1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "hw/semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/kvm.h" 28 #include "sysemu/tcg.h" 29 #include "qemu/range.h" 30 #include "qapi/qapi-commands-machine-target.h" 31 #include "qapi/error.h" 32 #include "qemu/guest-random.h" 33 #ifdef CONFIG_TCG 34 #include "arm_ldst.h" 35 #include "exec/cpu_ldst.h" 36 #endif 37 38 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 39 40 #ifndef CONFIG_USER_ONLY 41 42 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 43 MMUAccessType access_type, ARMMMUIdx mmu_idx, 44 bool s1_is_el0, 45 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 46 target_ulong *page_size_ptr, 47 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 48 #endif 49 50 static void switch_mode(CPUARMState *env, int mode); 51 52 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 53 { 54 ARMCPU *cpu = env_archcpu(env); 55 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 56 57 /* VFP data registers are always little-endian. */ 58 if (reg < nregs) { 59 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg)); 60 } 61 if (arm_feature(env, ARM_FEATURE_NEON)) { 62 /* Aliases for Q regs. */ 63 nregs += 16; 64 if (reg < nregs) { 65 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 66 return gdb_get_reg128(buf, q[0], q[1]); 67 } 68 } 69 switch (reg - nregs) { 70 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break; 71 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break; 72 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break; 73 } 74 return 0; 75 } 76 77 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 78 { 79 ARMCPU *cpu = env_archcpu(env); 80 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 81 82 if (reg < nregs) { 83 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 84 return 8; 85 } 86 if (arm_feature(env, ARM_FEATURE_NEON)) { 87 nregs += 16; 88 if (reg < nregs) { 89 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 90 q[0] = ldq_le_p(buf); 91 q[1] = ldq_le_p(buf + 8); 92 return 16; 93 } 94 } 95 switch (reg - nregs) { 96 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 97 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 98 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 99 } 100 return 0; 101 } 102 103 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 104 { 105 switch (reg) { 106 case 0 ... 31: 107 { 108 /* 128 bit FP register - quads are in LE order */ 109 uint64_t *q = aa64_vfp_qreg(env, reg); 110 return gdb_get_reg128(buf, q[1], q[0]); 111 } 112 case 32: 113 /* FPSR */ 114 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 115 case 33: 116 /* FPCR */ 117 return gdb_get_reg32(buf,vfp_get_fpcr(env)); 118 default: 119 return 0; 120 } 121 } 122 123 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 124 { 125 switch (reg) { 126 case 0 ... 31: 127 /* 128 bit FP register */ 128 { 129 uint64_t *q = aa64_vfp_qreg(env, reg); 130 q[0] = ldq_le_p(buf); 131 q[1] = ldq_le_p(buf + 8); 132 return 16; 133 } 134 case 32: 135 /* FPSR */ 136 vfp_set_fpsr(env, ldl_p(buf)); 137 return 4; 138 case 33: 139 /* FPCR */ 140 vfp_set_fpcr(env, ldl_p(buf)); 141 return 4; 142 default: 143 return 0; 144 } 145 } 146 147 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 148 { 149 assert(ri->fieldoffset); 150 if (cpreg_field_is_64bit(ri)) { 151 return CPREG_FIELD64(env, ri); 152 } else { 153 return CPREG_FIELD32(env, ri); 154 } 155 } 156 157 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 158 uint64_t value) 159 { 160 assert(ri->fieldoffset); 161 if (cpreg_field_is_64bit(ri)) { 162 CPREG_FIELD64(env, ri) = value; 163 } else { 164 CPREG_FIELD32(env, ri) = value; 165 } 166 } 167 168 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 169 { 170 return (char *)env + ri->fieldoffset; 171 } 172 173 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 174 { 175 /* Raw read of a coprocessor register (as needed for migration, etc). */ 176 if (ri->type & ARM_CP_CONST) { 177 return ri->resetvalue; 178 } else if (ri->raw_readfn) { 179 return ri->raw_readfn(env, ri); 180 } else if (ri->readfn) { 181 return ri->readfn(env, ri); 182 } else { 183 return raw_read(env, ri); 184 } 185 } 186 187 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 188 uint64_t v) 189 { 190 /* Raw write of a coprocessor register (as needed for migration, etc). 191 * Note that constant registers are treated as write-ignored; the 192 * caller should check for success by whether a readback gives the 193 * value written. 194 */ 195 if (ri->type & ARM_CP_CONST) { 196 return; 197 } else if (ri->raw_writefn) { 198 ri->raw_writefn(env, ri, v); 199 } else if (ri->writefn) { 200 ri->writefn(env, ri, v); 201 } else { 202 raw_write(env, ri, v); 203 } 204 } 205 206 /** 207 * arm_get/set_gdb_*: get/set a gdb register 208 * @env: the CPU state 209 * @buf: a buffer to copy to/from 210 * @reg: register number (offset from start of group) 211 * 212 * We return the number of bytes copied 213 */ 214 215 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) 216 { 217 ARMCPU *cpu = env_archcpu(env); 218 const ARMCPRegInfo *ri; 219 uint32_t key; 220 221 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg]; 222 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 223 if (ri) { 224 if (cpreg_field_is_64bit(ri)) { 225 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 226 } else { 227 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 228 } 229 } 230 return 0; 231 } 232 233 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 234 { 235 return 0; 236 } 237 238 #ifdef TARGET_AARCH64 239 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg) 240 { 241 ARMCPU *cpu = env_archcpu(env); 242 243 switch (reg) { 244 /* The first 32 registers are the zregs */ 245 case 0 ... 31: 246 { 247 int vq, len = 0; 248 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 249 len += gdb_get_reg128(buf, 250 env->vfp.zregs[reg].d[vq * 2 + 1], 251 env->vfp.zregs[reg].d[vq * 2]); 252 } 253 return len; 254 } 255 case 32: 256 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 257 case 33: 258 return gdb_get_reg32(buf, vfp_get_fpcr(env)); 259 /* then 16 predicates and the ffr */ 260 case 34 ... 50: 261 { 262 int preg = reg - 34; 263 int vq, len = 0; 264 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 265 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]); 266 } 267 return len; 268 } 269 case 51: 270 { 271 /* 272 * We report in Vector Granules (VG) which is 64bit in a Z reg 273 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks. 274 */ 275 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1; 276 return gdb_get_reg32(buf, vq * 2); 277 } 278 default: 279 /* gdbstub asked for something out our range */ 280 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg); 281 break; 282 } 283 284 return 0; 285 } 286 287 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg) 288 { 289 ARMCPU *cpu = env_archcpu(env); 290 291 /* The first 32 registers are the zregs */ 292 switch (reg) { 293 /* The first 32 registers are the zregs */ 294 case 0 ... 31: 295 { 296 int vq, len = 0; 297 uint64_t *p = (uint64_t *) buf; 298 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 299 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++; 300 env->vfp.zregs[reg].d[vq * 2] = *p++; 301 len += 16; 302 } 303 return len; 304 } 305 case 32: 306 vfp_set_fpsr(env, *(uint32_t *)buf); 307 return 4; 308 case 33: 309 vfp_set_fpcr(env, *(uint32_t *)buf); 310 return 4; 311 case 34 ... 50: 312 { 313 int preg = reg - 34; 314 int vq, len = 0; 315 uint64_t *p = (uint64_t *) buf; 316 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 317 env->vfp.pregs[preg].p[vq / 4] = *p++; 318 len += 8; 319 } 320 return len; 321 } 322 case 51: 323 /* cannot set vg via gdbstub */ 324 return 0; 325 default: 326 /* gdbstub asked for something out our range */ 327 break; 328 } 329 330 return 0; 331 } 332 #endif /* TARGET_AARCH64 */ 333 334 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 335 { 336 /* Return true if the regdef would cause an assertion if you called 337 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 338 * program bug for it not to have the NO_RAW flag). 339 * NB that returning false here doesn't necessarily mean that calling 340 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 341 * read/write access functions which are safe for raw use" from "has 342 * read/write access functions which have side effects but has forgotten 343 * to provide raw access functions". 344 * The tests here line up with the conditions in read/write_raw_cp_reg() 345 * and assertions in raw_read()/raw_write(). 346 */ 347 if ((ri->type & ARM_CP_CONST) || 348 ri->fieldoffset || 349 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 350 return false; 351 } 352 return true; 353 } 354 355 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 356 { 357 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 358 int i; 359 bool ok = true; 360 361 for (i = 0; i < cpu->cpreg_array_len; i++) { 362 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 363 const ARMCPRegInfo *ri; 364 uint64_t newval; 365 366 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 367 if (!ri) { 368 ok = false; 369 continue; 370 } 371 if (ri->type & ARM_CP_NO_RAW) { 372 continue; 373 } 374 375 newval = read_raw_cp_reg(&cpu->env, ri); 376 if (kvm_sync) { 377 /* 378 * Only sync if the previous list->cpustate sync succeeded. 379 * Rather than tracking the success/failure state for every 380 * item in the list, we just recheck "does the raw write we must 381 * have made in write_list_to_cpustate() read back OK" here. 382 */ 383 uint64_t oldval = cpu->cpreg_values[i]; 384 385 if (oldval == newval) { 386 continue; 387 } 388 389 write_raw_cp_reg(&cpu->env, ri, oldval); 390 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 391 continue; 392 } 393 394 write_raw_cp_reg(&cpu->env, ri, newval); 395 } 396 cpu->cpreg_values[i] = newval; 397 } 398 return ok; 399 } 400 401 bool write_list_to_cpustate(ARMCPU *cpu) 402 { 403 int i; 404 bool ok = true; 405 406 for (i = 0; i < cpu->cpreg_array_len; i++) { 407 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 408 uint64_t v = cpu->cpreg_values[i]; 409 const ARMCPRegInfo *ri; 410 411 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 412 if (!ri) { 413 ok = false; 414 continue; 415 } 416 if (ri->type & ARM_CP_NO_RAW) { 417 continue; 418 } 419 /* Write value and confirm it reads back as written 420 * (to catch read-only registers and partially read-only 421 * registers where the incoming migration value doesn't match) 422 */ 423 write_raw_cp_reg(&cpu->env, ri, v); 424 if (read_raw_cp_reg(&cpu->env, ri) != v) { 425 ok = false; 426 } 427 } 428 return ok; 429 } 430 431 static void add_cpreg_to_list(gpointer key, gpointer opaque) 432 { 433 ARMCPU *cpu = opaque; 434 uint64_t regidx; 435 const ARMCPRegInfo *ri; 436 437 regidx = *(uint32_t *)key; 438 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 439 440 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 441 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 442 /* The value array need not be initialized at this point */ 443 cpu->cpreg_array_len++; 444 } 445 } 446 447 static void count_cpreg(gpointer key, gpointer opaque) 448 { 449 ARMCPU *cpu = opaque; 450 uint64_t regidx; 451 const ARMCPRegInfo *ri; 452 453 regidx = *(uint32_t *)key; 454 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 455 456 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 457 cpu->cpreg_array_len++; 458 } 459 } 460 461 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 462 { 463 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 464 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 465 466 if (aidx > bidx) { 467 return 1; 468 } 469 if (aidx < bidx) { 470 return -1; 471 } 472 return 0; 473 } 474 475 void init_cpreg_list(ARMCPU *cpu) 476 { 477 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 478 * Note that we require cpreg_tuples[] to be sorted by key ID. 479 */ 480 GList *keys; 481 int arraylen; 482 483 keys = g_hash_table_get_keys(cpu->cp_regs); 484 keys = g_list_sort(keys, cpreg_key_compare); 485 486 cpu->cpreg_array_len = 0; 487 488 g_list_foreach(keys, count_cpreg, cpu); 489 490 arraylen = cpu->cpreg_array_len; 491 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 492 cpu->cpreg_values = g_new(uint64_t, arraylen); 493 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 494 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 495 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 496 cpu->cpreg_array_len = 0; 497 498 g_list_foreach(keys, add_cpreg_to_list, cpu); 499 500 assert(cpu->cpreg_array_len == arraylen); 501 502 g_list_free(keys); 503 } 504 505 /* 506 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 507 */ 508 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 509 const ARMCPRegInfo *ri, 510 bool isread) 511 { 512 if (!is_a64(env) && arm_current_el(env) == 3 && 513 arm_is_secure_below_el3(env)) { 514 return CP_ACCESS_TRAP_UNCATEGORIZED; 515 } 516 return CP_ACCESS_OK; 517 } 518 519 /* Some secure-only AArch32 registers trap to EL3 if used from 520 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 521 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 522 * We assume that the .access field is set to PL1_RW. 523 */ 524 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 525 const ARMCPRegInfo *ri, 526 bool isread) 527 { 528 if (arm_current_el(env) == 3) { 529 return CP_ACCESS_OK; 530 } 531 if (arm_is_secure_below_el3(env)) { 532 return CP_ACCESS_TRAP_EL3; 533 } 534 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 535 return CP_ACCESS_TRAP_UNCATEGORIZED; 536 } 537 538 /* Check for traps to "powerdown debug" registers, which are controlled 539 * by MDCR.TDOSA 540 */ 541 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 542 bool isread) 543 { 544 int el = arm_current_el(env); 545 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 546 (env->cp15.mdcr_el2 & MDCR_TDE) || 547 (arm_hcr_el2_eff(env) & HCR_TGE); 548 549 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 550 return CP_ACCESS_TRAP_EL2; 551 } 552 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 553 return CP_ACCESS_TRAP_EL3; 554 } 555 return CP_ACCESS_OK; 556 } 557 558 /* Check for traps to "debug ROM" registers, which are controlled 559 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 560 */ 561 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 562 bool isread) 563 { 564 int el = arm_current_el(env); 565 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 566 (env->cp15.mdcr_el2 & MDCR_TDE) || 567 (arm_hcr_el2_eff(env) & HCR_TGE); 568 569 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 570 return CP_ACCESS_TRAP_EL2; 571 } 572 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 573 return CP_ACCESS_TRAP_EL3; 574 } 575 return CP_ACCESS_OK; 576 } 577 578 /* Check for traps to general debug registers, which are controlled 579 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 580 */ 581 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 582 bool isread) 583 { 584 int el = arm_current_el(env); 585 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 586 (env->cp15.mdcr_el2 & MDCR_TDE) || 587 (arm_hcr_el2_eff(env) & HCR_TGE); 588 589 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 590 return CP_ACCESS_TRAP_EL2; 591 } 592 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 593 return CP_ACCESS_TRAP_EL3; 594 } 595 return CP_ACCESS_OK; 596 } 597 598 /* Check for traps to performance monitor registers, which are controlled 599 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 600 */ 601 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 602 bool isread) 603 { 604 int el = arm_current_el(env); 605 606 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 607 && !arm_is_secure_below_el3(env)) { 608 return CP_ACCESS_TRAP_EL2; 609 } 610 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 611 return CP_ACCESS_TRAP_EL3; 612 } 613 return CP_ACCESS_OK; 614 } 615 616 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 617 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 618 bool isread) 619 { 620 if (arm_current_el(env) == 1) { 621 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 622 if (arm_hcr_el2_eff(env) & trap) { 623 return CP_ACCESS_TRAP_EL2; 624 } 625 } 626 return CP_ACCESS_OK; 627 } 628 629 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 630 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 631 bool isread) 632 { 633 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 634 return CP_ACCESS_TRAP_EL2; 635 } 636 return CP_ACCESS_OK; 637 } 638 639 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 640 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 641 bool isread) 642 { 643 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 644 return CP_ACCESS_TRAP_EL2; 645 } 646 return CP_ACCESS_OK; 647 } 648 649 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 650 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 651 bool isread) 652 { 653 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 654 return CP_ACCESS_TRAP_EL2; 655 } 656 return CP_ACCESS_OK; 657 } 658 659 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 660 { 661 ARMCPU *cpu = env_archcpu(env); 662 663 raw_write(env, ri, value); 664 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 665 } 666 667 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 668 { 669 ARMCPU *cpu = env_archcpu(env); 670 671 if (raw_read(env, ri) != value) { 672 /* Unlike real hardware the qemu TLB uses virtual addresses, 673 * not modified virtual addresses, so this causes a TLB flush. 674 */ 675 tlb_flush(CPU(cpu)); 676 raw_write(env, ri, value); 677 } 678 } 679 680 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 681 uint64_t value) 682 { 683 ARMCPU *cpu = env_archcpu(env); 684 685 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 686 && !extended_addresses_enabled(env)) { 687 /* For VMSA (when not using the LPAE long descriptor page table 688 * format) this register includes the ASID, so do a TLB flush. 689 * For PMSA it is purely a process ID and no action is needed. 690 */ 691 tlb_flush(CPU(cpu)); 692 } 693 raw_write(env, ri, value); 694 } 695 696 /* IS variants of TLB operations must affect all cores */ 697 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 698 uint64_t value) 699 { 700 CPUState *cs = env_cpu(env); 701 702 tlb_flush_all_cpus_synced(cs); 703 } 704 705 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 706 uint64_t value) 707 { 708 CPUState *cs = env_cpu(env); 709 710 tlb_flush_all_cpus_synced(cs); 711 } 712 713 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 714 uint64_t value) 715 { 716 CPUState *cs = env_cpu(env); 717 718 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 719 } 720 721 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 722 uint64_t value) 723 { 724 CPUState *cs = env_cpu(env); 725 726 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 727 } 728 729 /* 730 * Non-IS variants of TLB operations are upgraded to 731 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to 732 * force broadcast of these operations. 733 */ 734 static bool tlb_force_broadcast(CPUARMState *env) 735 { 736 return (env->cp15.hcr_el2 & HCR_FB) && 737 arm_current_el(env) == 1 && arm_is_secure_below_el3(env); 738 } 739 740 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 741 uint64_t value) 742 { 743 /* Invalidate all (TLBIALL) */ 744 CPUState *cs = env_cpu(env); 745 746 if (tlb_force_broadcast(env)) { 747 tlb_flush_all_cpus_synced(cs); 748 } else { 749 tlb_flush(cs); 750 } 751 } 752 753 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 754 uint64_t value) 755 { 756 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 757 CPUState *cs = env_cpu(env); 758 759 value &= TARGET_PAGE_MASK; 760 if (tlb_force_broadcast(env)) { 761 tlb_flush_page_all_cpus_synced(cs, value); 762 } else { 763 tlb_flush_page(cs, value); 764 } 765 } 766 767 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 768 uint64_t value) 769 { 770 /* Invalidate by ASID (TLBIASID) */ 771 CPUState *cs = env_cpu(env); 772 773 if (tlb_force_broadcast(env)) { 774 tlb_flush_all_cpus_synced(cs); 775 } else { 776 tlb_flush(cs); 777 } 778 } 779 780 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 781 uint64_t value) 782 { 783 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 784 CPUState *cs = env_cpu(env); 785 786 value &= TARGET_PAGE_MASK; 787 if (tlb_force_broadcast(env)) { 788 tlb_flush_page_all_cpus_synced(cs, value); 789 } else { 790 tlb_flush_page(cs, value); 791 } 792 } 793 794 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 795 uint64_t value) 796 { 797 CPUState *cs = env_cpu(env); 798 799 tlb_flush_by_mmuidx(cs, 800 ARMMMUIdxBit_E10_1 | 801 ARMMMUIdxBit_E10_1_PAN | 802 ARMMMUIdxBit_E10_0); 803 } 804 805 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 806 uint64_t value) 807 { 808 CPUState *cs = env_cpu(env); 809 810 tlb_flush_by_mmuidx_all_cpus_synced(cs, 811 ARMMMUIdxBit_E10_1 | 812 ARMMMUIdxBit_E10_1_PAN | 813 ARMMMUIdxBit_E10_0); 814 } 815 816 817 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 818 uint64_t value) 819 { 820 CPUState *cs = env_cpu(env); 821 822 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 823 } 824 825 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 826 uint64_t value) 827 { 828 CPUState *cs = env_cpu(env); 829 830 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 831 } 832 833 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 834 uint64_t value) 835 { 836 CPUState *cs = env_cpu(env); 837 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 838 839 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 840 } 841 842 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 843 uint64_t value) 844 { 845 CPUState *cs = env_cpu(env); 846 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 847 848 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 849 ARMMMUIdxBit_E2); 850 } 851 852 static const ARMCPRegInfo cp_reginfo[] = { 853 /* Define the secure and non-secure FCSE identifier CP registers 854 * separately because there is no secure bank in V8 (no _EL3). This allows 855 * the secure register to be properly reset and migrated. There is also no 856 * v8 EL1 version of the register so the non-secure instance stands alone. 857 */ 858 { .name = "FCSEIDR", 859 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 860 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 861 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 862 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 863 { .name = "FCSEIDR_S", 864 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 865 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 866 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 867 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 868 /* Define the secure and non-secure context identifier CP registers 869 * separately because there is no secure bank in V8 (no _EL3). This allows 870 * the secure register to be properly reset and migrated. In the 871 * non-secure case, the 32-bit register will have reset and migration 872 * disabled during registration as it is handled by the 64-bit instance. 873 */ 874 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 875 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 876 .access = PL1_RW, .accessfn = access_tvm_trvm, 877 .secure = ARM_CP_SECSTATE_NS, 878 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 879 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 880 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 881 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 882 .access = PL1_RW, .accessfn = access_tvm_trvm, 883 .secure = ARM_CP_SECSTATE_S, 884 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 885 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 886 REGINFO_SENTINEL 887 }; 888 889 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 890 /* NB: Some of these registers exist in v8 but with more precise 891 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 892 */ 893 /* MMU Domain access control / MPU write buffer control */ 894 { .name = "DACR", 895 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 896 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 897 .writefn = dacr_write, .raw_writefn = raw_write, 898 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 899 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 900 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 901 * For v6 and v5, these mappings are overly broad. 902 */ 903 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 904 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 905 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 906 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 907 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 908 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 909 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 910 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 911 /* Cache maintenance ops; some of this space may be overridden later. */ 912 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 913 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 914 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 915 REGINFO_SENTINEL 916 }; 917 918 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 919 /* Not all pre-v6 cores implemented this WFI, so this is slightly 920 * over-broad. 921 */ 922 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 923 .access = PL1_W, .type = ARM_CP_WFI }, 924 REGINFO_SENTINEL 925 }; 926 927 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 928 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 929 * is UNPREDICTABLE; we choose to NOP as most implementations do). 930 */ 931 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 932 .access = PL1_W, .type = ARM_CP_WFI }, 933 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 934 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 935 * OMAPCP will override this space. 936 */ 937 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 938 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 939 .resetvalue = 0 }, 940 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 941 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 942 .resetvalue = 0 }, 943 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 944 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 945 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 946 .resetvalue = 0 }, 947 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 948 * implementing it as RAZ means the "debug architecture version" bits 949 * will read as a reserved value, which should cause Linux to not try 950 * to use the debug hardware. 951 */ 952 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 953 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 954 /* MMU TLB control. Note that the wildcarding means we cover not just 955 * the unified TLB ops but also the dside/iside/inner-shareable variants. 956 */ 957 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 958 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 959 .type = ARM_CP_NO_RAW }, 960 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 961 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 962 .type = ARM_CP_NO_RAW }, 963 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 964 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 965 .type = ARM_CP_NO_RAW }, 966 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 967 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 968 .type = ARM_CP_NO_RAW }, 969 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 970 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 971 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 972 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 973 REGINFO_SENTINEL 974 }; 975 976 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 977 uint64_t value) 978 { 979 uint32_t mask = 0; 980 981 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 982 if (!arm_feature(env, ARM_FEATURE_V8)) { 983 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 984 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 985 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 986 */ 987 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 988 /* VFP coprocessor: cp10 & cp11 [23:20] */ 989 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 990 991 if (!arm_feature(env, ARM_FEATURE_NEON)) { 992 /* ASEDIS [31] bit is RAO/WI */ 993 value |= (1 << 31); 994 } 995 996 /* VFPv3 and upwards with NEON implement 32 double precision 997 * registers (D0-D31). 998 */ 999 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 1000 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 1001 value |= (1 << 30); 1002 } 1003 } 1004 value &= mask; 1005 } 1006 1007 /* 1008 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1009 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1010 */ 1011 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1012 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1013 value &= ~(0xf << 20); 1014 value |= env->cp15.cpacr_el1 & (0xf << 20); 1015 } 1016 1017 env->cp15.cpacr_el1 = value; 1018 } 1019 1020 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1021 { 1022 /* 1023 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1024 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1025 */ 1026 uint64_t value = env->cp15.cpacr_el1; 1027 1028 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1029 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1030 value &= ~(0xf << 20); 1031 } 1032 return value; 1033 } 1034 1035 1036 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1037 { 1038 /* Call cpacr_write() so that we reset with the correct RAO bits set 1039 * for our CPU features. 1040 */ 1041 cpacr_write(env, ri, 0); 1042 } 1043 1044 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1045 bool isread) 1046 { 1047 if (arm_feature(env, ARM_FEATURE_V8)) { 1048 /* Check if CPACR accesses are to be trapped to EL2 */ 1049 if (arm_current_el(env) == 1 && 1050 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 1051 return CP_ACCESS_TRAP_EL2; 1052 /* Check if CPACR accesses are to be trapped to EL3 */ 1053 } else if (arm_current_el(env) < 3 && 1054 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1055 return CP_ACCESS_TRAP_EL3; 1056 } 1057 } 1058 1059 return CP_ACCESS_OK; 1060 } 1061 1062 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1063 bool isread) 1064 { 1065 /* Check if CPTR accesses are set to trap to EL3 */ 1066 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1067 return CP_ACCESS_TRAP_EL3; 1068 } 1069 1070 return CP_ACCESS_OK; 1071 } 1072 1073 static const ARMCPRegInfo v6_cp_reginfo[] = { 1074 /* prefetch by MVA in v6, NOP in v7 */ 1075 { .name = "MVA_prefetch", 1076 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 1077 .access = PL1_W, .type = ARM_CP_NOP }, 1078 /* We need to break the TB after ISB to execute self-modifying code 1079 * correctly and also to take any pending interrupts immediately. 1080 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 1081 */ 1082 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 1083 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 1084 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 1085 .access = PL0_W, .type = ARM_CP_NOP }, 1086 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 1087 .access = PL0_W, .type = ARM_CP_NOP }, 1088 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 1089 .access = PL1_RW, .accessfn = access_tvm_trvm, 1090 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1091 offsetof(CPUARMState, cp15.ifar_ns) }, 1092 .resetvalue = 0, }, 1093 /* Watchpoint Fault Address Register : should actually only be present 1094 * for 1136, 1176, 11MPCore. 1095 */ 1096 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1097 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1098 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1099 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1100 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1101 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1102 REGINFO_SENTINEL 1103 }; 1104 1105 /* Definitions for the PMU registers */ 1106 #define PMCRN_MASK 0xf800 1107 #define PMCRN_SHIFT 11 1108 #define PMCRLC 0x40 1109 #define PMCRDP 0x20 1110 #define PMCRX 0x10 1111 #define PMCRD 0x8 1112 #define PMCRC 0x4 1113 #define PMCRP 0x2 1114 #define PMCRE 0x1 1115 /* 1116 * Mask of PMCR bits writeable by guest (not including WO bits like C, P, 1117 * which can be written as 1 to trigger behaviour but which stay RAZ). 1118 */ 1119 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1120 1121 #define PMXEVTYPER_P 0x80000000 1122 #define PMXEVTYPER_U 0x40000000 1123 #define PMXEVTYPER_NSK 0x20000000 1124 #define PMXEVTYPER_NSU 0x10000000 1125 #define PMXEVTYPER_NSH 0x08000000 1126 #define PMXEVTYPER_M 0x04000000 1127 #define PMXEVTYPER_MT 0x02000000 1128 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1129 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1130 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1131 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1132 PMXEVTYPER_EVTCOUNT) 1133 1134 #define PMCCFILTR 0xf8000000 1135 #define PMCCFILTR_M PMXEVTYPER_M 1136 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1137 1138 static inline uint32_t pmu_num_counters(CPUARMState *env) 1139 { 1140 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1141 } 1142 1143 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1144 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1145 { 1146 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1147 } 1148 1149 typedef struct pm_event { 1150 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1151 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1152 bool (*supported)(CPUARMState *); 1153 /* 1154 * Retrieve the current count of the underlying event. The programmed 1155 * counters hold a difference from the return value from this function 1156 */ 1157 uint64_t (*get_count)(CPUARMState *); 1158 /* 1159 * Return how many nanoseconds it will take (at a minimum) for count events 1160 * to occur. A negative value indicates the counter will never overflow, or 1161 * that the counter has otherwise arranged for the overflow bit to be set 1162 * and the PMU interrupt to be raised on overflow. 1163 */ 1164 int64_t (*ns_per_count)(uint64_t); 1165 } pm_event; 1166 1167 static bool event_always_supported(CPUARMState *env) 1168 { 1169 return true; 1170 } 1171 1172 static uint64_t swinc_get_count(CPUARMState *env) 1173 { 1174 /* 1175 * SW_INCR events are written directly to the pmevcntr's by writes to 1176 * PMSWINC, so there is no underlying count maintained by the PMU itself 1177 */ 1178 return 0; 1179 } 1180 1181 static int64_t swinc_ns_per(uint64_t ignored) 1182 { 1183 return -1; 1184 } 1185 1186 /* 1187 * Return the underlying cycle count for the PMU cycle counters. If we're in 1188 * usermode, simply return 0. 1189 */ 1190 static uint64_t cycles_get_count(CPUARMState *env) 1191 { 1192 #ifndef CONFIG_USER_ONLY 1193 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1194 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1195 #else 1196 return cpu_get_host_ticks(); 1197 #endif 1198 } 1199 1200 #ifndef CONFIG_USER_ONLY 1201 static int64_t cycles_ns_per(uint64_t cycles) 1202 { 1203 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1204 } 1205 1206 static bool instructions_supported(CPUARMState *env) 1207 { 1208 return use_icount == 1 /* Precise instruction counting */; 1209 } 1210 1211 static uint64_t instructions_get_count(CPUARMState *env) 1212 { 1213 return (uint64_t)cpu_get_icount_raw(); 1214 } 1215 1216 static int64_t instructions_ns_per(uint64_t icount) 1217 { 1218 return cpu_icount_to_ns((int64_t)icount); 1219 } 1220 #endif 1221 1222 static bool pmu_8_1_events_supported(CPUARMState *env) 1223 { 1224 /* For events which are supported in any v8.1 PMU */ 1225 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 1226 } 1227 1228 static bool pmu_8_4_events_supported(CPUARMState *env) 1229 { 1230 /* For events which are supported in any v8.1 PMU */ 1231 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 1232 } 1233 1234 static uint64_t zero_event_get_count(CPUARMState *env) 1235 { 1236 /* For events which on QEMU never fire, so their count is always zero */ 1237 return 0; 1238 } 1239 1240 static int64_t zero_event_ns_per(uint64_t cycles) 1241 { 1242 /* An event which never fires can never overflow */ 1243 return -1; 1244 } 1245 1246 static const pm_event pm_events[] = { 1247 { .number = 0x000, /* SW_INCR */ 1248 .supported = event_always_supported, 1249 .get_count = swinc_get_count, 1250 .ns_per_count = swinc_ns_per, 1251 }, 1252 #ifndef CONFIG_USER_ONLY 1253 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1254 .supported = instructions_supported, 1255 .get_count = instructions_get_count, 1256 .ns_per_count = instructions_ns_per, 1257 }, 1258 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1259 .supported = event_always_supported, 1260 .get_count = cycles_get_count, 1261 .ns_per_count = cycles_ns_per, 1262 }, 1263 #endif 1264 { .number = 0x023, /* STALL_FRONTEND */ 1265 .supported = pmu_8_1_events_supported, 1266 .get_count = zero_event_get_count, 1267 .ns_per_count = zero_event_ns_per, 1268 }, 1269 { .number = 0x024, /* STALL_BACKEND */ 1270 .supported = pmu_8_1_events_supported, 1271 .get_count = zero_event_get_count, 1272 .ns_per_count = zero_event_ns_per, 1273 }, 1274 { .number = 0x03c, /* STALL */ 1275 .supported = pmu_8_4_events_supported, 1276 .get_count = zero_event_get_count, 1277 .ns_per_count = zero_event_ns_per, 1278 }, 1279 }; 1280 1281 /* 1282 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1283 * events (i.e. the statistical profiling extension), this implementation 1284 * should first be updated to something sparse instead of the current 1285 * supported_event_map[] array. 1286 */ 1287 #define MAX_EVENT_ID 0x3c 1288 #define UNSUPPORTED_EVENT UINT16_MAX 1289 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1290 1291 /* 1292 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1293 * of ARM event numbers to indices in our pm_events array. 1294 * 1295 * Note: Events in the 0x40XX range are not currently supported. 1296 */ 1297 void pmu_init(ARMCPU *cpu) 1298 { 1299 unsigned int i; 1300 1301 /* 1302 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1303 * events to them 1304 */ 1305 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1306 supported_event_map[i] = UNSUPPORTED_EVENT; 1307 } 1308 cpu->pmceid0 = 0; 1309 cpu->pmceid1 = 0; 1310 1311 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1312 const pm_event *cnt = &pm_events[i]; 1313 assert(cnt->number <= MAX_EVENT_ID); 1314 /* We do not currently support events in the 0x40xx range */ 1315 assert(cnt->number <= 0x3f); 1316 1317 if (cnt->supported(&cpu->env)) { 1318 supported_event_map[cnt->number] = i; 1319 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1320 if (cnt->number & 0x20) { 1321 cpu->pmceid1 |= event_mask; 1322 } else { 1323 cpu->pmceid0 |= event_mask; 1324 } 1325 } 1326 } 1327 } 1328 1329 /* 1330 * Check at runtime whether a PMU event is supported for the current machine 1331 */ 1332 static bool event_supported(uint16_t number) 1333 { 1334 if (number > MAX_EVENT_ID) { 1335 return false; 1336 } 1337 return supported_event_map[number] != UNSUPPORTED_EVENT; 1338 } 1339 1340 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1341 bool isread) 1342 { 1343 /* Performance monitor registers user accessibility is controlled 1344 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1345 * trapping to EL2 or EL3 for other accesses. 1346 */ 1347 int el = arm_current_el(env); 1348 1349 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1350 return CP_ACCESS_TRAP; 1351 } 1352 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1353 && !arm_is_secure_below_el3(env)) { 1354 return CP_ACCESS_TRAP_EL2; 1355 } 1356 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1357 return CP_ACCESS_TRAP_EL3; 1358 } 1359 1360 return CP_ACCESS_OK; 1361 } 1362 1363 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1364 const ARMCPRegInfo *ri, 1365 bool isread) 1366 { 1367 /* ER: event counter read trap control */ 1368 if (arm_feature(env, ARM_FEATURE_V8) 1369 && arm_current_el(env) == 0 1370 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1371 && isread) { 1372 return CP_ACCESS_OK; 1373 } 1374 1375 return pmreg_access(env, ri, isread); 1376 } 1377 1378 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1379 const ARMCPRegInfo *ri, 1380 bool isread) 1381 { 1382 /* SW: software increment write trap control */ 1383 if (arm_feature(env, ARM_FEATURE_V8) 1384 && arm_current_el(env) == 0 1385 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1386 && !isread) { 1387 return CP_ACCESS_OK; 1388 } 1389 1390 return pmreg_access(env, ri, isread); 1391 } 1392 1393 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1394 const ARMCPRegInfo *ri, 1395 bool isread) 1396 { 1397 /* ER: event counter read trap control */ 1398 if (arm_feature(env, ARM_FEATURE_V8) 1399 && arm_current_el(env) == 0 1400 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1401 return CP_ACCESS_OK; 1402 } 1403 1404 return pmreg_access(env, ri, isread); 1405 } 1406 1407 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1408 const ARMCPRegInfo *ri, 1409 bool isread) 1410 { 1411 /* CR: cycle counter read trap control */ 1412 if (arm_feature(env, ARM_FEATURE_V8) 1413 && arm_current_el(env) == 0 1414 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1415 && isread) { 1416 return CP_ACCESS_OK; 1417 } 1418 1419 return pmreg_access(env, ri, isread); 1420 } 1421 1422 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1423 * the current EL, security state, and register configuration. 1424 */ 1425 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1426 { 1427 uint64_t filter; 1428 bool e, p, u, nsk, nsu, nsh, m; 1429 bool enabled, prohibited, filtered; 1430 bool secure = arm_is_secure(env); 1431 int el = arm_current_el(env); 1432 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1433 1434 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1435 return false; 1436 } 1437 1438 if (!arm_feature(env, ARM_FEATURE_EL2) || 1439 (counter < hpmn || counter == 31)) { 1440 e = env->cp15.c9_pmcr & PMCRE; 1441 } else { 1442 e = env->cp15.mdcr_el2 & MDCR_HPME; 1443 } 1444 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1445 1446 if (!secure) { 1447 if (el == 2 && (counter < hpmn || counter == 31)) { 1448 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; 1449 } else { 1450 prohibited = false; 1451 } 1452 } else { 1453 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1454 (env->cp15.mdcr_el3 & MDCR_SPME); 1455 } 1456 1457 if (prohibited && counter == 31) { 1458 prohibited = env->cp15.c9_pmcr & PMCRDP; 1459 } 1460 1461 if (counter == 31) { 1462 filter = env->cp15.pmccfiltr_el0; 1463 } else { 1464 filter = env->cp15.c14_pmevtyper[counter]; 1465 } 1466 1467 p = filter & PMXEVTYPER_P; 1468 u = filter & PMXEVTYPER_U; 1469 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1470 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1471 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1472 m = arm_el_is_aa64(env, 1) && 1473 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1474 1475 if (el == 0) { 1476 filtered = secure ? u : u != nsu; 1477 } else if (el == 1) { 1478 filtered = secure ? p : p != nsk; 1479 } else if (el == 2) { 1480 filtered = !nsh; 1481 } else { /* EL3 */ 1482 filtered = m != p; 1483 } 1484 1485 if (counter != 31) { 1486 /* 1487 * If not checking PMCCNTR, ensure the counter is setup to an event we 1488 * support 1489 */ 1490 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1491 if (!event_supported(event)) { 1492 return false; 1493 } 1494 } 1495 1496 return enabled && !prohibited && !filtered; 1497 } 1498 1499 static void pmu_update_irq(CPUARMState *env) 1500 { 1501 ARMCPU *cpu = env_archcpu(env); 1502 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1503 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1504 } 1505 1506 /* 1507 * Ensure c15_ccnt is the guest-visible count so that operations such as 1508 * enabling/disabling the counter or filtering, modifying the count itself, 1509 * etc. can be done logically. This is essentially a no-op if the counter is 1510 * not enabled at the time of the call. 1511 */ 1512 static void pmccntr_op_start(CPUARMState *env) 1513 { 1514 uint64_t cycles = cycles_get_count(env); 1515 1516 if (pmu_counter_enabled(env, 31)) { 1517 uint64_t eff_cycles = cycles; 1518 if (env->cp15.c9_pmcr & PMCRD) { 1519 /* Increment once every 64 processor clock cycles */ 1520 eff_cycles /= 64; 1521 } 1522 1523 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1524 1525 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1526 1ull << 63 : 1ull << 31; 1527 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1528 env->cp15.c9_pmovsr |= (1 << 31); 1529 pmu_update_irq(env); 1530 } 1531 1532 env->cp15.c15_ccnt = new_pmccntr; 1533 } 1534 env->cp15.c15_ccnt_delta = cycles; 1535 } 1536 1537 /* 1538 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1539 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1540 * pmccntr_op_start. 1541 */ 1542 static void pmccntr_op_finish(CPUARMState *env) 1543 { 1544 if (pmu_counter_enabled(env, 31)) { 1545 #ifndef CONFIG_USER_ONLY 1546 /* Calculate when the counter will next overflow */ 1547 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1548 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1549 remaining_cycles = (uint32_t)remaining_cycles; 1550 } 1551 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1552 1553 if (overflow_in > 0) { 1554 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1555 overflow_in; 1556 ARMCPU *cpu = env_archcpu(env); 1557 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1558 } 1559 #endif 1560 1561 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1562 if (env->cp15.c9_pmcr & PMCRD) { 1563 /* Increment once every 64 processor clock cycles */ 1564 prev_cycles /= 64; 1565 } 1566 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1567 } 1568 } 1569 1570 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1571 { 1572 1573 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1574 uint64_t count = 0; 1575 if (event_supported(event)) { 1576 uint16_t event_idx = supported_event_map[event]; 1577 count = pm_events[event_idx].get_count(env); 1578 } 1579 1580 if (pmu_counter_enabled(env, counter)) { 1581 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1582 1583 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1584 env->cp15.c9_pmovsr |= (1 << counter); 1585 pmu_update_irq(env); 1586 } 1587 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1588 } 1589 env->cp15.c14_pmevcntr_delta[counter] = count; 1590 } 1591 1592 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1593 { 1594 if (pmu_counter_enabled(env, counter)) { 1595 #ifndef CONFIG_USER_ONLY 1596 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1597 uint16_t event_idx = supported_event_map[event]; 1598 uint64_t delta = UINT32_MAX - 1599 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1600 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1601 1602 if (overflow_in > 0) { 1603 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1604 overflow_in; 1605 ARMCPU *cpu = env_archcpu(env); 1606 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1607 } 1608 #endif 1609 1610 env->cp15.c14_pmevcntr_delta[counter] -= 1611 env->cp15.c14_pmevcntr[counter]; 1612 } 1613 } 1614 1615 void pmu_op_start(CPUARMState *env) 1616 { 1617 unsigned int i; 1618 pmccntr_op_start(env); 1619 for (i = 0; i < pmu_num_counters(env); i++) { 1620 pmevcntr_op_start(env, i); 1621 } 1622 } 1623 1624 void pmu_op_finish(CPUARMState *env) 1625 { 1626 unsigned int i; 1627 pmccntr_op_finish(env); 1628 for (i = 0; i < pmu_num_counters(env); i++) { 1629 pmevcntr_op_finish(env, i); 1630 } 1631 } 1632 1633 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1634 { 1635 pmu_op_start(&cpu->env); 1636 } 1637 1638 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1639 { 1640 pmu_op_finish(&cpu->env); 1641 } 1642 1643 void arm_pmu_timer_cb(void *opaque) 1644 { 1645 ARMCPU *cpu = opaque; 1646 1647 /* 1648 * Update all the counter values based on the current underlying counts, 1649 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1650 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1651 * counter may expire. 1652 */ 1653 pmu_op_start(&cpu->env); 1654 pmu_op_finish(&cpu->env); 1655 } 1656 1657 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1658 uint64_t value) 1659 { 1660 pmu_op_start(env); 1661 1662 if (value & PMCRC) { 1663 /* The counter has been reset */ 1664 env->cp15.c15_ccnt = 0; 1665 } 1666 1667 if (value & PMCRP) { 1668 unsigned int i; 1669 for (i = 0; i < pmu_num_counters(env); i++) { 1670 env->cp15.c14_pmevcntr[i] = 0; 1671 } 1672 } 1673 1674 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1675 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1676 1677 pmu_op_finish(env); 1678 } 1679 1680 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1681 uint64_t value) 1682 { 1683 unsigned int i; 1684 for (i = 0; i < pmu_num_counters(env); i++) { 1685 /* Increment a counter's count iff: */ 1686 if ((value & (1 << i)) && /* counter's bit is set */ 1687 /* counter is enabled and not filtered */ 1688 pmu_counter_enabled(env, i) && 1689 /* counter is SW_INCR */ 1690 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1691 pmevcntr_op_start(env, i); 1692 1693 /* 1694 * Detect if this write causes an overflow since we can't predict 1695 * PMSWINC overflows like we can for other events 1696 */ 1697 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1698 1699 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1700 env->cp15.c9_pmovsr |= (1 << i); 1701 pmu_update_irq(env); 1702 } 1703 1704 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1705 1706 pmevcntr_op_finish(env, i); 1707 } 1708 } 1709 } 1710 1711 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1712 { 1713 uint64_t ret; 1714 pmccntr_op_start(env); 1715 ret = env->cp15.c15_ccnt; 1716 pmccntr_op_finish(env); 1717 return ret; 1718 } 1719 1720 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1721 uint64_t value) 1722 { 1723 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1724 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1725 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1726 * accessed. 1727 */ 1728 env->cp15.c9_pmselr = value & 0x1f; 1729 } 1730 1731 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1732 uint64_t value) 1733 { 1734 pmccntr_op_start(env); 1735 env->cp15.c15_ccnt = value; 1736 pmccntr_op_finish(env); 1737 } 1738 1739 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1740 uint64_t value) 1741 { 1742 uint64_t cur_val = pmccntr_read(env, NULL); 1743 1744 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1745 } 1746 1747 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1748 uint64_t value) 1749 { 1750 pmccntr_op_start(env); 1751 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1752 pmccntr_op_finish(env); 1753 } 1754 1755 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1756 uint64_t value) 1757 { 1758 pmccntr_op_start(env); 1759 /* M is not accessible from AArch32 */ 1760 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1761 (value & PMCCFILTR); 1762 pmccntr_op_finish(env); 1763 } 1764 1765 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1766 { 1767 /* M is not visible in AArch32 */ 1768 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1769 } 1770 1771 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1772 uint64_t value) 1773 { 1774 value &= pmu_counter_mask(env); 1775 env->cp15.c9_pmcnten |= value; 1776 } 1777 1778 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1779 uint64_t value) 1780 { 1781 value &= pmu_counter_mask(env); 1782 env->cp15.c9_pmcnten &= ~value; 1783 } 1784 1785 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1786 uint64_t value) 1787 { 1788 value &= pmu_counter_mask(env); 1789 env->cp15.c9_pmovsr &= ~value; 1790 pmu_update_irq(env); 1791 } 1792 1793 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1794 uint64_t value) 1795 { 1796 value &= pmu_counter_mask(env); 1797 env->cp15.c9_pmovsr |= value; 1798 pmu_update_irq(env); 1799 } 1800 1801 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1802 uint64_t value, const uint8_t counter) 1803 { 1804 if (counter == 31) { 1805 pmccfiltr_write(env, ri, value); 1806 } else if (counter < pmu_num_counters(env)) { 1807 pmevcntr_op_start(env, counter); 1808 1809 /* 1810 * If this counter's event type is changing, store the current 1811 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1812 * pmevcntr_op_finish has the correct baseline when it converts back to 1813 * a delta. 