1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "qemu/log.h" 12 #include "target/arm/idau.h" 13 #include "trace.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/timer.h" 20 #include "qemu/bitops.h" 21 #include "qemu/crc32c.h" 22 #include "qemu/qemu-print.h" 23 #include "exec/exec-all.h" 24 #include <zlib.h> /* For crc32 */ 25 #include "hw/irq.h" 26 #include "semihosting/semihost.h" 27 #include "sysemu/cpus.h" 28 #include "sysemu/cpu-timers.h" 29 #include "sysemu/kvm.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #include "semihosting/common-semi.h" 38 #endif 39 #include "cpregs.h" 40 41 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 42 43 #ifndef CONFIG_USER_ONLY 44 45 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 46 MMUAccessType access_type, ARMMMUIdx mmu_idx, 47 bool s1_is_el0, 48 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 49 target_ulong *page_size_ptr, 50 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 51 __attribute__((nonnull)); 52 #endif 53 54 static void switch_mode(CPUARMState *env, int mode); 55 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 56 57 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 58 { 59 assert(ri->fieldoffset); 60 if (cpreg_field_is_64bit(ri)) { 61 return CPREG_FIELD64(env, ri); 62 } else { 63 return CPREG_FIELD32(env, ri); 64 } 65 } 66 67 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 68 uint64_t value) 69 { 70 assert(ri->fieldoffset); 71 if (cpreg_field_is_64bit(ri)) { 72 CPREG_FIELD64(env, ri) = value; 73 } else { 74 CPREG_FIELD32(env, ri) = value; 75 } 76 } 77 78 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 79 { 80 return (char *)env + ri->fieldoffset; 81 } 82 83 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 84 { 85 /* Raw read of a coprocessor register (as needed for migration, etc). */ 86 if (ri->type & ARM_CP_CONST) { 87 return ri->resetvalue; 88 } else if (ri->raw_readfn) { 89 return ri->raw_readfn(env, ri); 90 } else if (ri->readfn) { 91 return ri->readfn(env, ri); 92 } else { 93 return raw_read(env, ri); 94 } 95 } 96 97 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 98 uint64_t v) 99 { 100 /* Raw write of a coprocessor register (as needed for migration, etc). 101 * Note that constant registers are treated as write-ignored; the 102 * caller should check for success by whether a readback gives the 103 * value written. 104 */ 105 if (ri->type & ARM_CP_CONST) { 106 return; 107 } else if (ri->raw_writefn) { 108 ri->raw_writefn(env, ri, v); 109 } else if (ri->writefn) { 110 ri->writefn(env, ri, v); 111 } else { 112 raw_write(env, ri, v); 113 } 114 } 115 116 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 117 { 118 /* Return true if the regdef would cause an assertion if you called 119 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 120 * program bug for it not to have the NO_RAW flag). 121 * NB that returning false here doesn't necessarily mean that calling 122 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 123 * read/write access functions which are safe for raw use" from "has 124 * read/write access functions which have side effects but has forgotten 125 * to provide raw access functions". 126 * The tests here line up with the conditions in read/write_raw_cp_reg() 127 * and assertions in raw_read()/raw_write(). 128 */ 129 if ((ri->type & ARM_CP_CONST) || 130 ri->fieldoffset || 131 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 132 return false; 133 } 134 return true; 135 } 136 137 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 138 { 139 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 140 int i; 141 bool ok = true; 142 143 for (i = 0; i < cpu->cpreg_array_len; i++) { 144 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 145 const ARMCPRegInfo *ri; 146 uint64_t newval; 147 148 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 149 if (!ri) { 150 ok = false; 151 continue; 152 } 153 if (ri->type & ARM_CP_NO_RAW) { 154 continue; 155 } 156 157 newval = read_raw_cp_reg(&cpu->env, ri); 158 if (kvm_sync) { 159 /* 160 * Only sync if the previous list->cpustate sync succeeded. 161 * Rather than tracking the success/failure state for every 162 * item in the list, we just recheck "does the raw write we must 163 * have made in write_list_to_cpustate() read back OK" here. 164 */ 165 uint64_t oldval = cpu->cpreg_values[i]; 166 167 if (oldval == newval) { 168 continue; 169 } 170 171 write_raw_cp_reg(&cpu->env, ri, oldval); 172 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 173 continue; 174 } 175 176 write_raw_cp_reg(&cpu->env, ri, newval); 177 } 178 cpu->cpreg_values[i] = newval; 179 } 180 return ok; 181 } 182 183 bool write_list_to_cpustate(ARMCPU *cpu) 184 { 185 int i; 186 bool ok = true; 187 188 for (i = 0; i < cpu->cpreg_array_len; i++) { 189 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 190 uint64_t v = cpu->cpreg_values[i]; 191 const ARMCPRegInfo *ri; 192 193 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 194 if (!ri) { 195 ok = false; 196 continue; 197 } 198 if (ri->type & ARM_CP_NO_RAW) { 199 continue; 200 } 201 /* Write value and confirm it reads back as written 202 * (to catch read-only registers and partially read-only 203 * registers where the incoming migration value doesn't match) 204 */ 205 write_raw_cp_reg(&cpu->env, ri, v); 206 if (read_raw_cp_reg(&cpu->env, ri) != v) { 207 ok = false; 208 } 209 } 210 return ok; 211 } 212 213 static void add_cpreg_to_list(gpointer key, gpointer opaque) 214 { 215 ARMCPU *cpu = opaque; 216 uint32_t regidx = (uintptr_t)key; 217 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 218 219 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 220 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 221 /* The value array need not be initialized at this point */ 222 cpu->cpreg_array_len++; 223 } 224 } 225 226 static void count_cpreg(gpointer key, gpointer opaque) 227 { 228 ARMCPU *cpu = opaque; 229 const ARMCPRegInfo *ri; 230 231 ri = g_hash_table_lookup(cpu->cp_regs, key); 232 233 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 234 cpu->cpreg_array_len++; 235 } 236 } 237 238 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 239 { 240 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 241 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 242 243 if (aidx > bidx) { 244 return 1; 245 } 246 if (aidx < bidx) { 247 return -1; 248 } 249 return 0; 250 } 251 252 void init_cpreg_list(ARMCPU *cpu) 253 { 254 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 255 * Note that we require cpreg_tuples[] to be sorted by key ID. 256 */ 257 GList *keys; 258 int arraylen; 259 260 keys = g_hash_table_get_keys(cpu->cp_regs); 261 keys = g_list_sort(keys, cpreg_key_compare); 262 263 cpu->cpreg_array_len = 0; 264 265 g_list_foreach(keys, count_cpreg, cpu); 266 267 arraylen = cpu->cpreg_array_len; 268 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 269 cpu->cpreg_values = g_new(uint64_t, arraylen); 270 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 271 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 272 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 273 cpu->cpreg_array_len = 0; 274 275 g_list_foreach(keys, add_cpreg_to_list, cpu); 276 277 assert(cpu->cpreg_array_len == arraylen); 278 279 g_list_free(keys); 280 } 281 282 /* 283 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 284 */ 285 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 286 const ARMCPRegInfo *ri, 287 bool isread) 288 { 289 if (!is_a64(env) && arm_current_el(env) == 3 && 290 arm_is_secure_below_el3(env)) { 291 return CP_ACCESS_TRAP_UNCATEGORIZED; 292 } 293 return CP_ACCESS_OK; 294 } 295 296 /* Some secure-only AArch32 registers trap to EL3 if used from 297 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 298 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 299 * We assume that the .access field is set to PL1_RW. 300 */ 301 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 302 const ARMCPRegInfo *ri, 303 bool isread) 304 { 305 if (arm_current_el(env) == 3) { 306 return CP_ACCESS_OK; 307 } 308 if (arm_is_secure_below_el3(env)) { 309 if (env->cp15.scr_el3 & SCR_EEL2) { 310 return CP_ACCESS_TRAP_EL2; 311 } 312 return CP_ACCESS_TRAP_EL3; 313 } 314 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 315 return CP_ACCESS_TRAP_UNCATEGORIZED; 316 } 317 318 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 319 { 320 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 321 } 322 323 /* Check for traps to "powerdown debug" registers, which are controlled 324 * by MDCR.TDOSA 325 */ 326 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 327 bool isread) 328 { 329 int el = arm_current_el(env); 330 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 331 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 332 (arm_hcr_el2_eff(env) & HCR_TGE); 333 334 if (el < 2 && mdcr_el2_tdosa) { 335 return CP_ACCESS_TRAP_EL2; 336 } 337 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 338 return CP_ACCESS_TRAP_EL3; 339 } 340 return CP_ACCESS_OK; 341 } 342 343 /* Check for traps to "debug ROM" registers, which are controlled 344 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 345 */ 346 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 347 bool isread) 348 { 349 int el = arm_current_el(env); 350 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 351 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 352 (arm_hcr_el2_eff(env) & HCR_TGE); 353 354 if (el < 2 && mdcr_el2_tdra) { 355 return CP_ACCESS_TRAP_EL2; 356 } 357 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 358 return CP_ACCESS_TRAP_EL3; 359 } 360 return CP_ACCESS_OK; 361 } 362 363 /* Check for traps to general debug registers, which are controlled 364 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 365 */ 366 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 367 bool isread) 368 { 369 int el = arm_current_el(env); 370 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 371 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 372 (arm_hcr_el2_eff(env) & HCR_TGE); 373 374 if (el < 2 && mdcr_el2_tda) { 375 return CP_ACCESS_TRAP_EL2; 376 } 377 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 378 return CP_ACCESS_TRAP_EL3; 379 } 380 return CP_ACCESS_OK; 381 } 382 383 /* Check for traps to performance monitor registers, which are controlled 384 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 385 */ 386 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 387 bool isread) 388 { 389 int el = arm_current_el(env); 390 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 391 392 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 393 return CP_ACCESS_TRAP_EL2; 394 } 395 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 396 return CP_ACCESS_TRAP_EL3; 397 } 398 return CP_ACCESS_OK; 399 } 400 401 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 402 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 403 bool isread) 404 { 405 if (arm_current_el(env) == 1) { 406 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 407 if (arm_hcr_el2_eff(env) & trap) { 408 return CP_ACCESS_TRAP_EL2; 409 } 410 } 411 return CP_ACCESS_OK; 412 } 413 414 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 415 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 416 bool isread) 417 { 418 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 419 return CP_ACCESS_TRAP_EL2; 420 } 421 return CP_ACCESS_OK; 422 } 423 424 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 425 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 426 bool isread) 427 { 428 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 429 return CP_ACCESS_TRAP_EL2; 430 } 431 return CP_ACCESS_OK; 432 } 433 434 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 435 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 436 bool isread) 437 { 438 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 439 return CP_ACCESS_TRAP_EL2; 440 } 441 return CP_ACCESS_OK; 442 } 443 444 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 445 { 446 ARMCPU *cpu = env_archcpu(env); 447 448 raw_write(env, ri, value); 449 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 450 } 451 452 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 453 { 454 ARMCPU *cpu = env_archcpu(env); 455 456 if (raw_read(env, ri) != value) { 457 /* Unlike real hardware the qemu TLB uses virtual addresses, 458 * not modified virtual addresses, so this causes a TLB flush. 459 */ 460 tlb_flush(CPU(cpu)); 461 raw_write(env, ri, value); 462 } 463 } 464 465 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 466 uint64_t value) 467 { 468 ARMCPU *cpu = env_archcpu(env); 469 470 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 471 && !extended_addresses_enabled(env)) { 472 /* For VMSA (when not using the LPAE long descriptor page table 473 * format) this register includes the ASID, so do a TLB flush. 474 * For PMSA it is purely a process ID and no action is needed. 475 */ 476 tlb_flush(CPU(cpu)); 477 } 478 raw_write(env, ri, value); 479 } 480 481 /* IS variants of TLB operations must affect all cores */ 482 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 483 uint64_t value) 484 { 485 CPUState *cs = env_cpu(env); 486 487 tlb_flush_all_cpus_synced(cs); 488 } 489 490 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 491 uint64_t value) 492 { 493 CPUState *cs = env_cpu(env); 494 495 tlb_flush_all_cpus_synced(cs); 496 } 497 498 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 499 uint64_t value) 500 { 501 CPUState *cs = env_cpu(env); 502 503 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 504 } 505 506 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 507 uint64_t value) 508 { 509 CPUState *cs = env_cpu(env); 510 511 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 512 } 513 514 /* 515 * Non-IS variants of TLB operations are upgraded to 516 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 517 * force broadcast of these operations. 518 */ 519 static bool tlb_force_broadcast(CPUARMState *env) 520 { 521 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 522 } 523 524 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 525 uint64_t value) 526 { 527 /* Invalidate all (TLBIALL) */ 528 CPUState *cs = env_cpu(env); 529 530 if (tlb_force_broadcast(env)) { 531 tlb_flush_all_cpus_synced(cs); 532 } else { 533 tlb_flush(cs); 534 } 535 } 536 537 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 538 uint64_t value) 539 { 540 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 541 CPUState *cs = env_cpu(env); 542 543 value &= TARGET_PAGE_MASK; 544 if (tlb_force_broadcast(env)) { 545 tlb_flush_page_all_cpus_synced(cs, value); 546 } else { 547 tlb_flush_page(cs, value); 548 } 549 } 550 551 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 552 uint64_t value) 553 { 554 /* Invalidate by ASID (TLBIASID) */ 555 CPUState *cs = env_cpu(env); 556 557 if (tlb_force_broadcast(env)) { 558 tlb_flush_all_cpus_synced(cs); 559 } else { 560 tlb_flush(cs); 561 } 562 } 563 564 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 565 uint64_t value) 566 { 567 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 568 CPUState *cs = env_cpu(env); 569 570 value &= TARGET_PAGE_MASK; 571 if (tlb_force_broadcast(env)) { 572 tlb_flush_page_all_cpus_synced(cs, value); 573 } else { 574 tlb_flush_page(cs, value); 575 } 576 } 577 578 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 579 uint64_t value) 580 { 581 CPUState *cs = env_cpu(env); 582 583 tlb_flush_by_mmuidx(cs, 584 ARMMMUIdxBit_E10_1 | 585 ARMMMUIdxBit_E10_1_PAN | 586 ARMMMUIdxBit_E10_0); 587 } 588 589 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 590 uint64_t value) 591 { 592 CPUState *cs = env_cpu(env); 593 594 tlb_flush_by_mmuidx_all_cpus_synced(cs, 595 ARMMMUIdxBit_E10_1 | 596 ARMMMUIdxBit_E10_1_PAN | 597 ARMMMUIdxBit_E10_0); 598 } 599 600 601 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 602 uint64_t value) 603 { 604 CPUState *cs = env_cpu(env); 605 606 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 607 } 608 609 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 610 uint64_t value) 611 { 612 CPUState *cs = env_cpu(env); 613 614 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 615 } 616 617 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 618 uint64_t value) 619 { 620 CPUState *cs = env_cpu(env); 621 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 622 623 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 624 } 625 626 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 627 uint64_t value) 628 { 629 CPUState *cs = env_cpu(env); 630 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 631 632 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 633 ARMMMUIdxBit_E2); 634 } 635 636 static const ARMCPRegInfo cp_reginfo[] = { 637 /* Define the secure and non-secure FCSE identifier CP registers 638 * separately because there is no secure bank in V8 (no _EL3). This allows 639 * the secure register to be properly reset and migrated. There is also no 640 * v8 EL1 version of the register so the non-secure instance stands alone. 641 */ 642 { .name = "FCSEIDR", 643 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 644 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 645 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 646 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 647 { .name = "FCSEIDR_S", 648 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 649 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 650 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 651 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 652 /* Define the secure and non-secure context identifier CP registers 653 * separately because there is no secure bank in V8 (no _EL3). This allows 654 * the secure register to be properly reset and migrated. In the 655 * non-secure case, the 32-bit register will have reset and migration 656 * disabled during registration as it is handled by the 64-bit instance. 657 */ 658 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 659 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 660 .access = PL1_RW, .accessfn = access_tvm_trvm, 661 .secure = ARM_CP_SECSTATE_NS, 662 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 663 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 664 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 665 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 666 .access = PL1_RW, .accessfn = access_tvm_trvm, 667 .secure = ARM_CP_SECSTATE_S, 668 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 669 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 670 }; 671 672 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 673 /* NB: Some of these registers exist in v8 but with more precise 674 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 675 */ 676 /* MMU Domain access control / MPU write buffer control */ 677 { .name = "DACR", 678 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 679 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 680 .writefn = dacr_write, .raw_writefn = raw_write, 681 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 682 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 683 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 684 * For v6 and v5, these mappings are overly broad. 685 */ 686 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 687 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 688 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 689 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 690 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 691 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 692 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 693 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 694 /* Cache maintenance ops; some of this space may be overridden later. */ 695 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 696 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 697 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 698 }; 699 700 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 701 /* Not all pre-v6 cores implemented this WFI, so this is slightly 702 * over-broad. 703 */ 704 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 705 .access = PL1_W, .type = ARM_CP_WFI }, 706 }; 707 708 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 709 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 710 * is UNPREDICTABLE; we choose to NOP as most implementations do). 711 */ 712 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 713 .access = PL1_W, .type = ARM_CP_WFI }, 714 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 715 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 716 * OMAPCP will override this space. 717 */ 718 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 719 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 720 .resetvalue = 0 }, 721 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 722 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 723 .resetvalue = 0 }, 724 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 725 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 726 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 727 .resetvalue = 0 }, 728 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 729 * implementing it as RAZ means the "debug architecture version" bits 730 * will read as a reserved value, which should cause Linux to not try 731 * to use the debug hardware. 732 */ 733 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 734 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 735 /* MMU TLB control. Note that the wildcarding means we cover not just 736 * the unified TLB ops but also the dside/iside/inner-shareable variants. 737 */ 738 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 739 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 740 .type = ARM_CP_NO_RAW }, 741 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 742 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 743 .type = ARM_CP_NO_RAW }, 744 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 745 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 746 .type = ARM_CP_NO_RAW }, 747 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 748 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 749 .type = ARM_CP_NO_RAW }, 750 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 751 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 752 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 753 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 754 }; 755 756 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 757 uint64_t value) 758 { 759 uint32_t mask = 0; 760 761 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 762 if (!arm_feature(env, ARM_FEATURE_V8)) { 763 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 764 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 765 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 766 */ 767 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 768 /* VFP coprocessor: cp10 & cp11 [23:20] */ 769 mask |= R_CPACR_ASEDIS_MASK | 770 R_CPACR_D32DIS_MASK | 771 R_CPACR_CP11_MASK | 772 R_CPACR_CP10_MASK; 773 774 if (!arm_feature(env, ARM_FEATURE_NEON)) { 775 /* ASEDIS [31] bit is RAO/WI */ 776 value |= R_CPACR_ASEDIS_MASK; 777 } 778 779 /* VFPv3 and upwards with NEON implement 32 double precision 780 * registers (D0-D31). 781 */ 782 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 783 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 784 value |= R_CPACR_D32DIS_MASK; 785 } 786 } 787 value &= mask; 788 } 789 790 /* 791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 793 */ 794 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 795 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 796 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 797 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 798 } 799 800 env->cp15.cpacr_el1 = value; 801 } 802 803 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 804 { 805 /* 806 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 807 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 808 */ 809 uint64_t value = env->cp15.cpacr_el1; 810 811 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 812 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 813 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 814 } 815 return value; 816 } 817 818 819 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 820 { 821 /* Call cpacr_write() so that we reset with the correct RAO bits set 822 * for our CPU features. 823 */ 824 cpacr_write(env, ri, 0); 825 } 826 827 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 828 bool isread) 829 { 830 if (arm_feature(env, ARM_FEATURE_V8)) { 831 /* Check if CPACR accesses are to be trapped to EL2 */ 832 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 833 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 834 return CP_ACCESS_TRAP_EL2; 835 /* Check if CPACR accesses are to be trapped to EL3 */ 836 } else if (arm_current_el(env) < 3 && 837 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 838 return CP_ACCESS_TRAP_EL3; 839 } 840 } 841 842 return CP_ACCESS_OK; 843 } 844 845 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 846 bool isread) 847 { 848 /* Check if CPTR accesses are set to trap to EL3 */ 849 if (arm_current_el(env) == 2 && 850 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 851 return CP_ACCESS_TRAP_EL3; 852 } 853 854 return CP_ACCESS_OK; 855 } 856 857 static const ARMCPRegInfo v6_cp_reginfo[] = { 858 /* prefetch by MVA in v6, NOP in v7 */ 859 { .name = "MVA_prefetch", 860 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 861 .access = PL1_W, .type = ARM_CP_NOP }, 862 /* We need to break the TB after ISB to execute self-modifying code 863 * correctly and also to take any pending interrupts immediately. 864 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 865 */ 866 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 867 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 868 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 869 .access = PL0_W, .type = ARM_CP_NOP }, 870 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 871 .access = PL0_W, .type = ARM_CP_NOP }, 872 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 873 .access = PL1_RW, .accessfn = access_tvm_trvm, 874 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 875 offsetof(CPUARMState, cp15.ifar_ns) }, 876 .resetvalue = 0, }, 877 /* Watchpoint Fault Address Register : should actually only be present 878 * for 1136, 1176, 11MPCore. 879 */ 880 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 881 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 882 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 883 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 884 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 885 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 886 }; 887 888 typedef struct pm_event { 889 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 890 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 891 bool (*supported)(CPUARMState *); 892 /* 893 * Retrieve the current count of the underlying event. The programmed 894 * counters hold a difference from the return value from this function 895 */ 896 uint64_t (*get_count)(CPUARMState *); 897 /* 898 * Return how many nanoseconds it will take (at a minimum) for count events 899 * to occur. A negative value indicates the counter will never overflow, or 900 * that the counter has otherwise arranged for the overflow bit to be set 901 * and the PMU interrupt to be raised on overflow. 902 */ 903 int64_t (*ns_per_count)(uint64_t); 904 } pm_event; 905 906 static bool event_always_supported(CPUARMState *env) 907 { 908 return true; 909 } 910 911 static uint64_t swinc_get_count(CPUARMState *env) 912 { 913 /* 914 * SW_INCR events are written directly to the pmevcntr's by writes to 915 * PMSWINC, so there is no underlying count maintained by the PMU itself 916 */ 917 return 0; 918 } 919 920 static int64_t swinc_ns_per(uint64_t ignored) 921 { 922 return -1; 923 } 924 925 /* 926 * Return the underlying cycle count for the PMU cycle counters. If we're in 927 * usermode, simply return 0. 928 */ 929 static uint64_t cycles_get_count(CPUARMState *env) 930 { 931 #ifndef CONFIG_USER_ONLY 932 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 933 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 934 #else 935 return cpu_get_host_ticks(); 936 #endif 937 } 938 939 #ifndef CONFIG_USER_ONLY 940 static int64_t cycles_ns_per(uint64_t cycles) 941 { 942 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 943 } 944 945 static bool instructions_supported(CPUARMState *env) 946 { 947 return icount_enabled() == 1; /* Precise instruction counting */ 948 } 949 950 static uint64_t instructions_get_count(CPUARMState *env) 951 { 952 return (uint64_t)icount_get_raw(); 953 } 954 955 static int64_t instructions_ns_per(uint64_t icount) 956 { 957 return icount_to_ns((int64_t)icount); 958 } 959 #endif 960 961 static bool pmu_8_1_events_supported(CPUARMState *env) 962 { 963 /* For events which are supported in any v8.1 PMU */ 964 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 965 } 966 967 static bool pmu_8_4_events_supported(CPUARMState *env) 968 { 969 /* For events which are supported in any v8.1 PMU */ 970 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 971 } 972 973 static uint64_t zero_event_get_count(CPUARMState *env) 974 { 975 /* For events which on QEMU never fire, so their count is always zero */ 976 return 0; 977 } 978 979 static int64_t zero_event_ns_per(uint64_t cycles) 980 { 981 /* An event which never fires can never overflow */ 982 return -1; 983 } 984 985 static const pm_event pm_events[] = { 986 { .number = 0x000, /* SW_INCR */ 987 .supported = event_always_supported, 988 .get_count = swinc_get_count, 989 .ns_per_count = swinc_ns_per, 990 }, 991 #ifndef CONFIG_USER_ONLY 992 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 993 .supported = instructions_supported, 994 .get_count = instructions_get_count, 995 .ns_per_count = instructions_ns_per, 996 }, 997 { .number = 0x011, /* CPU_CYCLES, Cycle */ 998 .supported = event_always_supported, 999 .get_count = cycles_get_count, 1000 .ns_per_count = cycles_ns_per, 1001 }, 1002 #endif 1003 { .number = 0x023, /* STALL_FRONTEND */ 1004 .supported = pmu_8_1_events_supported, 1005 .get_count = zero_event_get_count, 1006 .ns_per_count = zero_event_ns_per, 1007 }, 1008 { .number = 0x024, /* STALL_BACKEND */ 1009 .supported = pmu_8_1_events_supported, 1010 .get_count = zero_event_get_count, 1011 .ns_per_count = zero_event_ns_per, 1012 }, 1013 { .number = 0x03c, /* STALL */ 1014 .supported = pmu_8_4_events_supported, 1015 .get_count = zero_event_get_count, 1016 .ns_per_count = zero_event_ns_per, 1017 }, 1018 }; 1019 1020 /* 1021 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1022 * events (i.e. the statistical profiling extension), this implementation 1023 * should first be updated to something sparse instead of the current 1024 * supported_event_map[] array. 1025 */ 1026 #define MAX_EVENT_ID 0x3c 1027 #define UNSUPPORTED_EVENT UINT16_MAX 1028 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1029 1030 /* 1031 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1032 * of ARM event numbers to indices in our pm_events array. 1033 * 1034 * Note: Events in the 0x40XX range are not currently supported. 1035 */ 1036 void pmu_init(ARMCPU *cpu) 1037 { 1038 unsigned int i; 1039 1040 /* 1041 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1042 * events to them 1043 */ 1044 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1045 supported_event_map[i] = UNSUPPORTED_EVENT; 1046 } 1047 cpu->pmceid0 = 0; 1048 cpu->pmceid1 = 0; 1049 1050 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1051 const pm_event *cnt = &pm_events[i]; 1052 assert(cnt->number <= MAX_EVENT_ID); 1053 /* We do not currently support events in the 0x40xx range */ 1054 assert(cnt->number <= 0x3f); 1055 1056 if (cnt->supported(&cpu->env)) { 1057 supported_event_map[cnt->number] = i; 1058 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1059 if (cnt->number & 0x20) { 1060 cpu->pmceid1 |= event_mask; 1061 } else { 1062 cpu->pmceid0 |= event_mask; 1063 } 1064 } 1065 } 1066 } 1067 1068 /* 1069 * Check at runtime whether a PMU event is supported for the current machine 1070 */ 1071 static bool event_supported(uint16_t number) 1072 { 1073 if (number > MAX_EVENT_ID) { 1074 return false; 1075 } 1076 return supported_event_map[number] != UNSUPPORTED_EVENT; 1077 } 1078 1079 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1080 bool isread) 1081 { 1082 /* Performance monitor registers user accessibility is controlled 1083 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1084 * trapping to EL2 or EL3 for other accesses. 1085 */ 1086 int el = arm_current_el(env); 1087 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1088 1089 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1090 return CP_ACCESS_TRAP; 1091 } 1092 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1093 return CP_ACCESS_TRAP_EL2; 1094 } 1095 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1096 return CP_ACCESS_TRAP_EL3; 1097 } 1098 1099 return CP_ACCESS_OK; 1100 } 1101 1102 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1103 const ARMCPRegInfo *ri, 1104 bool isread) 1105 { 1106 /* ER: event counter read trap control */ 1107 if (arm_feature(env, ARM_FEATURE_V8) 1108 && arm_current_el(env) == 0 1109 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1110 && isread) { 1111 return CP_ACCESS_OK; 1112 } 1113 1114 return pmreg_access(env, ri, isread); 1115 } 1116 1117 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1118 const ARMCPRegInfo *ri, 1119 bool isread) 1120 { 1121 /* SW: software increment write trap control */ 1122 if (arm_feature(env, ARM_FEATURE_V8) 1123 && arm_current_el(env) == 0 1124 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1125 && !isread) { 1126 return CP_ACCESS_OK; 1127 } 1128 1129 return pmreg_access(env, ri, isread); 1130 } 1131 1132 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1133 const ARMCPRegInfo *ri, 1134 bool isread) 1135 { 1136 /* ER: event counter read trap control */ 1137 if (arm_feature(env, ARM_FEATURE_V8) 1138 && arm_current_el(env) == 0 1139 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1140 return CP_ACCESS_OK; 1141 } 1142 1143 return pmreg_access(env, ri, isread); 1144 } 1145 1146 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1147 const ARMCPRegInfo *ri, 1148 bool isread) 1149 { 1150 /* CR: cycle counter read trap control */ 1151 if (arm_feature(env, ARM_FEATURE_V8) 1152 && arm_current_el(env) == 0 1153 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1154 && isread) { 1155 return CP_ACCESS_OK; 1156 } 1157 1158 return pmreg_access(env, ri, isread); 1159 } 1160 1161 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1162 * the current EL, security state, and register configuration. 1163 */ 1164 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1165 { 1166 uint64_t filter; 1167 bool e, p, u, nsk, nsu, nsh, m; 1168 bool enabled, prohibited, filtered; 1169 bool secure = arm_is_secure(env); 1170 int el = arm_current_el(env); 1171 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1172 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1173 1174 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1175 return false; 1176 } 1177 1178 if (!arm_feature(env, ARM_FEATURE_EL2) || 1179 (counter < hpmn || counter == 31)) { 1180 e = env->cp15.c9_pmcr & PMCRE; 1181 } else { 1182 e = mdcr_el2 & MDCR_HPME; 1183 } 1184 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1185 1186 if (!secure) { 1187 if (el == 2 && (counter < hpmn || counter == 31)) { 1188 prohibited = mdcr_el2 & MDCR_HPMD; 1189 } else { 1190 prohibited = false; 1191 } 1192 } else { 1193 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1194 !(env->cp15.mdcr_el3 & MDCR_SPME); 1195 } 1196 1197 if (prohibited && counter == 31) { 1198 prohibited = env->cp15.c9_pmcr & PMCRDP; 1199 } 1200 1201 if (counter == 31) { 1202 filter = env->cp15.pmccfiltr_el0; 1203 } else { 1204 filter = env->cp15.c14_pmevtyper[counter]; 1205 } 1206 1207 p = filter & PMXEVTYPER_P; 1208 u = filter & PMXEVTYPER_U; 1209 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1210 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1211 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1212 m = arm_el_is_aa64(env, 1) && 1213 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1214 1215 if (el == 0) { 1216 filtered = secure ? u : u != nsu; 1217 } else if (el == 1) { 1218 filtered = secure ? p : p != nsk; 1219 } else if (el == 2) { 1220 filtered = !nsh; 1221 } else { /* EL3 */ 1222 filtered = m != p; 1223 } 1224 1225 if (counter != 31) { 1226 /* 1227 * If not checking PMCCNTR, ensure the counter is setup to an event we 1228 * support 1229 */ 1230 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1231 if (!event_supported(event)) { 1232 return false; 1233 } 1234 } 1235 1236 return enabled && !prohibited && !filtered; 1237 } 1238 1239 static void pmu_update_irq(CPUARMState *env) 1240 { 1241 ARMCPU *cpu = env_archcpu(env); 1242 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1243 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1244 } 1245 1246 /* 1247 * Ensure c15_ccnt is the guest-visible count so that operations such as 1248 * enabling/disabling the counter or filtering, modifying the count itself, 1249 * etc. can be done logically. This is essentially a no-op if the counter is 1250 * not enabled at the time of the call. 1251 */ 1252 static void pmccntr_op_start(CPUARMState *env) 1253 { 1254 uint64_t cycles = cycles_get_count(env); 1255 1256 if (pmu_counter_enabled(env, 31)) { 1257 uint64_t eff_cycles = cycles; 1258 if (env->cp15.c9_pmcr & PMCRD) { 1259 /* Increment once every 64 processor clock cycles */ 1260 eff_cycles /= 64; 1261 } 1262 1263 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1264 1265 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1266 1ull << 63 : 1ull << 31; 1267 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1268 env->cp15.c9_pmovsr |= (1 << 31); 1269 pmu_update_irq(env); 1270 } 1271 1272 env->cp15.c15_ccnt = new_pmccntr; 1273 } 1274 env->cp15.c15_ccnt_delta = cycles; 1275 } 1276 1277 /* 1278 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1279 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1280 * pmccntr_op_start. 1281 */ 1282 static void pmccntr_op_finish(CPUARMState *env) 1283 { 1284 if (pmu_counter_enabled(env, 31)) { 1285 #ifndef CONFIG_USER_ONLY 1286 /* Calculate when the counter will next overflow */ 1287 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1288 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1289 remaining_cycles = (uint32_t)remaining_cycles; 1290 } 1291 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1292 1293 if (overflow_in > 0) { 1294 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1295 overflow_in; 1296 ARMCPU *cpu = env_archcpu(env); 1297 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1298 } 1299 #endif 1300 1301 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1302 if (env->cp15.c9_pmcr & PMCRD) { 1303 /* Increment once every 64 processor clock cycles */ 1304 prev_cycles /= 64; 1305 } 1306 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1307 } 1308 } 1309 1310 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1311 { 1312 1313 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1314 uint64_t count = 0; 1315 if (event_supported(event)) { 1316 uint16_t event_idx = supported_event_map[event]; 1317 count = pm_events[event_idx].get_count(env); 1318 } 1319 1320 if (pmu_counter_enabled(env, counter)) { 1321 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1322 1323 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1324 env->cp15.c9_pmovsr |= (1 << counter); 1325 pmu_update_irq(env); 1326 } 1327 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1328 } 1329 env->cp15.c14_pmevcntr_delta[counter] = count; 1330 } 1331 1332 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1333 { 1334 if (pmu_counter_enabled(env, counter)) { 1335 #ifndef CONFIG_USER_ONLY 1336 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1337 uint16_t event_idx = supported_event_map[event]; 1338 uint64_t delta = UINT32_MAX - 1339 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1340 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1341 1342 if (overflow_in > 0) { 1343 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1344 overflow_in; 1345 ARMCPU *cpu = env_archcpu(env); 1346 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1347 } 1348 #endif 1349 1350 env->cp15.c14_pmevcntr_delta[counter] -= 1351 env->cp15.c14_pmevcntr[counter]; 1352 } 1353 } 1354 1355 void pmu_op_start(CPUARMState *env) 1356 { 1357 unsigned int i; 1358 pmccntr_op_start(env); 1359 for (i = 0; i < pmu_num_counters(env); i++) { 1360 pmevcntr_op_start(env, i); 1361 } 1362 } 1363 1364 void pmu_op_finish(CPUARMState *env) 1365 { 1366 unsigned int i; 1367 pmccntr_op_finish(env); 1368 for (i = 0; i < pmu_num_counters(env); i++) { 1369 pmevcntr_op_finish(env, i); 1370 } 1371 } 1372 1373 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1374 { 1375 pmu_op_start(&cpu->env); 1376 } 1377 1378 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1379 { 1380 pmu_op_finish(&cpu->env); 1381 } 1382 1383 void arm_pmu_timer_cb(void *opaque) 1384 { 1385 ARMCPU *cpu = opaque; 1386 1387 /* 1388 * Update all the counter values based on the current underlying counts, 1389 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1390 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1391 * counter may expire. 1392 */ 1393 pmu_op_start(&cpu->env); 1394 pmu_op_finish(&cpu->env); 1395 } 1396 1397 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1398 uint64_t value) 1399 { 1400 pmu_op_start(env); 1401 1402 if (value & PMCRC) { 1403 /* The counter has been reset */ 1404 env->cp15.c15_ccnt = 0; 1405 } 1406 1407 if (value & PMCRP) { 1408 unsigned int i; 1409 for (i = 0; i < pmu_num_counters(env); i++) { 1410 env->cp15.c14_pmevcntr[i] = 0; 1411 } 1412 } 1413 1414 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1415 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1416 1417 pmu_op_finish(env); 1418 } 1419 1420 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1421 uint64_t value) 1422 { 1423 unsigned int i; 1424 for (i = 0; i < pmu_num_counters(env); i++) { 1425 /* Increment a counter's count iff: */ 1426 if ((value & (1 << i)) && /* counter's bit is set */ 1427 /* counter is enabled and not filtered */ 1428 pmu_counter_enabled(env, i) && 1429 /* counter is SW_INCR */ 1430 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1431 pmevcntr_op_start(env, i); 1432 1433 /* 1434 * Detect if this write causes an overflow since we can't predict 1435 * PMSWINC overflows like we can for other events 1436 */ 1437 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1438 1439 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1440 env->cp15.c9_pmovsr |= (1 << i); 1441 pmu_update_irq(env); 1442 } 1443 1444 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1445 1446 pmevcntr_op_finish(env, i); 1447 } 1448 } 1449 } 1450 1451 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1452 { 1453 uint64_t ret; 1454 pmccntr_op_start(env); 1455 ret = env->cp15.c15_ccnt; 1456 pmccntr_op_finish(env); 1457 return ret; 1458 } 1459 1460 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1461 uint64_t value) 1462 { 1463 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1464 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1465 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1466 * accessed. 1467 */ 1468 env->cp15.c9_pmselr = value & 0x1f; 1469 } 1470 1471 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1472 uint64_t value) 1473 { 1474 pmccntr_op_start(env); 1475 env->cp15.c15_ccnt = value; 1476 pmccntr_op_finish(env); 1477 } 1478 1479 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1480 uint64_t value) 1481 { 1482 uint64_t cur_val = pmccntr_read(env, NULL); 1483 1484 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1485 } 1486 1487 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1488 uint64_t value) 1489 { 1490 pmccntr_op_start(env); 1491 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1492 pmccntr_op_finish(env); 1493 } 1494 1495 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1496 uint64_t value) 1497 { 1498 pmccntr_op_start(env); 1499 /* M is not accessible from AArch32 */ 1500 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1501 (value & PMCCFILTR); 1502 pmccntr_op_finish(env); 1503 } 1504 1505 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1506 { 1507 /* M is not visible in AArch32 */ 1508 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1509 } 1510 1511 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1512 uint64_t value) 1513 { 1514 value &= pmu_counter_mask(env); 1515 env->cp15.c9_pmcnten |= value; 1516 } 1517 1518 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1519 uint64_t value) 1520 { 1521 value &= pmu_counter_mask(env); 1522 env->cp15.c9_pmcnten &= ~value; 1523 } 1524 1525 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1526 uint64_t value) 1527 { 1528 value &= pmu_counter_mask(env); 1529 env->cp15.c9_pmovsr &= ~value; 1530 pmu_update_irq(env); 1531 } 1532 1533 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1534 uint64_t value) 1535 { 1536 value &= pmu_counter_mask(env); 1537 env->cp15.c9_pmovsr |= value; 1538 pmu_update_irq(env); 1539 } 1540 1541 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1542 uint64_t value, const uint8_t counter) 1543 { 1544 if (counter == 31) { 1545 pmccfiltr_write(env, ri, value); 1546 } else if (counter < pmu_num_counters(env)) { 1547 pmevcntr_op_start(env, counter); 1548 1549 /* 1550 * If this counter's event type is changing, store the current 1551 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1552 * pmevcntr_op_finish has the correct baseline when it converts back to 1553 * a delta. 1554 */ 1555 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1556 PMXEVTYPER_EVTCOUNT; 1557 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1558 if (old_event != new_event) { 1559 uint64_t count = 0; 1560 if (event_supported(new_event)) { 1561 uint16_t event_idx = supported_event_map[new_event]; 1562 count = pm_events[event_idx].get_count(env); 1563 } 1564 env->cp15.c14_pmevcntr_delta[counter] = count; 1565 } 1566 1567 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1568 pmevcntr_op_finish(env, counter); 1569 } 1570 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1571 * PMSELR value is equal to or greater than the number of implemented 1572 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1573 */ 1574 } 1575 1576 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1577 const uint8_t counter) 1578 { 1579 if (counter == 31) { 1580 return env->cp15.pmccfiltr_el0; 1581 } else if (counter < pmu_num_counters(env)) { 1582 return env->cp15.c14_pmevtyper[counter]; 1583 } else { 1584 /* 1585 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1586 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1587 */ 1588 return 0; 1589 } 1590 } 1591 1592 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1593 uint64_t value) 1594 { 1595 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1596 pmevtyper_write(env, ri, value, counter); 1597 } 1598 1599 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1600 uint64_t value) 1601 { 1602 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1603 env->cp15.c14_pmevtyper[counter] = value; 1604 1605 /* 1606 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1607 * pmu_op_finish calls when loading saved state for a migration. Because 1608 * we're potentially updating the type of event here, the value written to 1609 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1610 * different counter type. Therefore, we need to set this value to the 1611 * current count for the counter type we're writing so that pmu_op_finish 1612 * has the correct count for its calculation. 