1 #include "qemu/osdep.h" 2 #include "target/arm/idau.h" 3 #include "trace.h" 4 #include "cpu.h" 5 #include "internals.h" 6 #include "exec/gdbstub.h" 7 #include "exec/helper-proto.h" 8 #include "qemu/host-utils.h" 9 #include "sysemu/arch_init.h" 10 #include "sysemu/sysemu.h" 11 #include "qemu/bitops.h" 12 #include "qemu/crc32c.h" 13 #include "exec/exec-all.h" 14 #include "exec/cpu_ldst.h" 15 #include "arm_ldst.h" 16 #include <zlib.h> /* For crc32 */ 17 #include "exec/semihost.h" 18 #include "sysemu/kvm.h" 19 #include "fpu/softfloat.h" 20 21 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 22 23 #ifndef CONFIG_USER_ONLY 24 /* Cacheability and shareability attributes for a memory access */ 25 typedef struct ARMCacheAttrs { 26 unsigned int attrs:8; /* as in the MAIR register encoding */ 27 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 28 } ARMCacheAttrs; 29 30 static bool get_phys_addr(CPUARMState *env, target_ulong address, 31 MMUAccessType access_type, ARMMMUIdx mmu_idx, 32 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 33 target_ulong *page_size, 34 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 35 36 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 37 MMUAccessType access_type, ARMMMUIdx mmu_idx, 38 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 39 target_ulong *page_size_ptr, 40 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 41 42 /* Security attributes for an address, as returned by v8m_security_lookup. */ 43 typedef struct V8M_SAttributes { 44 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ 45 bool ns; 46 bool nsc; 47 uint8_t sregion; 48 bool srvalid; 49 uint8_t iregion; 50 bool irvalid; 51 } V8M_SAttributes; 52 53 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 54 MMUAccessType access_type, ARMMMUIdx mmu_idx, 55 V8M_SAttributes *sattrs); 56 #endif 57 58 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 59 { 60 int nregs; 61 62 /* VFP data registers are always little-endian. */ 63 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 64 if (reg < nregs) { 65 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 66 return 8; 67 } 68 if (arm_feature(env, ARM_FEATURE_NEON)) { 69 /* Aliases for Q regs. */ 70 nregs += 16; 71 if (reg < nregs) { 72 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 73 stq_le_p(buf, q[0]); 74 stq_le_p(buf + 8, q[1]); 75 return 16; 76 } 77 } 78 switch (reg - nregs) { 79 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 80 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; 81 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 82 } 83 return 0; 84 } 85 86 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 87 { 88 int nregs; 89 90 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 91 if (reg < nregs) { 92 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 93 return 8; 94 } 95 if (arm_feature(env, ARM_FEATURE_NEON)) { 96 nregs += 16; 97 if (reg < nregs) { 98 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 99 q[0] = ldq_le_p(buf); 100 q[1] = ldq_le_p(buf + 8); 101 return 16; 102 } 103 } 104 switch (reg - nregs) { 105 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 106 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; 107 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 108 } 109 return 0; 110 } 111 112 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 113 { 114 switch (reg) { 115 case 0 ... 31: 116 /* 128 bit FP register */ 117 { 118 uint64_t *q = aa64_vfp_qreg(env, reg); 119 stq_le_p(buf, q[0]); 120 stq_le_p(buf + 8, q[1]); 121 return 16; 122 } 123 case 32: 124 /* FPSR */ 125 stl_p(buf, vfp_get_fpsr(env)); 126 return 4; 127 case 33: 128 /* FPCR */ 129 stl_p(buf, vfp_get_fpcr(env)); 130 return 4; 131 default: 132 return 0; 133 } 134 } 135 136 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 137 { 138 switch (reg) { 139 case 0 ... 31: 140 /* 128 bit FP register */ 141 { 142 uint64_t *q = aa64_vfp_qreg(env, reg); 143 q[0] = ldq_le_p(buf); 144 q[1] = ldq_le_p(buf + 8); 145 return 16; 146 } 147 case 32: 148 /* FPSR */ 149 vfp_set_fpsr(env, ldl_p(buf)); 150 return 4; 151 case 33: 152 /* FPCR */ 153 vfp_set_fpcr(env, ldl_p(buf)); 154 return 4; 155 default: 156 return 0; 157 } 158 } 159 160 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 161 { 162 assert(ri->fieldoffset); 163 if (cpreg_field_is_64bit(ri)) { 164 return CPREG_FIELD64(env, ri); 165 } else { 166 return CPREG_FIELD32(env, ri); 167 } 168 } 169 170 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 171 uint64_t value) 172 { 173 assert(ri->fieldoffset); 174 if (cpreg_field_is_64bit(ri)) { 175 CPREG_FIELD64(env, ri) = value; 176 } else { 177 CPREG_FIELD32(env, ri) = value; 178 } 179 } 180 181 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 182 { 183 return (char *)env + ri->fieldoffset; 184 } 185 186 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 187 { 188 /* Raw read of a coprocessor register (as needed for migration, etc). */ 189 if (ri->type & ARM_CP_CONST) { 190 return ri->resetvalue; 191 } else if (ri->raw_readfn) { 192 return ri->raw_readfn(env, ri); 193 } else if (ri->readfn) { 194 return ri->readfn(env, ri); 195 } else { 196 return raw_read(env, ri); 197 } 198 } 199 200 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 201 uint64_t v) 202 { 203 /* Raw write of a coprocessor register (as needed for migration, etc). 204 * Note that constant registers are treated as write-ignored; the 205 * caller should check for success by whether a readback gives the 206 * value written. 207 */ 208 if (ri->type & ARM_CP_CONST) { 209 return; 210 } else if (ri->raw_writefn) { 211 ri->raw_writefn(env, ri, v); 212 } else if (ri->writefn) { 213 ri->writefn(env, ri, v); 214 } else { 215 raw_write(env, ri, v); 216 } 217 } 218 219 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) 220 { 221 ARMCPU *cpu = arm_env_get_cpu(env); 222 const ARMCPRegInfo *ri; 223 uint32_t key; 224 225 key = cpu->dyn_xml.cpregs_keys[reg]; 226 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 227 if (ri) { 228 if (cpreg_field_is_64bit(ri)) { 229 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 230 } else { 231 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 232 } 233 } 234 return 0; 235 } 236 237 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 238 { 239 return 0; 240 } 241 242 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 243 { 244 /* Return true if the regdef would cause an assertion if you called 245 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 246 * program bug for it not to have the NO_RAW flag). 247 * NB that returning false here doesn't necessarily mean that calling 248 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 249 * read/write access functions which are safe for raw use" from "has 250 * read/write access functions which have side effects but has forgotten 251 * to provide raw access functions". 252 * The tests here line up with the conditions in read/write_raw_cp_reg() 253 * and assertions in raw_read()/raw_write(). 254 */ 255 if ((ri->type & ARM_CP_CONST) || 256 ri->fieldoffset || 257 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 258 return false; 259 } 260 return true; 261 } 262 263 bool write_cpustate_to_list(ARMCPU *cpu) 264 { 265 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 266 int i; 267 bool ok = true; 268 269 for (i = 0; i < cpu->cpreg_array_len; i++) { 270 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 271 const ARMCPRegInfo *ri; 272 273 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 274 if (!ri) { 275 ok = false; 276 continue; 277 } 278 if (ri->type & ARM_CP_NO_RAW) { 279 continue; 280 } 281 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); 282 } 283 return ok; 284 } 285 286 bool write_list_to_cpustate(ARMCPU *cpu) 287 { 288 int i; 289 bool ok = true; 290 291 for (i = 0; i < cpu->cpreg_array_len; i++) { 292 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 293 uint64_t v = cpu->cpreg_values[i]; 294 const ARMCPRegInfo *ri; 295 296 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 297 if (!ri) { 298 ok = false; 299 continue; 300 } 301 if (ri->type & ARM_CP_NO_RAW) { 302 continue; 303 } 304 /* Write value and confirm it reads back as written 305 * (to catch read-only registers and partially read-only 306 * registers where the incoming migration value doesn't match) 307 */ 308 write_raw_cp_reg(&cpu->env, ri, v); 309 if (read_raw_cp_reg(&cpu->env, ri) != v) { 310 ok = false; 311 } 312 } 313 return ok; 314 } 315 316 static void add_cpreg_to_list(gpointer key, gpointer opaque) 317 { 318 ARMCPU *cpu = opaque; 319 uint64_t regidx; 320 const ARMCPRegInfo *ri; 321 322 regidx = *(uint32_t *)key; 323 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 324 325 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 326 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 327 /* The value array need not be initialized at this point */ 328 cpu->cpreg_array_len++; 329 } 330 } 331 332 static void count_cpreg(gpointer key, gpointer opaque) 333 { 334 ARMCPU *cpu = opaque; 335 uint64_t regidx; 336 const ARMCPRegInfo *ri; 337 338 regidx = *(uint32_t *)key; 339 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 340 341 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 342 cpu->cpreg_array_len++; 343 } 344 } 345 346 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 347 { 348 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 349 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 350 351 if (aidx > bidx) { 352 return 1; 353 } 354 if (aidx < bidx) { 355 return -1; 356 } 357 return 0; 358 } 359 360 void init_cpreg_list(ARMCPU *cpu) 361 { 362 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 363 * Note that we require cpreg_tuples[] to be sorted by key ID. 364 */ 365 GList *keys; 366 int arraylen; 367 368 keys = g_hash_table_get_keys(cpu->cp_regs); 369 keys = g_list_sort(keys, cpreg_key_compare); 370 371 cpu->cpreg_array_len = 0; 372 373 g_list_foreach(keys, count_cpreg, cpu); 374 375 arraylen = cpu->cpreg_array_len; 376 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 377 cpu->cpreg_values = g_new(uint64_t, arraylen); 378 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 379 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 380 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 381 cpu->cpreg_array_len = 0; 382 383 g_list_foreach(keys, add_cpreg_to_list, cpu); 384 385 assert(cpu->cpreg_array_len == arraylen); 386 387 g_list_free(keys); 388 } 389 390 /* 391 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 392 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 393 * 394 * access_el3_aa32ns: Used to check AArch32 register views. 395 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 396 */ 397 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 398 const ARMCPRegInfo *ri, 399 bool isread) 400 { 401 bool secure = arm_is_secure_below_el3(env); 402 403 assert(!arm_el_is_aa64(env, 3)); 404 if (secure) { 405 return CP_ACCESS_TRAP_UNCATEGORIZED; 406 } 407 return CP_ACCESS_OK; 408 } 409 410 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 411 const ARMCPRegInfo *ri, 412 bool isread) 413 { 414 if (!arm_el_is_aa64(env, 3)) { 415 return access_el3_aa32ns(env, ri, isread); 416 } 417 return CP_ACCESS_OK; 418 } 419 420 /* Some secure-only AArch32 registers trap to EL3 if used from 421 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 422 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 423 * We assume that the .access field is set to PL1_RW. 424 */ 425 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 426 const ARMCPRegInfo *ri, 427 bool isread) 428 { 429 if (arm_current_el(env) == 3) { 430 return CP_ACCESS_OK; 431 } 432 if (arm_is_secure_below_el3(env)) { 433 return CP_ACCESS_TRAP_EL3; 434 } 435 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 436 return CP_ACCESS_TRAP_UNCATEGORIZED; 437 } 438 439 /* Check for traps to "powerdown debug" registers, which are controlled 440 * by MDCR.TDOSA 441 */ 442 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 443 bool isread) 444 { 445 int el = arm_current_el(env); 446 447 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA) 448 && !arm_is_secure_below_el3(env)) { 449 return CP_ACCESS_TRAP_EL2; 450 } 451 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 452 return CP_ACCESS_TRAP_EL3; 453 } 454 return CP_ACCESS_OK; 455 } 456 457 /* Check for traps to "debug ROM" registers, which are controlled 458 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 459 */ 460 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 461 bool isread) 462 { 463 int el = arm_current_el(env); 464 465 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA) 466 && !arm_is_secure_below_el3(env)) { 467 return CP_ACCESS_TRAP_EL2; 468 } 469 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 470 return CP_ACCESS_TRAP_EL3; 471 } 472 return CP_ACCESS_OK; 473 } 474 475 /* Check for traps to general debug registers, which are controlled 476 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 477 */ 478 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 479 bool isread) 480 { 481 int el = arm_current_el(env); 482 483 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA) 484 && !arm_is_secure_below_el3(env)) { 485 return CP_ACCESS_TRAP_EL2; 486 } 487 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 488 return CP_ACCESS_TRAP_EL3; 489 } 490 return CP_ACCESS_OK; 491 } 492 493 /* Check for traps to performance monitor registers, which are controlled 494 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 495 */ 496 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 497 bool isread) 498 { 499 int el = arm_current_el(env); 500 501 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 502 && !arm_is_secure_below_el3(env)) { 503 return CP_ACCESS_TRAP_EL2; 504 } 505 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 506 return CP_ACCESS_TRAP_EL3; 507 } 508 return CP_ACCESS_OK; 509 } 510 511 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 512 { 513 ARMCPU *cpu = arm_env_get_cpu(env); 514 515 raw_write(env, ri, value); 516 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 517 } 518 519 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 520 { 521 ARMCPU *cpu = arm_env_get_cpu(env); 522 523 if (raw_read(env, ri) != value) { 524 /* Unlike real hardware the qemu TLB uses virtual addresses, 525 * not modified virtual addresses, so this causes a TLB flush. 526 */ 527 tlb_flush(CPU(cpu)); 528 raw_write(env, ri, value); 529 } 530 } 531 532 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 533 uint64_t value) 534 { 535 ARMCPU *cpu = arm_env_get_cpu(env); 536 537 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 538 && !extended_addresses_enabled(env)) { 539 /* For VMSA (when not using the LPAE long descriptor page table 540 * format) this register includes the ASID, so do a TLB flush. 541 * For PMSA it is purely a process ID and no action is needed. 542 */ 543 tlb_flush(CPU(cpu)); 544 } 545 raw_write(env, ri, value); 546 } 547 548 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 549 uint64_t value) 550 { 551 /* Invalidate all (TLBIALL) */ 552 ARMCPU *cpu = arm_env_get_cpu(env); 553 554 tlb_flush(CPU(cpu)); 555 } 556 557 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 558 uint64_t value) 559 { 560 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 561 ARMCPU *cpu = arm_env_get_cpu(env); 562 563 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 564 } 565 566 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 567 uint64_t value) 568 { 569 /* Invalidate by ASID (TLBIASID) */ 570 ARMCPU *cpu = arm_env_get_cpu(env); 571 572 tlb_flush(CPU(cpu)); 573 } 574 575 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 576 uint64_t value) 577 { 578 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 579 ARMCPU *cpu = arm_env_get_cpu(env); 580 581 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 582 } 583 584 /* IS variants of TLB operations must affect all cores */ 585 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 586 uint64_t value) 587 { 588 CPUState *cs = ENV_GET_CPU(env); 589 590 tlb_flush_all_cpus_synced(cs); 591 } 592 593 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 594 uint64_t value) 595 { 596 CPUState *cs = ENV_GET_CPU(env); 597 598 tlb_flush_all_cpus_synced(cs); 599 } 600 601 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 602 uint64_t value) 603 { 604 CPUState *cs = ENV_GET_CPU(env); 605 606 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 607 } 608 609 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 610 uint64_t value) 611 { 612 CPUState *cs = ENV_GET_CPU(env); 613 614 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 615 } 616 617 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 618 uint64_t value) 619 { 620 CPUState *cs = ENV_GET_CPU(env); 621 622 tlb_flush_by_mmuidx(cs, 623 ARMMMUIdxBit_S12NSE1 | 624 ARMMMUIdxBit_S12NSE0 | 625 ARMMMUIdxBit_S2NS); 626 } 627 628 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 629 uint64_t value) 630 { 631 CPUState *cs = ENV_GET_CPU(env); 632 633 tlb_flush_by_mmuidx_all_cpus_synced(cs, 634 ARMMMUIdxBit_S12NSE1 | 635 ARMMMUIdxBit_S12NSE0 | 636 ARMMMUIdxBit_S2NS); 637 } 638 639 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 640 uint64_t value) 641 { 642 /* Invalidate by IPA. This has to invalidate any structures that 643 * contain only stage 2 translation information, but does not need 644 * to apply to structures that contain combined stage 1 and stage 2 645 * translation information. 646 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 647 */ 648 CPUState *cs = ENV_GET_CPU(env); 649 uint64_t pageaddr; 650 651 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 652 return; 653 } 654 655 pageaddr = sextract64(value << 12, 0, 40); 656 657 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 658 } 659 660 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 661 uint64_t value) 662 { 663 CPUState *cs = ENV_GET_CPU(env); 664 uint64_t pageaddr; 665 666 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 667 return; 668 } 669 670 pageaddr = sextract64(value << 12, 0, 40); 671 672 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 673 ARMMMUIdxBit_S2NS); 674 } 675 676 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 677 uint64_t value) 678 { 679 CPUState *cs = ENV_GET_CPU(env); 680 681 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 682 } 683 684 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 685 uint64_t value) 686 { 687 CPUState *cs = ENV_GET_CPU(env); 688 689 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 690 } 691 692 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 693 uint64_t value) 694 { 695 CPUState *cs = ENV_GET_CPU(env); 696 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 697 698 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 699 } 700 701 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 702 uint64_t value) 703 { 704 CPUState *cs = ENV_GET_CPU(env); 705 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 706 707 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 708 ARMMMUIdxBit_S1E2); 709 } 710 711 static const ARMCPRegInfo cp_reginfo[] = { 712 /* Define the secure and non-secure FCSE identifier CP registers 713 * separately because there is no secure bank in V8 (no _EL3). This allows 714 * the secure register to be properly reset and migrated. There is also no 715 * v8 EL1 version of the register so the non-secure instance stands alone. 716 */ 717 { .name = "FCSEIDR", 718 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 719 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 720 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 721 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 722 { .name = "FCSEIDR_S", 723 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 724 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 725 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 726 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 727 /* Define the secure and non-secure context identifier CP registers 728 * separately because there is no secure bank in V8 (no _EL3). This allows 729 * the secure register to be properly reset and migrated. In the 730 * non-secure case, the 32-bit register will have reset and migration 731 * disabled during registration as it is handled by the 64-bit instance. 732 */ 733 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 734 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 735 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 736 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 737 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 738 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 739 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 740 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 741 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 742 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 743 REGINFO_SENTINEL 744 }; 745 746 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 747 /* NB: Some of these registers exist in v8 but with more precise 748 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 749 */ 750 /* MMU Domain access control / MPU write buffer control */ 751 { .name = "DACR", 752 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 753 .access = PL1_RW, .resetvalue = 0, 754 .writefn = dacr_write, .raw_writefn = raw_write, 755 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 756 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 757 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 758 * For v6 and v5, these mappings are overly broad. 759 */ 760 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 761 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 762 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 763 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 764 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 765 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 766 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 767 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 768 /* Cache maintenance ops; some of this space may be overridden later. */ 769 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 770 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 771 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 772 REGINFO_SENTINEL 773 }; 774 775 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 776 /* Not all pre-v6 cores implemented this WFI, so this is slightly 777 * over-broad. 778 */ 779 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 780 .access = PL1_W, .type = ARM_CP_WFI }, 781 REGINFO_SENTINEL 782 }; 783 784 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 785 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 786 * is UNPREDICTABLE; we choose to NOP as most implementations do). 787 */ 788 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 789 .access = PL1_W, .type = ARM_CP_WFI }, 790 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 791 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 792 * OMAPCP will override this space. 793 */ 794 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 795 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 796 .resetvalue = 0 }, 797 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 798 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 799 .resetvalue = 0 }, 800 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 801 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 802 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 803 .resetvalue = 0 }, 804 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 805 * implementing it as RAZ means the "debug architecture version" bits 806 * will read as a reserved value, which should cause Linux to not try 807 * to use the debug hardware. 808 */ 809 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 810 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 811 /* MMU TLB control. Note that the wildcarding means we cover not just 812 * the unified TLB ops but also the dside/iside/inner-shareable variants. 813 */ 814 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 815 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 816 .type = ARM_CP_NO_RAW }, 817 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 818 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 819 .type = ARM_CP_NO_RAW }, 820 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 821 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 822 .type = ARM_CP_NO_RAW }, 823 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 824 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 825 .type = ARM_CP_NO_RAW }, 826 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 827 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 828 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 829 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 830 REGINFO_SENTINEL 831 }; 832 833 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 834 uint64_t value) 835 { 836 uint32_t mask = 0; 837 838 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 839 if (!arm_feature(env, ARM_FEATURE_V8)) { 840 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 841 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 842 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 843 */ 844 if (arm_feature(env, ARM_FEATURE_VFP)) { 845 /* VFP coprocessor: cp10 & cp11 [23:20] */ 846 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 847 848 if (!arm_feature(env, ARM_FEATURE_NEON)) { 849 /* ASEDIS [31] bit is RAO/WI */ 850 value |= (1 << 31); 851 } 852 853 /* VFPv3 and upwards with NEON implement 32 double precision 854 * registers (D0-D31). 855 */ 856 if (!arm_feature(env, ARM_FEATURE_NEON) || 857 !arm_feature(env, ARM_FEATURE_VFP3)) { 858 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 859 value |= (1 << 30); 860 } 861 } 862 value &= mask; 863 } 864 env->cp15.cpacr_el1 = value; 865 } 866 867 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 868 { 869 /* Call cpacr_write() so that we reset with the correct RAO bits set 870 * for our CPU features. 871 */ 872 cpacr_write(env, ri, 0); 873 } 874 875 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 876 bool isread) 877 { 878 if (arm_feature(env, ARM_FEATURE_V8)) { 879 /* Check if CPACR accesses are to be trapped to EL2 */ 880 if (arm_current_el(env) == 1 && 881 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 882 return CP_ACCESS_TRAP_EL2; 883 /* Check if CPACR accesses are to be trapped to EL3 */ 884 } else if (arm_current_el(env) < 3 && 885 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 886 return CP_ACCESS_TRAP_EL3; 887 } 888 } 889 890 return CP_ACCESS_OK; 891 } 892 893 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 894 bool isread) 895 { 896 /* Check if CPTR accesses are set to trap to EL3 */ 897 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 898 return CP_ACCESS_TRAP_EL3; 899 } 900 901 return CP_ACCESS_OK; 902 } 903 904 static const ARMCPRegInfo v6_cp_reginfo[] = { 905 /* prefetch by MVA in v6, NOP in v7 */ 906 { .name = "MVA_prefetch", 907 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 908 .access = PL1_W, .type = ARM_CP_NOP }, 909 /* We need to break the TB after ISB to execute self-modifying code 910 * correctly and also to take any pending interrupts immediately. 911 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 912 */ 913 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 914 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 915 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 916 .access = PL0_W, .type = ARM_CP_NOP }, 917 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 918 .access = PL0_W, .type = ARM_CP_NOP }, 919 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 920 .access = PL1_RW, 921 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 922 offsetof(CPUARMState, cp15.ifar_ns) }, 923 .resetvalue = 0, }, 924 /* Watchpoint Fault Address Register : should actually only be present 925 * for 1136, 1176, 11MPCore. 926 */ 927 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 928 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 929 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 930 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 931 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 932 .resetfn = cpacr_reset, .writefn = cpacr_write }, 933 REGINFO_SENTINEL 934 }; 935 936 /* Definitions for the PMU registers */ 937 #define PMCRN_MASK 0xf800 938 #define PMCRN_SHIFT 11 939 #define PMCRD 0x8 940 #define PMCRC 0x4 941 #define PMCRE 0x1 942 943 static inline uint32_t pmu_num_counters(CPUARMState *env) 944 { 945 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 946 } 947 948 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 949 static inline uint64_t pmu_counter_mask(CPUARMState *env) 950 { 951 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 952 } 953 954 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 955 bool isread) 956 { 957 /* Performance monitor registers user accessibility is controlled 958 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 959 * trapping to EL2 or EL3 for other accesses. 960 */ 961 int el = arm_current_el(env); 962 963 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 964 return CP_ACCESS_TRAP; 965 } 966 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 967 && !arm_is_secure_below_el3(env)) { 968 return CP_ACCESS_TRAP_EL2; 969 } 970 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 971 return CP_ACCESS_TRAP_EL3; 972 } 973 974 return CP_ACCESS_OK; 975 } 976 977 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 978 const ARMCPRegInfo *ri, 979 bool isread) 980 { 981 /* ER: event counter read trap control */ 982 if (arm_feature(env, ARM_FEATURE_V8) 983 && arm_current_el(env) == 0 984 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 985 && isread) { 986 return CP_ACCESS_OK; 987 } 988 989 return pmreg_access(env, ri, isread); 990 } 991 992 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 993 const ARMCPRegInfo *ri, 994 bool isread) 995 { 996 /* SW: software increment write trap control */ 997 if (arm_feature(env, ARM_FEATURE_V8) 998 && arm_current_el(env) == 0 999 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1000 && !isread) { 1001 return CP_ACCESS_OK; 1002 } 1003 1004 return pmreg_access(env, ri, isread); 1005 } 1006 1007 #ifndef CONFIG_USER_ONLY 1008 1009 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1010 const ARMCPRegInfo *ri, 1011 bool isread) 1012 { 1013 /* ER: event counter read trap control */ 1014 if (arm_feature(env, ARM_FEATURE_V8) 1015 && arm_current_el(env) == 0 1016 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1017 return CP_ACCESS_OK; 1018 } 1019 1020 return pmreg_access(env, ri, isread); 1021 } 1022 1023 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1024 const ARMCPRegInfo *ri, 1025 bool isread) 1026 { 1027 /* CR: cycle counter read trap control */ 1028 if (arm_feature(env, ARM_FEATURE_V8) 1029 && arm_current_el(env) == 0 1030 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1031 && isread) { 1032 return CP_ACCESS_OK; 1033 } 1034 1035 return pmreg_access(env, ri, isread); 1036 } 1037 1038 static inline bool arm_ccnt_enabled(CPUARMState *env) 1039 { 1040 /* This does not support checking PMCCFILTR_EL0 register */ 1041 1042 if (!(env->cp15.c9_pmcr & PMCRE) || !(env->cp15.c9_pmcnten & (1 << 31))) { 1043 return false; 1044 } 1045 1046 return true; 1047 } 1048 1049 void pmccntr_sync(CPUARMState *env) 1050 { 1051 uint64_t temp_ticks; 1052 1053 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1054 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1055 1056 if (env->cp15.c9_pmcr & PMCRD) { 1057 /* Increment once every 64 processor clock cycles */ 1058 temp_ticks /= 64; 1059 } 1060 1061 if (arm_ccnt_enabled(env)) { 1062 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; 1063 } 1064 } 1065 1066 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1067 uint64_t value) 1068 { 1069 pmccntr_sync(env); 1070 1071 if (value & PMCRC) { 1072 /* The counter has been reset */ 1073 env->cp15.c15_ccnt = 0; 1074 } 1075 1076 /* only the DP, X, D and E bits are writable */ 1077 env->cp15.c9_pmcr &= ~0x39; 1078 env->cp15.c9_pmcr |= (value & 0x39); 1079 1080 pmccntr_sync(env); 1081 } 1082 1083 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1084 { 1085 uint64_t total_ticks; 1086 1087 if (!arm_ccnt_enabled(env)) { 1088 /* Counter is disabled, do not change value */ 1089 return env->cp15.c15_ccnt; 1090 } 1091 1092 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1093 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1094 1095 if (env->cp15.c9_pmcr & PMCRD) { 1096 /* Increment once every 64 processor clock cycles */ 1097 total_ticks /= 64; 1098 } 1099 return total_ticks - env->cp15.c15_ccnt; 1100 } 1101 1102 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1103 uint64_t value) 1104 { 1105 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1106 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1107 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1108 * accessed. 1109 */ 1110 env->cp15.c9_pmselr = value & 0x1f; 1111 } 1112 1113 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1114 uint64_t value) 1115 { 1116 uint64_t total_ticks; 1117 1118 if (!arm_ccnt_enabled(env)) { 1119 /* Counter is disabled, set the absolute value */ 1120 env->cp15.c15_ccnt = value; 1121 return; 1122 } 1123 1124 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1125 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1126 1127 if (env->cp15.c9_pmcr & PMCRD) { 1128 /* Increment once every 64 processor clock cycles */ 1129 total_ticks /= 64; 1130 } 1131 env->cp15.c15_ccnt = total_ticks - value; 1132 } 1133 1134 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1135 uint64_t value) 1136 { 1137 uint64_t cur_val = pmccntr_read(env, NULL); 1138 1139 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1140 } 1141 1142 #else /* CONFIG_USER_ONLY */ 1143 1144 void pmccntr_sync(CPUARMState *env) 1145 { 1146 } 1147 1148 #endif 1149 1150 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1151 uint64_t value) 1152 { 1153 pmccntr_sync(env); 1154 env->cp15.pmccfiltr_el0 = value & 0xfc000000; 1155 pmccntr_sync(env); 1156 } 1157 1158 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1159 uint64_t value) 1160 { 1161 value &= pmu_counter_mask(env); 1162 env->cp15.c9_pmcnten |= value; 1163 } 1164 1165 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1166 uint64_t value) 1167 { 1168 value &= pmu_counter_mask(env); 1169 env->cp15.c9_pmcnten &= ~value; 1170 } 1171 1172 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1173 uint64_t value) 1174 { 1175 env->cp15.c9_pmovsr &= ~value; 1176 } 1177 1178 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1179 uint64_t value) 1180 { 1181 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1182 * PMSELR value is equal to or greater than the number of implemented 1183 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1184 */ 1185 if (env->cp15.c9_pmselr == 0x1f) { 1186 pmccfiltr_write(env, ri, value); 1187 } 1188 } 1189 1190 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1191 { 1192 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1193 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write(). 1194 */ 1195 if (env->cp15.c9_pmselr == 0x1f) { 1196 return env->cp15.pmccfiltr_el0; 1197 } else { 1198 return 0; 1199 } 1200 } 1201 1202 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1203 uint64_t value) 1204 { 1205 if (arm_feature(env, ARM_FEATURE_V8)) { 1206 env->cp15.c9_pmuserenr = value & 0xf; 1207 } else { 1208 env->cp15.c9_pmuserenr = value & 1; 1209 } 1210 } 1211 1212 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1213 uint64_t value) 1214 { 1215 /* We have no event counters so only the C bit can be changed */ 1216 value &= pmu_counter_mask(env); 1217 env->cp15.c9_pminten |= value; 1218 } 1219 1220 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1221 uint64_t value) 1222 { 1223 value &= pmu_counter_mask(env); 1224 env->cp15.c9_pminten &= ~value; 1225 } 1226 1227 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1228 uint64_t value) 1229 { 1230 /* Note that even though the AArch64 view of this register has bits 1231 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1232 * architectural requirements for bits which are RES0 only in some 1233 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1234 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1235 */ 1236 raw_write(env, ri, value & ~0x1FULL); 1237 } 1238 1239 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1240 { 1241 /* We only mask off bits that are RES0 both for AArch64 and AArch32. 1242 * For bits that vary between AArch32/64, code needs to check the 1243 * current execution mode before directly using the feature bit. 1244 */ 1245 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; 1246 1247 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1248 valid_mask &= ~SCR_HCE; 1249 1250 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1251 * supported if EL2 exists. The bit is UNK/SBZP when 1252 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1253 * when EL2 is unavailable. 1254 * On ARMv8, this bit is always available. 1255 */ 1256 if (arm_feature(env, ARM_FEATURE_V7) && 1257 !arm_feature(env, ARM_FEATURE_V8)) { 1258 valid_mask &= ~SCR_SMD; 1259 } 1260 } 1261 1262 /* Clear all-context RES0 bits. */ 1263 value &= valid_mask; 1264 raw_write(env, ri, value); 1265 } 1266 1267 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1268 { 1269 ARMCPU *cpu = arm_env_get_cpu(env); 1270 1271 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1272 * bank 1273 */ 1274 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1275 ri->secure & ARM_CP_SECSTATE_S); 1276 1277 return cpu->ccsidr[index]; 1278 } 1279 1280 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1281 uint64_t value) 1282 { 1283 raw_write(env, ri, value & 0xf); 1284 } 1285 1286 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1287 { 1288 CPUState *cs = ENV_GET_CPU(env); 1289 uint64_t ret = 0; 1290 1291 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1292 ret |= CPSR_I; 1293 } 1294 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1295 ret |= CPSR_F; 1296 } 1297 /* External aborts are not possible in QEMU so A bit is always clear */ 1298 return ret; 1299 } 1300 1301 static const ARMCPRegInfo v7_cp_reginfo[] = { 1302 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1303 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1304 .access = PL1_W, .type = ARM_CP_NOP }, 1305 /* Performance monitors are implementation defined in v7, 1306 * but with an ARM recommended set of registers, which we 1307 * follow (although we don't actually implement any counters) 1308 * 1309 * Performance registers fall into three categories: 1310 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1311 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1312 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1313 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1314 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1315 */ 1316 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1317 .access = PL0_RW, .type = ARM_CP_ALIAS, 1318 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1319 .writefn = pmcntenset_write, 1320 .accessfn = pmreg_access, 1321 .raw_writefn = raw_write }, 1322 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1323 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1324 .access = PL0_RW, .accessfn = pmreg_access, 1325 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1326 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1327 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1328 .access = PL0_RW, 1329 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1330 .accessfn = pmreg_access, 1331 .writefn = pmcntenclr_write, 1332 .type = ARM_CP_ALIAS }, 1333 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1334 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1335 .access = PL0_RW, .accessfn = pmreg_access, 1336 .type = ARM_CP_ALIAS, 1337 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1338 .writefn = pmcntenclr_write }, 1339 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1340 .access = PL0_RW, 1341 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1342 .accessfn = pmreg_access, 1343 .writefn = pmovsr_write, 1344 .raw_writefn = raw_write }, 1345 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1346 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1347 .access = PL0_RW, .accessfn = pmreg_access, 1348 .type = ARM_CP_ALIAS, 1349 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1350 .writefn = pmovsr_write, 1351 .raw_writefn = raw_write }, 1352 /* Unimplemented so WI. */ 1353 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1354 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP }, 1355 #ifndef CONFIG_USER_ONLY 1356 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1357 .access = PL0_RW, .type = ARM_CP_ALIAS, 1358 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1359 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1360 .raw_writefn = raw_write}, 1361 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1362 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1363 .access = PL0_RW, .accessfn = pmreg_access_selr, 1364 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1365 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1366 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1367 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1368 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1369 .accessfn = pmreg_access_ccntr }, 1370 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1371 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1372 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1373 .type = ARM_CP_IO, 1374 .readfn = pmccntr_read, .writefn = pmccntr_write, }, 1375 #endif 1376 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1377 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1378 .writefn = pmccfiltr_write, 1379 .access = PL0_RW, .accessfn = pmreg_access, 1380 .type = ARM_CP_IO, 1381 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1382 .resetvalue = 0, }, 1383 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1384 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1385 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1386 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1387 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1388 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1389 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1390 /* Unimplemented, RAZ/WI. */ 1391 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1392 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, 1393 .accessfn = pmreg_access_xevcntr }, 1394 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1395 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1396 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 1397 .resetvalue = 0, 1398 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1399 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 1400 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 1401 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1402 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1403 .resetvalue = 0, 1404 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1405 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 1406 .access = PL1_RW, .accessfn = access_tpm, 1407 .type = ARM_CP_ALIAS | ARM_CP_IO, 1408 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 1409 .resetvalue = 0, 1410 .writefn = pmintenset_write, .raw_writefn = raw_write }, 1411 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 1412 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 1413 .access = PL1_RW, .accessfn = access_tpm, 1414 .type = ARM_CP_IO, 1415 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1416 .writefn = pmintenset_write, .raw_writefn = raw_write, 1417 .resetvalue = 0x0 }, 1418 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 1419 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1420 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1421 .writefn = pmintenclr_write, }, 1422 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 1423 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 1424 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1425 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1426 .writefn = pmintenclr_write }, 1427 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 1428 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 1429 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 1430 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 1431 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 1432 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 1433 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 1434 offsetof(CPUARMState, cp15.csselr_ns) } }, 1435 /* Auxiliary ID register: this actually has an IMPDEF value but for now 1436 * just RAZ for all cores: 1437 */ 1438 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 1439 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 1440 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 1441 /* Auxiliary fault status registers: these also are IMPDEF, and we 1442 * choose to RAZ/WI for all cores. 1443 */ 1444 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 1445 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 1446 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1447 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 1448 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 1449 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1450 /* MAIR can just read-as-written because we don't implement caches 1451 * and so don't need to care about memory attributes. 1452 */ 1453 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 1454 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 1455 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 1456 .resetvalue = 0 }, 1457 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 1458 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 1459 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 1460 .resetvalue = 0 }, 1461 /* For non-long-descriptor page tables these are PRRR and NMRR; 1462 * regardless they still act as reads-as-written for QEMU. 1463 */ 1464 /* MAIR0/1 are defined separately from their 64-bit counterpart which 1465 * allows them to assign the correct fieldoffset based on the endianness 1466 * handled in the field definitions. 1467 */ 1468 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 1469 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 1470 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 1471 offsetof(CPUARMState, cp15.mair0_ns) }, 1472 .resetfn = arm_cp_reset_ignore }, 1473 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 1474 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 1475 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 1476 offsetof(CPUARMState, cp15.mair1_ns) }, 1477 .resetfn = arm_cp_reset_ignore }, 1478 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 1479 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 1480 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 1481 /* 32 bit ITLB invalidates */ 1482 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 1483 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1484 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 1485 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1486 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 1487 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1488 /* 32 bit DTLB invalidates */ 1489 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 1490 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1491 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 1492 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1493 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 1494 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1495 /* 32 bit TLB invalidates */ 1496 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 1497 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1498 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 1499 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1500 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 1501 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1502 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 1503 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 1504 REGINFO_SENTINEL 1505 }; 1506 1507 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 1508 /* 32 bit TLB invalidates, Inner Shareable */ 1509 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 1510 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 1511 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 1512 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 1513 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 1514 .type = ARM_CP_NO_RAW, .access = PL1_W, 1515 .writefn = tlbiasid_is_write }, 1516 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 1517 .type = ARM_CP_NO_RAW, .access = PL1_W, 1518 .writefn = tlbimvaa_is_write }, 1519 REGINFO_SENTINEL 1520 }; 1521 1522 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1523 uint64_t value) 1524 { 1525 value &= 1; 1526 env->teecr = value; 1527 } 1528 1529 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1530 bool isread) 1531 { 1532 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 1533 return CP_ACCESS_TRAP; 1534 } 1535 return CP_ACCESS_OK; 1536 } 1537 1538 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 1539 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 1540 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 1541 .resetvalue = 0, 1542 .writefn = teecr_write }, 1543 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 1544 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 1545 .accessfn = teehbr_access, .resetvalue = 0 }, 1546 REGINFO_SENTINEL 1547 }; 1548 1549 static const ARMCPRegInfo v6k_cp_reginfo[] = { 1550 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 1551 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 1552 .access = PL0_RW, 1553 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 1554 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 1555 .access = PL0_RW, 1556 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 1557 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 1558 .resetfn = arm_cp_reset_ignore }, 1559 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 1560 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 1561 .access = PL0_R|PL1_W, 1562 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 1563 .resetvalue = 0}, 1564 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 1565 .access = PL0_R|PL1_W, 1566 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 1567 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 1568 .resetfn = arm_cp_reset_ignore }, 1569 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 1570 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 1571 .access = PL1_RW, 1572 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 1573 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 1574 .access = PL1_RW, 1575 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 1576 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 1577 .resetvalue = 0 }, 1578 REGINFO_SENTINEL 1579 }; 1580 1581 #ifndef CONFIG_USER_ONLY 1582 1583 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 1584 bool isread) 1585 { 1586 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 1587 * Writable only at the highest implemented exception level. 