1814 */ 1815 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1816 PMXEVTYPER_EVTCOUNT; 1817 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1818 if (old_event != new_event) { 1819 uint64_t count = 0; 1820 if (event_supported(new_event)) { 1821 uint16_t event_idx = supported_event_map[new_event]; 1822 count = pm_events[event_idx].get_count(env); 1823 } 1824 env->cp15.c14_pmevcntr_delta[counter] = count; 1825 } 1826 1827 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1828 pmevcntr_op_finish(env, counter); 1829 } 1830 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1831 * PMSELR value is equal to or greater than the number of implemented 1832 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1833 */ 1834 } 1835 1836 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1837 const uint8_t counter) 1838 { 1839 if (counter == 31) { 1840 return env->cp15.pmccfiltr_el0; 1841 } else if (counter < pmu_num_counters(env)) { 1842 return env->cp15.c14_pmevtyper[counter]; 1843 } else { 1844 /* 1845 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1846 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1847 */ 1848 return 0; 1849 } 1850 } 1851 1852 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1853 uint64_t value) 1854 { 1855 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1856 pmevtyper_write(env, ri, value, counter); 1857 } 1858 1859 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1860 uint64_t value) 1861 { 1862 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1863 env->cp15.c14_pmevtyper[counter] = value; 1864 1865 /* 1866 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1867 * pmu_op_finish calls when loading saved state for a migration. Because 1868 * we're potentially updating the type of event here, the value written to 1869 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1870 * different counter type. Therefore, we need to set this value to the 1871 * current count for the counter type we're writing so that pmu_op_finish 1872 * has the correct count for its calculation. 1873 */ 1874 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1875 if (event_supported(event)) { 1876 uint16_t event_idx = supported_event_map[event]; 1877 env->cp15.c14_pmevcntr_delta[counter] = 1878 pm_events[event_idx].get_count(env); 1879 } 1880 } 1881 1882 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1883 { 1884 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1885 return pmevtyper_read(env, ri, counter); 1886 } 1887 1888 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1889 uint64_t value) 1890 { 1891 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1892 } 1893 1894 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1895 { 1896 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1897 } 1898 1899 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1900 uint64_t value, uint8_t counter) 1901 { 1902 if (counter < pmu_num_counters(env)) { 1903 pmevcntr_op_start(env, counter); 1904 env->cp15.c14_pmevcntr[counter] = value; 1905 pmevcntr_op_finish(env, counter); 1906 } 1907 /* 1908 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1909 * are CONSTRAINED UNPREDICTABLE. 1910 */ 1911 } 1912 1913 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1914 uint8_t counter) 1915 { 1916 if (counter < pmu_num_counters(env)) { 1917 uint64_t ret; 1918 pmevcntr_op_start(env, counter); 1919 ret = env->cp15.c14_pmevcntr[counter]; 1920 pmevcntr_op_finish(env, counter); 1921 return ret; 1922 } else { 1923 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1924 * are CONSTRAINED UNPREDICTABLE. */ 1925 return 0; 1926 } 1927 } 1928 1929 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1930 uint64_t value) 1931 { 1932 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1933 pmevcntr_write(env, ri, value, counter); 1934 } 1935 1936 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1937 { 1938 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1939 return pmevcntr_read(env, ri, counter); 1940 } 1941 1942 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1943 uint64_t value) 1944 { 1945 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1946 assert(counter < pmu_num_counters(env)); 1947 env->cp15.c14_pmevcntr[counter] = value; 1948 pmevcntr_write(env, ri, value, counter); 1949 } 1950 1951 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1952 { 1953 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1954 assert(counter < pmu_num_counters(env)); 1955 return env->cp15.c14_pmevcntr[counter]; 1956 } 1957 1958 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1959 uint64_t value) 1960 { 1961 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1962 } 1963 1964 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1965 { 1966 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1967 } 1968 1969 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1970 uint64_t value) 1971 { 1972 if (arm_feature(env, ARM_FEATURE_V8)) { 1973 env->cp15.c9_pmuserenr = value & 0xf; 1974 } else { 1975 env->cp15.c9_pmuserenr = value & 1; 1976 } 1977 } 1978 1979 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1980 uint64_t value) 1981 { 1982 /* We have no event counters so only the C bit can be changed */ 1983 value &= pmu_counter_mask(env); 1984 env->cp15.c9_pminten |= value; 1985 pmu_update_irq(env); 1986 } 1987 1988 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1989 uint64_t value) 1990 { 1991 value &= pmu_counter_mask(env); 1992 env->cp15.c9_pminten &= ~value; 1993 pmu_update_irq(env); 1994 } 1995 1996 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1997 uint64_t value) 1998 { 1999 /* Note that even though the AArch64 view of this register has bits 2000 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 2001 * architectural requirements for bits which are RES0 only in some 2002 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 2003 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 2004 */ 2005 raw_write(env, ri, value & ~0x1FULL); 2006 } 2007 2008 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2009 { 2010 /* Begin with base v8.0 state. */ 2011 uint32_t valid_mask = 0x3fff; 2012 ARMCPU *cpu = env_archcpu(env); 2013 2014 if (arm_el_is_aa64(env, 3)) { 2015 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 2016 valid_mask &= ~SCR_NET; 2017 } else { 2018 valid_mask &= ~(SCR_RW | SCR_ST); 2019 } 2020 2021 if (!arm_feature(env, ARM_FEATURE_EL2)) { 2022 valid_mask &= ~SCR_HCE; 2023 2024 /* On ARMv7, SMD (or SCD as it is called in v7) is only 2025 * supported if EL2 exists. The bit is UNK/SBZP when 2026 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 2027 * when EL2 is unavailable. 2028 * On ARMv8, this bit is always available. 2029 */ 2030 if (arm_feature(env, ARM_FEATURE_V7) && 2031 !arm_feature(env, ARM_FEATURE_V8)) { 2032 valid_mask &= ~SCR_SMD; 2033 } 2034 } 2035 if (cpu_isar_feature(aa64_lor, cpu)) { 2036 valid_mask |= SCR_TLOR; 2037 } 2038 if (cpu_isar_feature(aa64_pauth, cpu)) { 2039 valid_mask |= SCR_API | SCR_APK; 2040 } 2041 2042 /* Clear all-context RES0 bits. */ 2043 value &= valid_mask; 2044 raw_write(env, ri, value); 2045 } 2046 2047 static CPAccessResult access_aa64_tid2(CPUARMState *env, 2048 const ARMCPRegInfo *ri, 2049 bool isread) 2050 { 2051 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 2052 return CP_ACCESS_TRAP_EL2; 2053 } 2054 2055 return CP_ACCESS_OK; 2056 } 2057 2058 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2059 { 2060 ARMCPU *cpu = env_archcpu(env); 2061 2062 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 2063 * bank 2064 */ 2065 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2066 ri->secure & ARM_CP_SECSTATE_S); 2067 2068 return cpu->ccsidr[index]; 2069 } 2070 2071 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2072 uint64_t value) 2073 { 2074 raw_write(env, ri, value & 0xf); 2075 } 2076 2077 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2078 { 2079 CPUState *cs = env_cpu(env); 2080 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 2081 uint64_t ret = 0; 2082 bool allow_virt = (arm_current_el(env) == 1 && 2083 (!arm_is_secure_below_el3(env) || 2084 (env->cp15.scr_el3 & SCR_EEL2))); 2085 2086 if (allow_virt && (hcr_el2 & HCR_IMO)) { 2087 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2088 ret |= CPSR_I; 2089 } 2090 } else { 2091 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2092 ret |= CPSR_I; 2093 } 2094 } 2095 2096 if (allow_virt && (hcr_el2 & HCR_FMO)) { 2097 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2098 ret |= CPSR_F; 2099 } 2100 } else { 2101 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2102 ret |= CPSR_F; 2103 } 2104 } 2105 2106 /* External aborts are not possible in QEMU so A bit is always clear */ 2107 return ret; 2108 } 2109 2110 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2111 bool isread) 2112 { 2113 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2114 return CP_ACCESS_TRAP_EL2; 2115 } 2116 2117 return CP_ACCESS_OK; 2118 } 2119 2120 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2121 bool isread) 2122 { 2123 if (arm_feature(env, ARM_FEATURE_V8)) { 2124 return access_aa64_tid1(env, ri, isread); 2125 } 2126 2127 return CP_ACCESS_OK; 2128 } 2129 2130 static const ARMCPRegInfo v7_cp_reginfo[] = { 2131 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2132 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2133 .access = PL1_W, .type = ARM_CP_NOP }, 2134 /* Performance monitors are implementation defined in v7, 2135 * but with an ARM recommended set of registers, which we 2136 * follow. 2137 * 2138 * Performance registers fall into three categories: 2139 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2140 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2141 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2142 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2143 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2144 */ 2145 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2146 .access = PL0_RW, .type = ARM_CP_ALIAS, 2147 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2148 .writefn = pmcntenset_write, 2149 .accessfn = pmreg_access, 2150 .raw_writefn = raw_write }, 2151 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 2152 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2153 .access = PL0_RW, .accessfn = pmreg_access, 2154 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2155 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2156 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2157 .access = PL0_RW, 2158 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2159 .accessfn = pmreg_access, 2160 .writefn = pmcntenclr_write, 2161 .type = ARM_CP_ALIAS }, 2162 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2163 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2164 .access = PL0_RW, .accessfn = pmreg_access, 2165 .type = ARM_CP_ALIAS, 2166 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2167 .writefn = pmcntenclr_write }, 2168 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2169 .access = PL0_RW, .type = ARM_CP_IO, 2170 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2171 .accessfn = pmreg_access, 2172 .writefn = pmovsr_write, 2173 .raw_writefn = raw_write }, 2174 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2175 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2176 .access = PL0_RW, .accessfn = pmreg_access, 2177 .type = ARM_CP_ALIAS | ARM_CP_IO, 2178 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2179 .writefn = pmovsr_write, 2180 .raw_writefn = raw_write }, 2181 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2182 .access = PL0_W, .accessfn = pmreg_access_swinc, 2183 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2184 .writefn = pmswinc_write }, 2185 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2186 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2187 .access = PL0_W, .accessfn = pmreg_access_swinc, 2188 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2189 .writefn = pmswinc_write }, 2190 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2191 .access = PL0_RW, .type = ARM_CP_ALIAS, 2192 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2193 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2194 .raw_writefn = raw_write}, 2195 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2196 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2197 .access = PL0_RW, .accessfn = pmreg_access_selr, 2198 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2199 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2200 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2201 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2202 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2203 .accessfn = pmreg_access_ccntr }, 2204 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2205 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2206 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2207 .type = ARM_CP_IO, 2208 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2209 .readfn = pmccntr_read, .writefn = pmccntr_write, 2210 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2211 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2212 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2213 .access = PL0_RW, .accessfn = pmreg_access, 2214 .type = ARM_CP_ALIAS | ARM_CP_IO, 2215 .resetvalue = 0, }, 2216 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2217 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2218 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2219 .access = PL0_RW, .accessfn = pmreg_access, 2220 .type = ARM_CP_IO, 2221 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2222 .resetvalue = 0, }, 2223 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2224 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2225 .accessfn = pmreg_access, 2226 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2227 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2228 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2229 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2230 .accessfn = pmreg_access, 2231 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2232 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2233 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2234 .accessfn = pmreg_access_xevcntr, 2235 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2236 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2237 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2238 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2239 .accessfn = pmreg_access_xevcntr, 2240 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2241 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2242 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2243 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2244 .resetvalue = 0, 2245 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2246 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2247 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2248 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2249 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2250 .resetvalue = 0, 2251 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2252 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2253 .access = PL1_RW, .accessfn = access_tpm, 2254 .type = ARM_CP_ALIAS | ARM_CP_IO, 2255 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2256 .resetvalue = 0, 2257 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2258 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2259 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2260 .access = PL1_RW, .accessfn = access_tpm, 2261 .type = ARM_CP_IO, 2262 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2263 .writefn = pmintenset_write, .raw_writefn = raw_write, 2264 .resetvalue = 0x0 }, 2265 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2266 .access = PL1_RW, .accessfn = access_tpm, 2267 .type = ARM_CP_ALIAS | ARM_CP_IO, 2268 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2269 .writefn = pmintenclr_write, }, 2270 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2271 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2272 .access = PL1_RW, .accessfn = access_tpm, 2273 .type = ARM_CP_ALIAS | ARM_CP_IO, 2274 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2275 .writefn = pmintenclr_write }, 2276 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2277 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2278 .access = PL1_R, 2279 .accessfn = access_aa64_tid2, 2280 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2281 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2282 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2283 .access = PL1_RW, 2284 .accessfn = access_aa64_tid2, 2285 .writefn = csselr_write, .resetvalue = 0, 2286 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2287 offsetof(CPUARMState, cp15.csselr_ns) } }, 2288 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2289 * just RAZ for all cores: 2290 */ 2291 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2292 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2293 .access = PL1_R, .type = ARM_CP_CONST, 2294 .accessfn = access_aa64_tid1, 2295 .resetvalue = 0 }, 2296 /* Auxiliary fault status registers: these also are IMPDEF, and we 2297 * choose to RAZ/WI for all cores. 2298 */ 2299 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2300 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2301 .access = PL1_RW, .accessfn = access_tvm_trvm, 2302 .type = ARM_CP_CONST, .resetvalue = 0 }, 2303 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2304 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2305 .access = PL1_RW, .accessfn = access_tvm_trvm, 2306 .type = ARM_CP_CONST, .resetvalue = 0 }, 2307 /* MAIR can just read-as-written because we don't implement caches 2308 * and so don't need to care about memory attributes. 2309 */ 2310 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2311 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2312 .access = PL1_RW, .accessfn = access_tvm_trvm, 2313 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2314 .resetvalue = 0 }, 2315 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2316 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2317 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2318 .resetvalue = 0 }, 2319 /* For non-long-descriptor page tables these are PRRR and NMRR; 2320 * regardless they still act as reads-as-written for QEMU. 2321 */ 2322 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2323 * allows them to assign the correct fieldoffset based on the endianness 2324 * handled in the field definitions. 2325 */ 2326 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2327 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2328 .access = PL1_RW, .accessfn = access_tvm_trvm, 2329 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2330 offsetof(CPUARMState, cp15.mair0_ns) }, 2331 .resetfn = arm_cp_reset_ignore }, 2332 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2333 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2334 .access = PL1_RW, .accessfn = access_tvm_trvm, 2335 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2336 offsetof(CPUARMState, cp15.mair1_ns) }, 2337 .resetfn = arm_cp_reset_ignore }, 2338 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2339 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2340 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2341 /* 32 bit ITLB invalidates */ 2342 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2343 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2344 .writefn = tlbiall_write }, 2345 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2346 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2347 .writefn = tlbimva_write }, 2348 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2349 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2350 .writefn = tlbiasid_write }, 2351 /* 32 bit DTLB invalidates */ 2352 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2353 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2354 .writefn = tlbiall_write }, 2355 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2356 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2357 .writefn = tlbimva_write }, 2358 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2359 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2360 .writefn = tlbiasid_write }, 2361 /* 32 bit TLB invalidates */ 2362 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2363 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2364 .writefn = tlbiall_write }, 2365 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2366 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2367 .writefn = tlbimva_write }, 2368 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2369 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2370 .writefn = tlbiasid_write }, 2371 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2372 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2373 .writefn = tlbimvaa_write }, 2374 REGINFO_SENTINEL 2375 }; 2376 2377 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2378 /* 32 bit TLB invalidates, Inner Shareable */ 2379 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2380 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2381 .writefn = tlbiall_is_write }, 2382 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2383 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2384 .writefn = tlbimva_is_write }, 2385 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2386 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2387 .writefn = tlbiasid_is_write }, 2388 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2389 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2390 .writefn = tlbimvaa_is_write }, 2391 REGINFO_SENTINEL 2392 }; 2393 2394 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2395 /* PMOVSSET is not implemented in v7 before v7ve */ 2396 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2397 .access = PL0_RW, .accessfn = pmreg_access, 2398 .type = ARM_CP_ALIAS | ARM_CP_IO, 2399 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2400 .writefn = pmovsset_write, 2401 .raw_writefn = raw_write }, 2402 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2403 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2404 .access = PL0_RW, .accessfn = pmreg_access, 2405 .type = ARM_CP_ALIAS | ARM_CP_IO, 2406 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2407 .writefn = pmovsset_write, 2408 .raw_writefn = raw_write }, 2409 REGINFO_SENTINEL 2410 }; 2411 2412 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2413 uint64_t value) 2414 { 2415 value &= 1; 2416 env->teecr = value; 2417 } 2418 2419 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2420 bool isread) 2421 { 2422 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2423 return CP_ACCESS_TRAP; 2424 } 2425 return CP_ACCESS_OK; 2426 } 2427 2428 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2429 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2430 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2431 .resetvalue = 0, 2432 .writefn = teecr_write }, 2433 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2434 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2435 .accessfn = teehbr_access, .resetvalue = 0 }, 2436 REGINFO_SENTINEL 2437 }; 2438 2439 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2440 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2441 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2442 .access = PL0_RW, 2443 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2444 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2445 .access = PL0_RW, 2446 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2447 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2448 .resetfn = arm_cp_reset_ignore }, 2449 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2450 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2451 .access = PL0_R|PL1_W, 2452 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2453 .resetvalue = 0}, 2454 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2455 .access = PL0_R|PL1_W, 2456 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2457 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2458 .resetfn = arm_cp_reset_ignore }, 2459 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2460 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2461 .access = PL1_RW, 2462 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2463 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2464 .access = PL1_RW, 2465 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2466 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2467 .resetvalue = 0 }, 2468 REGINFO_SENTINEL 2469 }; 2470 2471 #ifndef CONFIG_USER_ONLY 2472 2473 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2474 bool isread) 2475 { 2476 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2477 * Writable only at the highest implemented exception level. 2478 */ 2479 int el = arm_current_el(env); 2480 uint64_t hcr; 2481 uint32_t cntkctl; 2482 2483 switch (el) { 2484 case 0: 2485 hcr = arm_hcr_el2_eff(env); 2486 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2487 cntkctl = env->cp15.cnthctl_el2; 2488 } else { 2489 cntkctl = env->cp15.c14_cntkctl; 2490 } 2491 if (!extract32(cntkctl, 0, 2)) { 2492 return CP_ACCESS_TRAP; 2493 } 2494 break; 2495 case 1: 2496 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2497 arm_is_secure_below_el3(env)) { 2498 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2499 return CP_ACCESS_TRAP_UNCATEGORIZED; 2500 } 2501 break; 2502 case 2: 2503 case 3: 2504 break; 2505 } 2506 2507 if (!isread && el < arm_highest_el(env)) { 2508 return CP_ACCESS_TRAP_UNCATEGORIZED; 2509 } 2510 2511 return CP_ACCESS_OK; 2512 } 2513 2514 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2515 bool isread) 2516 { 2517 unsigned int cur_el = arm_current_el(env); 2518 bool secure = arm_is_secure(env); 2519 uint64_t hcr = arm_hcr_el2_eff(env); 2520 2521 switch (cur_el) { 2522 case 0: 2523 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2524 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2525 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2526 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2527 } 2528 2529 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2530 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2531 return CP_ACCESS_TRAP; 2532 } 2533 2534 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2535 if (hcr & HCR_E2H) { 2536 if (timeridx == GTIMER_PHYS && 2537 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2538 return CP_ACCESS_TRAP_EL2; 2539 } 2540 } else { 2541 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2542 if (arm_feature(env, ARM_FEATURE_EL2) && 2543 timeridx == GTIMER_PHYS && !secure && 2544 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2545 return CP_ACCESS_TRAP_EL2; 2546 } 2547 } 2548 break; 2549 2550 case 1: 2551 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2552 if (arm_feature(env, ARM_FEATURE_EL2) && 2553 timeridx == GTIMER_PHYS && !secure && 2554 (hcr & HCR_E2H 2555 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2556 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2557 return CP_ACCESS_TRAP_EL2; 2558 } 2559 break; 2560 } 2561 return CP_ACCESS_OK; 2562 } 2563 2564 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2565 bool isread) 2566 { 2567 unsigned int cur_el = arm_current_el(env); 2568 bool secure = arm_is_secure(env); 2569 uint64_t hcr = arm_hcr_el2_eff(env); 2570 2571 switch (cur_el) { 2572 case 0: 2573 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2574 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2575 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2576 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2577 } 2578 2579 /* 2580 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2581 * EL0 if EL0[PV]TEN is zero. 2582 */ 2583 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2584 return CP_ACCESS_TRAP; 2585 } 2586 /* fall through */ 2587 2588 case 1: 2589 if (arm_feature(env, ARM_FEATURE_EL2) && 2590 timeridx == GTIMER_PHYS && !secure) { 2591 if (hcr & HCR_E2H) { 2592 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2593 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2594 return CP_ACCESS_TRAP_EL2; 2595 } 2596 } else { 2597 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2598 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2599 return CP_ACCESS_TRAP_EL2; 2600 } 2601 } 2602 } 2603 break; 2604 } 2605 return CP_ACCESS_OK; 2606 } 2607 2608 static CPAccessResult gt_pct_access(CPUARMState *env, 2609 const ARMCPRegInfo *ri, 2610 bool isread) 2611 { 2612 return gt_counter_access(env, GTIMER_PHYS, isread); 2613 } 2614 2615 static CPAccessResult gt_vct_access(CPUARMState *env, 2616 const ARMCPRegInfo *ri, 2617 bool isread) 2618 { 2619 return gt_counter_access(env, GTIMER_VIRT, isread); 2620 } 2621 2622 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2623 bool isread) 2624 { 2625 return gt_timer_access(env, GTIMER_PHYS, isread); 2626 } 2627 2628 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2629 bool isread) 2630 { 2631 return gt_timer_access(env, GTIMER_VIRT, isread); 2632 } 2633 2634 static CPAccessResult gt_stimer_access(CPUARMState *env, 2635 const ARMCPRegInfo *ri, 2636 bool isread) 2637 { 2638 /* The AArch64 register view of the secure physical timer is 2639 * always accessible from EL3, and configurably accessible from 2640 * Secure EL1. 2641 */ 2642 switch (arm_current_el(env)) { 2643 case 1: 2644 if (!arm_is_secure(env)) { 2645 return CP_ACCESS_TRAP; 2646 } 2647 if (!(env->cp15.scr_el3 & SCR_ST)) { 2648 return CP_ACCESS_TRAP_EL3; 2649 } 2650 return CP_ACCESS_OK; 2651 case 0: 2652 case 2: 2653 return CP_ACCESS_TRAP; 2654 case 3: 2655 return CP_ACCESS_OK; 2656 default: 2657 g_assert_not_reached(); 2658 } 2659 } 2660 2661 static uint64_t gt_get_countervalue(CPUARMState *env) 2662 { 2663 ARMCPU *cpu = env_archcpu(env); 2664 2665 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2666 } 2667 2668 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2669 { 2670 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2671 2672 if (gt->ctl & 1) { 2673 /* Timer enabled: calculate and set current ISTATUS, irq, and 2674 * reset timer to when ISTATUS next has to change 2675 */ 2676 uint64_t offset = timeridx == GTIMER_VIRT ? 2677 cpu->env.cp15.cntvoff_el2 : 0; 2678 uint64_t count = gt_get_countervalue(&cpu->env); 2679 /* Note that this must be unsigned 64 bit arithmetic: */ 2680 int istatus = count - offset >= gt->cval; 2681 uint64_t nexttick; 2682 int irqstate; 2683 2684 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2685 2686 irqstate = (istatus && !(gt->ctl & 2)); 2687 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2688 2689 if (istatus) { 2690 /* Next transition is when count rolls back over to zero */ 2691 nexttick = UINT64_MAX; 2692 } else { 2693 /* Next transition is when we hit cval */ 2694 nexttick = gt->cval + offset; 2695 } 2696 /* Note that the desired next expiry time might be beyond the 2697 * signed-64-bit range of a QEMUTimer -- in this case we just 2698 * set the timer for as far in the future as possible. When the 2699 * timer expires we will reset the timer for any remaining period. 2700 */ 2701 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2702 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2703 } else { 2704 timer_mod(cpu->gt_timer[timeridx], nexttick); 2705 } 2706 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2707 } else { 2708 /* Timer disabled: ISTATUS and timer output always clear */ 2709 gt->ctl &= ~4; 2710 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2711 timer_del(cpu->gt_timer[timeridx]); 2712 trace_arm_gt_recalc_disabled(timeridx); 2713 } 2714 } 2715 2716 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2717 int timeridx) 2718 { 2719 ARMCPU *cpu = env_archcpu(env); 2720 2721 timer_del(cpu->gt_timer[timeridx]); 2722 } 2723 2724 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2725 { 2726 return gt_get_countervalue(env); 2727 } 2728 2729 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2730 { 2731 uint64_t hcr; 2732 2733 switch (arm_current_el(env)) { 2734 case 2: 2735 hcr = arm_hcr_el2_eff(env); 2736 if (hcr & HCR_E2H) { 2737 return 0; 2738 } 2739 break; 2740 case 0: 2741 hcr = arm_hcr_el2_eff(env); 2742 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2743 return 0; 2744 } 2745 break; 2746 } 2747 2748 return env->cp15.cntvoff_el2; 2749 } 2750 2751 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2752 { 2753 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2754 } 2755 2756 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2757 int timeridx, 2758 uint64_t value) 2759 { 2760 trace_arm_gt_cval_write(timeridx, value); 2761 env->cp15.c14_timer[timeridx].cval = value; 2762 gt_recalc_timer(env_archcpu(env), timeridx); 2763 } 2764 2765 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2766 int timeridx) 2767 { 2768 uint64_t offset = 0; 2769 2770 switch (timeridx) { 2771 case GTIMER_VIRT: 2772 case GTIMER_HYPVIRT: 2773 offset = gt_virt_cnt_offset(env); 2774 break; 2775 } 2776 2777 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2778 (gt_get_countervalue(env) - offset)); 2779 } 2780 2781 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2782 int timeridx, 2783 uint64_t value) 2784 { 2785 uint64_t offset = 0; 2786 2787 switch (timeridx) { 2788 case GTIMER_VIRT: 2789 case GTIMER_HYPVIRT: 2790 offset = gt_virt_cnt_offset(env); 2791 break; 2792 } 2793 2794 trace_arm_gt_tval_write(timeridx, value); 2795 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2796 sextract64(value, 0, 32); 2797 gt_recalc_timer(env_archcpu(env), timeridx); 2798 } 2799 2800 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2801 int timeridx, 2802 uint64_t value) 2803 { 2804 ARMCPU *cpu = env_archcpu(env); 2805 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2806 2807 trace_arm_gt_ctl_write(timeridx, value); 2808 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2809 if ((oldval ^ value) & 1) { 2810 /* Enable toggled */ 2811 gt_recalc_timer(cpu, timeridx); 2812 } else if ((oldval ^ value) & 2) { 2813 /* IMASK toggled: don't need to recalculate, 2814 * just set the interrupt line based on ISTATUS 2815 */ 2816 int irqstate = (oldval & 4) && !(value & 2); 2817 2818 trace_arm_gt_imask_toggle(timeridx, irqstate); 2819 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2820 } 2821 } 2822 2823 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2824 { 2825 gt_timer_reset(env, ri, GTIMER_PHYS); 2826 } 2827 2828 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2829 uint64_t value) 2830 { 2831 gt_cval_write(env, ri, GTIMER_PHYS, value); 2832 } 2833 2834 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2835 { 2836 return gt_tval_read(env, ri, GTIMER_PHYS); 2837 } 2838 2839 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2840 uint64_t value) 2841 { 2842 gt_tval_write(env, ri, GTIMER_PHYS, value); 2843 } 2844 2845 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2846 uint64_t value) 2847 { 2848 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2849 } 2850 2851 static int gt_phys_redir_timeridx(CPUARMState *env) 2852 { 2853 switch (arm_mmu_idx(env)) { 2854 case ARMMMUIdx_E20_0: 2855 case ARMMMUIdx_E20_2: 2856 case ARMMMUIdx_E20_2_PAN: 2857 return GTIMER_HYP; 2858 default: 2859 return GTIMER_PHYS; 2860 } 2861 } 2862 2863 static int gt_virt_redir_timeridx(CPUARMState *env) 2864 { 2865 switch (arm_mmu_idx(env)) { 2866 case ARMMMUIdx_E20_0: 2867 case ARMMMUIdx_E20_2: 2868 case ARMMMUIdx_E20_2_PAN: 2869 return GTIMER_HYPVIRT; 2870 default: 2871 return GTIMER_VIRT; 2872 } 2873 } 2874 2875 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2876 const ARMCPRegInfo *ri) 2877 { 2878 int timeridx = gt_phys_redir_timeridx(env); 2879 return env->cp15.c14_timer[timeridx].cval; 2880 } 2881 2882 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2883 uint64_t value) 2884 { 2885 int timeridx = gt_phys_redir_timeridx(env); 2886 gt_cval_write(env, ri, timeridx, value); 2887 } 2888 2889 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2890 const ARMCPRegInfo *ri) 2891 { 2892 int timeridx = gt_phys_redir_timeridx(env); 2893 return gt_tval_read(env, ri, timeridx); 2894 } 2895 2896 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2897 uint64_t value) 2898 { 2899 int timeridx = gt_phys_redir_timeridx(env); 2900 gt_tval_write(env, ri, timeridx, value); 2901 } 2902 2903 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2904 const ARMCPRegInfo *ri) 2905 { 2906 int timeridx = gt_phys_redir_timeridx(env); 2907 return env->cp15.c14_timer[timeridx].ctl; 2908 } 2909 2910 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2911 uint64_t value) 2912 { 2913 int timeridx = gt_phys_redir_timeridx(env); 2914 gt_ctl_write(env, ri, timeridx, value); 2915 } 2916 2917 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2918 { 2919 gt_timer_reset(env, ri, GTIMER_VIRT); 2920 } 2921 2922 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2923 uint64_t value) 2924 { 2925 gt_cval_write(env, ri, GTIMER_VIRT, value); 2926 } 2927 2928 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2929 { 2930 return gt_tval_read(env, ri, GTIMER_VIRT); 2931 } 2932 2933 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2934 uint64_t value) 2935 { 2936 gt_tval_write(env, ri, GTIMER_VIRT, value); 2937 } 2938 2939 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2940 uint64_t value) 2941 { 2942 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2943 } 2944 2945 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2946 uint64_t value) 2947 { 2948 ARMCPU *cpu = env_archcpu(env); 2949 2950 trace_arm_gt_cntvoff_write(value); 2951 raw_write(env, ri, value); 2952 gt_recalc_timer(cpu, GTIMER_VIRT); 2953 } 2954 2955 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2956 const ARMCPRegInfo *ri) 2957 { 2958 int timeridx = gt_virt_redir_timeridx(env); 2959 return env->cp15.c14_timer[timeridx].cval; 2960 } 2961 2962 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2963 uint64_t value) 2964 { 2965 int timeridx = gt_virt_redir_timeridx(env); 2966 gt_cval_write(env, ri, timeridx, value); 2967 } 2968 2969 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2970 const ARMCPRegInfo *ri) 2971 { 2972 int timeridx = gt_virt_redir_timeridx(env); 2973 return gt_tval_read(env, ri, timeridx); 2974 } 2975 2976 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2977 uint64_t value) 2978 { 2979 int timeridx = gt_virt_redir_timeridx(env); 2980 gt_tval_write(env, ri, timeridx, value); 2981 } 2982 2983 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2984 const ARMCPRegInfo *ri) 2985 { 2986 int timeridx = gt_virt_redir_timeridx(env); 2987 return env->cp15.c14_timer[timeridx].ctl; 2988 } 2989 2990 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2991 uint64_t value) 2992 { 2993 int timeridx = gt_virt_redir_timeridx(env); 2994 gt_ctl_write(env, ri, timeridx, value); 2995 } 2996 2997 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2998 { 2999 gt_timer_reset(env, ri, GTIMER_HYP); 3000 } 3001 3002 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3003 uint64_t value) 3004 { 3005 gt_cval_write(env, ri, GTIMER_HYP, value); 3006 } 3007 3008 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3009 { 3010 return gt_tval_read(env, ri, GTIMER_HYP); 3011 } 3012 3013 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3014 uint64_t value) 3015 { 3016 gt_tval_write(env, ri, GTIMER_HYP, value); 3017 } 3018 3019 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3020 uint64_t value) 3021 { 3022 gt_ctl_write(env, ri, GTIMER_HYP, value); 3023 } 3024 3025 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3026 { 3027 gt_timer_reset(env, ri, GTIMER_SEC); 3028 } 3029 3030 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3031 uint64_t value) 3032 { 3033 gt_cval_write(env, ri, GTIMER_SEC, value); 3034 } 3035 3036 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3037 { 3038 return gt_tval_read(env, ri, GTIMER_SEC); 3039 } 3040 3041 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3042 uint64_t value) 3043 { 3044 gt_tval_write(env, ri, GTIMER_SEC, value); 3045 } 3046 3047 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3048 uint64_t value) 3049 { 3050 gt_ctl_write(env, ri, GTIMER_SEC, value); 3051 } 3052 3053 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3054 { 3055 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3056 } 3057 3058 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3059 uint64_t value) 3060 { 3061 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3062 } 3063 3064 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3065 { 3066 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3067 } 3068 3069 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3070 uint64_t value) 3071 { 3072 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3073 } 3074 3075 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3076 uint64_t value) 3077 { 3078 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3079 } 3080 3081 void arm_gt_ptimer_cb(void *opaque) 3082 { 3083 ARMCPU *cpu = opaque; 3084 3085 gt_recalc_timer(cpu, GTIMER_PHYS); 3086 } 3087 3088 void arm_gt_vtimer_cb(void *opaque) 3089 { 3090 ARMCPU *cpu = opaque; 3091 3092 gt_recalc_timer(cpu, GTIMER_VIRT); 3093 } 3094 3095 void arm_gt_htimer_cb(void *opaque) 3096 { 3097 ARMCPU *cpu = opaque; 3098 3099 gt_recalc_timer(cpu, GTIMER_HYP); 3100 } 3101 3102 void arm_gt_stimer_cb(void *opaque) 3103 { 3104 ARMCPU *cpu = opaque; 3105 3106 gt_recalc_timer(cpu, GTIMER_SEC); 3107 } 3108 3109 void arm_gt_hvtimer_cb(void *opaque) 3110 { 3111 ARMCPU *cpu = opaque; 3112 3113 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3114 } 3115 3116 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3117 { 3118 ARMCPU *cpu = env_archcpu(env); 3119 3120 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3121 } 3122 3123 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3124 /* Note that CNTFRQ is purely reads-as-written for the benefit 3125 * of software; writing it doesn't actually change the timer frequency. 3126 * Our reset value matches the fixed frequency we implement the timer at. 3127 */ 3128 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3129 .type = ARM_CP_ALIAS, 3130 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3131 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3132 }, 3133 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3134 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3135 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3136 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3137 .resetfn = arm_gt_cntfrq_reset, 3138 }, 3139 /* overall control: mostly access permissions */ 3140 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3141 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3142 .access = PL1_RW, 3143 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3144 .resetvalue = 0, 3145 }, 3146 /* per-timer control */ 3147 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3148 .secure = ARM_CP_SECSTATE_NS, 3149 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3150 .accessfn = gt_ptimer_access, 3151 .fieldoffset = offsetoflow32(CPUARMState, 3152 cp15.c14_timer[GTIMER_PHYS].ctl), 3153 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3154 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3155 }, 3156 { .name = "CNTP_CTL_S", 3157 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3158 .secure = ARM_CP_SECSTATE_S, 3159 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3160 .accessfn = gt_ptimer_access, 3161 .fieldoffset = offsetoflow32(CPUARMState, 3162 cp15.c14_timer[GTIMER_SEC].ctl), 3163 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3164 }, 3165 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3166 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3167 .type = ARM_CP_IO, .access = PL0_RW, 3168 .accessfn = gt_ptimer_access, 3169 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3170 .resetvalue = 0, 3171 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3172 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3173 }, 3174 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3175 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3176 .accessfn = gt_vtimer_access, 3177 .fieldoffset = offsetoflow32(CPUARMState, 3178 cp15.c14_timer[GTIMER_VIRT].ctl), 3179 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3180 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3181 }, 3182 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3183 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3184 .type = ARM_CP_IO, .access = PL0_RW, 3185 .accessfn = gt_vtimer_access, 3186 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3187 .resetvalue = 0, 3188 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3189 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3190 }, 3191 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3192 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3193 .secure = ARM_CP_SECSTATE_NS, 3194 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3195 .accessfn = gt_ptimer_access, 3196 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3197 }, 3198 { .name = "CNTP_TVAL_S", 3199 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3200 .secure = ARM_CP_SECSTATE_S, 3201 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3202 .accessfn = gt_ptimer_access, 3203 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3204 }, 3205 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3206 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3207 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3208 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3209 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3210 }, 3211 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3212 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3213 .accessfn = gt_vtimer_access, 3214 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3215 }, 3216 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3217 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3218 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3219 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3220 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3221 }, 3222 /* The counter itself */ 3223 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3224 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3225 .accessfn = gt_pct_access, 3226 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3227 }, 3228 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3229 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3230 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3231 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3232 }, 3233 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3234 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3235 .accessfn = gt_vct_access, 3236 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3237 }, 3238 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3239 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3240 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3241 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3242 }, 3243 /* Comparison value, indicating when the timer goes off */ 3244 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3245 .secure = ARM_CP_SECSTATE_NS, 3246 .access = PL0_RW, 3247 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3248 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3249 .accessfn = gt_ptimer_access, 3250 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3251 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3252 }, 3253 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3254 .secure = ARM_CP_SECSTATE_S, 3255 .access = PL0_RW, 3256 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3257 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3258 .accessfn = gt_ptimer_access, 3259 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3260 }, 3261 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3262 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3263 .access = PL0_RW, 3264 .type = ARM_CP_IO, 3265 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3266 .resetvalue = 0, .accessfn = gt_ptimer_access, 3267 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3268 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3269 }, 3270 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3271 .access = PL0_RW, 3272 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3273 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3274 .accessfn = gt_vtimer_access, 3275 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3276 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3277 }, 3278 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3279 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3280 .access = PL0_RW, 3281 .type = ARM_CP_IO, 3282 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3283 .resetvalue = 0, .accessfn = gt_vtimer_access, 3284 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3285 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3286 }, 3287 /* Secure timer -- this is actually restricted to only EL3 3288 * and configurably Secure-EL1 via the accessfn. 3289 */ 3290 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3291 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3292 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3293 .accessfn = gt_stimer_access, 3294 .readfn = gt_sec_tval_read, 3295 .writefn = gt_sec_tval_write, 3296 .resetfn = gt_sec_timer_reset, 3297 }, 3298 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3299 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3300 .type = ARM_CP_IO, .access = PL1_RW, 3301 .accessfn = gt_stimer_access, 3302 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3303 .resetvalue = 0, 3304 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3305 }, 3306 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3307 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3308 .type = ARM_CP_IO, .access = PL1_RW, 3309 .accessfn = gt_stimer_access, 3310 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3311 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3312 }, 3313 REGINFO_SENTINEL 3314 }; 3315 3316 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3317 bool isread) 3318 { 3319 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3320 return CP_ACCESS_TRAP; 3321 } 3322 return CP_ACCESS_OK; 3323 } 3324 3325 #else 3326 3327 /* In user-mode most of the generic timer registers are inaccessible 3328 * however modern kernels (4.12+) allow access to cntvct_el0 3329 */ 3330 3331 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3332 { 3333 ARMCPU *cpu = env_archcpu(env); 3334 3335 /* Currently we have no support for QEMUTimer in linux-user so we 3336 * can't call gt_get_countervalue(env), instead we directly 3337 * call the lower level functions. 3338 */ 3339 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3340 } 3341 3342 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3343 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3344 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3345 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3346 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3347 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3348 }, 3349 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3350 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3351 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3352 .readfn = gt_virt_cnt_read, 3353 }, 3354 REGINFO_SENTINEL 3355 }; 3356 3357 #endif 3358 3359 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3360 { 3361 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3362 raw_write(env, ri, value); 3363 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3364 raw_write(env, ri, value & 0xfffff6ff); 3365 } else { 3366 raw_write(env, ri, value & 0xfffff1ff); 3367 } 3368 } 3369 3370 #ifndef CONFIG_USER_ONLY 3371 /* get_phys_addr() isn't present for user-mode-only targets */ 3372 3373 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3374 bool isread) 3375 { 3376 if (ri->opc2 & 4) { 3377 /* The ATS12NSO* operations must trap to EL3 if executed in 3378 * Secure EL1 (which can only happen if EL3 is AArch64). 3379 * They are simply UNDEF if executed from NS EL1. 3380 * They function normally from EL2 or EL3. 3381 */ 3382 if (arm_current_el(env) == 1) { 3383 if (arm_is_secure_below_el3(env)) { 3384 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3385 } 3386 return CP_ACCESS_TRAP_UNCATEGORIZED; 3387 } 3388 } 3389 return CP_ACCESS_OK; 3390 } 3391 3392 #ifdef CONFIG_TCG 3393 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3394 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3395 { 3396 hwaddr phys_addr; 3397 target_ulong page_size; 3398 int prot; 3399 bool ret; 3400 uint64_t par64; 3401 bool format64 = false; 3402 MemTxAttrs attrs = {}; 3403 ARMMMUFaultInfo fi = {}; 3404 ARMCacheAttrs cacheattrs = {}; 3405 3406 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3407 &prot, &page_size, &fi, &cacheattrs); 3408 3409 if (ret) { 3410 /* 3411 * Some kinds of translation fault must cause exceptions rather 3412 * than being reported in the PAR. 3413 */ 3414 int current_el = arm_current_el(env); 3415 int target_el; 3416 uint32_t syn, fsr, fsc; 3417 bool take_exc = false; 3418 3419 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env) 3420 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3421 /* 3422 * Synchronous stage 2 fault on an access made as part of the 3423 * translation table walk for AT S1E0* or AT S1E1* insn 3424 * executed from NS EL1. If this is a synchronous external abort 3425 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3426 * to EL3. Otherwise the fault is taken as an exception to EL2, 3427 * and HPFAR_EL2 holds the faulting IPA. 3428 */ 3429 if (fi.type == ARMFault_SyncExternalOnWalk && 3430 (env->cp15.scr_el3 & SCR_EA)) { 3431 target_el = 3; 3432 } else { 3433 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3434 target_el = 2; 3435 } 3436 take_exc = true; 3437 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3438 /* 3439 * Synchronous external aborts during a translation table walk 3440 * are taken as Data Abort exceptions. 