1613 */ 1614 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1615 if (event_supported(event)) { 1616 uint16_t event_idx = supported_event_map[event]; 1617 env->cp15.c14_pmevcntr_delta[counter] = 1618 pm_events[event_idx].get_count(env); 1619 } 1620 } 1621 1622 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1623 { 1624 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1625 return pmevtyper_read(env, ri, counter); 1626 } 1627 1628 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1629 uint64_t value) 1630 { 1631 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1632 } 1633 1634 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1635 { 1636 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1637 } 1638 1639 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1640 uint64_t value, uint8_t counter) 1641 { 1642 if (counter < pmu_num_counters(env)) { 1643 pmevcntr_op_start(env, counter); 1644 env->cp15.c14_pmevcntr[counter] = value; 1645 pmevcntr_op_finish(env, counter); 1646 } 1647 /* 1648 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1649 * are CONSTRAINED UNPREDICTABLE. 1650 */ 1651 } 1652 1653 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1654 uint8_t counter) 1655 { 1656 if (counter < pmu_num_counters(env)) { 1657 uint64_t ret; 1658 pmevcntr_op_start(env, counter); 1659 ret = env->cp15.c14_pmevcntr[counter]; 1660 pmevcntr_op_finish(env, counter); 1661 return ret; 1662 } else { 1663 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1664 * are CONSTRAINED UNPREDICTABLE. */ 1665 return 0; 1666 } 1667 } 1668 1669 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1670 uint64_t value) 1671 { 1672 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1673 pmevcntr_write(env, ri, value, counter); 1674 } 1675 1676 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1677 { 1678 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1679 return pmevcntr_read(env, ri, counter); 1680 } 1681 1682 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1683 uint64_t value) 1684 { 1685 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1686 assert(counter < pmu_num_counters(env)); 1687 env->cp15.c14_pmevcntr[counter] = value; 1688 pmevcntr_write(env, ri, value, counter); 1689 } 1690 1691 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1692 { 1693 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1694 assert(counter < pmu_num_counters(env)); 1695 return env->cp15.c14_pmevcntr[counter]; 1696 } 1697 1698 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1699 uint64_t value) 1700 { 1701 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1702 } 1703 1704 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1705 { 1706 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1707 } 1708 1709 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1710 uint64_t value) 1711 { 1712 if (arm_feature(env, ARM_FEATURE_V8)) { 1713 env->cp15.c9_pmuserenr = value & 0xf; 1714 } else { 1715 env->cp15.c9_pmuserenr = value & 1; 1716 } 1717 } 1718 1719 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1720 uint64_t value) 1721 { 1722 /* We have no event counters so only the C bit can be changed */ 1723 value &= pmu_counter_mask(env); 1724 env->cp15.c9_pminten |= value; 1725 pmu_update_irq(env); 1726 } 1727 1728 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1729 uint64_t value) 1730 { 1731 value &= pmu_counter_mask(env); 1732 env->cp15.c9_pminten &= ~value; 1733 pmu_update_irq(env); 1734 } 1735 1736 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1737 uint64_t value) 1738 { 1739 /* Note that even though the AArch64 view of this register has bits 1740 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1741 * architectural requirements for bits which are RES0 only in some 1742 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1743 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1744 */ 1745 raw_write(env, ri, value & ~0x1FULL); 1746 } 1747 1748 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1749 { 1750 /* Begin with base v8.0 state. */ 1751 uint32_t valid_mask = 0x3fff; 1752 ARMCPU *cpu = env_archcpu(env); 1753 1754 if (ri->state == ARM_CP_STATE_AA64) { 1755 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1756 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 1757 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1758 } 1759 valid_mask &= ~SCR_NET; 1760 1761 if (cpu_isar_feature(aa64_ras, cpu)) { 1762 valid_mask |= SCR_TERR; 1763 } 1764 if (cpu_isar_feature(aa64_lor, cpu)) { 1765 valid_mask |= SCR_TLOR; 1766 } 1767 if (cpu_isar_feature(aa64_pauth, cpu)) { 1768 valid_mask |= SCR_API | SCR_APK; 1769 } 1770 if (cpu_isar_feature(aa64_sel2, cpu)) { 1771 valid_mask |= SCR_EEL2; 1772 } 1773 if (cpu_isar_feature(aa64_mte, cpu)) { 1774 valid_mask |= SCR_ATA; 1775 } 1776 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1777 valid_mask |= SCR_ENSCXT; 1778 } 1779 } else { 1780 valid_mask &= ~(SCR_RW | SCR_ST); 1781 if (cpu_isar_feature(aa32_ras, cpu)) { 1782 valid_mask |= SCR_TERR; 1783 } 1784 } 1785 1786 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1787 valid_mask &= ~SCR_HCE; 1788 1789 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1790 * supported if EL2 exists. The bit is UNK/SBZP when 1791 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1792 * when EL2 is unavailable. 1793 * On ARMv8, this bit is always available. 1794 */ 1795 if (arm_feature(env, ARM_FEATURE_V7) && 1796 !arm_feature(env, ARM_FEATURE_V8)) { 1797 valid_mask &= ~SCR_SMD; 1798 } 1799 } 1800 1801 /* Clear all-context RES0 bits. */ 1802 value &= valid_mask; 1803 raw_write(env, ri, value); 1804 } 1805 1806 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1807 { 1808 /* 1809 * scr_write will set the RES1 bits on an AArch64-only CPU. 1810 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1811 */ 1812 scr_write(env, ri, 0); 1813 } 1814 1815 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1816 const ARMCPRegInfo *ri, 1817 bool isread) 1818 { 1819 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1820 return CP_ACCESS_TRAP_EL2; 1821 } 1822 1823 return CP_ACCESS_OK; 1824 } 1825 1826 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1827 { 1828 ARMCPU *cpu = env_archcpu(env); 1829 1830 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1831 * bank 1832 */ 1833 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1834 ri->secure & ARM_CP_SECSTATE_S); 1835 1836 return cpu->ccsidr[index]; 1837 } 1838 1839 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1840 uint64_t value) 1841 { 1842 raw_write(env, ri, value & 0xf); 1843 } 1844 1845 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1846 { 1847 CPUState *cs = env_cpu(env); 1848 bool el1 = arm_current_el(env) == 1; 1849 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1850 uint64_t ret = 0; 1851 1852 if (hcr_el2 & HCR_IMO) { 1853 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1854 ret |= CPSR_I; 1855 } 1856 } else { 1857 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1858 ret |= CPSR_I; 1859 } 1860 } 1861 1862 if (hcr_el2 & HCR_FMO) { 1863 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1864 ret |= CPSR_F; 1865 } 1866 } else { 1867 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1868 ret |= CPSR_F; 1869 } 1870 } 1871 1872 if (hcr_el2 & HCR_AMO) { 1873 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1874 ret |= CPSR_A; 1875 } 1876 } 1877 1878 return ret; 1879 } 1880 1881 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1882 bool isread) 1883 { 1884 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1885 return CP_ACCESS_TRAP_EL2; 1886 } 1887 1888 return CP_ACCESS_OK; 1889 } 1890 1891 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1892 bool isread) 1893 { 1894 if (arm_feature(env, ARM_FEATURE_V8)) { 1895 return access_aa64_tid1(env, ri, isread); 1896 } 1897 1898 return CP_ACCESS_OK; 1899 } 1900 1901 static const ARMCPRegInfo v7_cp_reginfo[] = { 1902 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1903 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1904 .access = PL1_W, .type = ARM_CP_NOP }, 1905 /* Performance monitors are implementation defined in v7, 1906 * but with an ARM recommended set of registers, which we 1907 * follow. 1908 * 1909 * Performance registers fall into three categories: 1910 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1911 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1912 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1913 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1914 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1915 */ 1916 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1917 .access = PL0_RW, .type = ARM_CP_ALIAS, 1918 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1919 .writefn = pmcntenset_write, 1920 .accessfn = pmreg_access, 1921 .raw_writefn = raw_write }, 1922 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1923 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1924 .access = PL0_RW, .accessfn = pmreg_access, 1925 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1926 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1927 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1928 .access = PL0_RW, 1929 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1930 .accessfn = pmreg_access, 1931 .writefn = pmcntenclr_write, 1932 .type = ARM_CP_ALIAS }, 1933 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1934 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1935 .access = PL0_RW, .accessfn = pmreg_access, 1936 .type = ARM_CP_ALIAS, 1937 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1938 .writefn = pmcntenclr_write }, 1939 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1940 .access = PL0_RW, .type = ARM_CP_IO, 1941 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1942 .accessfn = pmreg_access, 1943 .writefn = pmovsr_write, 1944 .raw_writefn = raw_write }, 1945 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1946 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1947 .access = PL0_RW, .accessfn = pmreg_access, 1948 .type = ARM_CP_ALIAS | ARM_CP_IO, 1949 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1950 .writefn = pmovsr_write, 1951 .raw_writefn = raw_write }, 1952 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1953 .access = PL0_W, .accessfn = pmreg_access_swinc, 1954 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1955 .writefn = pmswinc_write }, 1956 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1957 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1958 .access = PL0_W, .accessfn = pmreg_access_swinc, 1959 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1960 .writefn = pmswinc_write }, 1961 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1962 .access = PL0_RW, .type = ARM_CP_ALIAS, 1963 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1964 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1965 .raw_writefn = raw_write}, 1966 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1967 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1968 .access = PL0_RW, .accessfn = pmreg_access_selr, 1969 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1970 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1971 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1972 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1973 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1974 .accessfn = pmreg_access_ccntr }, 1975 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1976 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1977 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1978 .type = ARM_CP_IO, 1979 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1980 .readfn = pmccntr_read, .writefn = pmccntr_write, 1981 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1982 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1983 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1984 .access = PL0_RW, .accessfn = pmreg_access, 1985 .type = ARM_CP_ALIAS | ARM_CP_IO, 1986 .resetvalue = 0, }, 1987 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1988 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1989 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1990 .access = PL0_RW, .accessfn = pmreg_access, 1991 .type = ARM_CP_IO, 1992 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1993 .resetvalue = 0, }, 1994 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1995 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1996 .accessfn = pmreg_access, 1997 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1998 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1999 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2000 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2001 .accessfn = pmreg_access, 2002 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2003 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2004 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2005 .accessfn = pmreg_access_xevcntr, 2006 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2007 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2008 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2009 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2010 .accessfn = pmreg_access_xevcntr, 2011 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2012 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2013 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2014 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2015 .resetvalue = 0, 2016 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2017 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2018 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2019 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2020 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2021 .resetvalue = 0, 2022 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2023 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2024 .access = PL1_RW, .accessfn = access_tpm, 2025 .type = ARM_CP_ALIAS | ARM_CP_IO, 2026 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2027 .resetvalue = 0, 2028 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2029 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2030 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2031 .access = PL1_RW, .accessfn = access_tpm, 2032 .type = ARM_CP_IO, 2033 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2034 .writefn = pmintenset_write, .raw_writefn = raw_write, 2035 .resetvalue = 0x0 }, 2036 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2037 .access = PL1_RW, .accessfn = access_tpm, 2038 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2039 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2040 .writefn = pmintenclr_write, }, 2041 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2042 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2043 .access = PL1_RW, .accessfn = access_tpm, 2044 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2045 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2046 .writefn = pmintenclr_write }, 2047 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2048 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2049 .access = PL1_R, 2050 .accessfn = access_aa64_tid2, 2051 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2052 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2053 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2054 .access = PL1_RW, 2055 .accessfn = access_aa64_tid2, 2056 .writefn = csselr_write, .resetvalue = 0, 2057 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2058 offsetof(CPUARMState, cp15.csselr_ns) } }, 2059 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2060 * just RAZ for all cores: 2061 */ 2062 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2063 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2064 .access = PL1_R, .type = ARM_CP_CONST, 2065 .accessfn = access_aa64_tid1, 2066 .resetvalue = 0 }, 2067 /* Auxiliary fault status registers: these also are IMPDEF, and we 2068 * choose to RAZ/WI for all cores. 2069 */ 2070 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2071 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2072 .access = PL1_RW, .accessfn = access_tvm_trvm, 2073 .type = ARM_CP_CONST, .resetvalue = 0 }, 2074 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2075 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2076 .access = PL1_RW, .accessfn = access_tvm_trvm, 2077 .type = ARM_CP_CONST, .resetvalue = 0 }, 2078 /* MAIR can just read-as-written because we don't implement caches 2079 * and so don't need to care about memory attributes. 2080 */ 2081 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2082 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2083 .access = PL1_RW, .accessfn = access_tvm_trvm, 2084 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2085 .resetvalue = 0 }, 2086 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2087 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2088 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2089 .resetvalue = 0 }, 2090 /* For non-long-descriptor page tables these are PRRR and NMRR; 2091 * regardless they still act as reads-as-written for QEMU. 2092 */ 2093 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2094 * allows them to assign the correct fieldoffset based on the endianness 2095 * handled in the field definitions. 2096 */ 2097 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2098 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2099 .access = PL1_RW, .accessfn = access_tvm_trvm, 2100 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2101 offsetof(CPUARMState, cp15.mair0_ns) }, 2102 .resetfn = arm_cp_reset_ignore }, 2103 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2104 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2105 .access = PL1_RW, .accessfn = access_tvm_trvm, 2106 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2107 offsetof(CPUARMState, cp15.mair1_ns) }, 2108 .resetfn = arm_cp_reset_ignore }, 2109 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2110 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2111 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2112 /* 32 bit ITLB invalidates */ 2113 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2114 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2115 .writefn = tlbiall_write }, 2116 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2117 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2118 .writefn = tlbimva_write }, 2119 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2120 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2121 .writefn = tlbiasid_write }, 2122 /* 32 bit DTLB invalidates */ 2123 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2124 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2125 .writefn = tlbiall_write }, 2126 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2127 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2128 .writefn = tlbimva_write }, 2129 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2130 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2131 .writefn = tlbiasid_write }, 2132 /* 32 bit TLB invalidates */ 2133 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2134 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2135 .writefn = tlbiall_write }, 2136 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2137 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2138 .writefn = tlbimva_write }, 2139 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2140 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2141 .writefn = tlbiasid_write }, 2142 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2143 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2144 .writefn = tlbimvaa_write }, 2145 }; 2146 2147 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2148 /* 32 bit TLB invalidates, Inner Shareable */ 2149 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2150 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2151 .writefn = tlbiall_is_write }, 2152 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2153 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2154 .writefn = tlbimva_is_write }, 2155 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2156 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2157 .writefn = tlbiasid_is_write }, 2158 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2159 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2160 .writefn = tlbimvaa_is_write }, 2161 }; 2162 2163 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2164 /* PMOVSSET is not implemented in v7 before v7ve */ 2165 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2166 .access = PL0_RW, .accessfn = pmreg_access, 2167 .type = ARM_CP_ALIAS | ARM_CP_IO, 2168 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2169 .writefn = pmovsset_write, 2170 .raw_writefn = raw_write }, 2171 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2172 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2173 .access = PL0_RW, .accessfn = pmreg_access, 2174 .type = ARM_CP_ALIAS | ARM_CP_IO, 2175 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2176 .writefn = pmovsset_write, 2177 .raw_writefn = raw_write }, 2178 }; 2179 2180 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2181 uint64_t value) 2182 { 2183 value &= 1; 2184 env->teecr = value; 2185 } 2186 2187 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2188 bool isread) 2189 { 2190 /* 2191 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2192 * at all, so we don't need to check whether we're v8A. 2193 */ 2194 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2195 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2196 return CP_ACCESS_TRAP_EL2; 2197 } 2198 return CP_ACCESS_OK; 2199 } 2200 2201 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2202 bool isread) 2203 { 2204 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2205 return CP_ACCESS_TRAP; 2206 } 2207 return teecr_access(env, ri, isread); 2208 } 2209 2210 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2211 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2212 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2213 .resetvalue = 0, 2214 .writefn = teecr_write, .accessfn = teecr_access }, 2215 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2216 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2217 .accessfn = teehbr_access, .resetvalue = 0 }, 2218 }; 2219 2220 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2221 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2222 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2223 .access = PL0_RW, 2224 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2225 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2226 .access = PL0_RW, 2227 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2228 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2229 .resetfn = arm_cp_reset_ignore }, 2230 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2231 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2232 .access = PL0_R|PL1_W, 2233 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2234 .resetvalue = 0}, 2235 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2236 .access = PL0_R|PL1_W, 2237 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2238 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2239 .resetfn = arm_cp_reset_ignore }, 2240 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2241 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2242 .access = PL1_RW, 2243 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2244 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2245 .access = PL1_RW, 2246 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2247 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2248 .resetvalue = 0 }, 2249 }; 2250 2251 #ifndef CONFIG_USER_ONLY 2252 2253 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2254 bool isread) 2255 { 2256 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2257 * Writable only at the highest implemented exception level. 2258 */ 2259 int el = arm_current_el(env); 2260 uint64_t hcr; 2261 uint32_t cntkctl; 2262 2263 switch (el) { 2264 case 0: 2265 hcr = arm_hcr_el2_eff(env); 2266 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2267 cntkctl = env->cp15.cnthctl_el2; 2268 } else { 2269 cntkctl = env->cp15.c14_cntkctl; 2270 } 2271 if (!extract32(cntkctl, 0, 2)) { 2272 return CP_ACCESS_TRAP; 2273 } 2274 break; 2275 case 1: 2276 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2277 arm_is_secure_below_el3(env)) { 2278 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2279 return CP_ACCESS_TRAP_UNCATEGORIZED; 2280 } 2281 break; 2282 case 2: 2283 case 3: 2284 break; 2285 } 2286 2287 if (!isread && el < arm_highest_el(env)) { 2288 return CP_ACCESS_TRAP_UNCATEGORIZED; 2289 } 2290 2291 return CP_ACCESS_OK; 2292 } 2293 2294 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2295 bool isread) 2296 { 2297 unsigned int cur_el = arm_current_el(env); 2298 bool has_el2 = arm_is_el2_enabled(env); 2299 uint64_t hcr = arm_hcr_el2_eff(env); 2300 2301 switch (cur_el) { 2302 case 0: 2303 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2304 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2305 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2306 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2307 } 2308 2309 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2310 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2311 return CP_ACCESS_TRAP; 2312 } 2313 2314 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2315 if (hcr & HCR_E2H) { 2316 if (timeridx == GTIMER_PHYS && 2317 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2318 return CP_ACCESS_TRAP_EL2; 2319 } 2320 } else { 2321 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2322 if (has_el2 && timeridx == GTIMER_PHYS && 2323 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2324 return CP_ACCESS_TRAP_EL2; 2325 } 2326 } 2327 break; 2328 2329 case 1: 2330 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2331 if (has_el2 && timeridx == GTIMER_PHYS && 2332 (hcr & HCR_E2H 2333 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2334 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2335 return CP_ACCESS_TRAP_EL2; 2336 } 2337 break; 2338 } 2339 return CP_ACCESS_OK; 2340 } 2341 2342 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2343 bool isread) 2344 { 2345 unsigned int cur_el = arm_current_el(env); 2346 bool has_el2 = arm_is_el2_enabled(env); 2347 uint64_t hcr = arm_hcr_el2_eff(env); 2348 2349 switch (cur_el) { 2350 case 0: 2351 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2352 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2353 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2354 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2355 } 2356 2357 /* 2358 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2359 * EL0 if EL0[PV]TEN is zero. 2360 */ 2361 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2362 return CP_ACCESS_TRAP; 2363 } 2364 /* fall through */ 2365 2366 case 1: 2367 if (has_el2 && timeridx == GTIMER_PHYS) { 2368 if (hcr & HCR_E2H) { 2369 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2370 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2371 return CP_ACCESS_TRAP_EL2; 2372 } 2373 } else { 2374 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2375 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2376 return CP_ACCESS_TRAP_EL2; 2377 } 2378 } 2379 } 2380 break; 2381 } 2382 return CP_ACCESS_OK; 2383 } 2384 2385 static CPAccessResult gt_pct_access(CPUARMState *env, 2386 const ARMCPRegInfo *ri, 2387 bool isread) 2388 { 2389 return gt_counter_access(env, GTIMER_PHYS, isread); 2390 } 2391 2392 static CPAccessResult gt_vct_access(CPUARMState *env, 2393 const ARMCPRegInfo *ri, 2394 bool isread) 2395 { 2396 return gt_counter_access(env, GTIMER_VIRT, isread); 2397 } 2398 2399 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2400 bool isread) 2401 { 2402 return gt_timer_access(env, GTIMER_PHYS, isread); 2403 } 2404 2405 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2406 bool isread) 2407 { 2408 return gt_timer_access(env, GTIMER_VIRT, isread); 2409 } 2410 2411 static CPAccessResult gt_stimer_access(CPUARMState *env, 2412 const ARMCPRegInfo *ri, 2413 bool isread) 2414 { 2415 /* The AArch64 register view of the secure physical timer is 2416 * always accessible from EL3, and configurably accessible from 2417 * Secure EL1. 2418 */ 2419 switch (arm_current_el(env)) { 2420 case 1: 2421 if (!arm_is_secure(env)) { 2422 return CP_ACCESS_TRAP; 2423 } 2424 if (!(env->cp15.scr_el3 & SCR_ST)) { 2425 return CP_ACCESS_TRAP_EL3; 2426 } 2427 return CP_ACCESS_OK; 2428 case 0: 2429 case 2: 2430 return CP_ACCESS_TRAP; 2431 case 3: 2432 return CP_ACCESS_OK; 2433 default: 2434 g_assert_not_reached(); 2435 } 2436 } 2437 2438 static uint64_t gt_get_countervalue(CPUARMState *env) 2439 { 2440 ARMCPU *cpu = env_archcpu(env); 2441 2442 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2443 } 2444 2445 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2446 { 2447 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2448 2449 if (gt->ctl & 1) { 2450 /* Timer enabled: calculate and set current ISTATUS, irq, and 2451 * reset timer to when ISTATUS next has to change 2452 */ 2453 uint64_t offset = timeridx == GTIMER_VIRT ? 2454 cpu->env.cp15.cntvoff_el2 : 0; 2455 uint64_t count = gt_get_countervalue(&cpu->env); 2456 /* Note that this must be unsigned 64 bit arithmetic: */ 2457 int istatus = count - offset >= gt->cval; 2458 uint64_t nexttick; 2459 int irqstate; 2460 2461 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2462 2463 irqstate = (istatus && !(gt->ctl & 2)); 2464 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2465 2466 if (istatus) { 2467 /* Next transition is when count rolls back over to zero */ 2468 nexttick = UINT64_MAX; 2469 } else { 2470 /* Next transition is when we hit cval */ 2471 nexttick = gt->cval + offset; 2472 } 2473 /* Note that the desired next expiry time might be beyond the 2474 * signed-64-bit range of a QEMUTimer -- in this case we just 2475 * set the timer for as far in the future as possible. When the 2476 * timer expires we will reset the timer for any remaining period. 2477 */ 2478 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2479 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2480 } else { 2481 timer_mod(cpu->gt_timer[timeridx], nexttick); 2482 } 2483 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2484 } else { 2485 /* Timer disabled: ISTATUS and timer output always clear */ 2486 gt->ctl &= ~4; 2487 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2488 timer_del(cpu->gt_timer[timeridx]); 2489 trace_arm_gt_recalc_disabled(timeridx); 2490 } 2491 } 2492 2493 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2494 int timeridx) 2495 { 2496 ARMCPU *cpu = env_archcpu(env); 2497 2498 timer_del(cpu->gt_timer[timeridx]); 2499 } 2500 2501 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2502 { 2503 return gt_get_countervalue(env); 2504 } 2505 2506 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2507 { 2508 uint64_t hcr; 2509 2510 switch (arm_current_el(env)) { 2511 case 2: 2512 hcr = arm_hcr_el2_eff(env); 2513 if (hcr & HCR_E2H) { 2514 return 0; 2515 } 2516 break; 2517 case 0: 2518 hcr = arm_hcr_el2_eff(env); 2519 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2520 return 0; 2521 } 2522 break; 2523 } 2524 2525 return env->cp15.cntvoff_el2; 2526 } 2527 2528 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2529 { 2530 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2531 } 2532 2533 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2534 int timeridx, 2535 uint64_t value) 2536 { 2537 trace_arm_gt_cval_write(timeridx, value); 2538 env->cp15.c14_timer[timeridx].cval = value; 2539 gt_recalc_timer(env_archcpu(env), timeridx); 2540 } 2541 2542 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2543 int timeridx) 2544 { 2545 uint64_t offset = 0; 2546 2547 switch (timeridx) { 2548 case GTIMER_VIRT: 2549 case GTIMER_HYPVIRT: 2550 offset = gt_virt_cnt_offset(env); 2551 break; 2552 } 2553 2554 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2555 (gt_get_countervalue(env) - offset)); 2556 } 2557 2558 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2559 int timeridx, 2560 uint64_t value) 2561 { 2562 uint64_t offset = 0; 2563 2564 switch (timeridx) { 2565 case GTIMER_VIRT: 2566 case GTIMER_HYPVIRT: 2567 offset = gt_virt_cnt_offset(env); 2568 break; 2569 } 2570 2571 trace_arm_gt_tval_write(timeridx, value); 2572 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2573 sextract64(value, 0, 32); 2574 gt_recalc_timer(env_archcpu(env), timeridx); 2575 } 2576 2577 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2578 int timeridx, 2579 uint64_t value) 2580 { 2581 ARMCPU *cpu = env_archcpu(env); 2582 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2583 2584 trace_arm_gt_ctl_write(timeridx, value); 2585 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2586 if ((oldval ^ value) & 1) { 2587 /* Enable toggled */ 2588 gt_recalc_timer(cpu, timeridx); 2589 } else if ((oldval ^ value) & 2) { 2590 /* IMASK toggled: don't need to recalculate, 2591 * just set the interrupt line based on ISTATUS 2592 */ 2593 int irqstate = (oldval & 4) && !(value & 2); 2594 2595 trace_arm_gt_imask_toggle(timeridx, irqstate); 2596 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2597 } 2598 } 2599 2600 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2601 { 2602 gt_timer_reset(env, ri, GTIMER_PHYS); 2603 } 2604 2605 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2606 uint64_t value) 2607 { 2608 gt_cval_write(env, ri, GTIMER_PHYS, value); 2609 } 2610 2611 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2612 { 2613 return gt_tval_read(env, ri, GTIMER_PHYS); 2614 } 2615 2616 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2617 uint64_t value) 2618 { 2619 gt_tval_write(env, ri, GTIMER_PHYS, value); 2620 } 2621 2622 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2623 uint64_t value) 2624 { 2625 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2626 } 2627 2628 static int gt_phys_redir_timeridx(CPUARMState *env) 2629 { 2630 switch (arm_mmu_idx(env)) { 2631 case ARMMMUIdx_E20_0: 2632 case ARMMMUIdx_E20_2: 2633 case ARMMMUIdx_E20_2_PAN: 2634 case ARMMMUIdx_SE20_0: 2635 case ARMMMUIdx_SE20_2: 2636 case ARMMMUIdx_SE20_2_PAN: 2637 return GTIMER_HYP; 2638 default: 2639 return GTIMER_PHYS; 2640 } 2641 } 2642 2643 static int gt_virt_redir_timeridx(CPUARMState *env) 2644 { 2645 switch (arm_mmu_idx(env)) { 2646 case ARMMMUIdx_E20_0: 2647 case ARMMMUIdx_E20_2: 2648 case ARMMMUIdx_E20_2_PAN: 2649 case ARMMMUIdx_SE20_0: 2650 case ARMMMUIdx_SE20_2: 2651 case ARMMMUIdx_SE20_2_PAN: 2652 return GTIMER_HYPVIRT; 2653 default: 2654 return GTIMER_VIRT; 2655 } 2656 } 2657 2658 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2659 const ARMCPRegInfo *ri) 2660 { 2661 int timeridx = gt_phys_redir_timeridx(env); 2662 return env->cp15.c14_timer[timeridx].cval; 2663 } 2664 2665 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2666 uint64_t value) 2667 { 2668 int timeridx = gt_phys_redir_timeridx(env); 2669 gt_cval_write(env, ri, timeridx, value); 2670 } 2671 2672 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2673 const ARMCPRegInfo *ri) 2674 { 2675 int timeridx = gt_phys_redir_timeridx(env); 2676 return gt_tval_read(env, ri, timeridx); 2677 } 2678 2679 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2680 uint64_t value) 2681 { 2682 int timeridx = gt_phys_redir_timeridx(env); 2683 gt_tval_write(env, ri, timeridx, value); 2684 } 2685 2686 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2687 const ARMCPRegInfo *ri) 2688 { 2689 int timeridx = gt_phys_redir_timeridx(env); 2690 return env->cp15.c14_timer[timeridx].ctl; 2691 } 2692 2693 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2694 uint64_t value) 2695 { 2696 int timeridx = gt_phys_redir_timeridx(env); 2697 gt_ctl_write(env, ri, timeridx, value); 2698 } 2699 2700 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2701 { 2702 gt_timer_reset(env, ri, GTIMER_VIRT); 2703 } 2704 2705 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2706 uint64_t value) 2707 { 2708 gt_cval_write(env, ri, GTIMER_VIRT, value); 2709 } 2710 2711 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2712 { 2713 return gt_tval_read(env, ri, GTIMER_VIRT); 2714 } 2715 2716 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2717 uint64_t value) 2718 { 2719 gt_tval_write(env, ri, GTIMER_VIRT, value); 2720 } 2721 2722 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2723 uint64_t value) 2724 { 2725 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2726 } 2727 2728 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2729 uint64_t value) 2730 { 2731 ARMCPU *cpu = env_archcpu(env); 2732 2733 trace_arm_gt_cntvoff_write(value); 2734 raw_write(env, ri, value); 2735 gt_recalc_timer(cpu, GTIMER_VIRT); 2736 } 2737 2738 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2739 const ARMCPRegInfo *ri) 2740 { 2741 int timeridx = gt_virt_redir_timeridx(env); 2742 return env->cp15.c14_timer[timeridx].cval; 2743 } 2744 2745 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2746 uint64_t value) 2747 { 2748 int timeridx = gt_virt_redir_timeridx(env); 2749 gt_cval_write(env, ri, timeridx, value); 2750 } 2751 2752 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2753 const ARMCPRegInfo *ri) 2754 { 2755 int timeridx = gt_virt_redir_timeridx(env); 2756 return gt_tval_read(env, ri, timeridx); 2757 } 2758 2759 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2760 uint64_t value) 2761 { 2762 int timeridx = gt_virt_redir_timeridx(env); 2763 gt_tval_write(env, ri, timeridx, value); 2764 } 2765 2766 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2767 const ARMCPRegInfo *ri) 2768 { 2769 int timeridx = gt_virt_redir_timeridx(env); 2770 return env->cp15.c14_timer[timeridx].ctl; 2771 } 2772 2773 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2774 uint64_t value) 2775 { 2776 int timeridx = gt_virt_redir_timeridx(env); 2777 gt_ctl_write(env, ri, timeridx, value); 2778 } 2779 2780 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2781 { 2782 gt_timer_reset(env, ri, GTIMER_HYP); 2783 } 2784 2785 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2786 uint64_t value) 2787 { 2788 gt_cval_write(env, ri, GTIMER_HYP, value); 2789 } 2790 2791 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2792 { 2793 return gt_tval_read(env, ri, GTIMER_HYP); 2794 } 2795 2796 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2797 uint64_t value) 2798 { 2799 gt_tval_write(env, ri, GTIMER_HYP, value); 2800 } 2801 2802 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2803 uint64_t value) 2804 { 2805 gt_ctl_write(env, ri, GTIMER_HYP, value); 2806 } 2807 2808 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2809 { 2810 gt_timer_reset(env, ri, GTIMER_SEC); 2811 } 2812 2813 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2814 uint64_t value) 2815 { 2816 gt_cval_write(env, ri, GTIMER_SEC, value); 2817 } 2818 2819 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2820 { 2821 return gt_tval_read(env, ri, GTIMER_SEC); 2822 } 2823 2824 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2825 uint64_t value) 2826 { 2827 gt_tval_write(env, ri, GTIMER_SEC, value); 2828 } 2829 2830 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2831 uint64_t value) 2832 { 2833 gt_ctl_write(env, ri, GTIMER_SEC, value); 2834 } 2835 2836 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2837 { 2838 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2839 } 2840 2841 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2842 uint64_t value) 2843 { 2844 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2845 } 2846 2847 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2848 { 2849 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2850 } 2851 2852 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2853 uint64_t value) 2854 { 2855 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2856 } 2857 2858 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2859 uint64_t value) 2860 { 2861 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2862 } 2863 2864 void arm_gt_ptimer_cb(void *opaque) 2865 { 2866 ARMCPU *cpu = opaque; 2867 2868 gt_recalc_timer(cpu, GTIMER_PHYS); 2869 } 2870 2871 void arm_gt_vtimer_cb(void *opaque) 2872 { 2873 ARMCPU *cpu = opaque; 2874 2875 gt_recalc_timer(cpu, GTIMER_VIRT); 2876 } 2877 2878 void arm_gt_htimer_cb(void *opaque) 2879 { 2880 ARMCPU *cpu = opaque; 2881 2882 gt_recalc_timer(cpu, GTIMER_HYP); 2883 } 2884 2885 void arm_gt_stimer_cb(void *opaque) 2886 { 2887 ARMCPU *cpu = opaque; 2888 2889 gt_recalc_timer(cpu, GTIMER_SEC); 2890 } 2891 2892 void arm_gt_hvtimer_cb(void *opaque) 2893 { 2894 ARMCPU *cpu = opaque; 2895 2896 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2897 } 2898 2899 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2900 { 2901 ARMCPU *cpu = env_archcpu(env); 2902 2903 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2904 } 2905 2906 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2907 /* Note that CNTFRQ is purely reads-as-written for the benefit 2908 * of software; writing it doesn't actually change the timer frequency. 2909 * Our reset value matches the fixed frequency we implement the timer at. 2910 */ 2911 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2912 .type = ARM_CP_ALIAS, 2913 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2914 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2915 }, 2916 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2917 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2918 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2919 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2920 .resetfn = arm_gt_cntfrq_reset, 2921 }, 2922 /* overall control: mostly access permissions */ 2923 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2924 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2925 .access = PL1_RW, 2926 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2927 .resetvalue = 0, 2928 }, 2929 /* per-timer control */ 2930 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2931 .secure = ARM_CP_SECSTATE_NS, 2932 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2933 .accessfn = gt_ptimer_access, 2934 .fieldoffset = offsetoflow32(CPUARMState, 2935 cp15.c14_timer[GTIMER_PHYS].ctl), 2936 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2937 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2938 }, 2939 { .name = "CNTP_CTL_S", 2940 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2941 .secure = ARM_CP_SECSTATE_S, 2942 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2943 .accessfn = gt_ptimer_access, 2944 .fieldoffset = offsetoflow32(CPUARMState, 2945 cp15.c14_timer[GTIMER_SEC].ctl), 2946 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2947 }, 2948 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2949 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2950 .type = ARM_CP_IO, .access = PL0_RW, 2951 .accessfn = gt_ptimer_access, 2952 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2953 .resetvalue = 0, 2954 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2955 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2956 }, 2957 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2958 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2959 .accessfn = gt_vtimer_access, 2960 .fieldoffset = offsetoflow32(CPUARMState, 2961 cp15.c14_timer[GTIMER_VIRT].ctl), 2962 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2963 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2964 }, 2965 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2966 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2967 .type = ARM_CP_IO, .access = PL0_RW, 2968 .accessfn = gt_vtimer_access, 2969 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2970 .resetvalue = 0, 2971 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2972 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2973 }, 2974 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2975 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2976 .secure = ARM_CP_SECSTATE_NS, 2977 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2978 .accessfn = gt_ptimer_access, 2979 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2980 }, 2981 { .name = "CNTP_TVAL_S", 2982 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2983 .secure = ARM_CP_SECSTATE_S, 2984 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2985 .accessfn = gt_ptimer_access, 2986 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2987 }, 2988 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2989 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2990 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2991 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2992 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2993 }, 2994 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2995 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2996 .accessfn = gt_vtimer_access, 2997 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2998 }, 2999 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3000 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3001 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3002 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3003 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3004 }, 3005 /* The counter itself */ 3006 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3007 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3008 .accessfn = gt_pct_access, 3009 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3010 }, 3011 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3012 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3013 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3014 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3015 }, 3016 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3017 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3018 .accessfn = gt_vct_access, 3019 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3020 }, 3021 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3022 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3023 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3024 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3025 }, 3026 /* Comparison value, indicating when the timer goes off */ 3027 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3028 .secure = ARM_CP_SECSTATE_NS, 3029 .access = PL0_RW, 3030 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3031 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3032 .accessfn = gt_ptimer_access, 3033 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3034 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3035 }, 3036 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3037 .secure = ARM_CP_SECSTATE_S, 3038 .access = PL0_RW, 3039 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3040 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3041 .accessfn = gt_ptimer_access, 3042 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3043 }, 3044 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3045 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3046 .access = PL0_RW, 3047 .type = ARM_CP_IO, 3048 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3049 .resetvalue = 0, .accessfn = gt_ptimer_access, 3050 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3051 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3052 }, 3053 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3054 .access = PL0_RW, 3055 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3056 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3057 .accessfn = gt_vtimer_access, 3058 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3059 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3060 }, 3061 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3062 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3063 .access = PL0_RW, 3064 .type = ARM_CP_IO, 3065 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3066 .resetvalue = 0, .accessfn = gt_vtimer_access, 3067 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3068 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3069 }, 3070 /* Secure timer -- this is actually restricted to only EL3 3071 * and configurably Secure-EL1 via the accessfn. 