1588 */ 1589 int el = arm_current_el(env); 1590 1591 switch (el) { 1592 case 0: 1593 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 1594 return CP_ACCESS_TRAP; 1595 } 1596 break; 1597 case 1: 1598 if (!isread && ri->state == ARM_CP_STATE_AA32 && 1599 arm_is_secure_below_el3(env)) { 1600 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 1601 return CP_ACCESS_TRAP_UNCATEGORIZED; 1602 } 1603 break; 1604 case 2: 1605 case 3: 1606 break; 1607 } 1608 1609 if (!isread && el < arm_highest_el(env)) { 1610 return CP_ACCESS_TRAP_UNCATEGORIZED; 1611 } 1612 1613 return CP_ACCESS_OK; 1614 } 1615 1616 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 1617 bool isread) 1618 { 1619 unsigned int cur_el = arm_current_el(env); 1620 bool secure = arm_is_secure(env); 1621 1622 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 1623 if (cur_el == 0 && 1624 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 1625 return CP_ACCESS_TRAP; 1626 } 1627 1628 if (arm_feature(env, ARM_FEATURE_EL2) && 1629 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1630 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 1631 return CP_ACCESS_TRAP_EL2; 1632 } 1633 return CP_ACCESS_OK; 1634 } 1635 1636 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 1637 bool isread) 1638 { 1639 unsigned int cur_el = arm_current_el(env); 1640 bool secure = arm_is_secure(env); 1641 1642 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 1643 * EL0[PV]TEN is zero. 1644 */ 1645 if (cur_el == 0 && 1646 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 1647 return CP_ACCESS_TRAP; 1648 } 1649 1650 if (arm_feature(env, ARM_FEATURE_EL2) && 1651 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1652 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 1653 return CP_ACCESS_TRAP_EL2; 1654 } 1655 return CP_ACCESS_OK; 1656 } 1657 1658 static CPAccessResult gt_pct_access(CPUARMState *env, 1659 const ARMCPRegInfo *ri, 1660 bool isread) 1661 { 1662 return gt_counter_access(env, GTIMER_PHYS, isread); 1663 } 1664 1665 static CPAccessResult gt_vct_access(CPUARMState *env, 1666 const ARMCPRegInfo *ri, 1667 bool isread) 1668 { 1669 return gt_counter_access(env, GTIMER_VIRT, isread); 1670 } 1671 1672 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1673 bool isread) 1674 { 1675 return gt_timer_access(env, GTIMER_PHYS, isread); 1676 } 1677 1678 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1679 bool isread) 1680 { 1681 return gt_timer_access(env, GTIMER_VIRT, isread); 1682 } 1683 1684 static CPAccessResult gt_stimer_access(CPUARMState *env, 1685 const ARMCPRegInfo *ri, 1686 bool isread) 1687 { 1688 /* The AArch64 register view of the secure physical timer is 1689 * always accessible from EL3, and configurably accessible from 1690 * Secure EL1. 1691 */ 1692 switch (arm_current_el(env)) { 1693 case 1: 1694 if (!arm_is_secure(env)) { 1695 return CP_ACCESS_TRAP; 1696 } 1697 if (!(env->cp15.scr_el3 & SCR_ST)) { 1698 return CP_ACCESS_TRAP_EL3; 1699 } 1700 return CP_ACCESS_OK; 1701 case 0: 1702 case 2: 1703 return CP_ACCESS_TRAP; 1704 case 3: 1705 return CP_ACCESS_OK; 1706 default: 1707 g_assert_not_reached(); 1708 } 1709 } 1710 1711 static uint64_t gt_get_countervalue(CPUARMState *env) 1712 { 1713 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 1714 } 1715 1716 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 1717 { 1718 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 1719 1720 if (gt->ctl & 1) { 1721 /* Timer enabled: calculate and set current ISTATUS, irq, and 1722 * reset timer to when ISTATUS next has to change 1723 */ 1724 uint64_t offset = timeridx == GTIMER_VIRT ? 1725 cpu->env.cp15.cntvoff_el2 : 0; 1726 uint64_t count = gt_get_countervalue(&cpu->env); 1727 /* Note that this must be unsigned 64 bit arithmetic: */ 1728 int istatus = count - offset >= gt->cval; 1729 uint64_t nexttick; 1730 int irqstate; 1731 1732 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 1733 1734 irqstate = (istatus && !(gt->ctl & 2)); 1735 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1736 1737 if (istatus) { 1738 /* Next transition is when count rolls back over to zero */ 1739 nexttick = UINT64_MAX; 1740 } else { 1741 /* Next transition is when we hit cval */ 1742 nexttick = gt->cval + offset; 1743 } 1744 /* Note that the desired next expiry time might be beyond the 1745 * signed-64-bit range of a QEMUTimer -- in this case we just 1746 * set the timer for as far in the future as possible. When the 1747 * timer expires we will reset the timer for any remaining period. 1748 */ 1749 if (nexttick > INT64_MAX / GTIMER_SCALE) { 1750 nexttick = INT64_MAX / GTIMER_SCALE; 1751 } 1752 timer_mod(cpu->gt_timer[timeridx], nexttick); 1753 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 1754 } else { 1755 /* Timer disabled: ISTATUS and timer output always clear */ 1756 gt->ctl &= ~4; 1757 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 1758 timer_del(cpu->gt_timer[timeridx]); 1759 trace_arm_gt_recalc_disabled(timeridx); 1760 } 1761 } 1762 1763 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 1764 int timeridx) 1765 { 1766 ARMCPU *cpu = arm_env_get_cpu(env); 1767 1768 timer_del(cpu->gt_timer[timeridx]); 1769 } 1770 1771 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1772 { 1773 return gt_get_countervalue(env); 1774 } 1775 1776 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1777 { 1778 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 1779 } 1780 1781 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1782 int timeridx, 1783 uint64_t value) 1784 { 1785 trace_arm_gt_cval_write(timeridx, value); 1786 env->cp15.c14_timer[timeridx].cval = value; 1787 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1788 } 1789 1790 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 1791 int timeridx) 1792 { 1793 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1794 1795 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 1796 (gt_get_countervalue(env) - offset)); 1797 } 1798 1799 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1800 int timeridx, 1801 uint64_t value) 1802 { 1803 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1804 1805 trace_arm_gt_tval_write(timeridx, value); 1806 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 1807 sextract64(value, 0, 32); 1808 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1809 } 1810 1811 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1812 int timeridx, 1813 uint64_t value) 1814 { 1815 ARMCPU *cpu = arm_env_get_cpu(env); 1816 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 1817 1818 trace_arm_gt_ctl_write(timeridx, value); 1819 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 1820 if ((oldval ^ value) & 1) { 1821 /* Enable toggled */ 1822 gt_recalc_timer(cpu, timeridx); 1823 } else if ((oldval ^ value) & 2) { 1824 /* IMASK toggled: don't need to recalculate, 1825 * just set the interrupt line based on ISTATUS 1826 */ 1827 int irqstate = (oldval & 4) && !(value & 2); 1828 1829 trace_arm_gt_imask_toggle(timeridx, irqstate); 1830 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1831 } 1832 } 1833 1834 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1835 { 1836 gt_timer_reset(env, ri, GTIMER_PHYS); 1837 } 1838 1839 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1840 uint64_t value) 1841 { 1842 gt_cval_write(env, ri, GTIMER_PHYS, value); 1843 } 1844 1845 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1846 { 1847 return gt_tval_read(env, ri, GTIMER_PHYS); 1848 } 1849 1850 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1851 uint64_t value) 1852 { 1853 gt_tval_write(env, ri, GTIMER_PHYS, value); 1854 } 1855 1856 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1857 uint64_t value) 1858 { 1859 gt_ctl_write(env, ri, GTIMER_PHYS, value); 1860 } 1861 1862 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1863 { 1864 gt_timer_reset(env, ri, GTIMER_VIRT); 1865 } 1866 1867 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1868 uint64_t value) 1869 { 1870 gt_cval_write(env, ri, GTIMER_VIRT, value); 1871 } 1872 1873 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1874 { 1875 return gt_tval_read(env, ri, GTIMER_VIRT); 1876 } 1877 1878 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1879 uint64_t value) 1880 { 1881 gt_tval_write(env, ri, GTIMER_VIRT, value); 1882 } 1883 1884 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1885 uint64_t value) 1886 { 1887 gt_ctl_write(env, ri, GTIMER_VIRT, value); 1888 } 1889 1890 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 1891 uint64_t value) 1892 { 1893 ARMCPU *cpu = arm_env_get_cpu(env); 1894 1895 trace_arm_gt_cntvoff_write(value); 1896 raw_write(env, ri, value); 1897 gt_recalc_timer(cpu, GTIMER_VIRT); 1898 } 1899 1900 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1901 { 1902 gt_timer_reset(env, ri, GTIMER_HYP); 1903 } 1904 1905 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1906 uint64_t value) 1907 { 1908 gt_cval_write(env, ri, GTIMER_HYP, value); 1909 } 1910 1911 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1912 { 1913 return gt_tval_read(env, ri, GTIMER_HYP); 1914 } 1915 1916 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1917 uint64_t value) 1918 { 1919 gt_tval_write(env, ri, GTIMER_HYP, value); 1920 } 1921 1922 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1923 uint64_t value) 1924 { 1925 gt_ctl_write(env, ri, GTIMER_HYP, value); 1926 } 1927 1928 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1929 { 1930 gt_timer_reset(env, ri, GTIMER_SEC); 1931 } 1932 1933 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1934 uint64_t value) 1935 { 1936 gt_cval_write(env, ri, GTIMER_SEC, value); 1937 } 1938 1939 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1940 { 1941 return gt_tval_read(env, ri, GTIMER_SEC); 1942 } 1943 1944 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1945 uint64_t value) 1946 { 1947 gt_tval_write(env, ri, GTIMER_SEC, value); 1948 } 1949 1950 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1951 uint64_t value) 1952 { 1953 gt_ctl_write(env, ri, GTIMER_SEC, value); 1954 } 1955 1956 void arm_gt_ptimer_cb(void *opaque) 1957 { 1958 ARMCPU *cpu = opaque; 1959 1960 gt_recalc_timer(cpu, GTIMER_PHYS); 1961 } 1962 1963 void arm_gt_vtimer_cb(void *opaque) 1964 { 1965 ARMCPU *cpu = opaque; 1966 1967 gt_recalc_timer(cpu, GTIMER_VIRT); 1968 } 1969 1970 void arm_gt_htimer_cb(void *opaque) 1971 { 1972 ARMCPU *cpu = opaque; 1973 1974 gt_recalc_timer(cpu, GTIMER_HYP); 1975 } 1976 1977 void arm_gt_stimer_cb(void *opaque) 1978 { 1979 ARMCPU *cpu = opaque; 1980 1981 gt_recalc_timer(cpu, GTIMER_SEC); 1982 } 1983 1984 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 1985 /* Note that CNTFRQ is purely reads-as-written for the benefit 1986 * of software; writing it doesn't actually change the timer frequency. 1987 * Our reset value matches the fixed frequency we implement the timer at. 1988 */ 1989 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 1990 .type = ARM_CP_ALIAS, 1991 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1992 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 1993 }, 1994 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 1995 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 1996 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1997 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 1998 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 1999 }, 2000 /* overall control: mostly access permissions */ 2001 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2002 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2003 .access = PL1_RW, 2004 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2005 .resetvalue = 0, 2006 }, 2007 /* per-timer control */ 2008 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2009 .secure = ARM_CP_SECSTATE_NS, 2010 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2011 .accessfn = gt_ptimer_access, 2012 .fieldoffset = offsetoflow32(CPUARMState, 2013 cp15.c14_timer[GTIMER_PHYS].ctl), 2014 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2015 }, 2016 { .name = "CNTP_CTL_S", 2017 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2018 .secure = ARM_CP_SECSTATE_S, 2019 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2020 .accessfn = gt_ptimer_access, 2021 .fieldoffset = offsetoflow32(CPUARMState, 2022 cp15.c14_timer[GTIMER_SEC].ctl), 2023 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2024 }, 2025 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2026 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2027 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 2028 .accessfn = gt_ptimer_access, 2029 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2030 .resetvalue = 0, 2031 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2032 }, 2033 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2034 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2035 .accessfn = gt_vtimer_access, 2036 .fieldoffset = offsetoflow32(CPUARMState, 2037 cp15.c14_timer[GTIMER_VIRT].ctl), 2038 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2039 }, 2040 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2041 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2042 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 2043 .accessfn = gt_vtimer_access, 2044 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2045 .resetvalue = 0, 2046 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2047 }, 2048 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2049 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2050 .secure = ARM_CP_SECSTATE_NS, 2051 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2052 .accessfn = gt_ptimer_access, 2053 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2054 }, 2055 { .name = "CNTP_TVAL_S", 2056 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2057 .secure = ARM_CP_SECSTATE_S, 2058 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2059 .accessfn = gt_ptimer_access, 2060 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2061 }, 2062 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2063 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2064 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2065 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2066 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2067 }, 2068 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2069 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2070 .accessfn = gt_vtimer_access, 2071 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2072 }, 2073 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2074 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2075 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2076 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2077 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2078 }, 2079 /* The counter itself */ 2080 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2081 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2082 .accessfn = gt_pct_access, 2083 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2084 }, 2085 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2086 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2087 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2088 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2089 }, 2090 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2091 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2092 .accessfn = gt_vct_access, 2093 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2094 }, 2095 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2096 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2097 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2098 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2099 }, 2100 /* Comparison value, indicating when the timer goes off */ 2101 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2102 .secure = ARM_CP_SECSTATE_NS, 2103 .access = PL1_RW | PL0_R, 2104 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2105 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2106 .accessfn = gt_ptimer_access, 2107 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2108 }, 2109 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 2110 .secure = ARM_CP_SECSTATE_S, 2111 .access = PL1_RW | PL0_R, 2112 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2113 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2114 .accessfn = gt_ptimer_access, 2115 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2116 }, 2117 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2118 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2119 .access = PL1_RW | PL0_R, 2120 .type = ARM_CP_IO, 2121 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2122 .resetvalue = 0, .accessfn = gt_ptimer_access, 2123 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2124 }, 2125 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2126 .access = PL1_RW | PL0_R, 2127 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2128 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2129 .accessfn = gt_vtimer_access, 2130 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2131 }, 2132 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2133 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2134 .access = PL1_RW | PL0_R, 2135 .type = ARM_CP_IO, 2136 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2137 .resetvalue = 0, .accessfn = gt_vtimer_access, 2138 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2139 }, 2140 /* Secure timer -- this is actually restricted to only EL3 2141 * and configurably Secure-EL1 via the accessfn. 2142 */ 2143 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2144 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2145 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2146 .accessfn = gt_stimer_access, 2147 .readfn = gt_sec_tval_read, 2148 .writefn = gt_sec_tval_write, 2149 .resetfn = gt_sec_timer_reset, 2150 }, 2151 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2152 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2153 .type = ARM_CP_IO, .access = PL1_RW, 2154 .accessfn = gt_stimer_access, 2155 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2156 .resetvalue = 0, 2157 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2158 }, 2159 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2160 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2161 .type = ARM_CP_IO, .access = PL1_RW, 2162 .accessfn = gt_stimer_access, 2163 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2164 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2165 }, 2166 REGINFO_SENTINEL 2167 }; 2168 2169 #else 2170 2171 /* In user-mode most of the generic timer registers are inaccessible 2172 * however modern kernels (4.12+) allow access to cntvct_el0 2173 */ 2174 2175 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2176 { 2177 /* Currently we have no support for QEMUTimer in linux-user so we 2178 * can't call gt_get_countervalue(env), instead we directly 2179 * call the lower level functions. 2180 */ 2181 return cpu_get_clock() / GTIMER_SCALE; 2182 } 2183 2184 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2185 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2186 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2187 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 2188 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2189 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 2190 }, 2191 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2192 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2193 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2194 .readfn = gt_virt_cnt_read, 2195 }, 2196 REGINFO_SENTINEL 2197 }; 2198 2199 #endif 2200 2201 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2202 { 2203 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2204 raw_write(env, ri, value); 2205 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2206 raw_write(env, ri, value & 0xfffff6ff); 2207 } else { 2208 raw_write(env, ri, value & 0xfffff1ff); 2209 } 2210 } 2211 2212 #ifndef CONFIG_USER_ONLY 2213 /* get_phys_addr() isn't present for user-mode-only targets */ 2214 2215 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2216 bool isread) 2217 { 2218 if (ri->opc2 & 4) { 2219 /* The ATS12NSO* operations must trap to EL3 if executed in 2220 * Secure EL1 (which can only happen if EL3 is AArch64). 2221 * They are simply UNDEF if executed from NS EL1. 2222 * They function normally from EL2 or EL3. 2223 */ 2224 if (arm_current_el(env) == 1) { 2225 if (arm_is_secure_below_el3(env)) { 2226 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2227 } 2228 return CP_ACCESS_TRAP_UNCATEGORIZED; 2229 } 2230 } 2231 return CP_ACCESS_OK; 2232 } 2233 2234 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2235 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2236 { 2237 hwaddr phys_addr; 2238 target_ulong page_size; 2239 int prot; 2240 bool ret; 2241 uint64_t par64; 2242 bool format64 = false; 2243 MemTxAttrs attrs = {}; 2244 ARMMMUFaultInfo fi = {}; 2245 ARMCacheAttrs cacheattrs = {}; 2246 2247 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2248 &prot, &page_size, &fi, &cacheattrs); 2249 2250 if (is_a64(env)) { 2251 format64 = true; 2252 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 2253 /* 2254 * ATS1Cxx: 2255 * * TTBCR.EAE determines whether the result is returned using the 2256 * 32-bit or the 64-bit PAR format 2257 * * Instructions executed in Hyp mode always use the 64bit format 2258 * 2259 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 2260 * * The Non-secure TTBCR.EAE bit is set to 1 2261 * * The implementation includes EL2, and the value of HCR.VM is 1 2262 * 2263 * ATS1Hx always uses the 64bit format (not supported yet). 2264 */ 2265 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 2266 2267 if (arm_feature(env, ARM_FEATURE_EL2)) { 2268 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 2269 format64 |= env->cp15.hcr_el2 & HCR_VM; 2270 } else { 2271 format64 |= arm_current_el(env) == 2; 2272 } 2273 } 2274 } 2275 2276 if (format64) { 2277 /* Create a 64-bit PAR */ 2278 par64 = (1 << 11); /* LPAE bit always set */ 2279 if (!ret) { 2280 par64 |= phys_addr & ~0xfffULL; 2281 if (!attrs.secure) { 2282 par64 |= (1 << 9); /* NS */ 2283 } 2284 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 2285 par64 |= cacheattrs.shareability << 7; /* SH */ 2286 } else { 2287 uint32_t fsr = arm_fi_to_lfsc(&fi); 2288 2289 par64 |= 1; /* F */ 2290 par64 |= (fsr & 0x3f) << 1; /* FS */ 2291 /* Note that S2WLK and FSTAGE are always zero, because we don't 2292 * implement virtualization and therefore there can't be a stage 2 2293 * fault. 2294 */ 2295 } 2296 } else { 2297 /* fsr is a DFSR/IFSR value for the short descriptor 2298 * translation table format (with WnR always clear). 2299 * Convert it to a 32-bit PAR. 2300 */ 2301 if (!ret) { 2302 /* We do not set any attribute bits in the PAR */ 2303 if (page_size == (1 << 24) 2304 && arm_feature(env, ARM_FEATURE_V7)) { 2305 par64 = (phys_addr & 0xff000000) | (1 << 1); 2306 } else { 2307 par64 = phys_addr & 0xfffff000; 2308 } 2309 if (!attrs.secure) { 2310 par64 |= (1 << 9); /* NS */ 2311 } 2312 } else { 2313 uint32_t fsr = arm_fi_to_sfsc(&fi); 2314 2315 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 2316 ((fsr & 0xf) << 1) | 1; 2317 } 2318 } 2319 return par64; 2320 } 2321 2322 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2323 { 2324 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2325 uint64_t par64; 2326 ARMMMUIdx mmu_idx; 2327 int el = arm_current_el(env); 2328 bool secure = arm_is_secure_below_el3(env); 2329 2330 switch (ri->opc2 & 6) { 2331 case 0: 2332 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 2333 switch (el) { 2334 case 3: 2335 mmu_idx = ARMMMUIdx_S1E3; 2336 break; 2337 case 2: 2338 mmu_idx = ARMMMUIdx_S1NSE1; 2339 break; 2340 case 1: 2341 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2342 break; 2343 default: 2344 g_assert_not_reached(); 2345 } 2346 break; 2347 case 2: 2348 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 2349 switch (el) { 2350 case 3: 2351 mmu_idx = ARMMMUIdx_S1SE0; 2352 break; 2353 case 2: 2354 mmu_idx = ARMMMUIdx_S1NSE0; 2355 break; 2356 case 1: 2357 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2358 break; 2359 default: 2360 g_assert_not_reached(); 2361 } 2362 break; 2363 case 4: 2364 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 2365 mmu_idx = ARMMMUIdx_S12NSE1; 2366 break; 2367 case 6: 2368 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 2369 mmu_idx = ARMMMUIdx_S12NSE0; 2370 break; 2371 default: 2372 g_assert_not_reached(); 2373 } 2374 2375 par64 = do_ats_write(env, value, access_type, mmu_idx); 2376 2377 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2378 } 2379 2380 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 2381 uint64_t value) 2382 { 2383 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2384 uint64_t par64; 2385 2386 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); 2387 2388 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2389 } 2390 2391 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 2392 bool isread) 2393 { 2394 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 2395 return CP_ACCESS_TRAP; 2396 } 2397 return CP_ACCESS_OK; 2398 } 2399 2400 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 2401 uint64_t value) 2402 { 2403 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2404 ARMMMUIdx mmu_idx; 2405 int secure = arm_is_secure_below_el3(env); 2406 2407 switch (ri->opc2 & 6) { 2408 case 0: 2409 switch (ri->opc1) { 2410 case 0: /* AT S1E1R, AT S1E1W */ 2411 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2412 break; 2413 case 4: /* AT S1E2R, AT S1E2W */ 2414 mmu_idx = ARMMMUIdx_S1E2; 2415 break; 2416 case 6: /* AT S1E3R, AT S1E3W */ 2417 mmu_idx = ARMMMUIdx_S1E3; 2418 break; 2419 default: 2420 g_assert_not_reached(); 2421 } 2422 break; 2423 case 2: /* AT S1E0R, AT S1E0W */ 2424 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2425 break; 2426 case 4: /* AT S12E1R, AT S12E1W */ 2427 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 2428 break; 2429 case 6: /* AT S12E0R, AT S12E0W */ 2430 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 2431 break; 2432 default: 2433 g_assert_not_reached(); 2434 } 2435 2436 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 2437 } 2438 #endif 2439 2440 static const ARMCPRegInfo vapa_cp_reginfo[] = { 2441 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 2442 .access = PL1_RW, .resetvalue = 0, 2443 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 2444 offsetoflow32(CPUARMState, cp15.par_ns) }, 2445 .writefn = par_write }, 2446 #ifndef CONFIG_USER_ONLY 2447 /* This underdecoding is safe because the reginfo is NO_RAW. */ 2448 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 2449 .access = PL1_W, .accessfn = ats_access, 2450 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 2451 #endif 2452 REGINFO_SENTINEL 2453 }; 2454 2455 /* Return basic MPU access permission bits. */ 2456 static uint32_t simple_mpu_ap_bits(uint32_t val) 2457 { 2458 uint32_t ret; 2459 uint32_t mask; 2460 int i; 2461 ret = 0; 2462 mask = 3; 2463 for (i = 0; i < 16; i += 2) { 2464 ret |= (val >> i) & mask; 2465 mask <<= 2; 2466 } 2467 return ret; 2468 } 2469 2470 /* Pad basic MPU access permission bits to extended format. */ 2471 static uint32_t extended_mpu_ap_bits(uint32_t val) 2472 { 2473 uint32_t ret; 2474 uint32_t mask; 2475 int i; 2476 ret = 0; 2477 mask = 3; 2478 for (i = 0; i < 16; i += 2) { 2479 ret |= (val & mask) << i; 2480 mask <<= 2; 2481 } 2482 return ret; 2483 } 2484 2485 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2486 uint64_t value) 2487 { 2488 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 2489 } 2490 2491 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2492 { 2493 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 2494 } 2495 2496 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2497 uint64_t value) 2498 { 2499 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 2500 } 2501 2502 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2503 { 2504 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 2505 } 2506 2507 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 2508 { 2509 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2510 2511 if (!u32p) { 2512 return 0; 2513 } 2514 2515 u32p += env->pmsav7.rnr[M_REG_NS]; 2516 return *u32p; 2517 } 2518 2519 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 2520 uint64_t value) 2521 { 2522 ARMCPU *cpu = arm_env_get_cpu(env); 2523 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2524 2525 if (!u32p) { 2526 return; 2527 } 2528 2529 u32p += env->pmsav7.rnr[M_REG_NS]; 2530 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 2531 *u32p = value; 2532 } 2533 2534 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2535 uint64_t value) 2536 { 2537 ARMCPU *cpu = arm_env_get_cpu(env); 2538 uint32_t nrgs = cpu->pmsav7_dregion; 2539 2540 if (value >= nrgs) { 2541 qemu_log_mask(LOG_GUEST_ERROR, 2542 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 2543 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 2544 return; 2545 } 2546 2547 raw_write(env, ri, value); 2548 } 2549 2550 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 2551 /* Reset for all these registers is handled in arm_cpu_reset(), 2552 * because the PMSAv7 is also used by M-profile CPUs, which do 2553 * not register cpregs but still need the state to be reset. 2554 */ 2555 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 2556 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2557 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 2558 .readfn = pmsav7_read, .writefn = pmsav7_write, 2559 .resetfn = arm_cp_reset_ignore }, 2560 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 2561 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2562 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 2563 .readfn = pmsav7_read, .writefn = pmsav7_write, 2564 .resetfn = arm_cp_reset_ignore }, 2565 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 2566 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2567 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 2568 .readfn = pmsav7_read, .writefn = pmsav7_write, 2569 .resetfn = arm_cp_reset_ignore }, 2570 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 2571 .access = PL1_RW, 2572 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 2573 .writefn = pmsav7_rgnr_write, 2574 .resetfn = arm_cp_reset_ignore }, 2575 REGINFO_SENTINEL 2576 }; 2577 2578 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 2579 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2580 .access = PL1_RW, .type = ARM_CP_ALIAS, 2581 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2582 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 2583 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2584 .access = PL1_RW, .type = ARM_CP_ALIAS, 2585 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2586 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 2587 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 2588 .access = PL1_RW, 2589 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2590 .resetvalue = 0, }, 2591 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 2592 .access = PL1_RW, 2593 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2594 .resetvalue = 0, }, 2595 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 2596 .access = PL1_RW, 2597 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 2598 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 2599 .access = PL1_RW, 2600 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 2601 /* Protection region base and size registers */ 2602 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 2603 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2604 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 2605 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 2606 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2607 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 2608 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 2609 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2610 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 2611 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 2612 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2613 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 2614 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 2615 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2616 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 2617 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 2618 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2619 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 2620 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 2621 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2622 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 2623 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 2624 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2625 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 2626 REGINFO_SENTINEL 2627 }; 2628 2629 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 2630 uint64_t value) 2631 { 2632 TCR *tcr = raw_ptr(env, ri); 2633 int maskshift = extract32(value, 0, 3); 2634 2635 if (!arm_feature(env, ARM_FEATURE_V8)) { 2636 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 2637 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 2638 * using Long-desciptor translation table format */ 2639 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 2640 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 2641 /* In an implementation that includes the Security Extensions 2642 * TTBCR has additional fields PD0 [4] and PD1 [5] for 2643 * Short-descriptor translation table format. 2644 */ 2645 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 2646 } else { 2647 value &= TTBCR_N; 2648 } 2649 } 2650 2651 /* Update the masks corresponding to the TCR bank being written 2652 * Note that we always calculate mask and base_mask, but 2653 * they are only used for short-descriptor tables (ie if EAE is 0); 2654 * for long-descriptor tables the TCR fields are used differently 2655 * and the mask and base_mask values are meaningless. 2656 */ 2657 tcr->raw_tcr = value; 2658 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 2659 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 2660 } 2661 2662 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2663 uint64_t value) 2664 { 2665 ARMCPU *cpu = arm_env_get_cpu(env); 2666 2667 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2668 /* With LPAE the TTBCR could result in a change of ASID 2669 * via the TTBCR.A1 bit, so do a TLB flush. 2670 */ 2671 tlb_flush(CPU(cpu)); 2672 } 2673 vmsa_ttbcr_raw_write(env, ri, value); 2674 } 2675 2676 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2677 { 2678 TCR *tcr = raw_ptr(env, ri); 2679 2680 /* Reset both the TCR as well as the masks corresponding to the bank of 2681 * the TCR being reset. 2682 */ 2683 tcr->raw_tcr = 0; 2684 tcr->mask = 0; 2685 tcr->base_mask = 0xffffc000u; 2686 } 2687 2688 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2689 uint64_t value) 2690 { 2691 ARMCPU *cpu = arm_env_get_cpu(env); 2692 TCR *tcr = raw_ptr(env, ri); 2693 2694 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 2695 tlb_flush(CPU(cpu)); 2696 tcr->raw_tcr = value; 2697 } 2698 2699 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2700 uint64_t value) 2701 { 2702 /* 64 bit accesses to the TTBRs can change the ASID and so we 2703 * must flush the TLB. 2704 */ 2705 if (cpreg_field_is_64bit(ri)) { 2706 ARMCPU *cpu = arm_env_get_cpu(env); 2707 2708 tlb_flush(CPU(cpu)); 2709 } 2710 raw_write(env, ri, value); 2711 } 2712 2713 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2714 uint64_t value) 2715 { 2716 ARMCPU *cpu = arm_env_get_cpu(env); 2717 CPUState *cs = CPU(cpu); 2718 2719 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 2720 if (raw_read(env, ri) != value) { 2721 tlb_flush_by_mmuidx(cs, 2722 ARMMMUIdxBit_S12NSE1 | 2723 ARMMMUIdxBit_S12NSE0 | 2724 ARMMMUIdxBit_S2NS); 2725 raw_write(env, ri, value); 2726 } 2727 } 2728 2729 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 2730 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2731 .access = PL1_RW, .type = ARM_CP_ALIAS, 2732 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 2733 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 2734 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2735 .access = PL1_RW, .resetvalue = 0, 2736 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 2737 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 2738 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 2739 .access = PL1_RW, .resetvalue = 0, 2740 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 2741 offsetof(CPUARMState, cp15.dfar_ns) } }, 2742 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 2743 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 2744 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 2745 .resetvalue = 0, }, 2746 REGINFO_SENTINEL 2747 }; 2748 2749 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 2750 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 2751 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 2752 .access = PL1_RW, 2753 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 2754 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 2755 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 2756 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2757 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2758 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 2759 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 2760 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 2761 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2762 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2763 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 2764 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 2765 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2766 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 2767 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 2768 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 2769 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2770 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 2771 .raw_writefn = vmsa_ttbcr_raw_write, 2772 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 2773 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 2774 REGINFO_SENTINEL 2775 }; 2776 2777 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 2778 uint64_t value) 2779 { 2780 env->cp15.c15_ticonfig = value & 0xe7; 2781 /* The OS_TYPE bit in this register changes the reported CPUID! */ 2782 env->cp15.c0_cpuid = (value & (1 << 5)) ? 2783 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 2784 } 2785 2786 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 2787 uint64_t value) 2788 { 2789 env->cp15.c15_threadid = value & 0xffff; 2790 } 2791 2792 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 2793 uint64_t value) 2794 { 2795 /* Wait-for-interrupt (deprecated) */ 2796 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); 2797 } 2798 2799 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 2800 uint64_t value) 2801 { 2802 /* On OMAP there are registers indicating the max/min index of dcache lines 2803 * containing a dirty line; cache flush operations have to reset these. 2804 */ 2805 env->cp15.c15_i_max = 0x000; 2806 env->cp15.c15_i_min = 0xff0; 2807 } 2808 2809 static const ARMCPRegInfo omap_cp_reginfo[] = { 2810 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 2811 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 2812 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 2813 .resetvalue = 0, }, 2814 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 2815 .access = PL1_RW, .type = ARM_CP_NOP }, 2816 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 2817 .access = PL1_RW, 2818 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 2819 .writefn = omap_ticonfig_write }, 2820 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 2821 .access = PL1_RW, 2822 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 2823 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 2824 .access = PL1_RW, .resetvalue = 0xff0, 2825 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 2826 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 2827 .access = PL1_RW, 2828 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 2829 .writefn = omap_threadid_write }, 2830 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 2831 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2832 .type = ARM_CP_NO_RAW, 2833 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 2834 /* TODO: Peripheral port remap register: 2835 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 2836 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 2837 * when MMU is off. 2838 */ 2839 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 2840 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 2841 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 2842 .writefn = omap_cachemaint_write }, 2843 { .name = "C9", .cp = 15, .crn = 9, 2844 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 2845 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 2846 REGINFO_SENTINEL 2847 }; 2848 2849 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2850 uint64_t value) 2851 { 2852 env->cp15.c15_cpar = value & 0x3fff; 2853 } 2854 2855 static const ARMCPRegInfo xscale_cp_reginfo[] = { 2856 { .name = "XSCALE_CPAR", 2857 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2858 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 2859 .writefn = xscale_cpar_write, }, 2860 { .name = "XSCALE_AUXCR", 2861 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 2862 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 2863 .resetvalue = 0, }, 2864 /* XScale specific cache-lockdown: since we have no cache we NOP these 2865 * and hope the guest does not really rely on cache behaviour. 2866 */ 2867 { .name = "XSCALE_LOCK_ICACHE_LINE", 2868 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 2869 .access = PL1_W, .type = ARM_CP_NOP }, 2870 { .name = "XSCALE_UNLOCK_ICACHE", 2871 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 2872 .access = PL1_W, .type = ARM_CP_NOP }, 2873 { .name = "XSCALE_DCACHE_LOCK", 2874 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 2875 .access = PL1_RW, .type = ARM_CP_NOP }, 2876 { .name = "XSCALE_UNLOCK_DCACHE", 2877 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 2878 .access = PL1_W, .type = ARM_CP_NOP }, 2879 REGINFO_SENTINEL 2880 }; 2881 2882 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 2883 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 2884 * implementation of this implementation-defined space. 2885 * Ideally this should eventually disappear in favour of actually 2886 * implementing the correct behaviour for all cores. 2887 */ 2888 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 2889 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2890 .access = PL1_RW, 2891 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 2892 .resetvalue = 0 }, 2893 REGINFO_SENTINEL 2894 }; 2895 2896 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 2897 /* Cache status: RAZ because we have no cache so it's always clean */ 2898 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 2899 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2900 .resetvalue = 0 }, 2901 REGINFO_SENTINEL 2902 }; 2903 2904 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 2905 /* We never have a a block transfer operation in progress */ 2906 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 2907 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2908 .resetvalue = 0 }, 2909 /* The cache ops themselves: these all NOP for QEMU */ 2910 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 2911 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2912 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 2913 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2914 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 2915 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2916 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 2917 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2918 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 2919 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2920 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 2921 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2922 REGINFO_SENTINEL 2923 }; 2924 2925 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 2926 /* The cache test-and-clean instructions always return (1 << 30) 2927 * to indicate that there are no dirty cache lines. 2928 */ 2929 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 2930 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2931 .resetvalue = (1 << 30) }, 2932 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 2933 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2934 .resetvalue = (1 << 30) }, 2935 REGINFO_SENTINEL 2936 }; 2937 2938 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 2939 /* Ignore ReadBuffer accesses */ 2940 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 2941 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2942 .access = PL1_RW, .resetvalue = 0, 2943 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 2944 REGINFO_SENTINEL 2945 }; 2946 2947 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2948 { 2949 ARMCPU *cpu = arm_env_get_cpu(env); 2950 unsigned int cur_el = arm_current_el(env); 2951 bool secure = arm_is_secure(env); 2952 2953 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2954 return env->cp15.vpidr_el2; 2955 } 2956 return raw_read(env, ri); 2957 } 2958 2959 static uint64_t mpidr_read_val(CPUARMState *env) 2960 { 2961 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); 2962 uint64_t mpidr = cpu->mp_affinity; 2963 2964 if (arm_feature(env, ARM_FEATURE_V7MP)) { 2965 mpidr |= (1U << 31); 2966 /* Cores which are uniprocessor (non-coherent) 2967 * but still implement the MP extensions set 2968 * bit 30. (For instance, Cortex-R5). 2969 */ 2970 if (cpu->mp_is_up) { 2971 mpidr |= (1u << 30); 2972 } 2973 } 2974 return mpidr; 2975 } 2976 2977 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2978 { 2979 unsigned int cur_el = arm_current_el(env); 2980 bool secure = arm_is_secure(env); 2981 2982 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2983 return env->cp15.vmpidr_el2; 2984 } 2985 return mpidr_read_val(env); 2986 } 2987 2988 static const ARMCPRegInfo mpidr_cp_reginfo[] = { 2989 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, 2990 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 2991 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 2992 REGINFO_SENTINEL 2993 }; 2994 2995 static const ARMCPRegInfo lpae_cp_reginfo[] = { 2996 /* NOP AMAIR0/1 */ 2997 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 2998 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 2999 .access = PL1_RW, .type = ARM_CP_CONST, 3000 .resetvalue = 0 }, 3001 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 3002 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 3003 .access = PL1_RW, .type = ARM_CP_CONST, 3004 .resetvalue = 0 }, 3005 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 3006 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 3007 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 3008 offsetof(CPUARMState, cp15.par_ns)} }, 3009 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 3010 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3011 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3012 offsetof(CPUARMState, cp15.ttbr0_ns) }, 3013 .writefn = vmsa_ttbr_write, }, 3014 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 3015 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3016 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3017 offsetof(CPUARMState, cp15.ttbr1_ns) }, 3018 .writefn = vmsa_ttbr_write, }, 3019 REGINFO_SENTINEL 3020 }; 3021 3022 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3023 { 3024 return vfp_get_fpcr(env); 3025 } 3026 3027 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3028 uint64_t value) 3029 { 3030 vfp_set_fpcr(env, value); 3031 } 3032 3033 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3034 { 3035 return vfp_get_fpsr(env); 3036 } 3037 3038 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3039 uint64_t value) 3040 { 3041 vfp_set_fpsr(env, value); 3042 } 3043 3044 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 3045 bool isread) 3046 { 3047 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 3048 return CP_ACCESS_TRAP; 3049 } 3050 return CP_ACCESS_OK; 3051 } 3052 3053 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 3054 uint64_t value) 3055 { 3056 env->daif = value & PSTATE_DAIF; 3057 } 3058 3059 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 3060 const ARMCPRegInfo *ri, 3061 bool isread) 3062 { 3063 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 3064 * SCTLR_EL1.UCI is set. 3065 */ 3066 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 3067 return CP_ACCESS_TRAP; 3068 } 3069 return CP_ACCESS_OK; 3070 } 3071 3072 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 3073 * Page D4-1736 (DDI0487A.b) 3074 */ 3075 3076 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3077 uint64_t value) 3078 { 3079 CPUState *cs = ENV_GET_CPU(env); 3080 3081 if (arm_is_secure_below_el3(env)) { 3082 tlb_flush_by_mmuidx(cs, 3083 ARMMMUIdxBit_S1SE1 | 3084 ARMMMUIdxBit_S1SE0); 3085 } else { 3086 tlb_flush_by_mmuidx(cs, 3087 ARMMMUIdxBit_S12NSE1 | 3088 ARMMMUIdxBit_S12NSE0); 3089 } 3090 } 3091 3092 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3093 uint64_t value) 3094 { 3095 CPUState *cs = ENV_GET_CPU(env); 3096 bool sec = arm_is_secure_below_el3(env); 3097 3098 if (sec) { 3099 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3100 ARMMMUIdxBit_S1SE1 | 3101 ARMMMUIdxBit_S1SE0); 3102 } else { 3103 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3104 ARMMMUIdxBit_S12NSE1 | 3105 ARMMMUIdxBit_S12NSE0); 3106 } 3107 } 3108 3109 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3110 uint64_t value) 3111 { 3112 /* Note that the 'ALL' scope must invalidate both stage 1 and 3113 * stage 2 translations, whereas most other scopes only invalidate 3114 * stage 1 translations. 3115 */ 3116 ARMCPU *cpu = arm_env_get_cpu(env); 3117 CPUState *cs = CPU(cpu); 3118 3119 if (arm_is_secure_below_el3(env)) { 3120 tlb_flush_by_mmuidx(cs, 3121 ARMMMUIdxBit_S1SE1 | 3122 ARMMMUIdxBit_S1SE0); 3123 } else { 3124 if (arm_feature(env, ARM_FEATURE_EL2)) { 3125 tlb_flush_by_mmuidx(cs, 3126 ARMMMUIdxBit_S12NSE1 | 3127 ARMMMUIdxBit_S12NSE0 | 3128 ARMMMUIdxBit_S2NS); 3129 } else { 3130 tlb_flush_by_mmuidx(cs, 3131 ARMMMUIdxBit_S12NSE1 | 3132 ARMMMUIdxBit_S12NSE0); 3133 } 3134 } 3135 } 3136 3137 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3138 uint64_t value) 3139 { 3140 ARMCPU *cpu = arm_env_get_cpu(env); 3141 CPUState *cs = CPU(cpu); 3142 3143 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3144 } 3145 3146 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3147 uint64_t value) 3148 { 3149 ARMCPU *cpu = arm_env_get_cpu(env); 3150 CPUState *cs = CPU(cpu); 3151 3152 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3153 } 3154 3155 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3156 uint64_t value) 3157 { 3158 /* Note that the 'ALL' scope must invalidate both stage 1 and 3159 * stage 2 translations, whereas most other scopes only invalidate 3160 * stage 1 translations. 3161 */ 3162 CPUState *cs = ENV_GET_CPU(env); 3163 bool sec = arm_is_secure_below_el3(env); 3164 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3165 3166 if (sec) { 3167 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3168 ARMMMUIdxBit_S1SE1 | 3169 ARMMMUIdxBit_S1SE0); 3170 } else if (has_el2) { 3171 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3172 ARMMMUIdxBit_S12NSE1 | 3173 ARMMMUIdxBit_S12NSE0 | 3174 ARMMMUIdxBit_S2NS); 3175 } else { 3176 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3177 ARMMMUIdxBit_S12NSE1 | 3178 ARMMMUIdxBit_S12NSE0); 3179 } 3180 } 3181 3182 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3183 uint64_t value) 3184 { 3185 CPUState *cs = ENV_GET_CPU(env); 3186 3187 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3188 } 3189 3190 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3191 uint64_t value) 3192 { 3193 CPUState *cs = ENV_GET_CPU(env); 3194 3195 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3196 } 3197 3198 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3199 uint64_t value) 3200 { 3201 /* Invalidate by VA, EL1&0 (AArch64 version). 