3441 */ 3442 if (fi.stage2) { 3443 if (current_el == 3) { 3444 target_el = 3; 3445 } else { 3446 target_el = 2; 3447 } 3448 } else { 3449 target_el = exception_target_el(env); 3450 } 3451 take_exc = true; 3452 } 3453 3454 if (take_exc) { 3455 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3456 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3457 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3458 fsr = arm_fi_to_lfsc(&fi); 3459 fsc = extract32(fsr, 0, 6); 3460 } else { 3461 fsr = arm_fi_to_sfsc(&fi); 3462 fsc = 0x3f; 3463 } 3464 /* 3465 * Report exception with ESR indicating a fault due to a 3466 * translation table walk for a cache maintenance instruction. 3467 */ 3468 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3469 fi.ea, 1, fi.s1ptw, 1, fsc); 3470 env->exception.vaddress = value; 3471 env->exception.fsr = fsr; 3472 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3473 } 3474 } 3475 3476 if (is_a64(env)) { 3477 format64 = true; 3478 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3479 /* 3480 * ATS1Cxx: 3481 * * TTBCR.EAE determines whether the result is returned using the 3482 * 32-bit or the 64-bit PAR format 3483 * * Instructions executed in Hyp mode always use the 64bit format 3484 * 3485 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3486 * * The Non-secure TTBCR.EAE bit is set to 1 3487 * * The implementation includes EL2, and the value of HCR.VM is 1 3488 * 3489 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3490 * 3491 * ATS1Hx always uses the 64bit format. 3492 */ 3493 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3494 3495 if (arm_feature(env, ARM_FEATURE_EL2)) { 3496 if (mmu_idx == ARMMMUIdx_E10_0 || 3497 mmu_idx == ARMMMUIdx_E10_1 || 3498 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3499 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3500 } else { 3501 format64 |= arm_current_el(env) == 2; 3502 } 3503 } 3504 } 3505 3506 if (format64) { 3507 /* Create a 64-bit PAR */ 3508 par64 = (1 << 11); /* LPAE bit always set */ 3509 if (!ret) { 3510 par64 |= phys_addr & ~0xfffULL; 3511 if (!attrs.secure) { 3512 par64 |= (1 << 9); /* NS */ 3513 } 3514 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3515 par64 |= cacheattrs.shareability << 7; /* SH */ 3516 } else { 3517 uint32_t fsr = arm_fi_to_lfsc(&fi); 3518 3519 par64 |= 1; /* F */ 3520 par64 |= (fsr & 0x3f) << 1; /* FS */ 3521 if (fi.stage2) { 3522 par64 |= (1 << 9); /* S */ 3523 } 3524 if (fi.s1ptw) { 3525 par64 |= (1 << 8); /* PTW */ 3526 } 3527 } 3528 } else { 3529 /* fsr is a DFSR/IFSR value for the short descriptor 3530 * translation table format (with WnR always clear). 3531 * Convert it to a 32-bit PAR. 3532 */ 3533 if (!ret) { 3534 /* We do not set any attribute bits in the PAR */ 3535 if (page_size == (1 << 24) 3536 && arm_feature(env, ARM_FEATURE_V7)) { 3537 par64 = (phys_addr & 0xff000000) | (1 << 1); 3538 } else { 3539 par64 = phys_addr & 0xfffff000; 3540 } 3541 if (!attrs.secure) { 3542 par64 |= (1 << 9); /* NS */ 3543 } 3544 } else { 3545 uint32_t fsr = arm_fi_to_sfsc(&fi); 3546 3547 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3548 ((fsr & 0xf) << 1) | 1; 3549 } 3550 } 3551 return par64; 3552 } 3553 #endif /* CONFIG_TCG */ 3554 3555 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3556 { 3557 #ifdef CONFIG_TCG 3558 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3559 uint64_t par64; 3560 ARMMMUIdx mmu_idx; 3561 int el = arm_current_el(env); 3562 bool secure = arm_is_secure_below_el3(env); 3563 3564 switch (ri->opc2 & 6) { 3565 case 0: 3566 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3567 switch (el) { 3568 case 3: 3569 mmu_idx = ARMMMUIdx_SE3; 3570 break; 3571 case 2: 3572 g_assert(!secure); /* TODO: ARMv8.4-SecEL2 */ 3573 /* fall through */ 3574 case 1: 3575 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3576 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN 3577 : ARMMMUIdx_Stage1_E1_PAN); 3578 } else { 3579 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; 3580 } 3581 break; 3582 default: 3583 g_assert_not_reached(); 3584 } 3585 break; 3586 case 2: 3587 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3588 switch (el) { 3589 case 3: 3590 mmu_idx = ARMMMUIdx_SE10_0; 3591 break; 3592 case 2: 3593 mmu_idx = ARMMMUIdx_Stage1_E0; 3594 break; 3595 case 1: 3596 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; 3597 break; 3598 default: 3599 g_assert_not_reached(); 3600 } 3601 break; 3602 case 4: 3603 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3604 mmu_idx = ARMMMUIdx_E10_1; 3605 break; 3606 case 6: 3607 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3608 mmu_idx = ARMMMUIdx_E10_0; 3609 break; 3610 default: 3611 g_assert_not_reached(); 3612 } 3613 3614 par64 = do_ats_write(env, value, access_type, mmu_idx); 3615 3616 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3617 #else 3618 /* Handled by hardware accelerator. */ 3619 g_assert_not_reached(); 3620 #endif /* CONFIG_TCG */ 3621 } 3622 3623 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3624 uint64_t value) 3625 { 3626 #ifdef CONFIG_TCG 3627 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3628 uint64_t par64; 3629 3630 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3631 3632 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3633 #else 3634 /* Handled by hardware accelerator. */ 3635 g_assert_not_reached(); 3636 #endif /* CONFIG_TCG */ 3637 } 3638 3639 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3640 bool isread) 3641 { 3642 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 3643 return CP_ACCESS_TRAP; 3644 } 3645 return CP_ACCESS_OK; 3646 } 3647 3648 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3649 uint64_t value) 3650 { 3651 #ifdef CONFIG_TCG 3652 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3653 ARMMMUIdx mmu_idx; 3654 int secure = arm_is_secure_below_el3(env); 3655 3656 switch (ri->opc2 & 6) { 3657 case 0: 3658 switch (ri->opc1) { 3659 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3660 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3661 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN 3662 : ARMMMUIdx_Stage1_E1_PAN); 3663 } else { 3664 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; 3665 } 3666 break; 3667 case 4: /* AT S1E2R, AT S1E2W */ 3668 mmu_idx = ARMMMUIdx_E2; 3669 break; 3670 case 6: /* AT S1E3R, AT S1E3W */ 3671 mmu_idx = ARMMMUIdx_SE3; 3672 break; 3673 default: 3674 g_assert_not_reached(); 3675 } 3676 break; 3677 case 2: /* AT S1E0R, AT S1E0W */ 3678 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; 3679 break; 3680 case 4: /* AT S12E1R, AT S12E1W */ 3681 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3682 break; 3683 case 6: /* AT S12E0R, AT S12E0W */ 3684 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3685 break; 3686 default: 3687 g_assert_not_reached(); 3688 } 3689 3690 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3691 #else 3692 /* Handled by hardware accelerator. */ 3693 g_assert_not_reached(); 3694 #endif /* CONFIG_TCG */ 3695 } 3696 #endif 3697 3698 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3699 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3700 .access = PL1_RW, .resetvalue = 0, 3701 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3702 offsetoflow32(CPUARMState, cp15.par_ns) }, 3703 .writefn = par_write }, 3704 #ifndef CONFIG_USER_ONLY 3705 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3706 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3707 .access = PL1_W, .accessfn = ats_access, 3708 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3709 #endif 3710 REGINFO_SENTINEL 3711 }; 3712 3713 /* Return basic MPU access permission bits. */ 3714 static uint32_t simple_mpu_ap_bits(uint32_t val) 3715 { 3716 uint32_t ret; 3717 uint32_t mask; 3718 int i; 3719 ret = 0; 3720 mask = 3; 3721 for (i = 0; i < 16; i += 2) { 3722 ret |= (val >> i) & mask; 3723 mask <<= 2; 3724 } 3725 return ret; 3726 } 3727 3728 /* Pad basic MPU access permission bits to extended format. */ 3729 static uint32_t extended_mpu_ap_bits(uint32_t val) 3730 { 3731 uint32_t ret; 3732 uint32_t mask; 3733 int i; 3734 ret = 0; 3735 mask = 3; 3736 for (i = 0; i < 16; i += 2) { 3737 ret |= (val & mask) << i; 3738 mask <<= 2; 3739 } 3740 return ret; 3741 } 3742 3743 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3744 uint64_t value) 3745 { 3746 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3747 } 3748 3749 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3750 { 3751 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3752 } 3753 3754 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3755 uint64_t value) 3756 { 3757 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3758 } 3759 3760 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3761 { 3762 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3763 } 3764 3765 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3766 { 3767 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3768 3769 if (!u32p) { 3770 return 0; 3771 } 3772 3773 u32p += env->pmsav7.rnr[M_REG_NS]; 3774 return *u32p; 3775 } 3776 3777 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3778 uint64_t value) 3779 { 3780 ARMCPU *cpu = env_archcpu(env); 3781 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3782 3783 if (!u32p) { 3784 return; 3785 } 3786 3787 u32p += env->pmsav7.rnr[M_REG_NS]; 3788 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3789 *u32p = value; 3790 } 3791 3792 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3793 uint64_t value) 3794 { 3795 ARMCPU *cpu = env_archcpu(env); 3796 uint32_t nrgs = cpu->pmsav7_dregion; 3797 3798 if (value >= nrgs) { 3799 qemu_log_mask(LOG_GUEST_ERROR, 3800 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3801 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3802 return; 3803 } 3804 3805 raw_write(env, ri, value); 3806 } 3807 3808 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3809 /* Reset for all these registers is handled in arm_cpu_reset(), 3810 * because the PMSAv7 is also used by M-profile CPUs, which do 3811 * not register cpregs but still need the state to be reset. 3812 */ 3813 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3814 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3815 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3816 .readfn = pmsav7_read, .writefn = pmsav7_write, 3817 .resetfn = arm_cp_reset_ignore }, 3818 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3819 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3820 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3821 .readfn = pmsav7_read, .writefn = pmsav7_write, 3822 .resetfn = arm_cp_reset_ignore }, 3823 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3824 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3825 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3826 .readfn = pmsav7_read, .writefn = pmsav7_write, 3827 .resetfn = arm_cp_reset_ignore }, 3828 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3829 .access = PL1_RW, 3830 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3831 .writefn = pmsav7_rgnr_write, 3832 .resetfn = arm_cp_reset_ignore }, 3833 REGINFO_SENTINEL 3834 }; 3835 3836 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3837 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3838 .access = PL1_RW, .type = ARM_CP_ALIAS, 3839 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3840 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3841 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3842 .access = PL1_RW, .type = ARM_CP_ALIAS, 3843 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3844 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3845 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3846 .access = PL1_RW, 3847 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3848 .resetvalue = 0, }, 3849 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3850 .access = PL1_RW, 3851 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3852 .resetvalue = 0, }, 3853 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3854 .access = PL1_RW, 3855 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3856 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3857 .access = PL1_RW, 3858 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3859 /* Protection region base and size registers */ 3860 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3861 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3862 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3863 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3864 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3865 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3866 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3867 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3868 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3869 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3870 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3871 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3872 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3873 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3874 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3875 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3876 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3877 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3878 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3879 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3880 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3881 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3882 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3883 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3884 REGINFO_SENTINEL 3885 }; 3886 3887 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3888 uint64_t value) 3889 { 3890 TCR *tcr = raw_ptr(env, ri); 3891 int maskshift = extract32(value, 0, 3); 3892 3893 if (!arm_feature(env, ARM_FEATURE_V8)) { 3894 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3895 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3896 * using Long-desciptor translation table format */ 3897 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3898 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3899 /* In an implementation that includes the Security Extensions 3900 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3901 * Short-descriptor translation table format. 3902 */ 3903 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3904 } else { 3905 value &= TTBCR_N; 3906 } 3907 } 3908 3909 /* Update the masks corresponding to the TCR bank being written 3910 * Note that we always calculate mask and base_mask, but 3911 * they are only used for short-descriptor tables (ie if EAE is 0); 3912 * for long-descriptor tables the TCR fields are used differently 3913 * and the mask and base_mask values are meaningless. 3914 */ 3915 tcr->raw_tcr = value; 3916 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3917 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3918 } 3919 3920 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3921 uint64_t value) 3922 { 3923 ARMCPU *cpu = env_archcpu(env); 3924 TCR *tcr = raw_ptr(env, ri); 3925 3926 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3927 /* With LPAE the TTBCR could result in a change of ASID 3928 * via the TTBCR.A1 bit, so do a TLB flush. 3929 */ 3930 tlb_flush(CPU(cpu)); 3931 } 3932 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3933 value = deposit64(tcr->raw_tcr, 0, 32, value); 3934 vmsa_ttbcr_raw_write(env, ri, value); 3935 } 3936 3937 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3938 { 3939 TCR *tcr = raw_ptr(env, ri); 3940 3941 /* Reset both the TCR as well as the masks corresponding to the bank of 3942 * the TCR being reset. 3943 */ 3944 tcr->raw_tcr = 0; 3945 tcr->mask = 0; 3946 tcr->base_mask = 0xffffc000u; 3947 } 3948 3949 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3950 uint64_t value) 3951 { 3952 ARMCPU *cpu = env_archcpu(env); 3953 TCR *tcr = raw_ptr(env, ri); 3954 3955 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3956 tlb_flush(CPU(cpu)); 3957 tcr->raw_tcr = value; 3958 } 3959 3960 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3961 uint64_t value) 3962 { 3963 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3964 if (cpreg_field_is_64bit(ri) && 3965 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3966 ARMCPU *cpu = env_archcpu(env); 3967 tlb_flush(CPU(cpu)); 3968 } 3969 raw_write(env, ri, value); 3970 } 3971 3972 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3973 uint64_t value) 3974 { 3975 /* 3976 * If we are running with E2&0 regime, then an ASID is active. 3977 * Flush if that might be changing. Note we're not checking 3978 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3979 * holds the active ASID, only checking the field that might. 3980 */ 3981 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3982 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3983 tlb_flush_by_mmuidx(env_cpu(env), 3984 ARMMMUIdxBit_E20_2 | 3985 ARMMMUIdxBit_E20_2_PAN | 3986 ARMMMUIdxBit_E20_0); 3987 } 3988 raw_write(env, ri, value); 3989 } 3990 3991 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3992 uint64_t value) 3993 { 3994 ARMCPU *cpu = env_archcpu(env); 3995 CPUState *cs = CPU(cpu); 3996 3997 /* 3998 * A change in VMID to the stage2 page table (Stage2) invalidates 3999 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 4000 */ 4001 if (raw_read(env, ri) != value) { 4002 tlb_flush_by_mmuidx(cs, 4003 ARMMMUIdxBit_E10_1 | 4004 ARMMMUIdxBit_E10_1_PAN | 4005 ARMMMUIdxBit_E10_0); 4006 raw_write(env, ri, value); 4007 } 4008 } 4009 4010 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4011 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4012 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4013 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4014 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4015 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4016 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4017 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4018 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4019 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4020 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4021 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4022 offsetof(CPUARMState, cp15.dfar_ns) } }, 4023 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4024 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4025 .access = PL1_RW, .accessfn = access_tvm_trvm, 4026 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4027 .resetvalue = 0, }, 4028 REGINFO_SENTINEL 4029 }; 4030 4031 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4032 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4033 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4034 .access = PL1_RW, .accessfn = access_tvm_trvm, 4035 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4036 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4037 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4038 .access = PL1_RW, .accessfn = access_tvm_trvm, 4039 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4040 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4041 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4042 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4043 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4044 .access = PL1_RW, .accessfn = access_tvm_trvm, 4045 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4046 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4047 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4048 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4049 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4050 .access = PL1_RW, .accessfn = access_tvm_trvm, 4051 .writefn = vmsa_tcr_el12_write, 4052 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 4053 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4054 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4055 .access = PL1_RW, .accessfn = access_tvm_trvm, 4056 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4057 .raw_writefn = vmsa_ttbcr_raw_write, 4058 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4059 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4060 REGINFO_SENTINEL 4061 }; 4062 4063 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4064 * qemu tlbs nor adjusting cached masks. 4065 */ 4066 static const ARMCPRegInfo ttbcr2_reginfo = { 4067 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4068 .access = PL1_RW, .accessfn = access_tvm_trvm, 4069 .type = ARM_CP_ALIAS, 4070 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4071 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 4072 }; 4073 4074 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4075 uint64_t value) 4076 { 4077 env->cp15.c15_ticonfig = value & 0xe7; 4078 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4079 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4080 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4081 } 4082 4083 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4084 uint64_t value) 4085 { 4086 env->cp15.c15_threadid = value & 0xffff; 4087 } 4088 4089 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4090 uint64_t value) 4091 { 4092 /* Wait-for-interrupt (deprecated) */ 4093 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4094 } 4095 4096 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4097 uint64_t value) 4098 { 4099 /* On OMAP there are registers indicating the max/min index of dcache lines 4100 * containing a dirty line; cache flush operations have to reset these. 4101 */ 4102 env->cp15.c15_i_max = 0x000; 4103 env->cp15.c15_i_min = 0xff0; 4104 } 4105 4106 static const ARMCPRegInfo omap_cp_reginfo[] = { 4107 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4108 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4109 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4110 .resetvalue = 0, }, 4111 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4112 .access = PL1_RW, .type = ARM_CP_NOP }, 4113 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4114 .access = PL1_RW, 4115 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4116 .writefn = omap_ticonfig_write }, 4117 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4118 .access = PL1_RW, 4119 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4120 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4121 .access = PL1_RW, .resetvalue = 0xff0, 4122 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4123 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4124 .access = PL1_RW, 4125 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4126 .writefn = omap_threadid_write }, 4127 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4128 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4129 .type = ARM_CP_NO_RAW, 4130 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4131 /* TODO: Peripheral port remap register: 4132 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4133 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4134 * when MMU is off. 4135 */ 4136 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4137 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4138 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4139 .writefn = omap_cachemaint_write }, 4140 { .name = "C9", .cp = 15, .crn = 9, 4141 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4142 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4143 REGINFO_SENTINEL 4144 }; 4145 4146 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4147 uint64_t value) 4148 { 4149 env->cp15.c15_cpar = value & 0x3fff; 4150 } 4151 4152 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4153 { .name = "XSCALE_CPAR", 4154 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4155 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4156 .writefn = xscale_cpar_write, }, 4157 { .name = "XSCALE_AUXCR", 4158 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4159 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4160 .resetvalue = 0, }, 4161 /* XScale specific cache-lockdown: since we have no cache we NOP these 4162 * and hope the guest does not really rely on cache behaviour. 4163 */ 4164 { .name = "XSCALE_LOCK_ICACHE_LINE", 4165 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4166 .access = PL1_W, .type = ARM_CP_NOP }, 4167 { .name = "XSCALE_UNLOCK_ICACHE", 4168 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4169 .access = PL1_W, .type = ARM_CP_NOP }, 4170 { .name = "XSCALE_DCACHE_LOCK", 4171 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4172 .access = PL1_RW, .type = ARM_CP_NOP }, 4173 { .name = "XSCALE_UNLOCK_DCACHE", 4174 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4175 .access = PL1_W, .type = ARM_CP_NOP }, 4176 REGINFO_SENTINEL 4177 }; 4178 4179 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4180 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 4181 * implementation of this implementation-defined space. 4182 * Ideally this should eventually disappear in favour of actually 4183 * implementing the correct behaviour for all cores. 4184 */ 4185 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4186 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4187 .access = PL1_RW, 4188 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4189 .resetvalue = 0 }, 4190 REGINFO_SENTINEL 4191 }; 4192 4193 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4194 /* Cache status: RAZ because we have no cache so it's always clean */ 4195 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4196 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4197 .resetvalue = 0 }, 4198 REGINFO_SENTINEL 4199 }; 4200 4201 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4202 /* We never have a a block transfer operation in progress */ 4203 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4204 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4205 .resetvalue = 0 }, 4206 /* The cache ops themselves: these all NOP for QEMU */ 4207 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4208 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4209 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4210 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4211 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4212 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4213 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4214 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4215 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4216 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4217 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4218 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4219 REGINFO_SENTINEL 4220 }; 4221 4222 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4223 /* The cache test-and-clean instructions always return (1 << 30) 4224 * to indicate that there are no dirty cache lines. 4225 */ 4226 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4227 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4228 .resetvalue = (1 << 30) }, 4229 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4230 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4231 .resetvalue = (1 << 30) }, 4232 REGINFO_SENTINEL 4233 }; 4234 4235 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4236 /* Ignore ReadBuffer accesses */ 4237 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4238 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4239 .access = PL1_RW, .resetvalue = 0, 4240 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4241 REGINFO_SENTINEL 4242 }; 4243 4244 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4245 { 4246 ARMCPU *cpu = env_archcpu(env); 4247 unsigned int cur_el = arm_current_el(env); 4248 bool secure = arm_is_secure(env); 4249 4250 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 4251 return env->cp15.vpidr_el2; 4252 } 4253 return raw_read(env, ri); 4254 } 4255 4256 static uint64_t mpidr_read_val(CPUARMState *env) 4257 { 4258 ARMCPU *cpu = env_archcpu(env); 4259 uint64_t mpidr = cpu->mp_affinity; 4260 4261 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4262 mpidr |= (1U << 31); 4263 /* Cores which are uniprocessor (non-coherent) 4264 * but still implement the MP extensions set 4265 * bit 30. (For instance, Cortex-R5). 4266 */ 4267 if (cpu->mp_is_up) { 4268 mpidr |= (1u << 30); 4269 } 4270 } 4271 return mpidr; 4272 } 4273 4274 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4275 { 4276 unsigned int cur_el = arm_current_el(env); 4277 bool secure = arm_is_secure(env); 4278 4279 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 4280 return env->cp15.vmpidr_el2; 4281 } 4282 return mpidr_read_val(env); 4283 } 4284 4285 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4286 /* NOP AMAIR0/1 */ 4287 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4288 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4289 .access = PL1_RW, .accessfn = access_tvm_trvm, 4290 .type = ARM_CP_CONST, .resetvalue = 0 }, 4291 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4292 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4293 .access = PL1_RW, .accessfn = access_tvm_trvm, 4294 .type = ARM_CP_CONST, .resetvalue = 0 }, 4295 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4296 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4297 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4298 offsetof(CPUARMState, cp15.par_ns)} }, 4299 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4300 .access = PL1_RW, .accessfn = access_tvm_trvm, 4301 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4302 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4303 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4304 .writefn = vmsa_ttbr_write, }, 4305 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4306 .access = PL1_RW, .accessfn = access_tvm_trvm, 4307 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4308 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4309 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4310 .writefn = vmsa_ttbr_write, }, 4311 REGINFO_SENTINEL 4312 }; 4313 4314 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4315 { 4316 return vfp_get_fpcr(env); 4317 } 4318 4319 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4320 uint64_t value) 4321 { 4322 vfp_set_fpcr(env, value); 4323 } 4324 4325 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4326 { 4327 return vfp_get_fpsr(env); 4328 } 4329 4330 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4331 uint64_t value) 4332 { 4333 vfp_set_fpsr(env, value); 4334 } 4335 4336 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4337 bool isread) 4338 { 4339 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4340 return CP_ACCESS_TRAP; 4341 } 4342 return CP_ACCESS_OK; 4343 } 4344 4345 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4346 uint64_t value) 4347 { 4348 env->daif = value & PSTATE_DAIF; 4349 } 4350 4351 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4352 { 4353 return env->pstate & PSTATE_PAN; 4354 } 4355 4356 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4357 uint64_t value) 4358 { 4359 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4360 } 4361 4362 static const ARMCPRegInfo pan_reginfo = { 4363 .name = "PAN", .state = ARM_CP_STATE_AA64, 4364 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4365 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4366 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4367 }; 4368 4369 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4370 { 4371 return env->pstate & PSTATE_UAO; 4372 } 4373 4374 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4375 uint64_t value) 4376 { 4377 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4378 } 4379 4380 static const ARMCPRegInfo uao_reginfo = { 4381 .name = "UAO", .state = ARM_CP_STATE_AA64, 4382 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4383 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4384 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4385 }; 4386 4387 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4388 const ARMCPRegInfo *ri, 4389 bool isread) 4390 { 4391 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4392 switch (arm_current_el(env)) { 4393 case 0: 4394 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4395 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4396 return CP_ACCESS_TRAP; 4397 } 4398 /* fall through */ 4399 case 1: 4400 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4401 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4402 return CP_ACCESS_TRAP_EL2; 4403 } 4404 break; 4405 } 4406 return CP_ACCESS_OK; 4407 } 4408 4409 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4410 const ARMCPRegInfo *ri, 4411 bool isread) 4412 { 4413 /* Cache invalidate/clean to Point of Unification... */ 4414 switch (arm_current_el(env)) { 4415 case 0: 4416 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4417 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4418 return CP_ACCESS_TRAP; 4419 } 4420 /* fall through */ 4421 case 1: 4422 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4423 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4424 return CP_ACCESS_TRAP_EL2; 4425 } 4426 break; 4427 } 4428 return CP_ACCESS_OK; 4429 } 4430 4431 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4432 * Page D4-1736 (DDI0487A.b) 4433 */ 4434 4435 static int vae1_tlbmask(CPUARMState *env) 4436 { 4437 /* Since we exclude secure first, we may read HCR_EL2 directly. */ 4438 if (arm_is_secure_below_el3(env)) { 4439 return ARMMMUIdxBit_SE10_1 | 4440 ARMMMUIdxBit_SE10_1_PAN | 4441 ARMMMUIdxBit_SE10_0; 4442 } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) 4443 == (HCR_E2H | HCR_TGE)) { 4444 return ARMMMUIdxBit_E20_2 | 4445 ARMMMUIdxBit_E20_2_PAN | 4446 ARMMMUIdxBit_E20_0; 4447 } else { 4448 return ARMMMUIdxBit_E10_1 | 4449 ARMMMUIdxBit_E10_1_PAN | 4450 ARMMMUIdxBit_E10_0; 4451 } 4452 } 4453 4454 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4455 uint64_t value) 4456 { 4457 CPUState *cs = env_cpu(env); 4458 int mask = vae1_tlbmask(env); 4459 4460 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4461 } 4462 4463 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4464 uint64_t value) 4465 { 4466 CPUState *cs = env_cpu(env); 4467 int mask = vae1_tlbmask(env); 4468 4469 if (tlb_force_broadcast(env)) { 4470 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4471 } else { 4472 tlb_flush_by_mmuidx(cs, mask); 4473 } 4474 } 4475 4476 static int alle1_tlbmask(CPUARMState *env) 4477 { 4478 /* 4479 * Note that the 'ALL' scope must invalidate both stage 1 and 4480 * stage 2 translations, whereas most other scopes only invalidate 4481 * stage 1 translations. 4482 */ 4483 if (arm_is_secure_below_el3(env)) { 4484 return ARMMMUIdxBit_SE10_1 | 4485 ARMMMUIdxBit_SE10_1_PAN | 4486 ARMMMUIdxBit_SE10_0; 4487 } else { 4488 return ARMMMUIdxBit_E10_1 | 4489 ARMMMUIdxBit_E10_1_PAN | 4490 ARMMMUIdxBit_E10_0; 4491 } 4492 } 4493 4494 static int e2_tlbmask(CPUARMState *env) 4495 { 4496 /* TODO: ARMv8.4-SecEL2 */ 4497 return ARMMMUIdxBit_E20_0 | 4498 ARMMMUIdxBit_E20_2 | 4499 ARMMMUIdxBit_E20_2_PAN | 4500 ARMMMUIdxBit_E2; 4501 } 4502 4503 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4504 uint64_t value) 4505 { 4506 CPUState *cs = env_cpu(env); 4507 int mask = alle1_tlbmask(env); 4508 4509 tlb_flush_by_mmuidx(cs, mask); 4510 } 4511 4512 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4513 uint64_t value) 4514 { 4515 CPUState *cs = env_cpu(env); 4516 int mask = e2_tlbmask(env); 4517 4518 tlb_flush_by_mmuidx(cs, mask); 4519 } 4520 4521 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4522 uint64_t value) 4523 { 4524 ARMCPU *cpu = env_archcpu(env); 4525 CPUState *cs = CPU(cpu); 4526 4527 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4528 } 4529 4530 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4531 uint64_t value) 4532 { 4533 CPUState *cs = env_cpu(env); 4534 int mask = alle1_tlbmask(env); 4535 4536 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4537 } 4538 4539 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4540 uint64_t value) 4541 { 4542 CPUState *cs = env_cpu(env); 4543 int mask = e2_tlbmask(env); 4544 4545 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4546 } 4547 4548 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4549 uint64_t value) 4550 { 4551 CPUState *cs = env_cpu(env); 4552 4553 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4554 } 4555 4556 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4557 uint64_t value) 4558 { 4559 /* Invalidate by VA, EL2 4560 * Currently handles both VAE2 and VALE2, since we don't support 4561 * flush-last-level-only. 4562 */ 4563 CPUState *cs = env_cpu(env); 4564 int mask = e2_tlbmask(env); 4565 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4566 4567 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4568 } 4569 4570 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4571 uint64_t value) 4572 { 4573 /* Invalidate by VA, EL3 4574 * Currently handles both VAE3 and VALE3, since we don't support 4575 * flush-last-level-only. 4576 */ 4577 ARMCPU *cpu = env_archcpu(env); 4578 CPUState *cs = CPU(cpu); 4579 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4580 4581 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4582 } 4583 4584 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4585 uint64_t value) 4586 { 4587 CPUState *cs = env_cpu(env); 4588 int mask = vae1_tlbmask(env); 4589 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4590 4591 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4592 } 4593 4594 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4595 uint64_t value) 4596 { 4597 /* Invalidate by VA, EL1&0 (AArch64 version). 4598 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4599 * since we don't support flush-for-specific-ASID-only or 4600 * flush-last-level-only. 4601 */ 4602 CPUState *cs = env_cpu(env); 4603 int mask = vae1_tlbmask(env); 4604 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4605 4606 if (tlb_force_broadcast(env)) { 4607 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4608 } else { 4609 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4610 } 4611 } 4612 4613 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4614 uint64_t value) 4615 { 4616 CPUState *cs = env_cpu(env); 4617 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4618 4619 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4620 ARMMMUIdxBit_E2); 4621 } 4622 4623 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4624 uint64_t value) 4625 { 4626 CPUState *cs = env_cpu(env); 4627 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4628 4629 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4630 ARMMMUIdxBit_SE3); 4631 } 4632 4633 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4634 bool isread) 4635 { 4636 int cur_el = arm_current_el(env); 4637 4638 if (cur_el < 2) { 4639 uint64_t hcr = arm_hcr_el2_eff(env); 4640 4641 if (cur_el == 0) { 4642 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4643 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4644 return CP_ACCESS_TRAP_EL2; 4645 } 4646 } else { 4647 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4648 return CP_ACCESS_TRAP; 4649 } 4650 if (hcr & HCR_TDZ) { 4651 return CP_ACCESS_TRAP_EL2; 4652 } 4653 } 4654 } else if (hcr & HCR_TDZ) { 4655 return CP_ACCESS_TRAP_EL2; 4656 } 4657 } 4658 return CP_ACCESS_OK; 4659 } 4660 4661 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4662 { 4663 ARMCPU *cpu = env_archcpu(env); 4664 int dzp_bit = 1 << 4; 4665 4666 /* DZP indicates whether DC ZVA access is allowed */ 4667 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4668 dzp_bit = 0; 4669 } 4670 return cpu->dcz_blocksize | dzp_bit; 4671 } 4672 4673 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4674 bool isread) 4675 { 4676 if (!(env->pstate & PSTATE_SP)) { 4677 /* Access to SP_EL0 is undefined if it's being used as 4678 * the stack pointer. 4679 */ 4680 return CP_ACCESS_TRAP_UNCATEGORIZED; 4681 } 4682 return CP_ACCESS_OK; 4683 } 4684 4685 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4686 { 4687 return env->pstate & PSTATE_SP; 4688 } 4689 4690 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4691 { 4692 update_spsel(env, val); 4693 } 4694 4695 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4696 uint64_t value) 4697 { 4698 ARMCPU *cpu = env_archcpu(env); 4699 4700 if (raw_read(env, ri) == value) { 4701 /* Skip the TLB flush if nothing actually changed; Linux likes 4702 * to do a lot of pointless SCTLR writes. 4703 */ 4704 return; 4705 } 4706 4707 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4708 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4709 value &= ~SCTLR_M; 4710 } 4711 4712 raw_write(env, ri, value); 4713 /* ??? Lots of these bits are not implemented. */ 4714 /* This may enable/disable the MMU, so do a TLB flush. */ 4715 tlb_flush(CPU(cpu)); 4716 4717 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4718 /* 4719 * Normally we would always end the TB on an SCTLR write; see the 4720 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4721 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4722 * of hflags from the translator, so do it here. 4723 */ 4724 arm_rebuild_hflags(env); 4725 } 4726 } 4727 4728 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4729 bool isread) 4730 { 4731 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4732 return CP_ACCESS_TRAP_FP_EL2; 4733 } 4734 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4735 return CP_ACCESS_TRAP_FP_EL3; 4736 } 4737 return CP_ACCESS_OK; 4738 } 4739 4740 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4741 uint64_t value) 4742 { 4743 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4744 } 4745 4746 static const ARMCPRegInfo v8_cp_reginfo[] = { 4747 /* Minimal set of EL0-visible registers. This will need to be expanded 4748 * significantly for system emulation of AArch64 CPUs. 4749 */ 4750 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4751 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4752 .access = PL0_RW, .type = ARM_CP_NZCV }, 4753 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4754 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4755 .type = ARM_CP_NO_RAW, 4756 .access = PL0_RW, .accessfn = aa64_daif_access, 4757 .fieldoffset = offsetof(CPUARMState, daif), 4758 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4759 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4760 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4761 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4762 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4763 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4764 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4765 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4766 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4767 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4768 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4769 .access = PL0_R, .type = ARM_CP_NO_RAW, 4770 .readfn = aa64_dczid_read }, 4771 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4772 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4773 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4774 #ifndef CONFIG_USER_ONLY 4775 /* Avoid overhead of an access check that always passes in user-mode */ 4776 .accessfn = aa64_zva_access, 4777 #endif 4778 }, 4779 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4780 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4781 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4782 /* Cache ops: all NOPs since we don't emulate caches */ 4783 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4784 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4785 .access = PL1_W, .type = ARM_CP_NOP, 4786 .accessfn = aa64_cacheop_pou_access }, 4787 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4788 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4789 .access = PL1_W, .type = ARM_CP_NOP, 4790 .accessfn = aa64_cacheop_pou_access }, 4791 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4792 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4793 .access = PL0_W, .type = ARM_CP_NOP, 4794 .accessfn = aa64_cacheop_pou_access }, 4795 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4796 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4797 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4798 .type = ARM_CP_NOP }, 4799 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4800 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4801 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4802 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4803 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4804 .access = PL0_W, .type = ARM_CP_NOP, 4805 .accessfn = aa64_cacheop_poc_access }, 4806 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4807 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4808 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4809 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4810 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4811 .access = PL0_W, .type = ARM_CP_NOP, 4812 .accessfn = aa64_cacheop_pou_access }, 4813 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4814 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4815 .access = PL0_W, .type = ARM_CP_NOP, 4816 .accessfn = aa64_cacheop_poc_access }, 4817 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4818 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4819 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4820 /* TLBI operations */ 4821 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4822 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4823 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4824 .writefn = tlbi_aa64_vmalle1is_write }, 4825 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4826 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4827 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4828 .writefn = tlbi_aa64_vae1is_write }, 4829 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4830 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4831 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4832 .writefn = tlbi_aa64_vmalle1is_write }, 4833 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4834 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4835 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4836 .writefn = tlbi_aa64_vae1is_write }, 4837 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4838 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4839 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4840 .writefn = tlbi_aa64_vae1is_write }, 4841 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4842 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4843 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4844 .writefn = tlbi_aa64_vae1is_write }, 4845 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4846 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4847 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4848 .writefn = tlbi_aa64_vmalle1_write }, 4849 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4850 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4851 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4852 .writefn = tlbi_aa64_vae1_write }, 4853 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4854 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4855 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4856 .writefn = tlbi_aa64_vmalle1_write }, 4857 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4858 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4859 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4860 .writefn = tlbi_aa64_vae1_write }, 4861 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4862 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4863 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4864 .writefn = tlbi_aa64_vae1_write }, 4865 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4866 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4867 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4868 .writefn = tlbi_aa64_vae1_write }, 4869 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4870 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4871 .access = PL2_W, .type = ARM_CP_NOP }, 4872 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4873 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4874 .access = PL2_W, .type = ARM_CP_NOP }, 4875 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4876 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4877 .access = PL2_W, .type = ARM_CP_NO_RAW, 4878 .writefn = tlbi_aa64_alle1is_write }, 4879 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4880 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4881 .access = PL2_W, .type = ARM_CP_NO_RAW, 4882 .writefn = tlbi_aa64_alle1is_write }, 4883 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4884 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4885 .access = PL2_W, .type = ARM_CP_NOP }, 4886 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4887 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4888 .access = PL2_W, .type = ARM_CP_NOP }, 4889 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4890 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4891 .access = PL2_W, .type = ARM_CP_NO_RAW, 4892 .writefn = tlbi_aa64_alle1_write }, 4893 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4894 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4895 .access = PL2_W, .type = ARM_CP_NO_RAW, 4896 .writefn = tlbi_aa64_alle1is_write }, 4897 #ifndef CONFIG_USER_ONLY 4898 /* 64 bit address translation operations */ 4899 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4900 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4901 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4902 .writefn = ats_write64 }, 4903 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4904 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4905 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4906 .writefn = ats_write64 }, 4907 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4908 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4909 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4910 .writefn = ats_write64 }, 4911 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4912 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4913 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4914 .writefn = ats_write64 }, 4915 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4916 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4917 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4918 .writefn = ats_write64 }, 4919 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4920 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4921 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4922 .writefn = ats_write64 }, 4923 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4924 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4925 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4926 .writefn = ats_write64 }, 4927 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4928 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4929 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4930 .writefn = ats_write64 }, 4931 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4932 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4933 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4934 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4935 .writefn = ats_write64 }, 4936 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4937 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4938 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4939 .writefn = ats_write64 }, 4940 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4941 .type = ARM_CP_ALIAS, 4942 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4943 .access = PL1_RW, .resetvalue = 0, 4944 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4945 .writefn = par_write }, 4946 #endif 4947 /* TLB invalidate last level of translation table walk */ 4948 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4949 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4950 .writefn = tlbimva_is_write }, 4951 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4952 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4953 .writefn = tlbimvaa_is_write }, 4954 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4955 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4956 .writefn = tlbimva_write }, 4957 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4958 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4959 .writefn = tlbimvaa_write }, 4960 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4961 .type = ARM_CP_NO_RAW, .access = PL2_W, 4962 .writefn = tlbimva_hyp_write }, 4963 { .name = "TLBIMVALHIS", 4964 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4965 .type = ARM_CP_NO_RAW, .access = PL2_W, 4966 .writefn = tlbimva_hyp_is_write }, 4967 { .name = "TLBIIPAS2", 4968 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4969 .type = ARM_CP_NOP, .access = PL2_W }, 4970 { .name = "TLBIIPAS2IS", 4971 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4972 .type = ARM_CP_NOP, .access = PL2_W }, 4973 { .name = "TLBIIPAS2L", 4974 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4975 .type = ARM_CP_NOP, .access = PL2_W }, 4976 { .name = "TLBIIPAS2LIS", 4977 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4978 .type = ARM_CP_NOP, .access = PL2_W }, 4979 /* 32 bit cache operations */ 4980 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4981 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 4982 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 4983 .type = ARM_CP_NOP, .access = PL1_W }, 4984 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4985 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 4986 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 4987 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 4988 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 4989 .type = ARM_CP_NOP, .access = PL1_W }, 4990 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 4991 .type = ARM_CP_NOP, .access = PL1_W }, 4992 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4993 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 4994 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4995 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 4996 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 4997 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 4998 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4999 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5000 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5001 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5002 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5003 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5004 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5005 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5006 /* MMU Domain access control / MPU write buffer control */ 5007 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5008 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5009 .writefn = dacr_write, .raw_writefn = raw_write, 5010 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5011 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5012 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5013 .type = ARM_CP_ALIAS, 5014 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5015 .access = PL1_RW, 5016 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5017 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5018 .type = ARM_CP_ALIAS, 5019 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5020 .access = PL1_RW, 5021 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5022 /* We rely on the access checks not allowing the guest to write to the 5023 * state field when SPSel indicates that it's being used as the stack 5024 * pointer. 