3072 */ 3073 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3074 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3075 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3076 .accessfn = gt_stimer_access, 3077 .readfn = gt_sec_tval_read, 3078 .writefn = gt_sec_tval_write, 3079 .resetfn = gt_sec_timer_reset, 3080 }, 3081 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3082 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3083 .type = ARM_CP_IO, .access = PL1_RW, 3084 .accessfn = gt_stimer_access, 3085 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3086 .resetvalue = 0, 3087 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3088 }, 3089 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3090 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3091 .type = ARM_CP_IO, .access = PL1_RW, 3092 .accessfn = gt_stimer_access, 3093 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3094 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3095 }, 3096 }; 3097 3098 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3099 bool isread) 3100 { 3101 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3102 return CP_ACCESS_TRAP; 3103 } 3104 return CP_ACCESS_OK; 3105 } 3106 3107 #else 3108 3109 /* In user-mode most of the generic timer registers are inaccessible 3110 * however modern kernels (4.12+) allow access to cntvct_el0 3111 */ 3112 3113 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3114 { 3115 ARMCPU *cpu = env_archcpu(env); 3116 3117 /* Currently we have no support for QEMUTimer in linux-user so we 3118 * can't call gt_get_countervalue(env), instead we directly 3119 * call the lower level functions. 3120 */ 3121 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3122 } 3123 3124 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3125 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3126 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3127 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3128 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3129 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3130 }, 3131 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3132 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3133 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3134 .readfn = gt_virt_cnt_read, 3135 }, 3136 }; 3137 3138 #endif 3139 3140 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3141 { 3142 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3143 raw_write(env, ri, value); 3144 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3145 raw_write(env, ri, value & 0xfffff6ff); 3146 } else { 3147 raw_write(env, ri, value & 0xfffff1ff); 3148 } 3149 } 3150 3151 #ifndef CONFIG_USER_ONLY 3152 /* get_phys_addr() isn't present for user-mode-only targets */ 3153 3154 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3155 bool isread) 3156 { 3157 if (ri->opc2 & 4) { 3158 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3159 * Secure EL1 (which can only happen if EL3 is AArch64). 3160 * They are simply UNDEF if executed from NS EL1. 3161 * They function normally from EL2 or EL3. 3162 */ 3163 if (arm_current_el(env) == 1) { 3164 if (arm_is_secure_below_el3(env)) { 3165 if (env->cp15.scr_el3 & SCR_EEL2) { 3166 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3167 } 3168 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3169 } 3170 return CP_ACCESS_TRAP_UNCATEGORIZED; 3171 } 3172 } 3173 return CP_ACCESS_OK; 3174 } 3175 3176 #ifdef CONFIG_TCG 3177 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3178 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3179 { 3180 hwaddr phys_addr; 3181 target_ulong page_size; 3182 int prot; 3183 bool ret; 3184 uint64_t par64; 3185 bool format64 = false; 3186 MemTxAttrs attrs = {}; 3187 ARMMMUFaultInfo fi = {}; 3188 ARMCacheAttrs cacheattrs = {}; 3189 3190 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3191 &prot, &page_size, &fi, &cacheattrs); 3192 3193 /* 3194 * ATS operations only do S1 or S1+S2 translations, so we never 3195 * have to deal with the ARMCacheAttrs format for S2 only. 3196 */ 3197 assert(!cacheattrs.is_s2_format); 3198 3199 if (ret) { 3200 /* 3201 * Some kinds of translation fault must cause exceptions rather 3202 * than being reported in the PAR. 3203 */ 3204 int current_el = arm_current_el(env); 3205 int target_el; 3206 uint32_t syn, fsr, fsc; 3207 bool take_exc = false; 3208 3209 if (fi.s1ptw && current_el == 1 3210 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3211 /* 3212 * Synchronous stage 2 fault on an access made as part of the 3213 * translation table walk for AT S1E0* or AT S1E1* insn 3214 * executed from NS EL1. If this is a synchronous external abort 3215 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3216 * to EL3. Otherwise the fault is taken as an exception to EL2, 3217 * and HPFAR_EL2 holds the faulting IPA. 3218 */ 3219 if (fi.type == ARMFault_SyncExternalOnWalk && 3220 (env->cp15.scr_el3 & SCR_EA)) { 3221 target_el = 3; 3222 } else { 3223 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3224 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3225 env->cp15.hpfar_el2 |= HPFAR_NS; 3226 } 3227 target_el = 2; 3228 } 3229 take_exc = true; 3230 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3231 /* 3232 * Synchronous external aborts during a translation table walk 3233 * are taken as Data Abort exceptions. 3234 */ 3235 if (fi.stage2) { 3236 if (current_el == 3) { 3237 target_el = 3; 3238 } else { 3239 target_el = 2; 3240 } 3241 } else { 3242 target_el = exception_target_el(env); 3243 } 3244 take_exc = true; 3245 } 3246 3247 if (take_exc) { 3248 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3249 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3250 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3251 fsr = arm_fi_to_lfsc(&fi); 3252 fsc = extract32(fsr, 0, 6); 3253 } else { 3254 fsr = arm_fi_to_sfsc(&fi); 3255 fsc = 0x3f; 3256 } 3257 /* 3258 * Report exception with ESR indicating a fault due to a 3259 * translation table walk for a cache maintenance instruction. 3260 */ 3261 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3262 fi.ea, 1, fi.s1ptw, 1, fsc); 3263 env->exception.vaddress = value; 3264 env->exception.fsr = fsr; 3265 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3266 } 3267 } 3268 3269 if (is_a64(env)) { 3270 format64 = true; 3271 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3272 /* 3273 * ATS1Cxx: 3274 * * TTBCR.EAE determines whether the result is returned using the 3275 * 32-bit or the 64-bit PAR format 3276 * * Instructions executed in Hyp mode always use the 64bit format 3277 * 3278 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3279 * * The Non-secure TTBCR.EAE bit is set to 1 3280 * * The implementation includes EL2, and the value of HCR.VM is 1 3281 * 3282 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3283 * 3284 * ATS1Hx always uses the 64bit format. 3285 */ 3286 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3287 3288 if (arm_feature(env, ARM_FEATURE_EL2)) { 3289 if (mmu_idx == ARMMMUIdx_E10_0 || 3290 mmu_idx == ARMMMUIdx_E10_1 || 3291 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3292 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3293 } else { 3294 format64 |= arm_current_el(env) == 2; 3295 } 3296 } 3297 } 3298 3299 if (format64) { 3300 /* Create a 64-bit PAR */ 3301 par64 = (1 << 11); /* LPAE bit always set */ 3302 if (!ret) { 3303 par64 |= phys_addr & ~0xfffULL; 3304 if (!attrs.secure) { 3305 par64 |= (1 << 9); /* NS */ 3306 } 3307 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3308 par64 |= cacheattrs.shareability << 7; /* SH */ 3309 } else { 3310 uint32_t fsr = arm_fi_to_lfsc(&fi); 3311 3312 par64 |= 1; /* F */ 3313 par64 |= (fsr & 0x3f) << 1; /* FS */ 3314 if (fi.stage2) { 3315 par64 |= (1 << 9); /* S */ 3316 } 3317 if (fi.s1ptw) { 3318 par64 |= (1 << 8); /* PTW */ 3319 } 3320 } 3321 } else { 3322 /* fsr is a DFSR/IFSR value for the short descriptor 3323 * translation table format (with WnR always clear). 3324 * Convert it to a 32-bit PAR. 3325 */ 3326 if (!ret) { 3327 /* We do not set any attribute bits in the PAR */ 3328 if (page_size == (1 << 24) 3329 && arm_feature(env, ARM_FEATURE_V7)) { 3330 par64 = (phys_addr & 0xff000000) | (1 << 1); 3331 } else { 3332 par64 = phys_addr & 0xfffff000; 3333 } 3334 if (!attrs.secure) { 3335 par64 |= (1 << 9); /* NS */ 3336 } 3337 } else { 3338 uint32_t fsr = arm_fi_to_sfsc(&fi); 3339 3340 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3341 ((fsr & 0xf) << 1) | 1; 3342 } 3343 } 3344 return par64; 3345 } 3346 #endif /* CONFIG_TCG */ 3347 3348 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3349 { 3350 #ifdef CONFIG_TCG 3351 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3352 uint64_t par64; 3353 ARMMMUIdx mmu_idx; 3354 int el = arm_current_el(env); 3355 bool secure = arm_is_secure_below_el3(env); 3356 3357 switch (ri->opc2 & 6) { 3358 case 0: 3359 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3360 switch (el) { 3361 case 3: 3362 mmu_idx = ARMMMUIdx_SE3; 3363 break; 3364 case 2: 3365 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3366 /* fall through */ 3367 case 1: 3368 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3369 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3370 : ARMMMUIdx_Stage1_E1_PAN); 3371 } else { 3372 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3373 } 3374 break; 3375 default: 3376 g_assert_not_reached(); 3377 } 3378 break; 3379 case 2: 3380 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3381 switch (el) { 3382 case 3: 3383 mmu_idx = ARMMMUIdx_SE10_0; 3384 break; 3385 case 2: 3386 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3387 mmu_idx = ARMMMUIdx_Stage1_E0; 3388 break; 3389 case 1: 3390 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3391 break; 3392 default: 3393 g_assert_not_reached(); 3394 } 3395 break; 3396 case 4: 3397 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3398 mmu_idx = ARMMMUIdx_E10_1; 3399 break; 3400 case 6: 3401 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3402 mmu_idx = ARMMMUIdx_E10_0; 3403 break; 3404 default: 3405 g_assert_not_reached(); 3406 } 3407 3408 par64 = do_ats_write(env, value, access_type, mmu_idx); 3409 3410 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3411 #else 3412 /* Handled by hardware accelerator. */ 3413 g_assert_not_reached(); 3414 #endif /* CONFIG_TCG */ 3415 } 3416 3417 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3418 uint64_t value) 3419 { 3420 #ifdef CONFIG_TCG 3421 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3422 uint64_t par64; 3423 3424 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3425 3426 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3427 #else 3428 /* Handled by hardware accelerator. */ 3429 g_assert_not_reached(); 3430 #endif /* CONFIG_TCG */ 3431 } 3432 3433 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3434 bool isread) 3435 { 3436 if (arm_current_el(env) == 3 && 3437 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3438 return CP_ACCESS_TRAP; 3439 } 3440 return CP_ACCESS_OK; 3441 } 3442 3443 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3444 uint64_t value) 3445 { 3446 #ifdef CONFIG_TCG 3447 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3448 ARMMMUIdx mmu_idx; 3449 int secure = arm_is_secure_below_el3(env); 3450 3451 switch (ri->opc2 & 6) { 3452 case 0: 3453 switch (ri->opc1) { 3454 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3455 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3456 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3457 : ARMMMUIdx_Stage1_E1_PAN); 3458 } else { 3459 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3460 } 3461 break; 3462 case 4: /* AT S1E2R, AT S1E2W */ 3463 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3464 break; 3465 case 6: /* AT S1E3R, AT S1E3W */ 3466 mmu_idx = ARMMMUIdx_SE3; 3467 break; 3468 default: 3469 g_assert_not_reached(); 3470 } 3471 break; 3472 case 2: /* AT S1E0R, AT S1E0W */ 3473 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3474 break; 3475 case 4: /* AT S12E1R, AT S12E1W */ 3476 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3477 break; 3478 case 6: /* AT S12E0R, AT S12E0W */ 3479 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3480 break; 3481 default: 3482 g_assert_not_reached(); 3483 } 3484 3485 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3486 #else 3487 /* Handled by hardware accelerator. */ 3488 g_assert_not_reached(); 3489 #endif /* CONFIG_TCG */ 3490 } 3491 #endif 3492 3493 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3494 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3495 .access = PL1_RW, .resetvalue = 0, 3496 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3497 offsetoflow32(CPUARMState, cp15.par_ns) }, 3498 .writefn = par_write }, 3499 #ifndef CONFIG_USER_ONLY 3500 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3501 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3502 .access = PL1_W, .accessfn = ats_access, 3503 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3504 #endif 3505 }; 3506 3507 /* Return basic MPU access permission bits. */ 3508 static uint32_t simple_mpu_ap_bits(uint32_t val) 3509 { 3510 uint32_t ret; 3511 uint32_t mask; 3512 int i; 3513 ret = 0; 3514 mask = 3; 3515 for (i = 0; i < 16; i += 2) { 3516 ret |= (val >> i) & mask; 3517 mask <<= 2; 3518 } 3519 return ret; 3520 } 3521 3522 /* Pad basic MPU access permission bits to extended format. */ 3523 static uint32_t extended_mpu_ap_bits(uint32_t val) 3524 { 3525 uint32_t ret; 3526 uint32_t mask; 3527 int i; 3528 ret = 0; 3529 mask = 3; 3530 for (i = 0; i < 16; i += 2) { 3531 ret |= (val & mask) << i; 3532 mask <<= 2; 3533 } 3534 return ret; 3535 } 3536 3537 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3538 uint64_t value) 3539 { 3540 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3541 } 3542 3543 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3544 { 3545 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3546 } 3547 3548 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3549 uint64_t value) 3550 { 3551 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3552 } 3553 3554 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3555 { 3556 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3557 } 3558 3559 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3560 { 3561 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3562 3563 if (!u32p) { 3564 return 0; 3565 } 3566 3567 u32p += env->pmsav7.rnr[M_REG_NS]; 3568 return *u32p; 3569 } 3570 3571 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3572 uint64_t value) 3573 { 3574 ARMCPU *cpu = env_archcpu(env); 3575 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3576 3577 if (!u32p) { 3578 return; 3579 } 3580 3581 u32p += env->pmsav7.rnr[M_REG_NS]; 3582 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3583 *u32p = value; 3584 } 3585 3586 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3587 uint64_t value) 3588 { 3589 ARMCPU *cpu = env_archcpu(env); 3590 uint32_t nrgs = cpu->pmsav7_dregion; 3591 3592 if (value >= nrgs) { 3593 qemu_log_mask(LOG_GUEST_ERROR, 3594 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3595 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3596 return; 3597 } 3598 3599 raw_write(env, ri, value); 3600 } 3601 3602 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3603 /* Reset for all these registers is handled in arm_cpu_reset(), 3604 * because the PMSAv7 is also used by M-profile CPUs, which do 3605 * not register cpregs but still need the state to be reset. 3606 */ 3607 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3608 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3609 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3610 .readfn = pmsav7_read, .writefn = pmsav7_write, 3611 .resetfn = arm_cp_reset_ignore }, 3612 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3613 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3614 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3615 .readfn = pmsav7_read, .writefn = pmsav7_write, 3616 .resetfn = arm_cp_reset_ignore }, 3617 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3618 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3619 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3620 .readfn = pmsav7_read, .writefn = pmsav7_write, 3621 .resetfn = arm_cp_reset_ignore }, 3622 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3623 .access = PL1_RW, 3624 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3625 .writefn = pmsav7_rgnr_write, 3626 .resetfn = arm_cp_reset_ignore }, 3627 }; 3628 3629 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3630 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3631 .access = PL1_RW, .type = ARM_CP_ALIAS, 3632 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3633 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3634 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3635 .access = PL1_RW, .type = ARM_CP_ALIAS, 3636 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3637 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3638 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3639 .access = PL1_RW, 3640 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3641 .resetvalue = 0, }, 3642 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3643 .access = PL1_RW, 3644 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3645 .resetvalue = 0, }, 3646 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3647 .access = PL1_RW, 3648 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3649 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3650 .access = PL1_RW, 3651 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3652 /* Protection region base and size registers */ 3653 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3654 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3655 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3656 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3657 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3658 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3659 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3660 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3661 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3662 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3663 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3664 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3665 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3666 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3667 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3668 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3669 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3670 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3671 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3672 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3673 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3674 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3675 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3676 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3677 }; 3678 3679 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3680 uint64_t value) 3681 { 3682 TCR *tcr = raw_ptr(env, ri); 3683 int maskshift = extract32(value, 0, 3); 3684 3685 if (!arm_feature(env, ARM_FEATURE_V8)) { 3686 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3687 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3688 * using Long-desciptor translation table format */ 3689 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3690 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3691 /* In an implementation that includes the Security Extensions 3692 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3693 * Short-descriptor translation table format. 3694 */ 3695 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3696 } else { 3697 value &= TTBCR_N; 3698 } 3699 } 3700 3701 /* Update the masks corresponding to the TCR bank being written 3702 * Note that we always calculate mask and base_mask, but 3703 * they are only used for short-descriptor tables (ie if EAE is 0); 3704 * for long-descriptor tables the TCR fields are used differently 3705 * and the mask and base_mask values are meaningless. 3706 */ 3707 tcr->raw_tcr = value; 3708 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3709 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3710 } 3711 3712 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3713 uint64_t value) 3714 { 3715 ARMCPU *cpu = env_archcpu(env); 3716 TCR *tcr = raw_ptr(env, ri); 3717 3718 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3719 /* With LPAE the TTBCR could result in a change of ASID 3720 * via the TTBCR.A1 bit, so do a TLB flush. 3721 */ 3722 tlb_flush(CPU(cpu)); 3723 } 3724 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3725 value = deposit64(tcr->raw_tcr, 0, 32, value); 3726 vmsa_ttbcr_raw_write(env, ri, value); 3727 } 3728 3729 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3730 { 3731 TCR *tcr = raw_ptr(env, ri); 3732 3733 /* Reset both the TCR as well as the masks corresponding to the bank of 3734 * the TCR being reset. 3735 */ 3736 tcr->raw_tcr = 0; 3737 tcr->mask = 0; 3738 tcr->base_mask = 0xffffc000u; 3739 } 3740 3741 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3742 uint64_t value) 3743 { 3744 ARMCPU *cpu = env_archcpu(env); 3745 TCR *tcr = raw_ptr(env, ri); 3746 3747 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3748 tlb_flush(CPU(cpu)); 3749 tcr->raw_tcr = value; 3750 } 3751 3752 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3753 uint64_t value) 3754 { 3755 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3756 if (cpreg_field_is_64bit(ri) && 3757 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3758 ARMCPU *cpu = env_archcpu(env); 3759 tlb_flush(CPU(cpu)); 3760 } 3761 raw_write(env, ri, value); 3762 } 3763 3764 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3765 uint64_t value) 3766 { 3767 /* 3768 * If we are running with E2&0 regime, then an ASID is active. 3769 * Flush if that might be changing. Note we're not checking 3770 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3771 * holds the active ASID, only checking the field that might. 3772 */ 3773 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3774 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3775 uint16_t mask = ARMMMUIdxBit_E20_2 | 3776 ARMMMUIdxBit_E20_2_PAN | 3777 ARMMMUIdxBit_E20_0; 3778 3779 if (arm_is_secure_below_el3(env)) { 3780 mask >>= ARM_MMU_IDX_A_NS; 3781 } 3782 3783 tlb_flush_by_mmuidx(env_cpu(env), mask); 3784 } 3785 raw_write(env, ri, value); 3786 } 3787 3788 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3789 uint64_t value) 3790 { 3791 ARMCPU *cpu = env_archcpu(env); 3792 CPUState *cs = CPU(cpu); 3793 3794 /* 3795 * A change in VMID to the stage2 page table (Stage2) invalidates 3796 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3797 */ 3798 if (raw_read(env, ri) != value) { 3799 uint16_t mask = ARMMMUIdxBit_E10_1 | 3800 ARMMMUIdxBit_E10_1_PAN | 3801 ARMMMUIdxBit_E10_0; 3802 3803 if (arm_is_secure_below_el3(env)) { 3804 mask >>= ARM_MMU_IDX_A_NS; 3805 } 3806 3807 tlb_flush_by_mmuidx(cs, mask); 3808 raw_write(env, ri, value); 3809 } 3810 } 3811 3812 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3813 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3814 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3815 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3816 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3817 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3818 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3819 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3820 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3821 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3822 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3823 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3824 offsetof(CPUARMState, cp15.dfar_ns) } }, 3825 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3826 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3827 .access = PL1_RW, .accessfn = access_tvm_trvm, 3828 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3829 .resetvalue = 0, }, 3830 }; 3831 3832 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3833 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3834 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3835 .access = PL1_RW, .accessfn = access_tvm_trvm, 3836 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3837 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3838 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3839 .access = PL1_RW, .accessfn = access_tvm_trvm, 3840 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3841 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3842 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3843 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3844 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3845 .access = PL1_RW, .accessfn = access_tvm_trvm, 3846 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3847 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3848 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3849 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3850 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3851 .access = PL1_RW, .accessfn = access_tvm_trvm, 3852 .writefn = vmsa_tcr_el12_write, 3853 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3854 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3855 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3856 .access = PL1_RW, .accessfn = access_tvm_trvm, 3857 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3858 .raw_writefn = vmsa_ttbcr_raw_write, 3859 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ 3860 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), 3861 offsetof(CPUARMState, cp15.tcr_el[1])} }, 3862 }; 3863 3864 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3865 * qemu tlbs nor adjusting cached masks. 3866 */ 3867 static const ARMCPRegInfo ttbcr2_reginfo = { 3868 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3869 .access = PL1_RW, .accessfn = access_tvm_trvm, 3870 .type = ARM_CP_ALIAS, 3871 .bank_fieldoffsets = { 3872 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), 3873 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), 3874 }, 3875 }; 3876 3877 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3878 uint64_t value) 3879 { 3880 env->cp15.c15_ticonfig = value & 0xe7; 3881 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3882 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3883 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3884 } 3885 3886 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3887 uint64_t value) 3888 { 3889 env->cp15.c15_threadid = value & 0xffff; 3890 } 3891 3892 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3893 uint64_t value) 3894 { 3895 /* Wait-for-interrupt (deprecated) */ 3896 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3897 } 3898 3899 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3900 uint64_t value) 3901 { 3902 /* On OMAP there are registers indicating the max/min index of dcache lines 3903 * containing a dirty line; cache flush operations have to reset these. 3904 */ 3905 env->cp15.c15_i_max = 0x000; 3906 env->cp15.c15_i_min = 0xff0; 3907 } 3908 3909 static const ARMCPRegInfo omap_cp_reginfo[] = { 3910 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3911 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3912 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3913 .resetvalue = 0, }, 3914 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3915 .access = PL1_RW, .type = ARM_CP_NOP }, 3916 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3917 .access = PL1_RW, 3918 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3919 .writefn = omap_ticonfig_write }, 3920 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3921 .access = PL1_RW, 3922 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3923 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3924 .access = PL1_RW, .resetvalue = 0xff0, 3925 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3926 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3927 .access = PL1_RW, 3928 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3929 .writefn = omap_threadid_write }, 3930 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3931 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3932 .type = ARM_CP_NO_RAW, 3933 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3934 /* TODO: Peripheral port remap register: 3935 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3936 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3937 * when MMU is off. 3938 */ 3939 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3940 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3941 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3942 .writefn = omap_cachemaint_write }, 3943 { .name = "C9", .cp = 15, .crn = 9, 3944 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3945 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3946 }; 3947 3948 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3949 uint64_t value) 3950 { 3951 env->cp15.c15_cpar = value & 0x3fff; 3952 } 3953 3954 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3955 { .name = "XSCALE_CPAR", 3956 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3957 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3958 .writefn = xscale_cpar_write, }, 3959 { .name = "XSCALE_AUXCR", 3960 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3961 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3962 .resetvalue = 0, }, 3963 /* XScale specific cache-lockdown: since we have no cache we NOP these 3964 * and hope the guest does not really rely on cache behaviour. 3965 */ 3966 { .name = "XSCALE_LOCK_ICACHE_LINE", 3967 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3968 .access = PL1_W, .type = ARM_CP_NOP }, 3969 { .name = "XSCALE_UNLOCK_ICACHE", 3970 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3971 .access = PL1_W, .type = ARM_CP_NOP }, 3972 { .name = "XSCALE_DCACHE_LOCK", 3973 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3974 .access = PL1_RW, .type = ARM_CP_NOP }, 3975 { .name = "XSCALE_UNLOCK_DCACHE", 3976 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3977 .access = PL1_W, .type = ARM_CP_NOP }, 3978 }; 3979 3980 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3981 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3982 * implementation of this implementation-defined space. 3983 * Ideally this should eventually disappear in favour of actually 3984 * implementing the correct behaviour for all cores. 3985 */ 3986 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3987 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3988 .access = PL1_RW, 3989 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3990 .resetvalue = 0 }, 3991 }; 3992 3993 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3994 /* Cache status: RAZ because we have no cache so it's always clean */ 3995 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3996 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3997 .resetvalue = 0 }, 3998 }; 3999 4000 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4001 /* We never have a a block transfer operation in progress */ 4002 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4003 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4004 .resetvalue = 0 }, 4005 /* The cache ops themselves: these all NOP for QEMU */ 4006 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4007 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4008 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4009 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4010 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4011 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4012 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4013 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4014 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4015 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4016 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4017 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4018 }; 4019 4020 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4021 /* The cache test-and-clean instructions always return (1 << 30) 4022 * to indicate that there are no dirty cache lines. 4023 */ 4024 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4025 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4026 .resetvalue = (1 << 30) }, 4027 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4028 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4029 .resetvalue = (1 << 30) }, 4030 }; 4031 4032 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4033 /* Ignore ReadBuffer accesses */ 4034 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4035 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4036 .access = PL1_RW, .resetvalue = 0, 4037 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4038 }; 4039 4040 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4041 { 4042 unsigned int cur_el = arm_current_el(env); 4043 4044 if (arm_is_el2_enabled(env) && cur_el == 1) { 4045 return env->cp15.vpidr_el2; 4046 } 4047 return raw_read(env, ri); 4048 } 4049 4050 static uint64_t mpidr_read_val(CPUARMState *env) 4051 { 4052 ARMCPU *cpu = env_archcpu(env); 4053 uint64_t mpidr = cpu->mp_affinity; 4054 4055 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4056 mpidr |= (1U << 31); 4057 /* Cores which are uniprocessor (non-coherent) 4058 * but still implement the MP extensions set 4059 * bit 30. (For instance, Cortex-R5). 4060 */ 4061 if (cpu->mp_is_up) { 4062 mpidr |= (1u << 30); 4063 } 4064 } 4065 return mpidr; 4066 } 4067 4068 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4069 { 4070 unsigned int cur_el = arm_current_el(env); 4071 4072 if (arm_is_el2_enabled(env) && cur_el == 1) { 4073 return env->cp15.vmpidr_el2; 4074 } 4075 return mpidr_read_val(env); 4076 } 4077 4078 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4079 /* NOP AMAIR0/1 */ 4080 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4081 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4082 .access = PL1_RW, .accessfn = access_tvm_trvm, 4083 .type = ARM_CP_CONST, .resetvalue = 0 }, 4084 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4085 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4086 .access = PL1_RW, .accessfn = access_tvm_trvm, 4087 .type = ARM_CP_CONST, .resetvalue = 0 }, 4088 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4089 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4090 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4091 offsetof(CPUARMState, cp15.par_ns)} }, 4092 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4093 .access = PL1_RW, .accessfn = access_tvm_trvm, 4094 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4095 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4096 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4097 .writefn = vmsa_ttbr_write, }, 4098 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4099 .access = PL1_RW, .accessfn = access_tvm_trvm, 4100 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4101 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4102 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4103 .writefn = vmsa_ttbr_write, }, 4104 }; 4105 4106 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4107 { 4108 return vfp_get_fpcr(env); 4109 } 4110 4111 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4112 uint64_t value) 4113 { 4114 vfp_set_fpcr(env, value); 4115 } 4116 4117 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4118 { 4119 return vfp_get_fpsr(env); 4120 } 4121 4122 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4123 uint64_t value) 4124 { 4125 vfp_set_fpsr(env, value); 4126 } 4127 4128 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4129 bool isread) 4130 { 4131 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4132 return CP_ACCESS_TRAP; 4133 } 4134 return CP_ACCESS_OK; 4135 } 4136 4137 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4138 uint64_t value) 4139 { 4140 env->daif = value & PSTATE_DAIF; 4141 } 4142 4143 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4144 { 4145 return env->pstate & PSTATE_PAN; 4146 } 4147 4148 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4149 uint64_t value) 4150 { 4151 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4152 } 4153 4154 static const ARMCPRegInfo pan_reginfo = { 4155 .name = "PAN", .state = ARM_CP_STATE_AA64, 4156 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4157 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4158 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4159 }; 4160 4161 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4162 { 4163 return env->pstate & PSTATE_UAO; 4164 } 4165 4166 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4167 uint64_t value) 4168 { 4169 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4170 } 4171 4172 static const ARMCPRegInfo uao_reginfo = { 4173 .name = "UAO", .state = ARM_CP_STATE_AA64, 4174 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4175 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4176 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4177 }; 4178 4179 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4180 { 4181 return env->pstate & PSTATE_DIT; 4182 } 4183 4184 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4185 uint64_t value) 4186 { 4187 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4188 } 4189 4190 static const ARMCPRegInfo dit_reginfo = { 4191 .name = "DIT", .state = ARM_CP_STATE_AA64, 4192 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4193 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4194 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4195 }; 4196 4197 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4198 { 4199 return env->pstate & PSTATE_SSBS; 4200 } 4201 4202 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4203 uint64_t value) 4204 { 4205 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4206 } 4207 4208 static const ARMCPRegInfo ssbs_reginfo = { 4209 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4210 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4211 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4212 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4213 }; 4214 4215 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4216 const ARMCPRegInfo *ri, 4217 bool isread) 4218 { 4219 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4220 switch (arm_current_el(env)) { 4221 case 0: 4222 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4223 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4224 return CP_ACCESS_TRAP; 4225 } 4226 /* fall through */ 4227 case 1: 4228 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4229 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4230 return CP_ACCESS_TRAP_EL2; 4231 } 4232 break; 4233 } 4234 return CP_ACCESS_OK; 4235 } 4236 4237 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4238 const ARMCPRegInfo *ri, 4239 bool isread) 4240 { 4241 /* Cache invalidate/clean to Point of Unification... */ 4242 switch (arm_current_el(env)) { 4243 case 0: 4244 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4245 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4246 return CP_ACCESS_TRAP; 4247 } 4248 /* fall through */ 4249 case 1: 4250 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4251 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4252 return CP_ACCESS_TRAP_EL2; 4253 } 4254 break; 4255 } 4256 return CP_ACCESS_OK; 4257 } 4258 4259 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4260 * Page D4-1736 (DDI0487A.b) 4261 */ 4262 4263 static int vae1_tlbmask(CPUARMState *env) 4264 { 4265 uint64_t hcr = arm_hcr_el2_eff(env); 4266 uint16_t mask; 4267 4268 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4269 mask = ARMMMUIdxBit_E20_2 | 4270 ARMMMUIdxBit_E20_2_PAN | 4271 ARMMMUIdxBit_E20_0; 4272 } else { 4273 mask = ARMMMUIdxBit_E10_1 | 4274 ARMMMUIdxBit_E10_1_PAN | 4275 ARMMMUIdxBit_E10_0; 4276 } 4277 4278 if (arm_is_secure_below_el3(env)) { 4279 mask >>= ARM_MMU_IDX_A_NS; 4280 } 4281 4282 return mask; 4283 } 4284 4285 /* Return 56 if TBI is enabled, 64 otherwise. */ 4286 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4287 uint64_t addr) 4288 { 4289 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4290 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4291 int select = extract64(addr, 55, 1); 4292 4293 return (tbi >> select) & 1 ? 56 : 64; 4294 } 4295 4296 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4297 { 4298 uint64_t hcr = arm_hcr_el2_eff(env); 4299 ARMMMUIdx mmu_idx; 4300 4301 /* Only the regime of the mmu_idx below is significant. */ 4302 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4303 mmu_idx = ARMMMUIdx_E20_0; 4304 } else { 4305 mmu_idx = ARMMMUIdx_E10_0; 4306 } 4307 4308 if (arm_is_secure_below_el3(env)) { 4309 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4310 } 4311 4312 return tlbbits_for_regime(env, mmu_idx, addr); 4313 } 4314 4315 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4316 uint64_t value) 4317 { 4318 CPUState *cs = env_cpu(env); 4319 int mask = vae1_tlbmask(env); 4320 4321 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4322 } 4323 4324 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4325 uint64_t value) 4326 { 4327 CPUState *cs = env_cpu(env); 4328 int mask = vae1_tlbmask(env); 4329 4330 if (tlb_force_broadcast(env)) { 4331 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4332 } else { 4333 tlb_flush_by_mmuidx(cs, mask); 4334 } 4335 } 4336 4337 static int alle1_tlbmask(CPUARMState *env) 4338 { 4339 /* 4340 * Note that the 'ALL' scope must invalidate both stage 1 and 4341 * stage 2 translations, whereas most other scopes only invalidate 4342 * stage 1 translations. 4343 */ 4344 if (arm_is_secure_below_el3(env)) { 4345 return ARMMMUIdxBit_SE10_1 | 4346 ARMMMUIdxBit_SE10_1_PAN | 4347 ARMMMUIdxBit_SE10_0; 4348 } else { 4349 return ARMMMUIdxBit_E10_1 | 4350 ARMMMUIdxBit_E10_1_PAN | 4351 ARMMMUIdxBit_E10_0; 4352 } 4353 } 4354 4355 static int e2_tlbmask(CPUARMState *env) 4356 { 4357 if (arm_is_secure_below_el3(env)) { 4358 return ARMMMUIdxBit_SE20_0 | 4359 ARMMMUIdxBit_SE20_2 | 4360 ARMMMUIdxBit_SE20_2_PAN | 4361 ARMMMUIdxBit_SE2; 4362 } else { 4363 return ARMMMUIdxBit_E20_0 | 4364 ARMMMUIdxBit_E20_2 | 4365 ARMMMUIdxBit_E20_2_PAN | 4366 ARMMMUIdxBit_E2; 4367 } 4368 } 4369 4370 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4371 uint64_t value) 4372 { 4373 CPUState *cs = env_cpu(env); 4374 int mask = alle1_tlbmask(env); 4375 4376 tlb_flush_by_mmuidx(cs, mask); 4377 } 4378 4379 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4380 uint64_t value) 4381 { 4382 CPUState *cs = env_cpu(env); 4383 int mask = e2_tlbmask(env); 4384 4385 tlb_flush_by_mmuidx(cs, mask); 4386 } 4387 4388 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4389 uint64_t value) 4390 { 4391 ARMCPU *cpu = env_archcpu(env); 4392 CPUState *cs = CPU(cpu); 4393 4394 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4395 } 4396 4397 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4398 uint64_t value) 4399 { 4400 CPUState *cs = env_cpu(env); 4401 int mask = alle1_tlbmask(env); 4402 4403 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4404 } 4405 4406 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4407 uint64_t value) 4408 { 4409 CPUState *cs = env_cpu(env); 4410 int mask = e2_tlbmask(env); 4411 4412 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4413 } 4414 4415 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4416 uint64_t value) 4417 { 4418 CPUState *cs = env_cpu(env); 4419 4420 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4421 } 4422 4423 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4424 uint64_t value) 4425 { 4426 /* Invalidate by VA, EL2 4427 * Currently handles both VAE2 and VALE2, since we don't support 4428 * flush-last-level-only. 4429 */ 4430 CPUState *cs = env_cpu(env); 4431 int mask = e2_tlbmask(env); 4432 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4433 4434 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4435 } 4436 4437 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4438 uint64_t value) 4439 { 4440 /* Invalidate by VA, EL3 4441 * Currently handles both VAE3 and VALE3, since we don't support 4442 * flush-last-level-only. 4443 */ 4444 ARMCPU *cpu = env_archcpu(env); 4445 CPUState *cs = CPU(cpu); 4446 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4447 4448 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4449 } 4450 4451 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4452 uint64_t value) 4453 { 4454 CPUState *cs = env_cpu(env); 4455 int mask = vae1_tlbmask(env); 4456 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4457 int bits = vae1_tlbbits(env, pageaddr); 4458 4459 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4460 } 4461 4462 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4463 uint64_t value) 4464 { 4465 /* Invalidate by VA, EL1&0 (AArch64 version). 4466 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4467 * since we don't support flush-for-specific-ASID-only or 4468 * flush-last-level-only. 4469 */ 4470 CPUState *cs = env_cpu(env); 4471 int mask = vae1_tlbmask(env); 4472 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4473 int bits = vae1_tlbbits(env, pageaddr); 4474 4475 if (tlb_force_broadcast(env)) { 4476 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4477 } else { 4478 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4479 } 4480 } 4481 4482 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4483 uint64_t value) 4484 { 4485 CPUState *cs = env_cpu(env); 4486 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4487 bool secure = arm_is_secure_below_el3(env); 4488 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4489 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4490 pageaddr); 4491 4492 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4493 } 4494 4495 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4496 uint64_t value) 4497 { 4498 CPUState *cs = env_cpu(env); 4499 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4500 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4501 4502 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4503 ARMMMUIdxBit_SE3, bits); 4504 } 4505 4506 #ifdef TARGET_AARCH64 4507 typedef struct { 4508 uint64_t base; 4509 uint64_t length; 4510 } TLBIRange; 4511 4512 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4513 uint64_t value) 4514 { 4515 unsigned int page_size_granule, page_shift, num, scale, exponent; 4516 /* Extract one bit to represent the va selector in use. */ 4517 uint64_t select = sextract64(value, 36, 1); 4518 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4519 TLBIRange ret = { }; 4520 4521 page_size_granule = extract64(value, 46, 2); 4522 4523 /* The granule encoded in value must match the granule in use. */ 4524 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) { 4525 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4526 page_size_granule); 4527 return ret; 4528 } 4529 4530 page_shift = (page_size_granule - 1) * 2 + 12; 4531 num = extract64(value, 39, 5); 4532 scale = extract64(value, 44, 2); 4533 exponent = (5 * scale) + 1; 4534 4535 ret.length = (num + 1) << (exponent + page_shift); 4536 4537 if (param.select) { 4538 ret.base = sextract64(value, 0, 37); 4539 } else { 4540 ret.base = extract64(value, 0, 37); 4541 } 4542 if (param.ds) { 4543 /* 4544 * With DS=1, BaseADDR is always shifted 16 so that it is able 4545 * to address all 52 va bits. The input address is perforce 4546 * aligned on a 64k boundary regardless of translation granule. 