3202 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 3203 * since we don't support flush-for-specific-ASID-only or 3204 * flush-last-level-only. 3205 */ 3206 ARMCPU *cpu = arm_env_get_cpu(env); 3207 CPUState *cs = CPU(cpu); 3208 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3209 3210 if (arm_is_secure_below_el3(env)) { 3211 tlb_flush_page_by_mmuidx(cs, pageaddr, 3212 ARMMMUIdxBit_S1SE1 | 3213 ARMMMUIdxBit_S1SE0); 3214 } else { 3215 tlb_flush_page_by_mmuidx(cs, pageaddr, 3216 ARMMMUIdxBit_S12NSE1 | 3217 ARMMMUIdxBit_S12NSE0); 3218 } 3219 } 3220 3221 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3222 uint64_t value) 3223 { 3224 /* Invalidate by VA, EL2 3225 * Currently handles both VAE2 and VALE2, since we don't support 3226 * flush-last-level-only. 3227 */ 3228 ARMCPU *cpu = arm_env_get_cpu(env); 3229 CPUState *cs = CPU(cpu); 3230 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3231 3232 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3233 } 3234 3235 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3236 uint64_t value) 3237 { 3238 /* Invalidate by VA, EL3 3239 * Currently handles both VAE3 and VALE3, since we don't support 3240 * flush-last-level-only. 3241 */ 3242 ARMCPU *cpu = arm_env_get_cpu(env); 3243 CPUState *cs = CPU(cpu); 3244 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3245 3246 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 3247 } 3248 3249 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3250 uint64_t value) 3251 { 3252 ARMCPU *cpu = arm_env_get_cpu(env); 3253 CPUState *cs = CPU(cpu); 3254 bool sec = arm_is_secure_below_el3(env); 3255 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3256 3257 if (sec) { 3258 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3259 ARMMMUIdxBit_S1SE1 | 3260 ARMMMUIdxBit_S1SE0); 3261 } else { 3262 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3263 ARMMMUIdxBit_S12NSE1 | 3264 ARMMMUIdxBit_S12NSE0); 3265 } 3266 } 3267 3268 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3269 uint64_t value) 3270 { 3271 CPUState *cs = ENV_GET_CPU(env); 3272 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3273 3274 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3275 ARMMMUIdxBit_S1E2); 3276 } 3277 3278 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3279 uint64_t value) 3280 { 3281 CPUState *cs = ENV_GET_CPU(env); 3282 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3283 3284 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3285 ARMMMUIdxBit_S1E3); 3286 } 3287 3288 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3289 uint64_t value) 3290 { 3291 /* Invalidate by IPA. This has to invalidate any structures that 3292 * contain only stage 2 translation information, but does not need 3293 * to apply to structures that contain combined stage 1 and stage 2 3294 * translation information. 3295 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 3296 */ 3297 ARMCPU *cpu = arm_env_get_cpu(env); 3298 CPUState *cs = CPU(cpu); 3299 uint64_t pageaddr; 3300 3301 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3302 return; 3303 } 3304 3305 pageaddr = sextract64(value << 12, 0, 48); 3306 3307 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 3308 } 3309 3310 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3311 uint64_t value) 3312 { 3313 CPUState *cs = ENV_GET_CPU(env); 3314 uint64_t pageaddr; 3315 3316 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3317 return; 3318 } 3319 3320 pageaddr = sextract64(value << 12, 0, 48); 3321 3322 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3323 ARMMMUIdxBit_S2NS); 3324 } 3325 3326 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 3327 bool isread) 3328 { 3329 /* We don't implement EL2, so the only control on DC ZVA is the 3330 * bit in the SCTLR which can prohibit access for EL0. 3331 */ 3332 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 3333 return CP_ACCESS_TRAP; 3334 } 3335 return CP_ACCESS_OK; 3336 } 3337 3338 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 3339 { 3340 ARMCPU *cpu = arm_env_get_cpu(env); 3341 int dzp_bit = 1 << 4; 3342 3343 /* DZP indicates whether DC ZVA access is allowed */ 3344 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 3345 dzp_bit = 0; 3346 } 3347 return cpu->dcz_blocksize | dzp_bit; 3348 } 3349 3350 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 3351 bool isread) 3352 { 3353 if (!(env->pstate & PSTATE_SP)) { 3354 /* Access to SP_EL0 is undefined if it's being used as 3355 * the stack pointer. 3356 */ 3357 return CP_ACCESS_TRAP_UNCATEGORIZED; 3358 } 3359 return CP_ACCESS_OK; 3360 } 3361 3362 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 3363 { 3364 return env->pstate & PSTATE_SP; 3365 } 3366 3367 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 3368 { 3369 update_spsel(env, val); 3370 } 3371 3372 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3373 uint64_t value) 3374 { 3375 ARMCPU *cpu = arm_env_get_cpu(env); 3376 3377 if (raw_read(env, ri) == value) { 3378 /* Skip the TLB flush if nothing actually changed; Linux likes 3379 * to do a lot of pointless SCTLR writes. 3380 */ 3381 return; 3382 } 3383 3384 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 3385 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 3386 value &= ~SCTLR_M; 3387 } 3388 3389 raw_write(env, ri, value); 3390 /* ??? Lots of these bits are not implemented. */ 3391 /* This may enable/disable the MMU, so do a TLB flush. */ 3392 tlb_flush(CPU(cpu)); 3393 } 3394 3395 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 3396 bool isread) 3397 { 3398 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 3399 return CP_ACCESS_TRAP_FP_EL2; 3400 } 3401 if (env->cp15.cptr_el[3] & CPTR_TFP) { 3402 return CP_ACCESS_TRAP_FP_EL3; 3403 } 3404 return CP_ACCESS_OK; 3405 } 3406 3407 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3408 uint64_t value) 3409 { 3410 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 3411 } 3412 3413 static const ARMCPRegInfo v8_cp_reginfo[] = { 3414 /* Minimal set of EL0-visible registers. This will need to be expanded 3415 * significantly for system emulation of AArch64 CPUs. 3416 */ 3417 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 3418 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 3419 .access = PL0_RW, .type = ARM_CP_NZCV }, 3420 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 3421 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 3422 .type = ARM_CP_NO_RAW, 3423 .access = PL0_RW, .accessfn = aa64_daif_access, 3424 .fieldoffset = offsetof(CPUARMState, daif), 3425 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 3426 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 3427 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 3428 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 3429 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 3430 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 3431 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 3432 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 3433 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 3434 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 3435 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 3436 .access = PL0_R, .type = ARM_CP_NO_RAW, 3437 .readfn = aa64_dczid_read }, 3438 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 3439 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 3440 .access = PL0_W, .type = ARM_CP_DC_ZVA, 3441 #ifndef CONFIG_USER_ONLY 3442 /* Avoid overhead of an access check that always passes in user-mode */ 3443 .accessfn = aa64_zva_access, 3444 #endif 3445 }, 3446 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 3447 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 3448 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 3449 /* Cache ops: all NOPs since we don't emulate caches */ 3450 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 3451 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3452 .access = PL1_W, .type = ARM_CP_NOP }, 3453 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 3454 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3455 .access = PL1_W, .type = ARM_CP_NOP }, 3456 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 3457 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 3458 .access = PL0_W, .type = ARM_CP_NOP, 3459 .accessfn = aa64_cacheop_access }, 3460 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 3461 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3462 .access = PL1_W, .type = ARM_CP_NOP }, 3463 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 3464 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3465 .access = PL1_W, .type = ARM_CP_NOP }, 3466 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 3467 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 3468 .access = PL0_W, .type = ARM_CP_NOP, 3469 .accessfn = aa64_cacheop_access }, 3470 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 3471 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3472 .access = PL1_W, .type = ARM_CP_NOP }, 3473 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 3474 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 3475 .access = PL0_W, .type = ARM_CP_NOP, 3476 .accessfn = aa64_cacheop_access }, 3477 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 3478 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 3479 .access = PL0_W, .type = ARM_CP_NOP, 3480 .accessfn = aa64_cacheop_access }, 3481 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 3482 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3483 .access = PL1_W, .type = ARM_CP_NOP }, 3484 /* TLBI operations */ 3485 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 3486 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 3487 .access = PL1_W, .type = ARM_CP_NO_RAW, 3488 .writefn = tlbi_aa64_vmalle1is_write }, 3489 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 3490 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 3491 .access = PL1_W, .type = ARM_CP_NO_RAW, 3492 .writefn = tlbi_aa64_vae1is_write }, 3493 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 3494 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 3495 .access = PL1_W, .type = ARM_CP_NO_RAW, 3496 .writefn = tlbi_aa64_vmalle1is_write }, 3497 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 3498 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 3499 .access = PL1_W, .type = ARM_CP_NO_RAW, 3500 .writefn = tlbi_aa64_vae1is_write }, 3501 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 3502 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3503 .access = PL1_W, .type = ARM_CP_NO_RAW, 3504 .writefn = tlbi_aa64_vae1is_write }, 3505 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 3506 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3507 .access = PL1_W, .type = ARM_CP_NO_RAW, 3508 .writefn = tlbi_aa64_vae1is_write }, 3509 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 3510 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 3511 .access = PL1_W, .type = ARM_CP_NO_RAW, 3512 .writefn = tlbi_aa64_vmalle1_write }, 3513 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 3514 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 3515 .access = PL1_W, .type = ARM_CP_NO_RAW, 3516 .writefn = tlbi_aa64_vae1_write }, 3517 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 3518 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 3519 .access = PL1_W, .type = ARM_CP_NO_RAW, 3520 .writefn = tlbi_aa64_vmalle1_write }, 3521 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 3522 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 3523 .access = PL1_W, .type = ARM_CP_NO_RAW, 3524 .writefn = tlbi_aa64_vae1_write }, 3525 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 3526 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3527 .access = PL1_W, .type = ARM_CP_NO_RAW, 3528 .writefn = tlbi_aa64_vae1_write }, 3529 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 3530 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3531 .access = PL1_W, .type = ARM_CP_NO_RAW, 3532 .writefn = tlbi_aa64_vae1_write }, 3533 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 3534 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3535 .access = PL2_W, .type = ARM_CP_NO_RAW, 3536 .writefn = tlbi_aa64_ipas2e1is_write }, 3537 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 3538 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3539 .access = PL2_W, .type = ARM_CP_NO_RAW, 3540 .writefn = tlbi_aa64_ipas2e1is_write }, 3541 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 3542 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3543 .access = PL2_W, .type = ARM_CP_NO_RAW, 3544 .writefn = tlbi_aa64_alle1is_write }, 3545 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 3546 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 3547 .access = PL2_W, .type = ARM_CP_NO_RAW, 3548 .writefn = tlbi_aa64_alle1is_write }, 3549 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 3550 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3551 .access = PL2_W, .type = ARM_CP_NO_RAW, 3552 .writefn = tlbi_aa64_ipas2e1_write }, 3553 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 3554 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3555 .access = PL2_W, .type = ARM_CP_NO_RAW, 3556 .writefn = tlbi_aa64_ipas2e1_write }, 3557 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 3558 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3559 .access = PL2_W, .type = ARM_CP_NO_RAW, 3560 .writefn = tlbi_aa64_alle1_write }, 3561 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 3562 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 3563 .access = PL2_W, .type = ARM_CP_NO_RAW, 3564 .writefn = tlbi_aa64_alle1is_write }, 3565 #ifndef CONFIG_USER_ONLY 3566 /* 64 bit address translation operations */ 3567 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 3568 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 3569 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3570 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 3571 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 3572 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3573 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 3574 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 3575 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3576 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 3577 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 3578 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3579 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 3580 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 3581 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3582 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 3583 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 3584 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3585 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 3586 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 3587 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3588 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 3589 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 3590 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3591 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 3592 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 3593 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 3594 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3595 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 3596 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 3597 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3598 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 3599 .type = ARM_CP_ALIAS, 3600 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 3601 .access = PL1_RW, .resetvalue = 0, 3602 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 3603 .writefn = par_write }, 3604 #endif 3605 /* TLB invalidate last level of translation table walk */ 3606 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3607 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 3608 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3609 .type = ARM_CP_NO_RAW, .access = PL1_W, 3610 .writefn = tlbimvaa_is_write }, 3611 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3612 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 3613 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3614 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 3615 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3616 .type = ARM_CP_NO_RAW, .access = PL2_W, 3617 .writefn = tlbimva_hyp_write }, 3618 { .name = "TLBIMVALHIS", 3619 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3620 .type = ARM_CP_NO_RAW, .access = PL2_W, 3621 .writefn = tlbimva_hyp_is_write }, 3622 { .name = "TLBIIPAS2", 3623 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3624 .type = ARM_CP_NO_RAW, .access = PL2_W, 3625 .writefn = tlbiipas2_write }, 3626 { .name = "TLBIIPAS2IS", 3627 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3628 .type = ARM_CP_NO_RAW, .access = PL2_W, 3629 .writefn = tlbiipas2_is_write }, 3630 { .name = "TLBIIPAS2L", 3631 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3632 .type = ARM_CP_NO_RAW, .access = PL2_W, 3633 .writefn = tlbiipas2_write }, 3634 { .name = "TLBIIPAS2LIS", 3635 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3636 .type = ARM_CP_NO_RAW, .access = PL2_W, 3637 .writefn = tlbiipas2_is_write }, 3638 /* 32 bit cache operations */ 3639 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3640 .type = ARM_CP_NOP, .access = PL1_W }, 3641 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 3642 .type = ARM_CP_NOP, .access = PL1_W }, 3643 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3644 .type = ARM_CP_NOP, .access = PL1_W }, 3645 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 3646 .type = ARM_CP_NOP, .access = PL1_W }, 3647 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 3648 .type = ARM_CP_NOP, .access = PL1_W }, 3649 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 3650 .type = ARM_CP_NOP, .access = PL1_W }, 3651 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3652 .type = ARM_CP_NOP, .access = PL1_W }, 3653 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3654 .type = ARM_CP_NOP, .access = PL1_W }, 3655 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 3656 .type = ARM_CP_NOP, .access = PL1_W }, 3657 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3658 .type = ARM_CP_NOP, .access = PL1_W }, 3659 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 3660 .type = ARM_CP_NOP, .access = PL1_W }, 3661 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 3662 .type = ARM_CP_NOP, .access = PL1_W }, 3663 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3664 .type = ARM_CP_NOP, .access = PL1_W }, 3665 /* MMU Domain access control / MPU write buffer control */ 3666 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 3667 .access = PL1_RW, .resetvalue = 0, 3668 .writefn = dacr_write, .raw_writefn = raw_write, 3669 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 3670 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 3671 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 3672 .type = ARM_CP_ALIAS, 3673 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 3674 .access = PL1_RW, 3675 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 3676 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 3677 .type = ARM_CP_ALIAS, 3678 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 3679 .access = PL1_RW, 3680 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 3681 /* We rely on the access checks not allowing the guest to write to the 3682 * state field when SPSel indicates that it's being used as the stack 3683 * pointer. 3684 */ 3685 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 3686 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 3687 .access = PL1_RW, .accessfn = sp_el0_access, 3688 .type = ARM_CP_ALIAS, 3689 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 3690 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 3691 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 3692 .access = PL2_RW, .type = ARM_CP_ALIAS, 3693 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 3694 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 3695 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 3696 .type = ARM_CP_NO_RAW, 3697 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 3698 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 3699 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 3700 .type = ARM_CP_ALIAS, 3701 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 3702 .access = PL2_RW, .accessfn = fpexc32_access }, 3703 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 3704 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 3705 .access = PL2_RW, .resetvalue = 0, 3706 .writefn = dacr_write, .raw_writefn = raw_write, 3707 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 3708 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 3709 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 3710 .access = PL2_RW, .resetvalue = 0, 3711 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 3712 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 3713 .type = ARM_CP_ALIAS, 3714 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 3715 .access = PL2_RW, 3716 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 3717 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 3718 .type = ARM_CP_ALIAS, 3719 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 3720 .access = PL2_RW, 3721 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 3722 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 3723 .type = ARM_CP_ALIAS, 3724 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 3725 .access = PL2_RW, 3726 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 3727 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 3728 .type = ARM_CP_ALIAS, 3729 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 3730 .access = PL2_RW, 3731 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 3732 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 3733 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 3734 .resetvalue = 0, 3735 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 3736 { .name = "SDCR", .type = ARM_CP_ALIAS, 3737 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 3738 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3739 .writefn = sdcr_write, 3740 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 3741 REGINFO_SENTINEL 3742 }; 3743 3744 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 3745 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 3746 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3747 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3748 .access = PL2_RW, 3749 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3750 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3751 .type = ARM_CP_NO_RAW, 3752 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3753 .access = PL2_RW, 3754 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3755 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3756 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3757 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3758 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3759 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3760 .access = PL2_RW, .type = ARM_CP_CONST, 3761 .resetvalue = 0 }, 3762 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3763 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3764 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3765 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3766 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3767 .access = PL2_RW, .type = ARM_CP_CONST, 3768 .resetvalue = 0 }, 3769 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3770 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3771 .access = PL2_RW, .type = ARM_CP_CONST, 3772 .resetvalue = 0 }, 3773 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3774 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3775 .access = PL2_RW, .type = ARM_CP_CONST, 3776 .resetvalue = 0 }, 3777 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3778 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3779 .access = PL2_RW, .type = ARM_CP_CONST, 3780 .resetvalue = 0 }, 3781 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3782 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3783 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3784 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 3785 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3786 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3787 .type = ARM_CP_CONST, .resetvalue = 0 }, 3788 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3789 .cp = 15, .opc1 = 6, .crm = 2, 3790 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3791 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 3792 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3793 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3794 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3795 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3796 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3797 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3798 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3799 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3800 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3801 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3802 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3803 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3804 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3805 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3806 .resetvalue = 0 }, 3807 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3808 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3809 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3810 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3811 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3812 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3813 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3814 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3815 .resetvalue = 0 }, 3816 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3817 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3818 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3819 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3820 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3821 .resetvalue = 0 }, 3822 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3823 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3824 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3825 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3826 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3827 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3828 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3829 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3830 .access = PL2_RW, .accessfn = access_tda, 3831 .type = ARM_CP_CONST, .resetvalue = 0 }, 3832 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 3833 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3834 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3835 .type = ARM_CP_CONST, .resetvalue = 0 }, 3836 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3837 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3838 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3839 REGINFO_SENTINEL 3840 }; 3841 3842 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3843 { 3844 ARMCPU *cpu = arm_env_get_cpu(env); 3845 uint64_t valid_mask = HCR_MASK; 3846 3847 if (arm_feature(env, ARM_FEATURE_EL3)) { 3848 valid_mask &= ~HCR_HCD; 3849 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 3850 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 3851 * However, if we're using the SMC PSCI conduit then QEMU is 3852 * effectively acting like EL3 firmware and so the guest at 3853 * EL2 should retain the ability to prevent EL1 from being 3854 * able to make SMC calls into the ersatz firmware, so in 3855 * that case HCR.TSC should be read/write. 3856 */ 3857 valid_mask &= ~HCR_TSC; 3858 } 3859 3860 /* Clear RES0 bits. */ 3861 value &= valid_mask; 3862 3863 /* These bits change the MMU setup: 3864 * HCR_VM enables stage 2 translation 3865 * HCR_PTW forbids certain page-table setups 3866 * HCR_DC Disables stage1 and enables stage2 translation 3867 */ 3868 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 3869 tlb_flush(CPU(cpu)); 3870 } 3871 raw_write(env, ri, value); 3872 } 3873 3874 static const ARMCPRegInfo el2_cp_reginfo[] = { 3875 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3876 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3877 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 3878 .writefn = hcr_write }, 3879 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 3880 .type = ARM_CP_ALIAS, 3881 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 3882 .access = PL2_RW, 3883 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 3884 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, 3885 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 3886 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 3887 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, 3888 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 3889 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 3890 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 3891 .type = ARM_CP_ALIAS, 3892 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 3893 .access = PL2_RW, 3894 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 3895 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3896 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3897 .access = PL2_RW, .writefn = vbar_write, 3898 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 3899 .resetvalue = 0 }, 3900 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 3901 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 3902 .access = PL3_RW, .type = ARM_CP_ALIAS, 3903 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 3904 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3905 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3906 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 3907 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, 3908 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3909 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3910 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 3911 .resetvalue = 0 }, 3912 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3913 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3914 .access = PL2_RW, .type = ARM_CP_ALIAS, 3915 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 3916 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3917 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3918 .access = PL2_RW, .type = ARM_CP_CONST, 3919 .resetvalue = 0 }, 3920 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 3921 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3922 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3923 .access = PL2_RW, .type = ARM_CP_CONST, 3924 .resetvalue = 0 }, 3925 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3926 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3927 .access = PL2_RW, .type = ARM_CP_CONST, 3928 .resetvalue = 0 }, 3929 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3930 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3931 .access = PL2_RW, .type = ARM_CP_CONST, 3932 .resetvalue = 0 }, 3933 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3934 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3935 .access = PL2_RW, 3936 /* no .writefn needed as this can't cause an ASID change; 3937 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3938 */ 3939 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 3940 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 3941 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3942 .type = ARM_CP_ALIAS, 3943 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3944 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3945 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 3946 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3947 .access = PL2_RW, 3948 /* no .writefn needed as this can't cause an ASID change; 3949 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3950 */ 3951 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3952 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3953 .cp = 15, .opc1 = 6, .crm = 2, 3954 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3955 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3956 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 3957 .writefn = vttbr_write }, 3958 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3959 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3960 .access = PL2_RW, .writefn = vttbr_write, 3961 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 3962 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3963 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3964 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 3965 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 3966 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3967 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3968 .access = PL2_RW, .resetvalue = 0, 3969 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 3970 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3971 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3972 .access = PL2_RW, .resetvalue = 0, 3973 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3974 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3975 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3976 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3977 { .name = "TLBIALLNSNH", 3978 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3979 .type = ARM_CP_NO_RAW, .access = PL2_W, 3980 .writefn = tlbiall_nsnh_write }, 3981 { .name = "TLBIALLNSNHIS", 3982 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3983 .type = ARM_CP_NO_RAW, .access = PL2_W, 3984 .writefn = tlbiall_nsnh_is_write }, 3985 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3986 .type = ARM_CP_NO_RAW, .access = PL2_W, 3987 .writefn = tlbiall_hyp_write }, 3988 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3989 .type = ARM_CP_NO_RAW, .access = PL2_W, 3990 .writefn = tlbiall_hyp_is_write }, 3991 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3992 .type = ARM_CP_NO_RAW, .access = PL2_W, 3993 .writefn = tlbimva_hyp_write }, 3994 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3995 .type = ARM_CP_NO_RAW, .access = PL2_W, 3996 .writefn = tlbimva_hyp_is_write }, 3997 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 3998 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3999 .type = ARM_CP_NO_RAW, .access = PL2_W, 4000 .writefn = tlbi_aa64_alle2_write }, 4001 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 4002 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4003 .type = ARM_CP_NO_RAW, .access = PL2_W, 4004 .writefn = tlbi_aa64_vae2_write }, 4005 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 4006 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4007 .access = PL2_W, .type = ARM_CP_NO_RAW, 4008 .writefn = tlbi_aa64_vae2_write }, 4009 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 4010 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4011 .access = PL2_W, .type = ARM_CP_NO_RAW, 4012 .writefn = tlbi_aa64_alle2is_write }, 4013 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 4014 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4015 .type = ARM_CP_NO_RAW, .access = PL2_W, 4016 .writefn = tlbi_aa64_vae2is_write }, 4017 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 4018 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4019 .access = PL2_W, .type = ARM_CP_NO_RAW, 4020 .writefn = tlbi_aa64_vae2is_write }, 4021 #ifndef CONFIG_USER_ONLY 4022 /* Unlike the other EL2-related AT operations, these must 4023 * UNDEF from EL3 if EL2 is not implemented, which is why we 4024 * define them here rather than with the rest of the AT ops. 4025 */ 4026 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 4027 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4028 .access = PL2_W, .accessfn = at_s1e2_access, 4029 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4030 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 4031 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4032 .access = PL2_W, .accessfn = at_s1e2_access, 4033 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4034 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 4035 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 4036 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 4037 * to behave as if SCR.NS was 1. 4038 */ 4039 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4040 .access = PL2_W, 4041 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 4042 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4043 .access = PL2_W, 4044 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 4045 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4046 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4047 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 4048 * reset values as IMPDEF. We choose to reset to 3 to comply with 4049 * both ARMv7 and ARMv8. 4050 */ 4051 .access = PL2_RW, .resetvalue = 3, 4052 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 4053 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4054 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4055 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 4056 .writefn = gt_cntvoff_write, 4057 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4058 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4059 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 4060 .writefn = gt_cntvoff_write, 4061 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4062 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4063 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4064 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4065 .type = ARM_CP_IO, .access = PL2_RW, 4066 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4067 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4068 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4069 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 4070 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4071 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4072 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4073 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 4074 .resetfn = gt_hyp_timer_reset, 4075 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 4076 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4077 .type = ARM_CP_IO, 4078 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4079 .access = PL2_RW, 4080 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 4081 .resetvalue = 0, 4082 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 4083 #endif 4084 /* The only field of MDCR_EL2 that has a defined architectural reset value 4085 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 4086 * don't impelment any PMU event counters, so using zero as a reset 4087 * value for MDCR_EL2 is okay 4088 */ 4089 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4090 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4091 .access = PL2_RW, .resetvalue = 0, 4092 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 4093 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 4094 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4095 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4096 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4097 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 4098 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4099 .access = PL2_RW, 4100 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4101 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4102 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4103 .access = PL2_RW, 4104 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 4105 REGINFO_SENTINEL 4106 }; 4107 4108 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 4109 bool isread) 4110 { 4111 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 4112 * At Secure EL1 it traps to EL3. 4113 */ 4114 if (arm_current_el(env) == 3) { 4115 return CP_ACCESS_OK; 4116 } 4117 if (arm_is_secure_below_el3(env)) { 4118 return CP_ACCESS_TRAP_EL3; 4119 } 4120 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 4121 if (isread) { 4122 return CP_ACCESS_OK; 4123 } 4124 return CP_ACCESS_TRAP_UNCATEGORIZED; 4125 } 4126 4127 static const ARMCPRegInfo el3_cp_reginfo[] = { 4128 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 4129 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 4130 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 4131 .resetvalue = 0, .writefn = scr_write }, 4132 { .name = "SCR", .type = ARM_CP_ALIAS, 4133 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 4134 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4135 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 4136 .writefn = scr_write }, 4137 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 4138 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 4139 .access = PL3_RW, .resetvalue = 0, 4140 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 4141 { .name = "SDER", 4142 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 4143 .access = PL3_RW, .resetvalue = 0, 4144 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 4145 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4146 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4147 .writefn = vbar_write, .resetvalue = 0, 4148 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 4149 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 4150 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 4151 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 4152 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 4153 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 4154 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 4155 .access = PL3_RW, 4156 /* no .writefn needed as this can't cause an ASID change; 4157 * we must provide a .raw_writefn and .resetfn because we handle 4158 * reset and migration for the AArch32 TTBCR(S), which might be 4159 * using mask and base_mask. 4160 */ 4161 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 4162 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 4163 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 4164 .type = ARM_CP_ALIAS, 4165 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 4166 .access = PL3_RW, 4167 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 4168 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 4169 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 4170 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 4171 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 4172 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 4173 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 4174 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 4175 .type = ARM_CP_ALIAS, 4176 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 4177 .access = PL3_RW, 4178 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 4179 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 4180 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 4181 .access = PL3_RW, .writefn = vbar_write, 4182 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 4183 .resetvalue = 0 }, 4184 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 4185 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 4186 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 4187 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 4188 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 4189 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 4190 .access = PL3_RW, .resetvalue = 0, 4191 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 4192 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 4193 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 4194 .access = PL3_RW, .type = ARM_CP_CONST, 4195 .resetvalue = 0 }, 4196 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 4197 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 4198 .access = PL3_RW, .type = ARM_CP_CONST, 4199 .resetvalue = 0 }, 4200 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 4201 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 4202 .access = PL3_RW, .type = ARM_CP_CONST, 4203 .resetvalue = 0 }, 4204 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 4205 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 4206 .access = PL3_W, .type = ARM_CP_NO_RAW, 4207 .writefn = tlbi_aa64_alle3is_write }, 4208 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 4209 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 4210 .access = PL3_W, .type = ARM_CP_NO_RAW, 4211 .writefn = tlbi_aa64_vae3is_write }, 4212 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 4213 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 4214 .access = PL3_W, .type = ARM_CP_NO_RAW, 4215 .writefn = tlbi_aa64_vae3is_write }, 4216 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 4217 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 4218 .access = PL3_W, .type = ARM_CP_NO_RAW, 4219 .writefn = tlbi_aa64_alle3_write }, 4220 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 4221 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 4222 .access = PL3_W, .type = ARM_CP_NO_RAW, 4223 .writefn = tlbi_aa64_vae3_write }, 4224 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 4225 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 4226 .access = PL3_W, .type = ARM_CP_NO_RAW, 4227 .writefn = tlbi_aa64_vae3_write }, 4228 REGINFO_SENTINEL 4229 }; 4230 4231 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4232 bool isread) 4233 { 4234 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 4235 * but the AArch32 CTR has its own reginfo struct) 4236 */ 4237 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 4238 return CP_ACCESS_TRAP; 4239 } 4240 return CP_ACCESS_OK; 4241 } 4242 4243 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4244 uint64_t value) 4245 { 4246 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 4247 * read via a bit in OSLSR_EL1. 4248 */ 4249 int oslock; 4250 4251 if (ri->state == ARM_CP_STATE_AA32) { 4252 oslock = (value == 0xC5ACCE55); 4253 } else { 4254 oslock = value & 1; 4255 } 4256 4257 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 4258 } 4259 4260 static const ARMCPRegInfo debug_cp_reginfo[] = { 4261 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 4262 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 4263 * unlike DBGDRAR it is never accessible from EL0. 4264 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 4265 * accessor. 4266 */ 4267 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 4268 .access = PL0_R, .accessfn = access_tdra, 4269 .type = ARM_CP_CONST, .resetvalue = 0 }, 4270 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 4271 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 4272 .access = PL1_R, .accessfn = access_tdra, 4273 .type = ARM_CP_CONST, .resetvalue = 0 }, 4274 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4275 .access = PL0_R, .accessfn = access_tdra, 4276 .type = ARM_CP_CONST, .resetvalue = 0 }, 4277 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 4278 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 4279 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4280 .access = PL1_RW, .accessfn = access_tda, 4281 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 4282 .resetvalue = 0 }, 4283 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 4284 * We don't implement the configurable EL0 access. 4285 */ 4286 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 4287 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4288 .type = ARM_CP_ALIAS, 4289 .access = PL1_R, .accessfn = access_tda, 4290 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 4291 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 4292 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 4293 .access = PL1_W, .type = ARM_CP_NO_RAW, 4294 .accessfn = access_tdosa, 4295 .writefn = oslar_write }, 4296 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 4297 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 4298 .access = PL1_R, .resetvalue = 10, 4299 .accessfn = access_tdosa, 4300 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 4301 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 4302 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 4303 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 4304 .access = PL1_RW, .accessfn = access_tdosa, 4305 .type = ARM_CP_NOP }, 4306 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 4307 * implement vector catch debug events yet. 4308 */ 4309 { .name = "DBGVCR", 4310 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4311 .access = PL1_RW, .accessfn = access_tda, 4312 .type = ARM_CP_NOP }, 4313 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 4314 * to save and restore a 32-bit guest's DBGVCR) 4315 */ 4316 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 4317 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 4318 .access = PL2_RW, .accessfn = access_tda, 4319 .type = ARM_CP_NOP }, 4320 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 4321 * Channel but Linux may try to access this register. The 32-bit 4322 * alias is DBGDCCINT. 4323 */ 4324 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 4325 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4326 .access = PL1_RW, .accessfn = access_tda, 4327 .type = ARM_CP_NOP }, 4328 REGINFO_SENTINEL 4329 }; 4330 4331 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 4332 /* 64 bit access versions of the (dummy) debug registers */ 4333 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 4334 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4335 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 4336 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4337 REGINFO_SENTINEL 4338 }; 4339 4340 /* Return the exception level to which SVE-disabled exceptions should 4341 * be taken, or 0 if SVE is enabled. 4342 */ 4343 static int sve_exception_el(CPUARMState *env) 4344 { 4345 #ifndef CONFIG_USER_ONLY 4346 unsigned current_el = arm_current_el(env); 4347 4348 /* The CPACR.ZEN controls traps to EL1: 4349 * 0, 2 : trap EL0 and EL1 accesses 4350 * 1 : trap only EL0 accesses 4351 * 3 : trap no accesses 4352 */ 4353 switch (extract32(env->cp15.cpacr_el1, 16, 2)) { 4354 default: 4355 if (current_el <= 1) { 4356 /* Trap to PL1, which might be EL1 or EL3 */ 4357 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 4358 return 3; 4359 } 4360 return 1; 4361 } 4362 break; 4363 case 1: 4364 if (current_el == 0) { 4365 return 1; 4366 } 4367 break; 4368 case 3: 4369 break; 4370 } 4371 4372 /* Similarly for CPACR.FPEN, after having checked ZEN. */ 4373 switch (extract32(env->cp15.cpacr_el1, 20, 2)) { 4374 default: 4375 if (current_el <= 1) { 4376 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 4377 return 3; 4378 } 4379 return 1; 4380 } 4381 break; 4382 case 1: 4383 if (current_el == 0) { 4384 return 1; 4385 } 4386 break; 4387 case 3: 4388 break; 4389 } 4390 4391 /* CPTR_EL2. Check both TZ and TFP. */ 4392 if (current_el <= 2 4393 && (env->cp15.cptr_el[2] & (CPTR_TFP | CPTR_TZ)) 4394 && !arm_is_secure_below_el3(env)) { 4395 return 2; 4396 } 4397 4398 /* CPTR_EL3. Check both EZ and TFP. */ 4399 if (!