5025 */ 5026 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5027 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5028 .access = PL1_RW, .accessfn = sp_el0_access, 5029 .type = ARM_CP_ALIAS, 5030 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5031 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5032 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5033 .access = PL2_RW, .type = ARM_CP_ALIAS, 5034 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5035 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5036 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5037 .type = ARM_CP_NO_RAW, 5038 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5039 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5040 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5041 .type = ARM_CP_ALIAS, 5042 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5043 .access = PL2_RW, .accessfn = fpexc32_access }, 5044 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5045 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5046 .access = PL2_RW, .resetvalue = 0, 5047 .writefn = dacr_write, .raw_writefn = raw_write, 5048 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5049 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5050 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5051 .access = PL2_RW, .resetvalue = 0, 5052 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5053 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5054 .type = ARM_CP_ALIAS, 5055 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5056 .access = PL2_RW, 5057 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5058 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5059 .type = ARM_CP_ALIAS, 5060 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5061 .access = PL2_RW, 5062 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5063 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5064 .type = ARM_CP_ALIAS, 5065 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5066 .access = PL2_RW, 5067 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5068 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5069 .type = ARM_CP_ALIAS, 5070 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5071 .access = PL2_RW, 5072 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5073 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5074 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5075 .resetvalue = 0, 5076 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5077 { .name = "SDCR", .type = ARM_CP_ALIAS, 5078 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5079 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5080 .writefn = sdcr_write, 5081 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5082 REGINFO_SENTINEL 5083 }; 5084 5085 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5086 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5087 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5088 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5089 .access = PL2_RW, 5090 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5091 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5092 .type = ARM_CP_NO_RAW, 5093 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5094 .access = PL2_RW, 5095 .type = ARM_CP_CONST, .resetvalue = 0 }, 5096 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5097 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5098 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5099 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5100 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5101 .access = PL2_RW, 5102 .type = ARM_CP_CONST, .resetvalue = 0 }, 5103 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5104 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5105 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5106 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5107 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5108 .access = PL2_RW, .type = ARM_CP_CONST, 5109 .resetvalue = 0 }, 5110 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5111 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5112 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5113 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5114 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5115 .access = PL2_RW, .type = ARM_CP_CONST, 5116 .resetvalue = 0 }, 5117 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5118 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5119 .access = PL2_RW, .type = ARM_CP_CONST, 5120 .resetvalue = 0 }, 5121 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5122 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5123 .access = PL2_RW, .type = ARM_CP_CONST, 5124 .resetvalue = 0 }, 5125 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5126 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5127 .access = PL2_RW, .type = ARM_CP_CONST, 5128 .resetvalue = 0 }, 5129 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5130 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5131 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5132 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5133 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5134 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5135 .type = ARM_CP_CONST, .resetvalue = 0 }, 5136 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5137 .cp = 15, .opc1 = 6, .crm = 2, 5138 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5139 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5140 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5141 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5142 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5143 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5144 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5145 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5146 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5147 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5148 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5149 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5150 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5151 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5152 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5153 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5154 .resetvalue = 0 }, 5155 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5156 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5157 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5158 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5159 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5160 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5161 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5162 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5163 .resetvalue = 0 }, 5164 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5165 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5166 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5167 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5168 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5169 .resetvalue = 0 }, 5170 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5171 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5172 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5173 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5174 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5175 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5176 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5177 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5178 .access = PL2_RW, .accessfn = access_tda, 5179 .type = ARM_CP_CONST, .resetvalue = 0 }, 5180 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5181 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5182 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5183 .type = ARM_CP_CONST, .resetvalue = 0 }, 5184 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5185 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5186 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5187 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5188 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5189 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5190 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5191 .type = ARM_CP_CONST, 5192 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5193 .access = PL2_RW, .resetvalue = 0 }, 5194 REGINFO_SENTINEL 5195 }; 5196 5197 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5198 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5199 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5200 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5201 .access = PL2_RW, 5202 .type = ARM_CP_CONST, .resetvalue = 0 }, 5203 REGINFO_SENTINEL 5204 }; 5205 5206 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5207 { 5208 ARMCPU *cpu = env_archcpu(env); 5209 5210 if (arm_feature(env, ARM_FEATURE_V8)) { 5211 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5212 } else { 5213 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5214 } 5215 5216 if (arm_feature(env, ARM_FEATURE_EL3)) { 5217 valid_mask &= ~HCR_HCD; 5218 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5219 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5220 * However, if we're using the SMC PSCI conduit then QEMU is 5221 * effectively acting like EL3 firmware and so the guest at 5222 * EL2 should retain the ability to prevent EL1 from being 5223 * able to make SMC calls into the ersatz firmware, so in 5224 * that case HCR.TSC should be read/write. 5225 */ 5226 valid_mask &= ~HCR_TSC; 5227 } 5228 5229 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5230 if (cpu_isar_feature(aa64_vh, cpu)) { 5231 valid_mask |= HCR_E2H; 5232 } 5233 if (cpu_isar_feature(aa64_lor, cpu)) { 5234 valid_mask |= HCR_TLOR; 5235 } 5236 if (cpu_isar_feature(aa64_pauth, cpu)) { 5237 valid_mask |= HCR_API | HCR_APK; 5238 } 5239 } 5240 5241 /* Clear RES0 bits. */ 5242 value &= valid_mask; 5243 5244 /* These bits change the MMU setup: 5245 * HCR_VM enables stage 2 translation 5246 * HCR_PTW forbids certain page-table setups 5247 * HCR_DC Disables stage1 and enables stage2 translation 5248 */ 5249 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 5250 tlb_flush(CPU(cpu)); 5251 } 5252 env->cp15.hcr_el2 = value; 5253 5254 /* 5255 * Updates to VI and VF require us to update the status of 5256 * virtual interrupts, which are the logical OR of these bits 5257 * and the state of the input lines from the GIC. (This requires 5258 * that we have the iothread lock, which is done by marking the 5259 * reginfo structs as ARM_CP_IO.) 5260 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5261 * possible for it to be taken immediately, because VIRQ and 5262 * VFIQ are masked unless running at EL0 or EL1, and HCR 5263 * can only be written at EL2. 5264 */ 5265 g_assert(qemu_mutex_iothread_locked()); 5266 arm_cpu_update_virq(cpu); 5267 arm_cpu_update_vfiq(cpu); 5268 } 5269 5270 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5271 { 5272 do_hcr_write(env, value, 0); 5273 } 5274 5275 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5276 uint64_t value) 5277 { 5278 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5279 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5280 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5281 } 5282 5283 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5284 uint64_t value) 5285 { 5286 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5287 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5288 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5289 } 5290 5291 /* 5292 * Return the effective value of HCR_EL2. 5293 * Bits that are not included here: 5294 * RW (read from SCR_EL3.RW as needed) 5295 */ 5296 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5297 { 5298 uint64_t ret = env->cp15.hcr_el2; 5299 5300 if (arm_is_secure_below_el3(env)) { 5301 /* 5302 * "This register has no effect if EL2 is not enabled in the 5303 * current Security state". This is ARMv8.4-SecEL2 speak for 5304 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5305 * 5306 * Prior to that, the language was "In an implementation that 5307 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5308 * as if this field is 0 for all purposes other than a direct 5309 * read or write access of HCR_EL2". With lots of enumeration 5310 * on a per-field basis. In current QEMU, this is condition 5311 * is arm_is_secure_below_el3. 5312 * 5313 * Since the v8.4 language applies to the entire register, and 5314 * appears to be backward compatible, use that. 5315 */ 5316 return 0; 5317 } 5318 5319 /* 5320 * For a cpu that supports both aarch64 and aarch32, we can set bits 5321 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5322 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5323 */ 5324 if (!arm_el_is_aa64(env, 2)) { 5325 uint64_t aa32_valid; 5326 5327 /* 5328 * These bits are up-to-date as of ARMv8.6. 5329 * For HCR, it's easiest to list just the 2 bits that are invalid. 5330 * For HCR2, list those that are valid. 5331 */ 5332 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5333 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5334 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5335 ret &= aa32_valid; 5336 } 5337 5338 if (ret & HCR_TGE) { 5339 /* These bits are up-to-date as of ARMv8.6. */ 5340 if (ret & HCR_E2H) { 5341 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5342 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5343 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5344 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5345 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5346 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5347 } else { 5348 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5349 } 5350 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5351 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5352 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5353 HCR_TLOR); 5354 } 5355 5356 return ret; 5357 } 5358 5359 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5360 uint64_t value) 5361 { 5362 /* 5363 * For A-profile AArch32 EL3, if NSACR.CP10 5364 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5365 */ 5366 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5367 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5368 value &= ~(0x3 << 10); 5369 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5370 } 5371 env->cp15.cptr_el[2] = value; 5372 } 5373 5374 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5375 { 5376 /* 5377 * For A-profile AArch32 EL3, if NSACR.CP10 5378 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5379 */ 5380 uint64_t value = env->cp15.cptr_el[2]; 5381 5382 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5383 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5384 value |= 0x3 << 10; 5385 } 5386 return value; 5387 } 5388 5389 static const ARMCPRegInfo el2_cp_reginfo[] = { 5390 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5391 .type = ARM_CP_IO, 5392 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5393 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5394 .writefn = hcr_write }, 5395 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5396 .type = ARM_CP_ALIAS | ARM_CP_IO, 5397 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5398 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5399 .writefn = hcr_writelow }, 5400 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5401 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5402 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5403 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5404 .type = ARM_CP_ALIAS, 5405 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5406 .access = PL2_RW, 5407 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5408 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5409 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5410 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5411 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5412 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5413 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5414 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5415 .type = ARM_CP_ALIAS, 5416 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5417 .access = PL2_RW, 5418 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5419 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5420 .type = ARM_CP_ALIAS, 5421 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5422 .access = PL2_RW, 5423 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5424 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5425 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5426 .access = PL2_RW, .writefn = vbar_write, 5427 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5428 .resetvalue = 0 }, 5429 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5430 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5431 .access = PL3_RW, .type = ARM_CP_ALIAS, 5432 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5433 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5434 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5435 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5436 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5437 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5438 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5439 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5440 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5441 .resetvalue = 0 }, 5442 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5443 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5444 .access = PL2_RW, .type = ARM_CP_ALIAS, 5445 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5446 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5447 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5448 .access = PL2_RW, .type = ARM_CP_CONST, 5449 .resetvalue = 0 }, 5450 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5451 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5452 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5453 .access = PL2_RW, .type = ARM_CP_CONST, 5454 .resetvalue = 0 }, 5455 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5456 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5457 .access = PL2_RW, .type = ARM_CP_CONST, 5458 .resetvalue = 0 }, 5459 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5460 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5461 .access = PL2_RW, .type = ARM_CP_CONST, 5462 .resetvalue = 0 }, 5463 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5464 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5465 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5466 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5467 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5468 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5469 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5470 .type = ARM_CP_ALIAS, 5471 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5472 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5473 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5474 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5475 .access = PL2_RW, 5476 /* no .writefn needed as this can't cause an ASID change; 5477 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5478 */ 5479 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5480 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5481 .cp = 15, .opc1 = 6, .crm = 2, 5482 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5483 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5484 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5485 .writefn = vttbr_write }, 5486 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5487 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5488 .access = PL2_RW, .writefn = vttbr_write, 5489 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5490 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5491 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5492 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5493 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5494 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5495 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5496 .access = PL2_RW, .resetvalue = 0, 5497 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5498 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5499 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5500 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5501 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5502 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5503 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5504 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5505 { .name = "TLBIALLNSNH", 5506 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5507 .type = ARM_CP_NO_RAW, .access = PL2_W, 5508 .writefn = tlbiall_nsnh_write }, 5509 { .name = "TLBIALLNSNHIS", 5510 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5511 .type = ARM_CP_NO_RAW, .access = PL2_W, 5512 .writefn = tlbiall_nsnh_is_write }, 5513 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5514 .type = ARM_CP_NO_RAW, .access = PL2_W, 5515 .writefn = tlbiall_hyp_write }, 5516 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5517 .type = ARM_CP_NO_RAW, .access = PL2_W, 5518 .writefn = tlbiall_hyp_is_write }, 5519 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5520 .type = ARM_CP_NO_RAW, .access = PL2_W, 5521 .writefn = tlbimva_hyp_write }, 5522 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5523 .type = ARM_CP_NO_RAW, .access = PL2_W, 5524 .writefn = tlbimva_hyp_is_write }, 5525 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5526 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5527 .type = ARM_CP_NO_RAW, .access = PL2_W, 5528 .writefn = tlbi_aa64_alle2_write }, 5529 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5530 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5531 .type = ARM_CP_NO_RAW, .access = PL2_W, 5532 .writefn = tlbi_aa64_vae2_write }, 5533 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5534 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5535 .access = PL2_W, .type = ARM_CP_NO_RAW, 5536 .writefn = tlbi_aa64_vae2_write }, 5537 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5538 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5539 .access = PL2_W, .type = ARM_CP_NO_RAW, 5540 .writefn = tlbi_aa64_alle2is_write }, 5541 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5542 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5543 .type = ARM_CP_NO_RAW, .access = PL2_W, 5544 .writefn = tlbi_aa64_vae2is_write }, 5545 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5546 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5547 .access = PL2_W, .type = ARM_CP_NO_RAW, 5548 .writefn = tlbi_aa64_vae2is_write }, 5549 #ifndef CONFIG_USER_ONLY 5550 /* Unlike the other EL2-related AT operations, these must 5551 * UNDEF from EL3 if EL2 is not implemented, which is why we 5552 * define them here rather than with the rest of the AT ops. 5553 */ 5554 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5555 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5556 .access = PL2_W, .accessfn = at_s1e2_access, 5557 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5558 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5559 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5560 .access = PL2_W, .accessfn = at_s1e2_access, 5561 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5562 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5563 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5564 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5565 * to behave as if SCR.NS was 1. 5566 */ 5567 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5568 .access = PL2_W, 5569 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5570 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5571 .access = PL2_W, 5572 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5573 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5574 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5575 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5576 * reset values as IMPDEF. We choose to reset to 3 to comply with 5577 * both ARMv7 and ARMv8. 5578 */ 5579 .access = PL2_RW, .resetvalue = 3, 5580 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5581 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5582 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5583 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5584 .writefn = gt_cntvoff_write, 5585 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5586 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5587 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5588 .writefn = gt_cntvoff_write, 5589 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5590 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5591 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5592 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5593 .type = ARM_CP_IO, .access = PL2_RW, 5594 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5595 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5596 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5597 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5598 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5599 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5600 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5601 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5602 .resetfn = gt_hyp_timer_reset, 5603 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5604 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5605 .type = ARM_CP_IO, 5606 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5607 .access = PL2_RW, 5608 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5609 .resetvalue = 0, 5610 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5611 #endif 5612 /* The only field of MDCR_EL2 that has a defined architectural reset value 5613 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 5614 * don't implement any PMU event counters, so using zero as a reset 5615 * value for MDCR_EL2 is okay 5616 */ 5617 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5618 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5619 .access = PL2_RW, .resetvalue = 0, 5620 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5621 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5622 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5623 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5624 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5625 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5626 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5627 .access = PL2_RW, 5628 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5629 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5630 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5631 .access = PL2_RW, 5632 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5633 REGINFO_SENTINEL 5634 }; 5635 5636 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5637 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5638 .type = ARM_CP_ALIAS | ARM_CP_IO, 5639 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5640 .access = PL2_RW, 5641 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5642 .writefn = hcr_writehigh }, 5643 REGINFO_SENTINEL 5644 }; 5645 5646 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5647 bool isread) 5648 { 5649 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5650 * At Secure EL1 it traps to EL3. 5651 */ 5652 if (arm_current_el(env) == 3) { 5653 return CP_ACCESS_OK; 5654 } 5655 if (arm_is_secure_below_el3(env)) { 5656 return CP_ACCESS_TRAP_EL3; 5657 } 5658 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5659 if (isread) { 5660 return CP_ACCESS_OK; 5661 } 5662 return CP_ACCESS_TRAP_UNCATEGORIZED; 5663 } 5664 5665 static const ARMCPRegInfo el3_cp_reginfo[] = { 5666 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5667 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5668 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5669 .resetvalue = 0, .writefn = scr_write }, 5670 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5671 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5672 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5673 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5674 .writefn = scr_write }, 5675 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5676 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5677 .access = PL3_RW, .resetvalue = 0, 5678 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5679 { .name = "SDER", 5680 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5681 .access = PL3_RW, .resetvalue = 0, 5682 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5683 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5684 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5685 .writefn = vbar_write, .resetvalue = 0, 5686 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5687 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5688 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5689 .access = PL3_RW, .resetvalue = 0, 5690 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5691 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5692 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5693 .access = PL3_RW, 5694 /* no .writefn needed as this can't cause an ASID change; 5695 * we must provide a .raw_writefn and .resetfn because we handle 5696 * reset and migration for the AArch32 TTBCR(S), which might be 5697 * using mask and base_mask. 5698 */ 5699 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5700 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5701 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5702 .type = ARM_CP_ALIAS, 5703 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5704 .access = PL3_RW, 5705 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5706 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5707 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5708 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5709 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5710 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5711 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5712 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5713 .type = ARM_CP_ALIAS, 5714 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5715 .access = PL3_RW, 5716 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5717 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5718 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5719 .access = PL3_RW, .writefn = vbar_write, 5720 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5721 .resetvalue = 0 }, 5722 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5723 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5724 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5725 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5726 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5727 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5728 .access = PL3_RW, .resetvalue = 0, 5729 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5730 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5731 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5732 .access = PL3_RW, .type = ARM_CP_CONST, 5733 .resetvalue = 0 }, 5734 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5735 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5736 .access = PL3_RW, .type = ARM_CP_CONST, 5737 .resetvalue = 0 }, 5738 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5739 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5740 .access = PL3_RW, .type = ARM_CP_CONST, 5741 .resetvalue = 0 }, 5742 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5743 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5744 .access = PL3_W, .type = ARM_CP_NO_RAW, 5745 .writefn = tlbi_aa64_alle3is_write }, 5746 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5747 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5748 .access = PL3_W, .type = ARM_CP_NO_RAW, 5749 .writefn = tlbi_aa64_vae3is_write }, 5750 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5751 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5752 .access = PL3_W, .type = ARM_CP_NO_RAW, 5753 .writefn = tlbi_aa64_vae3is_write }, 5754 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5755 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5756 .access = PL3_W, .type = ARM_CP_NO_RAW, 5757 .writefn = tlbi_aa64_alle3_write }, 5758 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5759 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5760 .access = PL3_W, .type = ARM_CP_NO_RAW, 5761 .writefn = tlbi_aa64_vae3_write }, 5762 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5763 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5764 .access = PL3_W, .type = ARM_CP_NO_RAW, 5765 .writefn = tlbi_aa64_vae3_write }, 5766 REGINFO_SENTINEL 5767 }; 5768 5769 #ifndef CONFIG_USER_ONLY 5770 /* Test if system register redirection is to occur in the current state. */ 5771 static bool redirect_for_e2h(CPUARMState *env) 5772 { 5773 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5774 } 5775 5776 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5777 { 5778 CPReadFn *readfn; 5779 5780 if (redirect_for_e2h(env)) { 5781 /* Switch to the saved EL2 version of the register. */ 5782 ri = ri->opaque; 5783 readfn = ri->readfn; 5784 } else { 5785 readfn = ri->orig_readfn; 5786 } 5787 if (readfn == NULL) { 5788 readfn = raw_read; 5789 } 5790 return readfn(env, ri); 5791 } 5792 5793 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5794 uint64_t value) 5795 { 5796 CPWriteFn *writefn; 5797 5798 if (redirect_for_e2h(env)) { 5799 /* Switch to the saved EL2 version of the register. */ 5800 ri = ri->opaque; 5801 writefn = ri->writefn; 5802 } else { 5803 writefn = ri->orig_writefn; 5804 } 5805 if (writefn == NULL) { 5806 writefn = raw_write; 5807 } 5808 writefn(env, ri, value); 5809 } 5810 5811 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5812 { 5813 struct E2HAlias { 5814 uint32_t src_key, dst_key, new_key; 5815 const char *src_name, *dst_name, *new_name; 5816 bool (*feature)(const ARMISARegisters *id); 5817 }; 5818 5819 #define K(op0, op1, crn, crm, op2) \ 5820 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5821 5822 static const struct E2HAlias aliases[] = { 5823 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5824 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5825 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5826 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5827 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5828 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5829 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5830 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5831 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5832 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5833 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5834 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5835 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5836 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5837 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5838 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5839 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5840 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5841 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5842 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5843 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5844 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5845 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5846 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5847 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5848 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5849 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5850 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5851 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5852 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5853 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5854 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5855 5856 /* 5857 * Note that redirection of ZCR is mentioned in the description 5858 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5859 * not in the summary table. 5860 */ 5861 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5862 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5863 5864 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5865 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5866 }; 5867 #undef K 5868 5869 size_t i; 5870 5871 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5872 const struct E2HAlias *a = &aliases[i]; 5873 ARMCPRegInfo *src_reg, *dst_reg; 5874 5875 if (a->feature && !a->feature(&cpu->isar)) { 5876 continue; 5877 } 5878 5879 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 5880 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 5881 g_assert(src_reg != NULL); 5882 g_assert(dst_reg != NULL); 5883 5884 /* Cross-compare names to detect typos in the keys. */ 5885 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5886 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5887 5888 /* None of the core system registers use opaque; we will. */ 5889 g_assert(src_reg->opaque == NULL); 5890 5891 /* Create alias before redirection so we dup the right data. */ 5892 if (a->new_key) { 5893 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5894 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 5895 bool ok; 5896 5897 new_reg->name = a->new_name; 5898 new_reg->type |= ARM_CP_ALIAS; 5899 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5900 new_reg->access &= PL2_RW | PL3_RW; 5901 5902 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 5903 g_assert(ok); 5904 } 5905 5906 src_reg->opaque = dst_reg; 5907 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5908 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5909 if (!src_reg->raw_readfn) { 5910 src_reg->raw_readfn = raw_read; 5911 } 5912 if (!src_reg->raw_writefn) { 5913 src_reg->raw_writefn = raw_write; 5914 } 5915 src_reg->readfn = el2_e2h_read; 5916 src_reg->writefn = el2_e2h_write; 5917 } 5918 } 5919 #endif 5920 5921 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5922 bool isread) 5923 { 5924 int cur_el = arm_current_el(env); 5925 5926 if (cur_el < 2) { 5927 uint64_t hcr = arm_hcr_el2_eff(env); 5928 5929 if (cur_el == 0) { 5930 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5931 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 5932 return CP_ACCESS_TRAP_EL2; 5933 } 5934 } else { 5935 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5936 return CP_ACCESS_TRAP; 5937 } 5938 if (hcr & HCR_TID2) { 5939 return CP_ACCESS_TRAP_EL2; 5940 } 5941 } 5942 } else if (hcr & HCR_TID2) { 5943 return CP_ACCESS_TRAP_EL2; 5944 } 5945 } 5946 5947 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 5948 return CP_ACCESS_TRAP_EL2; 5949 } 5950 5951 return CP_ACCESS_OK; 5952 } 5953 5954 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5955 uint64_t value) 5956 { 5957 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5958 * read via a bit in OSLSR_EL1. 5959 */ 5960 int oslock; 5961 5962 if (ri->state == ARM_CP_STATE_AA32) { 5963 oslock = (value == 0xC5ACCE55); 5964 } else { 5965 oslock = value & 1; 5966 } 5967 5968 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5969 } 5970 5971 static const ARMCPRegInfo debug_cp_reginfo[] = { 5972 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5973 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5974 * unlike DBGDRAR it is never accessible from EL0. 5975 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 5976 * accessor. 5977 */ 5978 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 5979 .access = PL0_R, .accessfn = access_tdra, 5980 .type = ARM_CP_CONST, .resetvalue = 0 }, 5981 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 5982 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5983 .access = PL1_R, .accessfn = access_tdra, 5984 .type = ARM_CP_CONST, .resetvalue = 0 }, 5985 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 5986 .access = PL0_R, .accessfn = access_tdra, 5987 .type = ARM_CP_CONST, .resetvalue = 0 }, 5988 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 5989 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 5990 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5991 .access = PL1_RW, .accessfn = access_tda, 5992 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 5993 .resetvalue = 0 }, 5994 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 5995 * We don't implement the configurable EL0 access. 5996 */ 5997 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 5998 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5999 .type = ARM_CP_ALIAS, 6000 .access = PL1_R, .accessfn = access_tda, 6001 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6002 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6003 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6004 .access = PL1_W, .type = ARM_CP_NO_RAW, 6005 .accessfn = access_tdosa, 6006 .writefn = oslar_write }, 6007 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6008 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6009 .access = PL1_R, .resetvalue = 10, 6010 .accessfn = access_tdosa, 6011 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6012 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6013 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6014 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6015 .access = PL1_RW, .accessfn = access_tdosa, 6016 .type = ARM_CP_NOP }, 6017 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6018 * implement vector catch debug events yet. 6019 */ 6020 { .name = "DBGVCR", 6021 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6022 .access = PL1_RW, .accessfn = access_tda, 6023 .type = ARM_CP_NOP }, 6024 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6025 * to save and restore a 32-bit guest's DBGVCR) 6026 */ 6027 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6028 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6029 .access = PL2_RW, .accessfn = access_tda, 6030 .type = ARM_CP_NOP }, 6031 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6032 * Channel but Linux may try to access this register. The 32-bit 6033 * alias is DBGDCCINT. 6034 */ 6035 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6036 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6037 .access = PL1_RW, .accessfn = access_tda, 6038 .type = ARM_CP_NOP }, 6039 REGINFO_SENTINEL 6040 }; 6041 6042 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6043 /* 64 bit access versions of the (dummy) debug registers */ 6044 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6045 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6046 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6047 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6048 REGINFO_SENTINEL 6049 }; 6050 6051 /* Return the exception level to which exceptions should be taken 6052 * via SVEAccessTrap. If an exception should be routed through 6053 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6054 * take care of raising that exception. 6055 * C.f. the ARM pseudocode function CheckSVEEnabled. 6056 */ 6057 int sve_exception_el(CPUARMState *env, int el) 6058 { 6059 #ifndef CONFIG_USER_ONLY 6060 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6061 6062 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6063 bool disabled = false; 6064 6065 /* The CPACR.ZEN controls traps to EL1: 6066 * 0, 2 : trap EL0 and EL1 accesses 6067 * 1 : trap only EL0 accesses 6068 * 3 : trap no accesses 6069 */ 6070 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 6071 disabled = true; 6072 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 6073 disabled = el == 0; 6074 } 6075 if (disabled) { 6076 /* route_to_el2 */ 6077 return hcr_el2 & HCR_TGE ? 2 : 1; 6078 } 6079 6080 /* Check CPACR.FPEN. */ 6081 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 6082 disabled = true; 6083 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 6084 disabled = el == 0; 6085 } 6086 if (disabled) { 6087 return 0; 6088 } 6089 } 6090 6091 /* CPTR_EL2. Since TZ and TFP are positive, 6092 * they will be zero when EL2 is not present. 6093 */ 6094 if (el <= 2 && !arm_is_secure_below_el3(env)) { 6095 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6096 return 2; 6097 } 6098 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6099 return 0; 6100 } 6101 } 6102 6103 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6104 if (arm_feature(env, ARM_FEATURE_EL3) 6105 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6106 return 3; 6107 } 6108 #endif 6109 return 0; 6110 } 6111 6112 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6113 { 6114 uint32_t end_len; 6115 6116 end_len = start_len &= 0xf; 6117 if (!test_bit(start_len, cpu->sve_vq_map)) { 6118 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6119 assert(end_len < start_len); 6120 } 6121 return end_len; 6122 } 6123 6124 /* 6125 * Given that SVE is enabled, return the vector length for EL. 6126 */ 6127 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6128 { 6129 ARMCPU *cpu = env_archcpu(env); 6130 uint32_t zcr_len = cpu->sve_max_vq - 1; 6131 6132 if (el <= 1) { 6133 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6134 } 6135 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6136 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6137 } 6138 if (arm_feature(env, ARM_FEATURE_EL3)) { 6139 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6140 } 6141 6142 return sve_zcr_get_valid_len(cpu, zcr_len); 6143 } 6144 6145 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6146 uint64_t value) 6147 { 6148 int cur_el = arm_current_el(env); 6149 int old_len = sve_zcr_len_for_el(env, cur_el); 6150 int new_len; 6151 6152 /* Bits other than [3:0] are RAZ/WI. */ 6153 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6154 raw_write(env, ri, value & 0xf); 6155 6156 /* 6157 * Because we arrived here, we know both FP and SVE are enabled; 6158 * otherwise we would have trapped access to the ZCR_ELn register. 6159 */ 6160 new_len = sve_zcr_len_for_el(env, cur_el); 6161 if (new_len < old_len) { 6162 aarch64_sve_narrow_vq(env, new_len + 1); 6163 } 6164 } 6165 6166 static const ARMCPRegInfo zcr_el1_reginfo = { 6167 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6168 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6169 .access = PL1_RW, .type = ARM_CP_SVE, 6170 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6171 .writefn = zcr_write, .raw_writefn = raw_write 6172 }; 6173 6174 static const ARMCPRegInfo zcr_el2_reginfo = { 6175 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6176 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6177 .access = PL2_RW, .type = ARM_CP_SVE, 6178 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6179 .writefn = zcr_write, .raw_writefn = raw_write 6180 }; 6181 6182 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6183 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6184 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6185 .access = PL2_RW, .type = ARM_CP_SVE, 6186 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6187 }; 6188 6189 static const ARMCPRegInfo zcr_el3_reginfo = { 6190 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6191 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6192 .access = PL3_RW, .type = ARM_CP_SVE, 6193 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6194 .writefn = zcr_write, .raw_writefn = raw_write 6195 }; 6196 6197 void hw_watchpoint_update(ARMCPU *cpu, int n) 6198 { 6199 CPUARMState *env = &cpu->env; 6200 vaddr len = 0; 6201 vaddr wvr = env->cp15.dbgwvr[n]; 6202 uint64_t wcr = env->cp15.dbgwcr[n]; 6203 int mask; 6204 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6205 6206 if (env->cpu_watchpoint[n]) { 6207 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6208 env->cpu_watchpoint[n] = NULL; 6209 } 6210 6211 if (!extract64(wcr, 0, 1)) { 6212 /* E bit clear : watchpoint disabled */ 6213 return; 6214 } 6215 6216 switch (extract64(wcr, 3, 2)) { 6217 case 0: 6218 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6219 return; 6220 case 1: 6221 flags |= BP_MEM_READ; 6222 break; 6223 case 2: 6224 flags |= BP_MEM_WRITE; 6225 break; 6226 case 3: 6227 flags |= BP_MEM_ACCESS; 6228 break; 6229 } 6230 6231 /* Attempts to use both MASK and BAS fields simultaneously are 6232 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6233 * thus generating a watchpoint for every byte in the masked region. 6234 */ 6235 mask = extract64(wcr, 24, 4); 6236 if (mask == 1 || mask == 2) { 6237 /* Reserved values of MASK; we must act as if the mask value was 6238 * some non-reserved value, or as if the watchpoint were disabled. 6239 * We choose the latter. 6240 */ 6241 return; 6242 } else if (mask) { 6243 /* Watchpoint covers an aligned area up to 2GB in size */ 6244 len = 1ULL << mask; 6245 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6246 * whether the watchpoint fires when the unmasked bits match; we opt 6247 * to generate the exceptions. 6248 */ 6249 wvr &= ~(len - 1); 6250 } else { 6251 /* Watchpoint covers bytes defined by the byte address select bits */ 6252 int bas = extract64(wcr, 5, 8); 6253 int basstart; 6254 6255 if (extract64(wvr, 2, 1)) { 6256 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6257 * ignored, and BAS[3:0] define which bytes to watch. 6258 */ 6259 bas &= 0xf; 6260 } 6261 6262 if (bas == 0) { 6263 /* This must act as if the watchpoint is disabled */ 6264 return; 6265 } 6266 6267 /* The BAS bits are supposed to be programmed to indicate a contiguous 6268 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6269 * we fire for each byte in the word/doubleword addressed by the WVR. 6270 * We choose to ignore any non-zero bits after the first range of 1s. 6271 */ 6272 basstart = ctz32(bas); 6273 len = cto32(bas >> basstart); 6274 wvr += basstart; 6275 } 6276 6277 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6278 &env->cpu_watchpoint[n]); 6279 } 6280 6281 void hw_watchpoint_update_all(ARMCPU *cpu) 6282 { 6283 int i; 6284 CPUARMState *env = &cpu->env; 6285 6286 /* Completely clear out existing QEMU watchpoints and our array, to 6287 * avoid possible stale entries following migration load. 6288 */ 6289 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6290 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6291 6292 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6293 hw_watchpoint_update(cpu, i); 6294 } 6295 } 6296 6297 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6298 uint64_t value) 6299 { 6300 ARMCPU *cpu = env_archcpu(env); 6301 int i = ri->crm; 6302 6303 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6304 * register reads and behaves as if values written are sign extended. 6305 * Bits [1:0] are RES0. 