4547 */ 4548 page_shift = 16; 4549 } 4550 ret.base <<= page_shift; 4551 4552 return ret; 4553 } 4554 4555 static void do_rvae_write(CPUARMState *env, uint64_t value, 4556 int idxmap, bool synced) 4557 { 4558 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4559 TLBIRange range; 4560 int bits; 4561 4562 range = tlbi_aa64_get_range(env, one_idx, value); 4563 bits = tlbbits_for_regime(env, one_idx, range.base); 4564 4565 if (synced) { 4566 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4567 range.base, 4568 range.length, 4569 idxmap, 4570 bits); 4571 } else { 4572 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4573 range.length, idxmap, bits); 4574 } 4575 } 4576 4577 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4578 const ARMCPRegInfo *ri, 4579 uint64_t value) 4580 { 4581 /* 4582 * Invalidate by VA range, EL1&0. 4583 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4584 * since we don't support flush-for-specific-ASID-only or 4585 * flush-last-level-only. 4586 */ 4587 4588 do_rvae_write(env, value, vae1_tlbmask(env), 4589 tlb_force_broadcast(env)); 4590 } 4591 4592 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4593 const ARMCPRegInfo *ri, 4594 uint64_t value) 4595 { 4596 /* 4597 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4598 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4599 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4600 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4601 * shareable specific flushes. 4602 */ 4603 4604 do_rvae_write(env, value, vae1_tlbmask(env), true); 4605 } 4606 4607 static int vae2_tlbmask(CPUARMState *env) 4608 { 4609 return (arm_is_secure_below_el3(env) 4610 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4611 } 4612 4613 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4614 const ARMCPRegInfo *ri, 4615 uint64_t value) 4616 { 4617 /* 4618 * Invalidate by VA range, EL2. 4619 * Currently handles all of RVAE2 and RVALE2, 4620 * since we don't support flush-for-specific-ASID-only or 4621 * flush-last-level-only. 4622 */ 4623 4624 do_rvae_write(env, value, vae2_tlbmask(env), 4625 tlb_force_broadcast(env)); 4626 4627 4628 } 4629 4630 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4631 const ARMCPRegInfo *ri, 4632 uint64_t value) 4633 { 4634 /* 4635 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4636 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4637 * since we don't support flush-for-specific-ASID-only, 4638 * flush-last-level-only or inner/outer shareable specific flushes. 4639 */ 4640 4641 do_rvae_write(env, value, vae2_tlbmask(env), true); 4642 4643 } 4644 4645 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4646 const ARMCPRegInfo *ri, 4647 uint64_t value) 4648 { 4649 /* 4650 * Invalidate by VA range, EL3. 4651 * Currently handles all of RVAE3 and RVALE3, 4652 * since we don't support flush-for-specific-ASID-only or 4653 * flush-last-level-only. 4654 */ 4655 4656 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4657 tlb_force_broadcast(env)); 4658 } 4659 4660 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4661 const ARMCPRegInfo *ri, 4662 uint64_t value) 4663 { 4664 /* 4665 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4666 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4667 * since we don't support flush-for-specific-ASID-only, 4668 * flush-last-level-only or inner/outer specific flushes. 4669 */ 4670 4671 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4672 } 4673 #endif 4674 4675 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4676 bool isread) 4677 { 4678 int cur_el = arm_current_el(env); 4679 4680 if (cur_el < 2) { 4681 uint64_t hcr = arm_hcr_el2_eff(env); 4682 4683 if (cur_el == 0) { 4684 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4685 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4686 return CP_ACCESS_TRAP_EL2; 4687 } 4688 } else { 4689 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4690 return CP_ACCESS_TRAP; 4691 } 4692 if (hcr & HCR_TDZ) { 4693 return CP_ACCESS_TRAP_EL2; 4694 } 4695 } 4696 } else if (hcr & HCR_TDZ) { 4697 return CP_ACCESS_TRAP_EL2; 4698 } 4699 } 4700 return CP_ACCESS_OK; 4701 } 4702 4703 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4704 { 4705 ARMCPU *cpu = env_archcpu(env); 4706 int dzp_bit = 1 << 4; 4707 4708 /* DZP indicates whether DC ZVA access is allowed */ 4709 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4710 dzp_bit = 0; 4711 } 4712 return cpu->dcz_blocksize | dzp_bit; 4713 } 4714 4715 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4716 bool isread) 4717 { 4718 if (!(env->pstate & PSTATE_SP)) { 4719 /* Access to SP_EL0 is undefined if it's being used as 4720 * the stack pointer. 4721 */ 4722 return CP_ACCESS_TRAP_UNCATEGORIZED; 4723 } 4724 return CP_ACCESS_OK; 4725 } 4726 4727 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4728 { 4729 return env->pstate & PSTATE_SP; 4730 } 4731 4732 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4733 { 4734 update_spsel(env, val); 4735 } 4736 4737 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4738 uint64_t value) 4739 { 4740 ARMCPU *cpu = env_archcpu(env); 4741 4742 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4743 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4744 value &= ~SCTLR_M; 4745 } 4746 4747 /* ??? Lots of these bits are not implemented. */ 4748 4749 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4750 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4751 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4752 } else { 4753 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4754 SCTLR_ATA0 | SCTLR_ATA); 4755 } 4756 } 4757 4758 if (raw_read(env, ri) == value) { 4759 /* Skip the TLB flush if nothing actually changed; Linux likes 4760 * to do a lot of pointless SCTLR writes. 4761 */ 4762 return; 4763 } 4764 4765 raw_write(env, ri, value); 4766 4767 /* This may enable/disable the MMU, so do a TLB flush. */ 4768 tlb_flush(CPU(cpu)); 4769 4770 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4771 /* 4772 * Normally we would always end the TB on an SCTLR write; see the 4773 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4774 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4775 * of hflags from the translator, so do it here. 4776 */ 4777 arm_rebuild_hflags(env); 4778 } 4779 } 4780 4781 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4782 uint64_t value) 4783 { 4784 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4785 } 4786 4787 static const ARMCPRegInfo v8_cp_reginfo[] = { 4788 /* Minimal set of EL0-visible registers. This will need to be expanded 4789 * significantly for system emulation of AArch64 CPUs. 4790 */ 4791 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4792 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4793 .access = PL0_RW, .type = ARM_CP_NZCV }, 4794 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4795 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4796 .type = ARM_CP_NO_RAW, 4797 .access = PL0_RW, .accessfn = aa64_daif_access, 4798 .fieldoffset = offsetof(CPUARMState, daif), 4799 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4800 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4801 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4802 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4803 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4804 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4805 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4806 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4807 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4808 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4809 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4810 .access = PL0_R, .type = ARM_CP_NO_RAW, 4811 .readfn = aa64_dczid_read }, 4812 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4813 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4814 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4815 #ifndef CONFIG_USER_ONLY 4816 /* Avoid overhead of an access check that always passes in user-mode */ 4817 .accessfn = aa64_zva_access, 4818 #endif 4819 }, 4820 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4821 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4822 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4823 /* Cache ops: all NOPs since we don't emulate caches */ 4824 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4825 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4826 .access = PL1_W, .type = ARM_CP_NOP, 4827 .accessfn = aa64_cacheop_pou_access }, 4828 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4829 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4830 .access = PL1_W, .type = ARM_CP_NOP, 4831 .accessfn = aa64_cacheop_pou_access }, 4832 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4833 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4834 .access = PL0_W, .type = ARM_CP_NOP, 4835 .accessfn = aa64_cacheop_pou_access }, 4836 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4837 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4838 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4839 .type = ARM_CP_NOP }, 4840 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4841 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4842 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4843 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4844 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4845 .access = PL0_W, .type = ARM_CP_NOP, 4846 .accessfn = aa64_cacheop_poc_access }, 4847 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4848 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4849 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4850 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4851 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4852 .access = PL0_W, .type = ARM_CP_NOP, 4853 .accessfn = aa64_cacheop_pou_access }, 4854 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4855 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4856 .access = PL0_W, .type = ARM_CP_NOP, 4857 .accessfn = aa64_cacheop_poc_access }, 4858 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4859 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4860 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4861 /* TLBI operations */ 4862 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4863 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4864 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4865 .writefn = tlbi_aa64_vmalle1is_write }, 4866 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4867 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4868 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4869 .writefn = tlbi_aa64_vae1is_write }, 4870 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4871 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4872 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4873 .writefn = tlbi_aa64_vmalle1is_write }, 4874 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4875 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4876 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4877 .writefn = tlbi_aa64_vae1is_write }, 4878 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4879 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4880 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4881 .writefn = tlbi_aa64_vae1is_write }, 4882 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4883 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4884 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4885 .writefn = tlbi_aa64_vae1is_write }, 4886 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4887 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4888 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4889 .writefn = tlbi_aa64_vmalle1_write }, 4890 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4891 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4892 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4893 .writefn = tlbi_aa64_vae1_write }, 4894 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4895 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4896 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4897 .writefn = tlbi_aa64_vmalle1_write }, 4898 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4899 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4900 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4901 .writefn = tlbi_aa64_vae1_write }, 4902 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4903 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4904 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4905 .writefn = tlbi_aa64_vae1_write }, 4906 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4907 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4908 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4909 .writefn = tlbi_aa64_vae1_write }, 4910 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4911 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4912 .access = PL2_W, .type = ARM_CP_NOP }, 4913 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4914 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4915 .access = PL2_W, .type = ARM_CP_NOP }, 4916 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4917 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4918 .access = PL2_W, .type = ARM_CP_NO_RAW, 4919 .writefn = tlbi_aa64_alle1is_write }, 4920 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4921 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4922 .access = PL2_W, .type = ARM_CP_NO_RAW, 4923 .writefn = tlbi_aa64_alle1is_write }, 4924 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4925 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4926 .access = PL2_W, .type = ARM_CP_NOP }, 4927 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4928 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4929 .access = PL2_W, .type = ARM_CP_NOP }, 4930 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4931 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4932 .access = PL2_W, .type = ARM_CP_NO_RAW, 4933 .writefn = tlbi_aa64_alle1_write }, 4934 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4935 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4936 .access = PL2_W, .type = ARM_CP_NO_RAW, 4937 .writefn = tlbi_aa64_alle1is_write }, 4938 #ifndef CONFIG_USER_ONLY 4939 /* 64 bit address translation operations */ 4940 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4941 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4942 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4943 .writefn = ats_write64 }, 4944 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4945 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4946 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4947 .writefn = ats_write64 }, 4948 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4949 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4950 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4951 .writefn = ats_write64 }, 4952 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4953 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4954 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4955 .writefn = ats_write64 }, 4956 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4957 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4958 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4959 .writefn = ats_write64 }, 4960 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4961 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4962 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4963 .writefn = ats_write64 }, 4964 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4965 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4966 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4967 .writefn = ats_write64 }, 4968 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4969 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4970 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4971 .writefn = ats_write64 }, 4972 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4973 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4974 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4975 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4976 .writefn = ats_write64 }, 4977 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4978 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4979 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4980 .writefn = ats_write64 }, 4981 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4982 .type = ARM_CP_ALIAS, 4983 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4984 .access = PL1_RW, .resetvalue = 0, 4985 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4986 .writefn = par_write }, 4987 #endif 4988 /* TLB invalidate last level of translation table walk */ 4989 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4990 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4991 .writefn = tlbimva_is_write }, 4992 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4993 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4994 .writefn = tlbimvaa_is_write }, 4995 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4996 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4997 .writefn = tlbimva_write }, 4998 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4999 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5000 .writefn = tlbimvaa_write }, 5001 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5002 .type = ARM_CP_NO_RAW, .access = PL2_W, 5003 .writefn = tlbimva_hyp_write }, 5004 { .name = "TLBIMVALHIS", 5005 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5006 .type = ARM_CP_NO_RAW, .access = PL2_W, 5007 .writefn = tlbimva_hyp_is_write }, 5008 { .name = "TLBIIPAS2", 5009 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5010 .type = ARM_CP_NOP, .access = PL2_W }, 5011 { .name = "TLBIIPAS2IS", 5012 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5013 .type = ARM_CP_NOP, .access = PL2_W }, 5014 { .name = "TLBIIPAS2L", 5015 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5016 .type = ARM_CP_NOP, .access = PL2_W }, 5017 { .name = "TLBIIPAS2LIS", 5018 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5019 .type = ARM_CP_NOP, .access = PL2_W }, 5020 /* 32 bit cache operations */ 5021 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5022 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5023 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5024 .type = ARM_CP_NOP, .access = PL1_W }, 5025 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5026 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5027 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5028 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5029 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5030 .type = ARM_CP_NOP, .access = PL1_W }, 5031 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5032 .type = ARM_CP_NOP, .access = PL1_W }, 5033 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5034 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5035 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5036 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5037 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5038 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5039 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5040 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5041 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5042 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5043 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5044 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5045 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5046 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5047 /* MMU Domain access control / MPU write buffer control */ 5048 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5049 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5050 .writefn = dacr_write, .raw_writefn = raw_write, 5051 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5052 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5053 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5054 .type = ARM_CP_ALIAS, 5055 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5056 .access = PL1_RW, 5057 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5058 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5059 .type = ARM_CP_ALIAS, 5060 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5061 .access = PL1_RW, 5062 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5063 /* We rely on the access checks not allowing the guest to write to the 5064 * state field when SPSel indicates that it's being used as the stack 5065 * pointer. 5066 */ 5067 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5068 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5069 .access = PL1_RW, .accessfn = sp_el0_access, 5070 .type = ARM_CP_ALIAS, 5071 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5072 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5073 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5074 .access = PL2_RW, .type = ARM_CP_ALIAS, 5075 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5076 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5077 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5078 .type = ARM_CP_NO_RAW, 5079 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5080 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5081 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5082 .access = PL2_RW, 5083 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5084 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5085 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5086 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5087 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5088 .writefn = dacr_write, .raw_writefn = raw_write, 5089 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5090 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5091 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5092 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5093 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5094 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5095 .type = ARM_CP_ALIAS, 5096 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5097 .access = PL2_RW, 5098 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5099 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5100 .type = ARM_CP_ALIAS, 5101 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5102 .access = PL2_RW, 5103 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5104 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5105 .type = ARM_CP_ALIAS, 5106 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5107 .access = PL2_RW, 5108 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5109 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5110 .type = ARM_CP_ALIAS, 5111 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5112 .access = PL2_RW, 5113 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5114 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5115 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5116 .resetvalue = 0, 5117 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5118 { .name = "SDCR", .type = ARM_CP_ALIAS, 5119 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5120 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5121 .writefn = sdcr_write, 5122 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5123 }; 5124 5125 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5126 { 5127 ARMCPU *cpu = env_archcpu(env); 5128 5129 if (arm_feature(env, ARM_FEATURE_V8)) { 5130 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5131 } else { 5132 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5133 } 5134 5135 if (arm_feature(env, ARM_FEATURE_EL3)) { 5136 valid_mask &= ~HCR_HCD; 5137 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5138 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5139 * However, if we're using the SMC PSCI conduit then QEMU is 5140 * effectively acting like EL3 firmware and so the guest at 5141 * EL2 should retain the ability to prevent EL1 from being 5142 * able to make SMC calls into the ersatz firmware, so in 5143 * that case HCR.TSC should be read/write. 5144 */ 5145 valid_mask &= ~HCR_TSC; 5146 } 5147 5148 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5149 if (cpu_isar_feature(aa64_vh, cpu)) { 5150 valid_mask |= HCR_E2H; 5151 } 5152 if (cpu_isar_feature(aa64_ras, cpu)) { 5153 valid_mask |= HCR_TERR | HCR_TEA; 5154 } 5155 if (cpu_isar_feature(aa64_lor, cpu)) { 5156 valid_mask |= HCR_TLOR; 5157 } 5158 if (cpu_isar_feature(aa64_pauth, cpu)) { 5159 valid_mask |= HCR_API | HCR_APK; 5160 } 5161 if (cpu_isar_feature(aa64_mte, cpu)) { 5162 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5163 } 5164 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5165 valid_mask |= HCR_ENSCXT; 5166 } 5167 if (cpu_isar_feature(aa64_fwb, cpu)) { 5168 valid_mask |= HCR_FWB; 5169 } 5170 } 5171 5172 /* Clear RES0 bits. */ 5173 value &= valid_mask; 5174 5175 /* 5176 * These bits change the MMU setup: 5177 * HCR_VM enables stage 2 translation 5178 * HCR_PTW forbids certain page-table setups 5179 * HCR_DC disables stage1 and enables stage2 translation 5180 * HCR_DCT enables tagging on (disabled) stage1 translation 5181 * HCR_FWB changes the interpretation of stage2 descriptor bits 5182 */ 5183 if ((env->cp15.hcr_el2 ^ value) & 5184 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5185 tlb_flush(CPU(cpu)); 5186 } 5187 env->cp15.hcr_el2 = value; 5188 5189 /* 5190 * Updates to VI and VF require us to update the status of 5191 * virtual interrupts, which are the logical OR of these bits 5192 * and the state of the input lines from the GIC. (This requires 5193 * that we have the iothread lock, which is done by marking the 5194 * reginfo structs as ARM_CP_IO.) 5195 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5196 * possible for it to be taken immediately, because VIRQ and 5197 * VFIQ are masked unless running at EL0 or EL1, and HCR 5198 * can only be written at EL2. 5199 */ 5200 g_assert(qemu_mutex_iothread_locked()); 5201 arm_cpu_update_virq(cpu); 5202 arm_cpu_update_vfiq(cpu); 5203 arm_cpu_update_vserr(cpu); 5204 } 5205 5206 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5207 { 5208 do_hcr_write(env, value, 0); 5209 } 5210 5211 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5212 uint64_t value) 5213 { 5214 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5215 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5216 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5217 } 5218 5219 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5220 uint64_t value) 5221 { 5222 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5223 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5224 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5225 } 5226 5227 /* 5228 * Return the effective value of HCR_EL2. 5229 * Bits that are not included here: 5230 * RW (read from SCR_EL3.RW as needed) 5231 */ 5232 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5233 { 5234 uint64_t ret = env->cp15.hcr_el2; 5235 5236 if (!arm_is_el2_enabled(env)) { 5237 /* 5238 * "This register has no effect if EL2 is not enabled in the 5239 * current Security state". This is ARMv8.4-SecEL2 speak for 5240 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5241 * 5242 * Prior to that, the language was "In an implementation that 5243 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5244 * as if this field is 0 for all purposes other than a direct 5245 * read or write access of HCR_EL2". With lots of enumeration 5246 * on a per-field basis. In current QEMU, this is condition 5247 * is arm_is_secure_below_el3. 5248 * 5249 * Since the v8.4 language applies to the entire register, and 5250 * appears to be backward compatible, use that. 5251 */ 5252 return 0; 5253 } 5254 5255 /* 5256 * For a cpu that supports both aarch64 and aarch32, we can set bits 5257 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5258 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5259 */ 5260 if (!arm_el_is_aa64(env, 2)) { 5261 uint64_t aa32_valid; 5262 5263 /* 5264 * These bits are up-to-date as of ARMv8.6. 5265 * For HCR, it's easiest to list just the 2 bits that are invalid. 5266 * For HCR2, list those that are valid. 5267 */ 5268 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5269 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5270 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5271 ret &= aa32_valid; 5272 } 5273 5274 if (ret & HCR_TGE) { 5275 /* These bits are up-to-date as of ARMv8.6. */ 5276 if (ret & HCR_E2H) { 5277 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5278 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5279 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5280 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5281 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5282 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5283 } else { 5284 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5285 } 5286 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5287 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5288 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5289 HCR_TLOR); 5290 } 5291 5292 return ret; 5293 } 5294 5295 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5296 uint64_t value) 5297 { 5298 uint64_t valid_mask = 0; 5299 5300 /* No features adding bits to HCRX are implemented. */ 5301 5302 /* Clear RES0 bits. */ 5303 env->cp15.hcrx_el2 = value & valid_mask; 5304 } 5305 5306 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5307 bool isread) 5308 { 5309 if (arm_current_el(env) < 3 5310 && arm_feature(env, ARM_FEATURE_EL3) 5311 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5312 return CP_ACCESS_TRAP_EL3; 5313 } 5314 return CP_ACCESS_OK; 5315 } 5316 5317 static const ARMCPRegInfo hcrx_el2_reginfo = { 5318 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5319 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5320 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5321 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5322 }; 5323 5324 /* Return the effective value of HCRX_EL2. */ 5325 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5326 { 5327 /* 5328 * The bits in this register behave as 0 for all purposes other than 5329 * direct reads of the register if: 5330 * - EL2 is not enabled in the current security state, 5331 * - SCR_EL3.HXEn is 0. 5332 */ 5333 if (!arm_is_el2_enabled(env) 5334 || (arm_feature(env, ARM_FEATURE_EL3) 5335 && !(env->cp15.scr_el3 & SCR_HXEN))) { 5336 return 0; 5337 } 5338 return env->cp15.hcrx_el2; 5339 } 5340 5341 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5342 uint64_t value) 5343 { 5344 /* 5345 * For A-profile AArch32 EL3, if NSACR.CP10 5346 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5347 */ 5348 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5349 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5350 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5351 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5352 } 5353 env->cp15.cptr_el[2] = value; 5354 } 5355 5356 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5357 { 5358 /* 5359 * For A-profile AArch32 EL3, if NSACR.CP10 5360 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5361 */ 5362 uint64_t value = env->cp15.cptr_el[2]; 5363 5364 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5365 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5366 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5367 } 5368 return value; 5369 } 5370 5371 static const ARMCPRegInfo el2_cp_reginfo[] = { 5372 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5373 .type = ARM_CP_IO, 5374 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5375 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5376 .writefn = hcr_write }, 5377 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5378 .type = ARM_CP_ALIAS | ARM_CP_IO, 5379 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5380 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5381 .writefn = hcr_writelow }, 5382 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5383 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5384 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5385 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5386 .type = ARM_CP_ALIAS, 5387 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5388 .access = PL2_RW, 5389 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5390 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5391 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5392 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5393 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5394 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5395 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5396 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5397 .type = ARM_CP_ALIAS, 5398 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5399 .access = PL2_RW, 5400 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5401 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5402 .type = ARM_CP_ALIAS, 5403 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5404 .access = PL2_RW, 5405 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5406 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5407 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5408 .access = PL2_RW, .writefn = vbar_write, 5409 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5410 .resetvalue = 0 }, 5411 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5412 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5413 .access = PL3_RW, .type = ARM_CP_ALIAS, 5414 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5415 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5416 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5417 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5418 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5419 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5420 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5421 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5422 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5423 .resetvalue = 0 }, 5424 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5425 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5426 .access = PL2_RW, .type = ARM_CP_ALIAS, 5427 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5428 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5429 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5430 .access = PL2_RW, .type = ARM_CP_CONST, 5431 .resetvalue = 0 }, 5432 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5433 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5434 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5435 .access = PL2_RW, .type = ARM_CP_CONST, 5436 .resetvalue = 0 }, 5437 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5438 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5439 .access = PL2_RW, .type = ARM_CP_CONST, 5440 .resetvalue = 0 }, 5441 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5442 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5443 .access = PL2_RW, .type = ARM_CP_CONST, 5444 .resetvalue = 0 }, 5445 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5446 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5447 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5448 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5449 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5450 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5451 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5452 .type = ARM_CP_ALIAS, 5453 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5454 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5455 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5456 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5457 .access = PL2_RW, 5458 /* no .writefn needed as this can't cause an ASID change; 5459 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5460 */ 5461 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5462 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5463 .cp = 15, .opc1 = 6, .crm = 2, 5464 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5465 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5466 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5467 .writefn = vttbr_write }, 5468 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5469 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5470 .access = PL2_RW, .writefn = vttbr_write, 5471 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5472 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5473 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5474 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5475 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5476 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5477 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5478 .access = PL2_RW, .resetvalue = 0, 5479 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5480 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5481 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5482 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5483 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5484 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5485 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5486 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5487 { .name = "TLBIALLNSNH", 5488 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5489 .type = ARM_CP_NO_RAW, .access = PL2_W, 5490 .writefn = tlbiall_nsnh_write }, 5491 { .name = "TLBIALLNSNHIS", 5492 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5493 .type = ARM_CP_NO_RAW, .access = PL2_W, 5494 .writefn = tlbiall_nsnh_is_write }, 5495 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5496 .type = ARM_CP_NO_RAW, .access = PL2_W, 5497 .writefn = tlbiall_hyp_write }, 5498 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5499 .type = ARM_CP_NO_RAW, .access = PL2_W, 5500 .writefn = tlbiall_hyp_is_write }, 5501 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5502 .type = ARM_CP_NO_RAW, .access = PL2_W, 5503 .writefn = tlbimva_hyp_write }, 5504 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5505 .type = ARM_CP_NO_RAW, .access = PL2_W, 5506 .writefn = tlbimva_hyp_is_write }, 5507 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5508 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5509 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5510 .writefn = tlbi_aa64_alle2_write }, 5511 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5512 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5513 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5514 .writefn = tlbi_aa64_vae2_write }, 5515 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5516 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5517 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5518 .writefn = tlbi_aa64_vae2_write }, 5519 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5520 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5521 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5522 .writefn = tlbi_aa64_alle2is_write }, 5523 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5524 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5525 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5526 .writefn = tlbi_aa64_vae2is_write }, 5527 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5528 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5529 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5530 .writefn = tlbi_aa64_vae2is_write }, 5531 #ifndef CONFIG_USER_ONLY 5532 /* Unlike the other EL2-related AT operations, these must 5533 * UNDEF from EL3 if EL2 is not implemented, which is why we 5534 * define them here rather than with the rest of the AT ops. 5535 */ 5536 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5537 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5538 .access = PL2_W, .accessfn = at_s1e2_access, 5539 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5540 .writefn = ats_write64 }, 5541 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5542 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5543 .access = PL2_W, .accessfn = at_s1e2_access, 5544 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5545 .writefn = ats_write64 }, 5546 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5547 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5548 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5549 * to behave as if SCR.NS was 1. 5550 */ 5551 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5552 .access = PL2_W, 5553 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5554 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5555 .access = PL2_W, 5556 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5557 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5558 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5559 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5560 * reset values as IMPDEF. We choose to reset to 3 to comply with 5561 * both ARMv7 and ARMv8. 5562 */ 5563 .access = PL2_RW, .resetvalue = 3, 5564 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5565 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5566 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5567 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5568 .writefn = gt_cntvoff_write, 5569 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5570 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5571 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5572 .writefn = gt_cntvoff_write, 5573 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5574 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5575 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5576 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5577 .type = ARM_CP_IO, .access = PL2_RW, 5578 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5579 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5580 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5581 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5582 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5583 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5584 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5585 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5586 .resetfn = gt_hyp_timer_reset, 5587 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5588 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5589 .type = ARM_CP_IO, 5590 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5591 .access = PL2_RW, 5592 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5593 .resetvalue = 0, 5594 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5595 #endif 5596 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5597 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5598 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5599 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5600 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5601 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5602 .access = PL2_RW, 5603 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5604 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5605 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5606 .access = PL2_RW, 5607 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5608 }; 5609 5610 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5611 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5612 .type = ARM_CP_ALIAS | ARM_CP_IO, 5613 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5614 .access = PL2_RW, 5615 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5616 .writefn = hcr_writehigh }, 5617 }; 5618 5619 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5620 bool isread) 5621 { 5622 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5623 return CP_ACCESS_OK; 5624 } 5625 return CP_ACCESS_TRAP_UNCATEGORIZED; 5626 } 5627 5628 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5629 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5630 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5631 .access = PL2_RW, .accessfn = sel2_access, 5632 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5633 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5634 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5635 .access = PL2_RW, .accessfn = sel2_access, 5636 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5637 }; 5638 5639 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5640 bool isread) 5641 { 5642 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5643 * At Secure EL1 it traps to EL3 or EL2. 