(env->cp15.cptr_el[3] & CPTR_EZ) 4400 || (env->cp15.cptr_el[3] & CPTR_TFP)) { 4401 return 3; 4402 } 4403 #endif 4404 return 0; 4405 } 4406 4407 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4408 uint64_t value) 4409 { 4410 /* Bits other than [3:0] are RAZ/WI. */ 4411 raw_write(env, ri, value & 0xf); 4412 } 4413 4414 static const ARMCPRegInfo zcr_el1_reginfo = { 4415 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 4416 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 4417 .access = PL1_RW, .type = ARM_CP_SVE, 4418 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 4419 .writefn = zcr_write, .raw_writefn = raw_write 4420 }; 4421 4422 static const ARMCPRegInfo zcr_el2_reginfo = { 4423 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 4424 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 4425 .access = PL2_RW, .type = ARM_CP_SVE, 4426 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 4427 .writefn = zcr_write, .raw_writefn = raw_write 4428 }; 4429 4430 static const ARMCPRegInfo zcr_no_el2_reginfo = { 4431 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 4432 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 4433 .access = PL2_RW, .type = ARM_CP_SVE, 4434 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 4435 }; 4436 4437 static const ARMCPRegInfo zcr_el3_reginfo = { 4438 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 4439 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 4440 .access = PL3_RW, .type = ARM_CP_SVE, 4441 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 4442 .writefn = zcr_write, .raw_writefn = raw_write 4443 }; 4444 4445 void hw_watchpoint_update(ARMCPU *cpu, int n) 4446 { 4447 CPUARMState *env = &cpu->env; 4448 vaddr len = 0; 4449 vaddr wvr = env->cp15.dbgwvr[n]; 4450 uint64_t wcr = env->cp15.dbgwcr[n]; 4451 int mask; 4452 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 4453 4454 if (env->cpu_watchpoint[n]) { 4455 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 4456 env->cpu_watchpoint[n] = NULL; 4457 } 4458 4459 if (!extract64(wcr, 0, 1)) { 4460 /* E bit clear : watchpoint disabled */ 4461 return; 4462 } 4463 4464 switch (extract64(wcr, 3, 2)) { 4465 case 0: 4466 /* LSC 00 is reserved and must behave as if the wp is disabled */ 4467 return; 4468 case 1: 4469 flags |= BP_MEM_READ; 4470 break; 4471 case 2: 4472 flags |= BP_MEM_WRITE; 4473 break; 4474 case 3: 4475 flags |= BP_MEM_ACCESS; 4476 break; 4477 } 4478 4479 /* Attempts to use both MASK and BAS fields simultaneously are 4480 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 4481 * thus generating a watchpoint for every byte in the masked region. 4482 */ 4483 mask = extract64(wcr, 24, 4); 4484 if (mask == 1 || mask == 2) { 4485 /* Reserved values of MASK; we must act as if the mask value was 4486 * some non-reserved value, or as if the watchpoint were disabled. 4487 * We choose the latter. 4488 */ 4489 return; 4490 } else if (mask) { 4491 /* Watchpoint covers an aligned area up to 2GB in size */ 4492 len = 1ULL << mask; 4493 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 4494 * whether the watchpoint fires when the unmasked bits match; we opt 4495 * to generate the exceptions. 4496 */ 4497 wvr &= ~(len - 1); 4498 } else { 4499 /* Watchpoint covers bytes defined by the byte address select bits */ 4500 int bas = extract64(wcr, 5, 8); 4501 int basstart; 4502 4503 if (bas == 0) { 4504 /* This must act as if the watchpoint is disabled */ 4505 return; 4506 } 4507 4508 if (extract64(wvr, 2, 1)) { 4509 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 4510 * ignored, and BAS[3:0] define which bytes to watch. 4511 */ 4512 bas &= 0xf; 4513 } 4514 /* The BAS bits are supposed to be programmed to indicate a contiguous 4515 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 4516 * we fire for each byte in the word/doubleword addressed by the WVR. 4517 * We choose to ignore any non-zero bits after the first range of 1s. 4518 */ 4519 basstart = ctz32(bas); 4520 len = cto32(bas >> basstart); 4521 wvr += basstart; 4522 } 4523 4524 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 4525 &env->cpu_watchpoint[n]); 4526 } 4527 4528 void hw_watchpoint_update_all(ARMCPU *cpu) 4529 { 4530 int i; 4531 CPUARMState *env = &cpu->env; 4532 4533 /* Completely clear out existing QEMU watchpoints and our array, to 4534 * avoid possible stale entries following migration load. 4535 */ 4536 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 4537 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 4538 4539 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 4540 hw_watchpoint_update(cpu, i); 4541 } 4542 } 4543 4544 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4545 uint64_t value) 4546 { 4547 ARMCPU *cpu = arm_env_get_cpu(env); 4548 int i = ri->crm; 4549 4550 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 4551 * register reads and behaves as if values written are sign extended. 4552 * Bits [1:0] are RES0. 4553 */ 4554 value = sextract64(value, 0, 49) & ~3ULL; 4555 4556 raw_write(env, ri, value); 4557 hw_watchpoint_update(cpu, i); 4558 } 4559 4560 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4561 uint64_t value) 4562 { 4563 ARMCPU *cpu = arm_env_get_cpu(env); 4564 int i = ri->crm; 4565 4566 raw_write(env, ri, value); 4567 hw_watchpoint_update(cpu, i); 4568 } 4569 4570 void hw_breakpoint_update(ARMCPU *cpu, int n) 4571 { 4572 CPUARMState *env = &cpu->env; 4573 uint64_t bvr = env->cp15.dbgbvr[n]; 4574 uint64_t bcr = env->cp15.dbgbcr[n]; 4575 vaddr addr; 4576 int bt; 4577 int flags = BP_CPU; 4578 4579 if (env->cpu_breakpoint[n]) { 4580 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 4581 env->cpu_breakpoint[n] = NULL; 4582 } 4583 4584 if (!extract64(bcr, 0, 1)) { 4585 /* E bit clear : watchpoint disabled */ 4586 return; 4587 } 4588 4589 bt = extract64(bcr, 20, 4); 4590 4591 switch (bt) { 4592 case 4: /* unlinked address mismatch (reserved if AArch64) */ 4593 case 5: /* linked address mismatch (reserved if AArch64) */ 4594 qemu_log_mask(LOG_UNIMP, 4595 "arm: address mismatch breakpoint types not implemented\n"); 4596 return; 4597 case 0: /* unlinked address match */ 4598 case 1: /* linked address match */ 4599 { 4600 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 4601 * we behave as if the register was sign extended. Bits [1:0] are 4602 * RES0. The BAS field is used to allow setting breakpoints on 16 4603 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 4604 * a bp will fire if the addresses covered by the bp and the addresses 4605 * covered by the insn overlap but the insn doesn't start at the 4606 * start of the bp address range. We choose to require the insn and 4607 * the bp to have the same address. The constraints on writing to 4608 * BAS enforced in dbgbcr_write mean we have only four cases: 4609 * 0b0000 => no breakpoint 4610 * 0b0011 => breakpoint on addr 4611 * 0b1100 => breakpoint on addr + 2 4612 * 0b1111 => breakpoint on addr 4613 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 4614 */ 4615 int bas = extract64(bcr, 5, 4); 4616 addr = sextract64(bvr, 0, 49) & ~3ULL; 4617 if (bas == 0) { 4618 return; 4619 } 4620 if (bas == 0xc) { 4621 addr += 2; 4622 } 4623 break; 4624 } 4625 case 2: /* unlinked context ID match */ 4626 case 8: /* unlinked VMID match (reserved if no EL2) */ 4627 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 4628 qemu_log_mask(LOG_UNIMP, 4629 "arm: unlinked context breakpoint types not implemented\n"); 4630 return; 4631 case 9: /* linked VMID match (reserved if no EL2) */ 4632 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 4633 case 3: /* linked context ID match */ 4634 default: 4635 /* We must generate no events for Linked context matches (unless 4636 * they are linked to by some other bp/wp, which is handled in 4637 * updates for the linking bp/wp). We choose to also generate no events 4638 * for reserved values. 4639 */ 4640 return; 4641 } 4642 4643 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 4644 } 4645 4646 void hw_breakpoint_update_all(ARMCPU *cpu) 4647 { 4648 int i; 4649 CPUARMState *env = &cpu->env; 4650 4651 /* Completely clear out existing QEMU breakpoints and our array, to 4652 * avoid possible stale entries following migration load. 4653 */ 4654 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 4655 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 4656 4657 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 4658 hw_breakpoint_update(cpu, i); 4659 } 4660 } 4661 4662 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4663 uint64_t value) 4664 { 4665 ARMCPU *cpu = arm_env_get_cpu(env); 4666 int i = ri->crm; 4667 4668 raw_write(env, ri, value); 4669 hw_breakpoint_update(cpu, i); 4670 } 4671 4672 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4673 uint64_t value) 4674 { 4675 ARMCPU *cpu = arm_env_get_cpu(env); 4676 int i = ri->crm; 4677 4678 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 4679 * copy of BAS[0]. 4680 */ 4681 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 4682 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 4683 4684 raw_write(env, ri, value); 4685 hw_breakpoint_update(cpu, i); 4686 } 4687 4688 static void define_debug_regs(ARMCPU *cpu) 4689 { 4690 /* Define v7 and v8 architectural debug registers. 4691 * These are just dummy implementations for now. 4692 */ 4693 int i; 4694 int wrps, brps, ctx_cmps; 4695 ARMCPRegInfo dbgdidr = { 4696 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 4697 .access = PL0_R, .accessfn = access_tda, 4698 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 4699 }; 4700 4701 /* Note that all these register fields hold "number of Xs minus 1". */ 4702 brps = extract32(cpu->dbgdidr, 24, 4); 4703 wrps = extract32(cpu->dbgdidr, 28, 4); 4704 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 4705 4706 assert(ctx_cmps <= brps); 4707 4708 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 4709 * of the debug registers such as number of breakpoints; 4710 * check that if they both exist then they agree. 4711 */ 4712 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 4713 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 4714 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 4715 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 4716 } 4717 4718 define_one_arm_cp_reg(cpu, &dbgdidr); 4719 define_arm_cp_regs(cpu, debug_cp_reginfo); 4720 4721 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 4722 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 4723 } 4724 4725 for (i = 0; i < brps + 1; i++) { 4726 ARMCPRegInfo dbgregs[] = { 4727 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 4728 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 4729 .access = PL1_RW, .accessfn = access_tda, 4730 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 4731 .writefn = dbgbvr_write, .raw_writefn = raw_write 4732 }, 4733 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 4734 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 4735 .access = PL1_RW, .accessfn = access_tda, 4736 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 4737 .writefn = dbgbcr_write, .raw_writefn = raw_write 4738 }, 4739 REGINFO_SENTINEL 4740 }; 4741 define_arm_cp_regs(cpu, dbgregs); 4742 } 4743 4744 for (i = 0; i < wrps + 1; i++) { 4745 ARMCPRegInfo dbgregs[] = { 4746 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 4747 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 4748 .access = PL1_RW, .accessfn = access_tda, 4749 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 4750 .writefn = dbgwvr_write, .raw_writefn = raw_write 4751 }, 4752 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 4753 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 4754 .access = PL1_RW, .accessfn = access_tda, 4755 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 4756 .writefn = dbgwcr_write, .raw_writefn = raw_write 4757 }, 4758 REGINFO_SENTINEL 4759 }; 4760 define_arm_cp_regs(cpu, dbgregs); 4761 } 4762 } 4763 4764 /* We don't know until after realize whether there's a GICv3 4765 * attached, and that is what registers the gicv3 sysregs. 4766 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 4767 * at runtime. 4768 */ 4769 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 4770 { 4771 ARMCPU *cpu = arm_env_get_cpu(env); 4772 uint64_t pfr1 = cpu->id_pfr1; 4773 4774 if (env->gicv3state) { 4775 pfr1 |= 1 << 28; 4776 } 4777 return pfr1; 4778 } 4779 4780 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 4781 { 4782 ARMCPU *cpu = arm_env_get_cpu(env); 4783 uint64_t pfr0 = cpu->id_aa64pfr0; 4784 4785 if (env->gicv3state) { 4786 pfr0 |= 1 << 24; 4787 } 4788 return pfr0; 4789 } 4790 4791 void register_cp_regs_for_features(ARMCPU *cpu) 4792 { 4793 /* Register all the coprocessor registers based on feature bits */ 4794 CPUARMState *env = &cpu->env; 4795 if (arm_feature(env, ARM_FEATURE_M)) { 4796 /* M profile has no coprocessor registers */ 4797 return; 4798 } 4799 4800 define_arm_cp_regs(cpu, cp_reginfo); 4801 if (!arm_feature(env, ARM_FEATURE_V8)) { 4802 /* Must go early as it is full of wildcards that may be 4803 * overridden by later definitions. 4804 */ 4805 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 4806 } 4807 4808 if (arm_feature(env, ARM_FEATURE_V6)) { 4809 /* The ID registers all have impdef reset values */ 4810 ARMCPRegInfo v6_idregs[] = { 4811 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 4812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4813 .access = PL1_R, .type = ARM_CP_CONST, 4814 .resetvalue = cpu->id_pfr0 }, 4815 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 4816 * the value of the GIC field until after we define these regs. 4817 */ 4818 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 4819 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 4820 .access = PL1_R, .type = ARM_CP_NO_RAW, 4821 .readfn = id_pfr1_read, 4822 .writefn = arm_cp_write_ignore }, 4823 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 4824 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 4825 .access = PL1_R, .type = ARM_CP_CONST, 4826 .resetvalue = cpu->id_dfr0 }, 4827 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 4828 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 4829 .access = PL1_R, .type = ARM_CP_CONST, 4830 .resetvalue = cpu->id_afr0 }, 4831 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 4832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 4833 .access = PL1_R, .type = ARM_CP_CONST, 4834 .resetvalue = cpu->id_mmfr0 }, 4835 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 4836 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 4837 .access = PL1_R, .type = ARM_CP_CONST, 4838 .resetvalue = cpu->id_mmfr1 }, 4839 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 4840 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 4841 .access = PL1_R, .type = ARM_CP_CONST, 4842 .resetvalue = cpu->id_mmfr2 }, 4843 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 4844 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 4845 .access = PL1_R, .type = ARM_CP_CONST, 4846 .resetvalue = cpu->id_mmfr3 }, 4847 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 4848 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4849 .access = PL1_R, .type = ARM_CP_CONST, 4850 .resetvalue = cpu->id_isar0 }, 4851 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 4852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 4853 .access = PL1_R, .type = ARM_CP_CONST, 4854 .resetvalue = cpu->id_isar1 }, 4855 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 4856 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4857 .access = PL1_R, .type = ARM_CP_CONST, 4858 .resetvalue = cpu->id_isar2 }, 4859 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 4860 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 4861 .access = PL1_R, .type = ARM_CP_CONST, 4862 .resetvalue = cpu->id_isar3 }, 4863 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 4864 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 4865 .access = PL1_R, .type = ARM_CP_CONST, 4866 .resetvalue = cpu->id_isar4 }, 4867 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 4868 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 4869 .access = PL1_R, .type = ARM_CP_CONST, 4870 .resetvalue = cpu->id_isar5 }, 4871 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 4872 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 4873 .access = PL1_R, .type = ARM_CP_CONST, 4874 .resetvalue = cpu->id_mmfr4 }, 4875 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 4876 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 4877 .access = PL1_R, .type = ARM_CP_CONST, 4878 .resetvalue = cpu->id_isar6 }, 4879 REGINFO_SENTINEL 4880 }; 4881 define_arm_cp_regs(cpu, v6_idregs); 4882 define_arm_cp_regs(cpu, v6_cp_reginfo); 4883 } else { 4884 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 4885 } 4886 if (arm_feature(env, ARM_FEATURE_V6K)) { 4887 define_arm_cp_regs(cpu, v6k_cp_reginfo); 4888 } 4889 if (arm_feature(env, ARM_FEATURE_V7MP) && 4890 !arm_feature(env, ARM_FEATURE_PMSA)) { 4891 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 4892 } 4893 if (arm_feature(env, ARM_FEATURE_V7)) { 4894 /* v7 performance monitor control register: same implementor 4895 * field as main ID register, and we implement only the cycle 4896 * count register. 4897 */ 4898 #ifndef CONFIG_USER_ONLY 4899 ARMCPRegInfo pmcr = { 4900 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 4901 .access = PL0_RW, 4902 .type = ARM_CP_IO | ARM_CP_ALIAS, 4903 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 4904 .accessfn = pmreg_access, .writefn = pmcr_write, 4905 .raw_writefn = raw_write, 4906 }; 4907 ARMCPRegInfo pmcr64 = { 4908 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 4909 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 4910 .access = PL0_RW, .accessfn = pmreg_access, 4911 .type = ARM_CP_IO, 4912 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 4913 .resetvalue = cpu->midr & 0xff000000, 4914 .writefn = pmcr_write, .raw_writefn = raw_write, 4915 }; 4916 define_one_arm_cp_reg(cpu, &pmcr); 4917 define_one_arm_cp_reg(cpu, &pmcr64); 4918 #endif 4919 ARMCPRegInfo clidr = { 4920 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 4921 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 4922 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 4923 }; 4924 define_one_arm_cp_reg(cpu, &clidr); 4925 define_arm_cp_regs(cpu, v7_cp_reginfo); 4926 define_debug_regs(cpu); 4927 } else { 4928 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 4929 } 4930 if (arm_feature(env, ARM_FEATURE_V8)) { 4931 /* AArch64 ID registers, which all have impdef reset values. 4932 * Note that within the ID register ranges the unused slots 4933 * must all RAZ, not UNDEF; future architecture versions may 4934 * define new registers here. 4935 */ 4936 ARMCPRegInfo v8_idregs[] = { 4937 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 4938 * know the right value for the GIC field until after we 4939 * define these regs. 4940 */ 4941 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 4942 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 4943 .access = PL1_R, .type = ARM_CP_NO_RAW, 4944 .readfn = id_aa64pfr0_read, 4945 .writefn = arm_cp_write_ignore }, 4946 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 4947 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 4948 .access = PL1_R, .type = ARM_CP_CONST, 4949 .resetvalue = cpu->id_aa64pfr1}, 4950 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4951 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 4952 .access = PL1_R, .type = ARM_CP_CONST, 4953 .resetvalue = 0 }, 4954 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4955 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 4956 .access = PL1_R, .type = ARM_CP_CONST, 4957 .resetvalue = 0 }, 4958 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4959 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 4960 .access = PL1_R, .type = ARM_CP_CONST, 4961 .resetvalue = 0 }, 4962 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4963 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 4964 .access = PL1_R, .type = ARM_CP_CONST, 4965 .resetvalue = 0 }, 4966 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4967 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 4968 .access = PL1_R, .type = ARM_CP_CONST, 4969 .resetvalue = 0 }, 4970 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4971 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 4972 .access = PL1_R, .type = ARM_CP_CONST, 4973 .resetvalue = 0 }, 4974 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 4975 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 4976 .access = PL1_R, .type = ARM_CP_CONST, 4977 .resetvalue = cpu->id_aa64dfr0 }, 4978 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 4979 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 4980 .access = PL1_R, .type = ARM_CP_CONST, 4981 .resetvalue = cpu->id_aa64dfr1 }, 4982 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4983 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 4984 .access = PL1_R, .type = ARM_CP_CONST, 4985 .resetvalue = 0 }, 4986 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4987 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 4988 .access = PL1_R, .type = ARM_CP_CONST, 4989 .resetvalue = 0 }, 4990 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 4991 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 4992 .access = PL1_R, .type = ARM_CP_CONST, 4993 .resetvalue = cpu->id_aa64afr0 }, 4994 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 4995 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 4996 .access = PL1_R, .type = ARM_CP_CONST, 4997 .resetvalue = cpu->id_aa64afr1 }, 4998 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4999 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 5000 .access = PL1_R, .type = ARM_CP_CONST, 5001 .resetvalue = 0 }, 5002 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5003 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 5004 .access = PL1_R, .type = ARM_CP_CONST, 5005 .resetvalue = 0 }, 5006 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 5007 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 5008 .access = PL1_R, .type = ARM_CP_CONST, 5009 .resetvalue = cpu->id_aa64isar0 }, 5010 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 5011 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 5012 .access = PL1_R, .type = ARM_CP_CONST, 5013 .resetvalue = cpu->id_aa64isar1 }, 5014 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5015 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 5016 .access = PL1_R, .type = ARM_CP_CONST, 5017 .resetvalue = 0 }, 5018 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5019 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 5020 .access = PL1_R, .type = ARM_CP_CONST, 5021 .resetvalue = 0 }, 5022 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5023 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 5024 .access = PL1_R, .type = ARM_CP_CONST, 5025 .resetvalue = 0 }, 5026 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5027 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 5028 .access = PL1_R, .type = ARM_CP_CONST, 5029 .resetvalue = 0 }, 5030 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5031 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 5032 .access = PL1_R, .type = ARM_CP_CONST, 5033 .resetvalue = 0 }, 5034 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5035 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 5036 .access = PL1_R, .type = ARM_CP_CONST, 5037 .resetvalue = 0 }, 5038 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 5039 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5040 .access = PL1_R, .type = ARM_CP_CONST, 5041 .resetvalue = cpu->id_aa64mmfr0 }, 5042 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 5043 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 5044 .access = PL1_R, .type = ARM_CP_CONST, 5045 .resetvalue = cpu->id_aa64mmfr1 }, 5046 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5047 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 5048 .access = PL1_R, .type = ARM_CP_CONST, 5049 .resetvalue = 0 }, 5050 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5051 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 5052 .access = PL1_R, .type = ARM_CP_CONST, 5053 .resetvalue = 0 }, 5054 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5055 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 5056 .access = PL1_R, .type = ARM_CP_CONST, 5057 .resetvalue = 0 }, 5058 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5059 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 5060 .access = PL1_R, .type = ARM_CP_CONST, 5061 .resetvalue = 0 }, 5062 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5063 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 5064 .access = PL1_R, .type = ARM_CP_CONST, 5065 .resetvalue = 0 }, 5066 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5067 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 5068 .access = PL1_R, .type = ARM_CP_CONST, 5069 .resetvalue = 0 }, 5070 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 5071 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 5072 .access = PL1_R, .type = ARM_CP_CONST, 5073 .resetvalue = cpu->mvfr0 }, 5074 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 5075 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 5076 .access = PL1_R, .type = ARM_CP_CONST, 5077 .resetvalue = cpu->mvfr1 }, 5078 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 5079 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 5080 .access = PL1_R, .type = ARM_CP_CONST, 5081 .resetvalue = cpu->mvfr2 }, 5082 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5083 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 5084 .access = PL1_R, .type = ARM_CP_CONST, 5085 .resetvalue = 0 }, 5086 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5087 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 5088 .access = PL1_R, .type = ARM_CP_CONST, 5089 .resetvalue = 0 }, 5090 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5091 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 5092 .access = PL1_R, .type = ARM_CP_CONST, 5093 .resetvalue = 0 }, 5094 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5095 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 5096 .access = PL1_R, .type = ARM_CP_CONST, 5097 .resetvalue = 0 }, 5098 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5099 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 5100 .access = PL1_R, .type = ARM_CP_CONST, 5101 .resetvalue = 0 }, 5102 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 5103 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 5104 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5105 .resetvalue = cpu->pmceid0 }, 5106 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 5107 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 5108 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5109 .resetvalue = cpu->pmceid0 }, 5110 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 5111 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 5112 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5113 .resetvalue = cpu->pmceid1 }, 5114 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 5115 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 5116 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5117 .resetvalue = cpu->pmceid1 }, 5118 REGINFO_SENTINEL 5119 }; 5120 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 5121 if (!arm_feature(env, ARM_FEATURE_EL3) && 5122 !arm_feature(env, ARM_FEATURE_EL2)) { 5123 ARMCPRegInfo rvbar = { 5124 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 5125 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5126 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 5127 }; 5128 define_one_arm_cp_reg(cpu, &rvbar); 5129 } 5130 define_arm_cp_regs(cpu, v8_idregs); 5131 define_arm_cp_regs(cpu, v8_cp_reginfo); 5132 } 5133 if (arm_feature(env, ARM_FEATURE_EL2)) { 5134 uint64_t vmpidr_def = mpidr_read_val(env); 5135 ARMCPRegInfo vpidr_regs[] = { 5136 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 5137 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5138 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5139 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 5140 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 5141 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 5142 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5143 .access = PL2_RW, .resetvalue = cpu->midr, 5144 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 5145 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 5146 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5147 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5148 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 5149 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 5150 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 5151 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5152 .access = PL2_RW, 5153 .resetvalue = vmpidr_def, 5154 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 5155 REGINFO_SENTINEL 5156 }; 5157 define_arm_cp_regs(cpu, vpidr_regs); 5158 define_arm_cp_regs(cpu, el2_cp_reginfo); 5159 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 5160 if (!arm_feature(env, ARM_FEATURE_EL3)) { 5161 ARMCPRegInfo rvbar = { 5162 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 5163 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 5164 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 5165 }; 5166 define_one_arm_cp_reg(cpu, &rvbar); 5167 } 5168 } else { 5169 /* If EL2 is missing but higher ELs are enabled, we need to 5170 * register the no_el2 reginfos. 5171 */ 5172 if (arm_feature(env, ARM_FEATURE_EL3)) { 5173 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 5174 * of MIDR_EL1 and MPIDR_EL1. 5175 */ 5176 ARMCPRegInfo vpidr_regs[] = { 5177 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5178 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5179 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5180 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 5181 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 5182 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5183 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5184 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5185 .type = ARM_CP_NO_RAW, 5186 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 5187 REGINFO_SENTINEL 5188 }; 5189 define_arm_cp_regs(cpu, vpidr_regs); 5190 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 5191 } 5192 } 5193 if (arm_feature(env, ARM_FEATURE_EL3)) { 5194 define_arm_cp_regs(cpu, el3_cp_reginfo); 5195 ARMCPRegInfo el3_regs[] = { 5196 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 5197 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 5198 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 5199 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 5200 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 5201 .access = PL3_RW, 5202 .raw_writefn = raw_write, .writefn = sctlr_write, 5203 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 5204 .resetvalue = cpu->reset_sctlr }, 5205 REGINFO_SENTINEL 5206 }; 5207 5208 define_arm_cp_regs(cpu, el3_regs); 5209 } 5210 /* The behaviour of NSACR is sufficiently various that we don't 5211 * try to describe it in a single reginfo: 5212 * if EL3 is 64 bit, then trap to EL3 from S EL1, 5213 * reads as constant 0xc00 from NS EL1 and NS EL2 5214 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 5215 * if v7 without EL3, register doesn't exist 5216 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 5217 */ 5218 if (arm_feature(env, ARM_FEATURE_EL3)) { 5219 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5220 ARMCPRegInfo nsacr = { 5221 .name = "NSACR", .type = ARM_CP_CONST, 5222 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5223 .access = PL1_RW, .accessfn = nsacr_access, 5224 .resetvalue = 0xc00 5225 }; 5226 define_one_arm_cp_reg(cpu, &nsacr); 5227 } else { 5228 ARMCPRegInfo nsacr = { 5229 .name = "NSACR", 5230 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5231 .access = PL3_RW | PL1_R, 5232 .resetvalue = 0, 5233 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 5234 }; 5235 define_one_arm_cp_reg(cpu, &nsacr); 5236 } 5237 } else { 5238 if (arm_feature(env, ARM_FEATURE_V8)) { 5239 ARMCPRegInfo nsacr = { 5240 .name = "NSACR", .type = ARM_CP_CONST, 5241 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5242 .access = PL1_R, 5243 .resetvalue = 0xc00 5244 }; 5245 define_one_arm_cp_reg(cpu, &nsacr); 5246 } 5247 } 5248 5249 if (arm_feature(env, ARM_FEATURE_PMSA)) { 5250 if (arm_feature(env, ARM_FEATURE_V6)) { 5251 /* PMSAv6 not implemented */ 5252 assert(arm_feature(env, ARM_FEATURE_V7)); 5253 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5254 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 5255 } else { 5256 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 5257 } 5258 } else { 5259 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5260 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 5261 } 5262 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 5263 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 5264 } 5265 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 5266 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 5267 } 5268 if (arm_feature(env, ARM_FEATURE_VAPA)) { 5269 define_arm_cp_regs(cpu, vapa_cp_reginfo); 5270 } 5271 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 5272 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 5273 } 5274 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 5275 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 5276 } 5277 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 5278 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 5279 } 5280 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 5281 define_arm_cp_regs(cpu, omap_cp_reginfo); 5282 } 5283 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 5284 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 5285 } 5286 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5287 define_arm_cp_regs(cpu, xscale_cp_reginfo); 5288 } 5289 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 5290 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 5291 } 5292 if (arm_feature(env, ARM_FEATURE_LPAE)) { 5293 define_arm_cp_regs(cpu, lpae_cp_reginfo); 5294 } 5295 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 5296 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 5297 * be read-only (ie write causes UNDEF exception). 5298 */ 5299 { 5300 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 5301 /* Pre-v8 MIDR space. 5302 * Note that the MIDR isn't a simple constant register because 5303 * of the TI925 behaviour where writes to another register can 5304 * cause the MIDR value to change. 5305 * 5306 * Unimplemented registers in the c15 0 0 0 space default to 5307 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 5308 * and friends override accordingly. 5309 */ 5310 { .name = "MIDR", 5311 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 5312 .access = PL1_R, .resetvalue = cpu->midr, 5313 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 5314 .readfn = midr_read, 5315 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5316 .type = ARM_CP_OVERRIDE }, 5317 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 5318 { .name = "DUMMY", 5319 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 5320 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5321 { .name = "DUMMY", 5322 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 5323 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5324 { .name = "DUMMY", 5325 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 5326 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5327 { .name = "DUMMY", 5328 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 5329 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5330 { .name = "DUMMY", 5331 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 5332 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5333 REGINFO_SENTINEL 5334 }; 5335 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 5336 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 5337 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 5338 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 5339 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5340 .readfn = midr_read }, 5341 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 5342 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5343 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5344 .access = PL1_R, .resetvalue = cpu->midr }, 5345 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5346 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 5347 .access = PL1_R, .resetvalue = cpu->midr }, 5348 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 5349 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 5350 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 5351 REGINFO_SENTINEL 5352 }; 5353 ARMCPRegInfo id_cp_reginfo[] = { 5354 /* These are common to v8 and pre-v8 */ 5355 { .name = "CTR", 5356 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 5357 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5358 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 5359 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 5360 .access = PL0_R, .accessfn = ctr_el0_access, 5361 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5362 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 5363 { .name = "TCMTR", 5364 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 5365 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5366 REGINFO_SENTINEL 5367 }; 5368 /* TLBTR is specific to VMSA */ 5369 ARMCPRegInfo id_tlbtr_reginfo = { 5370 .name = "TLBTR", 5371 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 5372 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 5373 }; 5374 /* MPUIR is specific to PMSA V6+ */ 5375 ARMCPRegInfo id_mpuir_reginfo = { 5376 .name = "MPUIR", 5377 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5378 .access = PL1_R, .type = ARM_CP_CONST, 5379 .resetvalue = cpu->pmsav7_dregion << 8 5380 }; 5381 ARMCPRegInfo crn0_wi_reginfo = { 5382 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 5383 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 5384 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 5385 }; 5386 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 5387 arm_feature(env, ARM_FEATURE_STRONGARM)) { 5388 ARMCPRegInfo *r; 5389 /* Register the blanket "writes ignored" value first to cover the 5390 * whole space. Then update the specific ID registers to allow write 5391 * access, so that they ignore writes rather than causing them to 5392 * UNDEF. 5393 */ 5394 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 5395 for (r = id_pre_v8_midr_cp_reginfo; 5396 r->type != ARM_CP_SENTINEL; r++) { 5397 r->access = PL1_RW; 5398 } 5399 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 5400 r->access = PL1_RW; 5401 } 5402 id_mpuir_reginfo.access = PL1_RW; 5403 id_tlbtr_reginfo.access = PL1_RW; 5404 } 5405 if (arm_feature(env, ARM_FEATURE_V8)) { 5406 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 5407 } else { 5408 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 5409 } 5410 define_arm_cp_regs(cpu, id_cp_reginfo); 5411 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 5412 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 5413 } else if (arm_feature(env, ARM_FEATURE_V7)) { 5414 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 5415 } 5416 } 5417 5418 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 5419 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 5420 } 5421 5422 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 5423 ARMCPRegInfo auxcr_reginfo[] = { 5424 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 5425 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 5426 .access = PL1_RW, .type = ARM_CP_CONST, 5427 .resetvalue = cpu->reset_auxcr }, 5428 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 5429 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 5430 .access = PL2_RW, .type = ARM_CP_CONST, 5431 .resetvalue = 0 }, 5432 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 5433 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 5434 .access = PL3_RW, .type = ARM_CP_CONST, 5435 .resetvalue = 0 }, 5436 REGINFO_SENTINEL 5437 }; 5438 define_arm_cp_regs(cpu, auxcr_reginfo); 5439 } 5440 5441 if (arm_feature(env, ARM_FEATURE_CBAR)) { 5442 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5443 /* 32 bit view is [31:18] 0...0 [43:32]. */ 5444 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 5445 | extract64(cpu->reset_cbar, 32, 12); 5446 ARMCPRegInfo cbar_reginfo[] = { 5447 { .name = "CBAR", 5448 .type = ARM_CP_CONST, 5449 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5450 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 5451 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 5452 .type = ARM_CP_CONST, 5453 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 5454 .access = PL1_R, .resetvalue = cbar32 }, 5455 REGINFO_SENTINEL 5456 }; 5457 /* We don't implement a r/w 64 bit CBAR currently */ 5458 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 5459 define_arm_cp_regs(cpu, cbar_reginfo); 5460 } else { 5461 ARMCPRegInfo cbar = { 5462 .name = "CBAR", 5463 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5464 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 5465 .fieldoffset = offsetof(CPUARMState, 5466 cp15.c15_config_base_address) 5467 }; 5468 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 5469 cbar.access = PL1_R; 5470 cbar.fieldoffset = 0; 5471 cbar.type = ARM_CP_CONST; 5472 } 5473 define_one_arm_cp_reg(cpu, &cbar); 5474 } 5475 } 5476 5477 if (arm_feature(env, ARM_FEATURE_VBAR)) { 5478 ARMCPRegInfo vbar_cp_reginfo[] = { 5479 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 5480 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 5481 .access = PL1_RW, .writefn = vbar_write, 5482 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 5483 offsetof(CPUARMState, cp15.vbar_ns) }, 5484 .resetvalue = 0 }, 5485 REGINFO_SENTINEL 5486 }; 5487 define_arm_cp_regs(cpu, vbar_cp_reginfo); 5488 } 5489 5490 /* Generic registers whose values depend on the implementation */ 5491 { 5492 ARMCPRegInfo sctlr = { 5493 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 5494 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5495 .access = PL1_RW, 5496 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 5497 offsetof(CPUARMState, cp15.sctlr_ns) }, 5498 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 5499 .raw_writefn = raw_write, 5500 }; 5501 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5502 /* Normally we would always end the TB on an SCTLR write, but Linux 5503 * arch/arm/mach-pxa/sleep.S expects two instructions following 5504 * an MMU enable to execute from cache. Imitate this behaviour. 5505 */ 5506 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 5507 } 5508 define_one_arm_cp_reg(cpu, &sctlr); 5509 } 5510 5511 if (arm_feature(env, ARM_FEATURE_SVE)) { 5512 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 5513 if (arm_feature(env, ARM_FEATURE_EL2)) { 5514 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 5515 } else { 5516 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 5517 } 5518 if (arm_feature(env, ARM_FEATURE_EL3)) { 5519 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 5520 } 5521 } 5522 } 5523 5524 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 5525 { 5526 CPUState *cs = CPU(cpu); 5527 CPUARMState *env = &cpu->env; 5528 5529 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5530 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 5531 aarch64_fpu_gdb_set_reg, 5532 34, "aarch64-fpu.xml", 0); 5533 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 5534 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5535 51, "arm-neon.xml", 0); 5536 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 5537 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5538 35, "arm-vfp3.xml", 0); 5539 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 5540 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5541 19, "arm-vfp.xml", 0); 5542 } 5543 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 5544 arm_gen_dynamic_xml(cs), 5545 "system-registers.xml", 0); 5546 } 5547 5548 /* Sort alphabetically by type name, except for "any". */ 5549 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 5550 { 5551 ObjectClass *class_a = (ObjectClass *)a; 5552 ObjectClass *class_b = (ObjectClass *)b; 5553 const char *name_a, *name_b; 5554 5555 name_a = object_class_get_name(class_a); 5556 name_b = object_class_get_name(class_b); 5557 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 5558 return 1; 5559 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 5560 return -1; 5561 } else { 5562 return strcmp(name_a, name_b); 5563 } 5564 } 5565 5566 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 5567 { 5568 ObjectClass *oc = data; 5569 CPUListState *s = user_data; 5570 const char *typename; 5571 char *name; 5572 5573 typename = object_class_get_name(oc); 5574 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5575 (*s->cpu_fprintf)(s->file, " %s\n", 5576 name); 5577 g_free(name); 5578 } 5579 5580 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) 5581 { 5582 CPUListState s = { 5583 .file = f, 5584 .cpu_fprintf = cpu_fprintf, 5585 }; 5586 GSList *list; 5587 5588 list = object_class_get_list(TYPE_ARM_CPU, false); 5589 list = g_slist_sort(list, arm_cpu_list_compare); 5590 (*cpu_fprintf)(f, "Available CPUs:\n"); 5591 g_slist_foreach(list, arm_cpu_list_entry, &s); 5592 g_slist_free(list); 5593 #ifdef CONFIG_KVM 5594 /* The 'host' CPU type is dynamically registered only if KVM is 5595 * enabled, so we have to special-case it here: 5596 */ 5597 (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); 5598 #endif 5599 } 5600 5601 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 5602 { 5603 ObjectClass *oc = data; 5604 CpuDefinitionInfoList **cpu_list = user_data; 5605 CpuDefinitionInfoList *entry; 5606 CpuDefinitionInfo *info; 5607 const char *typename; 5608 5609 typename = object_class_get_name(oc); 5610 info = g_malloc0(sizeof(*info)); 5611 info->name = g_strndup(typename, 5612 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5613 info->q_typename = g_strdup(typename); 5614 5615 entry = g_malloc0(sizeof(*entry)); 5616 entry->value = info; 5617 entry->next = *cpu_list; 5618 *cpu_list = entry; 5619 } 5620 5621 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) 5622 { 5623 CpuDefinitionInfoList *cpu_list = NULL; 5624 GSList *list; 5625 5626 list = object_class_get_list(TYPE_ARM_CPU, false); 5627 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 5628 g_slist_free(list); 5629 5630 return cpu_list; 5631 } 5632 5633 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 5634 void *opaque, int state, int secstate, 5635 int crm, int opc1, int opc2, 5636 const char *name) 5637 { 5638 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 5639 * add a single reginfo struct to the hash table. 5640 */ 5641 uint32_t *key = g_new(uint32_t, 1); 5642 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 5643 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 5644 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 5645 5646 r2->name = g_strdup(name); 5647 /* Reset the secure state to the specific incoming state. This is 5648 * necessary as the register may have been defined with both states. 5649 */ 5650 r2->secure = secstate; 5651 5652 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5653 /* Register is banked (using both entries in array). 5654 * Overwriting fieldoffset as the array is only used to define 5655 * banked registers but later only fieldoffset is used. 5656 */ 5657 r2->fieldoffset = r->bank_fieldoffsets[ns]; 5658 } 5659 5660 if (state == ARM_CP_STATE_AA32) { 5661 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5662 /* If the register is banked then we don't need to migrate or 5663 * reset the 32-bit instance in certain cases: 5664 * 5665 * 1) If the register has both 32-bit and 64-bit instances then we 5666 * can count on the 64-bit instance taking care of the 5667 * non-secure bank. 5668 * 2) If ARMv8 is enabled then we can count on a 64-bit version 5669 * taking care of the secure bank. This requires that separate 5670 * 32 and 64-bit definitions are provided. 5671 */ 5672 if ((r->state == ARM_CP_STATE_BOTH && ns) || 5673 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 5674 r2->type |= ARM_CP_ALIAS; 5675 } 5676 } else if ((secstate != r->secure) && !ns) { 5677 /* The register is not banked so we only want to allow migration of 5678 * the non-secure instance. 5679 */ 5680 r2->type |= ARM_CP_ALIAS; 5681 } 5682 5683 if (r->state == ARM_CP_STATE_BOTH) { 5684 /* We assume it is a cp15 register if the .cp field is left unset. 5685 */ 5686 if (r2->cp == 0) { 5687 r2->cp = 15; 5688 } 5689 5690 #ifdef HOST_WORDS_BIGENDIAN 5691 if (r2->fieldoffset) { 5692 r2->fieldoffset += sizeof(uint32_t); 5693 } 5694 #endif 5695 } 5696 } 5697 if (state == ARM_CP_STATE_AA64) { 5698 /* To allow abbreviation of ARMCPRegInfo 5699 * definitions, we treat cp == 0 as equivalent to 5700 * the value for "standard guest-visible sysreg". 5701 * STATE_BOTH definitions are also always "standard 5702 * sysreg" in their AArch64 view (the .cp value may 5703 * be non-zero for the benefit of the AArch32 view). 5704 */ 5705 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 5706 r2->cp = CP_REG_ARM64_SYSREG_CP; 5707 } 5708 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 5709 r2->opc0, opc1, opc2); 5710 } else { 5711 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 5712 } 5713 if (opaque) { 5714 r2->opaque = opaque; 5715 } 5716 /* reginfo passed to helpers is correct for the actual access, 5717 * and is never ARM_CP_STATE_BOTH: 5718 */ 5719 r2->state = state; 5720 /* Make sure reginfo passed to helpers for wildcarded regs 5721 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 5722 */ 5723 r2->crm = crm; 5724 r2->opc1 = opc1; 5725 r2->opc2 = opc2; 5726 /* By convention, for wildcarded registers only the first 5727 * entry is used for migration; the others are marked as 5728 * ALIAS so we don't try to transfer the register 5729 * multiple times. Special registers (ie NOP/WFI) are 5730 * never migratable and not even raw-accessible. 5731 */ 5732 if ((r->type & ARM_CP_SPECIAL)) { 5733 r2->type |= ARM_CP_NO_RAW; 5734 } 5735 if (((r->crm == CP_ANY) && crm != 0) || 5736 ((r->opc1 == CP_ANY) && opc1 != 0) || 5737 ((r->opc2 == CP_ANY) && opc2 != 0)) { 5738 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 5739 } 5740 5741 /* Check that raw accesses are either forbidden or handled. Note that 5742 * we can't assert this earlier because the setup of fieldoffset for 5743 * banked registers has to be done first. 5744 */ 5745 if (!(r2->type & ARM_CP_NO_RAW)) { 5746 assert(!raw_accessors_invalid(r2)); 5747 } 5748 5749 /* Overriding of an existing definition must be explicitly 5750 * requested. 5751 */ 5752 if (!(r->type & ARM_CP_OVERRIDE)) { 5753 ARMCPRegInfo *oldreg; 5754 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 5755 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 5756 fprintf(stderr, "Register redefined: cp=%d %d bit " 5757 "crn=%d crm=%d opc1=%d opc2=%d, " 5758 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 5759 r2->crn, r2->crm, r2->opc1, r2->opc2, 5760 oldreg->name, r2->name); 5761 g_assert_not_reached(); 5762 } 5763 } 5764 g_hash_table_insert(cpu->cp_regs, key, r2); 5765 } 5766 5767 5768 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 5769 const ARMCPRegInfo *r, void *opaque) 5770 { 5771 /* Define implementations of coprocessor registers. 5772 * We store these in a hashtable because typically 5773 * there are less than 150 registers in a space which 5774 * is 16*16*16*8*8 = 262144 in size. 5775 * Wildcarding is supported for the crm, opc1 and opc2 fields. 5776 * If a register is defined twice then the second definition is 5777 * used, so this can be used to define some generic registers and 5778 * then override them with implementation specific variations. 5779 * At least one of the original and the second definition should 5780 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 5781 * against accidental use. 5782 * 5783 * The state field defines whether the register is to be 5784 * visible in the AArch32 or AArch64 execution state. If the 5785 * state is set to ARM_CP_STATE_BOTH then we synthesise a 5786 * reginfo structure for the AArch32 view, which sees the lower 5787 * 32 bits of the 64 bit register. 5788 * 5789 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 5790 * be wildcarded. AArch64 registers are always considered to be 64 5791 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 5792 * the register, if any. 5793 */ 5794 int crm, opc1, opc2, state; 5795 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 5796 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 5797 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 5798 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 5799 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 5800 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 5801 /* 64 bit registers have only CRm and Opc1 fields */ 5802 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 5803 /* op0 only exists in the AArch64 encodings */ 5804 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 5805 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 5806 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 5807 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 5808 * encodes a minimum access level for the register. We roll this 5809 * runtime check into our general permission check code, so check 5810 * here that the reginfo's specified permissions are strict enough 5811 * to encompass the generic architectural permission check. 