6306 */ 6307 value = sextract64(value, 0, 49) & ~3ULL; 6308 6309 raw_write(env, ri, value); 6310 hw_watchpoint_update(cpu, i); 6311 } 6312 6313 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6314 uint64_t value) 6315 { 6316 ARMCPU *cpu = env_archcpu(env); 6317 int i = ri->crm; 6318 6319 raw_write(env, ri, value); 6320 hw_watchpoint_update(cpu, i); 6321 } 6322 6323 void hw_breakpoint_update(ARMCPU *cpu, int n) 6324 { 6325 CPUARMState *env = &cpu->env; 6326 uint64_t bvr = env->cp15.dbgbvr[n]; 6327 uint64_t bcr = env->cp15.dbgbcr[n]; 6328 vaddr addr; 6329 int bt; 6330 int flags = BP_CPU; 6331 6332 if (env->cpu_breakpoint[n]) { 6333 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6334 env->cpu_breakpoint[n] = NULL; 6335 } 6336 6337 if (!extract64(bcr, 0, 1)) { 6338 /* E bit clear : watchpoint disabled */ 6339 return; 6340 } 6341 6342 bt = extract64(bcr, 20, 4); 6343 6344 switch (bt) { 6345 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6346 case 5: /* linked address mismatch (reserved if AArch64) */ 6347 qemu_log_mask(LOG_UNIMP, 6348 "arm: address mismatch breakpoint types not implemented\n"); 6349 return; 6350 case 0: /* unlinked address match */ 6351 case 1: /* linked address match */ 6352 { 6353 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6354 * we behave as if the register was sign extended. Bits [1:0] are 6355 * RES0. The BAS field is used to allow setting breakpoints on 16 6356 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6357 * a bp will fire if the addresses covered by the bp and the addresses 6358 * covered by the insn overlap but the insn doesn't start at the 6359 * start of the bp address range. We choose to require the insn and 6360 * the bp to have the same address. The constraints on writing to 6361 * BAS enforced in dbgbcr_write mean we have only four cases: 6362 * 0b0000 => no breakpoint 6363 * 0b0011 => breakpoint on addr 6364 * 0b1100 => breakpoint on addr + 2 6365 * 0b1111 => breakpoint on addr 6366 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6367 */ 6368 int bas = extract64(bcr, 5, 4); 6369 addr = sextract64(bvr, 0, 49) & ~3ULL; 6370 if (bas == 0) { 6371 return; 6372 } 6373 if (bas == 0xc) { 6374 addr += 2; 6375 } 6376 break; 6377 } 6378 case 2: /* unlinked context ID match */ 6379 case 8: /* unlinked VMID match (reserved if no EL2) */ 6380 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6381 qemu_log_mask(LOG_UNIMP, 6382 "arm: unlinked context breakpoint types not implemented\n"); 6383 return; 6384 case 9: /* linked VMID match (reserved if no EL2) */ 6385 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6386 case 3: /* linked context ID match */ 6387 default: 6388 /* We must generate no events for Linked context matches (unless 6389 * they are linked to by some other bp/wp, which is handled in 6390 * updates for the linking bp/wp). We choose to also generate no events 6391 * for reserved values. 6392 */ 6393 return; 6394 } 6395 6396 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6397 } 6398 6399 void hw_breakpoint_update_all(ARMCPU *cpu) 6400 { 6401 int i; 6402 CPUARMState *env = &cpu->env; 6403 6404 /* Completely clear out existing QEMU breakpoints and our array, to 6405 * avoid possible stale entries following migration load. 6406 */ 6407 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6408 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6409 6410 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6411 hw_breakpoint_update(cpu, i); 6412 } 6413 } 6414 6415 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6416 uint64_t value) 6417 { 6418 ARMCPU *cpu = env_archcpu(env); 6419 int i = ri->crm; 6420 6421 raw_write(env, ri, value); 6422 hw_breakpoint_update(cpu, i); 6423 } 6424 6425 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6426 uint64_t value) 6427 { 6428 ARMCPU *cpu = env_archcpu(env); 6429 int i = ri->crm; 6430 6431 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6432 * copy of BAS[0]. 6433 */ 6434 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6435 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6436 6437 raw_write(env, ri, value); 6438 hw_breakpoint_update(cpu, i); 6439 } 6440 6441 static void define_debug_regs(ARMCPU *cpu) 6442 { 6443 /* Define v7 and v8 architectural debug registers. 6444 * These are just dummy implementations for now. 6445 */ 6446 int i; 6447 int wrps, brps, ctx_cmps; 6448 ARMCPRegInfo dbgdidr = { 6449 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 6450 .access = PL0_R, .accessfn = access_tda, 6451 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6452 }; 6453 6454 /* Note that all these register fields hold "number of Xs minus 1". */ 6455 brps = arm_num_brps(cpu); 6456 wrps = arm_num_wrps(cpu); 6457 ctx_cmps = arm_num_ctx_cmps(cpu); 6458 6459 assert(ctx_cmps <= brps); 6460 6461 define_one_arm_cp_reg(cpu, &dbgdidr); 6462 define_arm_cp_regs(cpu, debug_cp_reginfo); 6463 6464 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6465 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6466 } 6467 6468 for (i = 0; i < brps; i++) { 6469 ARMCPRegInfo dbgregs[] = { 6470 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6471 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6472 .access = PL1_RW, .accessfn = access_tda, 6473 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6474 .writefn = dbgbvr_write, .raw_writefn = raw_write 6475 }, 6476 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6477 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6478 .access = PL1_RW, .accessfn = access_tda, 6479 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6480 .writefn = dbgbcr_write, .raw_writefn = raw_write 6481 }, 6482 REGINFO_SENTINEL 6483 }; 6484 define_arm_cp_regs(cpu, dbgregs); 6485 } 6486 6487 for (i = 0; i < wrps; i++) { 6488 ARMCPRegInfo dbgregs[] = { 6489 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6490 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6491 .access = PL1_RW, .accessfn = access_tda, 6492 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6493 .writefn = dbgwvr_write, .raw_writefn = raw_write 6494 }, 6495 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6496 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6497 .access = PL1_RW, .accessfn = access_tda, 6498 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6499 .writefn = dbgwcr_write, .raw_writefn = raw_write 6500 }, 6501 REGINFO_SENTINEL 6502 }; 6503 define_arm_cp_regs(cpu, dbgregs); 6504 } 6505 } 6506 6507 static void define_pmu_regs(ARMCPU *cpu) 6508 { 6509 /* 6510 * v7 performance monitor control register: same implementor 6511 * field as main ID register, and we implement four counters in 6512 * addition to the cycle count register. 6513 */ 6514 unsigned int i, pmcrn = 4; 6515 ARMCPRegInfo pmcr = { 6516 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6517 .access = PL0_RW, 6518 .type = ARM_CP_IO | ARM_CP_ALIAS, 6519 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6520 .accessfn = pmreg_access, .writefn = pmcr_write, 6521 .raw_writefn = raw_write, 6522 }; 6523 ARMCPRegInfo pmcr64 = { 6524 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6525 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6526 .access = PL0_RW, .accessfn = pmreg_access, 6527 .type = ARM_CP_IO, 6528 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6529 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6530 PMCRLC, 6531 .writefn = pmcr_write, .raw_writefn = raw_write, 6532 }; 6533 define_one_arm_cp_reg(cpu, &pmcr); 6534 define_one_arm_cp_reg(cpu, &pmcr64); 6535 for (i = 0; i < pmcrn; i++) { 6536 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6537 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6538 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6539 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6540 ARMCPRegInfo pmev_regs[] = { 6541 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6542 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6543 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6544 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6545 .accessfn = pmreg_access }, 6546 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6547 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6548 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6549 .type = ARM_CP_IO, 6550 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6551 .raw_readfn = pmevcntr_rawread, 6552 .raw_writefn = pmevcntr_rawwrite }, 6553 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6554 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6555 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6556 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6557 .accessfn = pmreg_access }, 6558 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6559 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6560 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6561 .type = ARM_CP_IO, 6562 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6563 .raw_writefn = pmevtyper_rawwrite }, 6564 REGINFO_SENTINEL 6565 }; 6566 define_arm_cp_regs(cpu, pmev_regs); 6567 g_free(pmevcntr_name); 6568 g_free(pmevcntr_el0_name); 6569 g_free(pmevtyper_name); 6570 g_free(pmevtyper_el0_name); 6571 } 6572 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6573 ARMCPRegInfo v81_pmu_regs[] = { 6574 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6575 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6576 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6577 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6578 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6579 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6580 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6581 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6582 REGINFO_SENTINEL 6583 }; 6584 define_arm_cp_regs(cpu, v81_pmu_regs); 6585 } 6586 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6587 static const ARMCPRegInfo v84_pmmir = { 6588 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6589 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6590 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6591 .resetvalue = 0 6592 }; 6593 define_one_arm_cp_reg(cpu, &v84_pmmir); 6594 } 6595 } 6596 6597 /* We don't know until after realize whether there's a GICv3 6598 * attached, and that is what registers the gicv3 sysregs. 6599 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6600 * at runtime. 6601 */ 6602 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6603 { 6604 ARMCPU *cpu = env_archcpu(env); 6605 uint64_t pfr1 = cpu->id_pfr1; 6606 6607 if (env->gicv3state) { 6608 pfr1 |= 1 << 28; 6609 } 6610 return pfr1; 6611 } 6612 6613 #ifndef CONFIG_USER_ONLY 6614 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6615 { 6616 ARMCPU *cpu = env_archcpu(env); 6617 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6618 6619 if (env->gicv3state) { 6620 pfr0 |= 1 << 24; 6621 } 6622 return pfr0; 6623 } 6624 #endif 6625 6626 /* Shared logic between LORID and the rest of the LOR* registers. 6627 * Secure state has already been delt with. 6628 */ 6629 static CPAccessResult access_lor_ns(CPUARMState *env) 6630 { 6631 int el = arm_current_el(env); 6632 6633 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6634 return CP_ACCESS_TRAP_EL2; 6635 } 6636 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6637 return CP_ACCESS_TRAP_EL3; 6638 } 6639 return CP_ACCESS_OK; 6640 } 6641 6642 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, 6643 bool isread) 6644 { 6645 if (arm_is_secure_below_el3(env)) { 6646 /* Access ok in secure mode. */ 6647 return CP_ACCESS_OK; 6648 } 6649 return access_lor_ns(env); 6650 } 6651 6652 static CPAccessResult access_lor_other(CPUARMState *env, 6653 const ARMCPRegInfo *ri, bool isread) 6654 { 6655 if (arm_is_secure_below_el3(env)) { 6656 /* Access denied in secure mode. */ 6657 return CP_ACCESS_TRAP; 6658 } 6659 return access_lor_ns(env); 6660 } 6661 6662 /* 6663 * A trivial implementation of ARMv8.1-LOR leaves all of these 6664 * registers fixed at 0, which indicates that there are zero 6665 * supported Limited Ordering regions. 6666 */ 6667 static const ARMCPRegInfo lor_reginfo[] = { 6668 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6669 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6670 .access = PL1_RW, .accessfn = access_lor_other, 6671 .type = ARM_CP_CONST, .resetvalue = 0 }, 6672 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6673 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6674 .access = PL1_RW, .accessfn = access_lor_other, 6675 .type = ARM_CP_CONST, .resetvalue = 0 }, 6676 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6677 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6678 .access = PL1_RW, .accessfn = access_lor_other, 6679 .type = ARM_CP_CONST, .resetvalue = 0 }, 6680 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6681 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6682 .access = PL1_RW, .accessfn = access_lor_other, 6683 .type = ARM_CP_CONST, .resetvalue = 0 }, 6684 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6685 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6686 .access = PL1_R, .accessfn = access_lorid, 6687 .type = ARM_CP_CONST, .resetvalue = 0 }, 6688 REGINFO_SENTINEL 6689 }; 6690 6691 #ifdef TARGET_AARCH64 6692 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6693 bool isread) 6694 { 6695 int el = arm_current_el(env); 6696 6697 if (el < 2 && 6698 arm_feature(env, ARM_FEATURE_EL2) && 6699 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6700 return CP_ACCESS_TRAP_EL2; 6701 } 6702 if (el < 3 && 6703 arm_feature(env, ARM_FEATURE_EL3) && 6704 !(env->cp15.scr_el3 & SCR_APK)) { 6705 return CP_ACCESS_TRAP_EL3; 6706 } 6707 return CP_ACCESS_OK; 6708 } 6709 6710 static const ARMCPRegInfo pauth_reginfo[] = { 6711 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6712 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6713 .access = PL1_RW, .accessfn = access_pauth, 6714 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6715 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6716 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6717 .access = PL1_RW, .accessfn = access_pauth, 6718 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6719 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6720 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6721 .access = PL1_RW, .accessfn = access_pauth, 6722 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6723 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6724 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6725 .access = PL1_RW, .accessfn = access_pauth, 6726 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6727 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6728 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6729 .access = PL1_RW, .accessfn = access_pauth, 6730 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6731 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6732 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6733 .access = PL1_RW, .accessfn = access_pauth, 6734 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6735 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6736 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6737 .access = PL1_RW, .accessfn = access_pauth, 6738 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6739 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6740 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6741 .access = PL1_RW, .accessfn = access_pauth, 6742 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6743 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6744 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6745 .access = PL1_RW, .accessfn = access_pauth, 6746 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6747 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6748 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6749 .access = PL1_RW, .accessfn = access_pauth, 6750 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6751 REGINFO_SENTINEL 6752 }; 6753 6754 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6755 { 6756 Error *err = NULL; 6757 uint64_t ret; 6758 6759 /* Success sets NZCV = 0000. */ 6760 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6761 6762 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6763 /* 6764 * ??? Failed, for unknown reasons in the crypto subsystem. 6765 * The best we can do is log the reason and return the 6766 * timed-out indication to the guest. There is no reason 6767 * we know to expect this failure to be transitory, so the 6768 * guest may well hang retrying the operation. 6769 */ 6770 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6771 ri->name, error_get_pretty(err)); 6772 error_free(err); 6773 6774 env->ZF = 0; /* NZCF = 0100 */ 6775 return 0; 6776 } 6777 return ret; 6778 } 6779 6780 /* We do not support re-seeding, so the two registers operate the same. */ 6781 static const ARMCPRegInfo rndr_reginfo[] = { 6782 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6783 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6784 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6785 .access = PL0_R, .readfn = rndr_readfn }, 6786 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6787 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6788 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6789 .access = PL0_R, .readfn = rndr_readfn }, 6790 REGINFO_SENTINEL 6791 }; 6792 6793 #ifndef CONFIG_USER_ONLY 6794 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6795 uint64_t value) 6796 { 6797 ARMCPU *cpu = env_archcpu(env); 6798 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6799 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6800 uint64_t vaddr_in = (uint64_t) value; 6801 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6802 void *haddr; 6803 int mem_idx = cpu_mmu_index(env, false); 6804 6805 /* This won't be crossing page boundaries */ 6806 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6807 if (haddr) { 6808 6809 ram_addr_t offset; 6810 MemoryRegion *mr; 6811 6812 /* RCU lock is already being held */ 6813 mr = memory_region_from_host(haddr, &offset); 6814 6815 if (mr) { 6816 memory_region_writeback(mr, offset, dline_size); 6817 } 6818 } 6819 } 6820 6821 static const ARMCPRegInfo dcpop_reg[] = { 6822 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6823 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6824 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6825 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6826 REGINFO_SENTINEL 6827 }; 6828 6829 static const ARMCPRegInfo dcpodp_reg[] = { 6830 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6831 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6832 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6833 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6834 REGINFO_SENTINEL 6835 }; 6836 #endif /*CONFIG_USER_ONLY*/ 6837 6838 #endif 6839 6840 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 6841 bool isread) 6842 { 6843 int el = arm_current_el(env); 6844 6845 if (el == 0) { 6846 uint64_t sctlr = arm_sctlr(env, el); 6847 if (!(sctlr & SCTLR_EnRCTX)) { 6848 return CP_ACCESS_TRAP; 6849 } 6850 } else if (el == 1) { 6851 uint64_t hcr = arm_hcr_el2_eff(env); 6852 if (hcr & HCR_NV) { 6853 return CP_ACCESS_TRAP_EL2; 6854 } 6855 } 6856 return CP_ACCESS_OK; 6857 } 6858 6859 static const ARMCPRegInfo predinv_reginfo[] = { 6860 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 6861 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 6862 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6863 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 6864 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 6865 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6866 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 6867 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 6868 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6869 /* 6870 * Note the AArch32 opcodes have a different OPC1. 6871 */ 6872 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 6873 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 6874 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6875 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 6876 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 6877 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6878 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 6879 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 6880 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6881 REGINFO_SENTINEL 6882 }; 6883 6884 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 6885 { 6886 /* Read the high 32 bits of the current CCSIDR */ 6887 return extract64(ccsidr_read(env, ri), 32, 32); 6888 } 6889 6890 static const ARMCPRegInfo ccsidr2_reginfo[] = { 6891 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 6892 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 6893 .access = PL1_R, 6894 .accessfn = access_aa64_tid2, 6895 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 6896 REGINFO_SENTINEL 6897 }; 6898 6899 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 6900 bool isread) 6901 { 6902 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 6903 return CP_ACCESS_TRAP_EL2; 6904 } 6905 6906 return CP_ACCESS_OK; 6907 } 6908 6909 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 6910 bool isread) 6911 { 6912 if (arm_feature(env, ARM_FEATURE_V8)) { 6913 return access_aa64_tid3(env, ri, isread); 6914 } 6915 6916 return CP_ACCESS_OK; 6917 } 6918 6919 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 6920 bool isread) 6921 { 6922 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 6923 return CP_ACCESS_TRAP_EL2; 6924 } 6925 6926 return CP_ACCESS_OK; 6927 } 6928 6929 static const ARMCPRegInfo jazelle_regs[] = { 6930 { .name = "JIDR", 6931 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 6932 .access = PL1_R, .accessfn = access_jazelle, 6933 .type = ARM_CP_CONST, .resetvalue = 0 }, 6934 { .name = "JOSCR", 6935 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 6936 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6937 { .name = "JMCR", 6938 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 6939 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6940 REGINFO_SENTINEL 6941 }; 6942 6943 static const ARMCPRegInfo vhe_reginfo[] = { 6944 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 6945 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 6946 .access = PL2_RW, 6947 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 6948 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 6949 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 6950 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 6951 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 6952 #ifndef CONFIG_USER_ONLY 6953 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6954 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 6955 .fieldoffset = 6956 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 6957 .type = ARM_CP_IO, .access = PL2_RW, 6958 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 6959 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6960 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 6961 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6962 .resetfn = gt_hv_timer_reset, 6963 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 6964 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6965 .type = ARM_CP_IO, 6966 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 6967 .access = PL2_RW, 6968 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 6969 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 6970 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 6971 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 6972 .type = ARM_CP_IO | ARM_CP_ALIAS, 6973 .access = PL2_RW, .accessfn = e2h_access, 6974 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 6975 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 6976 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 6977 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 6978 .type = ARM_CP_IO | ARM_CP_ALIAS, 6979 .access = PL2_RW, .accessfn = e2h_access, 6980 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 6981 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 6982 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 6983 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 6984 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 6985 .access = PL2_RW, .accessfn = e2h_access, 6986 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 6987 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 6988 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 6989 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 6990 .access = PL2_RW, .accessfn = e2h_access, 6991 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 6992 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 6993 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 6994 .type = ARM_CP_IO | ARM_CP_ALIAS, 6995 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 6996 .access = PL2_RW, .accessfn = e2h_access, 6997 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 6998 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 6999 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7000 .type = ARM_CP_IO | ARM_CP_ALIAS, 7001 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7002 .access = PL2_RW, .accessfn = e2h_access, 7003 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7004 #endif 7005 REGINFO_SENTINEL 7006 }; 7007 7008 #ifndef CONFIG_USER_ONLY 7009 static const ARMCPRegInfo ats1e1_reginfo[] = { 7010 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7011 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7012 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7013 .writefn = ats_write64 }, 7014 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7015 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7016 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7017 .writefn = ats_write64 }, 7018 REGINFO_SENTINEL 7019 }; 7020 7021 static const ARMCPRegInfo ats1cp_reginfo[] = { 7022 { .name = "ATS1CPRP", 7023 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7024 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7025 .writefn = ats_write }, 7026 { .name = "ATS1CPWP", 7027 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7028 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7029 .writefn = ats_write }, 7030 REGINFO_SENTINEL 7031 }; 7032 #endif 7033 7034 /* 7035 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7036 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7037 * is non-zero, which is never for ARMv7, optionally in ARMv8 7038 * and mandatorily for ARMv8.2 and up. 7039 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7040 * implementation is RAZ/WI we can ignore this detail, as we 7041 * do for ACTLR. 7042 */ 7043 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7044 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7045 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7046 .access = PL1_RW, .accessfn = access_tacr, 7047 .type = ARM_CP_CONST, .resetvalue = 0 }, 7048 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7049 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7050 .access = PL2_RW, .type = ARM_CP_CONST, 7051 .resetvalue = 0 }, 7052 REGINFO_SENTINEL 7053 }; 7054 7055 void register_cp_regs_for_features(ARMCPU *cpu) 7056 { 7057 /* Register all the coprocessor registers based on feature bits */ 7058 CPUARMState *env = &cpu->env; 7059 if (arm_feature(env, ARM_FEATURE_M)) { 7060 /* M profile has no coprocessor registers */ 7061 return; 7062 } 7063 7064 define_arm_cp_regs(cpu, cp_reginfo); 7065 if (!arm_feature(env, ARM_FEATURE_V8)) { 7066 /* Must go early as it is full of wildcards that may be 7067 * overridden by later definitions. 7068 */ 7069 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7070 } 7071 7072 if (arm_feature(env, ARM_FEATURE_V6)) { 7073 /* The ID registers all have impdef reset values */ 7074 ARMCPRegInfo v6_idregs[] = { 7075 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7076 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7077 .access = PL1_R, .type = ARM_CP_CONST, 7078 .accessfn = access_aa32_tid3, 7079 .resetvalue = cpu->id_pfr0 }, 7080 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7081 * the value of the GIC field until after we define these regs. 7082 */ 7083 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7084 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7085 .access = PL1_R, .type = ARM_CP_NO_RAW, 7086 .accessfn = access_aa32_tid3, 7087 .readfn = id_pfr1_read, 7088 .writefn = arm_cp_write_ignore }, 7089 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7090 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7091 .access = PL1_R, .type = ARM_CP_CONST, 7092 .accessfn = access_aa32_tid3, 7093 .resetvalue = cpu->isar.id_dfr0 }, 7094 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7095 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7096 .access = PL1_R, .type = ARM_CP_CONST, 7097 .accessfn = access_aa32_tid3, 7098 .resetvalue = cpu->id_afr0 }, 7099 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7100 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7101 .access = PL1_R, .type = ARM_CP_CONST, 7102 .accessfn = access_aa32_tid3, 7103 .resetvalue = cpu->isar.id_mmfr0 }, 7104 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7105 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7106 .access = PL1_R, .type = ARM_CP_CONST, 7107 .accessfn = access_aa32_tid3, 7108 .resetvalue = cpu->isar.id_mmfr1 }, 7109 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7110 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7111 .access = PL1_R, .type = ARM_CP_CONST, 7112 .accessfn = access_aa32_tid3, 7113 .resetvalue = cpu->isar.id_mmfr2 }, 7114 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7115 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7116 .access = PL1_R, .type = ARM_CP_CONST, 7117 .accessfn = access_aa32_tid3, 7118 .resetvalue = cpu->isar.id_mmfr3 }, 7119 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7120 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7121 .access = PL1_R, .type = ARM_CP_CONST, 7122 .accessfn = access_aa32_tid3, 7123 .resetvalue = cpu->isar.id_isar0 }, 7124 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7125 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7126 .access = PL1_R, .type = ARM_CP_CONST, 7127 .accessfn = access_aa32_tid3, 7128 .resetvalue = cpu->isar.id_isar1 }, 7129 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7130 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7131 .access = PL1_R, .type = ARM_CP_CONST, 7132 .accessfn = access_aa32_tid3, 7133 .resetvalue = cpu->isar.id_isar2 }, 7134 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7135 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7136 .access = PL1_R, .type = ARM_CP_CONST, 7137 .accessfn = access_aa32_tid3, 7138 .resetvalue = cpu->isar.id_isar3 }, 7139 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7140 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7141 .access = PL1_R, .type = ARM_CP_CONST, 7142 .accessfn = access_aa32_tid3, 7143 .resetvalue = cpu->isar.id_isar4 }, 7144 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7145 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7146 .access = PL1_R, .type = ARM_CP_CONST, 7147 .accessfn = access_aa32_tid3, 7148 .resetvalue = cpu->isar.id_isar5 }, 7149 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7150 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7151 .access = PL1_R, .type = ARM_CP_CONST, 7152 .accessfn = access_aa32_tid3, 7153 .resetvalue = cpu->isar.id_mmfr4 }, 7154 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7155 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7156 .access = PL1_R, .type = ARM_CP_CONST, 7157 .accessfn = access_aa32_tid3, 7158 .resetvalue = cpu->isar.id_isar6 }, 7159 REGINFO_SENTINEL 7160 }; 7161 define_arm_cp_regs(cpu, v6_idregs); 7162 define_arm_cp_regs(cpu, v6_cp_reginfo); 7163 } else { 7164 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7165 } 7166 if (arm_feature(env, ARM_FEATURE_V6K)) { 7167 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7168 } 7169 if (arm_feature(env, ARM_FEATURE_V7MP) && 7170 !arm_feature(env, ARM_FEATURE_PMSA)) { 7171 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7172 } 7173 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7174 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7175 } 7176 if (arm_feature(env, ARM_FEATURE_V7)) { 7177 ARMCPRegInfo clidr = { 7178 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7179 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7180 .access = PL1_R, .type = ARM_CP_CONST, 7181 .accessfn = access_aa64_tid2, 7182 .resetvalue = cpu->clidr 7183 }; 7184 define_one_arm_cp_reg(cpu, &clidr); 7185 define_arm_cp_regs(cpu, v7_cp_reginfo); 7186 define_debug_regs(cpu); 7187 define_pmu_regs(cpu); 7188 } else { 7189 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7190 } 7191 if (arm_feature(env, ARM_FEATURE_V8)) { 7192 /* AArch64 ID registers, which all have impdef reset values. 7193 * Note that within the ID register ranges the unused slots 7194 * must all RAZ, not UNDEF; future architecture versions may 7195 * define new registers here. 7196 */ 7197 ARMCPRegInfo v8_idregs[] = { 7198 /* 7199 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7200 * emulation because we don't know the right value for the 7201 * GIC field until after we define these regs. 7202 */ 7203 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7204 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7205 .access = PL1_R, 7206 #ifdef CONFIG_USER_ONLY 7207 .type = ARM_CP_CONST, 7208 .resetvalue = cpu->isar.id_aa64pfr0 7209 #else 7210 .type = ARM_CP_NO_RAW, 7211 .accessfn = access_aa64_tid3, 7212 .readfn = id_aa64pfr0_read, 7213 .writefn = arm_cp_write_ignore 7214 #endif 7215 }, 7216 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7217 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7218 .access = PL1_R, .type = ARM_CP_CONST, 7219 .accessfn = access_aa64_tid3, 7220 .resetvalue = cpu->isar.id_aa64pfr1}, 7221 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7222 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7223 .access = PL1_R, .type = ARM_CP_CONST, 7224 .accessfn = access_aa64_tid3, 7225 .resetvalue = 0 }, 7226 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7227 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7228 .access = PL1_R, .type = ARM_CP_CONST, 7229 .accessfn = access_aa64_tid3, 7230 .resetvalue = 0 }, 7231 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7232 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7233 .access = PL1_R, .type = ARM_CP_CONST, 7234 .accessfn = access_aa64_tid3, 7235 /* At present, only SVEver == 0 is defined anyway. */ 7236 .resetvalue = 0 }, 7237 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7238 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7239 .access = PL1_R, .type = ARM_CP_CONST, 7240 .accessfn = access_aa64_tid3, 7241 .resetvalue = 0 }, 7242 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7243 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7244 .access = PL1_R, .type = ARM_CP_CONST, 7245 .accessfn = access_aa64_tid3, 7246 .resetvalue = 0 }, 7247 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7248 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7249 .access = PL1_R, .type = ARM_CP_CONST, 7250 .accessfn = access_aa64_tid3, 7251 .resetvalue = 0 }, 7252 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7253 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7254 .access = PL1_R, .type = ARM_CP_CONST, 7255 .accessfn = access_aa64_tid3, 7256 .resetvalue = cpu->isar.id_aa64dfr0 }, 7257 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7258 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7259 .access = PL1_R, .type = ARM_CP_CONST, 7260 .accessfn = access_aa64_tid3, 7261 .resetvalue = cpu->isar.id_aa64dfr1 }, 7262 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7263 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7264 .access = PL1_R, .type = ARM_CP_CONST, 7265 .accessfn = access_aa64_tid3, 7266 .resetvalue = 0 }, 7267 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7268 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7269 .access = PL1_R, .type = ARM_CP_CONST, 7270 .accessfn = access_aa64_tid3, 7271 .resetvalue = 0 }, 7272 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7273 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7274 .access = PL1_R, .type = ARM_CP_CONST, 7275 .accessfn = access_aa64_tid3, 7276 .resetvalue = cpu->id_aa64afr0 }, 7277 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7278 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7279 .access = PL1_R, .type = ARM_CP_CONST, 7280 .accessfn = access_aa64_tid3, 7281 .resetvalue = cpu->id_aa64afr1 }, 7282 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7283 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7284 .access = PL1_R, .type = ARM_CP_CONST, 7285 .accessfn = access_aa64_tid3, 7286 .resetvalue = 0 }, 7287 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7288 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7289 .access = PL1_R, .type = ARM_CP_CONST, 7290 .accessfn = access_aa64_tid3, 7291 .resetvalue = 0 }, 7292 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7293 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7294 .access = PL1_R, .type = ARM_CP_CONST, 7295 .accessfn = access_aa64_tid3, 7296 .resetvalue = cpu->isar.id_aa64isar0 }, 7297 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7298 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7299 .access = PL1_R, .type = ARM_CP_CONST, 7300 .accessfn = access_aa64_tid3, 7301 .resetvalue = cpu->isar.id_aa64isar1 }, 7302 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7303 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7304 .access = PL1_R, .type = ARM_CP_CONST, 7305 .accessfn = access_aa64_tid3, 7306 .resetvalue = 0 }, 7307 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7308 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7309 .access = PL1_R, .type = ARM_CP_CONST, 7310 .accessfn = access_aa64_tid3, 7311 .resetvalue = 0 }, 7312 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7313 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7314 .access = PL1_R, .type = ARM_CP_CONST, 7315 .accessfn = access_aa64_tid3, 7316 .resetvalue = 0 }, 7317 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7318 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7319 .access = PL1_R, .type = ARM_CP_CONST, 7320 .accessfn = access_aa64_tid3, 7321 .resetvalue = 0 }, 7322 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7323 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7324 .access = PL1_R, .type = ARM_CP_CONST, 7325 .accessfn = access_aa64_tid3, 7326 .resetvalue = 0 }, 7327 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7328 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7329 .access = PL1_R, .type = ARM_CP_CONST, 7330 .accessfn = access_aa64_tid3, 7331 .resetvalue = 0 }, 7332 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7333 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7334 .access = PL1_R, .type = ARM_CP_CONST, 7335 .accessfn = access_aa64_tid3, 7336 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7337 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7338 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7339 .access = PL1_R, .type = ARM_CP_CONST, 7340 .accessfn = access_aa64_tid3, 7341 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7342 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7343 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7344 .access = PL1_R, .type = ARM_CP_CONST, 7345 .accessfn = access_aa64_tid3, 7346 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7347 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7348 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7349 .access = PL1_R, .type = ARM_CP_CONST, 7350 .accessfn = access_aa64_tid3, 7351 .resetvalue = 0 }, 7352 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7353 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7354 .access = PL1_R, .type = ARM_CP_CONST, 7355 .accessfn = access_aa64_tid3, 7356 .resetvalue = 0 }, 7357 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7358 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7359 .access = PL1_R, .type = ARM_CP_CONST, 7360 .accessfn = access_aa64_tid3, 7361 .resetvalue = 0 }, 7362 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7363 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7364 .access = PL1_R, .type = ARM_CP_CONST, 7365 .accessfn = access_aa64_tid3, 7366 .resetvalue = 0 }, 7367 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7368 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7369 .access = PL1_R, .type = ARM_CP_CONST, 7370 .accessfn = access_aa64_tid3, 7371 .resetvalue = 0 }, 7372 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7373 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7374 .access = PL1_R, .type = ARM_CP_CONST, 7375 .accessfn = access_aa64_tid3, 7376 .resetvalue = cpu->isar.mvfr0 }, 7377 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7378 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7379 .access = PL1_R, .type = ARM_CP_CONST, 7380 .accessfn = access_aa64_tid3, 7381 .resetvalue = cpu->isar.mvfr1 }, 7382 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7383 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7384 .access = PL1_R, .type = ARM_CP_CONST, 7385 .accessfn = access_aa64_tid3, 7386 .resetvalue = cpu->isar.mvfr2 }, 7387 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7388 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7389 .access = PL1_R, .type = ARM_CP_CONST, 7390 .accessfn = access_aa64_tid3, 7391 .resetvalue = 0 }, 7392 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7393 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7394 .access = PL1_R, .type = ARM_CP_CONST, 7395 .accessfn = access_aa64_tid3, 7396 .resetvalue = 0 }, 7397 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7398 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7399 .access = PL1_R, .type = ARM_CP_CONST, 7400 .accessfn = access_aa64_tid3, 7401 .resetvalue = 0 }, 7402 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7403 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7404 .access = PL1_R, .type = ARM_CP_CONST, 7405 .accessfn = access_aa64_tid3, 7406 .resetvalue = 0 }, 7407 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7408 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7409 .access = PL1_R, .type = ARM_CP_CONST, 7410 .accessfn = access_aa64_tid3, 7411 .resetvalue = 0 }, 7412 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7413 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7414 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7415 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7416 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7417 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7418 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7419 .resetvalue = cpu->pmceid0 }, 7420 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7421 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7422 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7423 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7424 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7425 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7426 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7427 .resetvalue = cpu->pmceid1 }, 7428 REGINFO_SENTINEL 7429 }; 7430 #ifdef CONFIG_USER_ONLY 7431 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7432 { .name = "ID_AA64PFR0_EL1", 7433 .exported_bits = 0x000f000f00ff0000, 7434 .fixed_bits = 0x0000000000000011 }, 7435 { .name = "ID_AA64PFR1_EL1", 7436 .exported_bits = 0x00000000000000f0 }, 7437 { .name = "ID_AA64PFR*_EL1_RESERVED", 7438 .is_glob = true }, 7439 { .name = "ID_AA64ZFR0_EL1" }, 7440 { .name = "ID_AA64MMFR0_EL1", 7441 .fixed_bits = 0x00000000ff000000 }, 7442 { .name = "ID_AA64MMFR1_EL1" }, 7443 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7444 .is_glob = true }, 7445 { .name = "ID_AA64DFR0_EL1", 7446 .fixed_bits = 0x0000000000000006 }, 7447 { .name = "ID_AA64DFR1_EL1" }, 7448 { .name = "ID_AA64DFR*_EL1_RESERVED", 7449 .is_glob = true }, 7450 { .name = "ID_AA64AFR*", 7451 .is_glob = true }, 7452 { .name = "ID_AA64ISAR0_EL1", 7453 .exported_bits = 0x00fffffff0fffff0 }, 7454 { .name = "ID_AA64ISAR1_EL1", 7455 .exported_bits = 0x000000f0ffffffff }, 7456 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7457 .is_glob = true }, 7458 REGUSERINFO_SENTINEL 7459 }; 7460 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7461 #endif 7462 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7463 if (!arm_feature(env, ARM_FEATURE_EL3) && 7464 !arm_feature(env, ARM_FEATURE_EL2)) { 7465 ARMCPRegInfo rvbar = { 7466 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7467 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7468 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 7469 }; 7470 define_one_arm_cp_reg(cpu, &rvbar); 7471 } 7472 define_arm_cp_regs(cpu, v8_idregs); 7473 define_arm_cp_regs(cpu, v8_cp_reginfo); 7474 } 7475 if (arm_feature(env, ARM_FEATURE_EL2)) { 7476 uint64_t vmpidr_def = mpidr_read_val(env); 7477 ARMCPRegInfo vpidr_regs[] = { 7478 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7479 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7480 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7481 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7482 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7483 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7484 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7485 .access = PL2_RW, .resetvalue = cpu->midr, 7486 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7487 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7488 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7489 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7490 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7491 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7492 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7493 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7494 .access = PL2_RW, 7495 .resetvalue = vmpidr_def, 7496 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7497 REGINFO_SENTINEL 7498 }; 7499 define_arm_cp_regs(cpu, vpidr_regs); 7500 define_arm_cp_regs(cpu, el2_cp_reginfo); 7501 if (arm_feature(env, ARM_FEATURE_V8)) { 7502 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7503 } 7504 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7505 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7506 ARMCPRegInfo rvbar = { 7507 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7508 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7509 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 7510 }; 7511 define_one_arm_cp_reg(cpu, &rvbar); 7512 } 7513 } else { 7514 /* If EL2 is missing but higher ELs are enabled, we need to 7515 * register the no_el2 reginfos. 7516 */ 7517 if (arm_feature(env, ARM_FEATURE_EL3)) { 7518 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 7519 * of MIDR_EL1 and MPIDR_EL1. 7520 */ 7521 ARMCPRegInfo vpidr_regs[] = { 7522 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7523 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7524 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7525 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 7526 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7527 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7528 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7529 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7530 .type = ARM_CP_NO_RAW, 7531 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 7532 REGINFO_SENTINEL 7533 }; 7534 define_arm_cp_regs(cpu, vpidr_regs); 7535 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 7536 if (arm_feature(env, ARM_FEATURE_V8)) { 7537 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 7538 } 7539 } 7540 } 7541 if (arm_feature(env, ARM_FEATURE_EL3)) { 7542 define_arm_cp_regs(cpu, el3_cp_reginfo); 7543 ARMCPRegInfo el3_regs[] = { 7544 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7545 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7546 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 7547 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7548 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7549 .access = PL3_RW, 7550 .raw_writefn = raw_write, .writefn = sctlr_write, 7551 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7552 .resetvalue = cpu->reset_sctlr }, 7553 REGINFO_SENTINEL 7554 }; 7555 7556 define_arm_cp_regs(cpu, el3_regs); 7557 } 7558 /* The behaviour of NSACR is sufficiently various that we don't 7559 * try to describe it in a single reginfo: 7560 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7561 * reads as constant 0xc00 from NS EL1 and NS EL2 7562 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7563 * if v7 without EL3, register doesn't exist 7564 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7565 */ 7566 if (arm_feature(env, ARM_FEATURE_EL3)) { 7567 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7568 ARMCPRegInfo nsacr = { 7569 .name = "NSACR", .type = ARM_CP_CONST, 7570 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7571 .access = PL1_RW, .accessfn = nsacr_access, 7572 .resetvalue = 0xc00 7573 }; 7574 define_one_arm_cp_reg(cpu, &nsacr); 7575 } else { 7576 ARMCPRegInfo nsacr = { 7577 .name = "NSACR", 7578 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7579 .access = PL3_RW | PL1_R, 7580 .resetvalue = 0, 7581 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 7582 }; 7583 define_one_arm_cp_reg(cpu, &nsacr); 7584 } 7585 } else { 7586 if (arm_feature(env, ARM_FEATURE_V8)) { 7587 ARMCPRegInfo nsacr = { 7588 .name = "NSACR", .type = ARM_CP_CONST, 7589 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7590 .access = PL1_R, 7591 .resetvalue = 0xc00 7592 }; 7593 define_one_arm_cp_reg(cpu, &nsacr); 7594 } 7595 } 7596 7597 if (arm_feature(env, ARM_FEATURE_PMSA)) { 7598 if (arm_feature(env, ARM_FEATURE_V6)) { 7599 /* PMSAv6 not implemented */ 7600 assert(arm_feature(env, ARM_FEATURE_V7)); 7601 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7602 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 7603 } else { 7604 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 7605 } 7606 } else { 7607 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7608 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 7609 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 7610 if (cpu_isar_feature(aa32_hpd, cpu)) { 7611 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 7612 } 7613 } 7614 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 7615 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 7616 } 7617 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 7618 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 7619 } 7620 if (arm_feature(env, ARM_FEATURE_VAPA)) { 7621 define_arm_cp_regs(cpu, vapa_cp_reginfo); 7622 } 7623 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 7624 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 7625 } 7626 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 7627 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 7628 } 7629 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 7630 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 7631 } 7632 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 7633 define_arm_cp_regs(cpu, omap_cp_reginfo); 7634 } 7635 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 7636 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 7637 } 7638 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7639 define_arm_cp_regs(cpu, xscale_cp_reginfo); 7640 } 7641 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 7642 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 7643 } 7644 if (arm_feature(env, ARM_FEATURE_LPAE)) { 7645 define_arm_cp_regs(cpu, lpae_cp_reginfo); 7646 } 7647 if (cpu_isar_feature(aa32_jazelle, cpu)) { 7648 define_arm_cp_regs(cpu, jazelle_regs); 7649 } 7650 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 7651 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 7652 * be read-only (ie write causes UNDEF exception). 7653 */ 7654 { 7655 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 7656 /* Pre-v8 MIDR space. 7657 * Note that the MIDR isn't a simple constant register because 7658 * of the TI925 behaviour where writes to another register can 7659 * cause the MIDR value to change. 7660 * 7661 * Unimplemented registers in the c15 0 0 0 space default to 7662 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 7663 * and friends override accordingly. 