5644 */ 5645 if (arm_current_el(env) == 3) { 5646 return CP_ACCESS_OK; 5647 } 5648 if (arm_is_secure_below_el3(env)) { 5649 if (env->cp15.scr_el3 & SCR_EEL2) { 5650 return CP_ACCESS_TRAP_EL2; 5651 } 5652 return CP_ACCESS_TRAP_EL3; 5653 } 5654 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5655 if (isread) { 5656 return CP_ACCESS_OK; 5657 } 5658 return CP_ACCESS_TRAP_UNCATEGORIZED; 5659 } 5660 5661 static const ARMCPRegInfo el3_cp_reginfo[] = { 5662 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5663 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5664 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5665 .resetfn = scr_reset, .writefn = scr_write }, 5666 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5667 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5668 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5669 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5670 .writefn = scr_write }, 5671 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5672 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5673 .access = PL3_RW, .resetvalue = 0, 5674 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5675 { .name = "SDER", 5676 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5677 .access = PL3_RW, .resetvalue = 0, 5678 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5679 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5680 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5681 .writefn = vbar_write, .resetvalue = 0, 5682 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5683 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5684 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5685 .access = PL3_RW, .resetvalue = 0, 5686 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5687 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5688 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5689 .access = PL3_RW, 5690 /* no .writefn needed as this can't cause an ASID change; 5691 * we must provide a .raw_writefn and .resetfn because we handle 5692 * reset and migration for the AArch32 TTBCR(S), which might be 5693 * using mask and base_mask. 5694 */ 5695 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5696 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5697 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5698 .type = ARM_CP_ALIAS, 5699 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5700 .access = PL3_RW, 5701 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5702 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5703 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5704 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5705 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5706 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5707 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5708 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5709 .type = ARM_CP_ALIAS, 5710 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5711 .access = PL3_RW, 5712 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5713 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5714 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5715 .access = PL3_RW, .writefn = vbar_write, 5716 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5717 .resetvalue = 0 }, 5718 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5719 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5720 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5721 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5722 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5723 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5724 .access = PL3_RW, .resetvalue = 0, 5725 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5726 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5727 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5728 .access = PL3_RW, .type = ARM_CP_CONST, 5729 .resetvalue = 0 }, 5730 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5731 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5732 .access = PL3_RW, .type = ARM_CP_CONST, 5733 .resetvalue = 0 }, 5734 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5735 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5736 .access = PL3_RW, .type = ARM_CP_CONST, 5737 .resetvalue = 0 }, 5738 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5739 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5740 .access = PL3_W, .type = ARM_CP_NO_RAW, 5741 .writefn = tlbi_aa64_alle3is_write }, 5742 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5743 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5744 .access = PL3_W, .type = ARM_CP_NO_RAW, 5745 .writefn = tlbi_aa64_vae3is_write }, 5746 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5747 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5748 .access = PL3_W, .type = ARM_CP_NO_RAW, 5749 .writefn = tlbi_aa64_vae3is_write }, 5750 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5751 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5752 .access = PL3_W, .type = ARM_CP_NO_RAW, 5753 .writefn = tlbi_aa64_alle3_write }, 5754 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5755 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5756 .access = PL3_W, .type = ARM_CP_NO_RAW, 5757 .writefn = tlbi_aa64_vae3_write }, 5758 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5759 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5760 .access = PL3_W, .type = ARM_CP_NO_RAW, 5761 .writefn = tlbi_aa64_vae3_write }, 5762 }; 5763 5764 #ifndef CONFIG_USER_ONLY 5765 /* Test if system register redirection is to occur in the current state. */ 5766 static bool redirect_for_e2h(CPUARMState *env) 5767 { 5768 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5769 } 5770 5771 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5772 { 5773 CPReadFn *readfn; 5774 5775 if (redirect_for_e2h(env)) { 5776 /* Switch to the saved EL2 version of the register. */ 5777 ri = ri->opaque; 5778 readfn = ri->readfn; 5779 } else { 5780 readfn = ri->orig_readfn; 5781 } 5782 if (readfn == NULL) { 5783 readfn = raw_read; 5784 } 5785 return readfn(env, ri); 5786 } 5787 5788 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5789 uint64_t value) 5790 { 5791 CPWriteFn *writefn; 5792 5793 if (redirect_for_e2h(env)) { 5794 /* Switch to the saved EL2 version of the register. */ 5795 ri = ri->opaque; 5796 writefn = ri->writefn; 5797 } else { 5798 writefn = ri->orig_writefn; 5799 } 5800 if (writefn == NULL) { 5801 writefn = raw_write; 5802 } 5803 writefn(env, ri, value); 5804 } 5805 5806 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5807 { 5808 struct E2HAlias { 5809 uint32_t src_key, dst_key, new_key; 5810 const char *src_name, *dst_name, *new_name; 5811 bool (*feature)(const ARMISARegisters *id); 5812 }; 5813 5814 #define K(op0, op1, crn, crm, op2) \ 5815 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5816 5817 static const struct E2HAlias aliases[] = { 5818 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5819 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5820 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5821 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5822 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5823 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5824 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5825 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5826 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5827 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5828 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5829 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5830 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5831 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5832 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5833 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5834 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5835 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5836 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5837 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5838 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5839 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5840 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5841 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5842 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5843 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5844 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5845 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5846 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5847 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5848 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5849 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5850 5851 /* 5852 * Note that redirection of ZCR is mentioned in the description 5853 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5854 * not in the summary table. 5855 */ 5856 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5857 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5858 5859 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5860 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5861 5862 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 5863 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 5864 isar_feature_aa64_scxtnum }, 5865 5866 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5867 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5868 }; 5869 #undef K 5870 5871 size_t i; 5872 5873 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5874 const struct E2HAlias *a = &aliases[i]; 5875 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 5876 bool ok; 5877 5878 if (a->feature && !a->feature(&cpu->isar)) { 5879 continue; 5880 } 5881 5882 src_reg = g_hash_table_lookup(cpu->cp_regs, 5883 (gpointer)(uintptr_t)a->src_key); 5884 dst_reg = g_hash_table_lookup(cpu->cp_regs, 5885 (gpointer)(uintptr_t)a->dst_key); 5886 g_assert(src_reg != NULL); 5887 g_assert(dst_reg != NULL); 5888 5889 /* Cross-compare names to detect typos in the keys. */ 5890 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5891 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5892 5893 /* None of the core system registers use opaque; we will. */ 5894 g_assert(src_reg->opaque == NULL); 5895 5896 /* Create alias before redirection so we dup the right data. */ 5897 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5898 5899 new_reg->name = a->new_name; 5900 new_reg->type |= ARM_CP_ALIAS; 5901 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5902 new_reg->access &= PL2_RW | PL3_RW; 5903 5904 ok = g_hash_table_insert(cpu->cp_regs, 5905 (gpointer)(uintptr_t)a->new_key, new_reg); 5906 g_assert(ok); 5907 5908 src_reg->opaque = dst_reg; 5909 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5910 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5911 if (!src_reg->raw_readfn) { 5912 src_reg->raw_readfn = raw_read; 5913 } 5914 if (!src_reg->raw_writefn) { 5915 src_reg->raw_writefn = raw_write; 5916 } 5917 src_reg->readfn = el2_e2h_read; 5918 src_reg->writefn = el2_e2h_write; 5919 } 5920 } 5921 #endif 5922 5923 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5924 bool isread) 5925 { 5926 int cur_el = arm_current_el(env); 5927 5928 if (cur_el < 2) { 5929 uint64_t hcr = arm_hcr_el2_eff(env); 5930 5931 if (cur_el == 0) { 5932 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5933 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 5934 return CP_ACCESS_TRAP_EL2; 5935 } 5936 } else { 5937 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5938 return CP_ACCESS_TRAP; 5939 } 5940 if (hcr & HCR_TID2) { 5941 return CP_ACCESS_TRAP_EL2; 5942 } 5943 } 5944 } else if (hcr & HCR_TID2) { 5945 return CP_ACCESS_TRAP_EL2; 5946 } 5947 } 5948 5949 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 5950 return CP_ACCESS_TRAP_EL2; 5951 } 5952 5953 return CP_ACCESS_OK; 5954 } 5955 5956 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5957 uint64_t value) 5958 { 5959 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5960 * read via a bit in OSLSR_EL1. 5961 */ 5962 int oslock; 5963 5964 if (ri->state == ARM_CP_STATE_AA32) { 5965 oslock = (value == 0xC5ACCE55); 5966 } else { 5967 oslock = value & 1; 5968 } 5969 5970 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5971 } 5972 5973 static const ARMCPRegInfo debug_cp_reginfo[] = { 5974 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5975 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5976 * unlike DBGDRAR it is never accessible from EL0. 5977 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 5978 * accessor. 5979 */ 5980 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 5981 .access = PL0_R, .accessfn = access_tdra, 5982 .type = ARM_CP_CONST, .resetvalue = 0 }, 5983 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 5984 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5985 .access = PL1_R, .accessfn = access_tdra, 5986 .type = ARM_CP_CONST, .resetvalue = 0 }, 5987 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 5988 .access = PL0_R, .accessfn = access_tdra, 5989 .type = ARM_CP_CONST, .resetvalue = 0 }, 5990 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 5991 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 5992 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5993 .access = PL1_RW, .accessfn = access_tda, 5994 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 5995 .resetvalue = 0 }, 5996 /* 5997 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external 5998 * Debug Communication Channel is not implemented. 5999 */ 6000 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, 6001 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, 6002 .access = PL0_R, .accessfn = access_tda, 6003 .type = ARM_CP_CONST, .resetvalue = 0 }, 6004 /* 6005 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as 6006 * it is unlikely a guest will care. 6007 * We don't implement the configurable EL0 access. 6008 */ 6009 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, 6010 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6011 .type = ARM_CP_ALIAS, 6012 .access = PL1_R, .accessfn = access_tda, 6013 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6014 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6015 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6016 .access = PL1_W, .type = ARM_CP_NO_RAW, 6017 .accessfn = access_tdosa, 6018 .writefn = oslar_write }, 6019 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6020 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6021 .access = PL1_R, .resetvalue = 10, 6022 .accessfn = access_tdosa, 6023 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6024 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6025 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6026 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6027 .access = PL1_RW, .accessfn = access_tdosa, 6028 .type = ARM_CP_NOP }, 6029 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6030 * implement vector catch debug events yet. 6031 */ 6032 { .name = "DBGVCR", 6033 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6034 .access = PL1_RW, .accessfn = access_tda, 6035 .type = ARM_CP_NOP }, 6036 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6037 * to save and restore a 32-bit guest's DBGVCR) 6038 */ 6039 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6040 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6041 .access = PL2_RW, .accessfn = access_tda, 6042 .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP }, 6043 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6044 * Channel but Linux may try to access this register. The 32-bit 6045 * alias is DBGDCCINT. 6046 */ 6047 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6048 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6049 .access = PL1_RW, .accessfn = access_tda, 6050 .type = ARM_CP_NOP }, 6051 }; 6052 6053 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6054 /* 64 bit access versions of the (dummy) debug registers */ 6055 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6056 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6057 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6058 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6059 }; 6060 6061 /* 6062 * Check for traps to RAS registers, which are controlled 6063 * by HCR_EL2.TERR and SCR_EL3.TERR. 6064 */ 6065 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6066 bool isread) 6067 { 6068 int el = arm_current_el(env); 6069 6070 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6071 return CP_ACCESS_TRAP_EL2; 6072 } 6073 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6074 return CP_ACCESS_TRAP_EL3; 6075 } 6076 return CP_ACCESS_OK; 6077 } 6078 6079 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6080 { 6081 int el = arm_current_el(env); 6082 6083 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6084 return env->cp15.vdisr_el2; 6085 } 6086 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6087 return 0; /* RAZ/WI */ 6088 } 6089 return env->cp15.disr_el1; 6090 } 6091 6092 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6093 { 6094 int el = arm_current_el(env); 6095 6096 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6097 env->cp15.vdisr_el2 = val; 6098 return; 6099 } 6100 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6101 return; /* RAZ/WI */ 6102 } 6103 env->cp15.disr_el1 = val; 6104 } 6105 6106 /* 6107 * Minimal RAS implementation with no Error Records. 6108 * Which means that all of the Error Record registers: 6109 * ERXADDR_EL1 6110 * ERXCTLR_EL1 6111 * ERXFR_EL1 6112 * ERXMISC0_EL1 6113 * ERXMISC1_EL1 6114 * ERXMISC2_EL1 6115 * ERXMISC3_EL1 6116 * ERXPFGCDN_EL1 (RASv1p1) 6117 * ERXPFGCTL_EL1 (RASv1p1) 6118 * ERXPFGF_EL1 (RASv1p1) 6119 * ERXSTATUS_EL1 6120 * and 6121 * ERRSELR_EL1 6122 * may generate UNDEFINED, which is the effect we get by not 6123 * listing them at all. 6124 */ 6125 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6126 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6127 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6128 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6129 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6130 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6131 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6132 .access = PL1_R, .accessfn = access_terr, 6133 .type = ARM_CP_CONST, .resetvalue = 0 }, 6134 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6135 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6136 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6137 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6138 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6139 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6140 }; 6141 6142 /* Return the exception level to which exceptions should be taken 6143 * via SVEAccessTrap. If an exception should be routed through 6144 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6145 * take care of raising that exception. 6146 * C.f. the ARM pseudocode function CheckSVEEnabled. 6147 */ 6148 int sve_exception_el(CPUARMState *env, int el) 6149 { 6150 #ifndef CONFIG_USER_ONLY 6151 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6152 6153 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6154 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6155 case 1: 6156 if (el != 0) { 6157 break; 6158 } 6159 /* fall through */ 6160 case 0: 6161 case 2: 6162 /* route_to_el2 */ 6163 return hcr_el2 & HCR_TGE ? 2 : 1; 6164 } 6165 6166 /* Check CPACR.FPEN. */ 6167 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN)) { 6168 case 1: 6169 if (el != 0) { 6170 break; 6171 } 6172 /* fall through */ 6173 case 0: 6174 case 2: 6175 return 0; 6176 } 6177 } 6178 6179 /* 6180 * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). 6181 */ 6182 if (el <= 2) { 6183 if (hcr_el2 & HCR_E2H) { 6184 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6185 case 1: 6186 if (el != 0 || !(hcr_el2 & HCR_TGE)) { 6187 break; 6188 } 6189 /* fall through */ 6190 case 0: 6191 case 2: 6192 return 2; 6193 } 6194 6195 switch (FIELD_EX32(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 6196 case 1: 6197 if (el == 2 || !(hcr_el2 & HCR_TGE)) { 6198 break; 6199 } 6200 /* fall through */ 6201 case 0: 6202 case 2: 6203 return 0; 6204 } 6205 } else if (arm_is_el2_enabled(env)) { 6206 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6207 return 2; 6208 } 6209 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 6210 return 0; 6211 } 6212 } 6213 } 6214 6215 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6216 if (arm_feature(env, ARM_FEATURE_EL3) 6217 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6218 return 3; 6219 } 6220 #endif 6221 return 0; 6222 } 6223 6224 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6225 { 6226 uint32_t end_len; 6227 6228 start_len = MIN(start_len, ARM_MAX_VQ - 1); 6229 end_len = start_len; 6230 6231 if (!test_bit(start_len, cpu->sve_vq_map)) { 6232 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6233 assert(end_len < start_len); 6234 } 6235 return end_len; 6236 } 6237 6238 /* 6239 * Given that SVE is enabled, return the vector length for EL. 6240 */ 6241 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6242 { 6243 ARMCPU *cpu = env_archcpu(env); 6244 uint32_t zcr_len = cpu->sve_max_vq - 1; 6245 6246 if (el <= 1 && 6247 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6248 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6249 } 6250 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6251 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6252 } 6253 if (arm_feature(env, ARM_FEATURE_EL3)) { 6254 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6255 } 6256 6257 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len); 6258 } 6259 6260 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6261 uint64_t value) 6262 { 6263 int cur_el = arm_current_el(env); 6264 int old_len = sve_zcr_len_for_el(env, cur_el); 6265 int new_len; 6266 6267 /* Bits other than [3:0] are RAZ/WI. */ 6268 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6269 raw_write(env, ri, value & 0xf); 6270 6271 /* 6272 * Because we arrived here, we know both FP and SVE are enabled; 6273 * otherwise we would have trapped access to the ZCR_ELn register. 6274 */ 6275 new_len = sve_zcr_len_for_el(env, cur_el); 6276 if (new_len < old_len) { 6277 aarch64_sve_narrow_vq(env, new_len + 1); 6278 } 6279 } 6280 6281 static const ARMCPRegInfo zcr_reginfo[] = { 6282 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6283 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6284 .access = PL1_RW, .type = ARM_CP_SVE, 6285 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6286 .writefn = zcr_write, .raw_writefn = raw_write }, 6287 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6288 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6289 .access = PL2_RW, .type = ARM_CP_SVE, 6290 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6291 .writefn = zcr_write, .raw_writefn = raw_write }, 6292 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6293 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6294 .access = PL3_RW, .type = ARM_CP_SVE, 6295 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6296 .writefn = zcr_write, .raw_writefn = raw_write }, 6297 }; 6298 6299 void hw_watchpoint_update(ARMCPU *cpu, int n) 6300 { 6301 CPUARMState *env = &cpu->env; 6302 vaddr len = 0; 6303 vaddr wvr = env->cp15.dbgwvr[n]; 6304 uint64_t wcr = env->cp15.dbgwcr[n]; 6305 int mask; 6306 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6307 6308 if (env->cpu_watchpoint[n]) { 6309 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6310 env->cpu_watchpoint[n] = NULL; 6311 } 6312 6313 if (!FIELD_EX64(wcr, DBGWCR, E)) { 6314 /* E bit clear : watchpoint disabled */ 6315 return; 6316 } 6317 6318 switch (FIELD_EX64(wcr, DBGWCR, LSC)) { 6319 case 0: 6320 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6321 return; 6322 case 1: 6323 flags |= BP_MEM_READ; 6324 break; 6325 case 2: 6326 flags |= BP_MEM_WRITE; 6327 break; 6328 case 3: 6329 flags |= BP_MEM_ACCESS; 6330 break; 6331 } 6332 6333 /* Attempts to use both MASK and BAS fields simultaneously are 6334 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6335 * thus generating a watchpoint for every byte in the masked region. 6336 */ 6337 mask = FIELD_EX64(wcr, DBGWCR, MASK); 6338 if (mask == 1 || mask == 2) { 6339 /* Reserved values of MASK; we must act as if the mask value was 6340 * some non-reserved value, or as if the watchpoint were disabled. 6341 * We choose the latter. 6342 */ 6343 return; 6344 } else if (mask) { 6345 /* Watchpoint covers an aligned area up to 2GB in size */ 6346 len = 1ULL << mask; 6347 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6348 * whether the watchpoint fires when the unmasked bits match; we opt 6349 * to generate the exceptions. 6350 */ 6351 wvr &= ~(len - 1); 6352 } else { 6353 /* Watchpoint covers bytes defined by the byte address select bits */ 6354 int bas = FIELD_EX64(wcr, DBGWCR, BAS); 6355 int basstart; 6356 6357 if (extract64(wvr, 2, 1)) { 6358 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6359 * ignored, and BAS[3:0] define which bytes to watch. 6360 */ 6361 bas &= 0xf; 6362 } 6363 6364 if (bas == 0) { 6365 /* This must act as if the watchpoint is disabled */ 6366 return; 6367 } 6368 6369 /* The BAS bits are supposed to be programmed to indicate a contiguous 6370 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6371 * we fire for each byte in the word/doubleword addressed by the WVR. 6372 * We choose to ignore any non-zero bits after the first range of 1s. 6373 */ 6374 basstart = ctz32(bas); 6375 len = cto32(bas >> basstart); 6376 wvr += basstart; 6377 } 6378 6379 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6380 &env->cpu_watchpoint[n]); 6381 } 6382 6383 void hw_watchpoint_update_all(ARMCPU *cpu) 6384 { 6385 int i; 6386 CPUARMState *env = &cpu->env; 6387 6388 /* Completely clear out existing QEMU watchpoints and our array, to 6389 * avoid possible stale entries following migration load. 6390 */ 6391 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6392 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6393 6394 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6395 hw_watchpoint_update(cpu, i); 6396 } 6397 } 6398 6399 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6400 uint64_t value) 6401 { 6402 ARMCPU *cpu = env_archcpu(env); 6403 int i = ri->crm; 6404 6405 /* 6406 * Bits [1:0] are RES0. 6407 * 6408 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA) 6409 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if 6410 * they contain the value written. It is CONSTRAINED UNPREDICTABLE 6411 * whether the RESS bits are ignored when comparing an address. 6412 * 6413 * Therefore we are allowed to compare the entire register, which lets 6414 * us avoid considering whether or not FEAT_LVA is actually enabled. 6415 */ 6416 value &= ~3ULL; 6417 6418 raw_write(env, ri, value); 6419 hw_watchpoint_update(cpu, i); 6420 } 6421 6422 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6423 uint64_t value) 6424 { 6425 ARMCPU *cpu = env_archcpu(env); 6426 int i = ri->crm; 6427 6428 raw_write(env, ri, value); 6429 hw_watchpoint_update(cpu, i); 6430 } 6431 6432 void hw_breakpoint_update(ARMCPU *cpu, int n) 6433 { 6434 CPUARMState *env = &cpu->env; 6435 uint64_t bvr = env->cp15.dbgbvr[n]; 6436 uint64_t bcr = env->cp15.dbgbcr[n]; 6437 vaddr addr; 6438 int bt; 6439 int flags = BP_CPU; 6440 6441 if (env->cpu_breakpoint[n]) { 6442 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6443 env->cpu_breakpoint[n] = NULL; 6444 } 6445 6446 if (!extract64(bcr, 0, 1)) { 6447 /* E bit clear : watchpoint disabled */ 6448 return; 6449 } 6450 6451 bt = extract64(bcr, 20, 4); 6452 6453 switch (bt) { 6454 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6455 case 5: /* linked address mismatch (reserved if AArch64) */ 6456 qemu_log_mask(LOG_UNIMP, 6457 "arm: address mismatch breakpoint types not implemented\n"); 6458 return; 6459 case 0: /* unlinked address match */ 6460 case 1: /* linked address match */ 6461 { 6462 /* 6463 * Bits [1:0] are RES0. 6464 * 6465 * It is IMPLEMENTATION DEFINED whether bits [63:49] 6466 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit 6467 * of the VA field ([48] or [52] for FEAT_LVA), or whether the 6468 * value is read as written. It is CONSTRAINED UNPREDICTABLE 6469 * whether the RESS bits are ignored when comparing an address. 6470 * Therefore we are allowed to compare the entire register, which 6471 * lets us avoid considering whether FEAT_LVA is actually enabled. 6472 * 6473 * The BAS field is used to allow setting breakpoints on 16-bit 6474 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6475 * a bp will fire if the addresses covered by the bp and the addresses 6476 * covered by the insn overlap but the insn doesn't start at the 6477 * start of the bp address range. We choose to require the insn and 6478 * the bp to have the same address. The constraints on writing to 6479 * BAS enforced in dbgbcr_write mean we have only four cases: 6480 * 0b0000 => no breakpoint 6481 * 0b0011 => breakpoint on addr 6482 * 0b1100 => breakpoint on addr + 2 6483 * 0b1111 => breakpoint on addr 6484 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6485 */ 6486 int bas = extract64(bcr, 5, 4); 6487 addr = bvr & ~3ULL; 6488 if (bas == 0) { 6489 return; 6490 } 6491 if (bas == 0xc) { 6492 addr += 2; 6493 } 6494 break; 6495 } 6496 case 2: /* unlinked context ID match */ 6497 case 8: /* unlinked VMID match (reserved if no EL2) */ 6498 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6499 qemu_log_mask(LOG_UNIMP, 6500 "arm: unlinked context breakpoint types not implemented\n"); 6501 return; 6502 case 9: /* linked VMID match (reserved if no EL2) */ 6503 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6504 case 3: /* linked context ID match */ 6505 default: 6506 /* We must generate no events for Linked context matches (unless 6507 * they are linked to by some other bp/wp, which is handled in 6508 * updates for the linking bp/wp). We choose to also generate no events 6509 * for reserved values. 6510 */ 6511 return; 6512 } 6513 6514 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6515 } 6516 6517 void hw_breakpoint_update_all(ARMCPU *cpu) 6518 { 6519 int i; 6520 CPUARMState *env = &cpu->env; 6521 6522 /* Completely clear out existing QEMU breakpoints and our array, to 6523 * avoid possible stale entries following migration load. 6524 */ 6525 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6526 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6527 6528 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6529 hw_breakpoint_update(cpu, i); 6530 } 6531 } 6532 6533 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6534 uint64_t value) 6535 { 6536 ARMCPU *cpu = env_archcpu(env); 6537 int i = ri->crm; 6538 6539 raw_write(env, ri, value); 6540 hw_breakpoint_update(cpu, i); 6541 } 6542 6543 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6544 uint64_t value) 6545 { 6546 ARMCPU *cpu = env_archcpu(env); 6547 int i = ri->crm; 6548 6549 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6550 * copy of BAS[0]. 6551 */ 6552 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6553 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6554 6555 raw_write(env, ri, value); 6556 hw_breakpoint_update(cpu, i); 6557 } 6558 6559 static void define_debug_regs(ARMCPU *cpu) 6560 { 6561 /* Define v7 and v8 architectural debug registers. 6562 * These are just dummy implementations for now. 6563 */ 6564 int i; 6565 int wrps, brps, ctx_cmps; 6566 6567 /* 6568 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6569 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6570 * the register must not exist for this cpu. 6571 */ 6572 if (cpu->isar.dbgdidr != 0) { 6573 ARMCPRegInfo dbgdidr = { 6574 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6575 .opc1 = 0, .opc2 = 0, 6576 .access = PL0_R, .accessfn = access_tda, 6577 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6578 }; 6579 define_one_arm_cp_reg(cpu, &dbgdidr); 6580 } 6581 6582 brps = arm_num_brps(cpu); 6583 wrps = arm_num_wrps(cpu); 6584 ctx_cmps = arm_num_ctx_cmps(cpu); 6585 6586 assert(ctx_cmps <= brps); 6587 6588 define_arm_cp_regs(cpu, debug_cp_reginfo); 6589 6590 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6591 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6592 } 6593 6594 for (i = 0; i < brps; i++) { 6595 char *dbgbvr_el1_name = g_strdup_printf("DBGBVR%d_EL1", i); 6596 char *dbgbcr_el1_name = g_strdup_printf("DBGBCR%d_EL1", i); 6597 ARMCPRegInfo dbgregs[] = { 6598 { .name = dbgbvr_el1_name, .state = ARM_CP_STATE_BOTH, 6599 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6600 .access = PL1_RW, .accessfn = access_tda, 6601 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6602 .writefn = dbgbvr_write, .raw_writefn = raw_write 6603 }, 6604 { .name = dbgbcr_el1_name, .state = ARM_CP_STATE_BOTH, 6605 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6606 .access = PL1_RW, .accessfn = access_tda, 6607 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6608 .writefn = dbgbcr_write, .raw_writefn = raw_write 6609 }, 6610 }; 6611 define_arm_cp_regs(cpu, dbgregs); 6612 g_free(dbgbvr_el1_name); 6613 g_free(dbgbcr_el1_name); 6614 } 6615 6616 for (i = 0; i < wrps; i++) { 6617 char *dbgwvr_el1_name = g_strdup_printf("DBGWVR%d_EL1", i); 6618 char *dbgwcr_el1_name = g_strdup_printf("DBGWCR%d_EL1", i); 6619 ARMCPRegInfo dbgregs[] = { 6620 { .name = dbgwvr_el1_name, .state = ARM_CP_STATE_BOTH, 6621 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6622 .access = PL1_RW, .accessfn = access_tda, 6623 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6624 .writefn = dbgwvr_write, .raw_writefn = raw_write 6625 }, 6626 { .name = dbgwcr_el1_name, .state = ARM_CP_STATE_BOTH, 6627 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6628 .access = PL1_RW, .accessfn = access_tda, 6629 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6630 .writefn = dbgwcr_write, .raw_writefn = raw_write 6631 }, 6632 }; 6633 define_arm_cp_regs(cpu, dbgregs); 6634 g_free(dbgwvr_el1_name); 6635 g_free(dbgwcr_el1_name); 6636 } 6637 } 6638 6639 static void define_pmu_regs(ARMCPU *cpu) 6640 { 6641 /* 6642 * v7 performance monitor control register: same implementor 6643 * field as main ID register, and we implement four counters in 6644 * addition to the cycle count register. 6645 */ 6646 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 6647 ARMCPRegInfo pmcr = { 6648 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6649 .access = PL0_RW, 6650 .type = ARM_CP_IO | ARM_CP_ALIAS, 6651 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6652 .accessfn = pmreg_access, .writefn = pmcr_write, 6653 .raw_writefn = raw_write, 6654 }; 6655 ARMCPRegInfo pmcr64 = { 6656 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6657 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6658 .access = PL0_RW, .accessfn = pmreg_access, 6659 .type = ARM_CP_IO, 6660 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6661 .resetvalue = cpu->isar.reset_pmcr_el0, 6662 .writefn = pmcr_write, .raw_writefn = raw_write, 6663 }; 6664 6665 define_one_arm_cp_reg(cpu, &pmcr); 6666 define_one_arm_cp_reg(cpu, &pmcr64); 6667 for (i = 0; i < pmcrn; i++) { 6668 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6669 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6670 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6671 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6672 ARMCPRegInfo pmev_regs[] = { 6673 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6674 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6675 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6676 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6677 .accessfn = pmreg_access_xevcntr }, 6678 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6679 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6680 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6681 .type = ARM_CP_IO, 6682 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6683 .raw_readfn = pmevcntr_rawread, 6684 .raw_writefn = pmevcntr_rawwrite }, 6685 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6686 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6687 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6688 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6689 .accessfn = pmreg_access }, 6690 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6691 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6692 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6693 .type = ARM_CP_IO, 6694 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6695 .raw_writefn = pmevtyper_rawwrite }, 6696 }; 6697 define_arm_cp_regs(cpu, pmev_regs); 6698 g_free(pmevcntr_name); 6699 g_free(pmevcntr_el0_name); 6700 g_free(pmevtyper_name); 6701 g_free(pmevtyper_el0_name); 6702 } 6703 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6704 ARMCPRegInfo v81_pmu_regs[] = { 6705 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6706 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6707 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6708 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6709 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6710 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6711 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6712 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6713 }; 6714 define_arm_cp_regs(cpu, v81_pmu_regs); 6715 } 6716 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6717 static const ARMCPRegInfo v84_pmmir = { 6718 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6719 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6720 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6721 .resetvalue = 0 6722 }; 6723 define_one_arm_cp_reg(cpu, &v84_pmmir); 6724 } 6725 } 6726 6727 /* We don't know until after realize whether there's a GICv3 6728 * attached, and that is what registers the gicv3 sysregs. 6729 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6730 * at runtime. 6731 */ 6732 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6733 { 6734 ARMCPU *cpu = env_archcpu(env); 6735 uint64_t pfr1 = cpu->isar.id_pfr1; 6736 6737 if (env->gicv3state) { 6738 pfr1 |= 1 << 28; 6739 } 6740 return pfr1; 6741 } 6742 6743 #ifndef CONFIG_USER_ONLY 6744 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6745 { 6746 ARMCPU *cpu = env_archcpu(env); 6747 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6748 6749 if (env->gicv3state) { 6750 pfr0 |= 1 << 24; 6751 } 6752 return pfr0; 6753 } 6754 #endif 6755 6756 /* Shared logic between LORID and the rest of the LOR* registers. 6757 * Secure state exclusion has already been dealt with. 6758 */ 6759 static CPAccessResult access_lor_ns(CPUARMState *env, 6760 const ARMCPRegInfo *ri, bool isread) 6761 { 6762 int el = arm_current_el(env); 6763 6764 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6765 return CP_ACCESS_TRAP_EL2; 6766 } 6767 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6768 return CP_ACCESS_TRAP_EL3; 6769 } 6770 return CP_ACCESS_OK; 6771 } 6772 6773 static CPAccessResult access_lor_other(CPUARMState *env, 6774 const ARMCPRegInfo *ri, bool isread) 6775 { 6776 if (arm_is_secure_below_el3(env)) { 6777 /* Access denied in secure mode. */ 6778 return CP_ACCESS_TRAP; 6779 } 6780 return access_lor_ns(env, ri, isread); 6781 } 6782 6783 /* 6784 * A trivial implementation of ARMv8.1-LOR leaves all of these 6785 * registers fixed at 0, which indicates that there are zero 6786 * supported Limited Ordering regions. 6787 */ 6788 static const ARMCPRegInfo lor_reginfo[] = { 6789 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6790 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6791 .access = PL1_RW, .accessfn = access_lor_other, 6792 .type = ARM_CP_CONST, .resetvalue = 0 }, 6793 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6794 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6795 .access = PL1_RW, .accessfn = access_lor_other, 6796 .type = ARM_CP_CONST, .resetvalue = 0 }, 6797 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6798 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6799 .access = PL1_RW, .accessfn = access_lor_other, 6800 .type = ARM_CP_CONST, .resetvalue = 0 }, 6801 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6802 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6803 .access = PL1_RW, .accessfn = access_lor_other, 6804 .type = ARM_CP_CONST, .resetvalue = 0 }, 6805 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6806 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6807 .access = PL1_R, .accessfn = access_lor_ns, 6808 .type = ARM_CP_CONST, .resetvalue = 0 }, 6809 }; 6810 6811 #ifdef TARGET_AARCH64 6812 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6813 bool isread) 6814 { 6815 int el = arm_current_el(env); 6816 6817 if (el < 2 && 6818 arm_is_el2_enabled(env) && 6819 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6820 return CP_ACCESS_TRAP_EL2; 6821 } 6822 if (el < 3 && 6823 arm_feature(env, ARM_FEATURE_EL3) && 6824 !(env->cp15.scr_el3 & SCR_APK)) { 6825 return CP_ACCESS_TRAP_EL3; 6826 } 6827 return CP_ACCESS_OK; 6828 } 6829 6830 static const ARMCPRegInfo pauth_reginfo[] = { 6831 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6832 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6833 .access = PL1_RW, .accessfn = access_pauth, 6834 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6835 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6836 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6837 .access = PL1_RW, .accessfn = access_pauth, 6838 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6839 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6840 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6841 .access = PL1_RW, .accessfn = access_pauth, 6842 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6843 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6844 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6845 .access = PL1_RW, .accessfn = access_pauth, 6846 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6847 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6848 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6849 .access = PL1_RW, .accessfn = access_pauth, 6850 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6851 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6852 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6853 .access = PL1_RW, .accessfn = access_pauth, 6854 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6855 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6856 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6857 .access = PL1_RW, .accessfn = access_pauth, 6858 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6859 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6860 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6861 .access = PL1_RW, .accessfn = access_pauth, 6862 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6863 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6864 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6865 .access = PL1_RW, .accessfn = access_pauth, 6866 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6867 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6868 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6869 .access = PL1_RW, .accessfn = access_pauth, 6870 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6871 }; 6872 6873 static const ARMCPRegInfo tlbirange_reginfo[] = { 6874 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6875 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6876 .access = PL1_W, .type = ARM_CP_NO_RAW, 6877 .writefn = tlbi_aa64_rvae1is_write }, 6878 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6879 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6880 .access = PL1_W, .type = ARM_CP_NO_RAW, 6881 .writefn = tlbi_aa64_rvae1is_write }, 6882 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6883 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6884 .access = PL1_W, .type = ARM_CP_NO_RAW, 6885 .writefn = tlbi_aa64_rvae1is_write }, 6886 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6887 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6888 .access = PL1_W, .type = ARM_CP_NO_RAW, 6889 .writefn = tlbi_aa64_rvae1is_write }, 6890 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6891 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6892 .access = PL1_W, .type = ARM_CP_NO_RAW, 6893 .writefn = tlbi_aa64_rvae1is_write }, 6894 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6895 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6896 .access = PL1_W, .type = ARM_CP_NO_RAW, 6897 .writefn = tlbi_aa64_rvae1is_write }, 6898 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6899 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6900 .access = PL1_W, .type = ARM_CP_NO_RAW, 6901 .writefn = tlbi_aa64_rvae1is_write }, 6902 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6903 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6904 .access = PL1_W, .type = ARM_CP_NO_RAW, 6905 .writefn = tlbi_aa64_rvae1is_write }, 6906 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6907 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6908 .access = PL1_W, .type = ARM_CP_NO_RAW, 6909 .writefn = tlbi_aa64_rvae1_write }, 6910 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6911 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6912 .access = PL1_W, .type = ARM_CP_NO_RAW, 6913 .writefn = tlbi_aa64_rvae1_write }, 6914 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6915 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6916 .access = PL1_W, .type = ARM_CP_NO_RAW, 6917 .writefn = tlbi_aa64_rvae1_write }, 6918 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6919 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6920 .access = PL1_W, .type = ARM_CP_NO_RAW, 6921 .writefn = tlbi_aa64_rvae1_write }, 6922 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6923 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6924 .access = PL2_W, .type = ARM_CP_NOP }, 6925 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6926 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6927 .access = PL2_W, .type = ARM_CP_NOP }, 6928 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6929 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6930 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6931 .writefn = tlbi_aa64_rvae2is_write }, 6932 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6933 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6934 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6935 .writefn = tlbi_aa64_rvae2is_write }, 6936 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6937 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6938 .access = PL2_W, .type = ARM_CP_NOP }, 6939 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6940 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6941 .access = PL2_W, .type = ARM_CP_NOP }, 6942 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6943 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6944 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6945 .writefn = tlbi_aa64_rvae2is_write }, 6946 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6947 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6948 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6949 .writefn = tlbi_aa64_rvae2is_write }, 6950 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6951 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6952 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6953 .writefn = tlbi_aa64_rvae2_write }, 6954 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6955 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6956 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6957 .writefn = tlbi_aa64_rvae2_write }, 6958 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6959 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6960 .access = PL3_W, .type = ARM_CP_NO_RAW, 6961 .writefn = tlbi_aa64_rvae3is_write }, 6962 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6963 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6964 .access = PL3_W, .type = ARM_CP_NO_RAW, 6965 .writefn = tlbi_aa64_rvae3is_write }, 6966 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6967 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6968 .access = PL3_W, .type = ARM_CP_NO_RAW, 6969 .writefn = tlbi_aa64_rvae3is_write }, 6970 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6971 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6972 .access = PL3_W, .type = ARM_CP_NO_RAW, 6973 .writefn = tlbi_aa64_rvae3is_write }, 6974 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6975 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6976 .access = PL3_W, .type = ARM_CP_NO_RAW, 6977 .writefn = tlbi_aa64_rvae3_write }, 6978 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 6979 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 6980 .access = PL3_W, .type = ARM_CP_NO_RAW, 6981 .writefn = tlbi_aa64_rvae3_write }, 6982 }; 6983 6984 static const ARMCPRegInfo tlbios_reginfo[] = { 6985 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 6986 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 6987 .access = PL1_W, .type = ARM_CP_NO_RAW, 6988 .writefn = tlbi_aa64_vmalle1is_write }, 6989 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 6990 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 6991 .access = PL1_W, .type = ARM_CP_NO_RAW, 6992 .writefn = tlbi_aa64_vae1is_write }, 6993 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 6994 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 6995 .access = PL1_W, .type = ARM_CP_NO_RAW, 6996 .writefn = tlbi_aa64_vmalle1is_write }, 6997 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 6998 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 6999 .access = PL1_W, .type = ARM_CP_NO_RAW, 7000 .writefn = tlbi_aa64_vae1is_write }, 7001 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7002 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7003 .access = PL1_W, .type = ARM_CP_NO_RAW, 7004 .writefn = tlbi_aa64_vae1is_write }, 7005 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7006 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7007 .access = PL1_W, .type = ARM_CP_NO_RAW, 7008 .writefn = tlbi_aa64_vae1is_write }, 7009 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7010 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7011 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7012 .writefn = tlbi_aa64_alle2is_write }, 7013 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7014 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7015 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7016 .writefn = tlbi_aa64_vae2is_write }, 7017 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7018 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7019 .access = PL2_W, .type = ARM_CP_NO_RAW, 7020 .writefn = tlbi_aa64_alle1is_write }, 7021 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7022 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7023 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7024 .writefn = tlbi_aa64_vae2is_write }, 7025 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7026 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7027 .access = PL2_W, .type = ARM_CP_NO_RAW, 7028 .writefn = tlbi_aa64_alle1is_write }, 7029 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7030 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7031 .access = PL2_W, .type = ARM_CP_NOP }, 7032 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7033 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7034 .access = PL2_W, .type = ARM_CP_NOP }, 7035 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7036 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7037 .access = PL2_W, .type = ARM_CP_NOP }, 7038 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7039 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7040 .access = PL2_W, .type = ARM_CP_NOP }, 7041 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7042 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7043 .access = PL3_W, .type = ARM_CP_NO_RAW, 7044 .writefn = tlbi_aa64_alle3is_write }, 7045 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7046 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7047 .access = PL3_W, .type = ARM_CP_NO_RAW, 7048 .writefn = tlbi_aa64_vae3is_write }, 7049 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7050 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7051 .access = PL3_W, .type = ARM_CP_NO_RAW, 7052 .writefn = tlbi_aa64_vae3is_write }, 7053 }; 7054 7055 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7056 { 7057 Error *err = NULL; 7058 uint64_t ret; 7059 7060 /* Success sets NZCV = 0000. */ 7061 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7062 7063 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7064 /* 7065 * ??? Failed, for unknown reasons in the crypto subsystem. 