5812 */ 5813 if (r->state != ARM_CP_STATE_AA32) { 5814 int mask = 0; 5815 switch (r->opc1) { 5816 case 0: case 1: case 2: 5817 /* min_EL EL1 */ 5818 mask = PL1_RW; 5819 break; 5820 case 3: 5821 /* min_EL EL0 */ 5822 mask = PL0_RW; 5823 break; 5824 case 4: 5825 /* min_EL EL2 */ 5826 mask = PL2_RW; 5827 break; 5828 case 5: 5829 /* unallocated encoding, so not possible */ 5830 assert(false); 5831 break; 5832 case 6: 5833 /* min_EL EL3 */ 5834 mask = PL3_RW; 5835 break; 5836 case 7: 5837 /* min_EL EL1, secure mode only (we don't check the latter) */ 5838 mask = PL1_RW; 5839 break; 5840 default: 5841 /* broken reginfo with out-of-range opc1 */ 5842 assert(false); 5843 break; 5844 } 5845 /* assert our permissions are not too lax (stricter is fine) */ 5846 assert((r->access & ~mask) == 0); 5847 } 5848 5849 /* Check that the register definition has enough info to handle 5850 * reads and writes if they are permitted. 5851 */ 5852 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 5853 if (r->access & PL3_R) { 5854 assert((r->fieldoffset || 5855 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5856 r->readfn); 5857 } 5858 if (r->access & PL3_W) { 5859 assert((r->fieldoffset || 5860 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5861 r->writefn); 5862 } 5863 } 5864 /* Bad type field probably means missing sentinel at end of reg list */ 5865 assert(cptype_valid(r->type)); 5866 for (crm = crmmin; crm <= crmmax; crm++) { 5867 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 5868 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 5869 for (state = ARM_CP_STATE_AA32; 5870 state <= ARM_CP_STATE_AA64; state++) { 5871 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 5872 continue; 5873 } 5874 if (state == ARM_CP_STATE_AA32) { 5875 /* Under AArch32 CP registers can be common 5876 * (same for secure and non-secure world) or banked. 5877 */ 5878 char *name; 5879 5880 switch (r->secure) { 5881 case ARM_CP_SECSTATE_S: 5882 case ARM_CP_SECSTATE_NS: 5883 add_cpreg_to_hashtable(cpu, r, opaque, state, 5884 r->secure, crm, opc1, opc2, 5885 r->name); 5886 break; 5887 default: 5888 name = g_strdup_printf("%s_S", r->name); 5889 add_cpreg_to_hashtable(cpu, r, opaque, state, 5890 ARM_CP_SECSTATE_S, 5891 crm, opc1, opc2, name); 5892 g_free(name); 5893 add_cpreg_to_hashtable(cpu, r, opaque, state, 5894 ARM_CP_SECSTATE_NS, 5895 crm, opc1, opc2, r->name); 5896 break; 5897 } 5898 } else { 5899 /* AArch64 registers get mapped to non-secure instance 5900 * of AArch32 */ 5901 add_cpreg_to_hashtable(cpu, r, opaque, state, 5902 ARM_CP_SECSTATE_NS, 5903 crm, opc1, opc2, r->name); 5904 } 5905 } 5906 } 5907 } 5908 } 5909 } 5910 5911 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 5912 const ARMCPRegInfo *regs, void *opaque) 5913 { 5914 /* Define a whole list of registers */ 5915 const ARMCPRegInfo *r; 5916 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 5917 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 5918 } 5919 } 5920 5921 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 5922 { 5923 return g_hash_table_lookup(cpregs, &encoded_cp); 5924 } 5925 5926 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 5927 uint64_t value) 5928 { 5929 /* Helper coprocessor write function for write-ignore registers */ 5930 } 5931 5932 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 5933 { 5934 /* Helper coprocessor write function for read-as-zero registers */ 5935 return 0; 5936 } 5937 5938 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 5939 { 5940 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 5941 } 5942 5943 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 5944 { 5945 /* Return true if it is not valid for us to switch to 5946 * this CPU mode (ie all the UNPREDICTABLE cases in 5947 * the ARM ARM CPSRWriteByInstr pseudocode). 5948 */ 5949 5950 /* Changes to or from Hyp via MSR and CPS are illegal. */ 5951 if (write_type == CPSRWriteByInstr && 5952 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 5953 mode == ARM_CPU_MODE_HYP)) { 5954 return 1; 5955 } 5956 5957 switch (mode) { 5958 case ARM_CPU_MODE_USR: 5959 return 0; 5960 case ARM_CPU_MODE_SYS: 5961 case ARM_CPU_MODE_SVC: 5962 case ARM_CPU_MODE_ABT: 5963 case ARM_CPU_MODE_UND: 5964 case ARM_CPU_MODE_IRQ: 5965 case ARM_CPU_MODE_FIQ: 5966 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 5967 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 5968 */ 5969 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 5970 * and CPS are treated as illegal mode changes. 5971 */ 5972 if (write_type == CPSRWriteByInstr && 5973 (env->cp15.hcr_el2 & HCR_TGE) && 5974 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 5975 !arm_is_secure_below_el3(env)) { 5976 return 1; 5977 } 5978 return 0; 5979 case ARM_CPU_MODE_HYP: 5980 return !arm_feature(env, ARM_FEATURE_EL2) 5981 || arm_current_el(env) < 2 || arm_is_secure(env); 5982 case ARM_CPU_MODE_MON: 5983 return arm_current_el(env) < 3; 5984 default: 5985 return 1; 5986 } 5987 } 5988 5989 uint32_t cpsr_read(CPUARMState *env) 5990 { 5991 int ZF; 5992 ZF = (env->ZF == 0); 5993 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 5994 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 5995 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 5996 | ((env->condexec_bits & 0xfc) << 8) 5997 | (env->GE << 16) | (env->daif & CPSR_AIF); 5998 } 5999 6000 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 6001 CPSRWriteType write_type) 6002 { 6003 uint32_t changed_daif; 6004 6005 if (mask & CPSR_NZCV) { 6006 env->ZF = (~val) & CPSR_Z; 6007 env->NF = val; 6008 env->CF = (val >> 29) & 1; 6009 env->VF = (val << 3) & 0x80000000; 6010 } 6011 if (mask & CPSR_Q) 6012 env->QF = ((val & CPSR_Q) != 0); 6013 if (mask & CPSR_T) 6014 env->thumb = ((val & CPSR_T) != 0); 6015 if (mask & CPSR_IT_0_1) { 6016 env->condexec_bits &= ~3; 6017 env->condexec_bits |= (val >> 25) & 3; 6018 } 6019 if (mask & CPSR_IT_2_7) { 6020 env->condexec_bits &= 3; 6021 env->condexec_bits |= (val >> 8) & 0xfc; 6022 } 6023 if (mask & CPSR_GE) { 6024 env->GE = (val >> 16) & 0xf; 6025 } 6026 6027 /* In a V7 implementation that includes the security extensions but does 6028 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 6029 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 6030 * bits respectively. 6031 * 6032 * In a V8 implementation, it is permitted for privileged software to 6033 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 6034 */ 6035 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 6036 arm_feature(env, ARM_FEATURE_EL3) && 6037 !arm_feature(env, ARM_FEATURE_EL2) && 6038 !arm_is_secure(env)) { 6039 6040 changed_daif = (env->daif ^ val) & mask; 6041 6042 if (changed_daif & CPSR_A) { 6043 /* Check to see if we are allowed to change the masking of async 6044 * abort exceptions from a non-secure state. 6045 */ 6046 if (!(env->cp15.scr_el3 & SCR_AW)) { 6047 qemu_log_mask(LOG_GUEST_ERROR, 6048 "Ignoring attempt to switch CPSR_A flag from " 6049 "non-secure world with SCR.AW bit clear\n"); 6050 mask &= ~CPSR_A; 6051 } 6052 } 6053 6054 if (changed_daif & CPSR_F) { 6055 /* Check to see if we are allowed to change the masking of FIQ 6056 * exceptions from a non-secure state. 6057 */ 6058 if (!(env->cp15.scr_el3 & SCR_FW)) { 6059 qemu_log_mask(LOG_GUEST_ERROR, 6060 "Ignoring attempt to switch CPSR_F flag from " 6061 "non-secure world with SCR.FW bit clear\n"); 6062 mask &= ~CPSR_F; 6063 } 6064 6065 /* Check whether non-maskable FIQ (NMFI) support is enabled. 6066 * If this bit is set software is not allowed to mask 6067 * FIQs, but is allowed to set CPSR_F to 0. 6068 */ 6069 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 6070 (val & CPSR_F)) { 6071 qemu_log_mask(LOG_GUEST_ERROR, 6072 "Ignoring attempt to enable CPSR_F flag " 6073 "(non-maskable FIQ [NMFI] support enabled)\n"); 6074 mask &= ~CPSR_F; 6075 } 6076 } 6077 } 6078 6079 env->daif &= ~(CPSR_AIF & mask); 6080 env->daif |= val & CPSR_AIF & mask; 6081 6082 if (write_type != CPSRWriteRaw && 6083 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 6084 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 6085 /* Note that we can only get here in USR mode if this is a 6086 * gdb stub write; for this case we follow the architectural 6087 * behaviour for guest writes in USR mode of ignoring an attempt 6088 * to switch mode. (Those are caught by translate.c for writes 6089 * triggered by guest instructions.) 6090 */ 6091 mask &= ~CPSR_M; 6092 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 6093 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 6094 * v7, and has defined behaviour in v8: 6095 * + leave CPSR.M untouched 6096 * + allow changes to the other CPSR fields 6097 * + set PSTATE.IL 6098 * For user changes via the GDB stub, we don't set PSTATE.IL, 6099 * as this would be unnecessarily harsh for a user error. 6100 */ 6101 mask &= ~CPSR_M; 6102 if (write_type != CPSRWriteByGDBStub && 6103 arm_feature(env, ARM_FEATURE_V8)) { 6104 mask |= CPSR_IL; 6105 val |= CPSR_IL; 6106 } 6107 } else { 6108 switch_mode(env, val & CPSR_M); 6109 } 6110 } 6111 mask &= ~CACHED_CPSR_BITS; 6112 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 6113 } 6114 6115 /* Sign/zero extend */ 6116 uint32_t HELPER(sxtb16)(uint32_t x) 6117 { 6118 uint32_t res; 6119 res = (uint16_t)(int8_t)x; 6120 res |= (uint32_t)(int8_t)(x >> 16) << 16; 6121 return res; 6122 } 6123 6124 uint32_t HELPER(uxtb16)(uint32_t x) 6125 { 6126 uint32_t res; 6127 res = (uint16_t)(uint8_t)x; 6128 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 6129 return res; 6130 } 6131 6132 int32_t HELPER(sdiv)(int32_t num, int32_t den) 6133 { 6134 if (den == 0) 6135 return 0; 6136 if (num == INT_MIN && den == -1) 6137 return INT_MIN; 6138 return num / den; 6139 } 6140 6141 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 6142 { 6143 if (den == 0) 6144 return 0; 6145 return num / den; 6146 } 6147 6148 uint32_t HELPER(rbit)(uint32_t x) 6149 { 6150 return revbit32(x); 6151 } 6152 6153 #if defined(CONFIG_USER_ONLY) 6154 6155 /* These should probably raise undefined insn exceptions. */ 6156 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 6157 { 6158 ARMCPU *cpu = arm_env_get_cpu(env); 6159 6160 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 6161 } 6162 6163 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 6164 { 6165 ARMCPU *cpu = arm_env_get_cpu(env); 6166 6167 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 6168 return 0; 6169 } 6170 6171 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6172 { 6173 /* translate.c should never generate calls here in user-only mode */ 6174 g_assert_not_reached(); 6175 } 6176 6177 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6178 { 6179 /* translate.c should never generate calls here in user-only mode */ 6180 g_assert_not_reached(); 6181 } 6182 6183 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 6184 { 6185 /* The TT instructions can be used by unprivileged code, but in 6186 * user-only emulation we don't have the MPU. 6187 * Luckily since we know we are NonSecure unprivileged (and that in 6188 * turn means that the A flag wasn't specified), all the bits in the 6189 * register must be zero: 6190 * IREGION: 0 because IRVALID is 0 6191 * IRVALID: 0 because NS 6192 * S: 0 because NS 6193 * NSRW: 0 because NS 6194 * NSR: 0 because NS 6195 * RW: 0 because unpriv and A flag not set 6196 * R: 0 because unpriv and A flag not set 6197 * SRVALID: 0 because NS 6198 * MRVALID: 0 because unpriv and A flag not set 6199 * SREGION: 0 becaus SRVALID is 0 6200 * MREGION: 0 because MRVALID is 0 6201 */ 6202 return 0; 6203 } 6204 6205 void switch_mode(CPUARMState *env, int mode) 6206 { 6207 ARMCPU *cpu = arm_env_get_cpu(env); 6208 6209 if (mode != ARM_CPU_MODE_USR) { 6210 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 6211 } 6212 } 6213 6214 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6215 uint32_t cur_el, bool secure) 6216 { 6217 return 1; 6218 } 6219 6220 void aarch64_sync_64_to_32(CPUARMState *env) 6221 { 6222 g_assert_not_reached(); 6223 } 6224 6225 #else 6226 6227 void switch_mode(CPUARMState *env, int mode) 6228 { 6229 int old_mode; 6230 int i; 6231 6232 old_mode = env->uncached_cpsr & CPSR_M; 6233 if (mode == old_mode) 6234 return; 6235 6236 if (old_mode == ARM_CPU_MODE_FIQ) { 6237 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6238 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 6239 } else if (mode == ARM_CPU_MODE_FIQ) { 6240 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6241 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 6242 } 6243 6244 i = bank_number(old_mode); 6245 env->banked_r13[i] = env->regs[13]; 6246 env->banked_r14[i] = env->regs[14]; 6247 env->banked_spsr[i] = env->spsr; 6248 6249 i = bank_number(mode); 6250 env->regs[13] = env->banked_r13[i]; 6251 env->regs[14] = env->banked_r14[i]; 6252 env->spsr = env->banked_spsr[i]; 6253 } 6254 6255 /* Physical Interrupt Target EL Lookup Table 6256 * 6257 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 6258 * 6259 * The below multi-dimensional table is used for looking up the target 6260 * exception level given numerous condition criteria. Specifically, the 6261 * target EL is based on SCR and HCR routing controls as well as the 6262 * currently executing EL and secure state. 6263 * 6264 * Dimensions: 6265 * target_el_table[2][2][2][2][2][4] 6266 * | | | | | +--- Current EL 6267 * | | | | +------ Non-secure(0)/Secure(1) 6268 * | | | +--------- HCR mask override 6269 * | | +------------ SCR exec state control 6270 * | +--------------- SCR mask override 6271 * +------------------ 32-bit(0)/64-bit(1) EL3 6272 * 6273 * The table values are as such: 6274 * 0-3 = EL0-EL3 6275 * -1 = Cannot occur 6276 * 6277 * The ARM ARM target EL table includes entries indicating that an "exception 6278 * is not taken". The two cases where this is applicable are: 6279 * 1) An exception is taken from EL3 but the SCR does not have the exception 6280 * routed to EL3. 6281 * 2) An exception is taken from EL2 but the HCR does not have the exception 6282 * routed to EL2. 6283 * In these two cases, the below table contain a target of EL1. This value is 6284 * returned as it is expected that the consumer of the table data will check 6285 * for "target EL >= current EL" to ensure the exception is not taken. 6286 * 6287 * SCR HCR 6288 * 64 EA AMO From 6289 * BIT IRQ IMO Non-secure Secure 6290 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 6291 */ 6292 static const int8_t target_el_table[2][2][2][2][2][4] = { 6293 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6294 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 6295 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6296 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 6297 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6298 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 6299 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6300 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 6301 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 6302 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 6303 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 6304 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 6305 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6306 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 6307 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6308 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 6309 }; 6310 6311 /* 6312 * Determine the target EL for physical exceptions 6313 */ 6314 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6315 uint32_t cur_el, bool secure) 6316 { 6317 CPUARMState *env = cs->env_ptr; 6318 int rw; 6319 int scr; 6320 int hcr; 6321 int target_el; 6322 /* Is the highest EL AArch64? */ 6323 int is64 = arm_feature(env, ARM_FEATURE_AARCH64); 6324 6325 if (arm_feature(env, ARM_FEATURE_EL3)) { 6326 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 6327 } else { 6328 /* Either EL2 is the highest EL (and so the EL2 register width 6329 * is given by is64); or there is no EL2 or EL3, in which case 6330 * the value of 'rw' does not affect the table lookup anyway. 6331 */ 6332 rw = is64; 6333 } 6334 6335 switch (excp_idx) { 6336 case EXCP_IRQ: 6337 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 6338 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); 6339 break; 6340 case EXCP_FIQ: 6341 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 6342 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); 6343 break; 6344 default: 6345 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 6346 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); 6347 break; 6348 }; 6349 6350 /* If HCR.TGE is set then HCR is treated as being 1 */ 6351 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); 6352 6353 /* Perform a table-lookup for the target EL given the current state */ 6354 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 6355 6356 assert(target_el > 0); 6357 6358 return target_el; 6359 } 6360 6361 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value, 6362 ARMMMUIdx mmu_idx, bool ignfault) 6363 { 6364 CPUState *cs = CPU(cpu); 6365 CPUARMState *env = &cpu->env; 6366 MemTxAttrs attrs = {}; 6367 MemTxResult txres; 6368 target_ulong page_size; 6369 hwaddr physaddr; 6370 int prot; 6371 ARMMMUFaultInfo fi; 6372 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 6373 int exc; 6374 bool exc_secure; 6375 6376 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr, 6377 &attrs, &prot, &page_size, &fi, NULL)) { 6378 /* MPU/SAU lookup failed */ 6379 if (fi.type == ARMFault_QEMU_SFault) { 6380 qemu_log_mask(CPU_LOG_INT, 6381 "...SecureFault with SFSR.AUVIOL during stacking\n"); 6382 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 6383 env->v7m.sfar = addr; 6384 exc = ARMV7M_EXCP_SECURE; 6385 exc_secure = false; 6386 } else { 6387 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n"); 6388 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK; 6389 exc = ARMV7M_EXCP_MEM; 6390 exc_secure = secure; 6391 } 6392 goto pend_fault; 6393 } 6394 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value, 6395 attrs, &txres); 6396 if (txres != MEMTX_OK) { 6397 /* BusFault trying to write the data */ 6398 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n"); 6399 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK; 6400 exc = ARMV7M_EXCP_BUS; 6401 exc_secure = false; 6402 goto pend_fault; 6403 } 6404 return true; 6405 6406 pend_fault: 6407 /* By pending the exception at this point we are making 6408 * the IMPDEF choice "overridden exceptions pended" (see the 6409 * MergeExcInfo() pseudocode). The other choice would be to not 6410 * pend them now and then make a choice about which to throw away 6411 * later if we have two derived exceptions. 6412 * The only case when we must not pend the exception but instead 6413 * throw it away is if we are doing the push of the callee registers 6414 * and we've already generated a derived exception. Even in this 6415 * case we will still update the fault status registers. 6416 */ 6417 if (!ignfault) { 6418 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure); 6419 } 6420 return false; 6421 } 6422 6423 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr, 6424 ARMMMUIdx mmu_idx) 6425 { 6426 CPUState *cs = CPU(cpu); 6427 CPUARMState *env = &cpu->env; 6428 MemTxAttrs attrs = {}; 6429 MemTxResult txres; 6430 target_ulong page_size; 6431 hwaddr physaddr; 6432 int prot; 6433 ARMMMUFaultInfo fi; 6434 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 6435 int exc; 6436 bool exc_secure; 6437 uint32_t value; 6438 6439 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr, 6440 &attrs, &prot, &page_size, &fi, NULL)) { 6441 /* MPU/SAU lookup failed */ 6442 if (fi.type == ARMFault_QEMU_SFault) { 6443 qemu_log_mask(CPU_LOG_INT, 6444 "...SecureFault with SFSR.AUVIOL during unstack\n"); 6445 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 6446 env->v7m.sfar = addr; 6447 exc = ARMV7M_EXCP_SECURE; 6448 exc_secure = false; 6449 } else { 6450 qemu_log_mask(CPU_LOG_INT, 6451 "...MemManageFault with CFSR.MUNSTKERR\n"); 6452 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK; 6453 exc = ARMV7M_EXCP_MEM; 6454 exc_secure = secure; 6455 } 6456 goto pend_fault; 6457 } 6458 6459 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr, 6460 attrs, &txres); 6461 if (txres != MEMTX_OK) { 6462 /* BusFault trying to read the data */ 6463 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n"); 6464 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK; 6465 exc = ARMV7M_EXCP_BUS; 6466 exc_secure = false; 6467 goto pend_fault; 6468 } 6469 6470 *dest = value; 6471 return true; 6472 6473 pend_fault: 6474 /* By pending the exception at this point we are making 6475 * the IMPDEF choice "overridden exceptions pended" (see the 6476 * MergeExcInfo() pseudocode). The other choice would be to not 6477 * pend them now and then make a choice about which to throw away 6478 * later if we have two derived exceptions. 6479 */ 6480 armv7m_nvic_set_pending(env->nvic, exc, exc_secure); 6481 return false; 6482 } 6483 6484 /* Return true if we're using the process stack pointer (not the MSP) */ 6485 static bool v7m_using_psp(CPUARMState *env) 6486 { 6487 /* Handler mode always uses the main stack; for thread mode 6488 * the CONTROL.SPSEL bit determines the answer. 6489 * Note that in v7M it is not possible to be in Handler mode with 6490 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 6491 */ 6492 return !arm_v7m_is_handler_mode(env) && 6493 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 6494 } 6495 6496 /* Write to v7M CONTROL.SPSEL bit for the specified security bank. 6497 * This may change the current stack pointer between Main and Process 6498 * stack pointers if it is done for the CONTROL register for the current 6499 * security state. 6500 */ 6501 static void write_v7m_control_spsel_for_secstate(CPUARMState *env, 6502 bool new_spsel, 6503 bool secstate) 6504 { 6505 bool old_is_psp = v7m_using_psp(env); 6506 6507 env->v7m.control[secstate] = 6508 deposit32(env->v7m.control[secstate], 6509 R_V7M_CONTROL_SPSEL_SHIFT, 6510 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); 6511 6512 if (secstate == env->v7m.secure) { 6513 bool new_is_psp = v7m_using_psp(env); 6514 uint32_t tmp; 6515 6516 if (old_is_psp != new_is_psp) { 6517 tmp = env->v7m.other_sp; 6518 env->v7m.other_sp = env->regs[13]; 6519 env->regs[13] = tmp; 6520 } 6521 } 6522 } 6523 6524 /* Write to v7M CONTROL.SPSEL bit. This may change the current 6525 * stack pointer between Main and Process stack pointers. 6526 */ 6527 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) 6528 { 6529 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); 6530 } 6531 6532 void write_v7m_exception(CPUARMState *env, uint32_t new_exc) 6533 { 6534 /* Write a new value to v7m.exception, thus transitioning into or out 6535 * of Handler mode; this may result in a change of active stack pointer. 6536 */ 6537 bool new_is_psp, old_is_psp = v7m_using_psp(env); 6538 uint32_t tmp; 6539 6540 env->v7m.exception = new_exc; 6541 6542 new_is_psp = v7m_using_psp(env); 6543 6544 if (old_is_psp != new_is_psp) { 6545 tmp = env->v7m.other_sp; 6546 env->v7m.other_sp = env->regs[13]; 6547 env->regs[13] = tmp; 6548 } 6549 } 6550 6551 /* Switch M profile security state between NS and S */ 6552 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) 6553 { 6554 uint32_t new_ss_msp, new_ss_psp; 6555 6556 if (env->v7m.secure == new_secstate) { 6557 return; 6558 } 6559 6560 /* All the banked state is accessed by looking at env->v7m.secure 6561 * except for the stack pointer; rearrange the SP appropriately. 6562 */ 6563 new_ss_msp = env->v7m.other_ss_msp; 6564 new_ss_psp = env->v7m.other_ss_psp; 6565 6566 if (v7m_using_psp(env)) { 6567 env->v7m.other_ss_psp = env->regs[13]; 6568 env->v7m.other_ss_msp = env->v7m.other_sp; 6569 } else { 6570 env->v7m.other_ss_msp = env->regs[13]; 6571 env->v7m.other_ss_psp = env->v7m.other_sp; 6572 } 6573 6574 env->v7m.secure = new_secstate; 6575 6576 if (v7m_using_psp(env)) { 6577 env->regs[13] = new_ss_psp; 6578 env->v7m.other_sp = new_ss_msp; 6579 } else { 6580 env->regs[13] = new_ss_msp; 6581 env->v7m.other_sp = new_ss_psp; 6582 } 6583 } 6584 6585 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6586 { 6587 /* Handle v7M BXNS: 6588 * - if the return value is a magic value, do exception return (like BX) 6589 * - otherwise bit 0 of the return value is the target security state 6590 */ 6591 uint32_t min_magic; 6592 6593 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6594 /* Covers FNC_RETURN and EXC_RETURN magic */ 6595 min_magic = FNC_RETURN_MIN_MAGIC; 6596 } else { 6597 /* EXC_RETURN magic only */ 6598 min_magic = EXC_RETURN_MIN_MAGIC; 6599 } 6600 6601 if (dest >= min_magic) { 6602 /* This is an exception return magic value; put it where 6603 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. 6604 * Note that if we ever add gen_ss_advance() singlestep support to 6605 * M profile this should count as an "instruction execution complete" 6606 * event (compare gen_bx_excret_final_code()). 6607 */ 6608 env->regs[15] = dest & ~1; 6609 env->thumb = dest & 1; 6610 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); 6611 /* notreached */ 6612 } 6613 6614 /* translate.c should have made BXNS UNDEF unless we're secure */ 6615 assert(env->v7m.secure); 6616 6617 switch_v7m_security_state(env, dest & 1); 6618 env->thumb = 1; 6619 env->regs[15] = dest & ~1; 6620 } 6621 6622 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6623 { 6624 /* Handle v7M BLXNS: 6625 * - bit 0 of the destination address is the target security state 6626 */ 6627 6628 /* At this point regs[15] is the address just after the BLXNS */ 6629 uint32_t nextinst = env->regs[15] | 1; 6630 uint32_t sp = env->regs[13] - 8; 6631 uint32_t saved_psr; 6632 6633 /* translate.c will have made BLXNS UNDEF unless we're secure */ 6634 assert(env->v7m.secure); 6635 6636 if (dest & 1) { 6637 /* target is Secure, so this is just a normal BLX, 6638 * except that the low bit doesn't indicate Thumb/not. 6639 */ 6640 env->regs[14] = nextinst; 6641 env->thumb = 1; 6642 env->regs[15] = dest & ~1; 6643 return; 6644 } 6645 6646 /* Target is non-secure: first push a stack frame */ 6647 if (!QEMU_IS_ALIGNED(sp, 8)) { 6648 qemu_log_mask(LOG_GUEST_ERROR, 6649 "BLXNS with misaligned SP is UNPREDICTABLE\n"); 6650 } 6651 6652 saved_psr = env->v7m.exception; 6653 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { 6654 saved_psr |= XPSR_SFPA; 6655 } 6656 6657 /* Note that these stores can throw exceptions on MPU faults */ 6658 cpu_stl_data(env, sp, nextinst); 6659 cpu_stl_data(env, sp + 4, saved_psr); 6660 6661 env->regs[13] = sp; 6662 env->regs[14] = 0xfeffffff; 6663 if (arm_v7m_is_handler_mode(env)) { 6664 /* Write a dummy value to IPSR, to avoid leaking the current secure 6665 * exception number to non-secure code. This is guaranteed not 6666 * to cause write_v7m_exception() to actually change stacks. 6667 */ 6668 write_v7m_exception(env, 1); 6669 } 6670 switch_v7m_security_state(env, 0); 6671 env->thumb = 1; 6672 env->regs[15] = dest; 6673 } 6674 6675 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, 6676 bool spsel) 6677 { 6678 /* Return a pointer to the location where we currently store the 6679 * stack pointer for the requested security state and thread mode. 6680 * This pointer will become invalid if the CPU state is updated 6681 * such that the stack pointers are switched around (eg changing 6682 * the SPSEL control bit). 6683 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). 6684 * Unlike that pseudocode, we require the caller to pass us in the 6685 * SPSEL control bit value; this is because we also use this 6686 * function in handling of pushing of the callee-saves registers 6687 * part of the v8M stack frame (pseudocode PushCalleeStack()), 6688 * and in the tailchain codepath the SPSEL bit comes from the exception 6689 * return magic LR value from the previous exception. The pseudocode 6690 * opencodes the stack-selection in PushCalleeStack(), but we prefer 6691 * to make this utility function generic enough to do the job. 6692 */ 6693 bool want_psp = threadmode && spsel; 6694 6695 if (secure == env->v7m.secure) { 6696 if (want_psp == v7m_using_psp(env)) { 6697 return &env->regs[13]; 6698 } else { 6699 return &env->v7m.other_sp; 6700 } 6701 } else { 6702 if (want_psp) { 6703 return &env->v7m.other_ss_psp; 6704 } else { 6705 return &env->v7m.other_ss_msp; 6706 } 6707 } 6708 } 6709 6710 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure, 6711 uint32_t *pvec) 6712 { 6713 CPUState *cs = CPU(cpu); 6714 CPUARMState *env = &cpu->env; 6715 MemTxResult result; 6716 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4; 6717 uint32_t vector_entry; 6718 MemTxAttrs attrs = {}; 6719 ARMMMUIdx mmu_idx; 6720 bool exc_secure; 6721 6722 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true); 6723 6724 /* We don't do a get_phys_addr() here because the rules for vector 6725 * loads are special: they always use the default memory map, and 6726 * the default memory map permits reads from all addresses. 6727 * Since there's no easy way to pass through to pmsav8_mpu_lookup() 6728 * that we want this special case which would always say "yes", 6729 * we just do the SAU lookup here followed by a direct physical load. 6730 */ 6731 attrs.secure = targets_secure; 6732 attrs.user = false; 6733 6734 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6735 V8M_SAttributes sattrs = {}; 6736 6737 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 6738 if (sattrs.ns) { 6739 attrs.secure = false; 6740 } else if (!targets_secure) { 6741 /* NS access to S memory */ 6742 goto load_fail; 6743 } 6744 } 6745 6746 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr, 6747 attrs, &result); 6748 if (result != MEMTX_OK) { 6749 goto load_fail; 6750 } 6751 *pvec = vector_entry; 6752 return true; 6753 6754 load_fail: 6755 /* All vector table fetch fails are reported as HardFault, with 6756 * HFSR.VECTTBL and .FORCED set. (FORCED is set because 6757 * technically the underlying exception is a MemManage or BusFault 6758 * that is escalated to HardFault.) This is a terminal exception, 6759 * so we will either take the HardFault immediately or else enter 6760 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()). 6761 */ 6762 exc_secure = targets_secure || 6763 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 6764 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK; 6765 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure); 6766 return false; 6767 } 6768 6769 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain, 6770 bool ignore_faults) 6771 { 6772 /* For v8M, push the callee-saves register part of the stack frame. 6773 * Compare the v8M pseudocode PushCalleeStack(). 6774 * In the tailchaining case this may not be the current stack. 6775 */ 6776 CPUARMState *env = &cpu->env; 6777 uint32_t *frame_sp_p; 6778 uint32_t frameptr; 6779 ARMMMUIdx mmu_idx; 6780 bool stacked_ok; 6781 6782 if (dotailchain) { 6783 bool mode = lr & R_V7M_EXCRET_MODE_MASK; 6784 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) || 6785 !mode; 6786 6787 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv); 6788 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode, 6789 lr & R_V7M_EXCRET_SPSEL_MASK); 6790 } else { 6791 mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 6792 frame_sp_p = &env->regs[13]; 6793 } 6794 6795 frameptr = *frame_sp_p - 0x28; 6796 6797 /* Write as much of the stack frame as we can. A write failure may 6798 * cause us to pend a derived exception. 6799 */ 6800 stacked_ok = 6801 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) && 6802 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, 6803 ignore_faults) && 6804 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, 6805 ignore_faults) && 6806 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, 6807 ignore_faults) && 6808 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, 6809 ignore_faults) && 6810 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, 6811 ignore_faults) && 6812 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, 6813 ignore_faults) && 6814 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, 6815 ignore_faults) && 6816 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, 6817 ignore_faults); 6818 6819 /* Update SP regardless of whether any of the stack accesses failed. 6820 * When we implement v8M stack limit checking then this attempt to 6821 * update SP might also fail and result in a derived exception. 6822 */ 6823 *frame_sp_p = frameptr; 6824 6825 return !stacked_ok; 6826 } 6827 6828 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain, 6829 bool ignore_stackfaults) 6830 { 6831 /* Do the "take the exception" parts of exception entry, 6832 * but not the pushing of state to the stack. This is 6833 * similar to the pseudocode ExceptionTaken() function. 6834 */ 6835 CPUARMState *env = &cpu->env; 6836 uint32_t addr; 6837 bool targets_secure; 6838 int exc; 6839 bool push_failed = false; 6840 6841 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure); 6842 6843 if (arm_feature(env, ARM_FEATURE_V8)) { 6844 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 6845 (lr & R_V7M_EXCRET_S_MASK)) { 6846 /* The background code (the owner of the registers in the 6847 * exception frame) is Secure. This means it may either already 6848 * have or now needs to push callee-saves registers. 6849 */ 6850 if (targets_secure) { 6851 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { 6852 /* We took an exception from Secure to NonSecure 6853 * (which means the callee-saved registers got stacked) 6854 * and are now tailchaining to a Secure exception. 6855 * Clear DCRS so eventual return from this Secure 6856 * exception unstacks the callee-saved registers. 6857 */ 6858 lr &= ~R_V7M_EXCRET_DCRS_MASK; 6859 } 6860 } else { 6861 /* We're going to a non-secure exception; push the 6862 * callee-saves registers to the stack now, if they're 6863 * not already saved. 6864 */ 6865 if (lr & R_V7M_EXCRET_DCRS_MASK && 6866 !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) { 6867 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain, 6868 ignore_stackfaults); 6869 } 6870 lr |= R_V7M_EXCRET_DCRS_MASK; 6871 } 6872 } 6873 6874 lr &= ~R_V7M_EXCRET_ES_MASK; 6875 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6876 lr |= R_V7M_EXCRET_ES_MASK; 6877 } 6878 lr &= ~R_V7M_EXCRET_SPSEL_MASK; 6879 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { 6880 lr |= R_V7M_EXCRET_SPSEL_MASK; 6881 } 6882 6883 /* Clear registers if necessary to prevent non-secure exception 6884 * code being able to see register values from secure code. 6885 * Where register values become architecturally UNKNOWN we leave 6886 * them with their previous values. 6887 */ 6888 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6889 if (!targets_secure) { 6890 /* Always clear the caller-saved registers (they have been 6891 * pushed to the stack earlier in v7m_push_stack()). 6892 * Clear callee-saved registers if the background code is 6893 * Secure (in which case these regs were saved in 6894 * v7m_push_callee_stack()). 6895 */ 6896 int i; 6897 6898 for (i = 0; i < 13; i++) { 6899 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ 6900 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { 6901 env->regs[i] = 0; 6902 } 6903 } 6904 /* Clear EAPSR */ 6905 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); 6906 } 6907 } 6908 } 6909 6910 if (push_failed && !ignore_stackfaults) { 6911 /* Derived exception on callee-saves register stacking: 6912 * we might now want to take a different exception which 6913 * targets a different security state, so try again from the top. 6914 */ 6915 v7m_exception_taken(cpu, lr, true, true); 6916 return; 6917 } 6918 6919 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) { 6920 /* Vector load failed: derived exception */ 6921 v7m_exception_taken(cpu, lr, true, true); 6922 return; 6923 } 6924 6925 /* Now we've done everything that might cause a derived exception 6926 * we can go ahead and activate whichever exception we're going to 6927 * take (which might now be the derived exception). 6928 */ 6929 armv7m_nvic_acknowledge_irq(env->nvic); 6930 6931 /* Switch to target security state -- must do this before writing SPSEL */ 6932 switch_v7m_security_state(env, targets_secure); 6933 write_v7m_control_spsel(env, 0); 6934 arm_clear_exclusive(env); 6935 /* Clear IT bits */ 6936 env->condexec_bits = 0; 6937 env->regs[14] = lr; 6938 env->regs[15] = addr & 0xfffffffe; 6939 env->thumb = addr & 1; 6940 } 6941 6942 static bool v7m_push_stack(ARMCPU *cpu) 6943 { 6944 /* Do the "set up stack frame" part of exception entry, 6945 * similar to pseudocode PushStack(). 6946 * Return true if we generate a derived exception (and so 6947 * should ignore further stack faults trying to process 6948 * that derived exception.) 6949 */ 6950 bool stacked_ok; 6951 CPUARMState *env = &cpu->env; 6952 uint32_t xpsr = xpsr_read(env); 6953 uint32_t frameptr = env->regs[13]; 6954 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 6955 6956 /* Align stack pointer if the guest wants that */ 6957 if ((frameptr & 4) && 6958 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { 6959 frameptr -= 4; 6960 xpsr |= XPSR_SPREALIGN; 6961 } 6962 6963 frameptr -= 0x20; 6964 6965 /* Write as much of the stack frame as we can. If we fail a stack 6966 * write this will result in a derived exception being pended 6967 * (which may be taken in preference to the one we started with 6968 * if it has higher priority). 6969 */ 6970 stacked_ok = 6971 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) && 6972 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) && 6973 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) && 6974 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) && 6975 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) && 6976 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) && 6977 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) && 6978 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false); 6979 6980 /* Update SP regardless of whether any of the stack accesses failed. 6981 * When we implement v8M stack limit checking then this attempt to 6982 * update SP might also fail and result in a derived exception. 6983 */ 6984 env->regs[13] = frameptr; 6985 6986 return !stacked_ok; 6987 } 6988 6989 static void do_v7m_exception_exit(ARMCPU *cpu) 6990 { 6991 CPUARMState *env = &cpu->env; 6992 uint32_t excret; 6993 uint32_t xpsr; 6994 bool ufault = false; 6995 bool sfault = false; 6996 bool return_to_sp_process; 6997 bool return_to_handler; 6998 bool rettobase = false; 6999 bool exc_secure = false; 7000 bool return_to_secure; 7001 7002 /* If we're not in Handler mode then jumps to magic exception-exit 7003 * addresses don't have magic behaviour. However for the v8M 7004 * security extensions the magic secure-function-return has to 7005 * work in thread mode too, so to avoid doing an extra check in 7006 * the generated code we allow exception-exit magic to also cause the 7007 * internal exception and bring us here in thread mode. Correct code 7008 * will never try to do this (the following insn fetch will always 7009 * fault) so we the overhead of having taken an unnecessary exception 7010 * doesn't matter. 7011 */ 7012 if (!arm_v7m_is_handler_mode(env)) { 7013 return; 7014 } 7015 7016 /* In the spec pseudocode ExceptionReturn() is called directly 7017 * from BXWritePC() and gets the full target PC value including 7018 * bit zero. In QEMU's implementation we treat it as a normal 7019 * jump-to-register (which is then caught later on), and so split 7020 * the target value up between env->regs[15] and env->thumb in 7021 * gen_bx(). Reconstitute it. 7022 */ 7023 excret = env->regs[15]; 7024 if (env->thumb) { 7025 excret |= 1; 7026 } 7027 7028 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 7029 " previous exception %d\n", 7030 excret, env->v7m.exception); 7031 7032 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { 7033 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " 7034 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", 7035 excret); 7036 } 7037 7038 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7039 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before 7040 * we pick which FAULTMASK to clear. 7041 */ 7042 if (!env->v7m.secure && 7043 ((excret & R_V7M_EXCRET_ES_MASK) || 7044 !(excret & R_V7M_EXCRET_DCRS_MASK))) { 7045 sfault = 1; 7046 /* For all other purposes, treat ES as 0 (R_HXSR) */ 7047 excret &= ~R_V7M_EXCRET_ES_MASK; 7048 } 7049 } 7050 7051 if (env->v7m.exception != ARMV7M_EXCP_NMI) { 7052 /* Auto-clear FAULTMASK on return from other than NMI. 7053 * If the security extension is implemented then this only 7054 * happens if the raw execution priority is >= 0; the 7055 * value of the ES bit in the exception return value indicates 7056 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) 7057 */ 7058 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7059 exc_secure = excret & R_V7M_EXCRET_ES_MASK; 7060 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { 7061 env->v7m.faultmask[exc_secure] = 0; 7062 } 7063 } else { 7064 env->v7m.faultmask[M_REG_NS] = 0; 7065 } 7066 } 7067 7068 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, 7069 exc_secure)) { 7070 case -1: 7071 /* attempt to exit an exception that isn't active */ 7072 ufault = true; 7073 break; 7074 case 0: 7075 /* still an irq active now */ 7076 break; 7077 case 1: 7078 /* we returned to base exception level, no nesting. 7079 * (In the pseudocode this is written using "NestedActivation != 1" 7080 * where we have 'rettobase == false'.) 7081 */ 7082 rettobase = true; 7083 break; 7084 default: 7085 g_assert_not_reached(); 7086 } 7087 7088 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); 7089 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; 7090 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && 7091 (excret & R_V7M_EXCRET_S_MASK); 7092 7093 if (arm_feature(env, ARM_FEATURE_V8)) { 7094 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7095 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); 7096 * we choose to take the UsageFault. 7097 */ 7098 if ((excret & R_V7M_EXCRET_S_MASK) || 7099 (excret & R_V7M_EXCRET_ES_MASK) || 7100 !(excret & R_V7M_EXCRET_DCRS_MASK)) { 7101 ufault = true; 7102 } 7103 } 7104 if (excret & R_V7M_EXCRET_RES0_MASK) { 7105 ufault = true; 7106 } 7107 } else { 7108 /* For v7M we only recognize certain combinations of the low bits */ 7109 switch (excret & 0xf) { 7110 case 1: /* Return to Handler */ 7111 break; 7112 case 13: /* Return to Thread using Process stack */ 7113 case 9: /* Return to Thread using Main stack */ 7114 /* We only need to check NONBASETHRDENA for v7M, because in 7115 * v8M this bit does not exist (it is RES1). 7116 */ 7117 if (!rettobase && 7118 !(env->v7m.ccr[env->v7m.secure] & 7119 R_V7M_CCR_NONBASETHRDENA_MASK)) { 7120 ufault = true; 7121 } 7122 break; 7123 default: 7124 ufault = true; 7125 } 7126 } 7127 7128 if (sfault) { 7129 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; 7130 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7131 v7m_exception_taken(cpu, excret, true, false); 7132 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 7133 "stackframe: failed EXC_RETURN.ES validity check\n"); 7134 return; 7135 } 7136 7137 if (ufault) { 7138 /* Bad exception return: instead of popping the exception 7139 * stack, directly take a usage fault on the current stack. 7140 */ 7141 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7142 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7143 v7m_exception_taken(cpu, excret, true, false); 7144 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 7145 "stackframe: failed exception return integrity check\n"); 7146 return; 7147 } 7148 7149 /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in 7150 * Handler mode (and will be until we write the new XPSR.Interrupt 7151 * field) this does not switch around the current stack pointer. 7152 */ 7153 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); 7154 7155 switch_v7m_security_state(env, return_to_secure); 7156 7157 { 7158 /* The stack pointer we should be reading the exception frame from 7159 * depends on bits in the magic exception return type value (and 7160 * for v8M isn't necessarily the stack pointer we will eventually 7161 * end up resuming execution with). Get a pointer to the location 7162 * in the CPU state struct where the SP we need is currently being 7163 * stored; we will use and modify it in place. 7164 * We use this limited C variable scope so we don't accidentally 7165 * use 'frame_sp_p' after we do something that makes it invalid. 7166 */ 7167 uint32_t *frame_sp_p = get_v7m_sp_ptr(env, 7168 return_to_secure, 7169 !return_to_handler, 7170 return_to_sp_process); 7171 uint32_t frameptr = *frame_sp_p; 7172 bool pop_ok = true; 7173 ARMMMUIdx mmu_idx; 7174 bool return_to_priv = return_to_handler || 7175 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK); 7176 7177 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure, 7178 return_to_priv); 7179 7180 if (!QEMU_IS_ALIGNED(frameptr, 8) && 7181 arm_feature(env, ARM_FEATURE_V8)) { 7182 qemu_log_mask(LOG_GUEST_ERROR, 7183 "M profile exception return with non-8-aligned SP " 7184 "for destination state is UNPREDICTABLE\n"); 7185 } 7186 7187 /* Do we need to pop callee-saved registers? */ 7188 if (return_to_secure && 7189 ((excret & R_V7M_EXCRET_ES_MASK) == 0 || 7190 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { 7191 uint32_t expected_sig = 0xfefa125b; 7192 uint32_t actual_sig; 7193 7194 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx); 7195 7196 if (pop_ok && expected_sig != actual_sig) { 7197 /* Take a SecureFault on the current stack */ 7198 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; 7199 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7200 v7m_exception_taken(cpu, excret, true, false); 7201 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 7202 "stackframe: failed exception return integrity " 7203 "signature check\n"); 7204 return; 7205 } 7206 7207 pop_ok = pop_ok && 7208 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && 7209 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && 7210 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) && 7211 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) && 7212 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) && 7213 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) && 7214 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) && 7215 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) && 7216 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx); 7217 7218 frameptr += 0x28; 7219 } 7220 7221 /* Pop registers */ 7222 pop_ok = pop_ok && 7223 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) && 7224 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) && 7225 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) && 7226 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) && 7227 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) && 7228 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) && 7229 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) && 7230 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx); 7231 7232 if (!pop_ok) { 7233 /* v7m_stack_read() pended a fault, so take it (as a tail 7234 * chained exception on the same stack frame) 7235 */ 7236 v7m_exception_taken(cpu, excret, true, false); 7237 return; 7238 } 7239 7240 /* Returning from an exception with a PC with bit 0 set is defined 7241 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified 7242 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore 7243 * the lsbit, and there are several RTOSes out there which incorrectly 7244 * assume the r15 in the stack frame should be a Thumb-style "lsbit 7245 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but 7246 * complain about the badly behaved guest. 7247 */ 7248 if (env->regs[15] & 1) { 7249 env->regs[15] &= ~1U; 7250 if (!arm_feature(env, ARM_FEATURE_V8)) { 7251 qemu_log_mask(LOG_GUEST_ERROR, 7252 "M profile return from interrupt with misaligned " 7253 "PC is UNPREDICTABLE on v7M\n"); 7254 } 7255 } 7256 7257 if (arm_feature(env, ARM_FEATURE_V8)) { 7258 /* For v8M we have to check whether the xPSR exception field 7259 * matches the EXCRET value for return to handler/thread 7260 * before we commit to changing the SP and xPSR. 7261 */ 7262 bool will_be_handler = (xpsr & XPSR_EXCP) != 0; 7263 if (return_to_handler != will_be_handler) { 7264 /* Take an INVPC UsageFault on the current stack. 7265 * By this point we will have switched to the security state 7266 * for the background state, so this UsageFault will target 7267 * that state. 7268 */ 7269 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7270 env->v7m.secure); 7271 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7272 v7m_exception_taken(cpu, excret, true, false); 7273 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 7274 "stackframe: failed exception return integrity " 7275 "check\n"); 7276 return; 7277 } 7278 } 7279 7280 /* Commit to consuming the stack frame */ 7281 frameptr += 0x20; 7282 /* Undo stack alignment (the SPREALIGN bit indicates that the original 7283 * pre-exception SP was not 8-aligned and we added a padding word to 7284 * align it, so we undo this by ORing in the bit that increases it 7285 * from the current 8-aligned value to the 8-unaligned value. (Adding 4 7286 * would work too but a logical OR is how the pseudocode specifies it.) 7287 */ 7288 if (xpsr & XPSR_SPREALIGN) { 7289 frameptr |= 4; 7290 } 7291 *frame_sp_p = frameptr; 7292 } 7293 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ 7294 xpsr_write(env, xpsr, ~XPSR_SPREALIGN); 7295 7296 /* The restored xPSR exception field will be zero if we're 7297 * resuming in Thread mode. If that doesn't match what the 7298 * exception return excret specified then this is a UsageFault. 7299 * v7M requires we make this check here; v8M did it earlier. 7300 */ 7301 if (return_to_handler != arm_v7m_is_handler_mode(env)) { 7302 /* Take an INVPC UsageFault by pushing the stack again; 7303 * we know we're v7M so this is never a Secure UsageFault. 7304 */ 7305 bool ignore_stackfaults; 7306 7307 assert(!arm_feature(env, ARM_FEATURE_V8)); 7308 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); 7309 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7310 ignore_stackfaults = v7m_push_stack(cpu); 7311 v7m_exception_taken(cpu, excret, false, ignore_stackfaults); 7312 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " 7313 "failed exception return integrity check\n"); 7314 return; 7315 } 7316 7317 /* Otherwise, we have a successful exception exit. */ 7318 arm_clear_exclusive(env); 7319 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); 7320 } 7321 7322 static bool do_v7m_function_return(ARMCPU *cpu) 7323 { 7324 /* v8M security extensions magic function return. 7325 * We may either: 7326 * (1) throw an exception (longjump) 7327 * (2) return true if we successfully handled the function return 7328 * (3) return false if we failed a consistency check and have 7329 * pended a UsageFault that needs to be taken now 7330 * 7331 * At this point the magic return value is split between env->regs[15] 7332 * and env->thumb. We don't bother to reconstitute it because we don't 7333 * need it (all values are handled the same way). 