12242 
12243     *pflags = flags;
12244     *cs_base = 0;
12245 }
12246