7066 * The best we can do is log the reason and return the 7067 * timed-out indication to the guest. There is no reason 7068 * we know to expect this failure to be transitory, so the 7069 * guest may well hang retrying the operation. 7070 */ 7071 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7072 ri->name, error_get_pretty(err)); 7073 error_free(err); 7074 7075 env->ZF = 0; /* NZCF = 0100 */ 7076 return 0; 7077 } 7078 return ret; 7079 } 7080 7081 /* We do not support re-seeding, so the two registers operate the same. */ 7082 static const ARMCPRegInfo rndr_reginfo[] = { 7083 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7084 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7085 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7086 .access = PL0_R, .readfn = rndr_readfn }, 7087 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7088 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7089 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7090 .access = PL0_R, .readfn = rndr_readfn }, 7091 }; 7092 7093 #ifndef CONFIG_USER_ONLY 7094 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7095 uint64_t value) 7096 { 7097 ARMCPU *cpu = env_archcpu(env); 7098 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7099 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7100 uint64_t vaddr_in = (uint64_t) value; 7101 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7102 void *haddr; 7103 int mem_idx = cpu_mmu_index(env, false); 7104 7105 /* This won't be crossing page boundaries */ 7106 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7107 if (haddr) { 7108 7109 ram_addr_t offset; 7110 MemoryRegion *mr; 7111 7112 /* RCU lock is already being held */ 7113 mr = memory_region_from_host(haddr, &offset); 7114 7115 if (mr) { 7116 memory_region_writeback(mr, offset, dline_size); 7117 } 7118 } 7119 } 7120 7121 static const ARMCPRegInfo dcpop_reg[] = { 7122 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7123 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7124 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7125 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7126 }; 7127 7128 static const ARMCPRegInfo dcpodp_reg[] = { 7129 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7130 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7131 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7132 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7133 }; 7134 #endif /*CONFIG_USER_ONLY*/ 7135 7136 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7137 bool isread) 7138 { 7139 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7140 return CP_ACCESS_TRAP_EL2; 7141 } 7142 7143 return CP_ACCESS_OK; 7144 } 7145 7146 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7147 bool isread) 7148 { 7149 int el = arm_current_el(env); 7150 7151 if (el < 2 && arm_is_el2_enabled(env)) { 7152 uint64_t hcr = arm_hcr_el2_eff(env); 7153 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7154 return CP_ACCESS_TRAP_EL2; 7155 } 7156 } 7157 if (el < 3 && 7158 arm_feature(env, ARM_FEATURE_EL3) && 7159 !(env->cp15.scr_el3 & SCR_ATA)) { 7160 return CP_ACCESS_TRAP_EL3; 7161 } 7162 return CP_ACCESS_OK; 7163 } 7164 7165 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7166 { 7167 return env->pstate & PSTATE_TCO; 7168 } 7169 7170 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7171 { 7172 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7173 } 7174 7175 static const ARMCPRegInfo mte_reginfo[] = { 7176 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7177 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7178 .access = PL1_RW, .accessfn = access_mte, 7179 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7180 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7181 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7182 .access = PL1_RW, .accessfn = access_mte, 7183 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7184 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7185 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7186 .access = PL2_RW, .accessfn = access_mte, 7187 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7188 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7189 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7190 .access = PL3_RW, 7191 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7192 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7193 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7194 .access = PL1_RW, .accessfn = access_mte, 7195 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7196 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7197 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7198 .access = PL1_RW, .accessfn = access_mte, 7199 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7200 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7201 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7202 .access = PL1_R, .accessfn = access_aa64_tid5, 7203 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7204 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7205 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7206 .type = ARM_CP_NO_RAW, 7207 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7208 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7209 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7210 .type = ARM_CP_NOP, .access = PL1_W, 7211 .accessfn = aa64_cacheop_poc_access }, 7212 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7213 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7214 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7215 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7216 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7217 .type = ARM_CP_NOP, .access = PL1_W, 7218 .accessfn = aa64_cacheop_poc_access }, 7219 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7220 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7221 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7222 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7223 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7224 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7225 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7226 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7227 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7228 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7229 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7230 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7231 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7232 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7233 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7234 }; 7235 7236 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7237 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7238 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7239 .type = ARM_CP_CONST, .access = PL0_RW, }, 7240 }; 7241 7242 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7243 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7244 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7245 .type = ARM_CP_NOP, .access = PL0_W, 7246 .accessfn = aa64_cacheop_poc_access }, 7247 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7248 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7249 .type = ARM_CP_NOP, .access = PL0_W, 7250 .accessfn = aa64_cacheop_poc_access }, 7251 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7252 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7253 .type = ARM_CP_NOP, .access = PL0_W, 7254 .accessfn = aa64_cacheop_poc_access }, 7255 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7256 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7257 .type = ARM_CP_NOP, .access = PL0_W, 7258 .accessfn = aa64_cacheop_poc_access }, 7259 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7260 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7261 .type = ARM_CP_NOP, .access = PL0_W, 7262 .accessfn = aa64_cacheop_poc_access }, 7263 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7264 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7265 .type = ARM_CP_NOP, .access = PL0_W, 7266 .accessfn = aa64_cacheop_poc_access }, 7267 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7268 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7269 .type = ARM_CP_NOP, .access = PL0_W, 7270 .accessfn = aa64_cacheop_poc_access }, 7271 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7272 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7273 .type = ARM_CP_NOP, .access = PL0_W, 7274 .accessfn = aa64_cacheop_poc_access }, 7275 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7276 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7277 .access = PL0_W, .type = ARM_CP_DC_GVA, 7278 #ifndef CONFIG_USER_ONLY 7279 /* Avoid overhead of an access check that always passes in user-mode */ 7280 .accessfn = aa64_zva_access, 7281 #endif 7282 }, 7283 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7284 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7285 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7286 #ifndef CONFIG_USER_ONLY 7287 /* Avoid overhead of an access check that always passes in user-mode */ 7288 .accessfn = aa64_zva_access, 7289 #endif 7290 }, 7291 }; 7292 7293 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7294 bool isread) 7295 { 7296 uint64_t hcr = arm_hcr_el2_eff(env); 7297 int el = arm_current_el(env); 7298 7299 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7300 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7301 if (hcr & HCR_TGE) { 7302 return CP_ACCESS_TRAP_EL2; 7303 } 7304 return CP_ACCESS_TRAP; 7305 } 7306 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7307 return CP_ACCESS_TRAP_EL2; 7308 } 7309 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7310 return CP_ACCESS_TRAP_EL2; 7311 } 7312 if (el < 3 7313 && arm_feature(env, ARM_FEATURE_EL3) 7314 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7315 return CP_ACCESS_TRAP_EL3; 7316 } 7317 return CP_ACCESS_OK; 7318 } 7319 7320 static const ARMCPRegInfo scxtnum_reginfo[] = { 7321 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7322 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7323 .access = PL0_RW, .accessfn = access_scxtnum, 7324 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7325 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7326 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7327 .access = PL1_RW, .accessfn = access_scxtnum, 7328 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7329 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7330 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7331 .access = PL2_RW, .accessfn = access_scxtnum, 7332 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7333 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7334 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7335 .access = PL3_RW, 7336 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7337 }; 7338 #endif /* TARGET_AARCH64 */ 7339 7340 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7341 bool isread) 7342 { 7343 int el = arm_current_el(env); 7344 7345 if (el == 0) { 7346 uint64_t sctlr = arm_sctlr(env, el); 7347 if (!(sctlr & SCTLR_EnRCTX)) { 7348 return CP_ACCESS_TRAP; 7349 } 7350 } else if (el == 1) { 7351 uint64_t hcr = arm_hcr_el2_eff(env); 7352 if (hcr & HCR_NV) { 7353 return CP_ACCESS_TRAP_EL2; 7354 } 7355 } 7356 return CP_ACCESS_OK; 7357 } 7358 7359 static const ARMCPRegInfo predinv_reginfo[] = { 7360 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7361 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7362 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7363 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7364 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7365 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7366 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7367 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7368 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7369 /* 7370 * Note the AArch32 opcodes have a different OPC1. 7371 */ 7372 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7373 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7374 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7375 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7376 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7377 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7378 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7379 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7380 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7381 }; 7382 7383 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7384 { 7385 /* Read the high 32 bits of the current CCSIDR */ 7386 return extract64(ccsidr_read(env, ri), 32, 32); 7387 } 7388 7389 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7390 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7391 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7392 .access = PL1_R, 7393 .accessfn = access_aa64_tid2, 7394 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7395 }; 7396 7397 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7398 bool isread) 7399 { 7400 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7401 return CP_ACCESS_TRAP_EL2; 7402 } 7403 7404 return CP_ACCESS_OK; 7405 } 7406 7407 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7408 bool isread) 7409 { 7410 if (arm_feature(env, ARM_FEATURE_V8)) { 7411 return access_aa64_tid3(env, ri, isread); 7412 } 7413 7414 return CP_ACCESS_OK; 7415 } 7416 7417 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7418 bool isread) 7419 { 7420 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7421 return CP_ACCESS_TRAP_EL2; 7422 } 7423 7424 return CP_ACCESS_OK; 7425 } 7426 7427 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7428 const ARMCPRegInfo *ri, bool isread) 7429 { 7430 /* 7431 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7432 * in v7A, not in v8A. 7433 */ 7434 if (!arm_feature(env, ARM_FEATURE_V8) && 7435 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7436 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7437 return CP_ACCESS_TRAP_EL2; 7438 } 7439 return CP_ACCESS_OK; 7440 } 7441 7442 static const ARMCPRegInfo jazelle_regs[] = { 7443 { .name = "JIDR", 7444 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7445 .access = PL1_R, .accessfn = access_jazelle, 7446 .type = ARM_CP_CONST, .resetvalue = 0 }, 7447 { .name = "JOSCR", 7448 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7449 .accessfn = access_joscr_jmcr, 7450 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7451 { .name = "JMCR", 7452 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7453 .accessfn = access_joscr_jmcr, 7454 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7455 }; 7456 7457 static const ARMCPRegInfo contextidr_el2 = { 7458 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7459 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7460 .access = PL2_RW, 7461 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7462 }; 7463 7464 static const ARMCPRegInfo vhe_reginfo[] = { 7465 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7466 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7467 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7468 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7469 #ifndef CONFIG_USER_ONLY 7470 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7471 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7472 .fieldoffset = 7473 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7474 .type = ARM_CP_IO, .access = PL2_RW, 7475 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7476 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7477 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7478 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7479 .resetfn = gt_hv_timer_reset, 7480 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7481 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7482 .type = ARM_CP_IO, 7483 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7484 .access = PL2_RW, 7485 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7486 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7487 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7488 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7489 .type = ARM_CP_IO | ARM_CP_ALIAS, 7490 .access = PL2_RW, .accessfn = e2h_access, 7491 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7492 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7493 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7494 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7495 .type = ARM_CP_IO | ARM_CP_ALIAS, 7496 .access = PL2_RW, .accessfn = e2h_access, 7497 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7498 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7499 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7500 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7501 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7502 .access = PL2_RW, .accessfn = e2h_access, 7503 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7504 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7505 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7506 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7507 .access = PL2_RW, .accessfn = e2h_access, 7508 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7509 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7510 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7511 .type = ARM_CP_IO | ARM_CP_ALIAS, 7512 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7513 .access = PL2_RW, .accessfn = e2h_access, 7514 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7515 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7516 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7517 .type = ARM_CP_IO | ARM_CP_ALIAS, 7518 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7519 .access = PL2_RW, .accessfn = e2h_access, 7520 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7521 #endif 7522 }; 7523 7524 #ifndef CONFIG_USER_ONLY 7525 static const ARMCPRegInfo ats1e1_reginfo[] = { 7526 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7527 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7528 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7529 .writefn = ats_write64 }, 7530 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7531 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7532 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7533 .writefn = ats_write64 }, 7534 }; 7535 7536 static const ARMCPRegInfo ats1cp_reginfo[] = { 7537 { .name = "ATS1CPRP", 7538 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7539 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7540 .writefn = ats_write }, 7541 { .name = "ATS1CPWP", 7542 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7543 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7544 .writefn = ats_write }, 7545 }; 7546 #endif 7547 7548 /* 7549 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7550 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7551 * is non-zero, which is never for ARMv7, optionally in ARMv8 7552 * and mandatorily for ARMv8.2 and up. 7553 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7554 * implementation is RAZ/WI we can ignore this detail, as we 7555 * do for ACTLR. 7556 */ 7557 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7558 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7559 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7560 .access = PL1_RW, .accessfn = access_tacr, 7561 .type = ARM_CP_CONST, .resetvalue = 0 }, 7562 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7563 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7564 .access = PL2_RW, .type = ARM_CP_CONST, 7565 .resetvalue = 0 }, 7566 }; 7567 7568 void register_cp_regs_for_features(ARMCPU *cpu) 7569 { 7570 /* Register all the coprocessor registers based on feature bits */ 7571 CPUARMState *env = &cpu->env; 7572 if (arm_feature(env, ARM_FEATURE_M)) { 7573 /* M profile has no coprocessor registers */ 7574 return; 7575 } 7576 7577 define_arm_cp_regs(cpu, cp_reginfo); 7578 if (!arm_feature(env, ARM_FEATURE_V8)) { 7579 /* Must go early as it is full of wildcards that may be 7580 * overridden by later definitions. 7581 */ 7582 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7583 } 7584 7585 if (arm_feature(env, ARM_FEATURE_V6)) { 7586 /* The ID registers all have impdef reset values */ 7587 ARMCPRegInfo v6_idregs[] = { 7588 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7589 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7590 .access = PL1_R, .type = ARM_CP_CONST, 7591 .accessfn = access_aa32_tid3, 7592 .resetvalue = cpu->isar.id_pfr0 }, 7593 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7594 * the value of the GIC field until after we define these regs. 7595 */ 7596 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7597 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7598 .access = PL1_R, .type = ARM_CP_NO_RAW, 7599 .accessfn = access_aa32_tid3, 7600 .readfn = id_pfr1_read, 7601 .writefn = arm_cp_write_ignore }, 7602 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7603 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7604 .access = PL1_R, .type = ARM_CP_CONST, 7605 .accessfn = access_aa32_tid3, 7606 .resetvalue = cpu->isar.id_dfr0 }, 7607 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7608 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7609 .access = PL1_R, .type = ARM_CP_CONST, 7610 .accessfn = access_aa32_tid3, 7611 .resetvalue = cpu->id_afr0 }, 7612 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7613 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7614 .access = PL1_R, .type = ARM_CP_CONST, 7615 .accessfn = access_aa32_tid3, 7616 .resetvalue = cpu->isar.id_mmfr0 }, 7617 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7618 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7619 .access = PL1_R, .type = ARM_CP_CONST, 7620 .accessfn = access_aa32_tid3, 7621 .resetvalue = cpu->isar.id_mmfr1 }, 7622 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7623 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7624 .access = PL1_R, .type = ARM_CP_CONST, 7625 .accessfn = access_aa32_tid3, 7626 .resetvalue = cpu->isar.id_mmfr2 }, 7627 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7628 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7629 .access = PL1_R, .type = ARM_CP_CONST, 7630 .accessfn = access_aa32_tid3, 7631 .resetvalue = cpu->isar.id_mmfr3 }, 7632 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7633 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7634 .access = PL1_R, .type = ARM_CP_CONST, 7635 .accessfn = access_aa32_tid3, 7636 .resetvalue = cpu->isar.id_isar0 }, 7637 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7638 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7639 .access = PL1_R, .type = ARM_CP_CONST, 7640 .accessfn = access_aa32_tid3, 7641 .resetvalue = cpu->isar.id_isar1 }, 7642 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7643 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7644 .access = PL1_R, .type = ARM_CP_CONST, 7645 .accessfn = access_aa32_tid3, 7646 .resetvalue = cpu->isar.id_isar2 }, 7647 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7648 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7649 .access = PL1_R, .type = ARM_CP_CONST, 7650 .accessfn = access_aa32_tid3, 7651 .resetvalue = cpu->isar.id_isar3 }, 7652 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7653 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7654 .access = PL1_R, .type = ARM_CP_CONST, 7655 .accessfn = access_aa32_tid3, 7656 .resetvalue = cpu->isar.id_isar4 }, 7657 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7658 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7659 .access = PL1_R, .type = ARM_CP_CONST, 7660 .accessfn = access_aa32_tid3, 7661 .resetvalue = cpu->isar.id_isar5 }, 7662 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7663 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7664 .access = PL1_R, .type = ARM_CP_CONST, 7665 .accessfn = access_aa32_tid3, 7666 .resetvalue = cpu->isar.id_mmfr4 }, 7667 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7668 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7669 .access = PL1_R, .type = ARM_CP_CONST, 7670 .accessfn = access_aa32_tid3, 7671 .resetvalue = cpu->isar.id_isar6 }, 7672 }; 7673 define_arm_cp_regs(cpu, v6_idregs); 7674 define_arm_cp_regs(cpu, v6_cp_reginfo); 7675 } else { 7676 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7677 } 7678 if (arm_feature(env, ARM_FEATURE_V6K)) { 7679 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7680 } 7681 if (arm_feature(env, ARM_FEATURE_V7MP) && 7682 !arm_feature(env, ARM_FEATURE_PMSA)) { 7683 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7684 } 7685 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7686 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7687 } 7688 if (arm_feature(env, ARM_FEATURE_V7)) { 7689 ARMCPRegInfo clidr = { 7690 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7691 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7692 .access = PL1_R, .type = ARM_CP_CONST, 7693 .accessfn = access_aa64_tid2, 7694 .resetvalue = cpu->clidr 7695 }; 7696 define_one_arm_cp_reg(cpu, &clidr); 7697 define_arm_cp_regs(cpu, v7_cp_reginfo); 7698 define_debug_regs(cpu); 7699 define_pmu_regs(cpu); 7700 } else { 7701 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7702 } 7703 if (arm_feature(env, ARM_FEATURE_V8)) { 7704 /* AArch64 ID registers, which all have impdef reset values. 7705 * Note that within the ID register ranges the unused slots 7706 * must all RAZ, not UNDEF; future architecture versions may 7707 * define new registers here. 7708 */ 7709 ARMCPRegInfo v8_idregs[] = { 7710 /* 7711 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7712 * emulation because we don't know the right value for the 7713 * GIC field until after we define these regs. 7714 */ 7715 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7716 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7717 .access = PL1_R, 7718 #ifdef CONFIG_USER_ONLY 7719 .type = ARM_CP_CONST, 7720 .resetvalue = cpu->isar.id_aa64pfr0 7721 #else 7722 .type = ARM_CP_NO_RAW, 7723 .accessfn = access_aa64_tid3, 7724 .readfn = id_aa64pfr0_read, 7725 .writefn = arm_cp_write_ignore 7726 #endif 7727 }, 7728 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7729 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7730 .access = PL1_R, .type = ARM_CP_CONST, 7731 .accessfn = access_aa64_tid3, 7732 .resetvalue = cpu->isar.id_aa64pfr1}, 7733 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7734 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7735 .access = PL1_R, .type = ARM_CP_CONST, 7736 .accessfn = access_aa64_tid3, 7737 .resetvalue = 0 }, 7738 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7739 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7740 .access = PL1_R, .type = ARM_CP_CONST, 7741 .accessfn = access_aa64_tid3, 7742 .resetvalue = 0 }, 7743 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7744 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7745 .access = PL1_R, .type = ARM_CP_CONST, 7746 .accessfn = access_aa64_tid3, 7747 .resetvalue = cpu->isar.id_aa64zfr0 }, 7748 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7749 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7750 .access = PL1_R, .type = ARM_CP_CONST, 7751 .accessfn = access_aa64_tid3, 7752 .resetvalue = 0 }, 7753 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7754 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7755 .access = PL1_R, .type = ARM_CP_CONST, 7756 .accessfn = access_aa64_tid3, 7757 .resetvalue = 0 }, 7758 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7759 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7760 .access = PL1_R, .type = ARM_CP_CONST, 7761 .accessfn = access_aa64_tid3, 7762 .resetvalue = 0 }, 7763 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7764 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7765 .access = PL1_R, .type = ARM_CP_CONST, 7766 .accessfn = access_aa64_tid3, 7767 .resetvalue = cpu->isar.id_aa64dfr0 }, 7768 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7769 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7770 .access = PL1_R, .type = ARM_CP_CONST, 7771 .accessfn = access_aa64_tid3, 7772 .resetvalue = cpu->isar.id_aa64dfr1 }, 7773 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7774 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7775 .access = PL1_R, .type = ARM_CP_CONST, 7776 .accessfn = access_aa64_tid3, 7777 .resetvalue = 0 }, 7778 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7779 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7780 .access = PL1_R, .type = ARM_CP_CONST, 7781 .accessfn = access_aa64_tid3, 7782 .resetvalue = 0 }, 7783 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7784 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7785 .access = PL1_R, .type = ARM_CP_CONST, 7786 .accessfn = access_aa64_tid3, 7787 .resetvalue = cpu->id_aa64afr0 }, 7788 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7789 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7790 .access = PL1_R, .type = ARM_CP_CONST, 7791 .accessfn = access_aa64_tid3, 7792 .resetvalue = cpu->id_aa64afr1 }, 7793 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7794 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7795 .access = PL1_R, .type = ARM_CP_CONST, 7796 .accessfn = access_aa64_tid3, 7797 .resetvalue = 0 }, 7798 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7799 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7800 .access = PL1_R, .type = ARM_CP_CONST, 7801 .accessfn = access_aa64_tid3, 7802 .resetvalue = 0 }, 7803 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7804 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7805 .access = PL1_R, .type = ARM_CP_CONST, 7806 .accessfn = access_aa64_tid3, 7807 .resetvalue = cpu->isar.id_aa64isar0 }, 7808 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7809 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7810 .access = PL1_R, .type = ARM_CP_CONST, 7811 .accessfn = access_aa64_tid3, 7812 .resetvalue = cpu->isar.id_aa64isar1 }, 7813 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7814 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7815 .access = PL1_R, .type = ARM_CP_CONST, 7816 .accessfn = access_aa64_tid3, 7817 .resetvalue = 0 }, 7818 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7819 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7820 .access = PL1_R, .type = ARM_CP_CONST, 7821 .accessfn = access_aa64_tid3, 7822 .resetvalue = 0 }, 7823 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7824 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7825 .access = PL1_R, .type = ARM_CP_CONST, 7826 .accessfn = access_aa64_tid3, 7827 .resetvalue = 0 }, 7828 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7829 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7830 .access = PL1_R, .type = ARM_CP_CONST, 7831 .accessfn = access_aa64_tid3, 7832 .resetvalue = 0 }, 7833 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7834 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7835 .access = PL1_R, .type = ARM_CP_CONST, 7836 .accessfn = access_aa64_tid3, 7837 .resetvalue = 0 }, 7838 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7839 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7840 .access = PL1_R, .type = ARM_CP_CONST, 7841 .accessfn = access_aa64_tid3, 7842 .resetvalue = 0 }, 7843 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7844 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7845 .access = PL1_R, .type = ARM_CP_CONST, 7846 .accessfn = access_aa64_tid3, 7847 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7848 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7849 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7850 .access = PL1_R, .type = ARM_CP_CONST, 7851 .accessfn = access_aa64_tid3, 7852 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7853 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7854 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7855 .access = PL1_R, .type = ARM_CP_CONST, 7856 .accessfn = access_aa64_tid3, 7857 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7858 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7859 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7860 .access = PL1_R, .type = ARM_CP_CONST, 7861 .accessfn = access_aa64_tid3, 7862 .resetvalue = 0 }, 7863 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7864 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7865 .access = PL1_R, .type = ARM_CP_CONST, 7866 .accessfn = access_aa64_tid3, 7867 .resetvalue = 0 }, 7868 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7869 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7870 .access = PL1_R, .type = ARM_CP_CONST, 7871 .accessfn = access_aa64_tid3, 7872 .resetvalue = 0 }, 7873 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7874 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7875 .access = PL1_R, .type = ARM_CP_CONST, 7876 .accessfn = access_aa64_tid3, 7877 .resetvalue = 0 }, 7878 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7879 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7880 .access = PL1_R, .type = ARM_CP_CONST, 7881 .accessfn = access_aa64_tid3, 7882 .resetvalue = 0 }, 7883 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7884 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7885 .access = PL1_R, .type = ARM_CP_CONST, 7886 .accessfn = access_aa64_tid3, 7887 .resetvalue = cpu->isar.mvfr0 }, 7888 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7889 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7890 .access = PL1_R, .type = ARM_CP_CONST, 7891 .accessfn = access_aa64_tid3, 7892 .resetvalue = cpu->isar.mvfr1 }, 7893 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7894 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7895 .access = PL1_R, .type = ARM_CP_CONST, 7896 .accessfn = access_aa64_tid3, 7897 .resetvalue = cpu->isar.mvfr2 }, 7898 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7899 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7900 .access = PL1_R, .type = ARM_CP_CONST, 7901 .accessfn = access_aa64_tid3, 7902 .resetvalue = 0 }, 7903 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7904 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7905 .access = PL1_R, .type = ARM_CP_CONST, 7906 .accessfn = access_aa64_tid3, 7907 .resetvalue = cpu->isar.id_pfr2 }, 7908 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7909 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7910 .access = PL1_R, .type = ARM_CP_CONST, 7911 .accessfn = access_aa64_tid3, 7912 .resetvalue = 0 }, 7913 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7914 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7915 .access = PL1_R, .type = ARM_CP_CONST, 7916 .accessfn = access_aa64_tid3, 7917 .resetvalue = 0 }, 7918 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7919 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7920 .access = PL1_R, .type = ARM_CP_CONST, 7921 .accessfn = access_aa64_tid3, 7922 .resetvalue = 0 }, 7923 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7924 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7925 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7926 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7927 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7928 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7929 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7930 .resetvalue = cpu->pmceid0 }, 7931 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7932 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7933 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7934 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7935 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7936 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7937 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7938 .resetvalue = cpu->pmceid1 }, 7939 }; 7940 #ifdef CONFIG_USER_ONLY 7941 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7942 { .name = "ID_AA64PFR0_EL1", 7943 .exported_bits = 0x000f000f00ff0000, 7944 .fixed_bits = 0x0000000000000011 }, 7945 { .name = "ID_AA64PFR1_EL1", 7946 .exported_bits = 0x00000000000000f0 }, 7947 { .name = "ID_AA64PFR*_EL1_RESERVED", 7948 .is_glob = true }, 7949 { .name = "ID_AA64ZFR0_EL1" }, 7950 { .name = "ID_AA64MMFR0_EL1", 7951 .fixed_bits = 0x00000000ff000000 }, 7952 { .name = "ID_AA64MMFR1_EL1" }, 7953 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7954 .is_glob = true }, 7955 { .name = "ID_AA64DFR0_EL1", 7956 .fixed_bits = 0x0000000000000006 }, 7957 { .name = "ID_AA64DFR1_EL1" }, 7958 { .name = "ID_AA64DFR*_EL1_RESERVED", 7959 .is_glob = true }, 7960 { .name = "ID_AA64AFR*", 7961 .is_glob = true }, 7962 { .name = "ID_AA64ISAR0_EL1", 7963 .exported_bits = 0x00fffffff0fffff0 }, 7964 { .name = "ID_AA64ISAR1_EL1", 7965 .exported_bits = 0x000000f0ffffffff }, 7966 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7967 .is_glob = true }, 7968 }; 7969 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7970 #endif 7971 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7972 if (!arm_feature(env, ARM_FEATURE_EL3) && 7973 !arm_feature(env, ARM_FEATURE_EL2)) { 7974 ARMCPRegInfo rvbar = { 7975 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7976 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7977 .access = PL1_R, 7978 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7979 }; 7980 define_one_arm_cp_reg(cpu, &rvbar); 7981 } 7982 define_arm_cp_regs(cpu, v8_idregs); 7983 define_arm_cp_regs(cpu, v8_cp_reginfo); 7984 } 7985 7986 /* 7987 * Register the base EL2 cpregs. 7988 * Pre v8, these registers are implemented only as part of the 7989 * Virtualization Extensions (EL2 present). Beginning with v8, 7990 * if EL2 is missing but EL3 is enabled, mostly these become 7991 * RES0 from EL3, with some specific exceptions. 7992 */ 7993 if (arm_feature(env, ARM_FEATURE_EL2) 7994 || (arm_feature(env, ARM_FEATURE_EL3) 7995 && arm_feature(env, ARM_FEATURE_V8))) { 7996 uint64_t vmpidr_def = mpidr_read_val(env); 7997 ARMCPRegInfo vpidr_regs[] = { 7998 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7999 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8000 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8001 .resetvalue = cpu->midr, 8002 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8003 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8004 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8005 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8006 .access = PL2_RW, .resetvalue = cpu->midr, 8007 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8008 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8009 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8010 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8011 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8012 .resetvalue = vmpidr_def, 8013 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8014 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8015 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8016 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8017 .access = PL2_RW, .resetvalue = vmpidr_def, 8018 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8019 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8020 }; 8021 /* 8022 * The only field of MDCR_EL2 that has a defined architectural reset 8023 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8024 */ 8025 ARMCPRegInfo mdcr_el2 = { 8026 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 8027 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8028 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8029 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8030 }; 8031 define_one_arm_cp_reg(cpu, &mdcr_el2); 8032 define_arm_cp_regs(cpu, vpidr_regs); 8033 define_arm_cp_regs(cpu, el2_cp_reginfo); 8034 if (arm_feature(env, ARM_FEATURE_V8)) { 8035 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8036 } 8037 if (cpu_isar_feature(aa64_sel2, cpu)) { 8038 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8039 } 8040 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 8041 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8042 ARMCPRegInfo rvbar = { 8043 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8044 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8045 .access = PL2_R, 8046 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8047 }; 8048 define_one_arm_cp_reg(cpu, &rvbar); 8049 } 8050 } 8051 8052 /* Register the base EL3 cpregs. */ 8053 if (arm_feature(env, ARM_FEATURE_EL3)) { 8054 define_arm_cp_regs(cpu, el3_cp_reginfo); 8055 ARMCPRegInfo el3_regs[] = { 8056 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8057 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8058 .access = PL3_R, 8059 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8060 }, 8061 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8062 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8063 .access = PL3_RW, 8064 .raw_writefn = raw_write, .writefn = sctlr_write, 8065 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8066 .resetvalue = cpu->reset_sctlr }, 8067 }; 8068 8069 define_arm_cp_regs(cpu, el3_regs); 8070 } 8071 /* The behaviour of NSACR is sufficiently various that we don't 8072 * try to describe it in a single reginfo: 8073 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8074 * reads as constant 0xc00 from NS EL1 and NS EL2 8075 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8076 * if v7 without EL3, register doesn't exist 8077 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8078 */ 8079 if (arm_feature(env, ARM_FEATURE_EL3)) { 8080 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8081 static const ARMCPRegInfo nsacr = { 8082 .name = "NSACR", .type = ARM_CP_CONST, 8083 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8084 .access = PL1_RW, .accessfn = nsacr_access, 8085 .resetvalue = 0xc00 8086 }; 8087 define_one_arm_cp_reg(cpu, &nsacr); 8088 } else { 8089 static const ARMCPRegInfo nsacr = { 8090 .name = "NSACR", 8091 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8092 .access = PL3_RW | PL1_R, 8093 .resetvalue = 0, 8094 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8095 }; 8096 define_one_arm_cp_reg(cpu, &nsacr); 8097 } 8098 } else { 8099 if (arm_feature(env, ARM_FEATURE_V8)) { 8100 static const ARMCPRegInfo nsacr = { 8101 .name = "NSACR", .type = ARM_CP_CONST, 8102 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8103 .access = PL1_R, 8104 .resetvalue = 0xc00 8105 }; 8106 define_one_arm_cp_reg(cpu, &nsacr); 8107 } 8108 } 8109 8110 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8111 if (arm_feature(env, ARM_FEATURE_V6)) { 8112 /* PMSAv6 not implemented */ 8113 assert(arm_feature(env, ARM_FEATURE_V7)); 8114 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8115 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8116 } else { 8117 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8118 } 8119 } else { 8120 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8121 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8122 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8123 if (cpu_isar_feature(aa32_hpd, cpu)) { 8124 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8125 } 8126 } 8127 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8128 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8129 } 8130 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8131 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8132 } 8133 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8134 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8135 } 8136 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8137 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8138 } 8139 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8140 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8141 } 8142 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8143 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8144 } 8145 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8146 define_arm_cp_regs(cpu, omap_cp_reginfo); 8147 } 8148 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8149 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8150 } 8151 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8152 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8153 } 8154 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8155 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8156 } 8157 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8158 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8159 } 8160 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8161 define_arm_cp_regs(cpu, jazelle_regs); 8162 } 8163 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8164 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8165 * be read-only (ie write causes UNDEF exception). 8166 */ 8167 { 8168 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8169 /* Pre-v8 MIDR space. 8170 * Note that the MIDR isn't a simple constant register because 8171 * of the TI925 behaviour where writes to another register can 8172 * cause the MIDR value to change. 8173 * 8174 * Unimplemented registers in the c15 0 0 0 space default to 8175 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8176 * and friends override accordingly. 