7664 */ 7665 { .name = "MIDR", 7666 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 7667 .access = PL1_R, .resetvalue = cpu->midr, 7668 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 7669 .readfn = midr_read, 7670 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7671 .type = ARM_CP_OVERRIDE }, 7672 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 7673 { .name = "DUMMY", 7674 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 7675 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7676 { .name = "DUMMY", 7677 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 7678 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7679 { .name = "DUMMY", 7680 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 7681 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7682 { .name = "DUMMY", 7683 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 7684 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7685 { .name = "DUMMY", 7686 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 7687 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7688 REGINFO_SENTINEL 7689 }; 7690 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 7691 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 7692 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 7693 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 7694 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7695 .readfn = midr_read }, 7696 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 7697 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7698 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 7699 .access = PL1_R, .resetvalue = cpu->midr }, 7700 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7701 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 7702 .access = PL1_R, .resetvalue = cpu->midr }, 7703 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 7704 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 7705 .access = PL1_R, 7706 .accessfn = access_aa64_tid1, 7707 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 7708 REGINFO_SENTINEL 7709 }; 7710 ARMCPRegInfo id_cp_reginfo[] = { 7711 /* These are common to v8 and pre-v8 */ 7712 { .name = "CTR", 7713 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 7714 .access = PL1_R, .accessfn = ctr_el0_access, 7715 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 7716 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 7717 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 7718 .access = PL0_R, .accessfn = ctr_el0_access, 7719 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 7720 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 7721 { .name = "TCMTR", 7722 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 7723 .access = PL1_R, 7724 .accessfn = access_aa32_tid1, 7725 .type = ARM_CP_CONST, .resetvalue = 0 }, 7726 REGINFO_SENTINEL 7727 }; 7728 /* TLBTR is specific to VMSA */ 7729 ARMCPRegInfo id_tlbtr_reginfo = { 7730 .name = "TLBTR", 7731 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 7732 .access = PL1_R, 7733 .accessfn = access_aa32_tid1, 7734 .type = ARM_CP_CONST, .resetvalue = 0, 7735 }; 7736 /* MPUIR is specific to PMSA V6+ */ 7737 ARMCPRegInfo id_mpuir_reginfo = { 7738 .name = "MPUIR", 7739 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 7740 .access = PL1_R, .type = ARM_CP_CONST, 7741 .resetvalue = cpu->pmsav7_dregion << 8 7742 }; 7743 ARMCPRegInfo crn0_wi_reginfo = { 7744 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 7745 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 7746 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 7747 }; 7748 #ifdef CONFIG_USER_ONLY 7749 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 7750 { .name = "MIDR_EL1", 7751 .exported_bits = 0x00000000ffffffff }, 7752 { .name = "REVIDR_EL1" }, 7753 REGUSERINFO_SENTINEL 7754 }; 7755 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 7756 #endif 7757 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 7758 arm_feature(env, ARM_FEATURE_STRONGARM)) { 7759 ARMCPRegInfo *r; 7760 /* Register the blanket "writes ignored" value first to cover the 7761 * whole space. Then update the specific ID registers to allow write 7762 * access, so that they ignore writes rather than causing them to 7763 * UNDEF. 7764 */ 7765 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 7766 for (r = id_pre_v8_midr_cp_reginfo; 7767 r->type != ARM_CP_SENTINEL; r++) { 7768 r->access = PL1_RW; 7769 } 7770 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 7771 r->access = PL1_RW; 7772 } 7773 id_mpuir_reginfo.access = PL1_RW; 7774 id_tlbtr_reginfo.access = PL1_RW; 7775 } 7776 if (arm_feature(env, ARM_FEATURE_V8)) { 7777 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 7778 } else { 7779 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 7780 } 7781 define_arm_cp_regs(cpu, id_cp_reginfo); 7782 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 7783 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 7784 } else if (arm_feature(env, ARM_FEATURE_V7)) { 7785 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 7786 } 7787 } 7788 7789 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 7790 ARMCPRegInfo mpidr_cp_reginfo[] = { 7791 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 7792 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 7793 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 7794 REGINFO_SENTINEL 7795 }; 7796 #ifdef CONFIG_USER_ONLY 7797 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 7798 { .name = "MPIDR_EL1", 7799 .fixed_bits = 0x0000000080000000 }, 7800 REGUSERINFO_SENTINEL 7801 }; 7802 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 7803 #endif 7804 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 7805 } 7806 7807 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 7808 ARMCPRegInfo auxcr_reginfo[] = { 7809 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 7810 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 7811 .access = PL1_RW, .accessfn = access_tacr, 7812 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 7813 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 7814 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 7815 .access = PL2_RW, .type = ARM_CP_CONST, 7816 .resetvalue = 0 }, 7817 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 7818 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 7819 .access = PL3_RW, .type = ARM_CP_CONST, 7820 .resetvalue = 0 }, 7821 REGINFO_SENTINEL 7822 }; 7823 define_arm_cp_regs(cpu, auxcr_reginfo); 7824 if (cpu_isar_feature(aa32_ac2, cpu)) { 7825 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 7826 } 7827 } 7828 7829 if (arm_feature(env, ARM_FEATURE_CBAR)) { 7830 /* 7831 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 7832 * There are two flavours: 7833 * (1) older 32-bit only cores have a simple 32-bit CBAR 7834 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 7835 * 32-bit register visible to AArch32 at a different encoding 7836 * to the "flavour 1" register and with the bits rearranged to 7837 * be able to squash a 64-bit address into the 32-bit view. 7838 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 7839 * in future if we support AArch32-only configs of some of the 7840 * AArch64 cores we might need to add a specific feature flag 7841 * to indicate cores with "flavour 2" CBAR. 7842 */ 7843 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7844 /* 32 bit view is [31:18] 0...0 [43:32]. */ 7845 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 7846 | extract64(cpu->reset_cbar, 32, 12); 7847 ARMCPRegInfo cbar_reginfo[] = { 7848 { .name = "CBAR", 7849 .type = ARM_CP_CONST, 7850 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 7851 .access = PL1_R, .resetvalue = cbar32 }, 7852 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 7853 .type = ARM_CP_CONST, 7854 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 7855 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 7856 REGINFO_SENTINEL 7857 }; 7858 /* We don't implement a r/w 64 bit CBAR currently */ 7859 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 7860 define_arm_cp_regs(cpu, cbar_reginfo); 7861 } else { 7862 ARMCPRegInfo cbar = { 7863 .name = "CBAR", 7864 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 7865 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 7866 .fieldoffset = offsetof(CPUARMState, 7867 cp15.c15_config_base_address) 7868 }; 7869 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 7870 cbar.access = PL1_R; 7871 cbar.fieldoffset = 0; 7872 cbar.type = ARM_CP_CONST; 7873 } 7874 define_one_arm_cp_reg(cpu, &cbar); 7875 } 7876 } 7877 7878 if (arm_feature(env, ARM_FEATURE_VBAR)) { 7879 ARMCPRegInfo vbar_cp_reginfo[] = { 7880 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 7881 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 7882 .access = PL1_RW, .writefn = vbar_write, 7883 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 7884 offsetof(CPUARMState, cp15.vbar_ns) }, 7885 .resetvalue = 0 }, 7886 REGINFO_SENTINEL 7887 }; 7888 define_arm_cp_regs(cpu, vbar_cp_reginfo); 7889 } 7890 7891 /* Generic registers whose values depend on the implementation */ 7892 { 7893 ARMCPRegInfo sctlr = { 7894 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 7895 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 7896 .access = PL1_RW, .accessfn = access_tvm_trvm, 7897 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 7898 offsetof(CPUARMState, cp15.sctlr_ns) }, 7899 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 7900 .raw_writefn = raw_write, 7901 }; 7902 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7903 /* Normally we would always end the TB on an SCTLR write, but Linux 7904 * arch/arm/mach-pxa/sleep.S expects two instructions following 7905 * an MMU enable to execute from cache. Imitate this behaviour. 7906 */ 7907 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 7908 } 7909 define_one_arm_cp_reg(cpu, &sctlr); 7910 } 7911 7912 if (cpu_isar_feature(aa64_lor, cpu)) { 7913 define_arm_cp_regs(cpu, lor_reginfo); 7914 } 7915 if (cpu_isar_feature(aa64_pan, cpu)) { 7916 define_one_arm_cp_reg(cpu, &pan_reginfo); 7917 } 7918 #ifndef CONFIG_USER_ONLY 7919 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 7920 define_arm_cp_regs(cpu, ats1e1_reginfo); 7921 } 7922 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 7923 define_arm_cp_regs(cpu, ats1cp_reginfo); 7924 } 7925 #endif 7926 if (cpu_isar_feature(aa64_uao, cpu)) { 7927 define_one_arm_cp_reg(cpu, &uao_reginfo); 7928 } 7929 7930 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 7931 define_arm_cp_regs(cpu, vhe_reginfo); 7932 } 7933 7934 if (cpu_isar_feature(aa64_sve, cpu)) { 7935 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 7936 if (arm_feature(env, ARM_FEATURE_EL2)) { 7937 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 7938 } else { 7939 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 7940 } 7941 if (arm_feature(env, ARM_FEATURE_EL3)) { 7942 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 7943 } 7944 } 7945 7946 #ifdef TARGET_AARCH64 7947 if (cpu_isar_feature(aa64_pauth, cpu)) { 7948 define_arm_cp_regs(cpu, pauth_reginfo); 7949 } 7950 if (cpu_isar_feature(aa64_rndr, cpu)) { 7951 define_arm_cp_regs(cpu, rndr_reginfo); 7952 } 7953 #ifndef CONFIG_USER_ONLY 7954 /* Data Cache clean instructions up to PoP */ 7955 if (cpu_isar_feature(aa64_dcpop, cpu)) { 7956 define_one_arm_cp_reg(cpu, dcpop_reg); 7957 7958 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 7959 define_one_arm_cp_reg(cpu, dcpodp_reg); 7960 } 7961 } 7962 #endif /*CONFIG_USER_ONLY*/ 7963 #endif 7964 7965 if (cpu_isar_feature(any_predinv, cpu)) { 7966 define_arm_cp_regs(cpu, predinv_reginfo); 7967 } 7968 7969 if (cpu_isar_feature(any_ccidx, cpu)) { 7970 define_arm_cp_regs(cpu, ccsidr2_reginfo); 7971 } 7972 7973 #ifndef CONFIG_USER_ONLY 7974 /* 7975 * Register redirections and aliases must be done last, 7976 * after the registers from the other extensions have been defined. 7977 */ 7978 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 7979 define_arm_vh_e2h_redirects_aliases(cpu); 7980 } 7981 #endif 7982 } 7983 7984 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 7985 { 7986 CPUState *cs = CPU(cpu); 7987 CPUARMState *env = &cpu->env; 7988 7989 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7990 /* 7991 * The lower part of each SVE register aliases to the FPU 7992 * registers so we don't need to include both. 7993 */ 7994 #ifdef TARGET_AARCH64 7995 if (isar_feature_aa64_sve(&cpu->isar)) { 7996 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg, 7997 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs), 7998 "sve-registers.xml", 0); 7999 } else 8000 #endif 8001 { 8002 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 8003 aarch64_fpu_gdb_set_reg, 8004 34, "aarch64-fpu.xml", 0); 8005 } 8006 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 8007 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8008 51, "arm-neon.xml", 0); 8009 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { 8010 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8011 35, "arm-vfp3.xml", 0); 8012 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 8013 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8014 19, "arm-vfp.xml", 0); 8015 } 8016 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 8017 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs), 8018 "system-registers.xml", 0); 8019 8020 } 8021 8022 /* Sort alphabetically by type name, except for "any". */ 8023 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8024 { 8025 ObjectClass *class_a = (ObjectClass *)a; 8026 ObjectClass *class_b = (ObjectClass *)b; 8027 const char *name_a, *name_b; 8028 8029 name_a = object_class_get_name(class_a); 8030 name_b = object_class_get_name(class_b); 8031 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8032 return 1; 8033 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8034 return -1; 8035 } else { 8036 return strcmp(name_a, name_b); 8037 } 8038 } 8039 8040 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8041 { 8042 ObjectClass *oc = data; 8043 const char *typename; 8044 char *name; 8045 8046 typename = object_class_get_name(oc); 8047 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8048 qemu_printf(" %s\n", name); 8049 g_free(name); 8050 } 8051 8052 void arm_cpu_list(void) 8053 { 8054 GSList *list; 8055 8056 list = object_class_get_list(TYPE_ARM_CPU, false); 8057 list = g_slist_sort(list, arm_cpu_list_compare); 8058 qemu_printf("Available CPUs:\n"); 8059 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8060 g_slist_free(list); 8061 } 8062 8063 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8064 { 8065 ObjectClass *oc = data; 8066 CpuDefinitionInfoList **cpu_list = user_data; 8067 CpuDefinitionInfoList *entry; 8068 CpuDefinitionInfo *info; 8069 const char *typename; 8070 8071 typename = object_class_get_name(oc); 8072 info = g_malloc0(sizeof(*info)); 8073 info->name = g_strndup(typename, 8074 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8075 info->q_typename = g_strdup(typename); 8076 8077 entry = g_malloc0(sizeof(*entry)); 8078 entry->value = info; 8079 entry->next = *cpu_list; 8080 *cpu_list = entry; 8081 } 8082 8083 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8084 { 8085 CpuDefinitionInfoList *cpu_list = NULL; 8086 GSList *list; 8087 8088 list = object_class_get_list(TYPE_ARM_CPU, false); 8089 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8090 g_slist_free(list); 8091 8092 return cpu_list; 8093 } 8094 8095 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8096 void *opaque, int state, int secstate, 8097 int crm, int opc1, int opc2, 8098 const char *name) 8099 { 8100 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8101 * add a single reginfo struct to the hash table. 8102 */ 8103 uint32_t *key = g_new(uint32_t, 1); 8104 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8105 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8106 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8107 8108 r2->name = g_strdup(name); 8109 /* Reset the secure state to the specific incoming state. This is 8110 * necessary as the register may have been defined with both states. 8111 */ 8112 r2->secure = secstate; 8113 8114 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8115 /* Register is banked (using both entries in array). 8116 * Overwriting fieldoffset as the array is only used to define 8117 * banked registers but later only fieldoffset is used. 8118 */ 8119 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8120 } 8121 8122 if (state == ARM_CP_STATE_AA32) { 8123 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8124 /* If the register is banked then we don't need to migrate or 8125 * reset the 32-bit instance in certain cases: 8126 * 8127 * 1) If the register has both 32-bit and 64-bit instances then we 8128 * can count on the 64-bit instance taking care of the 8129 * non-secure bank. 8130 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8131 * taking care of the secure bank. This requires that separate 8132 * 32 and 64-bit definitions are provided. 8133 */ 8134 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8135 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8136 r2->type |= ARM_CP_ALIAS; 8137 } 8138 } else if ((secstate != r->secure) && !ns) { 8139 /* The register is not banked so we only want to allow migration of 8140 * the non-secure instance. 8141 */ 8142 r2->type |= ARM_CP_ALIAS; 8143 } 8144 8145 if (r->state == ARM_CP_STATE_BOTH) { 8146 /* We assume it is a cp15 register if the .cp field is left unset. 8147 */ 8148 if (r2->cp == 0) { 8149 r2->cp = 15; 8150 } 8151 8152 #ifdef HOST_WORDS_BIGENDIAN 8153 if (r2->fieldoffset) { 8154 r2->fieldoffset += sizeof(uint32_t); 8155 } 8156 #endif 8157 } 8158 } 8159 if (state == ARM_CP_STATE_AA64) { 8160 /* To allow abbreviation of ARMCPRegInfo 8161 * definitions, we treat cp == 0 as equivalent to 8162 * the value for "standard guest-visible sysreg". 8163 * STATE_BOTH definitions are also always "standard 8164 * sysreg" in their AArch64 view (the .cp value may 8165 * be non-zero for the benefit of the AArch32 view). 8166 */ 8167 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8168 r2->cp = CP_REG_ARM64_SYSREG_CP; 8169 } 8170 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8171 r2->opc0, opc1, opc2); 8172 } else { 8173 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8174 } 8175 if (opaque) { 8176 r2->opaque = opaque; 8177 } 8178 /* reginfo passed to helpers is correct for the actual access, 8179 * and is never ARM_CP_STATE_BOTH: 8180 */ 8181 r2->state = state; 8182 /* Make sure reginfo passed to helpers for wildcarded regs 8183 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8184 */ 8185 r2->crm = crm; 8186 r2->opc1 = opc1; 8187 r2->opc2 = opc2; 8188 /* By convention, for wildcarded registers only the first 8189 * entry is used for migration; the others are marked as 8190 * ALIAS so we don't try to transfer the register 8191 * multiple times. Special registers (ie NOP/WFI) are 8192 * never migratable and not even raw-accessible. 8193 */ 8194 if ((r->type & ARM_CP_SPECIAL)) { 8195 r2->type |= ARM_CP_NO_RAW; 8196 } 8197 if (((r->crm == CP_ANY) && crm != 0) || 8198 ((r->opc1 == CP_ANY) && opc1 != 0) || 8199 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8200 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8201 } 8202 8203 /* Check that raw accesses are either forbidden or handled. Note that 8204 * we can't assert this earlier because the setup of fieldoffset for 8205 * banked registers has to be done first. 8206 */ 8207 if (!(r2->type & ARM_CP_NO_RAW)) { 8208 assert(!raw_accessors_invalid(r2)); 8209 } 8210 8211 /* Overriding of an existing definition must be explicitly 8212 * requested. 8213 */ 8214 if (!(r->type & ARM_CP_OVERRIDE)) { 8215 ARMCPRegInfo *oldreg; 8216 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8217 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8218 fprintf(stderr, "Register redefined: cp=%d %d bit " 8219 "crn=%d crm=%d opc1=%d opc2=%d, " 8220 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8221 r2->crn, r2->crm, r2->opc1, r2->opc2, 8222 oldreg->name, r2->name); 8223 g_assert_not_reached(); 8224 } 8225 } 8226 g_hash_table_insert(cpu->cp_regs, key, r2); 8227 } 8228 8229 8230 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8231 const ARMCPRegInfo *r, void *opaque) 8232 { 8233 /* Define implementations of coprocessor registers. 8234 * We store these in a hashtable because typically 8235 * there are less than 150 registers in a space which 8236 * is 16*16*16*8*8 = 262144 in size. 8237 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8238 * If a register is defined twice then the second definition is 8239 * used, so this can be used to define some generic registers and 8240 * then override them with implementation specific variations. 8241 * At least one of the original and the second definition should 8242 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8243 * against accidental use. 8244 * 8245 * The state field defines whether the register is to be 8246 * visible in the AArch32 or AArch64 execution state. If the 8247 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8248 * reginfo structure for the AArch32 view, which sees the lower 8249 * 32 bits of the 64 bit register. 8250 * 8251 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8252 * be wildcarded. AArch64 registers are always considered to be 64 8253 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8254 * the register, if any. 8255 */ 8256 int crm, opc1, opc2, state; 8257 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8258 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8259 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8260 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8261 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8262 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8263 /* 64 bit registers have only CRm and Opc1 fields */ 8264 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8265 /* op0 only exists in the AArch64 encodings */ 8266 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8267 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8268 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8269 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8270 * encodes a minimum access level for the register. We roll this 8271 * runtime check into our general permission check code, so check 8272 * here that the reginfo's specified permissions are strict enough 8273 * to encompass the generic architectural permission check. 8274 */ 8275 if (r->state != ARM_CP_STATE_AA32) { 8276 int mask = 0; 8277 switch (r->opc1) { 8278 case 0: 8279 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8280 mask = PL0U_R | PL1_RW; 8281 break; 8282 case 1: case 2: 8283 /* min_EL EL1 */ 8284 mask = PL1_RW; 8285 break; 8286 case 3: 8287 /* min_EL EL0 */ 8288 mask = PL0_RW; 8289 break; 8290 case 4: 8291 case 5: 8292 /* min_EL EL2 */ 8293 mask = PL2_RW; 8294 break; 8295 case 6: 8296 /* min_EL EL3 */ 8297 mask = PL3_RW; 8298 break; 8299 case 7: 8300 /* min_EL EL1, secure mode only (we don't check the latter) */ 8301 mask = PL1_RW; 8302 break; 8303 default: 8304 /* broken reginfo with out-of-range opc1 */ 8305 assert(false); 8306 break; 8307 } 8308 /* assert our permissions are not too lax (stricter is fine) */ 8309 assert((r->access & ~mask) == 0); 8310 } 8311 8312 /* Check that the register definition has enough info to handle 8313 * reads and writes if they are permitted. 8314 */ 8315 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8316 if (r->access & PL3_R) { 8317 assert((r->fieldoffset || 8318 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8319 r->readfn); 8320 } 8321 if (r->access & PL3_W) { 8322 assert((r->fieldoffset || 8323 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8324 r->writefn); 8325 } 8326 } 8327 /* Bad type field probably means missing sentinel at end of reg list */ 8328 assert(cptype_valid(r->type)); 8329 for (crm = crmmin; crm <= crmmax; crm++) { 8330 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8331 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8332 for (state = ARM_CP_STATE_AA32; 8333 state <= ARM_CP_STATE_AA64; state++) { 8334 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8335 continue; 8336 } 8337 if (state == ARM_CP_STATE_AA32) { 8338 /* Under AArch32 CP registers can be common 8339 * (same for secure and non-secure world) or banked. 8340 */ 8341 char *name; 8342 8343 switch (r->secure) { 8344 case ARM_CP_SECSTATE_S: 8345 case ARM_CP_SECSTATE_NS: 8346 add_cpreg_to_hashtable(cpu, r, opaque, state, 8347 r->secure, crm, opc1, opc2, 8348 r->name); 8349 break; 8350 default: 8351 name = g_strdup_printf("%s_S", r->name); 8352 add_cpreg_to_hashtable(cpu, r, opaque, state, 8353 ARM_CP_SECSTATE_S, 8354 crm, opc1, opc2, name); 8355 g_free(name); 8356 add_cpreg_to_hashtable(cpu, r, opaque, state, 8357 ARM_CP_SECSTATE_NS, 8358 crm, opc1, opc2, r->name); 8359 break; 8360 } 8361 } else { 8362 /* AArch64 registers get mapped to non-secure instance 8363 * of AArch32 */ 8364 add_cpreg_to_hashtable(cpu, r, opaque, state, 8365 ARM_CP_SECSTATE_NS, 8366 crm, opc1, opc2, r->name); 8367 } 8368 } 8369 } 8370 } 8371 } 8372 } 8373 8374 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8375 const ARMCPRegInfo *regs, void *opaque) 8376 { 8377 /* Define a whole list of registers */ 8378 const ARMCPRegInfo *r; 8379 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8380 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8381 } 8382 } 8383 8384 /* 8385 * Modify ARMCPRegInfo for access from userspace. 8386 * 8387 * This is a data driven modification directed by 8388 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8389 * user-space cannot alter any values and dynamic values pertaining to 8390 * execution state are hidden from user space view anyway. 8391 */ 8392 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8393 { 8394 const ARMCPRegUserSpaceInfo *m; 8395 ARMCPRegInfo *r; 8396 8397 for (m = mods; m->name; m++) { 8398 GPatternSpec *pat = NULL; 8399 if (m->is_glob) { 8400 pat = g_pattern_spec_new(m->name); 8401 } 8402 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8403 if (pat && g_pattern_match_string(pat, r->name)) { 8404 r->type = ARM_CP_CONST; 8405 r->access = PL0U_R; 8406 r->resetvalue = 0; 8407 /* continue */ 8408 } else if (strcmp(r->name, m->name) == 0) { 8409 r->type = ARM_CP_CONST; 8410 r->access = PL0U_R; 8411 r->resetvalue &= m->exported_bits; 8412 r->resetvalue |= m->fixed_bits; 8413 break; 8414 } 8415 } 8416 if (pat) { 8417 g_pattern_spec_free(pat); 8418 } 8419 } 8420 } 8421 8422 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8423 { 8424 return g_hash_table_lookup(cpregs, &encoded_cp); 8425 } 8426 8427 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8428 uint64_t value) 8429 { 8430 /* Helper coprocessor write function for write-ignore registers */ 8431 } 8432 8433 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8434 { 8435 /* Helper coprocessor write function for read-as-zero registers */ 8436 return 0; 8437 } 8438 8439 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8440 { 8441 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8442 } 8443 8444 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8445 { 8446 /* Return true if it is not valid for us to switch to 8447 * this CPU mode (ie all the UNPREDICTABLE cases in 8448 * the ARM ARM CPSRWriteByInstr pseudocode). 8449 */ 8450 8451 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8452 if (write_type == CPSRWriteByInstr && 8453 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8454 mode == ARM_CPU_MODE_HYP)) { 8455 return 1; 8456 } 8457 8458 switch (mode) { 8459 case ARM_CPU_MODE_USR: 8460 return 0; 8461 case ARM_CPU_MODE_SYS: 8462 case ARM_CPU_MODE_SVC: 8463 case ARM_CPU_MODE_ABT: 8464 case ARM_CPU_MODE_UND: 8465 case ARM_CPU_MODE_IRQ: 8466 case ARM_CPU_MODE_FIQ: 8467 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8468 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8469 */ 8470 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8471 * and CPS are treated as illegal mode changes. 8472 */ 8473 if (write_type == CPSRWriteByInstr && 8474 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8475 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8476 return 1; 8477 } 8478 return 0; 8479 case ARM_CPU_MODE_HYP: 8480 return !arm_feature(env, ARM_FEATURE_EL2) 8481 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); 8482 case ARM_CPU_MODE_MON: 8483 return arm_current_el(env) < 3; 8484 default: 8485 return 1; 8486 } 8487 } 8488 8489 uint32_t cpsr_read(CPUARMState *env) 8490 { 8491 int ZF; 8492 ZF = (env->ZF == 0); 8493 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8494 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8495 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8496 | ((env->condexec_bits & 0xfc) << 8) 8497 | (env->GE << 16) | (env->daif & CPSR_AIF); 8498 } 8499 8500 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8501 CPSRWriteType write_type) 8502 { 8503 uint32_t changed_daif; 8504 8505 if (mask & CPSR_NZCV) { 8506 env->ZF = (~val) & CPSR_Z; 8507 env->NF = val; 8508 env->CF = (val >> 29) & 1; 8509 env->VF = (val << 3) & 0x80000000; 8510 } 8511 if (mask & CPSR_Q) 8512 env->QF = ((val & CPSR_Q) != 0); 8513 if (mask & CPSR_T) 8514 env->thumb = ((val & CPSR_T) != 0); 8515 if (mask & CPSR_IT_0_1) { 8516 env->condexec_bits &= ~3; 8517 env->condexec_bits |= (val >> 25) & 3; 8518 } 8519 if (mask & CPSR_IT_2_7) { 8520 env->condexec_bits &= 3; 8521 env->condexec_bits |= (val >> 8) & 0xfc; 8522 } 8523 if (mask & CPSR_GE) { 8524 env->GE = (val >> 16) & 0xf; 8525 } 8526 8527 /* In a V7 implementation that includes the security extensions but does 8528 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 8529 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 8530 * bits respectively. 8531 * 8532 * In a V8 implementation, it is permitted for privileged software to 8533 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 8534 */ 8535 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 8536 arm_feature(env, ARM_FEATURE_EL3) && 8537 !arm_feature(env, ARM_FEATURE_EL2) && 8538 !arm_is_secure(env)) { 8539 8540 changed_daif = (env->daif ^ val) & mask; 8541 8542 if (changed_daif & CPSR_A) { 8543 /* Check to see if we are allowed to change the masking of async 8544 * abort exceptions from a non-secure state. 8545 */ 8546 if (!(env->cp15.scr_el3 & SCR_AW)) { 8547 qemu_log_mask(LOG_GUEST_ERROR, 8548 "Ignoring attempt to switch CPSR_A flag from " 8549 "non-secure world with SCR.AW bit clear\n"); 8550 mask &= ~CPSR_A; 8551 } 8552 } 8553 8554 if (changed_daif & CPSR_F) { 8555 /* Check to see if we are allowed to change the masking of FIQ 8556 * exceptions from a non-secure state. 8557 */ 8558 if (!(env->cp15.scr_el3 & SCR_FW)) { 8559 qemu_log_mask(LOG_GUEST_ERROR, 8560 "Ignoring attempt to switch CPSR_F flag from " 8561 "non-secure world with SCR.FW bit clear\n"); 8562 mask &= ~CPSR_F; 8563 } 8564 8565 /* Check whether non-maskable FIQ (NMFI) support is enabled. 8566 * If this bit is set software is not allowed to mask 8567 * FIQs, but is allowed to set CPSR_F to 0. 8568 */ 8569 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 8570 (val & CPSR_F)) { 8571 qemu_log_mask(LOG_GUEST_ERROR, 8572 "Ignoring attempt to enable CPSR_F flag " 8573 "(non-maskable FIQ [NMFI] support enabled)\n"); 8574 mask &= ~CPSR_F; 8575 } 8576 } 8577 } 8578 8579 env->daif &= ~(CPSR_AIF & mask); 8580 env->daif |= val & CPSR_AIF & mask; 8581 8582 if (write_type != CPSRWriteRaw && 8583 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 8584 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 8585 /* Note that we can only get here in USR mode if this is a 8586 * gdb stub write; for this case we follow the architectural 8587 * behaviour for guest writes in USR mode of ignoring an attempt 8588 * to switch mode. (Those are caught by translate.c for writes 8589 * triggered by guest instructions.) 8590 */ 8591 mask &= ~CPSR_M; 8592 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 8593 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 8594 * v7, and has defined behaviour in v8: 8595 * + leave CPSR.M untouched 8596 * + allow changes to the other CPSR fields 8597 * + set PSTATE.IL 8598 * For user changes via the GDB stub, we don't set PSTATE.IL, 8599 * as this would be unnecessarily harsh for a user error. 8600 */ 8601 mask &= ~CPSR_M; 8602 if (write_type != CPSRWriteByGDBStub && 8603 arm_feature(env, ARM_FEATURE_V8)) { 8604 mask |= CPSR_IL; 8605 val |= CPSR_IL; 8606 } 8607 qemu_log_mask(LOG_GUEST_ERROR, 8608 "Illegal AArch32 mode switch attempt from %s to %s\n", 8609 aarch32_mode_name(env->uncached_cpsr), 8610 aarch32_mode_name(val)); 8611 } else { 8612 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 8613 write_type == CPSRWriteExceptionReturn ? 8614 "Exception return from AArch32" : 8615 "AArch32 mode switch from", 8616 aarch32_mode_name(env->uncached_cpsr), 8617 aarch32_mode_name(val), env->regs[15]); 8618 switch_mode(env, val & CPSR_M); 8619 } 8620 } 8621 mask &= ~CACHED_CPSR_BITS; 8622 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 8623 } 8624 8625 /* Sign/zero extend */ 8626 uint32_t HELPER(sxtb16)(uint32_t x) 8627 { 8628 uint32_t res; 8629 res = (uint16_t)(int8_t)x; 8630 res |= (uint32_t)(int8_t)(x >> 16) << 16; 8631 return res; 8632 } 8633 8634 uint32_t HELPER(uxtb16)(uint32_t x) 8635 { 8636 uint32_t res; 8637 res = (uint16_t)(uint8_t)x; 8638 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 8639 return res; 8640 } 8641 8642 int32_t HELPER(sdiv)(int32_t num, int32_t den) 8643 { 8644 if (den == 0) 8645 return 0; 8646 if (num == INT_MIN && den == -1) 8647 return INT_MIN; 8648 return num / den; 8649 } 8650 8651 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 8652 { 8653 if (den == 0) 8654 return 0; 8655 return num / den; 8656 } 8657 8658 uint32_t HELPER(rbit)(uint32_t x) 8659 { 8660 return revbit32(x); 8661 } 8662 8663 #ifdef CONFIG_USER_ONLY 8664 8665 static void switch_mode(CPUARMState *env, int mode) 8666 { 8667 ARMCPU *cpu = env_archcpu(env); 8668 8669 if (mode != ARM_CPU_MODE_USR) { 8670 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 8671 } 8672 } 8673 8674 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 8675 uint32_t cur_el, bool secure) 8676 { 8677 return 1; 8678 } 8679 8680 void aarch64_sync_64_to_32(CPUARMState *env) 8681 { 8682 g_assert_not_reached(); 8683 } 8684 8685 #else 8686 8687 static void switch_mode(CPUARMState *env, int mode) 8688 { 8689 int old_mode; 8690 int i; 8691 8692 old_mode = env->uncached_cpsr & CPSR_M; 8693 if (mode == old_mode) 8694 return; 8695 8696 if (old_mode == ARM_CPU_MODE_FIQ) { 8697 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 8698 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 8699 } else if (mode == ARM_CPU_MODE_FIQ) { 8700 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 8701 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 8702 } 8703 8704 i = bank_number(old_mode); 8705 env->banked_r13[i] = env->regs[13]; 8706 env->banked_spsr[i] = env->spsr; 8707 8708 i = bank_number(mode); 8709 env->regs[13] = env->banked_r13[i]; 8710 env->spsr = env->banked_spsr[i]; 8711 8712 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 8713 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 8714 } 8715 8716 /* Physical Interrupt Target EL Lookup Table 8717 * 8718 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 8719 * 8720 * The below multi-dimensional table is used for looking up the target 8721 * exception level given numerous condition criteria. Specifically, the 8722 * target EL is based on SCR and HCR routing controls as well as the 8723 * currently executing EL and secure state. 8724 * 8725 * Dimensions: 8726 * target_el_table[2][2][2][2][2][4] 8727 * | | | | | +--- Current EL 8728 * | | | | +------ Non-secure(0)/Secure(1) 8729 * | | | +--------- HCR mask override 8730 * | | +------------ SCR exec state control 8731 * | +--------------- SCR mask override 8732 * +------------------ 32-bit(0)/64-bit(1) EL3 8733 * 8734 * The table values are as such: 8735 * 0-3 = EL0-EL3 8736 * -1 = Cannot occur 8737 * 8738 * The ARM ARM target EL table includes entries indicating that an "exception 8739 * is not taken". The two cases where this is applicable are: 8740 * 1) An exception is taken from EL3 but the SCR does not have the exception 8741 * routed to EL3. 8742 * 2) An exception is taken from EL2 but the HCR does not have the exception 8743 * routed to EL2. 8744 * In these two cases, the below table contain a target of EL1. This value is 8745 * returned as it is expected that the consumer of the table data will check 8746 * for "target EL >= current EL" to ensure the exception is not taken. 8747 * 8748 * SCR HCR 8749 * 64 EA AMO From 8750 * BIT IRQ IMO Non-secure Secure 8751 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 8752 */ 8753 static const int8_t target_el_table[2][2][2][2][2][4] = { 8754 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 8755 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 8756 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 8757 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 8758 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 8759 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 8760 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 8761 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 8762 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 8763 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 8764 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 8765 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 8766 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 8767 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 8768 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 8769 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 8770 }; 8771 8772 /* 8773 * Determine the target EL for physical exceptions 8774 */ 8775 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 8776 uint32_t cur_el, bool secure) 8777 { 8778 CPUARMState *env = cs->env_ptr; 8779 bool rw; 8780 bool scr; 8781 bool hcr; 8782 int target_el; 8783 /* Is the highest EL AArch64? */ 8784 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 8785 uint64_t hcr_el2; 8786 8787 if (arm_feature(env, ARM_FEATURE_EL3)) { 8788 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 8789 } else { 8790 /* Either EL2 is the highest EL (and so the EL2 register width 8791 * is given by is64); or there is no EL2 or EL3, in which case 8792 * the value of 'rw' does not affect the table lookup anyway. 8793 */ 8794 rw = is64; 8795 } 8796 8797 hcr_el2 = arm_hcr_el2_eff(env); 8798 switch (excp_idx) { 8799 case EXCP_IRQ: 8800 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 8801 hcr = hcr_el2 & HCR_IMO; 8802 break; 8803 case EXCP_FIQ: 8804 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 8805 hcr = hcr_el2 & HCR_FMO; 8806 break; 8807 default: 8808 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 8809 hcr = hcr_el2 & HCR_AMO; 8810 break; 8811 }; 8812 8813 /* 8814 * For these purposes, TGE and AMO/IMO/FMO both force the 8815 * interrupt to EL2. Fold TGE into the bit extracted above. 8816 */ 8817 hcr |= (hcr_el2 & HCR_TGE) != 0; 8818 8819 /* Perform a table-lookup for the target EL given the current state */ 8820 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 8821 8822 assert(target_el > 0); 8823 8824 return target_el; 8825 } 8826 8827 void arm_log_exception(int idx) 8828 { 8829 if (qemu_loglevel_mask(CPU_LOG_INT)) { 8830 const char *exc = NULL; 8831 static const char * const excnames[] = { 8832 [EXCP_UDEF] = "Undefined Instruction", 8833 [EXCP_SWI] = "SVC", 8834 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 8835 [EXCP_DATA_ABORT] = "Data Abort", 8836 [EXCP_IRQ] = "IRQ", 8837 [EXCP_FIQ] = "FIQ", 8838 [EXCP_BKPT] = "Breakpoint", 8839 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 8840 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 8841 [EXCP_HVC] = "Hypervisor Call", 8842 [EXCP_HYP_TRAP] = "Hypervisor Trap", 8843 [EXCP_SMC] = "Secure Monitor Call", 8844 [EXCP_VIRQ] = "Virtual IRQ", 8845 [EXCP_VFIQ] = "Virtual FIQ", 8846 [EXCP_SEMIHOST] = "Semihosting call", 8847 [EXCP_NOCP] = "v7M NOCP UsageFault", 8848 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 8849 [EXCP_STKOF] = "v8M STKOF UsageFault", 8850 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 8851 [EXCP_LSERR] = "v8M LSERR UsageFault", 8852 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 8853 }; 8854 8855 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 8856 exc = excnames[idx]; 8857 } 8858 if (!exc) { 8859 exc = "unknown"; 8860 } 8861 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 8862 } 8863 } 8864 8865 /* 8866 * Function used to synchronize QEMU's AArch64 register set with AArch32 8867 * register set. This is necessary when switching between AArch32 and AArch64 8868 * execution state. 8869 */ 8870 void aarch64_sync_32_to_64(CPUARMState *env) 8871 { 8872 int i; 8873 uint32_t mode = env->uncached_cpsr & CPSR_M; 8874 8875 /* We can blanket copy R[0:7] to X[0:7] */ 8876 for (i = 0; i < 8; i++) { 8877 env->xregs[i] = env->regs[i]; 8878 } 8879 8880 /* 8881 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 8882 * Otherwise, they come from the banked user regs. 8883 */ 8884 if (mode == ARM_CPU_MODE_FIQ) { 8885 for (i = 8; i < 13; i++) { 8886 env->xregs[i] = env->usr_regs[i - 8]; 8887 } 8888 } else { 8889 for (i = 8; i < 13; i++) { 8890 env->xregs[i] = env->regs[i]; 8891 } 8892 } 8893 8894 /* 8895 * Registers x13-x23 are the various mode SP and FP registers. Registers 8896 * r13 and r14 are only copied if we are in that mode, otherwise we copy 8897 * from the mode banked register. 8898 */ 8899 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 8900 env->xregs[13] = env->regs[13]; 8901 env->xregs[14] = env->regs[14]; 8902 } else { 8903 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 8904 /* HYP is an exception in that it is copied from r14 */ 8905 if (mode == ARM_CPU_MODE_HYP) { 8906 env->xregs[14] = env->regs[14]; 8907 } else { 8908 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 8909 } 8910 } 8911 8912 if (mode == ARM_CPU_MODE_HYP) { 8913 env->xregs[15] = env->regs[13]; 8914 } else { 8915 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 8916 } 8917 8918 if (mode == ARM_CPU_MODE_IRQ) { 8919 env->xregs[16] = env->regs[14]; 8920 env->xregs[17] = env->regs[13]; 8921 } else { 8922 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 8923 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 8924 } 8925 8926 if (mode == ARM_CPU_MODE_SVC) { 8927 env->xregs[18] = env->regs[14]; 8928 env->xregs[19] = env->regs[13]; 8929 } else { 8930 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 8931 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 8932 } 8933 8934 if (mode == ARM_CPU_MODE_ABT) { 8935 env->xregs[20] = env->regs[14]; 8936 env->xregs[21] = env->regs[13]; 8937 } else { 8938 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 8939 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 8940 } 8941 8942 if (mode == ARM_CPU_MODE_UND) { 8943 env->xregs[22] = env->regs[14]; 8944 env->xregs[23] = env->regs[13]; 8945 } else { 8946 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 8947 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 8948 } 8949 8950 /* 8951 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 8952 * mode, then we can copy from r8-r14. Otherwise, we copy from the 8953 * FIQ bank for r8-r14. 8954 */ 8955 if (mode == ARM_CPU_MODE_FIQ) { 8956 for (i = 24; i < 31; i++) { 8957 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 8958 } 8959 } else { 8960 for (i = 24; i < 29; i++) { 8961 env->xregs[i] = env->fiq_regs[i - 24]; 8962 } 8963 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 8964 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 8965 } 8966 8967 env->pc = env->regs[15]; 8968 } 8969 8970 /* 8971 * Function used to synchronize QEMU's AArch32 register set with AArch64 8972 * register set. This is necessary when switching between AArch32 and AArch64 8973 * execution state. 8974 */ 8975 void aarch64_sync_64_to_32(CPUARMState *env) 8976 { 8977 int i; 8978 uint32_t mode = env->uncached_cpsr & CPSR_M; 8979 8980 /* We can blanket copy X[0:7] to R[0:7] */ 8981 for (i = 0; i < 8; i++) { 8982 env->regs[i] = env->xregs[i]; 8983 } 8984 8985 /* 8986 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 8987 * Otherwise, we copy x8-x12 into the banked user regs. 8988 */ 8989 if (mode == ARM_CPU_MODE_FIQ) { 8990 for (i = 8; i < 13; i++) { 8991 env->usr_regs[i - 8] = env->xregs[i]; 8992 } 8993 } else { 8994 for (i = 8; i < 13; i++) { 8995 env->regs[i] = env->xregs[i]; 8996 } 8997 } 8998 8999 /* 9000 * Registers r13 & r14 depend on the current mode. 9001 * If we are in a given mode, we copy the corresponding x registers to r13 9002 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9003 * for the mode. 9004 */ 9005 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9006 env->regs[13] = env->xregs[13]; 9007 env->regs[14] = env->xregs[14]; 9008 } else { 9009 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9010 9011 /* 9012 * HYP is an exception in that it does not have its own banked r14 but 9013 * shares the USR r14 9014 */ 9015 if (mode == ARM_CPU_MODE_HYP) { 9016 env->regs[14] = env->xregs[14]; 9017 } else { 9018 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9019 } 9020 } 9021 9022 if (mode == ARM_CPU_MODE_HYP) { 9023 env->regs[13] = env->xregs[15]; 9024 } else { 9025 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9026 } 9027 9028 if (mode == ARM_CPU_MODE_IRQ) { 9029 env->regs[14] = env->xregs[16]; 9030 env->regs[13] = env->xregs[17]; 9031 } else { 9032 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9033 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9034 } 9035 9036 if (mode == ARM_CPU_MODE_SVC) { 9037 env->regs[14] = env->xregs[18]; 9038 env->regs[13] = env->xregs[19]; 9039 } else { 9040 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9041 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9042 } 9043 9044 if (mode == ARM_CPU_MODE_ABT) { 9045 env->regs[14] = env->xregs[20]; 9046 env->regs[13] = env->xregs[21]; 9047 } else { 9048 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9049 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9050 } 9051 9052 if (mode == ARM_CPU_MODE_UND) { 9053 env->regs[14] = env->xregs[22]; 9054 env->regs[13] = env->xregs[23]; 9055 } else { 9056 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9057 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9058 } 9059 9060 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9061 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9062 * FIQ bank for r8-r14. 9063 */ 9064 if (mode == ARM_CPU_MODE_FIQ) { 9065 for (i = 24; i < 31; i++) { 9066 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9067 } 9068 } else { 9069 for (i = 24; i < 29; i++) { 9070 env->fiq_regs[i - 24] = env->xregs[i]; 9071 } 9072 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9073 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9074 } 9075 9076 env->regs[15] = env->pc; 9077 } 9078 9079 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9080 uint32_t mask, uint32_t offset, 9081 uint32_t newpc) 9082 { 9083 int new_el; 9084 9085 /* Change the CPU state so as to actually take the exception. */ 9086 switch_mode(env, new_mode); 9087 9088 /* 9089 * For exceptions taken to AArch32 we must clear the SS bit in both 9090 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9091 */ 9092 env->uncached_cpsr &= ~PSTATE_SS; 9093 env->spsr = cpsr_read(env); 9094 /* Clear IT bits. */ 9095 env->condexec_bits = 0; 9096 /* Switch to the new mode, and to the correct instruction set. */ 9097 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9098 9099 /* This must be after mode switching. */ 9100 new_el = arm_current_el(env); 9101 9102 /* Set new mode endianness */ 9103 env->uncached_cpsr &= ~CPSR_E; 9104 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9105 env->uncached_cpsr |= CPSR_E; 9106 } 9107 /* J and IL must always be cleared for exception entry */ 9108 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9109 env->daif |= mask; 9110 9111 if (new_mode == ARM_CPU_MODE_HYP) { 9112 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9113 env->elr_el[2] = env->regs[15]; 9114 } else { 9115 /* CPSR.PAN is normally preserved preserved unless... */ 9116 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9117 switch (new_el) { 9118 case 3: 9119 if (!arm_is_secure_below_el3(env)) { 9120 /* ... the target is EL3, from non-secure state. */ 9121 env->uncached_cpsr &= ~CPSR_PAN; 9122 break; 9123 } 9124 /* ... the target is EL3, from secure state ... */ 9125 /* fall through */ 9126 case 1: 9127 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9128 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9129 env->uncached_cpsr |= CPSR_PAN; 9130 } 9131 break; 9132 } 9133 } 9134 /* 9135 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9136 * and we should just guard the thumb mode on V4 9137 */ 9138 if (arm_feature(env, ARM_FEATURE_V4T)) { 9139 env->thumb = 9140 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9141 } 9142 env->regs[14] = env->regs[15] + offset; 9143 } 9144 env->regs[15] = newpc; 9145 arm_rebuild_hflags(env); 9146 } 9147 9148 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9149 { 9150 /* 9151 * Handle exception entry to Hyp mode; this is sufficiently 9152 * different to entry to other AArch32 modes that we handle it 9153 * separately here. 9154 * 9155 * The vector table entry used is always the 0x14 Hyp mode entry point, 9156 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 9157 * The offset applied to the preferred return address is always zero 9158 * (see DDI0487C.a section G1.12.3). 9159 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9160 */ 9161 uint32_t addr, mask; 9162 ARMCPU *cpu = ARM_CPU(cs); 9163 CPUARMState *env = &cpu->env; 9164 9165 switch (cs->exception_index) { 9166 case EXCP_UDEF: 9167 addr = 0x04; 9168 break; 9169 case EXCP_SWI: 9170 addr = 0x14; 9171 break; 9172 case EXCP_BKPT: 9173 /* Fall through to prefetch abort. */ 9174 case EXCP_PREFETCH_ABORT: 9175 env->cp15.ifar_s = env->exception.vaddress; 9176 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9177 (uint32_t)env->exception.vaddress); 9178 addr = 0x0c; 9179 break; 9180 case EXCP_DATA_ABORT: 9181 env->cp15.dfar_s = env->exception.vaddress; 9182 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9183 (uint32_t)env->exception.vaddress); 9184 addr = 0x10; 9185 break; 9186 case EXCP_IRQ: 9187 addr = 0x18; 9188 break; 9189 case EXCP_FIQ: 9190 addr = 0x1c; 9191 break; 9192 case EXCP_HVC: 9193 addr = 0x08; 9194 break; 9195 case EXCP_HYP_TRAP: 9196 addr = 0x14; 9197 break; 9198 default: 9199 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9200 } 9201 9202 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9203 if (!arm_feature(env, ARM_FEATURE_V8)) { 9204 /* 9205 * QEMU syndrome values are v8-style. v7 has the IL bit 9206 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9207 * If this is a v7 CPU, squash the IL bit in those cases. 9208 */ 9209 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9210 (cs->exception_index == EXCP_DATA_ABORT && 9211 !(env->exception.syndrome & ARM_EL_ISV)) || 9212 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9213 env->exception.syndrome &= ~ARM_EL_IL; 9214 } 9215 } 9216 env->cp15.esr_el[2] = env->exception.syndrome; 9217 } 9218 9219 if (arm_current_el(env) != 2 && addr < 0x14) { 9220 addr = 0x14; 9221 } 9222 9223 mask = 0; 9224 if (!(env->cp15.scr_el3 & SCR_EA)) { 9225 mask |= CPSR_A; 9226 } 9227 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9228 mask |= CPSR_I; 9229 } 9230 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9231 mask |= CPSR_F; 9232 } 9233 9234 addr += env->cp15.hvbar; 9235 9236 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9237 } 9238 9239 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9240 { 9241 ARMCPU *cpu = ARM_CPU(cs); 9242 CPUARMState *env = &cpu->env; 9243 uint32_t addr; 9244 uint32_t mask; 9245 int new_mode; 9246 uint32_t offset; 9247 uint32_t moe; 9248 9249 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9250 switch (syn_get_ec(env->exception.syndrome)) { 9251 case EC_BREAKPOINT: 9252 case EC_BREAKPOINT_SAME_EL: 9253 moe = 1; 9254 break; 9255 case EC_WATCHPOINT: 9256 case EC_WATCHPOINT_SAME_EL: 9257 moe = 10; 9258 break; 9259 case EC_AA32_BKPT: 9260 moe = 3; 9261 break; 9262 case EC_VECTORCATCH: 9263 moe = 5; 9264 break; 9265 default: 9266 moe = 0; 9267 break; 9268 } 9269 9270 if (moe) { 9271 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9272 } 9273 9274 if (env->exception.target_el == 2) { 9275 arm_cpu_do_interrupt_aarch32_hyp(cs); 9276 return; 9277 } 9278 9279 switch (cs->exception_index) { 9280 case EXCP_UDEF: 9281 new_mode = ARM_CPU_MODE_UND; 9282 addr = 0x04; 9283 mask = CPSR_I; 9284 if (env->thumb) 9285 offset = 2; 9286 else 9287 offset = 4; 9288 break; 9289 case EXCP_SWI: 9290 new_mode = ARM_CPU_MODE_SVC; 9291 addr = 0x08; 9292 mask = CPSR_I; 9293 /* The PC already points to the next instruction. */ 9294 offset = 0; 9295 break; 9296 case EXCP_BKPT: 9297 /* Fall through to prefetch abort. */ 9298 case EXCP_PREFETCH_ABORT: 9299 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9300 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9301 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9302 env->exception.fsr, (uint32_t)env->exception.vaddress); 9303 new_mode = ARM_CPU_MODE_ABT; 9304 addr = 0x0c; 9305 mask = CPSR_A | CPSR_I; 9306 offset = 4; 9307 break; 9308 case EXCP_DATA_ABORT: 9309 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9310 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9311 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9312 env->exception.fsr, 9313 (uint32_t)env->exception.vaddress); 9314 new_mode = ARM_CPU_MODE_ABT; 9315 addr = 0x10; 9316 mask = CPSR_A | CPSR_I; 9317 offset = 8; 9318 break; 9319 case EXCP_IRQ: 9320 new_mode = ARM_CPU_MODE_IRQ; 9321 addr = 0x18; 9322 /* Disable IRQ and imprecise data aborts. */ 9323 mask = CPSR_A | CPSR_I; 9324 offset = 4; 9325 if (env->cp15.scr_el3 & SCR_IRQ) { 9326 /* IRQ routed to monitor mode */ 9327 new_mode = ARM_CPU_MODE_MON; 9328 mask |= CPSR_F; 9329 } 9330 break; 9331 case EXCP_FIQ: 9332 new_mode = ARM_CPU_MODE_FIQ; 9333 addr = 0x1c; 9334 /* Disable FIQ, IRQ and imprecise data aborts. */ 9335 mask = CPSR_A | CPSR_I | CPSR_F; 9336 if (env->cp15.scr_el3 & SCR_FIQ) { 9337 /* FIQ routed to monitor mode */ 9338 new_mode = ARM_CPU_MODE_MON; 9339 } 9340 offset = 4; 9341 break; 9342 case EXCP_VIRQ: 9343 new_mode = ARM_CPU_MODE_IRQ; 9344 addr = 0x18; 9345 /* Disable IRQ and imprecise data aborts. */ 9346 mask = CPSR_A | CPSR_I; 9347 offset = 4; 9348 break; 9349 case EXCP_VFIQ: 9350 new_mode = ARM_CPU_MODE_FIQ; 9351 addr = 0x1c; 9352 /* Disable FIQ, IRQ and imprecise data aborts. */ 9353 mask = CPSR_A | CPSR_I | CPSR_F; 9354 offset = 4; 9355 break; 9356 case EXCP_SMC: 9357 new_mode = ARM_CPU_MODE_MON; 9358 addr = 0x08; 9359 mask = CPSR_A | CPSR_I | CPSR_F; 9360 offset = 0; 9361 break; 9362 default: 9363 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9364 return; /* Never happens. Keep compiler happy. */ 9365 } 9366 9367 if (new_mode == ARM_CPU_MODE_MON) { 9368 addr += env->cp15.mvbar; 9369 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9370 /* High vectors. When enabled, base address cannot be remapped. */ 9371 addr += 0xffff0000; 9372 } else { 9373 /* ARM v7 architectures provide a vector base address register to remap 9374 * the interrupt vector table. 