7334 */ 7335 CPUARMState *env = &cpu->env; 7336 uint32_t newpc, newpsr, newpsr_exc; 7337 7338 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); 7339 7340 { 7341 bool threadmode, spsel; 7342 TCGMemOpIdx oi; 7343 ARMMMUIdx mmu_idx; 7344 uint32_t *frame_sp_p; 7345 uint32_t frameptr; 7346 7347 /* Pull the return address and IPSR from the Secure stack */ 7348 threadmode = !arm_v7m_is_handler_mode(env); 7349 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; 7350 7351 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); 7352 frameptr = *frame_sp_p; 7353 7354 /* These loads may throw an exception (for MPU faults). We want to 7355 * do them as secure, so work out what MMU index that is. 7356 */ 7357 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7358 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); 7359 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); 7360 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); 7361 7362 /* Consistency checks on new IPSR */ 7363 newpsr_exc = newpsr & XPSR_EXCP; 7364 if (!((env->v7m.exception == 0 && newpsr_exc == 0) || 7365 (env->v7m.exception == 1 && newpsr_exc != 0))) { 7366 /* Pend the fault and tell our caller to take it */ 7367 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7368 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7369 env->v7m.secure); 7370 qemu_log_mask(CPU_LOG_INT, 7371 "...taking INVPC UsageFault: " 7372 "IPSR consistency check failed\n"); 7373 return false; 7374 } 7375 7376 *frame_sp_p = frameptr + 8; 7377 } 7378 7379 /* This invalidates frame_sp_p */ 7380 switch_v7m_security_state(env, true); 7381 env->v7m.exception = newpsr_exc; 7382 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 7383 if (newpsr & XPSR_SFPA) { 7384 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; 7385 } 7386 xpsr_write(env, 0, XPSR_IT); 7387 env->thumb = newpc & 1; 7388 env->regs[15] = newpc & ~1; 7389 7390 qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); 7391 return true; 7392 } 7393 7394 static void arm_log_exception(int idx) 7395 { 7396 if (qemu_loglevel_mask(CPU_LOG_INT)) { 7397 const char *exc = NULL; 7398 static const char * const excnames[] = { 7399 [EXCP_UDEF] = "Undefined Instruction", 7400 [EXCP_SWI] = "SVC", 7401 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 7402 [EXCP_DATA_ABORT] = "Data Abort", 7403 [EXCP_IRQ] = "IRQ", 7404 [EXCP_FIQ] = "FIQ", 7405 [EXCP_BKPT] = "Breakpoint", 7406 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 7407 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 7408 [EXCP_HVC] = "Hypervisor Call", 7409 [EXCP_HYP_TRAP] = "Hypervisor Trap", 7410 [EXCP_SMC] = "Secure Monitor Call", 7411 [EXCP_VIRQ] = "Virtual IRQ", 7412 [EXCP_VFIQ] = "Virtual FIQ", 7413 [EXCP_SEMIHOST] = "Semihosting call", 7414 [EXCP_NOCP] = "v7M NOCP UsageFault", 7415 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 7416 }; 7417 7418 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 7419 exc = excnames[idx]; 7420 } 7421 if (!exc) { 7422 exc = "unknown"; 7423 } 7424 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 7425 } 7426 } 7427 7428 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, 7429 uint32_t addr, uint16_t *insn) 7430 { 7431 /* Load a 16-bit portion of a v7M instruction, returning true on success, 7432 * or false on failure (in which case we will have pended the appropriate 7433 * exception). 7434 * We need to do the instruction fetch's MPU and SAU checks 7435 * like this because there is no MMU index that would allow 7436 * doing the load with a single function call. Instead we must 7437 * first check that the security attributes permit the load 7438 * and that they don't mismatch on the two halves of the instruction, 7439 * and then we do the load as a secure load (ie using the security 7440 * attributes of the address, not the CPU, as architecturally required). 7441 */ 7442 CPUState *cs = CPU(cpu); 7443 CPUARMState *env = &cpu->env; 7444 V8M_SAttributes sattrs = {}; 7445 MemTxAttrs attrs = {}; 7446 ARMMMUFaultInfo fi = {}; 7447 MemTxResult txres; 7448 target_ulong page_size; 7449 hwaddr physaddr; 7450 int prot; 7451 7452 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); 7453 if (!sattrs.nsc || sattrs.ns) { 7454 /* This must be the second half of the insn, and it straddles a 7455 * region boundary with the second half not being S&NSC. 7456 */ 7457 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7458 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7459 qemu_log_mask(CPU_LOG_INT, 7460 "...really SecureFault with SFSR.INVEP\n"); 7461 return false; 7462 } 7463 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, 7464 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) { 7465 /* the MPU lookup failed */ 7466 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7467 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); 7468 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); 7469 return false; 7470 } 7471 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, 7472 attrs, &txres); 7473 if (txres != MEMTX_OK) { 7474 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7475 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7476 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); 7477 return false; 7478 } 7479 return true; 7480 } 7481 7482 static bool v7m_handle_execute_nsc(ARMCPU *cpu) 7483 { 7484 /* Check whether this attempt to execute code in a Secure & NS-Callable 7485 * memory region is for an SG instruction; if so, then emulate the 7486 * effect of the SG instruction and return true. Otherwise pend 7487 * the correct kind of exception and return false. 7488 */ 7489 CPUARMState *env = &cpu->env; 7490 ARMMMUIdx mmu_idx; 7491 uint16_t insn; 7492 7493 /* We should never get here unless get_phys_addr_pmsav8() caused 7494 * an exception for NS executing in S&NSC memory. 7495 */ 7496 assert(!env->v7m.secure); 7497 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7498 7499 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ 7500 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7501 7502 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { 7503 return false; 7504 } 7505 7506 if (!env->thumb) { 7507 goto gen_invep; 7508 } 7509 7510 if (insn != 0xe97f) { 7511 /* Not an SG instruction first half (we choose the IMPDEF 7512 * early-SG-check option). 7513 */ 7514 goto gen_invep; 7515 } 7516 7517 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { 7518 return false; 7519 } 7520 7521 if (insn != 0xe97f) { 7522 /* Not an SG instruction second half (yes, both halves of the SG 7523 * insn have the same hex value) 7524 */ 7525 goto gen_invep; 7526 } 7527 7528 /* OK, we have confirmed that we really have an SG instruction. 7529 * We know we're NS in S memory so don't need to repeat those checks. 7530 */ 7531 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 7532 ", executing it\n", env->regs[15]); 7533 env->regs[14] &= ~1; 7534 switch_v7m_security_state(env, true); 7535 xpsr_write(env, 0, XPSR_IT); 7536 env->regs[15] += 4; 7537 return true; 7538 7539 gen_invep: 7540 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7541 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7542 qemu_log_mask(CPU_LOG_INT, 7543 "...really SecureFault with SFSR.INVEP\n"); 7544 return false; 7545 } 7546 7547 void arm_v7m_cpu_do_interrupt(CPUState *cs) 7548 { 7549 ARMCPU *cpu = ARM_CPU(cs); 7550 CPUARMState *env = &cpu->env; 7551 uint32_t lr; 7552 bool ignore_stackfaults; 7553 7554 arm_log_exception(cs->exception_index); 7555 7556 /* For exceptions we just mark as pending on the NVIC, and let that 7557 handle it. */ 7558 switch (cs->exception_index) { 7559 case EXCP_UDEF: 7560 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7561 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; 7562 break; 7563 case EXCP_NOCP: 7564 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7565 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; 7566 break; 7567 case EXCP_INVSTATE: 7568 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7569 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; 7570 break; 7571 case EXCP_SWI: 7572 /* The PC already points to the next instruction. */ 7573 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); 7574 break; 7575 case EXCP_PREFETCH_ABORT: 7576 case EXCP_DATA_ABORT: 7577 /* Note that for M profile we don't have a guest facing FSR, but 7578 * the env->exception.fsr will be populated by the code that 7579 * raises the fault, in the A profile short-descriptor format. 7580 */ 7581 switch (env->exception.fsr & 0xf) { 7582 case M_FAKE_FSR_NSC_EXEC: 7583 /* Exception generated when we try to execute code at an address 7584 * which is marked as Secure & Non-Secure Callable and the CPU 7585 * is in the Non-Secure state. The only instruction which can 7586 * be executed like this is SG (and that only if both halves of 7587 * the SG instruction have the same security attributes.) 7588 * Everything else must generate an INVEP SecureFault, so we 7589 * emulate the SG instruction here. 7590 */ 7591 if (v7m_handle_execute_nsc(cpu)) { 7592 return; 7593 } 7594 break; 7595 case M_FAKE_FSR_SFAULT: 7596 /* Various flavours of SecureFault for attempts to execute or 7597 * access data in the wrong security state. 7598 */ 7599 switch (cs->exception_index) { 7600 case EXCP_PREFETCH_ABORT: 7601 if (env->v7m.secure) { 7602 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; 7603 qemu_log_mask(CPU_LOG_INT, 7604 "...really SecureFault with SFSR.INVTRAN\n"); 7605 } else { 7606 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7607 qemu_log_mask(CPU_LOG_INT, 7608 "...really SecureFault with SFSR.INVEP\n"); 7609 } 7610 break; 7611 case EXCP_DATA_ABORT: 7612 /* This must be an NS access to S memory */ 7613 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; 7614 qemu_log_mask(CPU_LOG_INT, 7615 "...really SecureFault with SFSR.AUVIOL\n"); 7616 break; 7617 } 7618 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7619 break; 7620 case 0x8: /* External Abort */ 7621 switch (cs->exception_index) { 7622 case EXCP_PREFETCH_ABORT: 7623 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7624 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); 7625 break; 7626 case EXCP_DATA_ABORT: 7627 env->v7m.cfsr[M_REG_NS] |= 7628 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); 7629 env->v7m.bfar = env->exception.vaddress; 7630 qemu_log_mask(CPU_LOG_INT, 7631 "...with CFSR.PRECISERR and BFAR 0x%x\n", 7632 env->v7m.bfar); 7633 break; 7634 } 7635 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7636 break; 7637 default: 7638 /* All other FSR values are either MPU faults or "can't happen 7639 * for M profile" cases. 7640 */ 7641 switch (cs->exception_index) { 7642 case EXCP_PREFETCH_ABORT: 7643 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7644 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); 7645 break; 7646 case EXCP_DATA_ABORT: 7647 env->v7m.cfsr[env->v7m.secure] |= 7648 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); 7649 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; 7650 qemu_log_mask(CPU_LOG_INT, 7651 "...with CFSR.DACCVIOL and MMFAR 0x%x\n", 7652 env->v7m.mmfar[env->v7m.secure]); 7653 break; 7654 } 7655 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, 7656 env->v7m.secure); 7657 break; 7658 } 7659 break; 7660 case EXCP_BKPT: 7661 if (semihosting_enabled()) { 7662 int nr; 7663 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 7664 if (nr == 0xab) { 7665 env->regs[15] += 2; 7666 qemu_log_mask(CPU_LOG_INT, 7667 "...handling as semihosting call 0x%x\n", 7668 env->regs[0]); 7669 env->regs[0] = do_arm_semihosting(env); 7670 return; 7671 } 7672 } 7673 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); 7674 break; 7675 case EXCP_IRQ: 7676 break; 7677 case EXCP_EXCEPTION_EXIT: 7678 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { 7679 /* Must be v8M security extension function return */ 7680 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); 7681 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7682 if (do_v7m_function_return(cpu)) { 7683 return; 7684 } 7685 } else { 7686 do_v7m_exception_exit(cpu); 7687 return; 7688 } 7689 break; 7690 default: 7691 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7692 return; /* Never happens. Keep compiler happy. */ 7693 } 7694 7695 if (arm_feature(env, ARM_FEATURE_V8)) { 7696 lr = R_V7M_EXCRET_RES1_MASK | 7697 R_V7M_EXCRET_DCRS_MASK | 7698 R_V7M_EXCRET_FTYPE_MASK; 7699 /* The S bit indicates whether we should return to Secure 7700 * or NonSecure (ie our current state). 7701 * The ES bit indicates whether we're taking this exception 7702 * to Secure or NonSecure (ie our target state). We set it 7703 * later, in v7m_exception_taken(). 7704 * The SPSEL bit is also set in v7m_exception_taken() for v8M. 7705 * This corresponds to the ARM ARM pseudocode for v8M setting 7706 * some LR bits in PushStack() and some in ExceptionTaken(); 7707 * the distinction matters for the tailchain cases where we 7708 * can take an exception without pushing the stack. 7709 */ 7710 if (env->v7m.secure) { 7711 lr |= R_V7M_EXCRET_S_MASK; 7712 } 7713 } else { 7714 lr = R_V7M_EXCRET_RES1_MASK | 7715 R_V7M_EXCRET_S_MASK | 7716 R_V7M_EXCRET_DCRS_MASK | 7717 R_V7M_EXCRET_FTYPE_MASK | 7718 R_V7M_EXCRET_ES_MASK; 7719 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { 7720 lr |= R_V7M_EXCRET_SPSEL_MASK; 7721 } 7722 } 7723 if (!arm_v7m_is_handler_mode(env)) { 7724 lr |= R_V7M_EXCRET_MODE_MASK; 7725 } 7726 7727 ignore_stackfaults = v7m_push_stack(cpu); 7728 v7m_exception_taken(cpu, lr, false, ignore_stackfaults); 7729 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception); 7730 } 7731 7732 /* Function used to synchronize QEMU's AArch64 register set with AArch32 7733 * register set. This is necessary when switching between AArch32 and AArch64 7734 * execution state. 7735 */ 7736 void aarch64_sync_32_to_64(CPUARMState *env) 7737 { 7738 int i; 7739 uint32_t mode = env->uncached_cpsr & CPSR_M; 7740 7741 /* We can blanket copy R[0:7] to X[0:7] */ 7742 for (i = 0; i < 8; i++) { 7743 env->xregs[i] = env->regs[i]; 7744 } 7745 7746 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 7747 * Otherwise, they come from the banked user regs. 7748 */ 7749 if (mode == ARM_CPU_MODE_FIQ) { 7750 for (i = 8; i < 13; i++) { 7751 env->xregs[i] = env->usr_regs[i - 8]; 7752 } 7753 } else { 7754 for (i = 8; i < 13; i++) { 7755 env->xregs[i] = env->regs[i]; 7756 } 7757 } 7758 7759 /* Registers x13-x23 are the various mode SP and FP registers. Registers 7760 * r13 and r14 are only copied if we are in that mode, otherwise we copy 7761 * from the mode banked register. 7762 */ 7763 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7764 env->xregs[13] = env->regs[13]; 7765 env->xregs[14] = env->regs[14]; 7766 } else { 7767 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 7768 /* HYP is an exception in that it is copied from r14 */ 7769 if (mode == ARM_CPU_MODE_HYP) { 7770 env->xregs[14] = env->regs[14]; 7771 } else { 7772 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; 7773 } 7774 } 7775 7776 if (mode == ARM_CPU_MODE_HYP) { 7777 env->xregs[15] = env->regs[13]; 7778 } else { 7779 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 7780 } 7781 7782 if (mode == ARM_CPU_MODE_IRQ) { 7783 env->xregs[16] = env->regs[14]; 7784 env->xregs[17] = env->regs[13]; 7785 } else { 7786 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; 7787 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 7788 } 7789 7790 if (mode == ARM_CPU_MODE_SVC) { 7791 env->xregs[18] = env->regs[14]; 7792 env->xregs[19] = env->regs[13]; 7793 } else { 7794 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; 7795 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 7796 } 7797 7798 if (mode == ARM_CPU_MODE_ABT) { 7799 env->xregs[20] = env->regs[14]; 7800 env->xregs[21] = env->regs[13]; 7801 } else { 7802 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; 7803 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 7804 } 7805 7806 if (mode == ARM_CPU_MODE_UND) { 7807 env->xregs[22] = env->regs[14]; 7808 env->xregs[23] = env->regs[13]; 7809 } else { 7810 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; 7811 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 7812 } 7813 7814 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7815 * mode, then we can copy from r8-r14. Otherwise, we copy from the 7816 * FIQ bank for r8-r14. 7817 */ 7818 if (mode == ARM_CPU_MODE_FIQ) { 7819 for (i = 24; i < 31; i++) { 7820 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 7821 } 7822 } else { 7823 for (i = 24; i < 29; i++) { 7824 env->xregs[i] = env->fiq_regs[i - 24]; 7825 } 7826 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 7827 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; 7828 } 7829 7830 env->pc = env->regs[15]; 7831 } 7832 7833 /* Function used to synchronize QEMU's AArch32 register set with AArch64 7834 * register set. This is necessary when switching between AArch32 and AArch64 7835 * execution state. 7836 */ 7837 void aarch64_sync_64_to_32(CPUARMState *env) 7838 { 7839 int i; 7840 uint32_t mode = env->uncached_cpsr & CPSR_M; 7841 7842 /* We can blanket copy X[0:7] to R[0:7] */ 7843 for (i = 0; i < 8; i++) { 7844 env->regs[i] = env->xregs[i]; 7845 } 7846 7847 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 7848 * Otherwise, we copy x8-x12 into the banked user regs. 7849 */ 7850 if (mode == ARM_CPU_MODE_FIQ) { 7851 for (i = 8; i < 13; i++) { 7852 env->usr_regs[i - 8] = env->xregs[i]; 7853 } 7854 } else { 7855 for (i = 8; i < 13; i++) { 7856 env->regs[i] = env->xregs[i]; 7857 } 7858 } 7859 7860 /* Registers r13 & r14 depend on the current mode. 7861 * If we are in a given mode, we copy the corresponding x registers to r13 7862 * and r14. Otherwise, we copy the x register to the banked r13 and r14 7863 * for the mode. 7864 */ 7865 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7866 env->regs[13] = env->xregs[13]; 7867 env->regs[14] = env->xregs[14]; 7868 } else { 7869 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 7870 7871 /* HYP is an exception in that it does not have its own banked r14 but 7872 * shares the USR r14 7873 */ 7874 if (mode == ARM_CPU_MODE_HYP) { 7875 env->regs[14] = env->xregs[14]; 7876 } else { 7877 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 7878 } 7879 } 7880 7881 if (mode == ARM_CPU_MODE_HYP) { 7882 env->regs[13] = env->xregs[15]; 7883 } else { 7884 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 7885 } 7886 7887 if (mode == ARM_CPU_MODE_IRQ) { 7888 env->regs[14] = env->xregs[16]; 7889 env->regs[13] = env->xregs[17]; 7890 } else { 7891 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 7892 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 7893 } 7894 7895 if (mode == ARM_CPU_MODE_SVC) { 7896 env->regs[14] = env->xregs[18]; 7897 env->regs[13] = env->xregs[19]; 7898 } else { 7899 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 7900 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 7901 } 7902 7903 if (mode == ARM_CPU_MODE_ABT) { 7904 env->regs[14] = env->xregs[20]; 7905 env->regs[13] = env->xregs[21]; 7906 } else { 7907 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 7908 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 7909 } 7910 7911 if (mode == ARM_CPU_MODE_UND) { 7912 env->regs[14] = env->xregs[22]; 7913 env->regs[13] = env->xregs[23]; 7914 } else { 7915 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 7916 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 7917 } 7918 7919 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7920 * mode, then we can copy to r8-r14. Otherwise, we copy to the 7921 * FIQ bank for r8-r14. 7922 */ 7923 if (mode == ARM_CPU_MODE_FIQ) { 7924 for (i = 24; i < 31; i++) { 7925 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 7926 } 7927 } else { 7928 for (i = 24; i < 29; i++) { 7929 env->fiq_regs[i - 24] = env->xregs[i]; 7930 } 7931 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 7932 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 7933 } 7934 7935 env->regs[15] = env->pc; 7936 } 7937 7938 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 7939 { 7940 ARMCPU *cpu = ARM_CPU(cs); 7941 CPUARMState *env = &cpu->env; 7942 uint32_t addr; 7943 uint32_t mask; 7944 int new_mode; 7945 uint32_t offset; 7946 uint32_t moe; 7947 7948 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 7949 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { 7950 case EC_BREAKPOINT: 7951 case EC_BREAKPOINT_SAME_EL: 7952 moe = 1; 7953 break; 7954 case EC_WATCHPOINT: 7955 case EC_WATCHPOINT_SAME_EL: 7956 moe = 10; 7957 break; 7958 case EC_AA32_BKPT: 7959 moe = 3; 7960 break; 7961 case EC_VECTORCATCH: 7962 moe = 5; 7963 break; 7964 default: 7965 moe = 0; 7966 break; 7967 } 7968 7969 if (moe) { 7970 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 7971 } 7972 7973 /* TODO: Vectored interrupt controller. */ 7974 switch (cs->exception_index) { 7975 case EXCP_UDEF: 7976 new_mode = ARM_CPU_MODE_UND; 7977 addr = 0x04; 7978 mask = CPSR_I; 7979 if (env->thumb) 7980 offset = 2; 7981 else 7982 offset = 4; 7983 break; 7984 case EXCP_SWI: 7985 new_mode = ARM_CPU_MODE_SVC; 7986 addr = 0x08; 7987 mask = CPSR_I; 7988 /* The PC already points to the next instruction. */ 7989 offset = 0; 7990 break; 7991 case EXCP_BKPT: 7992 /* Fall through to prefetch abort. */ 7993 case EXCP_PREFETCH_ABORT: 7994 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 7995 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 7996 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 7997 env->exception.fsr, (uint32_t)env->exception.vaddress); 7998 new_mode = ARM_CPU_MODE_ABT; 7999 addr = 0x0c; 8000 mask = CPSR_A | CPSR_I; 8001 offset = 4; 8002 break; 8003 case EXCP_DATA_ABORT: 8004 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 8005 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 8006 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 8007 env->exception.fsr, 8008 (uint32_t)env->exception.vaddress); 8009 new_mode = ARM_CPU_MODE_ABT; 8010 addr = 0x10; 8011 mask = CPSR_A | CPSR_I; 8012 offset = 8; 8013 break; 8014 case EXCP_IRQ: 8015 new_mode = ARM_CPU_MODE_IRQ; 8016 addr = 0x18; 8017 /* Disable IRQ and imprecise data aborts. */ 8018 mask = CPSR_A | CPSR_I; 8019 offset = 4; 8020 if (env->cp15.scr_el3 & SCR_IRQ) { 8021 /* IRQ routed to monitor mode */ 8022 new_mode = ARM_CPU_MODE_MON; 8023 mask |= CPSR_F; 8024 } 8025 break; 8026 case EXCP_FIQ: 8027 new_mode = ARM_CPU_MODE_FIQ; 8028 addr = 0x1c; 8029 /* Disable FIQ, IRQ and imprecise data aborts. */ 8030 mask = CPSR_A | CPSR_I | CPSR_F; 8031 if (env->cp15.scr_el3 & SCR_FIQ) { 8032 /* FIQ routed to monitor mode */ 8033 new_mode = ARM_CPU_MODE_MON; 8034 } 8035 offset = 4; 8036 break; 8037 case EXCP_VIRQ: 8038 new_mode = ARM_CPU_MODE_IRQ; 8039 addr = 0x18; 8040 /* Disable IRQ and imprecise data aborts. */ 8041 mask = CPSR_A | CPSR_I; 8042 offset = 4; 8043 break; 8044 case EXCP_VFIQ: 8045 new_mode = ARM_CPU_MODE_FIQ; 8046 addr = 0x1c; 8047 /* Disable FIQ, IRQ and imprecise data aborts. */ 8048 mask = CPSR_A | CPSR_I | CPSR_F; 8049 offset = 4; 8050 break; 8051 case EXCP_SMC: 8052 new_mode = ARM_CPU_MODE_MON; 8053 addr = 0x08; 8054 mask = CPSR_A | CPSR_I | CPSR_F; 8055 offset = 0; 8056 break; 8057 default: 8058 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8059 return; /* Never happens. Keep compiler happy. */ 8060 } 8061 8062 if (new_mode == ARM_CPU_MODE_MON) { 8063 addr += env->cp15.mvbar; 8064 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 8065 /* High vectors. When enabled, base address cannot be remapped. */ 8066 addr += 0xffff0000; 8067 } else { 8068 /* ARM v7 architectures provide a vector base address register to remap 8069 * the interrupt vector table. 8070 * This register is only followed in non-monitor mode, and is banked. 8071 * Note: only bits 31:5 are valid. 8072 */ 8073 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 8074 } 8075 8076 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 8077 env->cp15.scr_el3 &= ~SCR_NS; 8078 } 8079 8080 switch_mode (env, new_mode); 8081 /* For exceptions taken to AArch32 we must clear the SS bit in both 8082 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 8083 */ 8084 env->uncached_cpsr &= ~PSTATE_SS; 8085 env->spsr = cpsr_read(env); 8086 /* Clear IT bits. */ 8087 env->condexec_bits = 0; 8088 /* Switch to the new mode, and to the correct instruction set. */ 8089 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 8090 /* Set new mode endianness */ 8091 env->uncached_cpsr &= ~CPSR_E; 8092 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 8093 env->uncached_cpsr |= CPSR_E; 8094 } 8095 env->daif |= mask; 8096 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares 8097 * and we should just guard the thumb mode on V4 */ 8098 if (arm_feature(env, ARM_FEATURE_V4T)) { 8099 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 8100 } 8101 env->regs[14] = env->regs[15] + offset; 8102 env->regs[15] = addr; 8103 } 8104 8105 /* Handle exception entry to a target EL which is using AArch64 */ 8106 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 8107 { 8108 ARMCPU *cpu = ARM_CPU(cs); 8109 CPUARMState *env = &cpu->env; 8110 unsigned int new_el = env->exception.target_el; 8111 target_ulong addr = env->cp15.vbar_el[new_el]; 8112 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 8113 8114 if (arm_current_el(env) < new_el) { 8115 /* Entry vector offset depends on whether the implemented EL 8116 * immediately lower than the target level is using AArch32 or AArch64 8117 */ 8118 bool is_aa64; 8119 8120 switch (new_el) { 8121 case 3: 8122 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 8123 break; 8124 case 2: 8125 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 8126 break; 8127 case 1: 8128 is_aa64 = is_a64(env); 8129 break; 8130 default: 8131 g_assert_not_reached(); 8132 } 8133 8134 if (is_aa64) { 8135 addr += 0x400; 8136 } else { 8137 addr += 0x600; 8138 } 8139 } else if (pstate_read(env) & PSTATE_SP) { 8140 addr += 0x200; 8141 } 8142 8143 switch (cs->exception_index) { 8144 case EXCP_PREFETCH_ABORT: 8145 case EXCP_DATA_ABORT: 8146 env->cp15.far_el[new_el] = env->exception.vaddress; 8147 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 8148 env->cp15.far_el[new_el]); 8149 /* fall through */ 8150 case EXCP_BKPT: 8151 case EXCP_UDEF: 8152 case EXCP_SWI: 8153 case EXCP_HVC: 8154 case EXCP_HYP_TRAP: 8155 case EXCP_SMC: 8156 env->cp15.esr_el[new_el] = env->exception.syndrome; 8157 break; 8158 case EXCP_IRQ: 8159 case EXCP_VIRQ: 8160 addr += 0x80; 8161 break; 8162 case EXCP_FIQ: 8163 case EXCP_VFIQ: 8164 addr += 0x100; 8165 break; 8166 case EXCP_SEMIHOST: 8167 qemu_log_mask(CPU_LOG_INT, 8168 "...handling as semihosting call 0x%" PRIx64 "\n", 8169 env->xregs[0]); 8170 env->xregs[0] = do_arm_semihosting(env); 8171 return; 8172 default: 8173 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8174 } 8175 8176 if (is_a64(env)) { 8177 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 8178 aarch64_save_sp(env, arm_current_el(env)); 8179 env->elr_el[new_el] = env->pc; 8180 } else { 8181 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 8182 env->elr_el[new_el] = env->regs[15]; 8183 8184 aarch64_sync_32_to_64(env); 8185 8186 env->condexec_bits = 0; 8187 } 8188 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 8189 env->elr_el[new_el]); 8190 8191 pstate_write(env, PSTATE_DAIF | new_mode); 8192 env->aarch64 = 1; 8193 aarch64_restore_sp(env, new_el); 8194 8195 env->pc = addr; 8196 8197 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 8198 new_el, env->pc, pstate_read(env)); 8199 } 8200 8201 static inline bool check_for_semihosting(CPUState *cs) 8202 { 8203 /* Check whether this exception is a semihosting call; if so 8204 * then handle it and return true; otherwise return false. 8205 */ 8206 ARMCPU *cpu = ARM_CPU(cs); 8207 CPUARMState *env = &cpu->env; 8208 8209 if (is_a64(env)) { 8210 if (cs->exception_index == EXCP_SEMIHOST) { 8211 /* This is always the 64-bit semihosting exception. 8212 * The "is this usermode" and "is semihosting enabled" 8213 * checks have been done at translate time. 8214 */ 8215 qemu_log_mask(CPU_LOG_INT, 8216 "...handling as semihosting call 0x%" PRIx64 "\n", 8217 env->xregs[0]); 8218 env->xregs[0] = do_arm_semihosting(env); 8219 return true; 8220 } 8221 return false; 8222 } else { 8223 uint32_t imm; 8224 8225 /* Only intercept calls from privileged modes, to provide some 8226 * semblance of security. 8227 */ 8228 if (cs->exception_index != EXCP_SEMIHOST && 8229 (!semihosting_enabled() || 8230 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 8231 return false; 8232 } 8233 8234 switch (cs->exception_index) { 8235 case EXCP_SEMIHOST: 8236 /* This is always a semihosting call; the "is this usermode" 8237 * and "is semihosting enabled" checks have been done at 8238 * translate time. 8239 */ 8240 break; 8241 case EXCP_SWI: 8242 /* Check for semihosting interrupt. */ 8243 if (env->thumb) { 8244 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 8245 & 0xff; 8246 if (imm == 0xab) { 8247 break; 8248 } 8249 } else { 8250 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 8251 & 0xffffff; 8252 if (imm == 0x123456) { 8253 break; 8254 } 8255 } 8256 return false; 8257 case EXCP_BKPT: 8258 /* See if this is a semihosting syscall. */ 8259 if (env->thumb) { 8260 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 8261 & 0xff; 8262 if (imm == 0xab) { 8263 env->regs[15] += 2; 8264 break; 8265 } 8266 } 8267 return false; 8268 default: 8269 return false; 8270 } 8271 8272 qemu_log_mask(CPU_LOG_INT, 8273 "...handling as semihosting call 0x%x\n", 8274 env->regs[0]); 8275 env->regs[0] = do_arm_semihosting(env); 8276 return true; 8277 } 8278 } 8279 8280 /* Handle a CPU exception for A and R profile CPUs. 8281 * Do any appropriate logging, handle PSCI calls, and then hand off 8282 * to the AArch64-entry or AArch32-entry function depending on the 8283 * target exception level's register width. 8284 */ 8285 void arm_cpu_do_interrupt(CPUState *cs) 8286 { 8287 ARMCPU *cpu = ARM_CPU(cs); 8288 CPUARMState *env = &cpu->env; 8289 unsigned int new_el = env->exception.target_el; 8290 8291 assert(!arm_feature(env, ARM_FEATURE_M)); 8292 8293 arm_log_exception(cs->exception_index); 8294 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 8295 new_el); 8296 if (qemu_loglevel_mask(CPU_LOG_INT) 8297 && !excp_is_internal(cs->exception_index)) { 8298 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 8299 env->exception.syndrome >> ARM_EL_EC_SHIFT, 8300 env->exception.syndrome); 8301 } 8302 8303 if (arm_is_psci_call(cpu, cs->exception_index)) { 8304 arm_handle_psci_call(cpu); 8305 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 8306 return; 8307 } 8308 8309 /* Semihosting semantics depend on the register width of the 8310 * code that caused the exception, not the target exception level, 8311 * so must be handled here. 8312 */ 8313 if (check_for_semihosting(cs)) { 8314 return; 8315 } 8316 8317 /* Hooks may change global state so BQL should be held, also the 8318 * BQL needs to be held for any modification of 8319 * cs->interrupt_request. 8320 */ 8321 g_assert(qemu_mutex_iothread_locked()); 8322 8323 arm_call_pre_el_change_hook(cpu); 8324 8325 assert(!excp_is_internal(cs->exception_index)); 8326 if (arm_el_is_aa64(env, new_el)) { 8327 arm_cpu_do_interrupt_aarch64(cs); 8328 } else { 8329 arm_cpu_do_interrupt_aarch32(cs); 8330 } 8331 8332 arm_call_el_change_hook(cpu); 8333 8334 if (!kvm_enabled()) { 8335 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 8336 } 8337 } 8338 8339 /* Return the exception level which controls this address translation regime */ 8340 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 8341 { 8342 switch (mmu_idx) { 8343 case ARMMMUIdx_S2NS: 8344 case ARMMMUIdx_S1E2: 8345 return 2; 8346 case ARMMMUIdx_S1E3: 8347 return 3; 8348 case ARMMMUIdx_S1SE0: 8349 return arm_el_is_aa64(env, 3) ? 1 : 3; 8350 case ARMMMUIdx_S1SE1: 8351 case ARMMMUIdx_S1NSE0: 8352 case ARMMMUIdx_S1NSE1: 8353 case ARMMMUIdx_MPrivNegPri: 8354 case ARMMMUIdx_MUserNegPri: 8355 case ARMMMUIdx_MPriv: 8356 case ARMMMUIdx_MUser: 8357 case ARMMMUIdx_MSPrivNegPri: 8358 case ARMMMUIdx_MSUserNegPri: 8359 case ARMMMUIdx_MSPriv: 8360 case ARMMMUIdx_MSUser: 8361 return 1; 8362 default: 8363 g_assert_not_reached(); 8364 } 8365 } 8366 8367 /* Return the SCTLR value which controls this address translation regime */ 8368 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 8369 { 8370 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 8371 } 8372 8373 /* Return true if the specified stage of address translation is disabled */ 8374 static inline bool regime_translation_disabled(CPUARMState *env, 8375 ARMMMUIdx mmu_idx) 8376 { 8377 if (arm_feature(env, ARM_FEATURE_M)) { 8378 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 8379 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 8380 case R_V7M_MPU_CTRL_ENABLE_MASK: 8381 /* Enabled, but not for HardFault and NMI */ 8382 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 8383 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 8384 /* Enabled for all cases */ 8385 return false; 8386 case 0: 8387 default: 8388 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 8389 * we warned about that in armv7m_nvic.c when the guest set it. 8390 */ 8391 return true; 8392 } 8393 } 8394 8395 if (mmu_idx == ARMMMUIdx_S2NS) { 8396 return (env->cp15.hcr_el2 & HCR_VM) == 0; 8397 } 8398 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 8399 } 8400 8401 static inline bool regime_translation_big_endian(CPUARMState *env, 8402 ARMMMUIdx mmu_idx) 8403 { 8404 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 8405 } 8406 8407 /* Return the TCR controlling this translation regime */ 8408 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 8409 { 8410 if (mmu_idx == ARMMMUIdx_S2NS) { 8411 return &env->cp15.vtcr_el2; 8412 } 8413 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 8414 } 8415 8416 /* Convert a possible stage1+2 MMU index into the appropriate 8417 * stage 1 MMU index 8418 */ 8419 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 8420 { 8421 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 8422 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 8423 } 8424 return mmu_idx; 8425 } 8426 8427 /* Returns TBI0 value for current regime el */ 8428 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 8429 { 8430 TCR *tcr; 8431 uint32_t el; 8432 8433 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 8434 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 8435 */ 8436 mmu_idx = stage_1_mmu_idx(mmu_idx); 8437 8438 tcr = regime_tcr(env, mmu_idx); 8439 el = regime_el(env, mmu_idx); 8440 8441 if (el > 1) { 8442 return extract64(tcr->raw_tcr, 20, 1); 8443 } else { 8444 return extract64(tcr->raw_tcr, 37, 1); 8445 } 8446 } 8447 8448 /* Returns TBI1 value for current regime el */ 8449 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 8450 { 8451 TCR *tcr; 8452 uint32_t el; 8453 8454 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 8455 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 8456 */ 8457 mmu_idx = stage_1_mmu_idx(mmu_idx); 8458 8459 tcr = regime_tcr(env, mmu_idx); 8460 el = regime_el(env, mmu_idx); 8461 8462 if (el > 1) { 8463 return 0; 8464 } else { 8465 return extract64(tcr->raw_tcr, 38, 1); 8466 } 8467 } 8468 8469 /* Return the TTBR associated with this translation regime */ 8470 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 8471 int ttbrn) 8472 { 8473 if (mmu_idx == ARMMMUIdx_S2NS) { 8474 return env->cp15.vttbr_el2; 8475 } 8476 if (ttbrn == 0) { 8477 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 8478 } else { 8479 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 8480 } 8481 } 8482 8483 /* Return true if the translation regime is using LPAE format page tables */ 8484 static inline bool regime_using_lpae_format(CPUARMState *env, 8485 ARMMMUIdx mmu_idx) 8486 { 8487 int el = regime_el(env, mmu_idx); 8488 if (el == 2 || arm_el_is_aa64(env, el)) { 8489 return true; 8490 } 8491 if (arm_feature(env, ARM_FEATURE_LPAE) 8492 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 8493 return true; 8494 } 8495 return false; 8496 } 8497 8498 /* Returns true if the stage 1 translation regime is using LPAE format page 8499 * tables. Used when raising alignment exceptions, whose FSR changes depending 8500 * on whether the long or short descriptor format is in use. */ 8501 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 8502 { 8503 mmu_idx = stage_1_mmu_idx(mmu_idx); 8504 8505 return regime_using_lpae_format(env, mmu_idx); 8506 } 8507 8508 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 8509 { 8510 switch (mmu_idx) { 8511 case ARMMMUIdx_S1SE0: 8512 case ARMMMUIdx_S1NSE0: 8513 case ARMMMUIdx_MUser: 8514 case ARMMMUIdx_MSUser: 8515 case ARMMMUIdx_MUserNegPri: 8516 case ARMMMUIdx_MSUserNegPri: 8517 return true; 8518 default: 8519 return false; 8520 case ARMMMUIdx_S12NSE0: 8521 case ARMMMUIdx_S12NSE1: 8522 g_assert_not_reached(); 8523 } 8524 } 8525 8526 /* Translate section/page access permissions to page 8527 * R/W protection flags 8528 * 8529 * @env: CPUARMState 8530 * @mmu_idx: MMU index indicating required translation regime 8531 * @ap: The 3-bit access permissions (AP[2:0]) 8532 * @domain_prot: The 2-bit domain access permissions 8533 */ 8534 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 8535 int ap, int domain_prot) 8536 { 8537 bool is_user = regime_is_user(env, mmu_idx); 8538 8539 if (domain_prot == 3) { 8540 return PAGE_READ | PAGE_WRITE; 8541 } 8542 8543 switch (ap) { 8544 case 0: 8545 if (arm_feature(env, ARM_FEATURE_V7)) { 8546 return 0; 8547 } 8548 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 8549 case SCTLR_S: 8550 return is_user ? 0 : PAGE_READ; 8551 case SCTLR_R: 8552 return PAGE_READ; 8553 default: 8554 return 0; 8555 } 8556 case 1: 8557 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8558 case 2: 8559 if (is_user) { 8560 return PAGE_READ; 8561 } else { 8562 return PAGE_READ | PAGE_WRITE; 8563 } 8564 case 3: 8565 return PAGE_READ | PAGE_WRITE; 8566 case 4: /* Reserved. */ 8567 return 0; 8568 case 5: 8569 return is_user ? 0 : PAGE_READ; 8570 case 6: 8571 return PAGE_READ; 8572 case 7: 8573 if (!arm_feature(env, ARM_FEATURE_V6K)) { 8574 return 0; 8575 } 8576 return PAGE_READ; 8577 default: 8578 g_assert_not_reached(); 8579 } 8580 } 8581 8582 /* Translate section/page access permissions to page 8583 * R/W protection flags. 8584 * 8585 * @ap: The 2-bit simple AP (AP[2:1]) 8586 * @is_user: TRUE if accessing from PL0 8587 */ 8588 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 8589 { 8590 switch (ap) { 8591 case 0: 8592 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8593 case 1: 8594 return PAGE_READ | PAGE_WRITE; 8595 case 2: 8596 return is_user ? 0 : PAGE_READ; 8597 case 3: 8598 return PAGE_READ; 8599 default: 8600 g_assert_not_reached(); 8601 } 8602 } 8603 8604 static inline int 8605 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 8606 { 8607 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 8608 } 8609 8610 /* Translate S2 section/page access permissions to protection flags 8611 * 8612 * @env: CPUARMState 8613 * @s2ap: The 2-bit stage2 access permissions (S2AP) 8614 * @xn: XN (execute-never) bit 8615 */ 8616 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 8617 { 8618 int prot = 0; 8619 8620 if (s2ap & 1) { 8621 prot |= PAGE_READ; 8622 } 8623 if (s2ap & 2) { 8624 prot |= PAGE_WRITE; 8625 } 8626 if (!xn) { 8627 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 8628 prot |= PAGE_EXEC; 8629 } 8630 } 8631 return prot; 8632 } 8633 8634 /* Translate section/page access permissions to protection flags 8635 * 8636 * @env: CPUARMState 8637 * @mmu_idx: MMU index indicating required translation regime 8638 * @is_aa64: TRUE if AArch64 8639 * @ap: The 2-bit simple AP (AP[2:1]) 8640 * @ns: NS (non-secure) bit 8641 * @xn: XN (execute-never) bit 8642 * @pxn: PXN (privileged execute-never) bit 8643 */ 8644 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 8645 int ap, int ns, int xn, int pxn) 8646 { 8647 bool is_user = regime_is_user(env, mmu_idx); 8648 int prot_rw, user_rw; 8649 bool have_wxn; 8650 int wxn = 0; 8651 8652 assert(mmu_idx != ARMMMUIdx_S2NS); 8653 8654 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 8655 if (is_user) { 8656 prot_rw = user_rw; 8657 } else { 8658 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 8659 } 8660 8661 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 8662 return prot_rw; 8663 } 8664 8665 /* TODO have_wxn should be replaced with 8666 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 8667 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 8668 * compatible processors have EL2, which is required for [U]WXN. 8669 */ 8670 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 8671 8672 if (have_wxn) { 8673 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 8674 } 8675 8676 if (is_aa64) { 8677 switch (regime_el(env, mmu_idx)) { 8678 case 1: 8679 if (!is_user) { 8680 xn = pxn || (user_rw & PAGE_WRITE); 8681 } 8682 break; 8683 case 2: 8684 case 3: 8685 break; 8686 } 8687 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8688 switch (regime_el(env, mmu_idx)) { 8689 case 1: 8690 case 3: 8691 if (is_user) { 8692 xn = xn || !(user_rw & PAGE_READ); 8693 } else { 8694 int uwxn = 0; 8695 if (have_wxn) { 8696 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 8697 } 8698 xn = xn || !(prot_rw & PAGE_READ) || pxn || 8699 (uwxn && (user_rw & PAGE_WRITE)); 8700 } 8701 break; 8702 case 2: 8703 break; 8704 } 8705 } else { 8706 xn = wxn = 0; 8707 } 8708 8709 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 8710 return prot_rw; 8711 } 8712 return prot_rw | PAGE_EXEC; 8713 } 8714 8715 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 8716 uint32_t *table, uint32_t address) 8717 { 8718 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 8719 TCR *tcr = regime_tcr(env, mmu_idx); 8720 8721 if (address & tcr->mask) { 8722 if (tcr->raw_tcr & TTBCR_PD1) { 8723 /* Translation table walk disabled for TTBR1 */ 8724 return false; 8725 } 8726 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 8727 } else { 8728 if (tcr->raw_tcr & TTBCR_PD0) { 8729 /* Translation table walk disabled for TTBR0 */ 8730 return false; 8731 } 8732 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 8733 } 8734 *table |= (address >> 18) & 0x3ffc; 8735 return true; 8736 } 8737 8738 /* Translate a S1 pagetable walk through S2 if needed. */ 8739 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 8740 hwaddr addr, MemTxAttrs txattrs, 8741 ARMMMUFaultInfo *fi) 8742 { 8743 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 8744 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 8745 target_ulong s2size; 8746 hwaddr s2pa; 8747 int s2prot; 8748 int ret; 8749 8750 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 8751 &txattrs, &s2prot, &s2size, fi, NULL); 8752 if (ret) { 8753 assert(fi->type != ARMFault_None); 8754 fi->s2addr = addr; 8755 fi->stage2 = true; 8756 fi->s1ptw = true; 8757 return ~0; 8758 } 8759 addr = s2pa; 8760 } 8761 return addr; 8762 } 8763 8764 /* All loads done in the course of a page table walk go through here. */ 8765 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8766 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8767 { 8768 ARMCPU *cpu = ARM_CPU(cs); 8769 CPUARMState *env = &cpu->env; 8770 MemTxAttrs attrs = {}; 8771 MemTxResult result = MEMTX_OK; 8772 AddressSpace *as; 8773 uint32_t data; 8774 8775 attrs.secure = is_secure; 8776 as = arm_addressspace(cs, attrs); 8777 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8778 if (fi->s1ptw) { 8779 return 0; 8780 } 8781 if (regime_translation_big_endian(env, mmu_idx)) { 8782 data = address_space_ldl_be(as, addr, attrs, &result); 8783 } else { 8784 data = address_space_ldl_le(as, addr, attrs, &result); 8785 } 8786 if (result == MEMTX_OK) { 8787 return data; 8788 } 8789 fi->type = ARMFault_SyncExternalOnWalk; 8790 fi->ea = arm_extabort_type(result); 8791 return 0; 8792 } 8793 8794 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8795 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8796 { 8797 ARMCPU *cpu = ARM_CPU(cs); 8798 CPUARMState *env = &cpu->env; 8799 MemTxAttrs attrs = {}; 8800 MemTxResult result = MEMTX_OK; 8801 AddressSpace *as; 8802 uint64_t data; 8803 8804 attrs.secure = is_secure; 8805 as = arm_addressspace(cs, attrs); 8806 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8807 if (fi->s1ptw) { 8808 return 0; 8809 } 8810 if (regime_translation_big_endian(env, mmu_idx)) { 8811 data = address_space_ldq_be(as, addr, attrs, &result); 8812 } else { 8813 data = address_space_ldq_le(as, addr, attrs, &result); 8814 } 8815 if (result == MEMTX_OK) { 8816 return data; 8817 } 8818 fi->type = ARMFault_SyncExternalOnWalk; 8819 fi->ea = arm_extabort_type(result); 8820 return 0; 8821 } 8822 8823 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 8824 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8825 hwaddr *phys_ptr, int *prot, 8826 target_ulong *page_size, 8827 ARMMMUFaultInfo *fi) 8828 { 8829 CPUState *cs = CPU(arm_env_get_cpu(env)); 8830 int level = 1; 8831 uint32_t table; 8832 uint32_t desc; 8833 int type; 8834 int ap; 8835 int domain = 0; 8836 int domain_prot; 8837 hwaddr phys_addr; 8838 uint32_t dacr; 8839 8840 /* Pagetable walk. */ 8841 /* Lookup l1 descriptor. */ 8842 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8843 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8844 fi->type = ARMFault_Translation; 8845 goto do_fault; 8846 } 8847 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8848 mmu_idx, fi); 8849 if (fi->type != ARMFault_None) { 8850 goto do_fault; 8851 } 8852 type = (desc & 3); 8853 domain = (desc >> 5) & 0x0f; 8854 if (regime_el(env, mmu_idx) == 1) { 8855 dacr = env->cp15.dacr_ns; 8856 } else { 8857 dacr = env->cp15.dacr_s; 8858 } 8859 domain_prot = (dacr >> (domain * 2)) & 3; 8860 if (type == 0) { 8861 /* Section translation fault. */ 8862 fi->type = ARMFault_Translation; 8863 goto do_fault; 8864 } 8865 if (type != 2) { 8866 level = 2; 8867 } 8868 if (domain_prot == 0 || domain_prot == 2) { 8869 fi->type = ARMFault_Domain; 8870 goto do_fault; 8871 } 8872 if (type == 2) { 8873 /* 1Mb section. */ 8874 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8875 ap = (desc >> 10) & 3; 8876 *page_size = 1024 * 1024; 8877 } else { 8878 /* Lookup l2 entry. */ 8879 if (type == 1) { 8880 /* Coarse pagetable. */ 8881 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8882 } else { 8883 /* Fine pagetable. */ 8884 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 8885 } 8886 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8887 mmu_idx, fi); 8888 if (fi->type != ARMFault_None) { 8889 goto do_fault; 8890 } 8891 switch (desc & 3) { 8892 case 0: /* Page translation fault. */ 8893 fi->type = ARMFault_Translation; 8894 goto do_fault; 8895 case 1: /* 64k page. */ 8896 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 8897 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 8898 *page_size = 0x10000; 8899 break; 8900 case 2: /* 4k page. */ 8901 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8902 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 8903 *page_size = 0x1000; 8904 break; 8905 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 8906 if (type == 1) { 8907 /* ARMv6/XScale extended small page format */ 8908 if (arm_feature(env, ARM_FEATURE_XSCALE) 8909 || arm_feature(env, ARM_FEATURE_V6)) { 8910 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8911 *page_size = 0x1000; 8912 } else { 8913 /* UNPREDICTABLE in ARMv5; we choose to take a 8914 * page translation fault. 8915 */ 8916 fi->type = ARMFault_Translation; 8917 goto do_fault; 8918 } 8919 } else { 8920 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 8921 *page_size = 0x400; 8922 } 8923 ap = (desc >> 4) & 3; 8924 break; 8925 default: 8926 /* Never happens, but compiler isn't smart enough to tell. */ 8927 abort(); 8928 } 8929 } 8930 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 8931 *prot |= *prot ? PAGE_EXEC : 0; 8932 if (!(*prot & (1 << access_type))) { 8933 /* Access permission fault. */ 8934 fi->type = ARMFault_Permission; 8935 goto do_fault; 8936 } 8937 *phys_ptr = phys_addr; 8938 return false; 8939 do_fault: 8940 fi->domain = domain; 8941 fi->level = level; 8942 return true; 8943 } 8944 8945 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 8946 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8947 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 8948 target_ulong *page_size, ARMMMUFaultInfo *fi) 8949 { 8950 CPUState *cs = CPU(arm_env_get_cpu(env)); 8951 int level = 1; 8952 uint32_t table; 8953 uint32_t desc; 8954 uint32_t xn; 8955 uint32_t pxn = 0; 8956 int type; 8957 int ap; 8958 int domain = 0; 8959 int domain_prot; 8960 hwaddr phys_addr; 8961 uint32_t dacr; 8962 bool ns; 8963 8964 /* Pagetable walk. */ 8965 /* Lookup l1 descriptor. */ 8966 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8967 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8968 fi->type = ARMFault_Translation; 8969 goto do_fault; 8970 } 8971 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8972 mmu_idx, fi); 8973 if (fi->type != ARMFault_None) { 8974 goto do_fault; 8975 } 8976 type = (desc & 3); 8977 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 8978 /* Section translation fault, or attempt to use the encoding 8979 * which is Reserved on implementations without PXN. 8980 */ 8981 fi->type = ARMFault_Translation; 8982 goto do_fault; 8983 } 8984 if ((type == 1) || !(desc & (1 << 18))) { 8985 /* Page or Section. */ 8986 domain = (desc >> 5) & 0x0f; 8987 } 8988 if (regime_el(env, mmu_idx) == 1) { 8989 dacr = env->cp15.dacr_ns; 8990 } else { 8991 dacr = env->cp15.dacr_s; 8992 } 8993 if (type == 1) { 8994 level = 2; 8995 } 8996 domain_prot = (dacr >> (domain * 2)) & 3; 8997 if (domain_prot == 0 || domain_prot == 2) { 8998 /* Section or Page domain fault */ 8999 fi->type = ARMFault_Domain; 9000 goto do_fault; 9001 } 9002 if (type != 1) { 9003 if (desc & (1 << 18)) { 9004 /* Supersection. */ 9005 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 9006 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 9007 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 9008 *page_size = 0x1000000; 9009 } else { 9010 /* Section. */ 9011 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 9012 *page_size = 0x100000; 9013 } 9014 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 9015 xn = desc & (1 << 4); 9016 pxn = desc & 1; 9017 ns = extract32(desc, 19, 1); 9018 } else { 9019 if (arm_feature(env, ARM_FEATURE_PXN)) { 9020 pxn = (desc >> 2) & 1; 9021 } 9022 ns = extract32(desc, 3, 1); 9023 /* Lookup l2 entry. */ 9024 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 9025 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9026 mmu_idx, fi); 9027 if (fi->type != ARMFault_None) { 9028 goto do_fault; 9029 } 9030 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 9031 switch (desc & 3) { 9032 case 0: /* Page translation fault. */ 9033 fi->type = ARMFault_Translation; 9034 goto do_fault; 9035 case 1: /* 64k page. */ 9036 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9037 xn = desc & (1 << 15); 9038 *page_size = 0x10000; 9039 break; 9040 case 2: case 3: /* 4k page. */ 9041 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9042 xn = desc & 1; 9043 *page_size = 0x1000; 9044 break; 9045 default: 9046 /* Never happens, but compiler isn't smart enough to tell. */ 9047 abort(); 9048 } 9049 } 9050 if (domain_prot == 3) { 9051 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9052 } else { 9053 if (pxn && !regime_is_user(env, mmu_idx)) { 9054 xn = 1; 9055 } 9056 if (xn && access_type == MMU_INST_FETCH) { 9057 fi->type = ARMFault_Permission; 9058 goto do_fault; 9059 } 9060 9061 if (arm_feature(env, ARM_FEATURE_V6K) && 9062 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 9063 /* The simplified model uses AP[0] as an access control bit. */ 9064 if ((ap & 1) == 0) { 9065 /* Access flag fault. */ 9066 fi->type = ARMFault_AccessFlag; 9067 goto do_fault; 9068 } 9069 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 9070 } else { 9071 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9072 } 9073 if (*prot && !xn) { 9074 *prot |= PAGE_EXEC; 9075 } 9076 if (!(*prot & (1 << access_type))) { 9077 /* Access permission fault. */ 9078 fi->type = ARMFault_Permission; 9079 goto do_fault; 9080 } 9081 } 9082 if (ns) { 9083 /* The NS bit will (as required by the architecture) have no effect if 9084 * the CPU doesn't support TZ or this is a non-secure translation 9085 * regime, because the attribute will already be non-secure. 