8177 */ 8178 { .name = "MIDR", 8179 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8180 .access = PL1_R, .resetvalue = cpu->midr, 8181 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8182 .readfn = midr_read, 8183 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8184 .type = ARM_CP_OVERRIDE }, 8185 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8186 { .name = "DUMMY", 8187 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8188 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8189 { .name = "DUMMY", 8190 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8191 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8192 { .name = "DUMMY", 8193 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8194 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8195 { .name = "DUMMY", 8196 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8197 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8198 { .name = "DUMMY", 8199 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8200 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8201 }; 8202 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8203 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8204 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8205 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8206 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8207 .readfn = midr_read }, 8208 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8209 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8210 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8211 .access = PL1_R, .resetvalue = cpu->midr }, 8212 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8213 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8214 .access = PL1_R, .resetvalue = cpu->midr }, 8215 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8216 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8217 .access = PL1_R, 8218 .accessfn = access_aa64_tid1, 8219 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8220 }; 8221 ARMCPRegInfo id_cp_reginfo[] = { 8222 /* These are common to v8 and pre-v8 */ 8223 { .name = "CTR", 8224 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8225 .access = PL1_R, .accessfn = ctr_el0_access, 8226 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8227 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8228 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8229 .access = PL0_R, .accessfn = ctr_el0_access, 8230 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8231 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8232 { .name = "TCMTR", 8233 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8234 .access = PL1_R, 8235 .accessfn = access_aa32_tid1, 8236 .type = ARM_CP_CONST, .resetvalue = 0 }, 8237 }; 8238 /* TLBTR is specific to VMSA */ 8239 ARMCPRegInfo id_tlbtr_reginfo = { 8240 .name = "TLBTR", 8241 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8242 .access = PL1_R, 8243 .accessfn = access_aa32_tid1, 8244 .type = ARM_CP_CONST, .resetvalue = 0, 8245 }; 8246 /* MPUIR is specific to PMSA V6+ */ 8247 ARMCPRegInfo id_mpuir_reginfo = { 8248 .name = "MPUIR", 8249 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8250 .access = PL1_R, .type = ARM_CP_CONST, 8251 .resetvalue = cpu->pmsav7_dregion << 8 8252 }; 8253 static const ARMCPRegInfo crn0_wi_reginfo = { 8254 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8255 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8256 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8257 }; 8258 #ifdef CONFIG_USER_ONLY 8259 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8260 { .name = "MIDR_EL1", 8261 .exported_bits = 0x00000000ffffffff }, 8262 { .name = "REVIDR_EL1" }, 8263 }; 8264 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8265 #endif 8266 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8267 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8268 size_t i; 8269 /* Register the blanket "writes ignored" value first to cover the 8270 * whole space. Then update the specific ID registers to allow write 8271 * access, so that they ignore writes rather than causing them to 8272 * UNDEF. 8273 */ 8274 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8275 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8276 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8277 } 8278 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8279 id_cp_reginfo[i].access = PL1_RW; 8280 } 8281 id_mpuir_reginfo.access = PL1_RW; 8282 id_tlbtr_reginfo.access = PL1_RW; 8283 } 8284 if (arm_feature(env, ARM_FEATURE_V8)) { 8285 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8286 } else { 8287 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8288 } 8289 define_arm_cp_regs(cpu, id_cp_reginfo); 8290 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8291 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8292 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8293 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8294 } 8295 } 8296 8297 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8298 ARMCPRegInfo mpidr_cp_reginfo[] = { 8299 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8300 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8301 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8302 }; 8303 #ifdef CONFIG_USER_ONLY 8304 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8305 { .name = "MPIDR_EL1", 8306 .fixed_bits = 0x0000000080000000 }, 8307 }; 8308 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8309 #endif 8310 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8311 } 8312 8313 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8314 ARMCPRegInfo auxcr_reginfo[] = { 8315 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8316 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8317 .access = PL1_RW, .accessfn = access_tacr, 8318 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8319 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8320 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8321 .access = PL2_RW, .type = ARM_CP_CONST, 8322 .resetvalue = 0 }, 8323 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8324 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8325 .access = PL3_RW, .type = ARM_CP_CONST, 8326 .resetvalue = 0 }, 8327 }; 8328 define_arm_cp_regs(cpu, auxcr_reginfo); 8329 if (cpu_isar_feature(aa32_ac2, cpu)) { 8330 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8331 } 8332 } 8333 8334 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8335 /* 8336 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8337 * There are two flavours: 8338 * (1) older 32-bit only cores have a simple 32-bit CBAR 8339 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8340 * 32-bit register visible to AArch32 at a different encoding 8341 * to the "flavour 1" register and with the bits rearranged to 8342 * be able to squash a 64-bit address into the 32-bit view. 8343 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8344 * in future if we support AArch32-only configs of some of the 8345 * AArch64 cores we might need to add a specific feature flag 8346 * to indicate cores with "flavour 2" CBAR. 8347 */ 8348 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8349 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8350 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8351 | extract64(cpu->reset_cbar, 32, 12); 8352 ARMCPRegInfo cbar_reginfo[] = { 8353 { .name = "CBAR", 8354 .type = ARM_CP_CONST, 8355 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8356 .access = PL1_R, .resetvalue = cbar32 }, 8357 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8358 .type = ARM_CP_CONST, 8359 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8360 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8361 }; 8362 /* We don't implement a r/w 64 bit CBAR currently */ 8363 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8364 define_arm_cp_regs(cpu, cbar_reginfo); 8365 } else { 8366 ARMCPRegInfo cbar = { 8367 .name = "CBAR", 8368 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8369 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8370 .fieldoffset = offsetof(CPUARMState, 8371 cp15.c15_config_base_address) 8372 }; 8373 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8374 cbar.access = PL1_R; 8375 cbar.fieldoffset = 0; 8376 cbar.type = ARM_CP_CONST; 8377 } 8378 define_one_arm_cp_reg(cpu, &cbar); 8379 } 8380 } 8381 8382 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8383 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8384 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8385 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8386 .access = PL1_RW, .writefn = vbar_write, 8387 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8388 offsetof(CPUARMState, cp15.vbar_ns) }, 8389 .resetvalue = 0 }, 8390 }; 8391 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8392 } 8393 8394 /* Generic registers whose values depend on the implementation */ 8395 { 8396 ARMCPRegInfo sctlr = { 8397 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8398 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8399 .access = PL1_RW, .accessfn = access_tvm_trvm, 8400 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8401 offsetof(CPUARMState, cp15.sctlr_ns) }, 8402 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8403 .raw_writefn = raw_write, 8404 }; 8405 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8406 /* Normally we would always end the TB on an SCTLR write, but Linux 8407 * arch/arm/mach-pxa/sleep.S expects two instructions following 8408 * an MMU enable to execute from cache. Imitate this behaviour. 8409 */ 8410 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8411 } 8412 define_one_arm_cp_reg(cpu, &sctlr); 8413 } 8414 8415 if (cpu_isar_feature(aa64_lor, cpu)) { 8416 define_arm_cp_regs(cpu, lor_reginfo); 8417 } 8418 if (cpu_isar_feature(aa64_pan, cpu)) { 8419 define_one_arm_cp_reg(cpu, &pan_reginfo); 8420 } 8421 #ifndef CONFIG_USER_ONLY 8422 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8423 define_arm_cp_regs(cpu, ats1e1_reginfo); 8424 } 8425 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8426 define_arm_cp_regs(cpu, ats1cp_reginfo); 8427 } 8428 #endif 8429 if (cpu_isar_feature(aa64_uao, cpu)) { 8430 define_one_arm_cp_reg(cpu, &uao_reginfo); 8431 } 8432 8433 if (cpu_isar_feature(aa64_dit, cpu)) { 8434 define_one_arm_cp_reg(cpu, &dit_reginfo); 8435 } 8436 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8437 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8438 } 8439 if (cpu_isar_feature(any_ras, cpu)) { 8440 define_arm_cp_regs(cpu, minimal_ras_reginfo); 8441 } 8442 8443 if (cpu_isar_feature(aa64_vh, cpu) || 8444 cpu_isar_feature(aa64_debugv8p2, cpu)) { 8445 define_one_arm_cp_reg(cpu, &contextidr_el2); 8446 } 8447 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8448 define_arm_cp_regs(cpu, vhe_reginfo); 8449 } 8450 8451 if (cpu_isar_feature(aa64_sve, cpu)) { 8452 define_arm_cp_regs(cpu, zcr_reginfo); 8453 } 8454 8455 if (cpu_isar_feature(aa64_hcx, cpu)) { 8456 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 8457 } 8458 8459 #ifdef TARGET_AARCH64 8460 if (cpu_isar_feature(aa64_pauth, cpu)) { 8461 define_arm_cp_regs(cpu, pauth_reginfo); 8462 } 8463 if (cpu_isar_feature(aa64_rndr, cpu)) { 8464 define_arm_cp_regs(cpu, rndr_reginfo); 8465 } 8466 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8467 define_arm_cp_regs(cpu, tlbirange_reginfo); 8468 } 8469 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8470 define_arm_cp_regs(cpu, tlbios_reginfo); 8471 } 8472 #ifndef CONFIG_USER_ONLY 8473 /* Data Cache clean instructions up to PoP */ 8474 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8475 define_one_arm_cp_reg(cpu, dcpop_reg); 8476 8477 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8478 define_one_arm_cp_reg(cpu, dcpodp_reg); 8479 } 8480 } 8481 #endif /*CONFIG_USER_ONLY*/ 8482 8483 /* 8484 * If full MTE is enabled, add all of the system registers. 8485 * If only "instructions available at EL0" are enabled, 8486 * then define only a RAZ/WI version of PSTATE.TCO. 8487 */ 8488 if (cpu_isar_feature(aa64_mte, cpu)) { 8489 define_arm_cp_regs(cpu, mte_reginfo); 8490 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8491 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8492 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8493 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8494 } 8495 8496 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 8497 define_arm_cp_regs(cpu, scxtnum_reginfo); 8498 } 8499 #endif 8500 8501 if (cpu_isar_feature(any_predinv, cpu)) { 8502 define_arm_cp_regs(cpu, predinv_reginfo); 8503 } 8504 8505 if (cpu_isar_feature(any_ccidx, cpu)) { 8506 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8507 } 8508 8509 #ifndef CONFIG_USER_ONLY 8510 /* 8511 * Register redirections and aliases must be done last, 8512 * after the registers from the other extensions have been defined. 8513 */ 8514 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8515 define_arm_vh_e2h_redirects_aliases(cpu); 8516 } 8517 #endif 8518 } 8519 8520 /* Sort alphabetically by type name, except for "any". */ 8521 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8522 { 8523 ObjectClass *class_a = (ObjectClass *)a; 8524 ObjectClass *class_b = (ObjectClass *)b; 8525 const char *name_a, *name_b; 8526 8527 name_a = object_class_get_name(class_a); 8528 name_b = object_class_get_name(class_b); 8529 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8530 return 1; 8531 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8532 return -1; 8533 } else { 8534 return strcmp(name_a, name_b); 8535 } 8536 } 8537 8538 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8539 { 8540 ObjectClass *oc = data; 8541 const char *typename; 8542 char *name; 8543 8544 typename = object_class_get_name(oc); 8545 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8546 qemu_printf(" %s\n", name); 8547 g_free(name); 8548 } 8549 8550 void arm_cpu_list(void) 8551 { 8552 GSList *list; 8553 8554 list = object_class_get_list(TYPE_ARM_CPU, false); 8555 list = g_slist_sort(list, arm_cpu_list_compare); 8556 qemu_printf("Available CPUs:\n"); 8557 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8558 g_slist_free(list); 8559 } 8560 8561 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8562 { 8563 ObjectClass *oc = data; 8564 CpuDefinitionInfoList **cpu_list = user_data; 8565 CpuDefinitionInfo *info; 8566 const char *typename; 8567 8568 typename = object_class_get_name(oc); 8569 info = g_malloc0(sizeof(*info)); 8570 info->name = g_strndup(typename, 8571 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8572 info->q_typename = g_strdup(typename); 8573 8574 QAPI_LIST_PREPEND(*cpu_list, info); 8575 } 8576 8577 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8578 { 8579 CpuDefinitionInfoList *cpu_list = NULL; 8580 GSList *list; 8581 8582 list = object_class_get_list(TYPE_ARM_CPU, false); 8583 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8584 g_slist_free(list); 8585 8586 return cpu_list; 8587 } 8588 8589 /* 8590 * Private utility function for define_one_arm_cp_reg_with_opaque(): 8591 * add a single reginfo struct to the hash table. 8592 */ 8593 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8594 void *opaque, CPState state, 8595 CPSecureState secstate, 8596 int crm, int opc1, int opc2, 8597 const char *name) 8598 { 8599 CPUARMState *env = &cpu->env; 8600 uint32_t key; 8601 ARMCPRegInfo *r2; 8602 bool is64 = r->type & ARM_CP_64BIT; 8603 bool ns = secstate & ARM_CP_SECSTATE_NS; 8604 int cp = r->cp; 8605 size_t name_len; 8606 bool make_const; 8607 8608 switch (state) { 8609 case ARM_CP_STATE_AA32: 8610 /* We assume it is a cp15 register if the .cp field is left unset. */ 8611 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 8612 cp = 15; 8613 } 8614 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 8615 break; 8616 case ARM_CP_STATE_AA64: 8617 /* 8618 * To allow abbreviation of ARMCPRegInfo definitions, we treat 8619 * cp == 0 as equivalent to the value for "standard guest-visible 8620 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 8621 * in their AArch64 view (the .cp value may be non-zero for the 8622 * benefit of the AArch32 view). 8623 */ 8624 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8625 cp = CP_REG_ARM64_SYSREG_CP; 8626 } 8627 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 8628 break; 8629 default: 8630 g_assert_not_reached(); 8631 } 8632 8633 /* Overriding of an existing definition must be explicitly requested. */ 8634 if (!(r->type & ARM_CP_OVERRIDE)) { 8635 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 8636 if (oldreg) { 8637 assert(oldreg->type & ARM_CP_OVERRIDE); 8638 } 8639 } 8640 8641 /* 8642 * Eliminate registers that are not present because the EL is missing. 8643 * Doing this here makes it easier to put all registers for a given 8644 * feature into the same ARMCPRegInfo array and define them all at once. 8645 */ 8646 make_const = false; 8647 if (arm_feature(env, ARM_FEATURE_EL3)) { 8648 /* 8649 * An EL2 register without EL2 but with EL3 is (usually) RES0. 8650 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 8651 */ 8652 int min_el = ctz32(r->access) / 2; 8653 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 8654 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 8655 return; 8656 } 8657 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 8658 } 8659 } else { 8660 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 8661 ? PL2_RW : PL1_RW); 8662 if ((r->access & max_el) == 0) { 8663 return; 8664 } 8665 } 8666 8667 /* Combine cpreg and name into one allocation. */ 8668 name_len = strlen(name) + 1; 8669 r2 = g_malloc(sizeof(*r2) + name_len); 8670 *r2 = *r; 8671 r2->name = memcpy(r2 + 1, name, name_len); 8672 8673 /* 8674 * Update fields to match the instantiation, overwiting wildcards 8675 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 8676 */ 8677 r2->cp = cp; 8678 r2->crm = crm; 8679 r2->opc1 = opc1; 8680 r2->opc2 = opc2; 8681 r2->state = state; 8682 r2->secure = secstate; 8683 if (opaque) { 8684 r2->opaque = opaque; 8685 } 8686 8687 if (make_const) { 8688 /* This should not have been a very special register to begin. */ 8689 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 8690 assert(old_special == 0 || old_special == ARM_CP_NOP); 8691 /* 8692 * Set the special function to CONST, retaining the other flags. 8693 * This is important for e.g. ARM_CP_SVE so that we still 8694 * take the SVE trap if CPTR_EL3.EZ == 0. 8695 */ 8696 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 8697 /* 8698 * Usually, these registers become RES0, but there are a few 8699 * special cases like VPIDR_EL2 which have a constant non-zero 8700 * value with writes ignored. 8701 */ 8702 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 8703 r2->resetvalue = 0; 8704 } 8705 /* 8706 * ARM_CP_CONST has precedence, so removing the callbacks and 8707 * offsets are not strictly necessary, but it is potentially 8708 * less confusing to debug later. 8709 */ 8710 r2->readfn = NULL; 8711 r2->writefn = NULL; 8712 r2->raw_readfn = NULL; 8713 r2->raw_writefn = NULL; 8714 r2->resetfn = NULL; 8715 r2->fieldoffset = 0; 8716 r2->bank_fieldoffsets[0] = 0; 8717 r2->bank_fieldoffsets[1] = 0; 8718 } else { 8719 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 8720 8721 if (isbanked) { 8722 /* 8723 * Register is banked (using both entries in array). 8724 * Overwriting fieldoffset as the array is only used to define 8725 * banked registers but later only fieldoffset is used. 8726 */ 8727 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8728 } 8729 if (state == ARM_CP_STATE_AA32) { 8730 if (isbanked) { 8731 /* 8732 * If the register is banked then we don't need to migrate or 8733 * reset the 32-bit instance in certain cases: 8734 * 8735 * 1) If the register has both 32-bit and 64-bit instances 8736 * then we can count on the 64-bit instance taking care 8737 * of the non-secure bank. 8738 * 2) If ARMv8 is enabled then we can count on a 64-bit 8739 * version taking care of the secure bank. This requires 8740 * that separate 32 and 64-bit definitions are provided. 8741 */ 8742 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8743 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 8744 r2->type |= ARM_CP_ALIAS; 8745 } 8746 } else if ((secstate != r->secure) && !ns) { 8747 /* 8748 * The register is not banked so we only want to allow 8749 * migration of the non-secure instance. 8750 */ 8751 r2->type |= ARM_CP_ALIAS; 8752 } 8753 8754 if (HOST_BIG_ENDIAN && 8755 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 8756 r2->fieldoffset += sizeof(uint32_t); 8757 } 8758 } 8759 } 8760 8761 /* 8762 * By convention, for wildcarded registers only the first 8763 * entry is used for migration; the others are marked as 8764 * ALIAS so we don't try to transfer the register 8765 * multiple times. Special registers (ie NOP/WFI) are 8766 * never migratable and not even raw-accessible. 8767 */ 8768 if (r2->type & ARM_CP_SPECIAL_MASK) { 8769 r2->type |= ARM_CP_NO_RAW; 8770 } 8771 if (((r->crm == CP_ANY) && crm != 0) || 8772 ((r->opc1 == CP_ANY) && opc1 != 0) || 8773 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8774 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8775 } 8776 8777 /* 8778 * Check that raw accesses are either forbidden or handled. Note that 8779 * we can't assert this earlier because the setup of fieldoffset for 8780 * banked registers has to be done first. 8781 */ 8782 if (!(r2->type & ARM_CP_NO_RAW)) { 8783 assert(!raw_accessors_invalid(r2)); 8784 } 8785 8786 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 8787 } 8788 8789 8790 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8791 const ARMCPRegInfo *r, void *opaque) 8792 { 8793 /* Define implementations of coprocessor registers. 8794 * We store these in a hashtable because typically 8795 * there are less than 150 registers in a space which 8796 * is 16*16*16*8*8 = 262144 in size. 8797 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8798 * If a register is defined twice then the second definition is 8799 * used, so this can be used to define some generic registers and 8800 * then override them with implementation specific variations. 8801 * At least one of the original and the second definition should 8802 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8803 * against accidental use. 8804 * 8805 * The state field defines whether the register is to be 8806 * visible in the AArch32 or AArch64 execution state. If the 8807 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8808 * reginfo structure for the AArch32 view, which sees the lower 8809 * 32 bits of the 64 bit register. 8810 * 8811 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8812 * be wildcarded. AArch64 registers are always considered to be 64 8813 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8814 * the register, if any. 8815 */ 8816 int crm, opc1, opc2; 8817 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8818 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8819 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8820 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8821 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8822 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8823 CPState state; 8824 8825 /* 64 bit registers have only CRm and Opc1 fields */ 8826 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8827 /* op0 only exists in the AArch64 encodings */ 8828 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8829 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8830 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8831 /* 8832 * This API is only for Arm's system coprocessors (14 and 15) or 8833 * (M-profile or v7A-and-earlier only) for implementation defined 8834 * coprocessors in the range 0..7. Our decode assumes this, since 8835 * 8..13 can be used for other insns including VFP and Neon. See 8836 * valid_cp() in translate.c. Assert here that we haven't tried 8837 * to use an invalid coprocessor number. 8838 */ 8839 switch (r->state) { 8840 case ARM_CP_STATE_BOTH: 8841 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8842 if (r->cp == 0) { 8843 break; 8844 } 8845 /* fall through */ 8846 case ARM_CP_STATE_AA32: 8847 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8848 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8849 assert(r->cp >= 14 && r->cp <= 15); 8850 } else { 8851 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8852 } 8853 break; 8854 case ARM_CP_STATE_AA64: 8855 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8856 break; 8857 default: 8858 g_assert_not_reached(); 8859 } 8860 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8861 * encodes a minimum access level for the register. We roll this 8862 * runtime check into our general permission check code, so check 8863 * here that the reginfo's specified permissions are strict enough 8864 * to encompass the generic architectural permission check. 8865 */ 8866 if (r->state != ARM_CP_STATE_AA32) { 8867 CPAccessRights mask; 8868 switch (r->opc1) { 8869 case 0: 8870 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8871 mask = PL0U_R | PL1_RW; 8872 break; 8873 case 1: case 2: 8874 /* min_EL EL1 */ 8875 mask = PL1_RW; 8876 break; 8877 case 3: 8878 /* min_EL EL0 */ 8879 mask = PL0_RW; 8880 break; 8881 case 4: 8882 case 5: 8883 /* min_EL EL2 */ 8884 mask = PL2_RW; 8885 break; 8886 case 6: 8887 /* min_EL EL3 */ 8888 mask = PL3_RW; 8889 break; 8890 case 7: 8891 /* min_EL EL1, secure mode only (we don't check the latter) */ 8892 mask = PL1_RW; 8893 break; 8894 default: 8895 /* broken reginfo with out-of-range opc1 */ 8896 g_assert_not_reached(); 8897 } 8898 /* assert our permissions are not too lax (stricter is fine) */ 8899 assert((r->access & ~mask) == 0); 8900 } 8901 8902 /* Check that the register definition has enough info to handle 8903 * reads and writes if they are permitted. 8904 */ 8905 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 8906 if (r->access & PL3_R) { 8907 assert((r->fieldoffset || 8908 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8909 r->readfn); 8910 } 8911 if (r->access & PL3_W) { 8912 assert((r->fieldoffset || 8913 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8914 r->writefn); 8915 } 8916 } 8917 8918 for (crm = crmmin; crm <= crmmax; crm++) { 8919 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8920 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8921 for (state = ARM_CP_STATE_AA32; 8922 state <= ARM_CP_STATE_AA64; state++) { 8923 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8924 continue; 8925 } 8926 if (state == ARM_CP_STATE_AA32) { 8927 /* Under AArch32 CP registers can be common 8928 * (same for secure and non-secure world) or banked. 8929 */ 8930 char *name; 8931 8932 switch (r->secure) { 8933 case ARM_CP_SECSTATE_S: 8934 case ARM_CP_SECSTATE_NS: 8935 add_cpreg_to_hashtable(cpu, r, opaque, state, 8936 r->secure, crm, opc1, opc2, 8937 r->name); 8938 break; 8939 case ARM_CP_SECSTATE_BOTH: 8940 name = g_strdup_printf("%s_S", r->name); 8941 add_cpreg_to_hashtable(cpu, r, opaque, state, 8942 ARM_CP_SECSTATE_S, 8943 crm, opc1, opc2, name); 8944 g_free(name); 8945 add_cpreg_to_hashtable(cpu, r, opaque, state, 8946 ARM_CP_SECSTATE_NS, 8947 crm, opc1, opc2, r->name); 8948 break; 8949 default: 8950 g_assert_not_reached(); 8951 } 8952 } else { 8953 /* AArch64 registers get mapped to non-secure instance 8954 * of AArch32 */ 8955 add_cpreg_to_hashtable(cpu, r, opaque, state, 8956 ARM_CP_SECSTATE_NS, 8957 crm, opc1, opc2, r->name); 8958 } 8959 } 8960 } 8961 } 8962 } 8963 } 8964 8965 /* Define a whole list of registers */ 8966 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 8967 void *opaque, size_t len) 8968 { 8969 size_t i; 8970 for (i = 0; i < len; ++i) { 8971 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 8972 } 8973 } 8974 8975 /* 8976 * Modify ARMCPRegInfo for access from userspace. 8977 * 8978 * This is a data driven modification directed by 8979 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8980 * user-space cannot alter any values and dynamic values pertaining to 8981 * execution state are hidden from user space view anyway. 8982 */ 8983 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 8984 const ARMCPRegUserSpaceInfo *mods, 8985 size_t mods_len) 8986 { 8987 for (size_t mi = 0; mi < mods_len; ++mi) { 8988 const ARMCPRegUserSpaceInfo *m = mods + mi; 8989 GPatternSpec *pat = NULL; 8990 8991 if (m->is_glob) { 8992 pat = g_pattern_spec_new(m->name); 8993 } 8994 for (size_t ri = 0; ri < regs_len; ++ri) { 8995 ARMCPRegInfo *r = regs + ri; 8996 8997 if (pat && g_pattern_match_string(pat, r->name)) { 8998 r->type = ARM_CP_CONST; 8999 r->access = PL0U_R; 9000 r->resetvalue = 0; 9001 /* continue */ 9002 } else if (strcmp(r->name, m->name) == 0) { 9003 r->type = ARM_CP_CONST; 9004 r->access = PL0U_R; 9005 r->resetvalue &= m->exported_bits; 9006 r->resetvalue |= m->fixed_bits; 9007 break; 9008 } 9009 } 9010 if (pat) { 9011 g_pattern_spec_free(pat); 9012 } 9013 } 9014 } 9015 9016 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9017 { 9018 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9019 } 9020 9021 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9022 uint64_t value) 9023 { 9024 /* Helper coprocessor write function for write-ignore registers */ 9025 } 9026 9027 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9028 { 9029 /* Helper coprocessor write function for read-as-zero registers */ 9030 return 0; 9031 } 9032 9033 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9034 { 9035 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9036 } 9037 9038 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9039 { 9040 /* Return true if it is not valid for us to switch to 9041 * this CPU mode (ie all the UNPREDICTABLE cases in 9042 * the ARM ARM CPSRWriteByInstr pseudocode). 9043 */ 9044 9045 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9046 if (write_type == CPSRWriteByInstr && 9047 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9048 mode == ARM_CPU_MODE_HYP)) { 9049 return 1; 9050 } 9051 9052 switch (mode) { 9053 case ARM_CPU_MODE_USR: 9054 return 0; 9055 case ARM_CPU_MODE_SYS: 9056 case ARM_CPU_MODE_SVC: 9057 case ARM_CPU_MODE_ABT: 9058 case ARM_CPU_MODE_UND: 9059 case ARM_CPU_MODE_IRQ: 9060 case ARM_CPU_MODE_FIQ: 9061 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 9062 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9063 */ 9064 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9065 * and CPS are treated as illegal mode changes. 9066 */ 9067 if (write_type == CPSRWriteByInstr && 9068 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9069 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9070 return 1; 9071 } 9072 return 0; 9073 case ARM_CPU_MODE_HYP: 9074 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9075 case ARM_CPU_MODE_MON: 9076 return arm_current_el(env) < 3; 9077 default: 9078 return 1; 9079 } 9080 } 9081 9082 uint32_t cpsr_read(CPUARMState *env) 9083 { 9084 int ZF; 9085 ZF = (env->ZF == 0); 9086 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9087 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9088 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9089 | ((env->condexec_bits & 0xfc) << 8) 9090 | (env->GE << 16) | (env->daif & CPSR_AIF); 9091 } 9092 9093 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9094 CPSRWriteType write_type) 9095 { 9096 uint32_t changed_daif; 9097 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9098 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9099 9100 if (mask & CPSR_NZCV) { 9101 env->ZF = (~val) & CPSR_Z; 9102 env->NF = val; 9103 env->CF = (val >> 29) & 1; 9104 env->VF = (val << 3) & 0x80000000; 9105 } 9106 if (mask & CPSR_Q) 9107 env->QF = ((val & CPSR_Q) != 0); 9108 if (mask & CPSR_T) 9109 env->thumb = ((val & CPSR_T) != 0); 9110 if (mask & CPSR_IT_0_1) { 9111 env->condexec_bits &= ~3; 9112 env->condexec_bits |= (val >> 25) & 3; 9113 } 9114 if (mask & CPSR_IT_2_7) { 9115 env->condexec_bits &= 3; 9116 env->condexec_bits |= (val >> 8) & 0xfc; 9117 } 9118 if (mask & CPSR_GE) { 9119 env->GE = (val >> 16) & 0xf; 9120 } 9121 9122 /* In a V7 implementation that includes the security extensions but does 9123 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9124 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9125 * bits respectively. 9126 * 9127 * In a V8 implementation, it is permitted for privileged software to 9128 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9129 */ 9130 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9131 arm_feature(env, ARM_FEATURE_EL3) && 9132 !arm_feature(env, ARM_FEATURE_EL2) && 9133 !arm_is_secure(env)) { 9134 9135 changed_daif = (env->daif ^ val) & mask; 9136 9137 if (changed_daif & CPSR_A) { 9138 /* Check to see if we are allowed to change the masking of async 9139 * abort exceptions from a non-secure state. 9140 */ 9141 if (!(env->cp15.scr_el3 & SCR_AW)) { 9142 qemu_log_mask(LOG_GUEST_ERROR, 9143 "Ignoring attempt to switch CPSR_A flag from " 9144 "non-secure world with SCR.AW bit clear\n"); 9145 mask &= ~CPSR_A; 9146 } 9147 } 9148 9149 if (changed_daif & CPSR_F) { 9150 /* Check to see if we are allowed to change the masking of FIQ 9151 * exceptions from a non-secure state. 9152 */ 9153 if (!(env->cp15.scr_el3 & SCR_FW)) { 9154 qemu_log_mask(LOG_GUEST_ERROR, 9155 "Ignoring attempt to switch CPSR_F flag from " 9156 "non-secure world with SCR.FW bit clear\n"); 9157 mask &= ~CPSR_F; 9158 } 9159 9160 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9161 * If this bit is set software is not allowed to mask 9162 * FIQs, but is allowed to set CPSR_F to 0. 9163 */ 9164 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9165 (val & CPSR_F)) { 9166 qemu_log_mask(LOG_GUEST_ERROR, 9167 "Ignoring attempt to enable CPSR_F flag " 9168 "(non-maskable FIQ [NMFI] support enabled)\n"); 9169 mask &= ~CPSR_F; 9170 } 9171 } 9172 } 9173 9174 env->daif &= ~(CPSR_AIF & mask); 9175 env->daif |= val & CPSR_AIF & mask; 9176 9177 if (write_type != CPSRWriteRaw && 9178 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9179 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9180 /* Note that we can only get here in USR mode if this is a 9181 * gdb stub write; for this case we follow the architectural 9182 * behaviour for guest writes in USR mode of ignoring an attempt 9183 * to switch mode. (Those are caught by translate.c for writes 9184 * triggered by guest instructions.) 9185 */ 9186 mask &= ~CPSR_M; 9187 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9188 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9189 * v7, and has defined behaviour in v8: 9190 * + leave CPSR.M untouched 9191 * + allow changes to the other CPSR fields 9192 * + set PSTATE.IL 9193 * For user changes via the GDB stub, we don't set PSTATE.IL, 9194 * as this would be unnecessarily harsh for a user error. 9195 */ 9196 mask &= ~CPSR_M; 9197 if (write_type != CPSRWriteByGDBStub && 9198 arm_feature(env, ARM_FEATURE_V8)) { 9199 mask |= CPSR_IL; 9200 val |= CPSR_IL; 9201 } 9202 qemu_log_mask(LOG_GUEST_ERROR, 9203 "Illegal AArch32 mode switch attempt from %s to %s\n", 9204 aarch32_mode_name(env->uncached_cpsr), 9205 aarch32_mode_name(val)); 9206 } else { 9207 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9208 write_type == CPSRWriteExceptionReturn ? 9209 "Exception return from AArch32" : 9210 "AArch32 mode switch from", 9211 aarch32_mode_name(env->uncached_cpsr), 9212 aarch32_mode_name(val), env->regs[15]); 9213 switch_mode(env, val & CPSR_M); 9214 } 9215 } 9216 mask &= ~CACHED_CPSR_BITS; 9217 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9218 if (rebuild_hflags) { 9219 arm_rebuild_hflags(env); 9220 } 9221 } 9222 9223 /* Sign/zero extend */ 9224 uint32_t HELPER(sxtb16)(uint32_t x) 9225 { 9226 uint32_t res; 9227 res = (uint16_t)(int8_t)x; 9228 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9229 return res; 9230 } 9231 9232 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9233 { 9234 /* 9235 * Take a division-by-zero exception if necessary; otherwise return 9236 * to get the usual non-trapping division behaviour (result of 0) 9237 */ 9238 if (arm_feature(env, ARM_FEATURE_M) 9239 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9240 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9241 } 9242 } 9243 9244 uint32_t HELPER(uxtb16)(uint32_t x) 9245 { 9246 uint32_t res; 9247 res = (uint16_t)(uint8_t)x; 9248 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9249 return res; 9250 } 9251 9252 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9253 { 9254 if (den == 0) { 9255 handle_possible_div0_trap(env, GETPC()); 9256 return 0; 9257 } 9258 if (num == INT_MIN && den == -1) { 9259 return INT_MIN; 9260 } 9261 return num / den; 9262 } 9263 9264 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9265 { 9266 if (den == 0) { 9267 handle_possible_div0_trap(env, GETPC()); 9268 return 0; 9269 } 9270 return num / den; 9271 } 9272 9273 uint32_t HELPER(rbit)(uint32_t x) 9274 { 9275 return revbit32(x); 9276 } 9277 9278 #ifdef CONFIG_USER_ONLY 9279 9280 static void switch_mode(CPUARMState *env, int mode) 9281 { 9282 ARMCPU *cpu = env_archcpu(env); 9283 9284 if (mode != ARM_CPU_MODE_USR) { 9285 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9286 } 9287 } 9288 9289 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9290 uint32_t cur_el, bool secure) 9291 { 9292 return 1; 9293 } 9294 9295 void aarch64_sync_64_to_32(CPUARMState *env) 9296 { 9297 g_assert_not_reached(); 9298 } 9299 9300 #else 9301 9302 static void switch_mode(CPUARMState *env, int mode) 9303 { 9304 int old_mode; 9305 int i; 9306 9307 old_mode = env->uncached_cpsr & CPSR_M; 9308 if (mode == old_mode) 9309 return; 9310 9311 if (old_mode == ARM_CPU_MODE_FIQ) { 9312 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9313 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9314 } else if (mode == ARM_CPU_MODE_FIQ) { 9315 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9316 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9317 } 9318 9319 i = bank_number(old_mode); 9320 env->banked_r13[i] = env->regs[13]; 9321 env->banked_spsr[i] = env->spsr; 9322 9323 i = bank_number(mode); 9324 env->regs[13] = env->banked_r13[i]; 9325 env->spsr = env->banked_spsr[i]; 9326 9327 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9328 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9329 } 9330 9331 /* Physical Interrupt Target EL Lookup Table 9332 * 9333 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9334 * 9335 * The below multi-dimensional table is used for looking up the target 9336 * exception level given numerous condition criteria. Specifically, the 9337 * target EL is based on SCR and HCR routing controls as well as the 9338 * currently executing EL and secure state. 9339 * 9340 * Dimensions: 9341 * target_el_table[2][2][2][2][2][4] 9342 * | | | | | +--- Current EL 9343 * | | | | +------ Non-secure(0)/Secure(1) 9344 * | | | +--------- HCR mask override 9345 * | | +------------ SCR exec state control 9346 * | +--------------- SCR mask override 9347 * +------------------ 32-bit(0)/64-bit(1) EL3 9348 * 9349 * The table values are as such: 9350 * 0-3 = EL0-EL3 9351 * -1 = Cannot occur 9352 * 9353 * The ARM ARM target EL table includes entries indicating that an "exception 9354 * is not taken". The two cases where this is applicable are: 9355 * 1) An exception is taken from EL3 but the SCR does not have the exception 9356 * routed to EL3. 9357 * 2) An exception is taken from EL2 but the HCR does not have the exception 9358 * routed to EL2. 9359 * In these two cases, the below table contain a target of EL1. This value is 9360 * returned as it is expected that the consumer of the table data will check 9361 * for "target EL >= current EL" to ensure the exception is not taken. 9362 * 9363 * SCR HCR 9364 * 64 EA AMO From 9365 * BIT IRQ IMO Non-secure Secure 9366 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9367 */ 9368 static const int8_t target_el_table[2][2][2][2][2][4] = { 9369 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9370 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9371 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9372 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9373 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9374 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9375 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9376 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9377 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9378 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9379 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9380 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9381 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9382 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9383 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9384 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9385 }; 9386 9387 /* 9388 * Determine the target EL for physical exceptions 9389 */ 9390 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9391 uint32_t cur_el, bool secure) 9392 { 9393 CPUARMState *env = cs->env_ptr; 9394 bool rw; 9395 bool scr; 9396 bool hcr; 9397 int target_el; 9398 /* Is the highest EL AArch64? */ 9399 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9400 uint64_t hcr_el2; 9401 9402 if (arm_feature(env, ARM_FEATURE_EL3)) { 9403 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9404 } else { 9405 /* Either EL2 is the highest EL (and so the EL2 register width 9406 * is given by is64); or there is no EL2 or EL3, in which case 9407 * the value of 'rw' does not affect the table lookup anyway. 9408 */ 9409 rw = is64; 9410 } 9411 9412 hcr_el2 = arm_hcr_el2_eff(env); 9413 switch (excp_idx) { 9414 case EXCP_IRQ: 9415 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9416 hcr = hcr_el2 & HCR_IMO; 9417 break; 9418 case EXCP_FIQ: 9419 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9420 hcr = hcr_el2 & HCR_FMO; 9421 break; 9422 default: 9423 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9424 hcr = hcr_el2 & HCR_AMO; 9425 break; 9426 }; 9427 9428 /* 9429 * For these purposes, TGE and AMO/IMO/FMO both force the 9430 * interrupt to EL2. Fold TGE into the bit extracted above. 9431 */ 9432 hcr |= (hcr_el2 & HCR_TGE) != 0; 9433 9434 /* Perform a table-lookup for the target EL given the current state */ 9435 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9436 9437 assert(target_el > 0); 9438 9439 return target_el; 9440 } 9441 9442 void arm_log_exception(CPUState *cs) 9443 { 9444 int idx = cs->exception_index; 9445 9446 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9447 const char *exc = NULL; 9448 static const char * const excnames[] = { 9449 [EXCP_UDEF] = "Undefined Instruction", 9450 [EXCP_SWI] = "SVC", 9451 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9452 [EXCP_DATA_ABORT] = "Data Abort", 9453 [EXCP_IRQ] = "IRQ", 9454 [EXCP_FIQ] = "FIQ", 9455 [EXCP_BKPT] = "Breakpoint", 9456 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9457 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9458 [EXCP_HVC] = "Hypervisor Call", 9459 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9460 [EXCP_SMC] = "Secure Monitor Call", 9461 [EXCP_VIRQ] = "Virtual IRQ", 9462 [EXCP_VFIQ] = "Virtual FIQ", 9463 [EXCP_SEMIHOST] = "Semihosting call", 9464 [EXCP_NOCP] = "v7M NOCP UsageFault", 9465 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9466 [EXCP_STKOF] = "v8M STKOF UsageFault", 9467 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9468 [EXCP_LSERR] = "v8M LSERR UsageFault", 9469 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9470 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9471 [EXCP_VSERR] = "Virtual SERR", 9472 }; 9473 9474 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9475 exc = excnames[idx]; 9476 } 9477 if (!exc) { 9478 exc = "unknown"; 9479 } 9480 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9481 idx, exc, cs->cpu_index); 9482 } 9483 } 9484 9485 /* 9486 * Function used to synchronize QEMU's AArch64 register set with AArch32 9487 * register set. This is necessary when switching between AArch32 and AArch64 9488 * execution state. 9489 */ 9490 void aarch64_sync_32_to_64(CPUARMState *env) 9491 { 9492 int i; 9493 uint32_t mode = env->uncached_cpsr & CPSR_M; 9494 9495 /* We can blanket copy R[0:7] to X[0:7] */ 9496 for (i = 0; i < 8; i++) { 9497 env->xregs[i] = env->regs[i]; 9498 } 9499 9500 /* 9501 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9502 * Otherwise, they come from the banked user regs. 9503 */ 9504 if (mode == ARM_CPU_MODE_FIQ) { 9505 for (i = 8; i < 13; i++) { 9506 env->xregs[i] = env->usr_regs[i - 8]; 9507 } 9508 } else { 9509 for (i = 8; i < 13; i++) { 9510 env->xregs[i] = env->regs[i]; 9511 } 9512 } 9513 9514 /* 9515 * Registers x13-x23 are the various mode SP and FP registers. Registers 9516 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9517 * from the mode banked register. 9518 */ 9519 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9520 env->xregs[13] = env->regs[13]; 9521 env->xregs[14] = env->regs[14]; 9522 } else { 9523 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9524 /* HYP is an exception in that it is copied from r14 */ 9525 if (mode == ARM_CPU_MODE_HYP) { 9526 env->xregs[14] = env->regs[14]; 9527 } else { 9528 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9529 } 9530 } 9531 9532 if (mode == ARM_CPU_MODE_HYP) { 9533 env->xregs[15] = env->regs[13]; 9534 } else { 9535 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9536 } 9537 9538 if (mode == ARM_CPU_MODE_IRQ) { 9539 env->xregs[16] = env->regs[14]; 9540 env->xregs[17] = env->regs[13]; 9541 } else { 9542 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9543 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9544 } 9545 9546 if (mode == ARM_CPU_MODE_SVC) { 9547 env->xregs[18] = env->regs[14]; 9548 env->xregs[19] = env->regs[13]; 9549 } else { 9550 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9551 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9552 } 9553 9554 if (mode == ARM_CPU_MODE_ABT) { 9555 env->xregs[20] = env->regs[14]; 9556 env->xregs[21] = env->regs[13]; 9557 } else { 9558 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9559 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9560 } 9561 9562 if (mode == ARM_CPU_MODE_UND) { 9563 env->xregs[22] = env->regs[14]; 9564 env->xregs[23] = env->regs[13]; 9565 } else { 9566 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9567 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9568 } 9569 9570 /* 9571 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9572 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9573 * FIQ bank for r8-r14. 9574 */ 9575 if (mode == ARM_CPU_MODE_FIQ) { 9576 for (i = 24; i < 31; i++) { 9577 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9578 } 9579 } else { 9580 for (i = 24; i < 29; i++) { 9581 env->xregs[i] = env->fiq_regs[i - 24]; 9582 } 9583 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9584 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9585 } 9586 9587 env->pc = env->regs[15]; 9588 } 9589 9590 /* 9591 * Function used to synchronize QEMU's AArch32 register set with AArch64 9592 * register set. This is necessary when switching between AArch32 and AArch64 9593 * execution state. 9594 */ 9595 void aarch64_sync_64_to_32(CPUARMState *env) 9596 { 9597 int i; 9598 uint32_t mode = env->uncached_cpsr & CPSR_M; 9599 9600 /* We can blanket copy X[0:7] to R[0:7] */ 9601 for (i = 0; i < 8; i++) { 9602 env->regs[i] = env->xregs[i]; 9603 } 9604 9605 /* 9606 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9607 * Otherwise, we copy x8-x12 into the banked user regs. 9608 */ 9609 if (mode == ARM_CPU_MODE_FIQ) { 9610 for (i = 8; i < 13; i++) { 9611 env->usr_regs[i - 8] = env->xregs[i]; 9612 } 9613 } else { 9614 for (i = 8; i < 13; i++) { 9615 env->regs[i] = env->xregs[i]; 9616 } 9617 } 9618 9619 /* 9620 * Registers r13 & r14 depend on the current mode. 9621 * If we are in a given mode, we copy the corresponding x registers to r13 9622 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9623 * for the mode. 9624 */ 9625 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9626 env->regs[13] = env->xregs[13]; 9627 env->regs[14] = env->xregs[14]; 9628 } else { 9629 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9630 9631 /* 9632 * HYP is an exception in that it does not have its own banked r14 but 9633 * shares the USR r14 9634 */ 9635 if (mode == ARM_CPU_MODE_HYP) { 9636 env->regs[14] = env->xregs[14]; 9637 } else { 9638 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9639 } 9640 } 9641 9642 if (mode == ARM_CPU_MODE_HYP) { 9643 env->regs[13] = env->xregs[15]; 9644 } else { 9645 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9646 } 9647 9648 if (mode == ARM_CPU_MODE_IRQ) { 9649 env->regs[14] = env->xregs[16]; 9650 env->regs[13] = env->xregs[17]; 9651 } else { 9652 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9653 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9654 } 9655 9656 if (mode == ARM_CPU_MODE_SVC) { 9657 env->regs[14] = env->xregs[18]; 9658 env->regs[13] = env->xregs[19]; 9659 } else { 9660 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9661 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9662 } 9663 9664 if (mode == ARM_CPU_MODE_ABT) { 9665 env->regs[14] = env->xregs[20]; 9666 env->regs[13] = env->xregs[21]; 9667 } else { 9668 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9669 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9670 } 9671 9672 if (mode == ARM_CPU_MODE_UND) { 9673 env->regs[14] = env->xregs[22]; 9674 env->regs[13] = env->xregs[23]; 9675 } else { 9676 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9677 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9678 } 9679 9680 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9681 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9682 * FIQ bank for r8-r14. 