9375 * This register is only followed in non-monitor mode, and is banked. 9376 * Note: only bits 31:5 are valid. 9377 */ 9378 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9379 } 9380 9381 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9382 env->cp15.scr_el3 &= ~SCR_NS; 9383 } 9384 9385 take_aarch32_exception(env, new_mode, mask, offset, addr); 9386 } 9387 9388 /* Handle exception entry to a target EL which is using AArch64 */ 9389 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9390 { 9391 ARMCPU *cpu = ARM_CPU(cs); 9392 CPUARMState *env = &cpu->env; 9393 unsigned int new_el = env->exception.target_el; 9394 target_ulong addr = env->cp15.vbar_el[new_el]; 9395 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9396 unsigned int old_mode; 9397 unsigned int cur_el = arm_current_el(env); 9398 9399 /* 9400 * Note that new_el can never be 0. If cur_el is 0, then 9401 * el0_a64 is is_a64(), else el0_a64 is ignored. 9402 */ 9403 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9404 9405 if (cur_el < new_el) { 9406 /* Entry vector offset depends on whether the implemented EL 9407 * immediately lower than the target level is using AArch32 or AArch64 9408 */ 9409 bool is_aa64; 9410 uint64_t hcr; 9411 9412 switch (new_el) { 9413 case 3: 9414 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 9415 break; 9416 case 2: 9417 hcr = arm_hcr_el2_eff(env); 9418 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 9419 is_aa64 = (hcr & HCR_RW) != 0; 9420 break; 9421 } 9422 /* fall through */ 9423 case 1: 9424 is_aa64 = is_a64(env); 9425 break; 9426 default: 9427 g_assert_not_reached(); 9428 } 9429 9430 if (is_aa64) { 9431 addr += 0x400; 9432 } else { 9433 addr += 0x600; 9434 } 9435 } else if (pstate_read(env) & PSTATE_SP) { 9436 addr += 0x200; 9437 } 9438 9439 switch (cs->exception_index) { 9440 case EXCP_PREFETCH_ABORT: 9441 case EXCP_DATA_ABORT: 9442 env->cp15.far_el[new_el] = env->exception.vaddress; 9443 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 9444 env->cp15.far_el[new_el]); 9445 /* fall through */ 9446 case EXCP_BKPT: 9447 case EXCP_UDEF: 9448 case EXCP_SWI: 9449 case EXCP_HVC: 9450 case EXCP_HYP_TRAP: 9451 case EXCP_SMC: 9452 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { 9453 /* 9454 * QEMU internal FP/SIMD syndromes from AArch32 include the 9455 * TA and coproc fields which are only exposed if the exception 9456 * is taken to AArch32 Hyp mode. Mask them out to get a valid 9457 * AArch64 format syndrome. 9458 */ 9459 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 9460 } 9461 env->cp15.esr_el[new_el] = env->exception.syndrome; 9462 break; 9463 case EXCP_IRQ: 9464 case EXCP_VIRQ: 9465 addr += 0x80; 9466 break; 9467 case EXCP_FIQ: 9468 case EXCP_VFIQ: 9469 addr += 0x100; 9470 break; 9471 default: 9472 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9473 } 9474 9475 if (is_a64(env)) { 9476 old_mode = pstate_read(env); 9477 aarch64_save_sp(env, arm_current_el(env)); 9478 env->elr_el[new_el] = env->pc; 9479 } else { 9480 old_mode = cpsr_read(env); 9481 env->elr_el[new_el] = env->regs[15]; 9482 9483 aarch64_sync_32_to_64(env); 9484 9485 env->condexec_bits = 0; 9486 } 9487 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 9488 9489 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 9490 env->elr_el[new_el]); 9491 9492 if (cpu_isar_feature(aa64_pan, cpu)) { 9493 /* The value of PSTATE.PAN is normally preserved, except when ... */ 9494 new_mode |= old_mode & PSTATE_PAN; 9495 switch (new_el) { 9496 case 2: 9497 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 9498 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 9499 != (HCR_E2H | HCR_TGE)) { 9500 break; 9501 } 9502 /* fall through */ 9503 case 1: 9504 /* ... the target is EL1 ... */ 9505 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 9506 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 9507 new_mode |= PSTATE_PAN; 9508 } 9509 break; 9510 } 9511 } 9512 9513 pstate_write(env, PSTATE_DAIF | new_mode); 9514 env->aarch64 = 1; 9515 aarch64_restore_sp(env, new_el); 9516 helper_rebuild_hflags_a64(env, new_el); 9517 9518 env->pc = addr; 9519 9520 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 9521 new_el, env->pc, pstate_read(env)); 9522 } 9523 9524 /* 9525 * Do semihosting call and set the appropriate return value. All the 9526 * permission and validity checks have been done at translate time. 9527 * 9528 * We only see semihosting exceptions in TCG only as they are not 9529 * trapped to the hypervisor in KVM. 9530 */ 9531 #ifdef CONFIG_TCG 9532 static void handle_semihosting(CPUState *cs) 9533 { 9534 ARMCPU *cpu = ARM_CPU(cs); 9535 CPUARMState *env = &cpu->env; 9536 9537 if (is_a64(env)) { 9538 qemu_log_mask(CPU_LOG_INT, 9539 "...handling as semihosting call 0x%" PRIx64 "\n", 9540 env->xregs[0]); 9541 env->xregs[0] = do_arm_semihosting(env); 9542 env->pc += 4; 9543 } else { 9544 qemu_log_mask(CPU_LOG_INT, 9545 "...handling as semihosting call 0x%x\n", 9546 env->regs[0]); 9547 env->regs[0] = do_arm_semihosting(env); 9548 env->regs[15] += env->thumb ? 2 : 4; 9549 } 9550 } 9551 #endif 9552 9553 /* Handle a CPU exception for A and R profile CPUs. 9554 * Do any appropriate logging, handle PSCI calls, and then hand off 9555 * to the AArch64-entry or AArch32-entry function depending on the 9556 * target exception level's register width. 9557 */ 9558 void arm_cpu_do_interrupt(CPUState *cs) 9559 { 9560 ARMCPU *cpu = ARM_CPU(cs); 9561 CPUARMState *env = &cpu->env; 9562 unsigned int new_el = env->exception.target_el; 9563 9564 assert(!arm_feature(env, ARM_FEATURE_M)); 9565 9566 arm_log_exception(cs->exception_index); 9567 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 9568 new_el); 9569 if (qemu_loglevel_mask(CPU_LOG_INT) 9570 && !excp_is_internal(cs->exception_index)) { 9571 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 9572 syn_get_ec(env->exception.syndrome), 9573 env->exception.syndrome); 9574 } 9575 9576 if (arm_is_psci_call(cpu, cs->exception_index)) { 9577 arm_handle_psci_call(cpu); 9578 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 9579 return; 9580 } 9581 9582 /* 9583 * Semihosting semantics depend on the register width of the code 9584 * that caused the exception, not the target exception level, so 9585 * must be handled here. 9586 */ 9587 #ifdef CONFIG_TCG 9588 if (cs->exception_index == EXCP_SEMIHOST) { 9589 handle_semihosting(cs); 9590 return; 9591 } 9592 #endif 9593 9594 /* Hooks may change global state so BQL should be held, also the 9595 * BQL needs to be held for any modification of 9596 * cs->interrupt_request. 9597 */ 9598 g_assert(qemu_mutex_iothread_locked()); 9599 9600 arm_call_pre_el_change_hook(cpu); 9601 9602 assert(!excp_is_internal(cs->exception_index)); 9603 if (arm_el_is_aa64(env, new_el)) { 9604 arm_cpu_do_interrupt_aarch64(cs); 9605 } else { 9606 arm_cpu_do_interrupt_aarch32(cs); 9607 } 9608 9609 arm_call_el_change_hook(cpu); 9610 9611 if (!kvm_enabled()) { 9612 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 9613 } 9614 } 9615 #endif /* !CONFIG_USER_ONLY */ 9616 9617 /* Return the exception level which controls this address translation regime */ 9618 static uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 9619 { 9620 switch (mmu_idx) { 9621 case ARMMMUIdx_E20_0: 9622 case ARMMMUIdx_E20_2: 9623 case ARMMMUIdx_E20_2_PAN: 9624 case ARMMMUIdx_Stage2: 9625 case ARMMMUIdx_E2: 9626 return 2; 9627 case ARMMMUIdx_SE3: 9628 return 3; 9629 case ARMMMUIdx_SE10_0: 9630 return arm_el_is_aa64(env, 3) ? 1 : 3; 9631 case ARMMMUIdx_SE10_1: 9632 case ARMMMUIdx_SE10_1_PAN: 9633 case ARMMMUIdx_Stage1_E0: 9634 case ARMMMUIdx_Stage1_E1: 9635 case ARMMMUIdx_Stage1_E1_PAN: 9636 case ARMMMUIdx_E10_0: 9637 case ARMMMUIdx_E10_1: 9638 case ARMMMUIdx_E10_1_PAN: 9639 case ARMMMUIdx_MPrivNegPri: 9640 case ARMMMUIdx_MUserNegPri: 9641 case ARMMMUIdx_MPriv: 9642 case ARMMMUIdx_MUser: 9643 case ARMMMUIdx_MSPrivNegPri: 9644 case ARMMMUIdx_MSUserNegPri: 9645 case ARMMMUIdx_MSPriv: 9646 case ARMMMUIdx_MSUser: 9647 return 1; 9648 default: 9649 g_assert_not_reached(); 9650 } 9651 } 9652 9653 uint64_t arm_sctlr(CPUARMState *env, int el) 9654 { 9655 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 9656 if (el == 0) { 9657 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 9658 el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1); 9659 } 9660 return env->cp15.sctlr_el[el]; 9661 } 9662 9663 /* Return the SCTLR value which controls this address translation regime */ 9664 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 9665 { 9666 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 9667 } 9668 9669 #ifndef CONFIG_USER_ONLY 9670 9671 /* Return true if the specified stage of address translation is disabled */ 9672 static inline bool regime_translation_disabled(CPUARMState *env, 9673 ARMMMUIdx mmu_idx) 9674 { 9675 if (arm_feature(env, ARM_FEATURE_M)) { 9676 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 9677 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 9678 case R_V7M_MPU_CTRL_ENABLE_MASK: 9679 /* Enabled, but not for HardFault and NMI */ 9680 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 9681 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 9682 /* Enabled for all cases */ 9683 return false; 9684 case 0: 9685 default: 9686 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 9687 * we warned about that in armv7m_nvic.c when the guest set it. 9688 */ 9689 return true; 9690 } 9691 } 9692 9693 if (mmu_idx == ARMMMUIdx_Stage2) { 9694 /* HCR.DC means HCR.VM behaves as 1 */ 9695 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 9696 } 9697 9698 if (env->cp15.hcr_el2 & HCR_TGE) { 9699 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 9700 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 9701 return true; 9702 } 9703 } 9704 9705 if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 9706 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 9707 return true; 9708 } 9709 9710 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 9711 } 9712 9713 static inline bool regime_translation_big_endian(CPUARMState *env, 9714 ARMMMUIdx mmu_idx) 9715 { 9716 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 9717 } 9718 9719 /* Return the TTBR associated with this translation regime */ 9720 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 9721 int ttbrn) 9722 { 9723 if (mmu_idx == ARMMMUIdx_Stage2) { 9724 return env->cp15.vttbr_el2; 9725 } 9726 if (ttbrn == 0) { 9727 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 9728 } else { 9729 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 9730 } 9731 } 9732 9733 #endif /* !CONFIG_USER_ONLY */ 9734 9735 /* Return the TCR controlling this translation regime */ 9736 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 9737 { 9738 if (mmu_idx == ARMMMUIdx_Stage2) { 9739 return &env->cp15.vtcr_el2; 9740 } 9741 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 9742 } 9743 9744 /* Convert a possible stage1+2 MMU index into the appropriate 9745 * stage 1 MMU index 9746 */ 9747 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 9748 { 9749 switch (mmu_idx) { 9750 case ARMMMUIdx_E10_0: 9751 return ARMMMUIdx_Stage1_E0; 9752 case ARMMMUIdx_E10_1: 9753 return ARMMMUIdx_Stage1_E1; 9754 case ARMMMUIdx_E10_1_PAN: 9755 return ARMMMUIdx_Stage1_E1_PAN; 9756 default: 9757 return mmu_idx; 9758 } 9759 } 9760 9761 /* Return true if the translation regime is using LPAE format page tables */ 9762 static inline bool regime_using_lpae_format(CPUARMState *env, 9763 ARMMMUIdx mmu_idx) 9764 { 9765 int el = regime_el(env, mmu_idx); 9766 if (el == 2 || arm_el_is_aa64(env, el)) { 9767 return true; 9768 } 9769 if (arm_feature(env, ARM_FEATURE_LPAE) 9770 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 9771 return true; 9772 } 9773 return false; 9774 } 9775 9776 /* Returns true if the stage 1 translation regime is using LPAE format page 9777 * tables. Used when raising alignment exceptions, whose FSR changes depending 9778 * on whether the long or short descriptor format is in use. */ 9779 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 9780 { 9781 mmu_idx = stage_1_mmu_idx(mmu_idx); 9782 9783 return regime_using_lpae_format(env, mmu_idx); 9784 } 9785 9786 #ifndef CONFIG_USER_ONLY 9787 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 9788 { 9789 switch (mmu_idx) { 9790 case ARMMMUIdx_SE10_0: 9791 case ARMMMUIdx_E20_0: 9792 case ARMMMUIdx_Stage1_E0: 9793 case ARMMMUIdx_MUser: 9794 case ARMMMUIdx_MSUser: 9795 case ARMMMUIdx_MUserNegPri: 9796 case ARMMMUIdx_MSUserNegPri: 9797 return true; 9798 default: 9799 return false; 9800 case ARMMMUIdx_E10_0: 9801 case ARMMMUIdx_E10_1: 9802 case ARMMMUIdx_E10_1_PAN: 9803 g_assert_not_reached(); 9804 } 9805 } 9806 9807 /* Translate section/page access permissions to page 9808 * R/W protection flags 9809 * 9810 * @env: CPUARMState 9811 * @mmu_idx: MMU index indicating required translation regime 9812 * @ap: The 3-bit access permissions (AP[2:0]) 9813 * @domain_prot: The 2-bit domain access permissions 9814 */ 9815 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 9816 int ap, int domain_prot) 9817 { 9818 bool is_user = regime_is_user(env, mmu_idx); 9819 9820 if (domain_prot == 3) { 9821 return PAGE_READ | PAGE_WRITE; 9822 } 9823 9824 switch (ap) { 9825 case 0: 9826 if (arm_feature(env, ARM_FEATURE_V7)) { 9827 return 0; 9828 } 9829 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 9830 case SCTLR_S: 9831 return is_user ? 0 : PAGE_READ; 9832 case SCTLR_R: 9833 return PAGE_READ; 9834 default: 9835 return 0; 9836 } 9837 case 1: 9838 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 9839 case 2: 9840 if (is_user) { 9841 return PAGE_READ; 9842 } else { 9843 return PAGE_READ | PAGE_WRITE; 9844 } 9845 case 3: 9846 return PAGE_READ | PAGE_WRITE; 9847 case 4: /* Reserved. */ 9848 return 0; 9849 case 5: 9850 return is_user ? 0 : PAGE_READ; 9851 case 6: 9852 return PAGE_READ; 9853 case 7: 9854 if (!arm_feature(env, ARM_FEATURE_V6K)) { 9855 return 0; 9856 } 9857 return PAGE_READ; 9858 default: 9859 g_assert_not_reached(); 9860 } 9861 } 9862 9863 /* Translate section/page access permissions to page 9864 * R/W protection flags. 9865 * 9866 * @ap: The 2-bit simple AP (AP[2:1]) 9867 * @is_user: TRUE if accessing from PL0 9868 */ 9869 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 9870 { 9871 switch (ap) { 9872 case 0: 9873 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 9874 case 1: 9875 return PAGE_READ | PAGE_WRITE; 9876 case 2: 9877 return is_user ? 0 : PAGE_READ; 9878 case 3: 9879 return PAGE_READ; 9880 default: 9881 g_assert_not_reached(); 9882 } 9883 } 9884 9885 static inline int 9886 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 9887 { 9888 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 9889 } 9890 9891 /* Translate S2 section/page access permissions to protection flags 9892 * 9893 * @env: CPUARMState 9894 * @s2ap: The 2-bit stage2 access permissions (S2AP) 9895 * @xn: XN (execute-never) bits 9896 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 9897 */ 9898 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 9899 { 9900 int prot = 0; 9901 9902 if (s2ap & 1) { 9903 prot |= PAGE_READ; 9904 } 9905 if (s2ap & 2) { 9906 prot |= PAGE_WRITE; 9907 } 9908 9909 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 9910 switch (xn) { 9911 case 0: 9912 prot |= PAGE_EXEC; 9913 break; 9914 case 1: 9915 if (s1_is_el0) { 9916 prot |= PAGE_EXEC; 9917 } 9918 break; 9919 case 2: 9920 break; 9921 case 3: 9922 if (!s1_is_el0) { 9923 prot |= PAGE_EXEC; 9924 } 9925 break; 9926 default: 9927 g_assert_not_reached(); 9928 } 9929 } else { 9930 if (!extract32(xn, 1, 1)) { 9931 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 9932 prot |= PAGE_EXEC; 9933 } 9934 } 9935 } 9936 return prot; 9937 } 9938 9939 /* Translate section/page access permissions to protection flags 9940 * 9941 * @env: CPUARMState 9942 * @mmu_idx: MMU index indicating required translation regime 9943 * @is_aa64: TRUE if AArch64 9944 * @ap: The 2-bit simple AP (AP[2:1]) 9945 * @ns: NS (non-secure) bit 9946 * @xn: XN (execute-never) bit 9947 * @pxn: PXN (privileged execute-never) bit 9948 */ 9949 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 9950 int ap, int ns, int xn, int pxn) 9951 { 9952 bool is_user = regime_is_user(env, mmu_idx); 9953 int prot_rw, user_rw; 9954 bool have_wxn; 9955 int wxn = 0; 9956 9957 assert(mmu_idx != ARMMMUIdx_Stage2); 9958 9959 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 9960 if (is_user) { 9961 prot_rw = user_rw; 9962 } else { 9963 if (user_rw && regime_is_pan(env, mmu_idx)) { 9964 /* PAN forbids data accesses but doesn't affect insn fetch */ 9965 prot_rw = 0; 9966 } else { 9967 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 9968 } 9969 } 9970 9971 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 9972 return prot_rw; 9973 } 9974 9975 /* TODO have_wxn should be replaced with 9976 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 9977 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 9978 * compatible processors have EL2, which is required for [U]WXN. 9979 */ 9980 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 9981 9982 if (have_wxn) { 9983 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 9984 } 9985 9986 if (is_aa64) { 9987 if (regime_has_2_ranges(mmu_idx) && !is_user) { 9988 xn = pxn || (user_rw & PAGE_WRITE); 9989 } 9990 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9991 switch (regime_el(env, mmu_idx)) { 9992 case 1: 9993 case 3: 9994 if (is_user) { 9995 xn = xn || !(user_rw & PAGE_READ); 9996 } else { 9997 int uwxn = 0; 9998 if (have_wxn) { 9999 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10000 } 10001 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10002 (uwxn && (user_rw & PAGE_WRITE)); 10003 } 10004 break; 10005 case 2: 10006 break; 10007 } 10008 } else { 10009 xn = wxn = 0; 10010 } 10011 10012 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10013 return prot_rw; 10014 } 10015 return prot_rw | PAGE_EXEC; 10016 } 10017 10018 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10019 uint32_t *table, uint32_t address) 10020 { 10021 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10022 TCR *tcr = regime_tcr(env, mmu_idx); 10023 10024 if (address & tcr->mask) { 10025 if (tcr->raw_tcr & TTBCR_PD1) { 10026 /* Translation table walk disabled for TTBR1 */ 10027 return false; 10028 } 10029 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10030 } else { 10031 if (tcr->raw_tcr & TTBCR_PD0) { 10032 /* Translation table walk disabled for TTBR0 */ 10033 return false; 10034 } 10035 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10036 } 10037 *table |= (address >> 18) & 0x3ffc; 10038 return true; 10039 } 10040 10041 /* Translate a S1 pagetable walk through S2 if needed. */ 10042 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10043 hwaddr addr, MemTxAttrs txattrs, 10044 ARMMMUFaultInfo *fi) 10045 { 10046 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10047 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10048 target_ulong s2size; 10049 hwaddr s2pa; 10050 int s2prot; 10051 int ret; 10052 ARMCacheAttrs cacheattrs = {}; 10053 ARMCacheAttrs *pcacheattrs = NULL; 10054 10055 if (env->cp15.hcr_el2 & HCR_PTW) { 10056 /* 10057 * PTW means we must fault if this S1 walk touches S2 Device 10058 * memory; otherwise we don't care about the attributes and can 10059 * save the S2 translation the effort of computing them. 10060 */ 10061 pcacheattrs = &cacheattrs; 10062 } 10063 10064 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, ARMMMUIdx_Stage2, 10065 false, 10066 &s2pa, &txattrs, &s2prot, &s2size, fi, 10067 pcacheattrs); 10068 if (ret) { 10069 assert(fi->type != ARMFault_None); 10070 fi->s2addr = addr; 10071 fi->stage2 = true; 10072 fi->s1ptw = true; 10073 return ~0; 10074 } 10075 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { 10076 /* Access was to Device memory: generate Permission fault */ 10077 fi->type = ARMFault_Permission; 10078 fi->s2addr = addr; 10079 fi->stage2 = true; 10080 fi->s1ptw = true; 10081 return ~0; 10082 } 10083 addr = s2pa; 10084 } 10085 return addr; 10086 } 10087 10088 /* All loads done in the course of a page table walk go through here. */ 10089 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10090 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10091 { 10092 ARMCPU *cpu = ARM_CPU(cs); 10093 CPUARMState *env = &cpu->env; 10094 MemTxAttrs attrs = {}; 10095 MemTxResult result = MEMTX_OK; 10096 AddressSpace *as; 10097 uint32_t data; 10098 10099 attrs.secure = is_secure; 10100 as = arm_addressspace(cs, attrs); 10101 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10102 if (fi->s1ptw) { 10103 return 0; 10104 } 10105 if (regime_translation_big_endian(env, mmu_idx)) { 10106 data = address_space_ldl_be(as, addr, attrs, &result); 10107 } else { 10108 data = address_space_ldl_le(as, addr, attrs, &result); 10109 } 10110 if (result == MEMTX_OK) { 10111 return data; 10112 } 10113 fi->type = ARMFault_SyncExternalOnWalk; 10114 fi->ea = arm_extabort_type(result); 10115 return 0; 10116 } 10117 10118 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10119 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10120 { 10121 ARMCPU *cpu = ARM_CPU(cs); 10122 CPUARMState *env = &cpu->env; 10123 MemTxAttrs attrs = {}; 10124 MemTxResult result = MEMTX_OK; 10125 AddressSpace *as; 10126 uint64_t data; 10127 10128 attrs.secure = is_secure; 10129 as = arm_addressspace(cs, attrs); 10130 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10131 if (fi->s1ptw) { 10132 return 0; 10133 } 10134 if (regime_translation_big_endian(env, mmu_idx)) { 10135 data = address_space_ldq_be(as, addr, attrs, &result); 10136 } else { 10137 data = address_space_ldq_le(as, addr, attrs, &result); 10138 } 10139 if (result == MEMTX_OK) { 10140 return data; 10141 } 10142 fi->type = ARMFault_SyncExternalOnWalk; 10143 fi->ea = arm_extabort_type(result); 10144 return 0; 10145 } 10146 10147 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10148 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10149 hwaddr *phys_ptr, int *prot, 10150 target_ulong *page_size, 10151 ARMMMUFaultInfo *fi) 10152 { 10153 CPUState *cs = env_cpu(env); 10154 int level = 1; 10155 uint32_t table; 10156 uint32_t desc; 10157 int type; 10158 int ap; 10159 int domain = 0; 10160 int domain_prot; 10161 hwaddr phys_addr; 10162 uint32_t dacr; 10163 10164 /* Pagetable walk. */ 10165 /* Lookup l1 descriptor. */ 10166 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10167 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10168 fi->type = ARMFault_Translation; 10169 goto do_fault; 10170 } 10171 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10172 mmu_idx, fi); 10173 if (fi->type != ARMFault_None) { 10174 goto do_fault; 10175 } 10176 type = (desc & 3); 10177 domain = (desc >> 5) & 0x0f; 10178 if (regime_el(env, mmu_idx) == 1) { 10179 dacr = env->cp15.dacr_ns; 10180 } else { 10181 dacr = env->cp15.dacr_s; 10182 } 10183 domain_prot = (dacr >> (domain * 2)) & 3; 10184 if (type == 0) { 10185 /* Section translation fault. */ 10186 fi->type = ARMFault_Translation; 10187 goto do_fault; 10188 } 10189 if (type != 2) { 10190 level = 2; 10191 } 10192 if (domain_prot == 0 || domain_prot == 2) { 10193 fi->type = ARMFault_Domain; 10194 goto do_fault; 10195 } 10196 if (type == 2) { 10197 /* 1Mb section. */ 10198 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10199 ap = (desc >> 10) & 3; 10200 *page_size = 1024 * 1024; 10201 } else { 10202 /* Lookup l2 entry. */ 10203 if (type == 1) { 10204 /* Coarse pagetable. */ 10205 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10206 } else { 10207 /* Fine pagetable. */ 10208 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10209 } 10210 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10211 mmu_idx, fi); 10212 if (fi->type != ARMFault_None) { 10213 goto do_fault; 10214 } 10215 switch (desc & 3) { 10216 case 0: /* Page translation fault. */ 10217 fi->type = ARMFault_Translation; 10218 goto do_fault; 10219 case 1: /* 64k page. */ 10220 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10221 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10222 *page_size = 0x10000; 10223 break; 10224 case 2: /* 4k page. */ 10225 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10226 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10227 *page_size = 0x1000; 10228 break; 10229 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10230 if (type == 1) { 10231 /* ARMv6/XScale extended small page format */ 10232 if (arm_feature(env, ARM_FEATURE_XSCALE) 10233 || arm_feature(env, ARM_FEATURE_V6)) { 10234 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10235 *page_size = 0x1000; 10236 } else { 10237 /* UNPREDICTABLE in ARMv5; we choose to take a 10238 * page translation fault. 10239 */ 10240 fi->type = ARMFault_Translation; 10241 goto do_fault; 10242 } 10243 } else { 10244 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10245 *page_size = 0x400; 10246 } 10247 ap = (desc >> 4) & 3; 10248 break; 10249 default: 10250 /* Never happens, but compiler isn't smart enough to tell. */ 10251 abort(); 10252 } 10253 } 10254 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10255 *prot |= *prot ? PAGE_EXEC : 0; 10256 if (!(*prot & (1 << access_type))) { 10257 /* Access permission fault. */ 10258 fi->type = ARMFault_Permission; 10259 goto do_fault; 10260 } 10261 *phys_ptr = phys_addr; 10262 return false; 10263 do_fault: 10264 fi->domain = domain; 10265 fi->level = level; 10266 return true; 10267 } 10268 10269 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10270 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10271 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10272 target_ulong *page_size, ARMMMUFaultInfo *fi) 10273 { 10274 CPUState *cs = env_cpu(env); 10275 int level = 1; 10276 uint32_t table; 10277 uint32_t desc; 10278 uint32_t xn; 10279 uint32_t pxn = 0; 10280 int type; 10281 int ap; 10282 int domain = 0; 10283 int domain_prot; 10284 hwaddr phys_addr; 10285 uint32_t dacr; 10286 bool ns; 10287 10288 /* Pagetable walk. */ 10289 /* Lookup l1 descriptor. */ 10290 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10291 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10292 fi->type = ARMFault_Translation; 10293 goto do_fault; 10294 } 10295 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10296 mmu_idx, fi); 10297 if (fi->type != ARMFault_None) { 10298 goto do_fault; 10299 } 10300 type = (desc & 3); 10301 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 10302 /* Section translation fault, or attempt to use the encoding 10303 * which is Reserved on implementations without PXN. 10304 */ 10305 fi->type = ARMFault_Translation; 10306 goto do_fault; 10307 } 10308 if ((type == 1) || !(desc & (1 << 18))) { 10309 /* Page or Section. */ 10310 domain = (desc >> 5) & 0x0f; 10311 } 10312 if (regime_el(env, mmu_idx) == 1) { 10313 dacr = env->cp15.dacr_ns; 10314 } else { 10315 dacr = env->cp15.dacr_s; 10316 } 10317 if (type == 1) { 10318 level = 2; 10319 } 10320 domain_prot = (dacr >> (domain * 2)) & 3; 10321 if (domain_prot == 0 || domain_prot == 2) { 10322 /* Section or Page domain fault */ 10323 fi->type = ARMFault_Domain; 10324 goto do_fault; 10325 } 10326 if (type != 1) { 10327 if (desc & (1 << 18)) { 10328 /* Supersection. */ 10329 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10330 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10331 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10332 *page_size = 0x1000000; 10333 } else { 10334 /* Section. */ 10335 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10336 *page_size = 0x100000; 10337 } 10338 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10339 xn = desc & (1 << 4); 10340 pxn = desc & 1; 10341 ns = extract32(desc, 19, 1); 10342 } else { 10343 if (arm_feature(env, ARM_FEATURE_PXN)) { 10344 pxn = (desc >> 2) & 1; 10345 } 10346 ns = extract32(desc, 3, 1); 10347 /* Lookup l2 entry. */ 10348 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10349 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10350 mmu_idx, fi); 10351 if (fi->type != ARMFault_None) { 10352 goto do_fault; 10353 } 10354 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10355 switch (desc & 3) { 10356 case 0: /* Page translation fault. */ 10357 fi->type = ARMFault_Translation; 10358 goto do_fault; 10359 case 1: /* 64k page. */ 10360 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10361 xn = desc & (1 << 15); 10362 *page_size = 0x10000; 10363 break; 10364 case 2: case 3: /* 4k page. */ 10365 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10366 xn = desc & 1; 10367 *page_size = 0x1000; 10368 break; 10369 default: 10370 /* Never happens, but compiler isn't smart enough to tell. */ 10371 abort(); 10372 } 10373 } 10374 if (domain_prot == 3) { 10375 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10376 } else { 10377 if (pxn && !regime_is_user(env, mmu_idx)) { 10378 xn = 1; 10379 } 10380 if (xn && access_type == MMU_INST_FETCH) { 10381 fi->type = ARMFault_Permission; 10382 goto do_fault; 10383 } 10384 10385 if (arm_feature(env, ARM_FEATURE_V6K) && 10386 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 10387 /* The simplified model uses AP[0] as an access control bit. */ 10388 if ((ap & 1) == 0) { 10389 /* Access flag fault. */ 10390 fi->type = ARMFault_AccessFlag; 10391 goto do_fault; 10392 } 10393 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 10394 } else { 10395 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10396 } 10397 if (*prot && !xn) { 10398 *prot |= PAGE_EXEC; 10399 } 10400 if (!(*prot & (1 << access_type))) { 10401 /* Access permission fault. */ 10402 fi->type = ARMFault_Permission; 10403 goto do_fault; 10404 } 10405 } 10406 if (ns) { 10407 /* The NS bit will (as required by the architecture) have no effect if 10408 * the CPU doesn't support TZ or this is a non-secure translation 10409 * regime, because the attribute will already be non-secure. 10410 */ 10411 attrs->secure = false; 10412 } 10413 *phys_ptr = phys_addr; 10414 return false; 10415 do_fault: 10416 fi->domain = domain; 10417 fi->level = level; 10418 return true; 10419 } 10420 10421 /* 10422 * check_s2_mmu_setup 10423 * @cpu: ARMCPU 10424 * @is_aa64: True if the translation regime is in AArch64 state 10425 * @startlevel: Suggested starting level 10426 * @inputsize: Bitsize of IPAs 10427 * @stride: Page-table stride (See the ARM ARM) 10428 * 10429 * Returns true if the suggested S2 translation parameters are OK and 10430 * false otherwise. 10431 */ 10432 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 10433 int inputsize, int stride) 10434 { 10435 const int grainsize = stride + 3; 10436 int startsizecheck; 10437 10438 /* Negative levels are never allowed. */ 10439 if (level < 0) { 10440 return false; 10441 } 10442 10443 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 10444 if (startsizecheck < 1 || startsizecheck > stride + 4) { 10445 return false; 10446 } 10447 10448 if (is_aa64) { 10449 CPUARMState *env = &cpu->env; 10450 unsigned int pamax = arm_pamax(cpu); 10451 10452 switch (stride) { 10453 case 13: /* 64KB Pages. */ 10454 if (level == 0 || (level == 1 && pamax <= 42)) { 10455 return false; 10456 } 10457 break; 10458 case 11: /* 16KB Pages. */ 10459 if (level == 0 || (level == 1 && pamax <= 40)) { 10460 return false; 10461 } 10462 break; 10463 case 9: /* 4KB Pages. */ 10464 if (level == 0 && pamax <= 42) { 10465 return false; 10466 } 10467 break; 10468 default: 10469 g_assert_not_reached(); 10470 } 10471 10472 /* Inputsize checks. */ 10473 if (inputsize > pamax && 10474 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 10475 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 10476 return false; 10477 } 10478 } else { 10479 /* AArch32 only supports 4KB pages. Assert on that. */ 10480 assert(stride == 9); 10481 10482 if (level == 0) { 10483 return false; 10484 } 10485 } 10486 return true; 10487 } 10488 10489 /* Translate from the 4-bit stage 2 representation of 10490 * memory attributes (without cache-allocation hints) to 10491 * the 8-bit representation of the stage 1 MAIR registers 10492 * (which includes allocation hints). 10493 * 10494 * ref: shared/translation/attrs/S2AttrDecode() 10495 * .../S2ConvertAttrsHints() 10496 */ 10497 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 10498 { 10499 uint8_t hiattr = extract32(s2attrs, 2, 2); 10500 uint8_t loattr = extract32(s2attrs, 0, 2); 10501 uint8_t hihint = 0, lohint = 0; 10502 10503 if (hiattr != 0) { /* normal memory */ 10504 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 10505 hiattr = loattr = 1; /* non-cacheable */ 10506 } else { 10507 if (hiattr != 1) { /* Write-through or write-back */ 10508 hihint = 3; /* RW allocate */ 10509 } 10510 if (loattr != 1) { /* Write-through or write-back */ 10511 lohint = 3; /* RW allocate */ 10512 } 10513 } 10514 } 10515 10516 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 10517 } 10518 #endif /* !CONFIG_USER_ONLY */ 10519 10520 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10521 { 10522 if (regime_has_2_ranges(mmu_idx)) { 10523 return extract64(tcr, 37, 2); 10524 } else if (mmu_idx == ARMMMUIdx_Stage2) { 10525 return 0; /* VTCR_EL2 */ 10526 } else { 10527 /* Replicate the single TBI bit so we always have 2 bits. */ 10528 return extract32(tcr, 20, 1) * 3; 10529 } 10530 } 10531 10532 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10533 { 10534 if (regime_has_2_ranges(mmu_idx)) { 10535 return extract64(tcr, 51, 2); 10536 } else if (mmu_idx == ARMMMUIdx_Stage2) { 10537 return 0; /* VTCR_EL2 */ 10538 } else { 10539 /* Replicate the single TBID bit so we always have 2 bits. */ 10540 return extract32(tcr, 29, 1) * 3; 10541 } 10542 } 10543 10544 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10545 ARMMMUIdx mmu_idx, bool data) 10546 { 10547 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10548 bool epd, hpd, using16k, using64k; 10549 int select, tsz, tbi; 10550 10551 if (!regime_has_2_ranges(mmu_idx)) { 10552 select = 0; 10553 tsz = extract32(tcr, 0, 6); 10554 using64k = extract32(tcr, 14, 1); 10555 using16k = extract32(tcr, 15, 1); 10556 if (mmu_idx == ARMMMUIdx_Stage2) { 10557 /* VTCR_EL2 */ 10558 hpd = false; 10559 } else { 10560 hpd = extract32(tcr, 24, 1); 10561 } 10562 epd = false; 10563 } else { 10564 /* 10565 * Bit 55 is always between the two regions, and is canonical for 10566 * determining if address tagging is enabled. 10567 */ 10568 select = extract64(va, 55, 1); 10569 if (!select) { 10570 tsz = extract32(tcr, 0, 6); 10571 epd = extract32(tcr, 7, 1); 10572 using64k = extract32(tcr, 14, 1); 10573 using16k = extract32(tcr, 15, 1); 10574 hpd = extract64(tcr, 41, 1); 10575 } else { 10576 int tg = extract32(tcr, 30, 2); 10577 using16k = tg == 1; 10578 using64k = tg == 3; 10579 tsz = extract32(tcr, 16, 6); 10580 epd = extract32(tcr, 23, 1); 10581 hpd = extract64(tcr, 42, 1); 10582 } 10583 } 10584 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ 10585 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 10586 10587 /* Present TBI as a composite with TBID. */ 10588 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 10589 if (!data) { 10590 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 10591 } 10592 tbi = (tbi >> select) & 1; 10593 10594 return (ARMVAParameters) { 10595 .tsz = tsz, 10596 .select = select, 10597 .tbi = tbi, 10598 .epd = epd, 10599 .hpd = hpd, 10600 .using16k = using16k, 10601 .using64k = using64k, 10602 }; 10603 } 10604 10605 #ifndef CONFIG_USER_ONLY 10606 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 10607 ARMMMUIdx mmu_idx) 10608 { 10609 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10610 uint32_t el = regime_el(env, mmu_idx); 10611 int select, tsz; 10612 bool epd, hpd; 10613 10614 if (mmu_idx == ARMMMUIdx_Stage2) { 10615 /* VTCR */ 10616 bool sext = extract32(tcr, 4, 1); 10617 bool sign = extract32(tcr, 3, 1); 10618 10619 /* 10620 * If the sign-extend bit is not the same as t0sz[3], the result 10621 * is unpredictable. Flag this as a guest error. 10622 */ 10623 if (sign != sext) { 10624 qemu_log_mask(LOG_GUEST_ERROR, 10625 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 10626 } 10627 tsz = sextract32(tcr, 0, 4) + 8; 10628 select = 0; 10629 hpd = false; 10630 epd = false; 10631 } else if (el == 2) { 10632 /* HTCR */ 10633 tsz = extract32(tcr, 0, 3); 10634 select = 0; 10635 hpd = extract64(tcr, 24, 1); 10636 epd = false; 10637 } else { 10638 int t0sz = extract32(tcr, 0, 3); 10639 int t1sz = extract32(tcr, 16, 3); 10640 10641 if (t1sz == 0) { 10642 select = va > (0xffffffffu >> t0sz); 10643 } else { 10644 /* Note that we will detect errors later. */ 10645 select = va >= ~(0xffffffffu >> t1sz); 10646 } 10647 if (!select) { 10648 tsz = t0sz; 10649 epd = extract32(tcr, 7, 1); 10650 hpd = extract64(tcr, 41, 1); 10651 } else { 10652 tsz = t1sz; 10653 epd = extract32(tcr, 23, 1); 10654 hpd = extract64(tcr, 42, 1); 10655 } 10656 /* For aarch32, hpd0 is not enabled without t2e as well. */ 10657 hpd &= extract32(tcr, 6, 1); 10658 } 10659 10660 return (ARMVAParameters) { 10661 .tsz = tsz, 10662 .select = select, 10663 .epd = epd, 10664 .hpd = hpd, 10665 }; 10666 } 10667 10668 /** 10669 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 10670 * 10671 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10672 * prot and page_size may not be filled in, and the populated fsr value provides 10673 * information on why the translation aborted, in the format of a long-format 10674 * DFSR/IFSR fault register, with the following caveats: 10675 * * the WnR bit is never set (the caller must do this). 10676 * 10677 * @env: CPUARMState 10678 * @address: virtual address to get physical address for 10679 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 10680 * @mmu_idx: MMU index indicating required translation regime 10681 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 10682 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 10683 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 10684 * @phys_ptr: set to the physical address corresponding to the virtual address 10685 * @attrs: set to the memory transaction attributes to use 10686 * @prot: set to the permissions for the page containing phys_ptr 10687 * @page_size_ptr: set to the size of the page containing phys_ptr 10688 * @fi: set to fault info if the translation fails 10689 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 10690 */ 10691 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 10692 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10693 bool s1_is_el0, 10694 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 10695 target_ulong *page_size_ptr, 10696 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10697 { 10698 ARMCPU *cpu = env_archcpu(env); 10699 CPUState *cs = CPU(cpu); 10700 /* Read an LPAE long-descriptor translation table. */ 10701 ARMFaultType fault_type = ARMFault_Translation; 10702 uint32_t level; 10703 ARMVAParameters param; 10704 uint64_t ttbr; 10705 hwaddr descaddr, indexmask, indexmask_grainsize; 10706 uint32_t tableattrs; 10707 target_ulong page_size; 10708 uint32_t attrs; 10709 int32_t stride; 10710 int addrsize, inputsize; 10711 TCR *tcr = regime_tcr(env, mmu_idx); 10712 int ap, ns, xn, pxn; 10713 uint32_t el = regime_el(env, mmu_idx); 10714 uint64_t descaddrmask; 10715 bool aarch64 = arm_el_is_aa64(env, el); 10716 bool guarded = false; 10717 10718 /* TODO: This code does not support shareability levels. */ 10719 if (aarch64) { 10720 param = aa64_va_parameters(env, address, mmu_idx, 10721 access_type != MMU_INST_FETCH); 10722 level = 0; 10723 addrsize = 64 - 8 * param.tbi; 10724 inputsize = 64 - param.tsz; 10725 } else { 10726 param = aa32_va_parameters(env, address, mmu_idx); 10727 level = 1; 10728 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 10729 inputsize = addrsize - param.tsz; 10730 } 10731 10732 /* 10733 * We determined the region when collecting the parameters, but we 10734 * have not yet validated that the address is valid for the region. 10735 * Extract the top bits and verify that they all match select. 10736 * 10737 * For aa32, if inputsize == addrsize, then we have selected the 10738 * region by exclusion in aa32_va_parameters and there is no more 10739 * validation to do here. 10740 */ 10741 if (inputsize < addrsize) { 10742 target_ulong top_bits = sextract64(address, inputsize, 10743 addrsize - inputsize); 10744 if (-top_bits != param.select) { 10745 /* The gap between the two regions is a Translation fault */ 10746 fault_type = ARMFault_Translation; 10747 goto do_fault; 10748 } 10749 } 10750 10751 if (param.using64k) { 10752 stride = 13; 10753 } else if (param.using16k) { 10754 stride = 11; 10755 } else { 10756 stride = 9; 10757 } 10758 10759 /* Note that QEMU ignores shareability and cacheability attributes, 10760 * so we don't need to do anything with the SH, ORGN, IRGN fields 10761 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 10762 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 10763 * implement any ASID-like capability so we can ignore it (instead 10764 * we will always flush the TLB any time the ASID is changed). 10765 */ 10766 ttbr = regime_ttbr(env, mmu_idx, param.select); 10767 10768 /* Here we should have set up all the parameters for the translation: 10769 * inputsize, ttbr, epd, stride, tbi 10770 */ 10771 10772 if (param.epd) { 10773 /* Translation table walk disabled => Translation fault on TLB miss 10774 * Note: This is always 0 on 64-bit EL2 and EL3. 10775 */ 10776 goto do_fault; 10777 } 10778 10779 if (mmu_idx != ARMMMUIdx_Stage2) { 10780 /* The starting level depends on the virtual address size (which can 10781 * be up to 48 bits) and the translation granule size. It indicates 10782 * the number of strides (stride bits at a time) needed to 10783 * consume the bits of the input address. In the pseudocode this is: 10784 * level = 4 - RoundUp((inputsize - grainsize) / stride) 10785 * where their 'inputsize' is our 'inputsize', 'grainsize' is 10786 * our 'stride + 3' and 'stride' is our 'stride'. 10787 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 10788 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 10789 * = 4 - (inputsize - 4) / stride; 10790 */ 10791 level = 4 - (inputsize - 4) / stride; 10792 } else { 10793 /* For stage 2 translations the starting level is specified by the 10794 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 10795 */ 10796 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 10797 uint32_t startlevel; 10798 bool ok; 10799 10800 if (!aarch64 || stride == 9) { 10801 /* AArch32 or 4KB pages */ 10802 startlevel = 2 - sl0; 10803 } else { 10804 /* 16KB or 64KB pages */ 10805 startlevel = 3 - sl0; 10806 } 10807 10808 /* Check that the starting level is valid. */ 10809 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 10810 inputsize, stride); 10811 if (!ok) { 10812 fault_type = ARMFault_Translation; 10813 goto do_fault; 10814 } 10815 level = startlevel; 10816 } 10817 10818 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 10819 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 10820 10821 /* Now we can extract the actual base address from the TTBR */ 10822 descaddr = extract64(ttbr, 0, 48); 10823 /* 10824 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 10825 * and also to mask out CnP (bit 0) which could validly be non-zero. 10826 */ 10827 descaddr &= ~indexmask; 10828 10829 /* The address field in the descriptor goes up to bit 39 for ARMv7 10830 * but up to bit 47 for ARMv8, but we use the descaddrmask 10831 * up to bit 39 for AArch32, because we don't need other bits in that case 10832 * to construct next descriptor address (anyway they should be all zeroes). 10833 */ 10834 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 10835 ~indexmask_grainsize; 10836 10837 /* Secure accesses start with the page table in secure memory and 10838 * can be downgraded to non-secure at any step. Non-secure accesses 10839 * remain non-secure. We implement this by just ORing in the NSTable/NS 10840 * bits at each step. 10841 */ 10842 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 10843 for (;;) { 10844 uint64_t descriptor; 10845 bool nstable; 10846 10847 descaddr |= (address >> (stride * (4 - level))) & indexmask; 10848 descaddr &= ~7ULL; 10849 nstable = extract32(tableattrs, 4, 1); 10850 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 10851 if (fi->type != ARMFault_None) { 10852 goto do_fault; 10853 } 10854 10855 if (!(descriptor & 1) || 10856 (!(descriptor & 2) && (level == 3))) { 10857 /* Invalid, or the Reserved level 3 encoding */ 10858 goto do_fault; 10859 } 10860 descaddr = descriptor & descaddrmask; 10861 10862 if ((descriptor & 2) && (level < 3)) { 10863 /* Table entry. The top five bits are attributes which may 10864 * propagate down through lower levels of the table (and 10865 * which are all arranged so that 0 means "no effect", so 10866 * we can gather them up by ORing in the bits at each level). 10867 */ 10868 tableattrs |= extract64(descriptor, 59, 5); 10869 level++; 10870 indexmask = indexmask_grainsize; 10871 continue; 10872 } 10873 /* Block entry at level 1 or 2, or page entry at level 3. 10874 * These are basically the same thing, although the number 10875 * of bits we pull in from the vaddr varies. 10876 */ 10877 page_size = (1ULL << ((stride * (4 - level)) + 3)); 10878 descaddr |= (address & (page_size - 1)); 10879 /* Extract attributes from the descriptor */ 10880 attrs = extract64(descriptor, 2, 10) 10881 | (extract64(descriptor, 52, 12) << 10); 10882 10883 if (mmu_idx == ARMMMUIdx_Stage2) { 10884 /* Stage 2 table descriptors do not include any attribute fields */ 10885 break; 10886 } 10887 /* Merge in attributes from table descriptors */ 10888 attrs |= nstable << 3; /* NS */ 10889 guarded = extract64(descriptor, 50, 1); /* GP */ 10890 if (param.hpd) { 10891 /* HPD disables all the table attributes except NSTable. */ 10892 break; 10893 } 10894 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 10895 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 10896 * means "force PL1 access only", which means forcing AP[1] to 0. 10897 */ 10898 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 10899 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 10900 break; 10901 } 10902 /* Here descaddr is the final physical address, and attributes 10903 * are all in attrs. 10904 */ 10905 fault_type = ARMFault_AccessFlag; 10906 if ((attrs & (1 << 8)) == 0) { 10907 /* Access flag */ 10908 goto do_fault; 10909 } 10910 10911 ap = extract32(attrs, 4, 2); 10912 10913 if (mmu_idx == ARMMMUIdx_Stage2) { 10914 ns = true; 10915 xn = extract32(attrs, 11, 2); 10916 *prot = get_S2prot(env, ap, xn, s1_is_el0); 10917 } else { 10918 ns = extract32(attrs, 3, 1); 10919 xn = extract32(attrs, 12, 1); 10920 pxn = extract32(attrs, 11, 1); 10921 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 10922 } 10923 10924 fault_type = ARMFault_Permission; 10925 if (!(*prot & (1 << access_type))) { 10926 goto do_fault; 10927 } 10928 10929 if (ns) { 10930 /* The NS bit will (as required by the architecture) have no effect if 10931 * the CPU doesn't support TZ or this is a non-secure translation 10932 * regime, because the attribute will already be non-secure. 10933 */ 10934 txattrs->secure = false; 10935 } 10936 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 10937 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 10938 txattrs->target_tlb_bit0 = true; 10939 } 10940 10941 if (cacheattrs != NULL) { 10942 if (mmu_idx == ARMMMUIdx_Stage2) { 10943 cacheattrs->attrs = convert_stage2_attrs(env, 10944 extract32(attrs, 0, 4)); 10945 } else { 10946 /* Index into MAIR registers for cache attributes */ 10947 uint8_t attrindx = extract32(attrs, 0, 3); 10948 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 10949 assert(attrindx <= 7); 10950 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 10951 } 10952 cacheattrs->shareability = extract32(attrs, 6, 2); 10953 } 10954 10955 *phys_ptr = descaddr; 10956 *page_size_ptr = page_size; 10957 return false; 10958 10959 do_fault: 10960 fi->type = fault_type; 10961 fi->level = level; 10962 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 10963 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2); 10964 return true; 10965 } 10966 10967 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 10968 ARMMMUIdx mmu_idx, 10969 int32_t address, int *prot) 10970 { 10971 if (!arm_feature(env, ARM_FEATURE_M)) { 10972 *prot = PAGE_READ | PAGE_WRITE; 10973 switch (address) { 10974 case 0xF0000000 ... 0xFFFFFFFF: 10975 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 10976 /* hivecs execing is ok */ 10977 *prot |= PAGE_EXEC; 10978 } 10979 break; 10980 case 0x00000000 ... 0x7FFFFFFF: 10981 *prot |= PAGE_EXEC; 10982 break; 10983 } 10984 } else { 10985 /* Default system address map for M profile cores. 10986 * The architecture specifies which regions are execute-never; 10987 * at the MPU level no other checks are defined. 10988 */ 10989 switch (address) { 10990 case 0x00000000 ... 0x1fffffff: /* ROM */ 10991 case 0x20000000 ... 0x3fffffff: /* SRAM */ 10992 case 0x60000000 ... 0x7fffffff: /* RAM */ 10993 case 0x80000000 ... 0x9fffffff: /* RAM */ 10994 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10995 break; 10996 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 10997 case 0xa0000000 ... 0xbfffffff: /* Device */ 10998 case 0xc0000000 ... 0xdfffffff: /* Device */ 10999 case 0xe0000000 ... 0xffffffff: /* System */ 11000 *prot = PAGE_READ | PAGE_WRITE; 11001 break; 11002 default: 11003 g_assert_not_reached(); 11004 } 11005 } 11006 } 11007 11008 static bool pmsav7_use_background_region(ARMCPU *cpu, 11009 ARMMMUIdx mmu_idx, bool is_user) 11010 { 11011 /* Return true if we should use the default memory map as a 11012 * "background" region if there are no hits against any MPU regions. 11013 */ 11014 CPUARMState *env = &cpu->env; 11015 11016 if (is_user) { 11017 return false; 11018 } 11019 11020 if (arm_feature(env, ARM_FEATURE_M)) { 11021 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11022 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11023 } else { 11024 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11025 } 11026 } 11027 11028 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11029 { 11030 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11031 return arm_feature(env, ARM_FEATURE_M) && 11032 extract32(address, 20, 12) == 0xe00; 11033 } 11034 11035 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11036 { 11037 /* True if address is in the M profile system region 11038 * 0xe0000000 - 0xffffffff 11039 */ 11040 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11041 } 11042 11043 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11044 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11045 hwaddr *phys_ptr, int *prot, 11046 target_ulong *page_size, 11047 ARMMMUFaultInfo *fi) 11048 { 11049 ARMCPU *cpu = env_archcpu(env); 11050 int n; 11051 bool is_user = regime_is_user(env, mmu_idx); 11052 11053 *phys_ptr = address; 11054 *page_size = TARGET_PAGE_SIZE; 11055 *prot = 0; 11056 11057 if (regime_translation_disabled(env, mmu_idx) || 11058 m_is_ppb_region(env, address)) { 11059 /* MPU disabled or M profile PPB access: use default memory map. 11060 * The other case which uses the default memory map in the 11061 * v7M ARM ARM pseudocode is exception vector reads from the vector 11062 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11063 * which always does a direct read using address_space_ldl(), rather 11064 * than going via this function, so we don't need to check that here. 11065 */ 11066 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11067 } else { /* MPU enabled */ 11068 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11069 /* region search */ 11070 uint32_t base = env->pmsav7.drbar[n]; 11071 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11072 uint32_t rmask; 11073 bool srdis = false; 11074 11075 if (!(env->pmsav7.drsr[n] & 0x1)) { 11076 continue; 11077 } 11078 11079 if (!rsize) { 11080 qemu_log_mask(LOG_GUEST_ERROR, 11081 "DRSR[%d]: Rsize field cannot be 0\n", n); 11082 continue; 11083 } 11084 rsize++; 11085 rmask = (1ull << rsize) - 1; 11086 11087 if (base & rmask) { 11088 qemu_log_mask(LOG_GUEST_ERROR, 11089 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11090 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11091 n, base, rmask); 11092 continue; 11093 } 11094 11095 if (address < base || address > base + rmask) { 11096 /* 11097 * Address not in this region. We must check whether the 11098 * region covers addresses in the same page as our address. 