9086 */ 9087 attrs->secure = false; 9088 } 9089 *phys_ptr = phys_addr; 9090 return false; 9091 do_fault: 9092 fi->domain = domain; 9093 fi->level = level; 9094 return true; 9095 } 9096 9097 /* 9098 * check_s2_mmu_setup 9099 * @cpu: ARMCPU 9100 * @is_aa64: True if the translation regime is in AArch64 state 9101 * @startlevel: Suggested starting level 9102 * @inputsize: Bitsize of IPAs 9103 * @stride: Page-table stride (See the ARM ARM) 9104 * 9105 * Returns true if the suggested S2 translation parameters are OK and 9106 * false otherwise. 9107 */ 9108 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 9109 int inputsize, int stride) 9110 { 9111 const int grainsize = stride + 3; 9112 int startsizecheck; 9113 9114 /* Negative levels are never allowed. */ 9115 if (level < 0) { 9116 return false; 9117 } 9118 9119 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 9120 if (startsizecheck < 1 || startsizecheck > stride + 4) { 9121 return false; 9122 } 9123 9124 if (is_aa64) { 9125 CPUARMState *env = &cpu->env; 9126 unsigned int pamax = arm_pamax(cpu); 9127 9128 switch (stride) { 9129 case 13: /* 64KB Pages. */ 9130 if (level == 0 || (level == 1 && pamax <= 42)) { 9131 return false; 9132 } 9133 break; 9134 case 11: /* 16KB Pages. */ 9135 if (level == 0 || (level == 1 && pamax <= 40)) { 9136 return false; 9137 } 9138 break; 9139 case 9: /* 4KB Pages. */ 9140 if (level == 0 && pamax <= 42) { 9141 return false; 9142 } 9143 break; 9144 default: 9145 g_assert_not_reached(); 9146 } 9147 9148 /* Inputsize checks. */ 9149 if (inputsize > pamax && 9150 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 9151 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 9152 return false; 9153 } 9154 } else { 9155 /* AArch32 only supports 4KB pages. Assert on that. */ 9156 assert(stride == 9); 9157 9158 if (level == 0) { 9159 return false; 9160 } 9161 } 9162 return true; 9163 } 9164 9165 /* Translate from the 4-bit stage 2 representation of 9166 * memory attributes (without cache-allocation hints) to 9167 * the 8-bit representation of the stage 1 MAIR registers 9168 * (which includes allocation hints). 9169 * 9170 * ref: shared/translation/attrs/S2AttrDecode() 9171 * .../S2ConvertAttrsHints() 9172 */ 9173 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 9174 { 9175 uint8_t hiattr = extract32(s2attrs, 2, 2); 9176 uint8_t loattr = extract32(s2attrs, 0, 2); 9177 uint8_t hihint = 0, lohint = 0; 9178 9179 if (hiattr != 0) { /* normal memory */ 9180 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 9181 hiattr = loattr = 1; /* non-cacheable */ 9182 } else { 9183 if (hiattr != 1) { /* Write-through or write-back */ 9184 hihint = 3; /* RW allocate */ 9185 } 9186 if (loattr != 1) { /* Write-through or write-back */ 9187 lohint = 3; /* RW allocate */ 9188 } 9189 } 9190 } 9191 9192 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 9193 } 9194 9195 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 9196 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9197 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 9198 target_ulong *page_size_ptr, 9199 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 9200 { 9201 ARMCPU *cpu = arm_env_get_cpu(env); 9202 CPUState *cs = CPU(cpu); 9203 /* Read an LPAE long-descriptor translation table. */ 9204 ARMFaultType fault_type = ARMFault_Translation; 9205 uint32_t level; 9206 uint32_t epd = 0; 9207 int32_t t0sz, t1sz; 9208 uint32_t tg; 9209 uint64_t ttbr; 9210 int ttbr_select; 9211 hwaddr descaddr, indexmask, indexmask_grainsize; 9212 uint32_t tableattrs; 9213 target_ulong page_size; 9214 uint32_t attrs; 9215 int32_t stride = 9; 9216 int32_t addrsize; 9217 int inputsize; 9218 int32_t tbi = 0; 9219 TCR *tcr = regime_tcr(env, mmu_idx); 9220 int ap, ns, xn, pxn; 9221 uint32_t el = regime_el(env, mmu_idx); 9222 bool ttbr1_valid = true; 9223 uint64_t descaddrmask; 9224 bool aarch64 = arm_el_is_aa64(env, el); 9225 9226 /* TODO: 9227 * This code does not handle the different format TCR for VTCR_EL2. 9228 * This code also does not support shareability levels. 9229 * Attribute and permission bit handling should also be checked when adding 9230 * support for those page table walks. 9231 */ 9232 if (aarch64) { 9233 level = 0; 9234 addrsize = 64; 9235 if (el > 1) { 9236 if (mmu_idx != ARMMMUIdx_S2NS) { 9237 tbi = extract64(tcr->raw_tcr, 20, 1); 9238 } 9239 } else { 9240 if (extract64(address, 55, 1)) { 9241 tbi = extract64(tcr->raw_tcr, 38, 1); 9242 } else { 9243 tbi = extract64(tcr->raw_tcr, 37, 1); 9244 } 9245 } 9246 tbi *= 8; 9247 9248 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 9249 * invalid. 9250 */ 9251 if (el > 1) { 9252 ttbr1_valid = false; 9253 } 9254 } else { 9255 level = 1; 9256 addrsize = 32; 9257 /* There is no TTBR1 for EL2 */ 9258 if (el == 2) { 9259 ttbr1_valid = false; 9260 } 9261 } 9262 9263 /* Determine whether this address is in the region controlled by 9264 * TTBR0 or TTBR1 (or if it is in neither region and should fault). 9265 * This is a Non-secure PL0/1 stage 1 translation, so controlled by 9266 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: 9267 */ 9268 if (aarch64) { 9269 /* AArch64 translation. */ 9270 t0sz = extract32(tcr->raw_tcr, 0, 6); 9271 t0sz = MIN(t0sz, 39); 9272 t0sz = MAX(t0sz, 16); 9273 } else if (mmu_idx != ARMMMUIdx_S2NS) { 9274 /* AArch32 stage 1 translation. */ 9275 t0sz = extract32(tcr->raw_tcr, 0, 3); 9276 } else { 9277 /* AArch32 stage 2 translation. */ 9278 bool sext = extract32(tcr->raw_tcr, 4, 1); 9279 bool sign = extract32(tcr->raw_tcr, 3, 1); 9280 /* Address size is 40-bit for a stage 2 translation, 9281 * and t0sz can be negative (from -8 to 7), 9282 * so we need to adjust it to use the TTBR selecting logic below. 9283 */ 9284 addrsize = 40; 9285 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; 9286 9287 /* If the sign-extend bit is not the same as t0sz[3], the result 9288 * is unpredictable. Flag this as a guest error. */ 9289 if (sign != sext) { 9290 qemu_log_mask(LOG_GUEST_ERROR, 9291 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 9292 } 9293 } 9294 t1sz = extract32(tcr->raw_tcr, 16, 6); 9295 if (aarch64) { 9296 t1sz = MIN(t1sz, 39); 9297 t1sz = MAX(t1sz, 16); 9298 } 9299 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { 9300 /* there is a ttbr0 region and we are in it (high bits all zero) */ 9301 ttbr_select = 0; 9302 } else if (ttbr1_valid && t1sz && 9303 !extract64(~address, addrsize - t1sz, t1sz - tbi)) { 9304 /* there is a ttbr1 region and we are in it (high bits all one) */ 9305 ttbr_select = 1; 9306 } else if (!t0sz) { 9307 /* ttbr0 region is "everything not in the ttbr1 region" */ 9308 ttbr_select = 0; 9309 } else if (!t1sz && ttbr1_valid) { 9310 /* ttbr1 region is "everything not in the ttbr0 region" */ 9311 ttbr_select = 1; 9312 } else { 9313 /* in the gap between the two regions, this is a Translation fault */ 9314 fault_type = ARMFault_Translation; 9315 goto do_fault; 9316 } 9317 9318 /* Note that QEMU ignores shareability and cacheability attributes, 9319 * so we don't need to do anything with the SH, ORGN, IRGN fields 9320 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 9321 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 9322 * implement any ASID-like capability so we can ignore it (instead 9323 * we will always flush the TLB any time the ASID is changed). 9324 */ 9325 if (ttbr_select == 0) { 9326 ttbr = regime_ttbr(env, mmu_idx, 0); 9327 if (el < 2) { 9328 epd = extract32(tcr->raw_tcr, 7, 1); 9329 } 9330 inputsize = addrsize - t0sz; 9331 9332 tg = extract32(tcr->raw_tcr, 14, 2); 9333 if (tg == 1) { /* 64KB pages */ 9334 stride = 13; 9335 } 9336 if (tg == 2) { /* 16KB pages */ 9337 stride = 11; 9338 } 9339 } else { 9340 /* We should only be here if TTBR1 is valid */ 9341 assert(ttbr1_valid); 9342 9343 ttbr = regime_ttbr(env, mmu_idx, 1); 9344 epd = extract32(tcr->raw_tcr, 23, 1); 9345 inputsize = addrsize - t1sz; 9346 9347 tg = extract32(tcr->raw_tcr, 30, 2); 9348 if (tg == 3) { /* 64KB pages */ 9349 stride = 13; 9350 } 9351 if (tg == 1) { /* 16KB pages */ 9352 stride = 11; 9353 } 9354 } 9355 9356 /* Here we should have set up all the parameters for the translation: 9357 * inputsize, ttbr, epd, stride, tbi 9358 */ 9359 9360 if (epd) { 9361 /* Translation table walk disabled => Translation fault on TLB miss 9362 * Note: This is always 0 on 64-bit EL2 and EL3. 9363 */ 9364 goto do_fault; 9365 } 9366 9367 if (mmu_idx != ARMMMUIdx_S2NS) { 9368 /* The starting level depends on the virtual address size (which can 9369 * be up to 48 bits) and the translation granule size. It indicates 9370 * the number of strides (stride bits at a time) needed to 9371 * consume the bits of the input address. In the pseudocode this is: 9372 * level = 4 - RoundUp((inputsize - grainsize) / stride) 9373 * where their 'inputsize' is our 'inputsize', 'grainsize' is 9374 * our 'stride + 3' and 'stride' is our 'stride'. 9375 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 9376 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 9377 * = 4 - (inputsize - 4) / stride; 9378 */ 9379 level = 4 - (inputsize - 4) / stride; 9380 } else { 9381 /* For stage 2 translations the starting level is specified by the 9382 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 9383 */ 9384 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 9385 uint32_t startlevel; 9386 bool ok; 9387 9388 if (!aarch64 || stride == 9) { 9389 /* AArch32 or 4KB pages */ 9390 startlevel = 2 - sl0; 9391 } else { 9392 /* 16KB or 64KB pages */ 9393 startlevel = 3 - sl0; 9394 } 9395 9396 /* Check that the starting level is valid. */ 9397 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 9398 inputsize, stride); 9399 if (!ok) { 9400 fault_type = ARMFault_Translation; 9401 goto do_fault; 9402 } 9403 level = startlevel; 9404 } 9405 9406 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 9407 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 9408 9409 /* Now we can extract the actual base address from the TTBR */ 9410 descaddr = extract64(ttbr, 0, 48); 9411 descaddr &= ~indexmask; 9412 9413 /* The address field in the descriptor goes up to bit 39 for ARMv7 9414 * but up to bit 47 for ARMv8, but we use the descaddrmask 9415 * up to bit 39 for AArch32, because we don't need other bits in that case 9416 * to construct next descriptor address (anyway they should be all zeroes). 9417 */ 9418 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 9419 ~indexmask_grainsize; 9420 9421 /* Secure accesses start with the page table in secure memory and 9422 * can be downgraded to non-secure at any step. Non-secure accesses 9423 * remain non-secure. We implement this by just ORing in the NSTable/NS 9424 * bits at each step. 9425 */ 9426 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 9427 for (;;) { 9428 uint64_t descriptor; 9429 bool nstable; 9430 9431 descaddr |= (address >> (stride * (4 - level))) & indexmask; 9432 descaddr &= ~7ULL; 9433 nstable = extract32(tableattrs, 4, 1); 9434 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 9435 if (fi->type != ARMFault_None) { 9436 goto do_fault; 9437 } 9438 9439 if (!(descriptor & 1) || 9440 (!(descriptor & 2) && (level == 3))) { 9441 /* Invalid, or the Reserved level 3 encoding */ 9442 goto do_fault; 9443 } 9444 descaddr = descriptor & descaddrmask; 9445 9446 if ((descriptor & 2) && (level < 3)) { 9447 /* Table entry. The top five bits are attributes which may 9448 * propagate down through lower levels of the table (and 9449 * which are all arranged so that 0 means "no effect", so 9450 * we can gather them up by ORing in the bits at each level). 9451 */ 9452 tableattrs |= extract64(descriptor, 59, 5); 9453 level++; 9454 indexmask = indexmask_grainsize; 9455 continue; 9456 } 9457 /* Block entry at level 1 or 2, or page entry at level 3. 9458 * These are basically the same thing, although the number 9459 * of bits we pull in from the vaddr varies. 9460 */ 9461 page_size = (1ULL << ((stride * (4 - level)) + 3)); 9462 descaddr |= (address & (page_size - 1)); 9463 /* Extract attributes from the descriptor */ 9464 attrs = extract64(descriptor, 2, 10) 9465 | (extract64(descriptor, 52, 12) << 10); 9466 9467 if (mmu_idx == ARMMMUIdx_S2NS) { 9468 /* Stage 2 table descriptors do not include any attribute fields */ 9469 break; 9470 } 9471 /* Merge in attributes from table descriptors */ 9472 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 9473 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ 9474 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 9475 * means "force PL1 access only", which means forcing AP[1] to 0. 9476 */ 9477 if (extract32(tableattrs, 2, 1)) { 9478 attrs &= ~(1 << 4); 9479 } 9480 attrs |= nstable << 3; /* NS */ 9481 break; 9482 } 9483 /* Here descaddr is the final physical address, and attributes 9484 * are all in attrs. 9485 */ 9486 fault_type = ARMFault_AccessFlag; 9487 if ((attrs & (1 << 8)) == 0) { 9488 /* Access flag */ 9489 goto do_fault; 9490 } 9491 9492 ap = extract32(attrs, 4, 2); 9493 xn = extract32(attrs, 12, 1); 9494 9495 if (mmu_idx == ARMMMUIdx_S2NS) { 9496 ns = true; 9497 *prot = get_S2prot(env, ap, xn); 9498 } else { 9499 ns = extract32(attrs, 3, 1); 9500 pxn = extract32(attrs, 11, 1); 9501 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 9502 } 9503 9504 fault_type = ARMFault_Permission; 9505 if (!(*prot & (1 << access_type))) { 9506 goto do_fault; 9507 } 9508 9509 if (ns) { 9510 /* The NS bit will (as required by the architecture) have no effect if 9511 * the CPU doesn't support TZ or this is a non-secure translation 9512 * regime, because the attribute will already be non-secure. 9513 */ 9514 txattrs->secure = false; 9515 } 9516 9517 if (cacheattrs != NULL) { 9518 if (mmu_idx == ARMMMUIdx_S2NS) { 9519 cacheattrs->attrs = convert_stage2_attrs(env, 9520 extract32(attrs, 0, 4)); 9521 } else { 9522 /* Index into MAIR registers for cache attributes */ 9523 uint8_t attrindx = extract32(attrs, 0, 3); 9524 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 9525 assert(attrindx <= 7); 9526 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 9527 } 9528 cacheattrs->shareability = extract32(attrs, 6, 2); 9529 } 9530 9531 *phys_ptr = descaddr; 9532 *page_size_ptr = page_size; 9533 return false; 9534 9535 do_fault: 9536 fi->type = fault_type; 9537 fi->level = level; 9538 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 9539 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 9540 return true; 9541 } 9542 9543 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 9544 ARMMMUIdx mmu_idx, 9545 int32_t address, int *prot) 9546 { 9547 if (!arm_feature(env, ARM_FEATURE_M)) { 9548 *prot = PAGE_READ | PAGE_WRITE; 9549 switch (address) { 9550 case 0xF0000000 ... 0xFFFFFFFF: 9551 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 9552 /* hivecs execing is ok */ 9553 *prot |= PAGE_EXEC; 9554 } 9555 break; 9556 case 0x00000000 ... 0x7FFFFFFF: 9557 *prot |= PAGE_EXEC; 9558 break; 9559 } 9560 } else { 9561 /* Default system address map for M profile cores. 9562 * The architecture specifies which regions are execute-never; 9563 * at the MPU level no other checks are defined. 9564 */ 9565 switch (address) { 9566 case 0x00000000 ... 0x1fffffff: /* ROM */ 9567 case 0x20000000 ... 0x3fffffff: /* SRAM */ 9568 case 0x60000000 ... 0x7fffffff: /* RAM */ 9569 case 0x80000000 ... 0x9fffffff: /* RAM */ 9570 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9571 break; 9572 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 9573 case 0xa0000000 ... 0xbfffffff: /* Device */ 9574 case 0xc0000000 ... 0xdfffffff: /* Device */ 9575 case 0xe0000000 ... 0xffffffff: /* System */ 9576 *prot = PAGE_READ | PAGE_WRITE; 9577 break; 9578 default: 9579 g_assert_not_reached(); 9580 } 9581 } 9582 } 9583 9584 static bool pmsav7_use_background_region(ARMCPU *cpu, 9585 ARMMMUIdx mmu_idx, bool is_user) 9586 { 9587 /* Return true if we should use the default memory map as a 9588 * "background" region if there are no hits against any MPU regions. 9589 */ 9590 CPUARMState *env = &cpu->env; 9591 9592 if (is_user) { 9593 return false; 9594 } 9595 9596 if (arm_feature(env, ARM_FEATURE_M)) { 9597 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 9598 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 9599 } else { 9600 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 9601 } 9602 } 9603 9604 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 9605 { 9606 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 9607 return arm_feature(env, ARM_FEATURE_M) && 9608 extract32(address, 20, 12) == 0xe00; 9609 } 9610 9611 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 9612 { 9613 /* True if address is in the M profile system region 9614 * 0xe0000000 - 0xffffffff 9615 */ 9616 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 9617 } 9618 9619 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 9620 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9621 hwaddr *phys_ptr, int *prot, 9622 target_ulong *page_size, 9623 ARMMMUFaultInfo *fi) 9624 { 9625 ARMCPU *cpu = arm_env_get_cpu(env); 9626 int n; 9627 bool is_user = regime_is_user(env, mmu_idx); 9628 9629 *phys_ptr = address; 9630 *page_size = TARGET_PAGE_SIZE; 9631 *prot = 0; 9632 9633 if (regime_translation_disabled(env, mmu_idx) || 9634 m_is_ppb_region(env, address)) { 9635 /* MPU disabled or M profile PPB access: use default memory map. 9636 * The other case which uses the default memory map in the 9637 * v7M ARM ARM pseudocode is exception vector reads from the vector 9638 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 9639 * which always does a direct read using address_space_ldl(), rather 9640 * than going via this function, so we don't need to check that here. 9641 */ 9642 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9643 } else { /* MPU enabled */ 9644 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9645 /* region search */ 9646 uint32_t base = env->pmsav7.drbar[n]; 9647 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 9648 uint32_t rmask; 9649 bool srdis = false; 9650 9651 if (!(env->pmsav7.drsr[n] & 0x1)) { 9652 continue; 9653 } 9654 9655 if (!rsize) { 9656 qemu_log_mask(LOG_GUEST_ERROR, 9657 "DRSR[%d]: Rsize field cannot be 0\n", n); 9658 continue; 9659 } 9660 rsize++; 9661 rmask = (1ull << rsize) - 1; 9662 9663 if (base & rmask) { 9664 qemu_log_mask(LOG_GUEST_ERROR, 9665 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 9666 "to DRSR region size, mask = 0x%" PRIx32 "\n", 9667 n, base, rmask); 9668 continue; 9669 } 9670 9671 if (address < base || address > base + rmask) { 9672 continue; 9673 } 9674 9675 /* Region matched */ 9676 9677 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 9678 int i, snd; 9679 uint32_t srdis_mask; 9680 9681 rsize -= 3; /* sub region size (power of 2) */ 9682 snd = ((address - base) >> rsize) & 0x7; 9683 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 9684 9685 srdis_mask = srdis ? 0x3 : 0x0; 9686 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 9687 /* This will check in groups of 2, 4 and then 8, whether 9688 * the subregion bits are consistent. rsize is incremented 9689 * back up to give the region size, considering consistent 9690 * adjacent subregions as one region. Stop testing if rsize 9691 * is already big enough for an entire QEMU page. 9692 */ 9693 int snd_rounded = snd & ~(i - 1); 9694 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 9695 snd_rounded + 8, i); 9696 if (srdis_mask ^ srdis_multi) { 9697 break; 9698 } 9699 srdis_mask = (srdis_mask << i) | srdis_mask; 9700 rsize++; 9701 } 9702 } 9703 if (srdis) { 9704 continue; 9705 } 9706 if (rsize < TARGET_PAGE_BITS) { 9707 *page_size = 1 << rsize; 9708 } 9709 break; 9710 } 9711 9712 if (n == -1) { /* no hits */ 9713 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9714 /* background fault */ 9715 fi->type = ARMFault_Background; 9716 return true; 9717 } 9718 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9719 } else { /* a MPU hit! */ 9720 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 9721 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 9722 9723 if (m_is_system_region(env, address)) { 9724 /* System space is always execute never */ 9725 xn = 1; 9726 } 9727 9728 if (is_user) { /* User mode AP bit decoding */ 9729 switch (ap) { 9730 case 0: 9731 case 1: 9732 case 5: 9733 break; /* no access */ 9734 case 3: 9735 *prot |= PAGE_WRITE; 9736 /* fall through */ 9737 case 2: 9738 case 6: 9739 *prot |= PAGE_READ | PAGE_EXEC; 9740 break; 9741 case 7: 9742 /* for v7M, same as 6; for R profile a reserved value */ 9743 if (arm_feature(env, ARM_FEATURE_M)) { 9744 *prot |= PAGE_READ | PAGE_EXEC; 9745 break; 9746 } 9747 /* fall through */ 9748 default: 9749 qemu_log_mask(LOG_GUEST_ERROR, 9750 "DRACR[%d]: Bad value for AP bits: 0x%" 9751 PRIx32 "\n", n, ap); 9752 } 9753 } else { /* Priv. mode AP bits decoding */ 9754 switch (ap) { 9755 case 0: 9756 break; /* no access */ 9757 case 1: 9758 case 2: 9759 case 3: 9760 *prot |= PAGE_WRITE; 9761 /* fall through */ 9762 case 5: 9763 case 6: 9764 *prot |= PAGE_READ | PAGE_EXEC; 9765 break; 9766 case 7: 9767 /* for v7M, same as 6; for R profile a reserved value */ 9768 if (arm_feature(env, ARM_FEATURE_M)) { 9769 *prot |= PAGE_READ | PAGE_EXEC; 9770 break; 9771 } 9772 /* fall through */ 9773 default: 9774 qemu_log_mask(LOG_GUEST_ERROR, 9775 "DRACR[%d]: Bad value for AP bits: 0x%" 9776 PRIx32 "\n", n, ap); 9777 } 9778 } 9779 9780 /* execute never */ 9781 if (xn) { 9782 *prot &= ~PAGE_EXEC; 9783 } 9784 } 9785 } 9786 9787 fi->type = ARMFault_Permission; 9788 fi->level = 1; 9789 /* 9790 * Core QEMU code can't handle execution from small pages yet, so 9791 * don't try it. This way we'll get an MPU exception, rather than 9792 * eventually causing QEMU to exit in get_page_addr_code(). 9793 */ 9794 if (*page_size < TARGET_PAGE_SIZE && (*prot & PAGE_EXEC)) { 9795 qemu_log_mask(LOG_UNIMP, 9796 "MPU: No support for execution from regions " 9797 "smaller than 1K\n"); 9798 *prot &= ~PAGE_EXEC; 9799 } 9800 return !(*prot & (1 << access_type)); 9801 } 9802 9803 static bool v8m_is_sau_exempt(CPUARMState *env, 9804 uint32_t address, MMUAccessType access_type) 9805 { 9806 /* The architecture specifies that certain address ranges are 9807 * exempt from v8M SAU/IDAU checks. 9808 */ 9809 return 9810 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 9811 (address >= 0xe0000000 && address <= 0xe0002fff) || 9812 (address >= 0xe000e000 && address <= 0xe000efff) || 9813 (address >= 0xe002e000 && address <= 0xe002efff) || 9814 (address >= 0xe0040000 && address <= 0xe0041fff) || 9815 (address >= 0xe00ff000 && address <= 0xe00fffff); 9816 } 9817 9818 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 9819 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9820 V8M_SAttributes *sattrs) 9821 { 9822 /* Look up the security attributes for this address. Compare the 9823 * pseudocode SecurityCheck() function. 9824 * We assume the caller has zero-initialized *sattrs. 9825 */ 9826 ARMCPU *cpu = arm_env_get_cpu(env); 9827 int r; 9828 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 9829 int idau_region = IREGION_NOTVALID; 9830 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 9831 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 9832 9833 if (cpu->idau) { 9834 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 9835 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 9836 9837 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 9838 &idau_nsc); 9839 } 9840 9841 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 9842 /* 0xf0000000..0xffffffff is always S for insn fetches */ 9843 return; 9844 } 9845 9846 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 9847 sattrs->ns = !regime_is_secure(env, mmu_idx); 9848 return; 9849 } 9850 9851 if (idau_region != IREGION_NOTVALID) { 9852 sattrs->irvalid = true; 9853 sattrs->iregion = idau_region; 9854 } 9855 9856 switch (env->sau.ctrl & 3) { 9857 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 9858 break; 9859 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 9860 sattrs->ns = true; 9861 break; 9862 default: /* SAU.ENABLE == 1 */ 9863 for (r = 0; r < cpu->sau_sregion; r++) { 9864 if (env->sau.rlar[r] & 1) { 9865 uint32_t base = env->sau.rbar[r] & ~0x1f; 9866 uint32_t limit = env->sau.rlar[r] | 0x1f; 9867 9868 if (base <= address && limit >= address) { 9869 if (base > addr_page_base || limit < addr_page_limit) { 9870 sattrs->subpage = true; 9871 } 9872 if (sattrs->srvalid) { 9873 /* If we hit in more than one region then we must report 9874 * as Secure, not NS-Callable, with no valid region 9875 * number info. 9876 */ 9877 sattrs->ns = false; 9878 sattrs->nsc = false; 9879 sattrs->sregion = 0; 9880 sattrs->srvalid = false; 9881 break; 9882 } else { 9883 if (env->sau.rlar[r] & 2) { 9884 sattrs->nsc = true; 9885 } else { 9886 sattrs->ns = true; 9887 } 9888 sattrs->srvalid = true; 9889 sattrs->sregion = r; 9890 } 9891 } 9892 } 9893 } 9894 9895 /* The IDAU will override the SAU lookup results if it specifies 9896 * higher security than the SAU does. 9897 */ 9898 if (!idau_ns) { 9899 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 9900 sattrs->ns = false; 9901 sattrs->nsc = idau_nsc; 9902 } 9903 } 9904 break; 9905 } 9906 } 9907 9908 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 9909 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9910 hwaddr *phys_ptr, MemTxAttrs *txattrs, 9911 int *prot, bool *is_subpage, 9912 ARMMMUFaultInfo *fi, uint32_t *mregion) 9913 { 9914 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 9915 * that a full phys-to-virt translation does). 9916 * mregion is (if not NULL) set to the region number which matched, 9917 * or -1 if no region number is returned (MPU off, address did not 9918 * hit a region, address hit in multiple regions). 9919 * We set is_subpage to true if the region hit doesn't cover the 9920 * entire TARGET_PAGE the address is within. 9921 */ 9922 ARMCPU *cpu = arm_env_get_cpu(env); 9923 bool is_user = regime_is_user(env, mmu_idx); 9924 uint32_t secure = regime_is_secure(env, mmu_idx); 9925 int n; 9926 int matchregion = -1; 9927 bool hit = false; 9928 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 9929 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 9930 9931 *is_subpage = false; 9932 *phys_ptr = address; 9933 *prot = 0; 9934 if (mregion) { 9935 *mregion = -1; 9936 } 9937 9938 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 9939 * was an exception vector read from the vector table (which is always 9940 * done using the default system address map), because those accesses 9941 * are done in arm_v7m_load_vector(), which always does a direct 9942 * read using address_space_ldl(), rather than going via this function. 9943 */ 9944 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 9945 hit = true; 9946 } else if (m_is_ppb_region(env, address)) { 9947 hit = true; 9948 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9949 hit = true; 9950 } else { 9951 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9952 /* region search */ 9953 /* Note that the base address is bits [31:5] from the register 9954 * with bits [4:0] all zeroes, but the limit address is bits 9955 * [31:5] from the register with bits [4:0] all ones. 9956 */ 9957 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 9958 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 9959 9960 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 9961 /* Region disabled */ 9962 continue; 9963 } 9964 9965 if (address < base || address > limit) { 9966 continue; 9967 } 9968 9969 if (base > addr_page_base || limit < addr_page_limit) { 9970 *is_subpage = true; 9971 } 9972 9973 if (hit) { 9974 /* Multiple regions match -- always a failure (unlike 9975 * PMSAv7 where highest-numbered-region wins) 9976 */ 9977 fi->type = ARMFault_Permission; 9978 fi->level = 1; 9979 return true; 9980 } 9981 9982 matchregion = n; 9983 hit = true; 9984 } 9985 } 9986 9987 if (!hit) { 9988 /* background fault */ 9989 fi->type = ARMFault_Background; 9990 return true; 9991 } 9992 9993 if (matchregion == -1) { 9994 /* hit using the background region */ 9995 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9996 } else { 9997 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 9998 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 9999 10000 if (m_is_system_region(env, address)) { 10001 /* System space is always execute never */ 10002 xn = 1; 10003 } 10004 10005 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 10006 if (*prot && !xn) { 10007 *prot |= PAGE_EXEC; 10008 } 10009 /* We don't need to look the attribute up in the MAIR0/MAIR1 10010 * registers because that only tells us about cacheability. 10011 */ 10012 if (mregion) { 10013 *mregion = matchregion; 10014 } 10015 } 10016 10017 fi->type = ARMFault_Permission; 10018 fi->level = 1; 10019 /* 10020 * Core QEMU code can't handle execution from small pages yet, so 10021 * don't try it. This means any attempted execution will generate 10022 * an MPU exception, rather than eventually causing QEMU to exit in 10023 * get_page_addr_code(). 10024 */ 10025 if (*is_subpage && (*prot & PAGE_EXEC)) { 10026 qemu_log_mask(LOG_UNIMP, 10027 "MPU: No support for execution from regions " 10028 "smaller than 1K\n"); 10029 *prot &= ~PAGE_EXEC; 10030 } 10031 return !(*prot & (1 << access_type)); 10032 } 10033 10034 10035 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 10036 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10037 hwaddr *phys_ptr, MemTxAttrs *txattrs, 10038 int *prot, target_ulong *page_size, 10039 ARMMMUFaultInfo *fi) 10040 { 10041 uint32_t secure = regime_is_secure(env, mmu_idx); 10042 V8M_SAttributes sattrs = {}; 10043 bool ret; 10044 bool mpu_is_subpage; 10045 10046 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10047 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 10048 if (access_type == MMU_INST_FETCH) { 10049 /* Instruction fetches always use the MMU bank and the 10050 * transaction attribute determined by the fetch address, 10051 * regardless of CPU state. This is painful for QEMU 10052 * to handle, because it would mean we need to encode 10053 * into the mmu_idx not just the (user, negpri) information 10054 * for the current security state but also that for the 10055 * other security state, which would balloon the number 10056 * of mmu_idx values needed alarmingly. 10057 * Fortunately we can avoid this because it's not actually 10058 * possible to arbitrarily execute code from memory with 10059 * the wrong security attribute: it will always generate 10060 * an exception of some kind or another, apart from the 10061 * special case of an NS CPU executing an SG instruction 10062 * in S&NSC memory. So we always just fail the translation 10063 * here and sort things out in the exception handler 10064 * (including possibly emulating an SG instruction). 10065 */ 10066 if (sattrs.ns != !secure) { 10067 if (sattrs.nsc) { 10068 fi->type = ARMFault_QEMU_NSCExec; 10069 } else { 10070 fi->type = ARMFault_QEMU_SFault; 10071 } 10072 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10073 *phys_ptr = address; 10074 *prot = 0; 10075 return true; 10076 } 10077 } else { 10078 /* For data accesses we always use the MMU bank indicated 10079 * by the current CPU state, but the security attributes 10080 * might downgrade a secure access to nonsecure. 10081 */ 10082 if (sattrs.ns) { 10083 txattrs->secure = false; 10084 } else if (!secure) { 10085 /* NS access to S memory must fault. 10086 * Architecturally we should first check whether the 10087 * MPU information for this address indicates that we 10088 * are doing an unaligned access to Device memory, which 10089 * should generate a UsageFault instead. QEMU does not 10090 * currently check for that kind of unaligned access though. 10091 * If we added it we would need to do so as a special case 10092 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 10093 */ 10094 fi->type = ARMFault_QEMU_SFault; 10095 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10096 *phys_ptr = address; 10097 *prot = 0; 10098 return true; 10099 } 10100 } 10101 } 10102 10103 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 10104 txattrs, prot, &mpu_is_subpage, fi, NULL); 10105 /* 10106 * TODO: this is a temporary hack to ignore the fact that the SAU region 10107 * is smaller than a page if this is an executable region. We never 10108 * supported small MPU regions, but we did (accidentally) allow small 10109 * SAU regions, and if we now made small SAU regions not be executable 10110 * then this would break previously working guest code. We can't 10111 * remove this until/unless we implement support for execution from 10112 * small regions. 10113 */ 10114 if (*prot & PAGE_EXEC) { 10115 sattrs.subpage = false; 10116 } 10117 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 10118 return ret; 10119 } 10120 10121 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 10122 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10123 hwaddr *phys_ptr, int *prot, 10124 ARMMMUFaultInfo *fi) 10125 { 10126 int n; 10127 uint32_t mask; 10128 uint32_t base; 10129 bool is_user = regime_is_user(env, mmu_idx); 10130 10131 if (regime_translation_disabled(env, mmu_idx)) { 10132 /* MPU disabled. */ 10133 *phys_ptr = address; 10134 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10135 return false; 10136 } 10137 10138 *phys_ptr = address; 10139 for (n = 7; n >= 0; n--) { 10140 base = env->cp15.c6_region[n]; 10141 if ((base & 1) == 0) { 10142 continue; 10143 } 10144 mask = 1 << ((base >> 1) & 0x1f); 10145 /* Keep this shift separate from the above to avoid an 10146 (undefined) << 32. */ 10147 mask = (mask << 1) - 1; 10148 if (((base ^ address) & ~mask) == 0) { 10149 break; 10150 } 10151 } 10152 if (n < 0) { 10153 fi->type = ARMFault_Background; 10154 return true; 10155 } 10156 10157 if (access_type == MMU_INST_FETCH) { 10158 mask = env->cp15.pmsav5_insn_ap; 10159 } else { 10160 mask = env->cp15.pmsav5_data_ap; 10161 } 10162 mask = (mask >> (n * 4)) & 0xf; 10163 switch (mask) { 10164 case 0: 10165 fi->type = ARMFault_Permission; 10166 fi->level = 1; 10167 return true; 10168 case 1: 10169 if (is_user) { 10170 fi->type = ARMFault_Permission; 10171 fi->level = 1; 10172 return true; 10173 } 10174 *prot = PAGE_READ | PAGE_WRITE; 10175 break; 10176 case 2: 10177 *prot = PAGE_READ; 10178 if (!is_user) { 10179 *prot |= PAGE_WRITE; 10180 } 10181 break; 10182 case 3: 10183 *prot = PAGE_READ | PAGE_WRITE; 10184 break; 10185 case 5: 10186 if (is_user) { 10187 fi->type = ARMFault_Permission; 10188 fi->level = 1; 10189 return true; 10190 } 10191 *prot = PAGE_READ; 10192 break; 10193 case 6: 10194 *prot = PAGE_READ; 10195 break; 10196 default: 10197 /* Bad permission. */ 10198 fi->type = ARMFault_Permission; 10199 fi->level = 1; 10200 return true; 10201 } 10202 *prot |= PAGE_EXEC; 10203 return false; 10204 } 10205 10206 /* Combine either inner or outer cacheability attributes for normal 10207 * memory, according to table D4-42 and pseudocode procedure 10208 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 10209 * 10210 * NB: only stage 1 includes allocation hints (RW bits), leading to 10211 * some asymmetry. 10212 */ 10213 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 10214 { 10215 if (s1 == 4 || s2 == 4) { 10216 /* non-cacheable has precedence */ 10217 return 4; 10218 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 10219 /* stage 1 write-through takes precedence */ 10220 return s1; 10221 } else if (extract32(s2, 2, 2) == 2) { 10222 /* stage 2 write-through takes precedence, but the allocation hint 10223 * is still taken from stage 1 10224 */ 10225 return (2 << 2) | extract32(s1, 0, 2); 10226 } else { /* write-back */ 10227 return s1; 10228 } 10229 } 10230 10231 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 10232 * and CombineS1S2Desc() 10233 * 10234 * @s1: Attributes from stage 1 walk 10235 * @s2: Attributes from stage 2 walk 10236 */ 10237 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 10238 { 10239 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 10240 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 10241 ARMCacheAttrs ret; 10242 10243 /* Combine shareability attributes (table D4-43) */ 10244 if (s1.shareability == 2 || s2.shareability == 2) { 10245 /* if either are outer-shareable, the result is outer-shareable */ 10246 ret.shareability = 2; 10247 } else if (s1.shareability == 3 || s2.shareability == 3) { 10248 /* if either are inner-shareable, the result is inner-shareable */ 10249 ret.shareability = 3; 10250 } else { 10251 /* both non-shareable */ 10252 ret.shareability = 0; 10253 } 10254 10255 /* Combine memory type and cacheability attributes */ 10256 if (s1hi == 0 || s2hi == 0) { 10257 /* Device has precedence over normal */ 10258 if (s1lo == 0 || s2lo == 0) { 10259 /* nGnRnE has precedence over anything */ 10260 ret.attrs = 0; 10261 } else if (s1lo == 4 || s2lo == 4) { 10262 /* non-Reordering has precedence over Reordering */ 10263 ret.attrs = 4; /* nGnRE */ 10264 } else if (s1lo == 8 || s2lo == 8) { 10265 /* non-Gathering has precedence over Gathering */ 10266 ret.attrs = 8; /* nGRE */ 10267 } else { 10268 ret.attrs = 0xc; /* GRE */ 10269 } 10270 10271 /* Any location for which the resultant memory type is any 10272 * type of Device memory is always treated as Outer Shareable. 10273 */ 10274 ret.shareability = 2; 10275 } else { /* Normal memory */ 10276 /* Outer/inner cacheability combine independently */ 10277 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 10278 | combine_cacheattr_nibble(s1lo, s2lo); 10279 10280 if (ret.attrs == 0x44) { 10281 /* Any location for which the resultant memory type is Normal 10282 * Inner Non-cacheable, Outer Non-cacheable is always treated 10283 * as Outer Shareable. 10284 */ 10285 ret.shareability = 2; 10286 } 10287 } 10288 10289 return ret; 10290 } 10291 10292 10293 /* get_phys_addr - get the physical address for this virtual address 10294 * 10295 * Find the physical address corresponding to the given virtual address, 10296 * by doing a translation table walk on MMU based systems or using the 10297 * MPU state on MPU based systems. 10298 * 10299 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10300 * prot and page_size may not be filled in, and the populated fsr value provides 10301 * information on why the translation aborted, in the format of a 10302 * DFSR/IFSR fault register, with the following caveats: 10303 * * we honour the short vs long DFSR format differences. 10304 * * the WnR bit is never set (the caller must do this). 10305 * * for PSMAv5 based systems we don't bother to return a full FSR format 10306 * value. 10307 * 10308 * @env: CPUARMState 10309 * @address: virtual address to get physical address for 10310 * @access_type: 0 for read, 1 for write, 2 for execute 10311 * @mmu_idx: MMU index indicating required translation regime 10312 * @phys_ptr: set to the physical address corresponding to the virtual address 10313 * @attrs: set to the memory transaction attributes to use 10314 * @prot: set to the permissions for the page containing phys_ptr 10315 * @page_size: set to the size of the page containing phys_ptr 10316 * @fi: set to fault info if the translation fails 10317 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 10318 */ 10319 static bool get_phys_addr(CPUARMState *env, target_ulong address, 10320 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10321 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10322 target_ulong *page_size, 10323 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10324 { 10325 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 10326 /* Call ourselves recursively to do the stage 1 and then stage 2 10327 * translations. 10328 */ 10329 if (arm_feature(env, ARM_FEATURE_EL2)) { 10330 hwaddr ipa; 10331 int s2_prot; 10332 int ret; 10333 ARMCacheAttrs cacheattrs2 = {}; 10334 10335 ret = get_phys_addr(env, address, access_type, 10336 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 10337 prot, page_size, fi, cacheattrs); 10338 10339 /* If S1 fails or S2 is disabled, return early. */ 10340 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 10341 *phys_ptr = ipa; 10342 return ret; 10343 } 10344 10345 /* S1 is done. Now do S2 translation. */ 10346 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 10347 phys_ptr, attrs, &s2_prot, 10348 page_size, fi, 10349 cacheattrs != NULL ? &cacheattrs2 : NULL); 10350 fi->s2addr = ipa; 10351 /* Combine the S1 and S2 perms. */ 10352 *prot &= s2_prot; 10353 10354 /* Combine the S1 and S2 cache attributes, if needed */ 10355 if (!ret && cacheattrs != NULL) { 10356 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 10357 } 10358 10359 return ret; 10360 } else { 10361 /* 10362 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 10363 */ 10364 mmu_idx = stage_1_mmu_idx(mmu_idx); 10365 } 10366 } 10367 10368 /* The page table entries may downgrade secure to non-secure, but 10369 * cannot upgrade an non-secure translation regime's attributes 10370 * to secure. 10371 */ 10372 attrs->secure = regime_is_secure(env, mmu_idx); 10373 attrs->user = regime_is_user(env, mmu_idx); 10374 10375 /* Fast Context Switch Extension. This doesn't exist at all in v8. 10376 * In v7 and earlier it affects all stage 1 translations. 10377 */ 10378 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 10379 && !arm_feature(env, ARM_FEATURE_V8)) { 10380 if (regime_el(env, mmu_idx) == 3) { 10381 address += env->cp15.fcseidr_s; 10382 } else { 10383 address += env->cp15.fcseidr_ns; 10384 } 10385 } 10386 10387 if (arm_feature(env, ARM_FEATURE_PMSA)) { 10388 bool ret; 10389 *page_size = TARGET_PAGE_SIZE; 10390 10391 if (arm_feature(env, ARM_FEATURE_V8)) { 10392 /* PMSAv8 */ 10393 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 10394 phys_ptr, attrs, prot, page_size, fi); 10395 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10396 /* PMSAv7 */ 10397 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 10398 phys_ptr, prot, page_size, fi); 10399 } else { 10400 /* Pre-v7 MPU */ 10401 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 10402 phys_ptr, prot, fi); 10403 } 10404 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 10405 " mmu_idx %u -> %s (prot %c%c%c)\n", 10406 access_type == MMU_DATA_LOAD ? "reading" : 10407 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 10408 (uint32_t)address, mmu_idx, 10409 ret ? "Miss" : "Hit", 10410 *prot & PAGE_READ ? 'r' : '-', 10411 *prot & PAGE_WRITE ? 'w' : '-', 10412 *prot & PAGE_EXEC ? 'x' : '-'); 10413 10414 return ret; 10415 } 10416 10417 /* Definitely a real MMU, not an MPU */ 10418 10419 if (regime_translation_disabled(env, mmu_idx)) { 10420 /* MMU disabled. */ 10421 *phys_ptr = address; 10422 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10423 *page_size = TARGET_PAGE_SIZE; 10424 return 0; 10425 } 10426 10427 if (regime_using_lpae_format(env, mmu_idx)) { 10428 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 10429 phys_ptr, attrs, prot, page_size, 10430 fi, cacheattrs); 10431 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 10432 return get_phys_addr_v6(env, address, access_type, mmu_idx, 10433 phys_ptr, attrs, prot, page_size, fi); 10434 } else { 10435 return get_phys_addr_v5(env, address, access_type, mmu_idx, 10436 phys_ptr, prot, page_size, fi); 10437 } 10438 } 10439 10440 /* Walk the page table and (if the mapping exists) add the page 10441 * to the TLB. Return false on success, or true on failure. Populate 10442 * fsr with ARM DFSR/IFSR fault register format value on failure. 10443 */ 10444 bool arm_tlb_fill(CPUState *cs, vaddr address, 10445 MMUAccessType access_type, int mmu_idx, 10446 ARMMMUFaultInfo *fi) 10447 { 10448 ARMCPU *cpu = ARM_CPU(cs); 10449 CPUARMState *env = &cpu->env; 10450 hwaddr phys_addr; 10451 target_ulong page_size; 10452 int prot; 10453 int ret; 10454 MemTxAttrs attrs = {}; 10455 10456 ret = get_phys_addr(env, address, access_type, 10457 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr, 10458 &attrs, &prot, &page_size, fi, NULL); 10459 if (!ret) { 10460 /* 10461 * Map a single [sub]page. Regions smaller than our declared 10462 * target page size are handled specially, so for those we 10463 * pass in the exact addresses. 10464 */ 10465 if (page_size >= TARGET_PAGE_SIZE) { 10466 phys_addr &= TARGET_PAGE_MASK; 10467 address &= TARGET_PAGE_MASK; 10468 } 10469 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 10470 prot, mmu_idx, page_size); 10471 return 0; 10472 } 10473 10474 return ret; 10475 } 10476 10477 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 10478 MemTxAttrs *attrs) 10479 { 10480 ARMCPU *cpu = ARM_CPU(cs); 10481 CPUARMState *env = &cpu->env; 10482 hwaddr phys_addr; 10483 target_ulong page_size; 10484 int prot; 10485 bool ret; 10486 ARMMMUFaultInfo fi = {}; 10487 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 10488 10489 *attrs = (MemTxAttrs) {}; 10490 10491 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 10492 attrs, &prot, &page_size, &fi, NULL); 10493 10494 if (ret) { 10495 return -1; 10496 } 10497 return phys_addr; 10498 } 10499 10500 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 10501 { 10502 uint32_t mask; 10503 unsigned el = arm_current_el(env); 10504 10505 /* First handle registers which unprivileged can read */ 10506 10507 switch (reg) { 10508 case 0 ... 7: /* xPSR sub-fields */ 10509 mask = 0; 10510 if ((reg & 1) && el) { 10511 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ 10512 } 10513 if (!(reg & 4)) { 10514 mask |= XPSR_NZCV | XPSR_Q; /* APSR */ 10515 } 10516 /* EPSR reads as zero */ 10517 return xpsr_read(env) & mask; 10518 break; 10519 case 20: /* CONTROL */ 10520 return env->v7m.control[env->v7m.secure]; 10521 case 0x94: /* CONTROL_NS */ 10522 /* We have to handle this here because unprivileged Secure code 10523 * can read the NS CONTROL register. 10524 */ 10525 if (!env->v7m.secure) { 10526 return 0; 10527 } 10528 return env->v7m.control[M_REG_NS]; 10529 } 10530 10531 if (el == 0) { 10532 return 0; /* unprivileged reads others as zero */ 10533 } 10534 10535 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10536 switch (reg) { 10537 case 0x88: /* MSP_NS */ 10538 if (!env->v7m.secure) { 10539 return 0; 10540 } 10541 return env->v7m.other_ss_msp; 10542 case 0x89: /* PSP_NS */ 10543 if (!env->v7m.secure) { 10544 return 0; 10545 } 10546 return env->v7m.other_ss_psp; 10547 case 0x8a: /* MSPLIM_NS */ 10548 if (!env->v7m.secure) { 10549 return 0; 10550 } 10551 return env->v7m.msplim[M_REG_NS]; 10552 case 0x8b: /* PSPLIM_NS */ 10553 if (!env->v7m.secure) { 10554 return 0; 10555 } 10556 return env->v7m.psplim[M_REG_NS]; 10557 case 0x90: /* PRIMASK_NS */ 10558 if (!env->v7m.secure) { 10559 return 0; 10560 } 10561 return env->v7m.primask[M_REG_NS]; 10562 case 0x91: /* BASEPRI_NS */ 10563 if (!env->v7m.secure) { 10564 return 0; 10565 } 10566 return env->v7m.basepri[M_REG_NS]; 10567 case 0x93: /* FAULTMASK_NS */ 10568 if (!env->v7m.secure) { 10569 return 0; 10570 } 10571 return env->v7m.faultmask[M_REG_NS]; 10572 case 0x98: /* SP_NS */ 10573 { 10574 /* This gives the non-secure SP selected based on whether we're 10575 * currently in handler mode or not, using the NS CONTROL.SPSEL. 10576 */ 10577 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 10578 10579 if (!env->v7m.secure) { 10580 return 0; 10581 } 10582 if (!arm_v7m_is_handler_mode(env) && spsel) { 10583 return env->v7m.other_ss_psp; 10584 } else { 10585 return env->v7m.other_ss_msp; 10586 } 10587 } 10588 default: 10589 break; 10590 } 10591 } 10592 10593 switch (reg) { 10594 case 8: /* MSP */ 10595 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13]; 10596 case 9: /* PSP */ 10597 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp; 10598 case 10: /* MSPLIM */ 10599 if (!arm_feature(env, ARM_FEATURE_V8)) { 10600 goto bad_reg; 10601 } 10602 return env->v7m.msplim[env->v7m.secure]; 10603 case 11: /* PSPLIM */ 10604 if (!arm_feature(env, ARM_FEATURE_V8)) { 10605 goto bad_reg; 10606 } 10607 return env->v7m.psplim[env->v7m.secure]; 10608 case 16: /* PRIMASK */ 10609 return env->v7m.primask[env->v7m.secure]; 10610 case 17: /* BASEPRI */ 10611 case 18: /* BASEPRI_MAX */ 10612 return env->v7m.basepri[env->v7m.secure]; 10613 case 19: /* FAULTMASK */ 10614 return env->v7m.faultmask[env->v7m.secure]; 10615 default: 10616 bad_reg: 10617 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" 10618 " register %d\n", reg); 10619 return 0; 10620 } 10621 } 10622 10623 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) 10624 { 10625 /* We're passed bits [11..0] of the instruction; extract 10626 * SYSm and the mask bits. 10627 * Invalid combinations of SYSm and mask are UNPREDICTABLE; 10628 * we choose to treat them as if the mask bits were valid. 10629 * NB that the pseudocode 'mask' variable is bits [11..10], 10630 * whereas ours is [11..8]. 10631 */ 10632 uint32_t mask = extract32(maskreg, 8, 4); 10633 uint32_t reg = extract32(maskreg, 0, 8); 10634 10635 if (arm_current_el(env) == 0 && reg > 7) { 10636 /* only xPSR sub-fields may be written by unprivileged */ 10637 return; 10638 } 10639 10640 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10641 switch (reg) { 10642 case 0x88: /* MSP_NS */ 10643 if (!env->v7m.secure) { 10644 return; 10645 } 10646 env->v7m.other_ss_msp = val; 10647 return; 10648 case 0x89: /* PSP_NS */ 10649 if (!env->v7m.secure) { 10650 return; 10651 } 10652 env->v7m.other_ss_psp = val; 10653 return; 10654 case 0x8a: /* MSPLIM_NS */ 10655 if (!env->v7m.secure) { 10656 return; 10657 } 10658 env->v7m.msplim[M_REG_NS] = val & ~7; 10659 return; 10660 case 0x8b: /* PSPLIM_NS */ 10661 if (!env->v7m.secure) { 10662 return; 10663 } 10664 env->v7m.psplim[M_REG_NS] = val & ~7; 10665 return; 10666 case 0x90: /* PRIMASK_NS */ 10667 if (!env->v7m.secure) { 10668 return; 10669 } 10670 env->v7m.primask[M_REG_NS] = val & 1; 10671 return; 10672 case 0x91: /* BASEPRI_NS */ 10673 if (!env->v7m.secure) { 10674 return; 10675 } 10676 env->v7m.basepri[M_REG_NS] = val & 0xff; 10677 return; 10678 case 0x93: /* FAULTMASK_NS */ 10679 if (!env->v7m.secure) { 10680 return; 10681 } 10682 env->v7m.faultmask[M_REG_NS] = val & 1; 10683 return; 10684 case 0x94: /* CONTROL_NS */ 10685 if (!env->v7m.secure) { 10686 return; 10687 } 10688 write_v7m_control_spsel_for_secstate(env, 10689 val & R_V7M_CONTROL_SPSEL_MASK, 10690 M_REG_NS); 10691 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK; 10692 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK; 10693 return; 10694 case 0x98: /* SP_NS */ 10695 { 10696 /* This gives the non-secure SP selected based on whether we're 10697 * currently in handler mode or not, using the NS CONTROL.SPSEL. 10698 */ 10699 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 10700 10701 if (!env->v7m.secure) { 10702 return; 10703 } 10704 if (!arm_v7m_is_handler_mode(env) && spsel) { 10705 env->v7m.other_ss_psp = val; 10706 } else { 10707 env->v7m.other_ss_msp = val; 10708 } 10709 return; 10710 } 10711 default: 10712 break; 10713 } 10714 } 10715 10716 switch (reg) { 10717 case 0 ... 7: /* xPSR sub-fields */ 10718 /* only APSR is actually writable */ 10719 if (!(reg & 4)) { 10720 uint32_t apsrmask = 0; 10721 10722 if (mask & 8) { 10723 apsrmask |= XPSR_NZCV | XPSR_Q; 10724 } 10725 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 10726 apsrmask |= XPSR_GE; 10727 } 10728 xpsr_write(env, val, apsrmask); 10729 } 10730 break; 10731 case 8: /* MSP */ 10732 if (v7m_using_psp(env)) { 10733 env->v7m.other_sp = val; 10734 } else { 10735 env->regs[13] = val; 10736 } 10737 break; 10738 case 9: /* PSP */ 10739 if (v7m_using_psp(env)) { 10740 env->regs[13] = val; 10741 } else { 10742 env->v7m.other_sp = val; 10743 } 10744 break; 10745 case 10: /* MSPLIM */ 10746 if (!arm_feature(env, ARM_FEATURE_V8)) { 10747 goto bad_reg; 10748 } 10749 env->v7m.msplim[env->v7m.secure] = val & ~7; 10750 break; 10751 case 11: /* PSPLIM */ 10752 if (!arm_feature(env, ARM_FEATURE_V8)) { 10753 goto bad_reg; 10754 } 10755 env->v7m.psplim[env->v7m.secure] = val & ~7; 10756 break; 10757 case 16: /* PRIMASK */ 10758 env->v7m.primask[env->v7m.secure] = val & 1; 10759 break; 10760 case 17: /* BASEPRI */ 10761 env->v7m.basepri[env->v7m.secure] = val & 0xff; 10762 break; 10763 case 18: /* BASEPRI_MAX */ 10764 val &= 0xff; 10765 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] 10766 || env->v7m.basepri[env->v7m.secure] == 0)) { 10767 env->v7m.basepri[env->v7m.secure] = val; 10768 } 10769 break; 10770 case 19: /* FAULTMASK */ 10771 env->v7m.faultmask[env->v7m.secure] = val & 1; 10772 break; 10773 case 20: /* CONTROL */ 10774 /* Writing to the SPSEL bit only has an effect if we are in 10775 * thread mode; other bits can be updated by any privileged code. 10776 * write_v7m_control_spsel() deals with updating the SPSEL bit in 10777 * env->v7m.control, so we only need update the others. 10778 * For v7M, we must just ignore explicit writes to SPSEL in handler 10779 * mode; for v8M the write is permitted but will have no effect. 10780 */ 10781 if (arm_feature(env, ARM_FEATURE_V8) || 10782 !arm_v7m_is_handler_mode(env)) { 10783 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); 10784 } 10785 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; 10786 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; 10787 break; 10788 default: 10789 bad_reg: 10790 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" 10791 " register %d\n", reg); 10792 return; 10793 } 10794 } 10795 10796 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 10797 { 10798 /* Implement the TT instruction. op is bits [7:6] of the insn. */ 10799 bool forceunpriv = op & 1; 10800 bool alt = op & 2; 10801 V8M_SAttributes sattrs = {}; 10802 uint32_t tt_resp; 10803 bool r, rw, nsr, nsrw, mrvalid; 10804 int prot; 10805 ARMMMUFaultInfo fi = {}; 10806 MemTxAttrs attrs = {}; 10807 hwaddr phys_addr; 10808 ARMMMUIdx mmu_idx; 10809 uint32_t mregion; 10810 bool targetpriv; 10811 bool targetsec = env->v7m.secure; 10812 bool is_subpage; 10813 10814 /* Work out what the security state and privilege level we're 10815 * interested in is... 10816 */ 10817 if (alt) { 10818 targetsec = !targetsec; 10819 } 10820 10821 if (forceunpriv) { 10822 targetpriv = false; 10823 } else { 10824 targetpriv = arm_v7m_is_handler_mode(env) || 10825 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK); 10826 } 10827 10828 /* ...and then figure out which MMU index this is */ 10829 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv); 10830 10831 /* We know that the MPU and SAU don't care about the access type 10832 * for our purposes beyond that we don't want to claim to be 10833 * an insn fetch, so we arbitrarily call this a read. 10834 */ 10835 10836 /* MPU region info only available for privileged or if 10837 * inspecting the other MPU state. 10838 */ 10839 if (arm_current_el(env) != 0 || alt) { 10840 /* We can ignore the return value as prot is always set */ 10841 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, 10842 &phys_addr, &attrs, &prot, &is_subpage, 10843 &fi, &mregion); 10844 if (mregion == -1) { 10845 mrvalid = false; 10846 mregion = 0; 10847 } else { 10848 mrvalid = true; 10849 } 10850 r = prot & PAGE_READ; 10851 rw = prot & PAGE_WRITE; 10852 } else { 10853 r = false; 10854 rw = false; 10855 mrvalid = false; 10856 mregion = 0; 10857 } 10858 10859 if (env->v7m.secure) { 10860 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 10861 nsr = sattrs.ns && r; 10862 nsrw = sattrs.ns && rw; 10863 } else { 10864 sattrs.ns = true; 10865 nsr = false; 10866 nsrw = false; 10867 } 10868 10869 tt_resp = (sattrs.iregion << 24) | 10870 (sattrs.irvalid << 23) | 10871 ((!sattrs.ns) << 22) | 10872 (nsrw << 21) | 10873 (nsr << 20) | 10874 (rw << 19) | 10875 (r << 18) | 10876 (sattrs.srvalid << 17) | 10877 (mrvalid << 16) | 10878 (sattrs.sregion << 8) | 10879 mregion; 10880 10881 return tt_resp; 10882 } 10883 10884 #endif 10885 10886 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 10887 { 10888 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 10889 * Note that we do not implement the (architecturally mandated) 10890 * alignment fault for attempts to use this on Device memory 10891 * (which matches the usual QEMU behaviour of not implementing either 10892 * alignment faults or any memory attribute handling). 10893 */ 10894 10895 ARMCPU *cpu = arm_env_get_cpu(env); 10896 uint64_t blocklen = 4 << cpu->dcz_blocksize; 10897 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 10898 10899 #ifndef CONFIG_USER_ONLY 10900 { 10901 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 10902 * the block size so we might have to do more than one TLB lookup. 10903 * We know that in fact for any v8 CPU the page size is at least 4K 10904 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 10905 * 1K as an artefact of legacy v5 subpage support being present in the 10906 * same QEMU executable. 10907 */ 10908 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 10909 void *hostaddr[maxidx]; 10910 int try, i; 10911 unsigned mmu_idx = cpu_mmu_index(env, false); 10912 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 10913 10914 for (try = 0; try < 2; try++) { 10915 10916 for (i = 0; i < maxidx; i++) { 10917 hostaddr[i] = tlb_vaddr_to_host(env, 10918 vaddr + TARGET_PAGE_SIZE * i, 10919 1, mmu_idx); 10920 if (!hostaddr[i]) { 10921 break; 10922 } 10923 } 10924 if (i == maxidx) { 10925 /* If it's all in the TLB it's fair game for just writing to; 10926 * we know we don't need to update dirty status, etc. 10927 */ 10928 for (i = 0; i < maxidx - 1; i++) { 10929 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 10930 } 10931 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 10932 return; 10933 } 10934 /* OK, try a store and see if we can populate the tlb. This 10935 * might cause an exception if the memory isn't writable, 10936 * in which case we will longjmp out of here. We must for 10937 * this purpose use the actual register value passed to us 10938 * so that we get the fault address right. 10939 */ 10940 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 10941 /* Now we can populate the other TLB entries, if any */ 10942 for (i = 0; i < maxidx; i++) { 10943 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 10944 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 10945 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 10946 } 10947 } 10948 } 10949 10950 /* Slow path (probably attempt to do this to an I/O device or 10951 * similar, or clearing of a block of code we have translations 10952 * cached for). Just do a series of byte writes as the architecture 10953 * demands. It's not worth trying to use a cpu_physical_memory_map(), 10954 * memset(), unmap() sequence here because: 10955 * + we'd need to account for the blocksize being larger than a page 10956 * + the direct-RAM access case is almost always going to be dealt 10957 * with in the fastpath code above, so there's no speed benefit 10958 * + we would have to deal with the map returning NULL because the 10959 * bounce buffer was in use 10960 */ 10961 for (i = 0; i < blocklen; i++) { 10962 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 10963 } 10964 } 10965 #else 10966 memset(g2h(vaddr), 0, blocklen); 10967 #endif 10968 } 10969 10970 /* Note that signed overflow is undefined in C. The following routines are 10971 careful to use unsigned types where modulo arithmetic is required. 10972 Failure to do so _will_ break on newer gcc. */ 10973 10974 /* Signed saturating arithmetic. */ 10975 10976 /* Perform 16-bit signed saturating addition. */ 10977 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10978 { 10979 uint16_t res; 10980 10981 res = a + b; 10982 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10983 if (a & 0x8000) 10984 res = 0x8000; 10985 else 10986 res = 0x7fff; 10987 } 10988 return res; 10989 } 10990 10991 /* Perform 8-bit signed saturating addition. */ 10992 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10993 { 10994 uint8_t res; 10995 10996 res = a + b; 10997 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10998 if (a & 0x80) 10999 res = 0x80; 11000 else 11001 res = 0x7f; 11002 } 11003 return res; 11004 } 11005 11006 /* Perform 16-bit signed saturating subtraction. */ 11007 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11008 { 11009 uint16_t res; 11010 11011 res = a - b; 11012 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11013 if (a & 0x8000) 11014 res = 0x8000; 11015 else 11016 res = 0x7fff; 11017 } 11018 return res; 11019 } 11020 11021 /* Perform 8-bit signed saturating subtraction. */ 11022 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11023 { 11024 uint8_t res; 11025 11026 res = a - b; 11027 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11028 if (a & 0x80) 11029 res = 0x80; 11030 else 11031 res = 0x7f; 11032 } 11033 return res; 11034 } 11035 11036 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11037 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11038 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11039 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11040 #define PFX q 11041 11042 #include "op_addsub.h" 11043 11044 /* Unsigned saturating arithmetic. */ 11045 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11046 { 11047 uint16_t res; 11048 res = a + b; 11049 if (res < a) 11050 res = 0xffff; 11051 return res; 11052 } 11053 11054 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11055 { 11056 if (a > b) 11057 return a - b; 11058 else 11059 return 0; 11060 } 11061 11062 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11063 { 11064 uint8_t res; 11065 res = a + b; 11066 if (res < a) 11067 res = 0xff; 11068 return res; 11069 } 11070 11071 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11072 { 11073 if (a > b) 11074 return a - b; 11075 else 11076 return 0; 11077 } 11078 11079 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11080 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11081 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11082 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11083 #define PFX uq 11084 11085 #include "op_addsub.h" 11086 11087 /* Signed modulo arithmetic. */ 11088 #define SARITH16(a, b, n, op) do { \ 11089 int32_t sum; \ 11090 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11091 RESULT(sum, n, 16); \ 11092 if (sum >= 0) \ 11093 ge |= 3 << (n * 2); \ 11094 } while(0) 11095 11096 #define SARITH8(a, b, n, op) do { \ 11097 int32_t sum; \ 11098 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11099 RESULT(sum, n, 8); \ 11100 if (sum >= 0) \ 11101 ge |= 1 << n; \ 11102 } while(0) 11103 11104 11105 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11106 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11107 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11108 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11109 #define PFX s 11110 #define ARITH_GE 11111 11112 #include "op_addsub.h" 11113 11114 /* Unsigned modulo arithmetic. */ 11115 #define ADD16(a, b, n) do { \ 11116 uint32_t sum; \ 11117 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11118 RESULT(sum, n, 16); \ 11119 if ((sum >> 16) == 1) \ 11120 ge |= 3 << (n * 2); \ 11121 } while(0) 11122 11123 #define ADD8(a, b, n) do { \ 11124 uint32_t sum; \ 11125 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11126 RESULT(sum, n, 8); \ 11127 if ((sum >> 8) == 1) \ 11128 ge |= 1 << n; \ 11129 } while(0) 11130 11131 #define SUB16(a, b, n) do { \ 11132 uint32_t sum; \ 11133 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11134 RESULT(sum, n, 16); \ 11135 if ((sum >> 16) == 0) \ 11136 ge |= 3 << (n * 2); \ 11137 } while(0) 11138 11139 #define SUB8(a, b, n) do { \ 11140 uint32_t sum; \ 11141 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11142 RESULT(sum, n, 8); \ 11143 if ((sum >> 8) == 0) \ 11144 ge |= 1 << n; \ 11145 } while(0) 11146 11147 #define PFX u 11148 #define ARITH_GE 11149 11150 #include "op_addsub.h" 11151 11152 /* Halved signed arithmetic. */ 11153 #define ADD16(a, b, n) \ 11154 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11155 #define SUB16(a, b, n) \ 11156 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11157 #define ADD8(a, b, n) \ 11158 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11159 #define SUB8(a, b, n) \ 11160 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11161 #define PFX sh 11162 11163 #include "op_addsub.h" 11164 11165 /* Halved unsigned arithmetic. */ 11166 #define ADD16(a, b, n) \ 11167 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11168 #define SUB16(a, b, n) \ 11169 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11170 #define ADD8(a, b, n) \ 11171 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11172 #define SUB8(a, b, n) \ 11173 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11174 #define PFX uh 11175 11176 #include "op_addsub.h" 11177 11178 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11179 { 11180 if (a > b) 11181 return a - b; 11182 else 11183 return b - a; 11184 } 11185 11186 /* Unsigned sum of absolute byte differences. */ 11187 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11188 { 11189 uint32_t sum; 11190 sum = do_usad(a, b); 11191 sum += do_usad(a >> 8, b >> 8); 11192 sum += do_usad(a >> 16, b >>16); 11193 sum += do_usad(a >> 24, b >> 24); 11194 return sum; 11195 } 11196 11197 /* For ARMv6 SEL instruction. */ 11198 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11199 { 11200 uint32_t mask; 11201 11202 mask = 0; 11203 if (flags & 1) 11204 mask |= 0xff; 11205 if (flags & 2) 11206 mask |= 0xff00; 11207 if (flags & 4) 11208 mask |= 0xff0000; 11209 if (flags & 8) 11210 mask |= 0xff000000; 11211 return (a & mask) | (b & ~mask); 11212 } 11213 11214 /* VFP support. We follow the convention used for VFP instructions: 11215 Single precision routines have a "s" suffix, double precision a 11216 "d" suffix. */ 11217 11218 /* Convert host exception flags to vfp form. */ 11219 static inline int vfp_exceptbits_from_host(int host_bits) 11220 { 11221 int target_bits = 0; 11222 11223 if (host_bits & float_flag_invalid) 11224 target_bits |= 1; 11225 if (host_bits & float_flag_divbyzero) 11226 target_bits |= 2; 11227 if (host_bits & float_flag_overflow) 11228 target_bits |= 4; 11229 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) 11230 target_bits |= 8; 11231 if (host_bits & float_flag_inexact) 11232 target_bits |= 0x10; 11233 if (host_bits & float_flag_input_denormal) 11234 target_bits |= 0x80; 11235 return target_bits; 11236 } 11237 11238 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) 11239 { 11240 int i; 11241 uint32_t fpscr; 11242 11243 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) 11244 | (env->vfp.vec_len << 16) 11245 | (env->vfp.vec_stride << 20); 11246 i = get_float_exception_flags(&env->vfp.fp_status); 11247 i |= get_float_exception_flags(&env->vfp.standard_fp_status); 11248 i |= get_float_exception_flags(&env->vfp.fp_status_f16); 11249 fpscr |= vfp_exceptbits_from_host(i); 11250 return fpscr; 11251 } 11252 11253 uint32_t vfp_get_fpscr(CPUARMState *env) 11254 { 11255 return HELPER(vfp_get_fpscr)(env); 11256 } 11257 11258 /* Convert vfp exception flags to target form. */ 11259 static inline int vfp_exceptbits_to_host(int target_bits) 11260 { 11261 int host_bits = 0; 11262 11263 if (target_bits & 1) 11264 host_bits |= float_flag_invalid; 11265 if (target_bits & 2) 11266 host_bits |= float_flag_divbyzero; 11267 if (target_bits & 4) 11268 host_bits |= float_flag_overflow; 11269 if (target_bits & 8) 11270 host_bits |= float_flag_underflow; 11271 if (target_bits & 0x10) 11272 host_bits |= float_flag_inexact; 11273 if (target_bits & 0x80) 11274 host_bits |= float_flag_input_denormal; 11275 return host_bits; 11276 } 11277 11278 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) 11279 { 11280 int i; 11281 uint32_t changed; 11282 11283 changed = env->vfp.xregs[ARM_VFP_FPSCR]; 11284 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); 11285 env->vfp.vec_len = (val >> 16) & 7; 11286 env->vfp.vec_stride = (val >> 20) & 3; 11287 11288 changed ^= val; 11289 if (changed & (3 << 22)) { 11290 i = (val >> 22) & 3; 11291 switch (i) { 11292 case FPROUNDING_TIEEVEN: 11293 i = float_round_nearest_even; 11294 break; 11295 case FPROUNDING_POSINF: 11296 i = float_round_up; 11297 break; 11298 case FPROUNDING_NEGINF: 11299 i = float_round_down; 11300 break; 11301 case FPROUNDING_ZERO: 11302 i = float_round_to_zero; 11303 break; 11304 } 11305 set_float_rounding_mode(i, &env->vfp.fp_status); 11306 set_float_rounding_mode(i, &env->vfp.fp_status_f16); 11307 } 11308 if (changed & FPCR_FZ16) { 11309 bool ftz_enabled = val & FPCR_FZ16; 11310 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 11311 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 11312 } 11313 if (changed & FPCR_FZ) { 11314 bool ftz_enabled = val & FPCR_FZ; 11315 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status); 11316 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status); 11317 } 11318 if (changed & FPCR_DN) { 11319 bool dnan_enabled = val & FPCR_DN; 11320 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status); 11321 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16); 11322 } 11323 11324 /* The exception flags are ORed together when we read fpscr so we 11325 * only need to preserve the current state in one of our 11326 * float_status values. 11327 */ 11328 i = vfp_exceptbits_to_host(val); 11329 set_float_exception_flags(i, &env->vfp.fp_status); 11330 set_float_exception_flags(0, &env->vfp.fp_status_f16); 11331 set_float_exception_flags(0, &env->vfp.standard_fp_status); 11332 } 11333 11334 void vfp_set_fpscr(CPUARMState *env, uint32_t val) 11335 { 11336 HELPER(vfp_set_fpscr)(env, val); 11337 } 11338 11339 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) 11340 11341 #define VFP_BINOP(name) \ 11342 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ 11343 { \ 11344 float_status *fpst = fpstp; \ 11345 return float32_ ## name(a, b, fpst); \ 11346 } \ 11347 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ 11348 { \ 11349 float_status *fpst = fpstp; \ 11350 return float64_ ## name(a, b, fpst); \ 11351 } 11352 VFP_BINOP(add) 11353 VFP_BINOP(sub) 11354 VFP_BINOP(mul) 11355 VFP_BINOP(div) 11356 VFP_BINOP(min) 11357 VFP_BINOP(max) 11358 VFP_BINOP(minnum) 11359 VFP_BINOP(maxnum) 11360 #undef VFP_BINOP 11361 11362 float32 VFP_HELPER(neg, s)(float32 a) 11363 { 11364 return float32_chs(a); 11365 } 11366 11367 float64 VFP_HELPER(neg, d)(float64 a) 11368 { 11369 return float64_chs(a); 11370 } 11371 11372 float32 VFP_HELPER(abs, s)(float32 a) 11373 { 11374 return float32_abs(a); 11375 } 11376 11377 float64 VFP_HELPER(abs, d)(float64 a) 11378 { 11379 return float64_abs(a); 11380 } 11381 11382 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) 11383 { 11384 return float32_sqrt(a, &env->vfp.fp_status); 11385 } 11386 11387 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) 11388 { 11389 return float64_sqrt(a, &env->vfp.fp_status); 11390 } 11391 11392 /* XXX: check quiet/signaling case */ 11393 #define DO_VFP_cmp(p, type) \ 11394 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ 11395 { \ 11396 uint32_t flags; \ 11397 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ 11398 case 0: flags = 0x6; break; \ 11399 case -1: flags = 0x8; break; \ 11400 case 1: flags = 0x2; break; \ 11401 default: case 2: flags = 0x3; break; \ 11402 } \ 11403 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 11404 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 11405 } \ 11406 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ 11407 { \ 11408 uint32_t flags; \ 11409 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ 11410 case 0: flags = 0x6; break; \ 11411 case -1: flags = 0x8; break; \ 11412 case 1: flags = 0x2; break; \ 11413 default: case 2: flags = 0x3; break; \ 11414 } \ 11415 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 11416 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 11417 } 11418 DO_VFP_cmp(s, float32) 11419 DO_VFP_cmp(d, float64) 11420 #undef DO_VFP_cmp 11421 11422 /* Integer to float and float to integer conversions */ 11423 11424 #define CONV_ITOF(name, ftype, fsz, sign) \ 11425 ftype HELPER(name)(uint32_t x, void *fpstp) \ 11426 { \ 11427 float_status *fpst = fpstp; \ 11428 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ 11429 } 11430 11431 #define CONV_FTOI(name, ftype, fsz, sign, round) \ 11432 sign##int32_t HELPER(name)(ftype x, void *fpstp) \ 11433 { \ 11434 float_status *fpst = fpstp; \ 11435 if (float##fsz##_is_any_nan(x)) { \ 11436 float_raise(float_flag_invalid, fpst); \ 11437 return 0; \ 11438 } \ 11439 return float##fsz##_to_##sign##int32##round(x, fpst); \ 11440 } 11441 11442 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \ 11443 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \ 11444 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \ 11445 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero) 11446 11447 FLOAT_CONVS(si, h, uint32_t, 16, ) 11448 FLOAT_CONVS(si, s, float32, 32, ) 11449 FLOAT_CONVS(si, d, float64, 64, ) 11450 FLOAT_CONVS(ui, h, uint32_t, 16, u) 11451 FLOAT_CONVS(ui, s, float32, 32, u) 11452 FLOAT_CONVS(ui, d, float64, 64, u) 11453 11454 #undef CONV_ITOF 11455 #undef CONV_FTOI 11456 #undef FLOAT_CONVS 11457 11458 /* floating point conversion */ 11459 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) 11460 { 11461 return float32_to_float64(x, &env->vfp.fp_status); 11462 } 11463 11464 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) 11465 { 11466 return float64_to_float32(x, &env->vfp.fp_status); 11467 } 11468 11469 /* VFP3 fixed point conversion. */ 11470 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11471 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ 11472 void *fpstp) \ 11473 { \ 11474 float_status *fpst = fpstp; \ 11475 float##fsz tmp; \ 11476 tmp = itype##_to_##float##fsz(x, fpst); \ 11477 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ 11478 } 11479 11480 /* Notice that we want only input-denormal exception flags from the 11481 * scalbn operation: the other possible flags (overflow+inexact if 11482 * we overflow to infinity, output-denormal) aren't correct for the 11483 * complete scale-and-convert operation. 11484 */ 11485 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ 11486 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ 11487 uint32_t shift, \ 11488 void *fpstp) \ 11489 { \ 11490 float_status *fpst = fpstp; \ 11491 int old_exc_flags = get_float_exception_flags(fpst); \ 11492 float##fsz tmp; \ 11493 if (float##fsz##_is_any_nan(x)) { \ 11494 float_raise(float_flag_invalid, fpst); \ 11495 return 0; \ 11496 } \ 11497 tmp = float##fsz##_scalbn(x, shift, fpst); \ 11498 old_exc_flags |= get_float_exception_flags(fpst) \ 11499 & float_flag_input_denormal; \ 11500 set_float_exception_flags(old_exc_flags, fpst); \ 11501 return float##fsz##_to_##itype##round(tmp, fpst); \ 11502 } 11503 11504 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ 11505 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11506 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ 11507 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 11508 11509 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ 11510 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11511 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 11512 11513 VFP_CONV_FIX(sh, d, 64, 64, int16) 11514 VFP_CONV_FIX(sl, d, 64, 64, int32) 11515 VFP_CONV_FIX_A64(sq, d, 64, 64, int64) 11516 VFP_CONV_FIX(uh, d, 64, 64, uint16) 11517 VFP_CONV_FIX(ul, d, 64, 64, uint32) 11518 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) 11519 VFP_CONV_FIX(sh, s, 32, 32, int16) 11520 VFP_CONV_FIX(sl, s, 32, 32, int32) 11521 VFP_CONV_FIX_A64(sq, s, 32, 64, int64) 11522 VFP_CONV_FIX(uh, s, 32, 32, uint16) 11523 VFP_CONV_FIX(ul, s, 32, 32, uint32) 11524 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) 11525 11526 #undef VFP_CONV_FIX 11527 #undef VFP_CONV_FIX_FLOAT 11528 #undef VFP_CONV_FLOAT_FIX_ROUND 11529 #undef VFP_CONV_FIX_A64 11530 11531 /* Conversion to/from f16 can overflow to infinity before/after scaling. 11532 * Therefore we convert to f64, scale, and then convert f64 to f16; or 11533 * vice versa for conversion to integer. 11534 * 11535 * For 16- and 32-bit integers, the conversion to f64 never rounds. 11536 * For 64-bit integers, any integer that would cause rounding will also 11537 * overflow to f16 infinity, so there is no double rounding problem. 11538 */ 11539 11540 static float16 do_postscale_fp16(float64 f, int shift, float_status *fpst) 11541 { 11542 return float64_to_float16(float64_scalbn(f, -shift, fpst), true, fpst); 11543 } 11544 11545 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst) 11546 { 11547 return do_postscale_fp16(int32_to_float64(x, fpst), shift, fpst); 11548 } 11549 11550 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst) 11551 { 11552 return do_postscale_fp16(uint32_to_float64(x, fpst), shift, fpst); 11553 } 11554 11555 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst) 11556 { 11557 return do_postscale_fp16(int64_to_float64(x, fpst), shift, fpst); 11558 } 11559 11560 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst) 11561 { 11562 return do_postscale_fp16(uint64_to_float64(x, fpst), shift, fpst); 11563 } 11564 11565 static float64 do_prescale_fp16(float16 f, int shift, float_status *fpst) 11566 { 11567 if (unlikely(float16_is_any_nan(f))) { 11568 float_raise(float_flag_invalid, fpst); 11569 return 0; 11570 } else { 11571 int old_exc_flags = get_float_exception_flags(fpst); 11572 float64 ret; 11573 11574 ret = float16_to_float64(f, true, fpst); 11575 ret = float64_scalbn(ret, shift, fpst); 11576 old_exc_flags |= get_float_exception_flags(fpst) 11577 & float_flag_input_denormal; 11578 set_float_exception_flags(old_exc_flags, fpst); 11579 11580 return ret; 11581 } 11582 } 11583 11584 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst) 11585 { 11586 return float64_to_int16(do_prescale_fp16(x, shift, fpst), fpst); 11587 } 11588 11589 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst) 11590 { 11591 return float64_to_uint16(do_prescale_fp16(x, shift, fpst), fpst); 11592 } 11593 11594 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst) 11595 { 11596 return float64_to_int32(do_prescale_fp16(x, shift, fpst), fpst); 11597 } 11598 11599 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst) 11600 { 11601 return float64_to_uint32(do_prescale_fp16(x, shift, fpst), fpst); 11602 } 11603 11604 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst) 11605 { 11606 return float64_to_int64(do_prescale_fp16(x, shift, fpst), fpst); 11607 } 11608 11609 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst) 11610 { 11611 return float64_to_uint64(do_prescale_fp16(x, shift, fpst), fpst); 11612 } 11613 11614 /* Set the current fp rounding mode and return the old one. 11615 * The argument is a softfloat float_round_ value. 11616 */ 11617 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp) 11618 { 11619 float_status *fp_status = fpstp; 11620 11621 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 11622 set_float_rounding_mode(rmode, fp_status); 11623 11624 return prev_rmode; 11625 } 11626 11627 /* Set the current fp rounding mode in the standard fp status and return 11628 * the old one. This is for NEON instructions that need to change the 11629 * rounding mode but wish to use the standard FPSCR values for everything 11630 * else. Always set the rounding mode back to the correct value after 11631 * modifying it. 11632 * The argument is a softfloat float_round_ value. 11633 */ 11634 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) 11635 { 11636 float_status *fp_status = &env->vfp.standard_fp_status; 11637 11638 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 11639 set_float_rounding_mode(rmode, fp_status); 11640 11641 return prev_rmode; 11642 } 11643 11644 /* Half precision conversions. */ 11645 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode) 11646 { 11647 /* Squash FZ16 to 0 for the duration of conversion. In this case, 11648 * it would affect flushing input denormals. 11649 */ 11650 float_status *fpst = fpstp; 11651 flag save = get_flush_inputs_to_zero(fpst); 11652 set_flush_inputs_to_zero(false, fpst); 11653 float32 r = float16_to_float32(a, !ahp_mode, fpst); 11654 set_flush_inputs_to_zero(save, fpst); 11655 return r; 11656 } 11657 11658 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode) 11659 { 11660 /* Squash FZ16 to 0 for the duration of conversion. In this case, 11661 * it would affect flushing output denormals. 11662 */ 11663 float_status *fpst = fpstp; 11664 flag save = get_flush_to_zero(fpst); 11665 set_flush_to_zero(false, fpst); 11666 float16 r = float32_to_float16(a, !ahp_mode, fpst); 11667 set_flush_to_zero(save, fpst); 11668 return r; 11669 } 11670 11671 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode) 11672 { 11673 /* Squash FZ16 to 0 for the duration of conversion. In this case, 11674 * it would affect flushing input denormals. 11675 */ 11676 float_status *fpst = fpstp; 11677 flag save = get_flush_inputs_to_zero(fpst); 11678 set_flush_inputs_to_zero(false, fpst); 11679 float64 r = float16_to_float64(a, !ahp_mode, fpst); 11680 set_flush_inputs_to_zero(save, fpst); 11681 return r; 11682 } 11683 11684 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode) 11685 { 11686 /* Squash FZ16 to 0 for the duration of conversion. In this case, 11687 * it would affect flushing output denormals. 11688 */ 11689 float_status *fpst = fpstp; 11690 flag save = get_flush_to_zero(fpst); 11691 set_flush_to_zero(false, fpst); 11692 float16 r = float64_to_float16(a, !ahp_mode, fpst); 11693 set_flush_to_zero(save, fpst); 11694 return r; 11695 } 11696 11697 #define float32_two make_float32(0x40000000) 11698 #define float32_three make_float32(0x40400000) 11699 #define float32_one_point_five make_float32(0x3fc00000) 11700 11701 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) 11702 { 11703 float_status *s = &env->vfp.standard_fp_status; 11704 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 11705 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 11706 if (!(float32_is_zero(a) || float32_is_zero(b))) { 11707 float_raise(float_flag_input_denormal, s); 11708 } 11709 return float32_two; 11710 } 11711 return float32_sub(float32_two, float32_mul(a, b, s), s); 11712 } 11713 11714 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) 11715 { 11716 float_status *s = &env->vfp.standard_fp_status; 11717 float32 product; 11718 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 11719 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 11720 if (!(float32_is_zero(a) || float32_is_zero(b))) { 11721 float_raise(float_flag_input_denormal, s); 11722 } 11723 return float32_one_point_five; 11724 } 11725 product = float32_mul(a, b, s); 11726 return float32_div(float32_sub(float32_three, product, s), float32_two, s); 11727 } 11728 11729 /* NEON helpers. */ 11730 11731 /* Constants 256 and 512 are used in some helpers; we avoid relying on 11732 * int->float conversions at run-time. */ 11733 #define float64_256 make_float64(0x4070000000000000LL) 11734 #define float64_512 make_float64(0x4080000000000000LL) 11735 #define float16_maxnorm make_float16(0x7bff) 11736 #define float32_maxnorm make_float32(0x7f7fffff) 11737 #define float64_maxnorm make_float64(0x7fefffffffffffffLL) 11738 11739 /* Reciprocal functions 11740 * 11741 * The algorithm that must be used to calculate the estimate 11742 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate 11743 */ 11744 11745 /* See RecipEstimate() 11746 * 11747 * input is a 9 bit fixed point number 11748 * input range 256 .. 511 for a number from 0.5 <= x < 1.0. 11749 * result range 256 .. 511 for a number from 1.0 to 511/256. 11750 */ 11751 11752 static int recip_estimate(int input) 11753 { 11754 int a, b, r; 11755 assert(256 <= input && input < 512); 11756 a = (input * 2) + 1; 11757 b = (1 << 19) / a; 11758 r = (b + 1) >> 1; 11759 assert(256 <= r && r < 512); 11760 return r; 11761 } 11762 11763 /* 11764 * Common wrapper to call recip_estimate 11765 * 11766 * The parameters are exponent and 64 bit fraction (without implicit 11767 * bit) where the binary point is nominally at bit 52. Returns a 11768 * float64 which can then be rounded to the appropriate size by the 11769 * callee. 11770 */ 11771 11772 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac) 11773 { 11774 uint32_t scaled, estimate; 11775 uint64_t result_frac; 11776 int result_exp; 11777 11778 /* Handle sub-normals */ 11779 if (*exp == 0) { 11780 if (extract64(frac, 51, 1) == 0) { 11781 *exp = -1; 11782 frac <<= 2; 11783 } else { 11784 frac <<= 1; 11785 } 11786 } 11787 11788 /* scaled = UInt('1':fraction<51:44>) */ 11789 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 11790 estimate = recip_estimate(scaled); 11791 11792 result_exp = exp_off - *exp; 11793 result_frac = deposit64(0, 44, 8, estimate); 11794 if (result_exp == 0) { 11795 result_frac = deposit64(result_frac >> 1, 51, 1, 1); 11796 } else if (result_exp == -1) { 11797 result_frac = deposit64(result_frac >> 2, 50, 2, 1); 11798 result_exp = 0; 11799 } 11800 11801 *exp = result_exp; 11802 11803 return result_frac; 11804 } 11805 11806 static bool round_to_inf(float_status *fpst, bool sign_bit) 11807 { 11808 switch (fpst->float_rounding_mode) { 11809 case float_round_nearest_even: /* Round to Nearest */ 11810 return true; 11811 case float_round_up: /* Round to +Inf */ 11812 return !sign_bit; 11813 case float_round_down: /* Round to -Inf */ 11814 return sign_bit; 11815 case float_round_to_zero: /* Round to Zero */ 11816 return false; 11817 } 11818 11819 g_assert_not_reached(); 11820 } 11821 11822 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp) 11823 { 11824 float_status *fpst = fpstp; 11825 float16 f16 = float16_squash_input_denormal(input, fpst); 11826 uint32_t f16_val = float16_val(f16); 11827 uint32_t f16_sign = float16_is_neg(f16); 11828 int f16_exp = extract32(f16_val, 10, 5); 11829 uint32_t f16_frac = extract32(f16_val, 0, 10); 11830 uint64_t f64_frac; 11831 11832 if (float16_is_any_nan(f16)) { 11833 float16 nan = f16; 11834 if (float16_is_signaling_nan(f16, fpst)) { 11835 float_raise(float_flag_invalid, fpst); 11836 nan = float16_silence_nan(f16, fpst); 11837 } 11838 if (fpst->default_nan_mode) { 11839 nan = float16_default_nan(fpst); 11840 } 11841 return nan; 11842 } else if (float16_is_infinity(f16)) { 11843 return float16_set_sign(float16_zero, float16_is_neg(f16)); 11844 } else if (float16_is_zero(f16)) { 11845 float_raise(float_flag_divbyzero, fpst); 11846 return float16_set_sign(float16_infinity, float16_is_neg(f16)); 11847 } else if (float16_abs(f16) < (1 << 8)) { 11848 /* Abs(value) < 2.0^-16 */ 11849 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11850 if (round_to_inf(fpst, f16_sign)) { 11851 return float16_set_sign(float16_infinity, f16_sign); 11852 } else { 11853 return float16_set_sign(float16_maxnorm, f16_sign); 11854 } 11855 } else if (f16_exp >= 29 && fpst->flush_to_zero) { 11856 float_raise(float_flag_underflow, fpst); 11857 return float16_set_sign(float16_zero, float16_is_neg(f16)); 11858 } 11859 11860 f64_frac = call_recip_estimate(&f16_exp, 29, 11861 ((uint64_t) f16_frac) << (52 - 10)); 11862 11863 /* result = sign : result_exp<4:0> : fraction<51:42> */ 11864 f16_val = deposit32(0, 15, 1, f16_sign); 11865 f16_val = deposit32(f16_val, 10, 5, f16_exp); 11866 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10)); 11867 return make_float16(f16_val); 11868 } 11869 11870 float32 HELPER(recpe_f32)(float32 input, void *fpstp) 11871 { 11872 float_status *fpst = fpstp; 11873 float32 f32 = float32_squash_input_denormal(input, fpst); 11874 uint32_t f32_val = float32_val(f32); 11875 bool f32_sign = float32_is_neg(f32); 11876 int f32_exp = extract32(f32_val, 23, 8); 11877 uint32_t f32_frac = extract32(f32_val, 0, 23); 11878 uint64_t f64_frac; 11879 11880 if (float32_is_any_nan(f32)) { 11881 float32 nan = f32; 11882 if (float32_is_signaling_nan(f32, fpst)) { 11883 float_raise(float_flag_invalid, fpst); 11884 nan = float32_silence_nan(f32, fpst); 11885 } 11886 if (fpst->default_nan_mode) { 11887 nan = float32_default_nan(fpst); 11888 } 11889 return nan; 11890 } else if (float32_is_infinity(f32)) { 11891 return float32_set_sign(float32_zero, float32_is_neg(f32)); 11892 } else if (float32_is_zero(f32)) { 11893 float_raise(float_flag_divbyzero, fpst); 11894 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 11895 } else if (float32_abs(f32) < (1ULL << 21)) { 11896 /* Abs(value) < 2.0^-128 */ 11897 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11898 if (round_to_inf(fpst, f32_sign)) { 11899 return float32_set_sign(float32_infinity, f32_sign); 11900 } else { 11901 return float32_set_sign(float32_maxnorm, f32_sign); 11902 } 11903 } else if (f32_exp >= 253 && fpst->flush_to_zero) { 11904 float_raise(float_flag_underflow, fpst); 11905 return float32_set_sign(float32_zero, float32_is_neg(f32)); 11906 } 11907 11908 f64_frac = call_recip_estimate(&f32_exp, 253, 11909 ((uint64_t) f32_frac) << (52 - 23)); 11910 11911 /* result = sign : result_exp<7:0> : fraction<51:29> */ 11912 f32_val = deposit32(0, 31, 1, f32_sign); 11913 f32_val = deposit32(f32_val, 23, 8, f32_exp); 11914 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23)); 11915 return make_float32(f32_val); 11916 } 11917 11918 float64 HELPER(recpe_f64)(float64 input, void *fpstp) 11919 { 11920 float_status *fpst = fpstp; 11921 float64 f64 = float64_squash_input_denormal(input, fpst); 11922 uint64_t f64_val = float64_val(f64); 11923 bool f64_sign = float64_is_neg(f64); 11924 int f64_exp = extract64(f64_val, 52, 11); 11925 uint64_t f64_frac = extract64(f64_val, 0, 52); 11926 11927 /* Deal with any special cases */ 11928 if (float64_is_any_nan(f64)) { 11929 float64 nan = f64; 11930 if (float64_is_signaling_nan(f64, fpst)) { 11931 float_raise(float_flag_invalid, fpst); 11932 nan = float64_silence_nan(f64, fpst); 11933 } 11934 if (fpst->default_nan_mode) { 11935 nan = float64_default_nan(fpst); 11936 } 11937 return nan; 11938 } else if (float64_is_infinity(f64)) { 11939 return float64_set_sign(float64_zero, float64_is_neg(f64)); 11940 } else if (float64_is_zero(f64)) { 11941 float_raise(float_flag_divbyzero, fpst); 11942 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11943 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { 11944 /* Abs(value) < 2.0^-1024 */ 11945 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11946 if (round_to_inf(fpst, f64_sign)) { 11947 return float64_set_sign(float64_infinity, f64_sign); 11948 } else { 11949 return float64_set_sign(float64_maxnorm, f64_sign); 11950 } 11951 } else if (f64_exp >= 2045 && fpst->flush_to_zero) { 11952 float_raise(float_flag_underflow, fpst); 11953 return float64_set_sign(float64_zero, float64_is_neg(f64)); 11954 } 11955 11956 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac); 11957 11958 /* result = sign : result_exp<10:0> : fraction<51:0>; */ 11959 f64_val = deposit64(0, 63, 1, f64_sign); 11960 f64_val = deposit64(f64_val, 52, 11, f64_exp); 11961 f64_val = deposit64(f64_val, 0, 52, f64_frac); 11962 return make_float64(f64_val); 11963 } 11964 11965 /* The algorithm that must be used to calculate the estimate 11966 * is specified by the ARM ARM. 11967 */ 11968 11969 static int do_recip_sqrt_estimate(int a) 11970 { 11971 int b, estimate; 11972 11973 assert(128 <= a && a < 512); 11974 if (a < 256) { 11975 a = a * 2 + 1; 11976 } else { 11977 a = (a >> 1) << 1; 11978 a = (a + 1) * 2; 11979 } 11980 b = 512; 11981 while (a * (b + 1) * (b + 1) < (1 << 28)) { 11982 b += 1; 11983 } 11984 estimate = (b + 1) / 2; 11985 assert(256 <= estimate && estimate < 512); 11986 11987 return estimate; 11988 } 11989 11990 11991 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac) 11992 { 11993 int estimate; 11994 uint32_t scaled; 11995 11996 if (*exp == 0) { 11997 while (extract64(frac, 51, 1) == 0) { 11998 frac = frac << 1; 11999 *exp -= 1; 12000 } 12001 frac = extract64(frac, 0, 51) << 1; 12002 } 12003 12004 if (*exp & 1) { 12005 /* scaled = UInt('01':fraction<51:45>) */ 12006 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7)); 12007 } else { 12008 /* scaled = UInt('1':fraction<51:44>) */ 12009 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 12010 } 12011 estimate = do_recip_sqrt_estimate(scaled); 12012 12013 *exp = (exp_off - *exp) / 2; 12014 return extract64(estimate, 0, 8) << 44; 12015 } 12016 12017 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp) 12018 { 12019 float_status *s = fpstp; 12020 float16 f16 = float16_squash_input_denormal(input, s); 12021 uint16_t val = float16_val(f16); 12022 bool f16_sign = float16_is_neg(f16); 12023 int f16_exp = extract32(val, 10, 5); 12024 uint16_t f16_frac = extract32(val, 0, 10); 12025 uint64_t f64_frac; 12026 12027 if (float16_is_any_nan(f16)) { 12028 float16 nan = f16; 12029 if (float16_is_signaling_nan(f16, s)) { 12030 float_raise(float_flag_invalid, s); 12031 nan = float16_silence_nan(f16, s); 12032 } 12033 if (s->default_nan_mode) { 12034 nan = float16_default_nan(s); 12035 } 12036 return nan; 12037 } else if (float16_is_zero(f16)) { 12038 float_raise(float_flag_divbyzero, s); 12039 return float16_set_sign(float16_infinity, f16_sign); 12040 } else if (f16_sign) { 12041 float_raise(float_flag_invalid, s); 12042 return float16_default_nan(s); 12043 } else if (float16_is_infinity(f16)) { 12044 return float16_zero; 12045 } 12046 12047 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 12048 * preserving the parity of the exponent. */ 12049 12050 f64_frac = ((uint64_t) f16_frac) << (52 - 10); 12051 12052 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac); 12053 12054 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */ 12055 val = deposit32(0, 15, 1, f16_sign); 12056 val = deposit32(val, 10, 5, f16_exp); 12057 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8)); 12058 return make_float16(val); 12059 } 12060 12061 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) 12062 { 12063 float_status *s = fpstp; 12064 float32 f32 = float32_squash_input_denormal(input, s); 12065 uint32_t val = float32_val(f32); 12066 uint32_t f32_sign = float32_is_neg(f32); 12067 int f32_exp = extract32(val, 23, 8); 12068 uint32_t f32_frac = extract32(val, 0, 23); 12069 uint64_t f64_frac; 12070 12071 if (float32_is_any_nan(f32)) { 12072 float32 nan = f32; 12073 if (float32_is_signaling_nan(f32, s)) { 12074 float_raise(float_flag_invalid, s); 12075 nan = float32_silence_nan(f32, s); 12076 } 12077 if (s->default_nan_mode) { 12078 nan = float32_default_nan(s); 12079 } 12080 return nan; 12081 } else if (float32_is_zero(f32)) { 12082 float_raise(float_flag_divbyzero, s); 12083 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 12084 } else if (float32_is_neg(f32)) { 12085 float_raise(float_flag_invalid, s); 12086 return float32_default_nan(s); 12087 } else if (float32_is_infinity(f32)) { 12088 return float32_zero; 12089 } 12090 12091 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 12092 * preserving the parity of the exponent. */ 12093 12094 f64_frac = ((uint64_t) f32_frac) << 29; 12095 12096 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac); 12097 12098 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */ 12099 val = deposit32(0, 31, 1, f32_sign); 12100 val = deposit32(val, 23, 8, f32_exp); 12101 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8)); 12102 return make_float32(val); 12103 } 12104 12105 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) 12106 { 12107 float_status *s = fpstp; 12108 float64 f64 = float64_squash_input_denormal(input, s); 12109 uint64_t val = float64_val(f64); 12110 bool f64_sign = float64_is_neg(f64); 12111 int f64_exp = extract64(val, 52, 11); 12112 uint64_t f64_frac = extract64(val, 0, 52); 12113 12114 if (float64_is_any_nan(f64)) { 12115 float64 nan = f64; 12116 if (float64_is_signaling_nan(f64, s)) { 12117 float_raise(float_flag_invalid, s); 12118 nan = float64_silence_nan(f64, s); 12119 } 12120 if (s->default_nan_mode) { 12121 nan = float64_default_nan(s); 12122 } 12123 return nan; 12124 } else if (float64_is_zero(f64)) { 12125 float_raise(float_flag_divbyzero, s); 12126 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 12127 } else if (float64_is_neg(f64)) { 12128 float_raise(float_flag_invalid, s); 12129 return float64_default_nan(s); 12130 } else if (float64_is_infinity(f64)) { 12131 return float64_zero; 12132 } 12133 12134 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac); 12135 12136 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */ 12137 val = deposit64(0, 61, 1, f64_sign); 12138 val = deposit64(val, 52, 11, f64_exp); 12139 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8)); 12140 return make_float64(val); 12141 } 12142 12143 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) 12144 { 12145 /* float_status *s = fpstp; */ 12146 int input, estimate; 12147 12148 if ((a & 0x80000000) == 0) { 12149 return 0xffffffff; 12150 } 12151 12152 input = extract32(a, 23, 9); 12153 estimate = recip_estimate(input); 12154 12155 return deposit32(0, (32 - 9), 9, estimate); 12156 } 12157 12158 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) 12159 { 12160 int estimate; 12161 12162 if ((a & 0xc0000000) == 0) { 12163 return 0xffffffff; 12164 } 12165 12166 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9)); 12167 12168 return deposit32(0, 23, 9, estimate); 12169 } 12170 12171 /* VFPv4 fused multiply-accumulate */ 12172 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) 12173 { 12174 float_status *fpst = fpstp; 12175 return float32_muladd(a, b, c, 0, fpst); 12176 } 12177 12178 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) 12179 { 12180 float_status *fpst = fpstp; 12181 return float64_muladd(a, b, c, 0, fpst); 12182 } 12183 12184 /* ARMv8 round to integral */ 12185 float32 HELPER(rints_exact)(float32 x, void *fp_status) 12186 { 12187 return float32_round_to_int(x, fp_status); 12188 } 12189 12190 float64 HELPER(rintd_exact)(float64 x, void *fp_status) 12191 { 12192 return float64_round_to_int(x, fp_status); 12193 } 12194 12195 float32 HELPER(rints)(float32 x, void *fp_status) 12196 { 12197 int old_flags = get_float_exception_flags(fp_status), new_flags; 12198 float32 ret; 12199 12200 ret = float32_round_to_int(x, fp_status); 12201 12202 /* Suppress any inexact exceptions the conversion produced */ 12203 if (!(old_flags & float_flag_inexact)) { 12204 new_flags = get_float_exception_flags(fp_status); 12205 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 12206 } 12207 12208 return ret; 12209 } 12210 12211 float64 HELPER(rintd)(float64 x, void *fp_status) 12212 { 12213 int old_flags = get_float_exception_flags(fp_status), new_flags; 12214 float64 ret; 12215 12216 ret = float64_round_to_int(x, fp_status); 12217 12218 new_flags = get_float_exception_flags(fp_status); 12219 12220 /* Suppress any inexact exceptions the conversion produced */ 12221 if (!(old_flags & float_flag_inexact)) { 12222 new_flags = get_float_exception_flags(fp_status); 12223 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 12224 } 12225 12226 return ret; 12227 } 12228 12229 /* Convert ARM rounding mode to softfloat */ 12230 int arm_rmode_to_sf(int rmode) 12231 { 12232 switch (rmode) { 12233 case FPROUNDING_TIEAWAY: 12234 rmode = float_round_ties_away; 12235 break; 12236 case FPROUNDING_ODD: 12237 /* FIXME: add support for TIEAWAY and ODD */ 12238 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", 12239 rmode); 12240 case FPROUNDING_TIEEVEN: 12241 default: 12242 rmode = float_round_nearest_even; 12243 break; 12244 case FPROUNDING_POSINF: 12245 rmode = float_round_up; 12246 break; 12247 case FPROUNDING_NEGINF: 12248 rmode = float_round_down; 12249 break; 12250 case FPROUNDING_ZERO: 12251 rmode = float_round_to_zero; 12252 break; 12253 } 12254 return rmode; 12255 } 12256 12257 /* CRC helpers. 12258 * The upper bytes of val (above the number specified by 'bytes') must have 12259 * been zeroed out by the caller. 12260 */ 12261 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12262 { 12263 uint8_t buf[4]; 12264 12265 stl_le_p(buf, val); 12266 12267 /* zlib crc32 converts the accumulator and output to one's complement. */ 12268 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12269 } 12270 12271 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12272 { 12273 uint8_t buf[4]; 12274 12275 stl_le_p(buf, val); 12276 12277 /* Linux crc32c converts the output to one's complement. */ 12278 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12279 } 12280 12281 /* Return the exception level to which FP-disabled exceptions should 12282 * be taken, or 0 if FP is enabled. 12283 */ 12284 static inline int fp_exception_el(CPUARMState *env) 12285 { 12286 #ifndef CONFIG_USER_ONLY 12287 int fpen; 12288 int cur_el = arm_current_el(env); 12289 12290 /* CPACR and the CPTR registers don't exist before v6, so FP is 12291 * always accessible 12292 */ 12293 if (!arm_feature(env, ARM_FEATURE_V6)) { 12294 return 0; 12295 } 12296 12297 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12298 * 0, 2 : trap EL0 and EL1/PL1 accesses 12299 * 1 : trap only EL0 accesses 12300 * 3 : trap no accesses 12301 */ 12302 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12303 switch (fpen) { 12304 case 0: 12305 case 2: 12306 if (cur_el == 0 || cur_el == 1) { 12307 /* Trap to PL1, which might be EL1 or EL3 */ 12308 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12309 return 3; 12310 } 12311 return 1; 12312 } 12313 if (cur_el == 3 && !is_a64(env)) { 12314 /* Secure PL1 running at EL3 */ 12315 return 3; 12316 } 12317 break; 12318 case 1: 12319 if (cur_el == 0) { 12320 return 1; 12321 } 12322 break; 12323 case 3: 12324 break; 12325 } 12326 12327 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12328 * check because zero bits in the registers mean "don't trap". 12329 */ 12330 12331 /* CPTR_EL2 : present in v7VE or v8 */ 12332 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12333 && !arm_is_secure_below_el3(env)) { 12334 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12335 return 2; 12336 } 12337 12338 /* CPTR_EL3 : present in v8 */ 12339 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12340 /* Trap all FP ops to EL3 */ 12341 return 3; 12342 } 12343 #endif 12344 return 0; 12345 } 12346 12347 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 12348 target_ulong *cs_base, uint32_t *pflags) 12349 { 12350 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 12351 int fp_el = fp_exception_el(env); 12352 uint32_t flags; 12353 12354 if (is_a64(env)) { 12355 int sve_el = sve_exception_el(env); 12356 uint32_t zcr_len; 12357 12358 *pc = env->pc; 12359 flags = ARM_TBFLAG_AARCH64_STATE_MASK; 12360 /* Get control bits for tagged addresses */ 12361 flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT); 12362 flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT); 12363 flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT; 12364 12365 /* If SVE is disabled, but FP is enabled, 12366 then the effective len is 0. */ 12367 if (sve_el != 0 && fp_el == 0) { 12368 zcr_len = 0; 12369 } else { 12370 int current_el = arm_current_el(env); 12371 12372 zcr_len = env->vfp.zcr_el[current_el <= 1 ? 1 : current_el]; 12373 zcr_len &= 0xf; 12374 if (current_el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 12375 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 12376 } 12377 if (current_el < 3 && arm_feature(env, ARM_FEATURE_EL3)) { 12378 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 12379 } 12380 } 12381 flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT; 12382 } else { 12383 *pc = env->regs[15]; 12384 flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT) 12385 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT) 12386 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT) 12387 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT) 12388 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT); 12389 if (!(access_secure_reg(env))) { 12390 flags |= ARM_TBFLAG_NS_MASK; 12391 } 12392 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) 12393 || arm_el_is_aa64(env, 1)) { 12394 flags |= ARM_TBFLAG_VFPEN_MASK; 12395 } 12396 flags |= (extract32(env->cp15.c15_cpar, 0, 2) 12397 << ARM_TBFLAG_XSCALE_CPAR_SHIFT); 12398 } 12399 12400 flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT); 12401 12402 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12403 * states defined in the ARM ARM for software singlestep: 12404 * SS_ACTIVE PSTATE.SS State 12405 * 0 x Inactive (the TB flag for SS is always 0) 12406 * 1 0 Active-pending 12407 * 1 1 Active-not-pending 12408 */ 12409 if (arm_singlestep_active(env)) { 12410 flags |= ARM_TBFLAG_SS_ACTIVE_MASK; 12411 if (is_a64(env)) { 12412 if (env->pstate & PSTATE_SS) { 12413 flags |= ARM_TBFLAG_PSTATE_SS_MASK; 12414 } 12415 } else { 12416 if (env->uncached_cpsr & PSTATE_SS) { 12417 flags |= ARM_TBFLAG_PSTATE_SS_MASK; 12418 } 12419 } 12420 } 12421 if (arm_cpu_data_is_big_endian(env)) { 12422 flags |= ARM_TBFLAG_BE_DATA_MASK; 12423 } 12424 flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT; 12425 12426 if (arm_v7m_is_handler_mode(env)) { 12427 flags |= ARM_TBFLAG_HANDLER_MASK; 12428 } 12429 12430 *pflags = flags; 12431 *cs_base = 0; 12432 } 12433