11099 * In that case we must not report a size that covers the 11100 * whole page for a subsequent hit against a different MPU 11101 * region or the background region, because it would result in 11102 * incorrect TLB hits for subsequent accesses to addresses that 11103 * are in this MPU region. 11104 */ 11105 if (ranges_overlap(base, rmask, 11106 address & TARGET_PAGE_MASK, 11107 TARGET_PAGE_SIZE)) { 11108 *page_size = 1; 11109 } 11110 continue; 11111 } 11112 11113 /* Region matched */ 11114 11115 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11116 int i, snd; 11117 uint32_t srdis_mask; 11118 11119 rsize -= 3; /* sub region size (power of 2) */ 11120 snd = ((address - base) >> rsize) & 0x7; 11121 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11122 11123 srdis_mask = srdis ? 0x3 : 0x0; 11124 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11125 /* This will check in groups of 2, 4 and then 8, whether 11126 * the subregion bits are consistent. rsize is incremented 11127 * back up to give the region size, considering consistent 11128 * adjacent subregions as one region. Stop testing if rsize 11129 * is already big enough for an entire QEMU page. 11130 */ 11131 int snd_rounded = snd & ~(i - 1); 11132 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11133 snd_rounded + 8, i); 11134 if (srdis_mask ^ srdis_multi) { 11135 break; 11136 } 11137 srdis_mask = (srdis_mask << i) | srdis_mask; 11138 rsize++; 11139 } 11140 } 11141 if (srdis) { 11142 continue; 11143 } 11144 if (rsize < TARGET_PAGE_BITS) { 11145 *page_size = 1 << rsize; 11146 } 11147 break; 11148 } 11149 11150 if (n == -1) { /* no hits */ 11151 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11152 /* background fault */ 11153 fi->type = ARMFault_Background; 11154 return true; 11155 } 11156 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11157 } else { /* a MPU hit! */ 11158 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11159 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11160 11161 if (m_is_system_region(env, address)) { 11162 /* System space is always execute never */ 11163 xn = 1; 11164 } 11165 11166 if (is_user) { /* User mode AP bit decoding */ 11167 switch (ap) { 11168 case 0: 11169 case 1: 11170 case 5: 11171 break; /* no access */ 11172 case 3: 11173 *prot |= PAGE_WRITE; 11174 /* fall through */ 11175 case 2: 11176 case 6: 11177 *prot |= PAGE_READ | PAGE_EXEC; 11178 break; 11179 case 7: 11180 /* for v7M, same as 6; for R profile a reserved value */ 11181 if (arm_feature(env, ARM_FEATURE_M)) { 11182 *prot |= PAGE_READ | PAGE_EXEC; 11183 break; 11184 } 11185 /* fall through */ 11186 default: 11187 qemu_log_mask(LOG_GUEST_ERROR, 11188 "DRACR[%d]: Bad value for AP bits: 0x%" 11189 PRIx32 "\n", n, ap); 11190 } 11191 } else { /* Priv. mode AP bits decoding */ 11192 switch (ap) { 11193 case 0: 11194 break; /* no access */ 11195 case 1: 11196 case 2: 11197 case 3: 11198 *prot |= PAGE_WRITE; 11199 /* fall through */ 11200 case 5: 11201 case 6: 11202 *prot |= PAGE_READ | PAGE_EXEC; 11203 break; 11204 case 7: 11205 /* for v7M, same as 6; for R profile a reserved value */ 11206 if (arm_feature(env, ARM_FEATURE_M)) { 11207 *prot |= PAGE_READ | PAGE_EXEC; 11208 break; 11209 } 11210 /* fall through */ 11211 default: 11212 qemu_log_mask(LOG_GUEST_ERROR, 11213 "DRACR[%d]: Bad value for AP bits: 0x%" 11214 PRIx32 "\n", n, ap); 11215 } 11216 } 11217 11218 /* execute never */ 11219 if (xn) { 11220 *prot &= ~PAGE_EXEC; 11221 } 11222 } 11223 } 11224 11225 fi->type = ARMFault_Permission; 11226 fi->level = 1; 11227 return !(*prot & (1 << access_type)); 11228 } 11229 11230 static bool v8m_is_sau_exempt(CPUARMState *env, 11231 uint32_t address, MMUAccessType access_type) 11232 { 11233 /* The architecture specifies that certain address ranges are 11234 * exempt from v8M SAU/IDAU checks. 11235 */ 11236 return 11237 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 11238 (address >= 0xe0000000 && address <= 0xe0002fff) || 11239 (address >= 0xe000e000 && address <= 0xe000efff) || 11240 (address >= 0xe002e000 && address <= 0xe002efff) || 11241 (address >= 0xe0040000 && address <= 0xe0041fff) || 11242 (address >= 0xe00ff000 && address <= 0xe00fffff); 11243 } 11244 11245 void v8m_security_lookup(CPUARMState *env, uint32_t address, 11246 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11247 V8M_SAttributes *sattrs) 11248 { 11249 /* Look up the security attributes for this address. Compare the 11250 * pseudocode SecurityCheck() function. 11251 * We assume the caller has zero-initialized *sattrs. 11252 */ 11253 ARMCPU *cpu = env_archcpu(env); 11254 int r; 11255 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 11256 int idau_region = IREGION_NOTVALID; 11257 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11258 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11259 11260 if (cpu->idau) { 11261 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 11262 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 11263 11264 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 11265 &idau_nsc); 11266 } 11267 11268 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 11269 /* 0xf0000000..0xffffffff is always S for insn fetches */ 11270 return; 11271 } 11272 11273 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 11274 sattrs->ns = !regime_is_secure(env, mmu_idx); 11275 return; 11276 } 11277 11278 if (idau_region != IREGION_NOTVALID) { 11279 sattrs->irvalid = true; 11280 sattrs->iregion = idau_region; 11281 } 11282 11283 switch (env->sau.ctrl & 3) { 11284 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 11285 break; 11286 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 11287 sattrs->ns = true; 11288 break; 11289 default: /* SAU.ENABLE == 1 */ 11290 for (r = 0; r < cpu->sau_sregion; r++) { 11291 if (env->sau.rlar[r] & 1) { 11292 uint32_t base = env->sau.rbar[r] & ~0x1f; 11293 uint32_t limit = env->sau.rlar[r] | 0x1f; 11294 11295 if (base <= address && limit >= address) { 11296 if (base > addr_page_base || limit < addr_page_limit) { 11297 sattrs->subpage = true; 11298 } 11299 if (sattrs->srvalid) { 11300 /* If we hit in more than one region then we must report 11301 * as Secure, not NS-Callable, with no valid region 11302 * number info. 11303 */ 11304 sattrs->ns = false; 11305 sattrs->nsc = false; 11306 sattrs->sregion = 0; 11307 sattrs->srvalid = false; 11308 break; 11309 } else { 11310 if (env->sau.rlar[r] & 2) { 11311 sattrs->nsc = true; 11312 } else { 11313 sattrs->ns = true; 11314 } 11315 sattrs->srvalid = true; 11316 sattrs->sregion = r; 11317 } 11318 } else { 11319 /* 11320 * Address not in this region. We must check whether the 11321 * region covers addresses in the same page as our address. 11322 * In that case we must not report a size that covers the 11323 * whole page for a subsequent hit against a different MPU 11324 * region or the background region, because it would result 11325 * in incorrect TLB hits for subsequent accesses to 11326 * addresses that are in this MPU region. 11327 */ 11328 if (limit >= base && 11329 ranges_overlap(base, limit - base + 1, 11330 addr_page_base, 11331 TARGET_PAGE_SIZE)) { 11332 sattrs->subpage = true; 11333 } 11334 } 11335 } 11336 } 11337 break; 11338 } 11339 11340 /* 11341 * The IDAU will override the SAU lookup results if it specifies 11342 * higher security than the SAU does. 11343 */ 11344 if (!idau_ns) { 11345 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 11346 sattrs->ns = false; 11347 sattrs->nsc = idau_nsc; 11348 } 11349 } 11350 } 11351 11352 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 11353 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11354 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11355 int *prot, bool *is_subpage, 11356 ARMMMUFaultInfo *fi, uint32_t *mregion) 11357 { 11358 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 11359 * that a full phys-to-virt translation does). 11360 * mregion is (if not NULL) set to the region number which matched, 11361 * or -1 if no region number is returned (MPU off, address did not 11362 * hit a region, address hit in multiple regions). 11363 * We set is_subpage to true if the region hit doesn't cover the 11364 * entire TARGET_PAGE the address is within. 11365 */ 11366 ARMCPU *cpu = env_archcpu(env); 11367 bool is_user = regime_is_user(env, mmu_idx); 11368 uint32_t secure = regime_is_secure(env, mmu_idx); 11369 int n; 11370 int matchregion = -1; 11371 bool hit = false; 11372 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11373 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11374 11375 *is_subpage = false; 11376 *phys_ptr = address; 11377 *prot = 0; 11378 if (mregion) { 11379 *mregion = -1; 11380 } 11381 11382 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 11383 * was an exception vector read from the vector table (which is always 11384 * done using the default system address map), because those accesses 11385 * are done in arm_v7m_load_vector(), which always does a direct 11386 * read using address_space_ldl(), rather than going via this function. 11387 */ 11388 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 11389 hit = true; 11390 } else if (m_is_ppb_region(env, address)) { 11391 hit = true; 11392 } else { 11393 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11394 hit = true; 11395 } 11396 11397 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11398 /* region search */ 11399 /* Note that the base address is bits [31:5] from the register 11400 * with bits [4:0] all zeroes, but the limit address is bits 11401 * [31:5] from the register with bits [4:0] all ones. 11402 */ 11403 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 11404 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 11405 11406 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 11407 /* Region disabled */ 11408 continue; 11409 } 11410 11411 if (address < base || address > limit) { 11412 /* 11413 * Address not in this region. We must check whether the 11414 * region covers addresses in the same page as our address. 11415 * In that case we must not report a size that covers the 11416 * whole page for a subsequent hit against a different MPU 11417 * region or the background region, because it would result in 11418 * incorrect TLB hits for subsequent accesses to addresses that 11419 * are in this MPU region. 11420 */ 11421 if (limit >= base && 11422 ranges_overlap(base, limit - base + 1, 11423 addr_page_base, 11424 TARGET_PAGE_SIZE)) { 11425 *is_subpage = true; 11426 } 11427 continue; 11428 } 11429 11430 if (base > addr_page_base || limit < addr_page_limit) { 11431 *is_subpage = true; 11432 } 11433 11434 if (matchregion != -1) { 11435 /* Multiple regions match -- always a failure (unlike 11436 * PMSAv7 where highest-numbered-region wins) 11437 */ 11438 fi->type = ARMFault_Permission; 11439 fi->level = 1; 11440 return true; 11441 } 11442 11443 matchregion = n; 11444 hit = true; 11445 } 11446 } 11447 11448 if (!hit) { 11449 /* background fault */ 11450 fi->type = ARMFault_Background; 11451 return true; 11452 } 11453 11454 if (matchregion == -1) { 11455 /* hit using the background region */ 11456 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11457 } else { 11458 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 11459 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 11460 11461 if (m_is_system_region(env, address)) { 11462 /* System space is always execute never */ 11463 xn = 1; 11464 } 11465 11466 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 11467 if (*prot && !xn) { 11468 *prot |= PAGE_EXEC; 11469 } 11470 /* We don't need to look the attribute up in the MAIR0/MAIR1 11471 * registers because that only tells us about cacheability. 11472 */ 11473 if (mregion) { 11474 *mregion = matchregion; 11475 } 11476 } 11477 11478 fi->type = ARMFault_Permission; 11479 fi->level = 1; 11480 return !(*prot & (1 << access_type)); 11481 } 11482 11483 11484 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 11485 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11486 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11487 int *prot, target_ulong *page_size, 11488 ARMMMUFaultInfo *fi) 11489 { 11490 uint32_t secure = regime_is_secure(env, mmu_idx); 11491 V8M_SAttributes sattrs = {}; 11492 bool ret; 11493 bool mpu_is_subpage; 11494 11495 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 11496 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 11497 if (access_type == MMU_INST_FETCH) { 11498 /* Instruction fetches always use the MMU bank and the 11499 * transaction attribute determined by the fetch address, 11500 * regardless of CPU state. This is painful for QEMU 11501 * to handle, because it would mean we need to encode 11502 * into the mmu_idx not just the (user, negpri) information 11503 * for the current security state but also that for the 11504 * other security state, which would balloon the number 11505 * of mmu_idx values needed alarmingly. 11506 * Fortunately we can avoid this because it's not actually 11507 * possible to arbitrarily execute code from memory with 11508 * the wrong security attribute: it will always generate 11509 * an exception of some kind or another, apart from the 11510 * special case of an NS CPU executing an SG instruction 11511 * in S&NSC memory. So we always just fail the translation 11512 * here and sort things out in the exception handler 11513 * (including possibly emulating an SG instruction). 11514 */ 11515 if (sattrs.ns != !secure) { 11516 if (sattrs.nsc) { 11517 fi->type = ARMFault_QEMU_NSCExec; 11518 } else { 11519 fi->type = ARMFault_QEMU_SFault; 11520 } 11521 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11522 *phys_ptr = address; 11523 *prot = 0; 11524 return true; 11525 } 11526 } else { 11527 /* For data accesses we always use the MMU bank indicated 11528 * by the current CPU state, but the security attributes 11529 * might downgrade a secure access to nonsecure. 11530 */ 11531 if (sattrs.ns) { 11532 txattrs->secure = false; 11533 } else if (!secure) { 11534 /* NS access to S memory must fault. 11535 * Architecturally we should first check whether the 11536 * MPU information for this address indicates that we 11537 * are doing an unaligned access to Device memory, which 11538 * should generate a UsageFault instead. QEMU does not 11539 * currently check for that kind of unaligned access though. 11540 * If we added it we would need to do so as a special case 11541 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 11542 */ 11543 fi->type = ARMFault_QEMU_SFault; 11544 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11545 *phys_ptr = address; 11546 *prot = 0; 11547 return true; 11548 } 11549 } 11550 } 11551 11552 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 11553 txattrs, prot, &mpu_is_subpage, fi, NULL); 11554 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 11555 return ret; 11556 } 11557 11558 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 11559 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11560 hwaddr *phys_ptr, int *prot, 11561 ARMMMUFaultInfo *fi) 11562 { 11563 int n; 11564 uint32_t mask; 11565 uint32_t base; 11566 bool is_user = regime_is_user(env, mmu_idx); 11567 11568 if (regime_translation_disabled(env, mmu_idx)) { 11569 /* MPU disabled. */ 11570 *phys_ptr = address; 11571 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11572 return false; 11573 } 11574 11575 *phys_ptr = address; 11576 for (n = 7; n >= 0; n--) { 11577 base = env->cp15.c6_region[n]; 11578 if ((base & 1) == 0) { 11579 continue; 11580 } 11581 mask = 1 << ((base >> 1) & 0x1f); 11582 /* Keep this shift separate from the above to avoid an 11583 (undefined) << 32. */ 11584 mask = (mask << 1) - 1; 11585 if (((base ^ address) & ~mask) == 0) { 11586 break; 11587 } 11588 } 11589 if (n < 0) { 11590 fi->type = ARMFault_Background; 11591 return true; 11592 } 11593 11594 if (access_type == MMU_INST_FETCH) { 11595 mask = env->cp15.pmsav5_insn_ap; 11596 } else { 11597 mask = env->cp15.pmsav5_data_ap; 11598 } 11599 mask = (mask >> (n * 4)) & 0xf; 11600 switch (mask) { 11601 case 0: 11602 fi->type = ARMFault_Permission; 11603 fi->level = 1; 11604 return true; 11605 case 1: 11606 if (is_user) { 11607 fi->type = ARMFault_Permission; 11608 fi->level = 1; 11609 return true; 11610 } 11611 *prot = PAGE_READ | PAGE_WRITE; 11612 break; 11613 case 2: 11614 *prot = PAGE_READ; 11615 if (!is_user) { 11616 *prot |= PAGE_WRITE; 11617 } 11618 break; 11619 case 3: 11620 *prot = PAGE_READ | PAGE_WRITE; 11621 break; 11622 case 5: 11623 if (is_user) { 11624 fi->type = ARMFault_Permission; 11625 fi->level = 1; 11626 return true; 11627 } 11628 *prot = PAGE_READ; 11629 break; 11630 case 6: 11631 *prot = PAGE_READ; 11632 break; 11633 default: 11634 /* Bad permission. */ 11635 fi->type = ARMFault_Permission; 11636 fi->level = 1; 11637 return true; 11638 } 11639 *prot |= PAGE_EXEC; 11640 return false; 11641 } 11642 11643 /* Combine either inner or outer cacheability attributes for normal 11644 * memory, according to table D4-42 and pseudocode procedure 11645 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 11646 * 11647 * NB: only stage 1 includes allocation hints (RW bits), leading to 11648 * some asymmetry. 11649 */ 11650 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 11651 { 11652 if (s1 == 4 || s2 == 4) { 11653 /* non-cacheable has precedence */ 11654 return 4; 11655 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 11656 /* stage 1 write-through takes precedence */ 11657 return s1; 11658 } else if (extract32(s2, 2, 2) == 2) { 11659 /* stage 2 write-through takes precedence, but the allocation hint 11660 * is still taken from stage 1 11661 */ 11662 return (2 << 2) | extract32(s1, 0, 2); 11663 } else { /* write-back */ 11664 return s1; 11665 } 11666 } 11667 11668 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 11669 * and CombineS1S2Desc() 11670 * 11671 * @s1: Attributes from stage 1 walk 11672 * @s2: Attributes from stage 2 walk 11673 */ 11674 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 11675 { 11676 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 11677 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 11678 ARMCacheAttrs ret; 11679 11680 /* Combine shareability attributes (table D4-43) */ 11681 if (s1.shareability == 2 || s2.shareability == 2) { 11682 /* if either are outer-shareable, the result is outer-shareable */ 11683 ret.shareability = 2; 11684 } else if (s1.shareability == 3 || s2.shareability == 3) { 11685 /* if either are inner-shareable, the result is inner-shareable */ 11686 ret.shareability = 3; 11687 } else { 11688 /* both non-shareable */ 11689 ret.shareability = 0; 11690 } 11691 11692 /* Combine memory type and cacheability attributes */ 11693 if (s1hi == 0 || s2hi == 0) { 11694 /* Device has precedence over normal */ 11695 if (s1lo == 0 || s2lo == 0) { 11696 /* nGnRnE has precedence over anything */ 11697 ret.attrs = 0; 11698 } else if (s1lo == 4 || s2lo == 4) { 11699 /* non-Reordering has precedence over Reordering */ 11700 ret.attrs = 4; /* nGnRE */ 11701 } else if (s1lo == 8 || s2lo == 8) { 11702 /* non-Gathering has precedence over Gathering */ 11703 ret.attrs = 8; /* nGRE */ 11704 } else { 11705 ret.attrs = 0xc; /* GRE */ 11706 } 11707 11708 /* Any location for which the resultant memory type is any 11709 * type of Device memory is always treated as Outer Shareable. 11710 */ 11711 ret.shareability = 2; 11712 } else { /* Normal memory */ 11713 /* Outer/inner cacheability combine independently */ 11714 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 11715 | combine_cacheattr_nibble(s1lo, s2lo); 11716 11717 if (ret.attrs == 0x44) { 11718 /* Any location for which the resultant memory type is Normal 11719 * Inner Non-cacheable, Outer Non-cacheable is always treated 11720 * as Outer Shareable. 11721 */ 11722 ret.shareability = 2; 11723 } 11724 } 11725 11726 return ret; 11727 } 11728 11729 11730 /* get_phys_addr - get the physical address for this virtual address 11731 * 11732 * Find the physical address corresponding to the given virtual address, 11733 * by doing a translation table walk on MMU based systems or using the 11734 * MPU state on MPU based systems. 11735 * 11736 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11737 * prot and page_size may not be filled in, and the populated fsr value provides 11738 * information on why the translation aborted, in the format of a 11739 * DFSR/IFSR fault register, with the following caveats: 11740 * * we honour the short vs long DFSR format differences. 11741 * * the WnR bit is never set (the caller must do this). 11742 * * for PSMAv5 based systems we don't bother to return a full FSR format 11743 * value. 11744 * 11745 * @env: CPUARMState 11746 * @address: virtual address to get physical address for 11747 * @access_type: 0 for read, 1 for write, 2 for execute 11748 * @mmu_idx: MMU index indicating required translation regime 11749 * @phys_ptr: set to the physical address corresponding to the virtual address 11750 * @attrs: set to the memory transaction attributes to use 11751 * @prot: set to the permissions for the page containing phys_ptr 11752 * @page_size: set to the size of the page containing phys_ptr 11753 * @fi: set to fault info if the translation fails 11754 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11755 */ 11756 bool get_phys_addr(CPUARMState *env, target_ulong address, 11757 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11758 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 11759 target_ulong *page_size, 11760 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11761 { 11762 if (mmu_idx == ARMMMUIdx_E10_0 || 11763 mmu_idx == ARMMMUIdx_E10_1 || 11764 mmu_idx == ARMMMUIdx_E10_1_PAN) { 11765 /* Call ourselves recursively to do the stage 1 and then stage 2 11766 * translations. 11767 */ 11768 if (arm_feature(env, ARM_FEATURE_EL2)) { 11769 hwaddr ipa; 11770 int s2_prot; 11771 int ret; 11772 ARMCacheAttrs cacheattrs2 = {}; 11773 11774 ret = get_phys_addr(env, address, access_type, 11775 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 11776 prot, page_size, fi, cacheattrs); 11777 11778 /* If S1 fails or S2 is disabled, return early. */ 11779 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 11780 *phys_ptr = ipa; 11781 return ret; 11782 } 11783 11784 /* S1 is done. Now do S2 translation. */ 11785 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2, 11786 mmu_idx == ARMMMUIdx_E10_0, 11787 phys_ptr, attrs, &s2_prot, 11788 page_size, fi, 11789 cacheattrs != NULL ? &cacheattrs2 : NULL); 11790 fi->s2addr = ipa; 11791 /* Combine the S1 and S2 perms. */ 11792 *prot &= s2_prot; 11793 11794 /* Combine the S1 and S2 cache attributes, if needed */ 11795 if (!ret && cacheattrs != NULL) { 11796 if (env->cp15.hcr_el2 & HCR_DC) { 11797 /* 11798 * HCR.DC forces the first stage attributes to 11799 * Normal Non-Shareable, 11800 * Inner Write-Back Read-Allocate Write-Allocate, 11801 * Outer Write-Back Read-Allocate Write-Allocate. 11802 */ 11803 cacheattrs->attrs = 0xff; 11804 cacheattrs->shareability = 0; 11805 } 11806 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 11807 } 11808 11809 return ret; 11810 } else { 11811 /* 11812 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 11813 */ 11814 mmu_idx = stage_1_mmu_idx(mmu_idx); 11815 } 11816 } 11817 11818 /* The page table entries may downgrade secure to non-secure, but 11819 * cannot upgrade an non-secure translation regime's attributes 11820 * to secure. 11821 */ 11822 attrs->secure = regime_is_secure(env, mmu_idx); 11823 attrs->user = regime_is_user(env, mmu_idx); 11824 11825 /* Fast Context Switch Extension. This doesn't exist at all in v8. 11826 * In v7 and earlier it affects all stage 1 translations. 11827 */ 11828 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 11829 && !arm_feature(env, ARM_FEATURE_V8)) { 11830 if (regime_el(env, mmu_idx) == 3) { 11831 address += env->cp15.fcseidr_s; 11832 } else { 11833 address += env->cp15.fcseidr_ns; 11834 } 11835 } 11836 11837 if (arm_feature(env, ARM_FEATURE_PMSA)) { 11838 bool ret; 11839 *page_size = TARGET_PAGE_SIZE; 11840 11841 if (arm_feature(env, ARM_FEATURE_V8)) { 11842 /* PMSAv8 */ 11843 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 11844 phys_ptr, attrs, prot, page_size, fi); 11845 } else if (arm_feature(env, ARM_FEATURE_V7)) { 11846 /* PMSAv7 */ 11847 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 11848 phys_ptr, prot, page_size, fi); 11849 } else { 11850 /* Pre-v7 MPU */ 11851 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 11852 phys_ptr, prot, fi); 11853 } 11854 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 11855 " mmu_idx %u -> %s (prot %c%c%c)\n", 11856 access_type == MMU_DATA_LOAD ? "reading" : 11857 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 11858 (uint32_t)address, mmu_idx, 11859 ret ? "Miss" : "Hit", 11860 *prot & PAGE_READ ? 'r' : '-', 11861 *prot & PAGE_WRITE ? 'w' : '-', 11862 *prot & PAGE_EXEC ? 'x' : '-'); 11863 11864 return ret; 11865 } 11866 11867 /* Definitely a real MMU, not an MPU */ 11868 11869 if (regime_translation_disabled(env, mmu_idx)) { 11870 /* 11871 * MMU disabled. S1 addresses within aa64 translation regimes are 11872 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 11873 */ 11874 if (mmu_idx != ARMMMUIdx_Stage2) { 11875 int r_el = regime_el(env, mmu_idx); 11876 if (arm_el_is_aa64(env, r_el)) { 11877 int pamax = arm_pamax(env_archcpu(env)); 11878 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 11879 int addrtop, tbi; 11880 11881 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11882 if (access_type == MMU_INST_FETCH) { 11883 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11884 } 11885 tbi = (tbi >> extract64(address, 55, 1)) & 1; 11886 addrtop = (tbi ? 55 : 63); 11887 11888 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 11889 fi->type = ARMFault_AddressSize; 11890 fi->level = 0; 11891 fi->stage2 = false; 11892 return 1; 11893 } 11894 11895 /* 11896 * When TBI is disabled, we've just validated that all of the 11897 * bits above PAMax are zero, so logically we only need to 11898 * clear the top byte for TBI. But it's clearer to follow 11899 * the pseudocode set of addrdesc.paddress. 11900 */ 11901 address = extract64(address, 0, 52); 11902 } 11903 } 11904 *phys_ptr = address; 11905 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11906 *page_size = TARGET_PAGE_SIZE; 11907 return 0; 11908 } 11909 11910 if (regime_using_lpae_format(env, mmu_idx)) { 11911 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 11912 phys_ptr, attrs, prot, page_size, 11913 fi, cacheattrs); 11914 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 11915 return get_phys_addr_v6(env, address, access_type, mmu_idx, 11916 phys_ptr, attrs, prot, page_size, fi); 11917 } else { 11918 return get_phys_addr_v5(env, address, access_type, mmu_idx, 11919 phys_ptr, prot, page_size, fi); 11920 } 11921 } 11922 11923 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 11924 MemTxAttrs *attrs) 11925 { 11926 ARMCPU *cpu = ARM_CPU(cs); 11927 CPUARMState *env = &cpu->env; 11928 hwaddr phys_addr; 11929 target_ulong page_size; 11930 int prot; 11931 bool ret; 11932 ARMMMUFaultInfo fi = {}; 11933 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 11934 11935 *attrs = (MemTxAttrs) {}; 11936 11937 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 11938 attrs, &prot, &page_size, &fi, NULL); 11939 11940 if (ret) { 11941 return -1; 11942 } 11943 return phys_addr; 11944 } 11945 11946 #endif 11947 11948 /* Note that signed overflow is undefined in C. The following routines are 11949 careful to use unsigned types where modulo arithmetic is required. 11950 Failure to do so _will_ break on newer gcc. */ 11951 11952 /* Signed saturating arithmetic. */ 11953 11954 /* Perform 16-bit signed saturating addition. */ 11955 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11956 { 11957 uint16_t res; 11958 11959 res = a + b; 11960 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11961 if (a & 0x8000) 11962 res = 0x8000; 11963 else 11964 res = 0x7fff; 11965 } 11966 return res; 11967 } 11968 11969 /* Perform 8-bit signed saturating addition. */ 11970 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11971 { 11972 uint8_t res; 11973 11974 res = a + b; 11975 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11976 if (a & 0x80) 11977 res = 0x80; 11978 else 11979 res = 0x7f; 11980 } 11981 return res; 11982 } 11983 11984 /* Perform 16-bit signed saturating subtraction. */ 11985 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11986 { 11987 uint16_t res; 11988 11989 res = a - b; 11990 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11991 if (a & 0x8000) 11992 res = 0x8000; 11993 else 11994 res = 0x7fff; 11995 } 11996 return res; 11997 } 11998 11999 /* Perform 8-bit signed saturating subtraction. */ 12000 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12001 { 12002 uint8_t res; 12003 12004 res = a - b; 12005 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12006 if (a & 0x80) 12007 res = 0x80; 12008 else 12009 res = 0x7f; 12010 } 12011 return res; 12012 } 12013 12014 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12015 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12016 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12017 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12018 #define PFX q 12019 12020 #include "op_addsub.h" 12021 12022 /* Unsigned saturating arithmetic. */ 12023 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12024 { 12025 uint16_t res; 12026 res = a + b; 12027 if (res < a) 12028 res = 0xffff; 12029 return res; 12030 } 12031 12032 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12033 { 12034 if (a > b) 12035 return a - b; 12036 else 12037 return 0; 12038 } 12039 12040 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12041 { 12042 uint8_t res; 12043 res = a + b; 12044 if (res < a) 12045 res = 0xff; 12046 return res; 12047 } 12048 12049 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12050 { 12051 if (a > b) 12052 return a - b; 12053 else 12054 return 0; 12055 } 12056 12057 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12058 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12059 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12060 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12061 #define PFX uq 12062 12063 #include "op_addsub.h" 12064 12065 /* Signed modulo arithmetic. */ 12066 #define SARITH16(a, b, n, op) do { \ 12067 int32_t sum; \ 12068 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12069 RESULT(sum, n, 16); \ 12070 if (sum >= 0) \ 12071 ge |= 3 << (n * 2); \ 12072 } while(0) 12073 12074 #define SARITH8(a, b, n, op) do { \ 12075 int32_t sum; \ 12076 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12077 RESULT(sum, n, 8); \ 12078 if (sum >= 0) \ 12079 ge |= 1 << n; \ 12080 } while(0) 12081 12082 12083 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12084 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12085 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12086 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12087 #define PFX s 12088 #define ARITH_GE 12089 12090 #include "op_addsub.h" 12091 12092 /* Unsigned modulo arithmetic. */ 12093 #define ADD16(a, b, n) do { \ 12094 uint32_t sum; \ 12095 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12096 RESULT(sum, n, 16); \ 12097 if ((sum >> 16) == 1) \ 12098 ge |= 3 << (n * 2); \ 12099 } while(0) 12100 12101 #define ADD8(a, b, n) do { \ 12102 uint32_t sum; \ 12103 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12104 RESULT(sum, n, 8); \ 12105 if ((sum >> 8) == 1) \ 12106 ge |= 1 << n; \ 12107 } while(0) 12108 12109 #define SUB16(a, b, n) do { \ 12110 uint32_t sum; \ 12111 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12112 RESULT(sum, n, 16); \ 12113 if ((sum >> 16) == 0) \ 12114 ge |= 3 << (n * 2); \ 12115 } while(0) 12116 12117 #define SUB8(a, b, n) do { \ 12118 uint32_t sum; \ 12119 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12120 RESULT(sum, n, 8); \ 12121 if ((sum >> 8) == 0) \ 12122 ge |= 1 << n; \ 12123 } while(0) 12124 12125 #define PFX u 12126 #define ARITH_GE 12127 12128 #include "op_addsub.h" 12129 12130 /* Halved signed arithmetic. */ 12131 #define ADD16(a, b, n) \ 12132 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12133 #define SUB16(a, b, n) \ 12134 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12135 #define ADD8(a, b, n) \ 12136 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12137 #define SUB8(a, b, n) \ 12138 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12139 #define PFX sh 12140 12141 #include "op_addsub.h" 12142 12143 /* Halved unsigned arithmetic. */ 12144 #define ADD16(a, b, n) \ 12145 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12146 #define SUB16(a, b, n) \ 12147 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12148 #define ADD8(a, b, n) \ 12149 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12150 #define SUB8(a, b, n) \ 12151 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12152 #define PFX uh 12153 12154 #include "op_addsub.h" 12155 12156 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12157 { 12158 if (a > b) 12159 return a - b; 12160 else 12161 return b - a; 12162 } 12163 12164 /* Unsigned sum of absolute byte differences. */ 12165 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12166 { 12167 uint32_t sum; 12168 sum = do_usad(a, b); 12169 sum += do_usad(a >> 8, b >> 8); 12170 sum += do_usad(a >> 16, b >>16); 12171 sum += do_usad(a >> 24, b >> 24); 12172 return sum; 12173 } 12174 12175 /* For ARMv6 SEL instruction. */ 12176 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12177 { 12178 uint32_t mask; 12179 12180 mask = 0; 12181 if (flags & 1) 12182 mask |= 0xff; 12183 if (flags & 2) 12184 mask |= 0xff00; 12185 if (flags & 4) 12186 mask |= 0xff0000; 12187 if (flags & 8) 12188 mask |= 0xff000000; 12189 return (a & mask) | (b & ~mask); 12190 } 12191 12192 /* CRC helpers. 12193 * The upper bytes of val (above the number specified by 'bytes') must have 12194 * been zeroed out by the caller. 12195 */ 12196 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12197 { 12198 uint8_t buf[4]; 12199 12200 stl_le_p(buf, val); 12201 12202 /* zlib crc32 converts the accumulator and output to one's complement. */ 12203 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12204 } 12205 12206 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12207 { 12208 uint8_t buf[4]; 12209 12210 stl_le_p(buf, val); 12211 12212 /* Linux crc32c converts the output to one's complement. */ 12213 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12214 } 12215 12216 /* Return the exception level to which FP-disabled exceptions should 12217 * be taken, or 0 if FP is enabled. 12218 */ 12219 int fp_exception_el(CPUARMState *env, int cur_el) 12220 { 12221 #ifndef CONFIG_USER_ONLY 12222 /* CPACR and the CPTR registers don't exist before v6, so FP is 12223 * always accessible 12224 */ 12225 if (!arm_feature(env, ARM_FEATURE_V6)) { 12226 return 0; 12227 } 12228 12229 if (arm_feature(env, ARM_FEATURE_M)) { 12230 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12231 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12232 return 1; 12233 } 12234 12235 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12236 if (!extract32(env->v7m.nsacr, 10, 1)) { 12237 /* FP insns cause a NOCP UsageFault taken to Secure */ 12238 return 3; 12239 } 12240 } 12241 12242 return 0; 12243 } 12244 12245 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12246 * 0, 2 : trap EL0 and EL1/PL1 accesses 12247 * 1 : trap only EL0 accesses 12248 * 3 : trap no accesses 12249 * This register is ignored if E2H+TGE are both set. 12250 */ 12251 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12252 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12253 12254 switch (fpen) { 12255 case 0: 12256 case 2: 12257 if (cur_el == 0 || cur_el == 1) { 12258 /* Trap to PL1, which might be EL1 or EL3 */ 12259 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12260 return 3; 12261 } 12262 return 1; 12263 } 12264 if (cur_el == 3 && !is_a64(env)) { 12265 /* Secure PL1 running at EL3 */ 12266 return 3; 12267 } 12268 break; 12269 case 1: 12270 if (cur_el == 0) { 12271 return 1; 12272 } 12273 break; 12274 case 3: 12275 break; 12276 } 12277 } 12278 12279 /* 12280 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12281 * to control non-secure access to the FPU. It doesn't have any 12282 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12283 */ 12284 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12285 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12286 if (!extract32(env->cp15.nsacr, 10, 1)) { 12287 /* FP insns act as UNDEF */ 12288 return cur_el == 2 ? 2 : 1; 12289 } 12290 } 12291 12292 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12293 * check because zero bits in the registers mean "don't trap". 12294 */ 12295 12296 /* CPTR_EL2 : present in v7VE or v8 */ 12297 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12298 && !arm_is_secure_below_el3(env)) { 12299 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12300 return 2; 12301 } 12302 12303 /* CPTR_EL3 : present in v8 */ 12304 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12305 /* Trap all FP ops to EL3 */ 12306 return 3; 12307 } 12308 #endif 12309 return 0; 12310 } 12311 12312 /* Return the exception level we're running at if this is our mmu_idx */ 12313 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12314 { 12315 if (mmu_idx & ARM_MMU_IDX_M) { 12316 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12317 } 12318 12319 switch (mmu_idx) { 12320 case ARMMMUIdx_E10_0: 12321 case ARMMMUIdx_E20_0: 12322 case ARMMMUIdx_SE10_0: 12323 return 0; 12324 case ARMMMUIdx_E10_1: 12325 case ARMMMUIdx_E10_1_PAN: 12326 case ARMMMUIdx_SE10_1: 12327 case ARMMMUIdx_SE10_1_PAN: 12328 return 1; 12329 case ARMMMUIdx_E2: 12330 case ARMMMUIdx_E20_2: 12331 case ARMMMUIdx_E20_2_PAN: 12332 return 2; 12333 case ARMMMUIdx_SE3: 12334 return 3; 12335 default: 12336 g_assert_not_reached(); 12337 } 12338 } 12339 12340 #ifndef CONFIG_TCG 12341 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12342 { 12343 g_assert_not_reached(); 12344 } 12345 #endif 12346 12347 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12348 { 12349 if (arm_feature(env, ARM_FEATURE_M)) { 12350 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12351 } 12352 12353 /* See ARM pseudo-function ELIsInHost. */ 12354 switch (el) { 12355 case 0: 12356 if (arm_is_secure_below_el3(env)) { 12357 return ARMMMUIdx_SE10_0; 12358 } 12359 if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE) 12360 && arm_el_is_aa64(env, 2)) { 12361 return ARMMMUIdx_E20_0; 12362 } 12363 return ARMMMUIdx_E10_0; 12364 case 1: 12365 if (arm_is_secure_below_el3(env)) { 12366 if (env->pstate & PSTATE_PAN) { 12367 return ARMMMUIdx_SE10_1_PAN; 12368 } 12369 return ARMMMUIdx_SE10_1; 12370 } 12371 if (env->pstate & PSTATE_PAN) { 12372 return ARMMMUIdx_E10_1_PAN; 12373 } 12374 return ARMMMUIdx_E10_1; 12375 case 2: 12376 /* TODO: ARMv8.4-SecEL2 */ 12377 /* Note that TGE does not apply at EL2. */ 12378 if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) { 12379 if (env->pstate & PSTATE_PAN) { 12380 return ARMMMUIdx_E20_2_PAN; 12381 } 12382 return ARMMMUIdx_E20_2; 12383 } 12384 return ARMMMUIdx_E2; 12385 case 3: 12386 return ARMMMUIdx_SE3; 12387 default: 12388 g_assert_not_reached(); 12389 } 12390 } 12391 12392 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12393 { 12394 return arm_mmu_idx_el(env, arm_current_el(env)); 12395 } 12396 12397 #ifndef CONFIG_USER_ONLY 12398 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 12399 { 12400 return stage_1_mmu_idx(arm_mmu_idx(env)); 12401 } 12402 #endif 12403 12404 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, 12405 ARMMMUIdx mmu_idx, uint32_t flags) 12406 { 12407 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 12408 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, 12409 arm_to_core_mmu_idx(mmu_idx)); 12410 12411 if (arm_singlestep_active(env)) { 12412 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 12413 } 12414 return flags; 12415 } 12416 12417 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, 12418 ARMMMUIdx mmu_idx, uint32_t flags) 12419 { 12420 bool sctlr_b = arm_sctlr_b(env); 12421 12422 if (sctlr_b) { 12423 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); 12424 } 12425 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 12426 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12427 } 12428 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 12429 12430 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12431 } 12432 12433 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, 12434 ARMMMUIdx mmu_idx) 12435 { 12436 uint32_t flags = 0; 12437 12438 if (arm_v7m_is_handler_mode(env)) { 12439 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1); 12440 } 12441 12442 /* 12443 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 12444 * is suppressing them because the requested execution priority 12445 * is less than 0. 12446 */ 12447 if (arm_feature(env, ARM_FEATURE_V8) && 12448 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 12449 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 12450 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1); 12451 } 12452 12453 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 12454 } 12455 12456 static uint32_t rebuild_hflags_aprofile(CPUARMState *env) 12457 { 12458 int flags = 0; 12459 12460 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, 12461 arm_debug_target_el(env)); 12462 return flags; 12463 } 12464 12465 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, 12466 ARMMMUIdx mmu_idx) 12467 { 12468 uint32_t flags = rebuild_hflags_aprofile(env); 12469 12470 if (arm_el_is_aa64(env, 1)) { 12471 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 12472 } 12473 12474 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 && 12475 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12476 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1); 12477 } 12478 12479 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 12480 } 12481 12482 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 12483 ARMMMUIdx mmu_idx) 12484 { 12485 uint32_t flags = rebuild_hflags_aprofile(env); 12486 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 12487 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 12488 uint64_t sctlr; 12489 int tbii, tbid; 12490 12491 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 12492 12493 /* Get control bits for tagged addresses. */ 12494 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 12495 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 12496 12497 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 12498 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 12499 12500 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 12501 int sve_el = sve_exception_el(env, el); 12502 uint32_t zcr_len; 12503 12504 /* 12505 * If SVE is disabled, but FP is enabled, 12506 * then the effective len is 0. 12507 */ 12508 if (sve_el != 0 && fp_el == 0) { 12509 zcr_len = 0; 12510 } else { 12511 zcr_len = sve_zcr_len_for_el(env, el); 12512 } 12513 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 12514 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 12515 } 12516 12517 sctlr = regime_sctlr(env, stage1); 12518 12519 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 12520 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12521 } 12522 12523 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 12524 /* 12525 * In order to save space in flags, we record only whether 12526 * pauth is "inactive", meaning all insns are implemented as 12527 * a nop, or "active" when some action must be performed. 12528 * The decision of which action to take is left to a helper. 12529 */ 12530 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 12531 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 12532 } 12533 } 12534 12535 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12536 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 12537 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 12538 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 12539 } 12540 } 12541 12542 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 12543 if (!(env->pstate & PSTATE_UAO)) { 12544 switch (mmu_idx) { 12545 case ARMMMUIdx_E10_1: 12546 case ARMMMUIdx_E10_1_PAN: 12547 case ARMMMUIdx_SE10_1: 12548 case ARMMMUIdx_SE10_1_PAN: 12549 /* TODO: ARMv8.3-NV */ 12550 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 12551 break; 12552 case ARMMMUIdx_E20_2: 12553 case ARMMMUIdx_E20_2_PAN: 12554 /* TODO: ARMv8.4-SecEL2 */ 12555 /* 12556 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 12557 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 12558 */ 12559 if (env->cp15.hcr_el2 & HCR_TGE) { 12560 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 12561 } 12562 break; 12563 default: 12564 break; 12565 } 12566 } 12567 12568 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12569 } 12570 12571 static uint32_t rebuild_hflags_internal(CPUARMState *env) 12572 { 12573 int el = arm_current_el(env); 12574 int fp_el = fp_exception_el(env, el); 12575 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12576 12577 if (is_a64(env)) { 12578 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12579 } else if (arm_feature(env, ARM_FEATURE_M)) { 12580 return rebuild_hflags_m32(env, fp_el, mmu_idx); 12581 } else { 12582 return rebuild_hflags_a32(env, fp_el, mmu_idx); 12583 } 12584 } 12585 12586 void arm_rebuild_hflags(CPUARMState *env) 12587 { 12588 env->hflags = rebuild_hflags_internal(env); 12589 } 12590 12591 /* 12592 * If we have triggered a EL state change we can't rely on the 12593 * translator having passed it to us, we need to recompute. 12594 */ 12595 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 12596 { 12597 int el = arm_current_el(env); 12598 int fp_el = fp_exception_el(env, el); 12599 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12600 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12601 } 12602 12603 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 12604 { 12605 int fp_el = fp_exception_el(env, el); 12606 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12607 12608 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12609 } 12610 12611 /* 12612 * If we have triggered a EL state change we can't rely on the 12613 * translator having passed it to us, we need to recompute. 12614 */ 12615 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 12616 { 12617 int el = arm_current_el(env); 12618 int fp_el = fp_exception_el(env, el); 12619 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12620 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 12621 } 12622 12623 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 12624 { 12625 int fp_el = fp_exception_el(env, el); 12626 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12627 12628 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 12629 } 12630 12631 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 12632 { 12633 int fp_el = fp_exception_el(env, el); 12634 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12635 12636 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12637 } 12638 12639 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 12640 { 12641 #ifdef CONFIG_DEBUG_TCG 12642 uint32_t env_flags_current = env->hflags; 12643 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env); 12644 12645 if (unlikely(env_flags_current != env_flags_rebuilt)) { 12646 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n", 12647 env_flags_current, env_flags_rebuilt); 12648 abort(); 12649 } 12650 #endif 12651 } 12652 12653 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 12654 target_ulong *cs_base, uint32_t *pflags) 12655 { 12656 uint32_t flags = env->hflags; 12657 uint32_t pstate_for_ss; 12658 12659 *cs_base = 0; 12660 assert_hflags_rebuild_correctly(env); 12661 12662 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { 12663 *pc = env->pc; 12664 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12665 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 12666 } 12667 pstate_for_ss = env->pstate; 12668 } else { 12669 *pc = env->regs[15]; 12670 12671 if (arm_feature(env, ARM_FEATURE_M)) { 12672 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12673 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12674 != env->v7m.secure) { 12675 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1); 12676 } 12677 12678 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12679 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12680 (env->v7m.secure && 12681 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12682 /* 12683 * ASPEN is set, but FPCA/SFPA indicate that there is no 12684 * active FP context; we must create a new FP context before 12685 * executing any FP insn. 12686 */ 12687 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1); 12688 } 12689 12690 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12691 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12692 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1); 12693 } 12694 } else { 12695 /* 12696 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12697 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12698 */ 12699 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12700 flags = FIELD_DP32(flags, TBFLAG_A32, 12701 XSCALE_CPAR, env->cp15.c15_cpar); 12702 } else { 12703 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, 12704 env->vfp.vec_len); 12705 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, 12706 env->vfp.vec_stride); 12707 } 12708 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12709 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 12710 } 12711 } 12712 12713 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb); 12714 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits); 12715 pstate_for_ss = env->uncached_cpsr; 12716 } 12717 12718 /* 12719 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12720 * states defined in the ARM ARM for software singlestep: 12721 * SS_ACTIVE PSTATE.SS State 12722 * 0 x Inactive (the TB flag for SS is always 0) 12723 * 1 0 Active-pending 12724 * 1 1 Active-not-pending 12725 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. 12726 */ 12727 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && 12728 (pstate_for_ss & PSTATE_SS)) { 12729 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 12730 } 12731 12732 *pflags = flags; 12733 } 12734 12735 #ifdef TARGET_AARCH64 12736 /* 12737 * The manual says that when SVE is enabled and VQ is widened the 12738 * implementation is allowed to zero the previously inaccessible 12739 * portion of the registers. The corollary to that is that when 12740 * SVE is enabled and VQ is narrowed we are also allowed to zero 12741 * the now inaccessible portion of the registers. 12742 * 12743 * The intent of this is that no predicate bit beyond VQ is ever set. 12744 * Which means that some operations on predicate registers themselves 12745 * may operate on full uint64_t or even unrolled across the maximum 12746 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12747 * may well be cheaper than conditionals to restrict the operation 12748 * to the relevant portion of a uint16_t[16]. 12749 */ 12750 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12751 { 12752 int i, j; 12753 uint64_t pmask; 12754 12755 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12756 assert(vq <= env_archcpu(env)->sve_max_vq); 12757 12758 /* Zap the high bits of the zregs. */ 12759 for (i = 0; i < 32; i++) { 12760 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12761 } 12762 12763 /* Zap the high bits of the pregs and ffr. */ 12764 pmask = 0; 12765 if (vq & 3) { 12766 pmask = ~(-1ULL << (16 * (vq & 3))); 12767 } 12768 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12769 for (i = 0; i < 17; ++i) { 12770 env->vfp.pregs[i].p[j] &= pmask; 12771 } 12772 pmask = 0; 12773 } 12774 } 12775 12776 /* 12777 * Notice a change in SVE vector size when changing EL. 12778 */ 12779 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12780 int new_el, bool el0_a64) 12781 { 12782 ARMCPU *cpu = env_archcpu(env); 12783 int old_len, new_len; 12784 bool old_a64, new_a64; 12785 12786 /* Nothing to do if no SVE. */ 12787 if (!cpu_isar_feature(aa64_sve, cpu)) { 12788 return; 12789 } 12790 12791 /* Nothing to do if FP is disabled in either EL. */ 12792 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12793 return; 12794 } 12795 12796 /* 12797 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12798 * at ELx, or not available because the EL is in AArch32 state, then 12799 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12800 * has an effective value of 0". 12801 * 12802 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12803 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12804 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12805 * we already have the correct register contents when encountering the 12806 * vq0->vq0 transition between EL0->EL1. 12807 */ 12808 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12809 old_len = (old_a64 && !sve_exception_el(env, old_el) 12810 ? sve_zcr_len_for_el(env, old_el) : 0); 12811 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12812 new_len = (new_a64 && !sve_exception_el(env, new_el) 12813 ? sve_zcr_len_for_el(env, new_el) : 0); 12814 12815 /* When changing vector length, clear inaccessible state. */ 12816 if (new_len < old_len) { 12817 aarch64_sve_narrow_vq(env, new_len + 1); 12818 } 12819 } 12820 #endif 12821