9683 */ 9684 if (mode == ARM_CPU_MODE_FIQ) { 9685 for (i = 24; i < 31; i++) { 9686 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9687 } 9688 } else { 9689 for (i = 24; i < 29; i++) { 9690 env->fiq_regs[i - 24] = env->xregs[i]; 9691 } 9692 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9693 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9694 } 9695 9696 env->regs[15] = env->pc; 9697 } 9698 9699 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9700 uint32_t mask, uint32_t offset, 9701 uint32_t newpc) 9702 { 9703 int new_el; 9704 9705 /* Change the CPU state so as to actually take the exception. */ 9706 switch_mode(env, new_mode); 9707 9708 /* 9709 * For exceptions taken to AArch32 we must clear the SS bit in both 9710 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9711 */ 9712 env->pstate &= ~PSTATE_SS; 9713 env->spsr = cpsr_read(env); 9714 /* Clear IT bits. */ 9715 env->condexec_bits = 0; 9716 /* Switch to the new mode, and to the correct instruction set. */ 9717 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9718 9719 /* This must be after mode switching. */ 9720 new_el = arm_current_el(env); 9721 9722 /* Set new mode endianness */ 9723 env->uncached_cpsr &= ~CPSR_E; 9724 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9725 env->uncached_cpsr |= CPSR_E; 9726 } 9727 /* J and IL must always be cleared for exception entry */ 9728 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9729 env->daif |= mask; 9730 9731 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9732 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9733 env->uncached_cpsr |= CPSR_SSBS; 9734 } else { 9735 env->uncached_cpsr &= ~CPSR_SSBS; 9736 } 9737 } 9738 9739 if (new_mode == ARM_CPU_MODE_HYP) { 9740 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9741 env->elr_el[2] = env->regs[15]; 9742 } else { 9743 /* CPSR.PAN is normally preserved preserved unless... */ 9744 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9745 switch (new_el) { 9746 case 3: 9747 if (!arm_is_secure_below_el3(env)) { 9748 /* ... the target is EL3, from non-secure state. */ 9749 env->uncached_cpsr &= ~CPSR_PAN; 9750 break; 9751 } 9752 /* ... the target is EL3, from secure state ... */ 9753 /* fall through */ 9754 case 1: 9755 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9756 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9757 env->uncached_cpsr |= CPSR_PAN; 9758 } 9759 break; 9760 } 9761 } 9762 /* 9763 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9764 * and we should just guard the thumb mode on V4 9765 */ 9766 if (arm_feature(env, ARM_FEATURE_V4T)) { 9767 env->thumb = 9768 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9769 } 9770 env->regs[14] = env->regs[15] + offset; 9771 } 9772 env->regs[15] = newpc; 9773 arm_rebuild_hflags(env); 9774 } 9775 9776 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9777 { 9778 /* 9779 * Handle exception entry to Hyp mode; this is sufficiently 9780 * different to entry to other AArch32 modes that we handle it 9781 * separately here. 9782 * 9783 * The vector table entry used is always the 0x14 Hyp mode entry point, 9784 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9785 * The offset applied to the preferred return address is always zero 9786 * (see DDI0487C.a section G1.12.3). 9787 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9788 */ 9789 uint32_t addr, mask; 9790 ARMCPU *cpu = ARM_CPU(cs); 9791 CPUARMState *env = &cpu->env; 9792 9793 switch (cs->exception_index) { 9794 case EXCP_UDEF: 9795 addr = 0x04; 9796 break; 9797 case EXCP_SWI: 9798 addr = 0x08; 9799 break; 9800 case EXCP_BKPT: 9801 /* Fall through to prefetch abort. */ 9802 case EXCP_PREFETCH_ABORT: 9803 env->cp15.ifar_s = env->exception.vaddress; 9804 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9805 (uint32_t)env->exception.vaddress); 9806 addr = 0x0c; 9807 break; 9808 case EXCP_DATA_ABORT: 9809 env->cp15.dfar_s = env->exception.vaddress; 9810 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9811 (uint32_t)env->exception.vaddress); 9812 addr = 0x10; 9813 break; 9814 case EXCP_IRQ: 9815 addr = 0x18; 9816 break; 9817 case EXCP_FIQ: 9818 addr = 0x1c; 9819 break; 9820 case EXCP_HVC: 9821 addr = 0x08; 9822 break; 9823 case EXCP_HYP_TRAP: 9824 addr = 0x14; 9825 break; 9826 default: 9827 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9828 } 9829 9830 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9831 if (!arm_feature(env, ARM_FEATURE_V8)) { 9832 /* 9833 * QEMU syndrome values are v8-style. v7 has the IL bit 9834 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9835 * If this is a v7 CPU, squash the IL bit in those cases. 9836 */ 9837 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9838 (cs->exception_index == EXCP_DATA_ABORT && 9839 !(env->exception.syndrome & ARM_EL_ISV)) || 9840 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9841 env->exception.syndrome &= ~ARM_EL_IL; 9842 } 9843 } 9844 env->cp15.esr_el[2] = env->exception.syndrome; 9845 } 9846 9847 if (arm_current_el(env) != 2 && addr < 0x14) { 9848 addr = 0x14; 9849 } 9850 9851 mask = 0; 9852 if (!(env->cp15.scr_el3 & SCR_EA)) { 9853 mask |= CPSR_A; 9854 } 9855 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9856 mask |= CPSR_I; 9857 } 9858 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9859 mask |= CPSR_F; 9860 } 9861 9862 addr += env->cp15.hvbar; 9863 9864 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9865 } 9866 9867 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9868 { 9869 ARMCPU *cpu = ARM_CPU(cs); 9870 CPUARMState *env = &cpu->env; 9871 uint32_t addr; 9872 uint32_t mask; 9873 int new_mode; 9874 uint32_t offset; 9875 uint32_t moe; 9876 9877 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9878 switch (syn_get_ec(env->exception.syndrome)) { 9879 case EC_BREAKPOINT: 9880 case EC_BREAKPOINT_SAME_EL: 9881 moe = 1; 9882 break; 9883 case EC_WATCHPOINT: 9884 case EC_WATCHPOINT_SAME_EL: 9885 moe = 10; 9886 break; 9887 case EC_AA32_BKPT: 9888 moe = 3; 9889 break; 9890 case EC_VECTORCATCH: 9891 moe = 5; 9892 break; 9893 default: 9894 moe = 0; 9895 break; 9896 } 9897 9898 if (moe) { 9899 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9900 } 9901 9902 if (env->exception.target_el == 2) { 9903 arm_cpu_do_interrupt_aarch32_hyp(cs); 9904 return; 9905 } 9906 9907 switch (cs->exception_index) { 9908 case EXCP_UDEF: 9909 new_mode = ARM_CPU_MODE_UND; 9910 addr = 0x04; 9911 mask = CPSR_I; 9912 if (env->thumb) 9913 offset = 2; 9914 else 9915 offset = 4; 9916 break; 9917 case EXCP_SWI: 9918 new_mode = ARM_CPU_MODE_SVC; 9919 addr = 0x08; 9920 mask = CPSR_I; 9921 /* The PC already points to the next instruction. */ 9922 offset = 0; 9923 break; 9924 case EXCP_BKPT: 9925 /* Fall through to prefetch abort. */ 9926 case EXCP_PREFETCH_ABORT: 9927 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9928 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9929 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9930 env->exception.fsr, (uint32_t)env->exception.vaddress); 9931 new_mode = ARM_CPU_MODE_ABT; 9932 addr = 0x0c; 9933 mask = CPSR_A | CPSR_I; 9934 offset = 4; 9935 break; 9936 case EXCP_DATA_ABORT: 9937 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9938 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9939 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9940 env->exception.fsr, 9941 (uint32_t)env->exception.vaddress); 9942 new_mode = ARM_CPU_MODE_ABT; 9943 addr = 0x10; 9944 mask = CPSR_A | CPSR_I; 9945 offset = 8; 9946 break; 9947 case EXCP_IRQ: 9948 new_mode = ARM_CPU_MODE_IRQ; 9949 addr = 0x18; 9950 /* Disable IRQ and imprecise data aborts. */ 9951 mask = CPSR_A | CPSR_I; 9952 offset = 4; 9953 if (env->cp15.scr_el3 & SCR_IRQ) { 9954 /* IRQ routed to monitor mode */ 9955 new_mode = ARM_CPU_MODE_MON; 9956 mask |= CPSR_F; 9957 } 9958 break; 9959 case EXCP_FIQ: 9960 new_mode = ARM_CPU_MODE_FIQ; 9961 addr = 0x1c; 9962 /* Disable FIQ, IRQ and imprecise data aborts. */ 9963 mask = CPSR_A | CPSR_I | CPSR_F; 9964 if (env->cp15.scr_el3 & SCR_FIQ) { 9965 /* FIQ routed to monitor mode */ 9966 new_mode = ARM_CPU_MODE_MON; 9967 } 9968 offset = 4; 9969 break; 9970 case EXCP_VIRQ: 9971 new_mode = ARM_CPU_MODE_IRQ; 9972 addr = 0x18; 9973 /* Disable IRQ and imprecise data aborts. */ 9974 mask = CPSR_A | CPSR_I; 9975 offset = 4; 9976 break; 9977 case EXCP_VFIQ: 9978 new_mode = ARM_CPU_MODE_FIQ; 9979 addr = 0x1c; 9980 /* Disable FIQ, IRQ and imprecise data aborts. */ 9981 mask = CPSR_A | CPSR_I | CPSR_F; 9982 offset = 4; 9983 break; 9984 case EXCP_VSERR: 9985 { 9986 /* 9987 * Note that this is reported as a data abort, but the DFAR 9988 * has an UNKNOWN value. Construct the SError syndrome from 9989 * AET and ExT fields. 9990 */ 9991 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 9992 9993 if (extended_addresses_enabled(env)) { 9994 env->exception.fsr = arm_fi_to_lfsc(&fi); 9995 } else { 9996 env->exception.fsr = arm_fi_to_sfsc(&fi); 9997 } 9998 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 9999 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10000 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 10001 env->exception.fsr); 10002 10003 new_mode = ARM_CPU_MODE_ABT; 10004 addr = 0x10; 10005 mask = CPSR_A | CPSR_I; 10006 offset = 8; 10007 } 10008 break; 10009 case EXCP_SMC: 10010 new_mode = ARM_CPU_MODE_MON; 10011 addr = 0x08; 10012 mask = CPSR_A | CPSR_I | CPSR_F; 10013 offset = 0; 10014 break; 10015 default: 10016 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10017 return; /* Never happens. Keep compiler happy. */ 10018 } 10019 10020 if (new_mode == ARM_CPU_MODE_MON) { 10021 addr += env->cp15.mvbar; 10022 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10023 /* High vectors. When enabled, base address cannot be remapped. */ 10024 addr += 0xffff0000; 10025 } else { 10026 /* ARM v7 architectures provide a vector base address register to remap 10027 * the interrupt vector table. 10028 * This register is only followed in non-monitor mode, and is banked. 10029 * Note: only bits 31:5 are valid. 10030 */ 10031 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10032 } 10033 10034 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10035 env->cp15.scr_el3 &= ~SCR_NS; 10036 } 10037 10038 take_aarch32_exception(env, new_mode, mask, offset, addr); 10039 } 10040 10041 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10042 { 10043 /* 10044 * Return the register number of the AArch64 view of the AArch32 10045 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10046 * be that of the AArch32 mode the exception came from. 10047 */ 10048 int mode = env->uncached_cpsr & CPSR_M; 10049 10050 switch (aarch32_reg) { 10051 case 0 ... 7: 10052 return aarch32_reg; 10053 case 8 ... 12: 10054 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10055 case 13: 10056 switch (mode) { 10057 case ARM_CPU_MODE_USR: 10058 case ARM_CPU_MODE_SYS: 10059 return 13; 10060 case ARM_CPU_MODE_HYP: 10061 return 15; 10062 case ARM_CPU_MODE_IRQ: 10063 return 17; 10064 case ARM_CPU_MODE_SVC: 10065 return 19; 10066 case ARM_CPU_MODE_ABT: 10067 return 21; 10068 case ARM_CPU_MODE_UND: 10069 return 23; 10070 case ARM_CPU_MODE_FIQ: 10071 return 29; 10072 default: 10073 g_assert_not_reached(); 10074 } 10075 case 14: 10076 switch (mode) { 10077 case ARM_CPU_MODE_USR: 10078 case ARM_CPU_MODE_SYS: 10079 case ARM_CPU_MODE_HYP: 10080 return 14; 10081 case ARM_CPU_MODE_IRQ: 10082 return 16; 10083 case ARM_CPU_MODE_SVC: 10084 return 18; 10085 case ARM_CPU_MODE_ABT: 10086 return 20; 10087 case ARM_CPU_MODE_UND: 10088 return 22; 10089 case ARM_CPU_MODE_FIQ: 10090 return 30; 10091 default: 10092 g_assert_not_reached(); 10093 } 10094 case 15: 10095 return 31; 10096 default: 10097 g_assert_not_reached(); 10098 } 10099 } 10100 10101 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10102 { 10103 uint32_t ret = cpsr_read(env); 10104 10105 /* Move DIT to the correct location for SPSR_ELx */ 10106 if (ret & CPSR_DIT) { 10107 ret &= ~CPSR_DIT; 10108 ret |= PSTATE_DIT; 10109 } 10110 /* Merge PSTATE.SS into SPSR_ELx */ 10111 ret |= env->pstate & PSTATE_SS; 10112 10113 return ret; 10114 } 10115 10116 /* Handle exception entry to a target EL which is using AArch64 */ 10117 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10118 { 10119 ARMCPU *cpu = ARM_CPU(cs); 10120 CPUARMState *env = &cpu->env; 10121 unsigned int new_el = env->exception.target_el; 10122 target_ulong addr = env->cp15.vbar_el[new_el]; 10123 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10124 unsigned int old_mode; 10125 unsigned int cur_el = arm_current_el(env); 10126 int rt; 10127 10128 /* 10129 * Note that new_el can never be 0. If cur_el is 0, then 10130 * el0_a64 is is_a64(), else el0_a64 is ignored. 10131 */ 10132 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10133 10134 if (cur_el < new_el) { 10135 /* Entry vector offset depends on whether the implemented EL 10136 * immediately lower than the target level is using AArch32 or AArch64 10137 */ 10138 bool is_aa64; 10139 uint64_t hcr; 10140 10141 switch (new_el) { 10142 case 3: 10143 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10144 break; 10145 case 2: 10146 hcr = arm_hcr_el2_eff(env); 10147 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10148 is_aa64 = (hcr & HCR_RW) != 0; 10149 break; 10150 } 10151 /* fall through */ 10152 case 1: 10153 is_aa64 = is_a64(env); 10154 break; 10155 default: 10156 g_assert_not_reached(); 10157 } 10158 10159 if (is_aa64) { 10160 addr += 0x400; 10161 } else { 10162 addr += 0x600; 10163 } 10164 } else if (pstate_read(env) & PSTATE_SP) { 10165 addr += 0x200; 10166 } 10167 10168 switch (cs->exception_index) { 10169 case EXCP_PREFETCH_ABORT: 10170 case EXCP_DATA_ABORT: 10171 env->cp15.far_el[new_el] = env->exception.vaddress; 10172 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10173 env->cp15.far_el[new_el]); 10174 /* fall through */ 10175 case EXCP_BKPT: 10176 case EXCP_UDEF: 10177 case EXCP_SWI: 10178 case EXCP_HVC: 10179 case EXCP_HYP_TRAP: 10180 case EXCP_SMC: 10181 switch (syn_get_ec(env->exception.syndrome)) { 10182 case EC_ADVSIMDFPACCESSTRAP: 10183 /* 10184 * QEMU internal FP/SIMD syndromes from AArch32 include the 10185 * TA and coproc fields which are only exposed if the exception 10186 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10187 * AArch64 format syndrome. 10188 */ 10189 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10190 break; 10191 case EC_CP14RTTRAP: 10192 case EC_CP15RTTRAP: 10193 case EC_CP14DTTRAP: 10194 /* 10195 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10196 * the raw register field from the insn; when taking this to 10197 * AArch64 we must convert it to the AArch64 view of the register 10198 * number. Notice that we read a 4-bit AArch32 register number and 10199 * write back a 5-bit AArch64 one. 10200 */ 10201 rt = extract32(env->exception.syndrome, 5, 4); 10202 rt = aarch64_regnum(env, rt); 10203 env->exception.syndrome = deposit32(env->exception.syndrome, 10204 5, 5, rt); 10205 break; 10206 case EC_CP15RRTTRAP: 10207 case EC_CP14RRTTRAP: 10208 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10209 rt = extract32(env->exception.syndrome, 5, 4); 10210 rt = aarch64_regnum(env, rt); 10211 env->exception.syndrome = deposit32(env->exception.syndrome, 10212 5, 5, rt); 10213 rt = extract32(env->exception.syndrome, 10, 4); 10214 rt = aarch64_regnum(env, rt); 10215 env->exception.syndrome = deposit32(env->exception.syndrome, 10216 10, 5, rt); 10217 break; 10218 } 10219 env->cp15.esr_el[new_el] = env->exception.syndrome; 10220 break; 10221 case EXCP_IRQ: 10222 case EXCP_VIRQ: 10223 addr += 0x80; 10224 break; 10225 case EXCP_FIQ: 10226 case EXCP_VFIQ: 10227 addr += 0x100; 10228 break; 10229 case EXCP_VSERR: 10230 addr += 0x180; 10231 /* Construct the SError syndrome from IDS and ISS fields. */ 10232 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10233 env->cp15.esr_el[new_el] = env->exception.syndrome; 10234 break; 10235 default: 10236 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10237 } 10238 10239 if (is_a64(env)) { 10240 old_mode = pstate_read(env); 10241 aarch64_save_sp(env, arm_current_el(env)); 10242 env->elr_el[new_el] = env->pc; 10243 } else { 10244 old_mode = cpsr_read_for_spsr_elx(env); 10245 env->elr_el[new_el] = env->regs[15]; 10246 10247 aarch64_sync_32_to_64(env); 10248 10249 env->condexec_bits = 0; 10250 } 10251 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10252 10253 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10254 env->elr_el[new_el]); 10255 10256 if (cpu_isar_feature(aa64_pan, cpu)) { 10257 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10258 new_mode |= old_mode & PSTATE_PAN; 10259 switch (new_el) { 10260 case 2: 10261 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10262 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10263 != (HCR_E2H | HCR_TGE)) { 10264 break; 10265 } 10266 /* fall through */ 10267 case 1: 10268 /* ... the target is EL1 ... */ 10269 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10270 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10271 new_mode |= PSTATE_PAN; 10272 } 10273 break; 10274 } 10275 } 10276 if (cpu_isar_feature(aa64_mte, cpu)) { 10277 new_mode |= PSTATE_TCO; 10278 } 10279 10280 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10281 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10282 new_mode |= PSTATE_SSBS; 10283 } else { 10284 new_mode &= ~PSTATE_SSBS; 10285 } 10286 } 10287 10288 pstate_write(env, PSTATE_DAIF | new_mode); 10289 env->aarch64 = true; 10290 aarch64_restore_sp(env, new_el); 10291 helper_rebuild_hflags_a64(env, new_el); 10292 10293 env->pc = addr; 10294 10295 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10296 new_el, env->pc, pstate_read(env)); 10297 } 10298 10299 /* 10300 * Do semihosting call and set the appropriate return value. All the 10301 * permission and validity checks have been done at translate time. 10302 * 10303 * We only see semihosting exceptions in TCG only as they are not 10304 * trapped to the hypervisor in KVM. 10305 */ 10306 #ifdef CONFIG_TCG 10307 static void handle_semihosting(CPUState *cs) 10308 { 10309 ARMCPU *cpu = ARM_CPU(cs); 10310 CPUARMState *env = &cpu->env; 10311 10312 if (is_a64(env)) { 10313 qemu_log_mask(CPU_LOG_INT, 10314 "...handling as semihosting call 0x%" PRIx64 "\n", 10315 env->xregs[0]); 10316 env->xregs[0] = do_common_semihosting(cs); 10317 env->pc += 4; 10318 } else { 10319 qemu_log_mask(CPU_LOG_INT, 10320 "...handling as semihosting call 0x%x\n", 10321 env->regs[0]); 10322 env->regs[0] = do_common_semihosting(cs); 10323 env->regs[15] += env->thumb ? 2 : 4; 10324 } 10325 } 10326 #endif 10327 10328 /* Handle a CPU exception for A and R profile CPUs. 10329 * Do any appropriate logging, handle PSCI calls, and then hand off 10330 * to the AArch64-entry or AArch32-entry function depending on the 10331 * target exception level's register width. 10332 * 10333 * Note: this is used for both TCG (as the do_interrupt tcg op), 10334 * and KVM to re-inject guest debug exceptions, and to 10335 * inject a Synchronous-External-Abort. 10336 */ 10337 void arm_cpu_do_interrupt(CPUState *cs) 10338 { 10339 ARMCPU *cpu = ARM_CPU(cs); 10340 CPUARMState *env = &cpu->env; 10341 unsigned int new_el = env->exception.target_el; 10342 10343 assert(!arm_feature(env, ARM_FEATURE_M)); 10344 10345 arm_log_exception(cs); 10346 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10347 new_el); 10348 if (qemu_loglevel_mask(CPU_LOG_INT) 10349 && !excp_is_internal(cs->exception_index)) { 10350 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10351 syn_get_ec(env->exception.syndrome), 10352 env->exception.syndrome); 10353 } 10354 10355 if (arm_is_psci_call(cpu, cs->exception_index)) { 10356 arm_handle_psci_call(cpu); 10357 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10358 return; 10359 } 10360 10361 /* 10362 * Semihosting semantics depend on the register width of the code 10363 * that caused the exception, not the target exception level, so 10364 * must be handled here. 10365 */ 10366 #ifdef CONFIG_TCG 10367 if (cs->exception_index == EXCP_SEMIHOST) { 10368 handle_semihosting(cs); 10369 return; 10370 } 10371 #endif 10372 10373 /* Hooks may change global state so BQL should be held, also the 10374 * BQL needs to be held for any modification of 10375 * cs->interrupt_request. 10376 */ 10377 g_assert(qemu_mutex_iothread_locked()); 10378 10379 arm_call_pre_el_change_hook(cpu); 10380 10381 assert(!excp_is_internal(cs->exception_index)); 10382 if (arm_el_is_aa64(env, new_el)) { 10383 arm_cpu_do_interrupt_aarch64(cs); 10384 } else { 10385 arm_cpu_do_interrupt_aarch32(cs); 10386 } 10387 10388 arm_call_el_change_hook(cpu); 10389 10390 if (!kvm_enabled()) { 10391 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10392 } 10393 } 10394 #endif /* !CONFIG_USER_ONLY */ 10395 10396 uint64_t arm_sctlr(CPUARMState *env, int el) 10397 { 10398 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10399 if (el == 0) { 10400 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10401 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10402 ? 2 : 1; 10403 } 10404 return env->cp15.sctlr_el[el]; 10405 } 10406 10407 /* Return the SCTLR value which controls this address translation regime */ 10408 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10409 { 10410 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10411 } 10412 10413 #ifndef CONFIG_USER_ONLY 10414 10415 /* Return true if the specified stage of address translation is disabled */ 10416 static inline bool regime_translation_disabled(CPUARMState *env, 10417 ARMMMUIdx mmu_idx) 10418 { 10419 uint64_t hcr_el2; 10420 10421 if (arm_feature(env, ARM_FEATURE_M)) { 10422 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10423 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10424 case R_V7M_MPU_CTRL_ENABLE_MASK: 10425 /* Enabled, but not for HardFault and NMI */ 10426 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10427 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10428 /* Enabled for all cases */ 10429 return false; 10430 case 0: 10431 default: 10432 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10433 * we warned about that in armv7m_nvic.c when the guest set it. 10434 */ 10435 return true; 10436 } 10437 } 10438 10439 hcr_el2 = arm_hcr_el2_eff(env); 10440 10441 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10442 /* HCR.DC means HCR.VM behaves as 1 */ 10443 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10444 } 10445 10446 if (hcr_el2 & HCR_TGE) { 10447 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10448 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10449 return true; 10450 } 10451 } 10452 10453 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10454 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10455 return true; 10456 } 10457 10458 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10459 } 10460 10461 static inline bool regime_translation_big_endian(CPUARMState *env, 10462 ARMMMUIdx mmu_idx) 10463 { 10464 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10465 } 10466 10467 /* Return the TTBR associated with this translation regime */ 10468 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10469 int ttbrn) 10470 { 10471 if (mmu_idx == ARMMMUIdx_Stage2) { 10472 return env->cp15.vttbr_el2; 10473 } 10474 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10475 return env->cp15.vsttbr_el2; 10476 } 10477 if (ttbrn == 0) { 10478 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10479 } else { 10480 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10481 } 10482 } 10483 10484 #endif /* !CONFIG_USER_ONLY */ 10485 10486 /* Convert a possible stage1+2 MMU index into the appropriate 10487 * stage 1 MMU index 10488 */ 10489 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10490 { 10491 switch (mmu_idx) { 10492 case ARMMMUIdx_SE10_0: 10493 return ARMMMUIdx_Stage1_SE0; 10494 case ARMMMUIdx_SE10_1: 10495 return ARMMMUIdx_Stage1_SE1; 10496 case ARMMMUIdx_SE10_1_PAN: 10497 return ARMMMUIdx_Stage1_SE1_PAN; 10498 case ARMMMUIdx_E10_0: 10499 return ARMMMUIdx_Stage1_E0; 10500 case ARMMMUIdx_E10_1: 10501 return ARMMMUIdx_Stage1_E1; 10502 case ARMMMUIdx_E10_1_PAN: 10503 return ARMMMUIdx_Stage1_E1_PAN; 10504 default: 10505 return mmu_idx; 10506 } 10507 } 10508 10509 /* Return true if the translation regime is using LPAE format page tables */ 10510 static inline bool regime_using_lpae_format(CPUARMState *env, 10511 ARMMMUIdx mmu_idx) 10512 { 10513 int el = regime_el(env, mmu_idx); 10514 if (el == 2 || arm_el_is_aa64(env, el)) { 10515 return true; 10516 } 10517 if (arm_feature(env, ARM_FEATURE_LPAE) 10518 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10519 return true; 10520 } 10521 return false; 10522 } 10523 10524 /* Returns true if the stage 1 translation regime is using LPAE format page 10525 * tables. Used when raising alignment exceptions, whose FSR changes depending 10526 * on whether the long or short descriptor format is in use. */ 10527 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10528 { 10529 mmu_idx = stage_1_mmu_idx(mmu_idx); 10530 10531 return regime_using_lpae_format(env, mmu_idx); 10532 } 10533 10534 #ifndef CONFIG_USER_ONLY 10535 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10536 { 10537 switch (mmu_idx) { 10538 case ARMMMUIdx_SE10_0: 10539 case ARMMMUIdx_E20_0: 10540 case ARMMMUIdx_SE20_0: 10541 case ARMMMUIdx_Stage1_E0: 10542 case ARMMMUIdx_Stage1_SE0: 10543 case ARMMMUIdx_MUser: 10544 case ARMMMUIdx_MSUser: 10545 case ARMMMUIdx_MUserNegPri: 10546 case ARMMMUIdx_MSUserNegPri: 10547 return true; 10548 default: 10549 return false; 10550 case ARMMMUIdx_E10_0: 10551 case ARMMMUIdx_E10_1: 10552 case ARMMMUIdx_E10_1_PAN: 10553 g_assert_not_reached(); 10554 } 10555 } 10556 10557 /* Translate section/page access permissions to page 10558 * R/W protection flags 10559 * 10560 * @env: CPUARMState 10561 * @mmu_idx: MMU index indicating required translation regime 10562 * @ap: The 3-bit access permissions (AP[2:0]) 10563 * @domain_prot: The 2-bit domain access permissions 10564 */ 10565 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10566 int ap, int domain_prot) 10567 { 10568 bool is_user = regime_is_user(env, mmu_idx); 10569 10570 if (domain_prot == 3) { 10571 return PAGE_READ | PAGE_WRITE; 10572 } 10573 10574 switch (ap) { 10575 case 0: 10576 if (arm_feature(env, ARM_FEATURE_V7)) { 10577 return 0; 10578 } 10579 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10580 case SCTLR_S: 10581 return is_user ? 0 : PAGE_READ; 10582 case SCTLR_R: 10583 return PAGE_READ; 10584 default: 10585 return 0; 10586 } 10587 case 1: 10588 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10589 case 2: 10590 if (is_user) { 10591 return PAGE_READ; 10592 } else { 10593 return PAGE_READ | PAGE_WRITE; 10594 } 10595 case 3: 10596 return PAGE_READ | PAGE_WRITE; 10597 case 4: /* Reserved. */ 10598 return 0; 10599 case 5: 10600 return is_user ? 0 : PAGE_READ; 10601 case 6: 10602 return PAGE_READ; 10603 case 7: 10604 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10605 return 0; 10606 } 10607 return PAGE_READ; 10608 default: 10609 g_assert_not_reached(); 10610 } 10611 } 10612 10613 /* Translate section/page access permissions to page 10614 * R/W protection flags. 10615 * 10616 * @ap: The 2-bit simple AP (AP[2:1]) 10617 * @is_user: TRUE if accessing from PL0 10618 */ 10619 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10620 { 10621 switch (ap) { 10622 case 0: 10623 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10624 case 1: 10625 return PAGE_READ | PAGE_WRITE; 10626 case 2: 10627 return is_user ? 0 : PAGE_READ; 10628 case 3: 10629 return PAGE_READ; 10630 default: 10631 g_assert_not_reached(); 10632 } 10633 } 10634 10635 static inline int 10636 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10637 { 10638 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10639 } 10640 10641 /* Translate S2 section/page access permissions to protection flags 10642 * 10643 * @env: CPUARMState 10644 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10645 * @xn: XN (execute-never) bits 10646 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10647 */ 10648 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10649 { 10650 int prot = 0; 10651 10652 if (s2ap & 1) { 10653 prot |= PAGE_READ; 10654 } 10655 if (s2ap & 2) { 10656 prot |= PAGE_WRITE; 10657 } 10658 10659 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10660 switch (xn) { 10661 case 0: 10662 prot |= PAGE_EXEC; 10663 break; 10664 case 1: 10665 if (s1_is_el0) { 10666 prot |= PAGE_EXEC; 10667 } 10668 break; 10669 case 2: 10670 break; 10671 case 3: 10672 if (!s1_is_el0) { 10673 prot |= PAGE_EXEC; 10674 } 10675 break; 10676 default: 10677 g_assert_not_reached(); 10678 } 10679 } else { 10680 if (!extract32(xn, 1, 1)) { 10681 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10682 prot |= PAGE_EXEC; 10683 } 10684 } 10685 } 10686 return prot; 10687 } 10688 10689 /* Translate section/page access permissions to protection flags 10690 * 10691 * @env: CPUARMState 10692 * @mmu_idx: MMU index indicating required translation regime 10693 * @is_aa64: TRUE if AArch64 10694 * @ap: The 2-bit simple AP (AP[2:1]) 10695 * @ns: NS (non-secure) bit 10696 * @xn: XN (execute-never) bit 10697 * @pxn: PXN (privileged execute-never) bit 10698 */ 10699 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10700 int ap, int ns, int xn, int pxn) 10701 { 10702 bool is_user = regime_is_user(env, mmu_idx); 10703 int prot_rw, user_rw; 10704 bool have_wxn; 10705 int wxn = 0; 10706 10707 assert(mmu_idx != ARMMMUIdx_Stage2); 10708 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10709 10710 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10711 if (is_user) { 10712 prot_rw = user_rw; 10713 } else { 10714 if (user_rw && regime_is_pan(env, mmu_idx)) { 10715 /* PAN forbids data accesses but doesn't affect insn fetch */ 10716 prot_rw = 0; 10717 } else { 10718 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10719 } 10720 } 10721 10722 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10723 return prot_rw; 10724 } 10725 10726 /* TODO have_wxn should be replaced with 10727 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10728 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10729 * compatible processors have EL2, which is required for [U]WXN. 10730 */ 10731 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10732 10733 if (have_wxn) { 10734 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10735 } 10736 10737 if (is_aa64) { 10738 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10739 xn = pxn || (user_rw & PAGE_WRITE); 10740 } 10741 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10742 switch (regime_el(env, mmu_idx)) { 10743 case 1: 10744 case 3: 10745 if (is_user) { 10746 xn = xn || !(user_rw & PAGE_READ); 10747 } else { 10748 int uwxn = 0; 10749 if (have_wxn) { 10750 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10751 } 10752 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10753 (uwxn && (user_rw & PAGE_WRITE)); 10754 } 10755 break; 10756 case 2: 10757 break; 10758 } 10759 } else { 10760 xn = wxn = 0; 10761 } 10762 10763 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10764 return prot_rw; 10765 } 10766 return prot_rw | PAGE_EXEC; 10767 } 10768 10769 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10770 uint32_t *table, uint32_t address) 10771 { 10772 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10773 TCR *tcr = regime_tcr(env, mmu_idx); 10774 10775 if (address & tcr->mask) { 10776 if (tcr->raw_tcr & TTBCR_PD1) { 10777 /* Translation table walk disabled for TTBR1 */ 10778 return false; 10779 } 10780 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10781 } else { 10782 if (tcr->raw_tcr & TTBCR_PD0) { 10783 /* Translation table walk disabled for TTBR0 */ 10784 return false; 10785 } 10786 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10787 } 10788 *table |= (address >> 18) & 0x3ffc; 10789 return true; 10790 } 10791 10792 static bool ptw_attrs_are_device(CPUARMState *env, ARMCacheAttrs cacheattrs) 10793 { 10794 /* 10795 * For an S1 page table walk, the stage 1 attributes are always 10796 * some form of "this is Normal memory". The combined S1+S2 10797 * attributes are therefore only Device if stage 2 specifies Device. 10798 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, 10799 * ie when cacheattrs.attrs bits [3:2] are 0b00. 10800 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie 10801 * when cacheattrs.attrs bit [2] is 0. 10802 */ 10803 assert(cacheattrs.is_s2_format); 10804 if (arm_hcr_el2_eff(env) & HCR_FWB) { 10805 return (cacheattrs.attrs & 0x4) == 0; 10806 } else { 10807 return (cacheattrs.attrs & 0xc) == 0; 10808 } 10809 } 10810 10811 /* Translate a S1 pagetable walk through S2 if needed. */ 10812 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10813 hwaddr addr, bool *is_secure, 10814 ARMMMUFaultInfo *fi) 10815 { 10816 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10817 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10818 target_ulong s2size; 10819 hwaddr s2pa; 10820 int s2prot; 10821 int ret; 10822 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10823 : ARMMMUIdx_Stage2; 10824 ARMCacheAttrs cacheattrs = {}; 10825 MemTxAttrs txattrs = {}; 10826 10827 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10828 &s2pa, &txattrs, &s2prot, &s2size, fi, 10829 &cacheattrs); 10830 if (ret) { 10831 assert(fi->type != ARMFault_None); 10832 fi->s2addr = addr; 10833 fi->stage2 = true; 10834 fi->s1ptw = true; 10835 fi->s1ns = !*is_secure; 10836 return ~0; 10837 } 10838 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10839 ptw_attrs_are_device(env, cacheattrs)) { 10840 /* 10841 * PTW set and S1 walk touched S2 Device memory: 10842 * generate Permission fault. 10843 */ 10844 fi->type = ARMFault_Permission; 10845 fi->s2addr = addr; 10846 fi->stage2 = true; 10847 fi->s1ptw = true; 10848 fi->s1ns = !*is_secure; 10849 return ~0; 10850 } 10851 10852 if (arm_is_secure_below_el3(env)) { 10853 /* Check if page table walk is to secure or non-secure PA space. */ 10854 if (*is_secure) { 10855 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10856 } else { 10857 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10858 } 10859 } else { 10860 assert(!*is_secure); 10861 } 10862 10863 addr = s2pa; 10864 } 10865 return addr; 10866 } 10867 10868 /* All loads done in the course of a page table walk go through here. */ 10869 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10870 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10871 { 10872 ARMCPU *cpu = ARM_CPU(cs); 10873 CPUARMState *env = &cpu->env; 10874 MemTxAttrs attrs = {}; 10875 MemTxResult result = MEMTX_OK; 10876 AddressSpace *as; 10877 uint32_t data; 10878 10879 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10880 attrs.secure = is_secure; 10881 as = arm_addressspace(cs, attrs); 10882 if (fi->s1ptw) { 10883 return 0; 10884 } 10885 if (regime_translation_big_endian(env, mmu_idx)) { 10886 data = address_space_ldl_be(as, addr, attrs, &result); 10887 } else { 10888 data = address_space_ldl_le(as, addr, attrs, &result); 10889 } 10890 if (result == MEMTX_OK) { 10891 return data; 10892 } 10893 fi->type = ARMFault_SyncExternalOnWalk; 10894 fi->ea = arm_extabort_type(result); 10895 return 0; 10896 } 10897 10898 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10899 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10900 { 10901 ARMCPU *cpu = ARM_CPU(cs); 10902 CPUARMState *env = &cpu->env; 10903 MemTxAttrs attrs = {}; 10904 MemTxResult result = MEMTX_OK; 10905 AddressSpace *as; 10906 uint64_t data; 10907 10908 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10909 attrs.secure = is_secure; 10910 as = arm_addressspace(cs, attrs); 10911 if (fi->s1ptw) { 10912 return 0; 10913 } 10914 if (regime_translation_big_endian(env, mmu_idx)) { 10915 data = address_space_ldq_be(as, addr, attrs, &result); 10916 } else { 10917 data = address_space_ldq_le(as, addr, attrs, &result); 10918 } 10919 if (result == MEMTX_OK) { 10920 return data; 10921 } 10922 fi->type = ARMFault_SyncExternalOnWalk; 10923 fi->ea = arm_extabort_type(result); 10924 return 0; 10925 } 10926 10927 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10928 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10929 hwaddr *phys_ptr, int *prot, 10930 target_ulong *page_size, 10931 ARMMMUFaultInfo *fi) 10932 { 10933 CPUState *cs = env_cpu(env); 10934 int level = 1; 10935 uint32_t table; 10936 uint32_t desc; 10937 int type; 10938 int ap; 10939 int domain = 0; 10940 int domain_prot; 10941 hwaddr phys_addr; 10942 uint32_t dacr; 10943 10944 /* Pagetable walk. */ 10945 /* Lookup l1 descriptor. */ 10946 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10947 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10948 fi->type = ARMFault_Translation; 10949 goto do_fault; 10950 } 10951 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10952 mmu_idx, fi); 10953 if (fi->type != ARMFault_None) { 10954 goto do_fault; 10955 } 10956 type = (desc & 3); 10957 domain = (desc >> 5) & 0x0f; 10958 if (regime_el(env, mmu_idx) == 1) { 10959 dacr = env->cp15.dacr_ns; 10960 } else { 10961 dacr = env->cp15.dacr_s; 10962 } 10963 domain_prot = (dacr >> (domain * 2)) & 3; 10964 if (type == 0) { 10965 /* Section translation fault. */ 10966 fi->type = ARMFault_Translation; 10967 goto do_fault; 10968 } 10969 if (type != 2) { 10970 level = 2; 10971 } 10972 if (domain_prot == 0 || domain_prot == 2) { 10973 fi->type = ARMFault_Domain; 10974 goto do_fault; 10975 } 10976 if (type == 2) { 10977 /* 1Mb section. */ 10978 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10979 ap = (desc >> 10) & 3; 10980 *page_size = 1024 * 1024; 10981 } else { 10982 /* Lookup l2 entry. */ 10983 if (type == 1) { 10984 /* Coarse pagetable. */ 10985 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10986 } else { 10987 /* Fine pagetable. */ 10988 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10989 } 10990 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10991 mmu_idx, fi); 10992 if (fi->type != ARMFault_None) { 10993 goto do_fault; 10994 } 10995 switch (desc & 3) { 10996 case 0: /* Page translation fault. */ 10997 fi->type = ARMFault_Translation; 10998 goto do_fault; 10999 case 1: /* 64k page. */ 11000 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11001 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 11002 *page_size = 0x10000; 11003 break; 11004 case 2: /* 4k page. */ 11005 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11006 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 11007 *page_size = 0x1000; 11008 break; 11009 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 11010 if (type == 1) { 11011 /* ARMv6/XScale extended small page format */ 11012 if (arm_feature(env, ARM_FEATURE_XSCALE) 11013 || arm_feature(env, ARM_FEATURE_V6)) { 11014 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11015 *page_size = 0x1000; 11016 } else { 11017 /* UNPREDICTABLE in ARMv5; we choose to take a 11018 * page translation fault. 11019 */ 11020 fi->type = ARMFault_Translation; 11021 goto do_fault; 11022 } 11023 } else { 11024 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 11025 *page_size = 0x400; 11026 } 11027 ap = (desc >> 4) & 3; 11028 break; 11029 default: 11030 /* Never happens, but compiler isn't smart enough to tell. */ 11031 g_assert_not_reached(); 11032 } 11033 } 11034 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11035 *prot |= *prot ? PAGE_EXEC : 0; 11036 if (!(*prot & (1 << access_type))) { 11037 /* Access permission fault. */ 11038 fi->type = ARMFault_Permission; 11039 goto do_fault; 11040 } 11041 *phys_ptr = phys_addr; 11042 return false; 11043 do_fault: 11044 fi->domain = domain; 11045 fi->level = level; 11046 return true; 11047 } 11048 11049 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 11050 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11051 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 11052 target_ulong *page_size, ARMMMUFaultInfo *fi) 11053 { 11054 CPUState *cs = env_cpu(env); 11055 ARMCPU *cpu = env_archcpu(env); 11056 int level = 1; 11057 uint32_t table; 11058 uint32_t desc; 11059 uint32_t xn; 11060 uint32_t pxn = 0; 11061 int type; 11062 int ap; 11063 int domain = 0; 11064 int domain_prot; 11065 hwaddr phys_addr; 11066 uint32_t dacr; 11067 bool ns; 11068 11069 /* Pagetable walk. */ 11070 /* Lookup l1 descriptor. */ 11071 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 11072 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 11073 fi->type = ARMFault_Translation; 11074 goto do_fault; 11075 } 11076 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11077 mmu_idx, fi); 11078 if (fi->type != ARMFault_None) { 11079 goto do_fault; 11080 } 11081 type = (desc & 3); 11082 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 11083 /* Section translation fault, or attempt to use the encoding 11084 * which is Reserved on implementations without PXN. 11085 */ 11086 fi->type = ARMFault_Translation; 11087 goto do_fault; 11088 } 11089 if ((type == 1) || !(desc & (1 << 18))) { 11090 /* Page or Section. */ 11091 domain = (desc >> 5) & 0x0f; 11092 } 11093 if (regime_el(env, mmu_idx) == 1) { 11094 dacr = env->cp15.dacr_ns; 11095 } else { 11096 dacr = env->cp15.dacr_s; 11097 } 11098 if (type == 1) { 11099 level = 2; 11100 } 11101 domain_prot = (dacr >> (domain * 2)) & 3; 11102 if (domain_prot == 0 || domain_prot == 2) { 11103 /* Section or Page domain fault */ 11104 fi->type = ARMFault_Domain; 11105 goto do_fault; 11106 } 11107 if (type != 1) { 11108 if (desc & (1 << 18)) { 11109 /* Supersection. */ 11110 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 11111 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 11112 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 11113 *page_size = 0x1000000; 11114 } else { 11115 /* Section. */ 11116 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 11117 *page_size = 0x100000; 11118 } 11119 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 11120 xn = desc & (1 << 4); 11121 pxn = desc & 1; 11122 ns = extract32(desc, 19, 1); 11123 } else { 11124 if (cpu_isar_feature(aa32_pxn, cpu)) { 11125 pxn = (desc >> 2) & 1; 11126 } 11127 ns = extract32(desc, 3, 1); 11128 /* Lookup l2 entry. */ 11129 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 11130 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11131 mmu_idx, fi); 11132 if (fi->type != ARMFault_None) { 11133 goto do_fault; 11134 } 11135 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 11136 switch (desc & 3) { 11137 case 0: /* Page translation fault. */ 11138 fi->type = ARMFault_Translation; 11139 goto do_fault; 11140 case 1: /* 64k page. */ 11141 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11142 xn = desc & (1 << 15); 11143 *page_size = 0x10000; 11144 break; 11145 case 2: case 3: /* 4k page. */ 11146 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11147 xn = desc & 1; 11148 *page_size = 0x1000; 11149 break; 11150 default: 11151 /* Never happens, but compiler isn't smart enough to tell. */ 11152 g_assert_not_reached(); 11153 } 11154 } 11155 if (domain_prot == 3) { 11156 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11157 } else { 11158 if (pxn && !regime_is_user(env, mmu_idx)) { 11159 xn = 1; 11160 } 11161 if (xn && access_type == MMU_INST_FETCH) { 11162 fi->type = ARMFault_Permission; 11163 goto do_fault; 11164 } 11165 11166 if (arm_feature(env, ARM_FEATURE_V6K) && 11167 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 11168 /* The simplified model uses AP[0] as an access control bit. */ 11169 if ((ap & 1) == 0) { 11170 /* Access flag fault. */ 11171 fi->type = ARMFault_AccessFlag; 11172 goto do_fault; 11173 } 11174 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 11175 } else { 11176 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11177 } 11178 if (*prot && !xn) { 11179 *prot |= PAGE_EXEC; 11180 } 11181 if (!(*prot & (1 << access_type))) { 11182 /* Access permission fault. */ 11183 fi->type = ARMFault_Permission; 11184 goto do_fault; 11185 } 11186 } 11187 if (ns) { 11188 /* The NS bit will (as required by the architecture) have no effect if 11189 * the CPU doesn't support TZ or this is a non-secure translation 11190 * regime, because the attribute will already be non-secure. 11191 */ 11192 attrs->secure = false; 11193 } 11194 *phys_ptr = phys_addr; 11195 return false; 11196 do_fault: 11197 fi->domain = domain; 11198 fi->level = level; 11199 return true; 11200 } 11201 11202 /* 11203 * check_s2_mmu_setup 11204 * @cpu: ARMCPU 11205 * @is_aa64: True if the translation regime is in AArch64 state 11206 * @startlevel: Suggested starting level 11207 * @inputsize: Bitsize of IPAs 11208 * @stride: Page-table stride (See the ARM ARM) 11209 * 11210 * Returns true if the suggested S2 translation parameters are OK and 11211 * false otherwise. 11212 */ 11213 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 11214 int inputsize, int stride, int outputsize) 11215 { 11216 const int grainsize = stride + 3; 11217 int startsizecheck; 11218 11219 /* 11220 * Negative levels are usually not allowed... 11221 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which 11222 * begins with level -1. Note that previous feature tests will have 11223 * eliminated this combination if it is not enabled. 11224 */ 11225 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) { 11226 return false; 11227 } 11228 11229 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 11230 if (startsizecheck < 1 || startsizecheck > stride + 4) { 11231 return false; 11232 } 11233 11234 if (is_aa64) { 11235 switch (stride) { 11236 case 13: /* 64KB Pages. */ 11237 if (level == 0 || (level == 1 && outputsize <= 42)) { 11238 return false; 11239 } 11240 break; 11241 case 11: /* 16KB Pages. */ 11242 if (level == 0 || (level == 1 && outputsize <= 40)) { 11243 return false; 11244 } 11245 break; 11246 case 9: /* 4KB Pages. */ 11247 if (level == 0 && outputsize <= 42) { 11248 return false; 11249 } 11250 break; 11251 default: 11252 g_assert_not_reached(); 11253 } 11254 11255 /* Inputsize checks. */ 11256 if (inputsize > outputsize && 11257 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) { 11258 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 11259 return false; 11260 } 11261 } else { 11262 /* AArch32 only supports 4KB pages. Assert on that. */ 11263 assert(stride == 9); 11264 11265 if (level == 0) { 11266 return false; 11267 } 11268 } 11269 return true; 11270 } 11271 11272 /* Translate from the 4-bit stage 2 representation of 11273 * memory attributes (without cache-allocation hints) to 11274 * the 8-bit representation of the stage 1 MAIR registers 11275 * (which includes allocation hints). 11276 * 11277 * ref: shared/translation/attrs/S2AttrDecode() 11278 * .../S2ConvertAttrsHints() 11279 */ 11280 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11281 { 11282 uint8_t hiattr = extract32(s2attrs, 2, 2); 11283 uint8_t loattr = extract32(s2attrs, 0, 2); 11284 uint8_t hihint = 0, lohint = 0; 11285 11286 if (hiattr != 0) { /* normal memory */ 11287 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 11288 hiattr = loattr = 1; /* non-cacheable */ 11289 } else { 11290 if (hiattr != 1) { /* Write-through or write-back */ 11291 hihint = 3; /* RW allocate */ 11292 } 11293 if (loattr != 1) { /* Write-through or write-back */ 11294 lohint = 3; /* RW allocate */ 11295 } 11296 } 11297 } 11298 11299 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11300 } 11301 #endif /* !CONFIG_USER_ONLY */ 11302 11303 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 11304 static const uint8_t pamax_map[] = { 11305 [0] = 32, 11306 [1] = 36, 11307 [2] = 40, 11308 [3] = 42, 11309 [4] = 44, 11310 [5] = 48, 11311 [6] = 52, 11312 }; 11313 11314 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 11315 unsigned int arm_pamax(ARMCPU *cpu) 11316 { 11317 unsigned int parange = 11318 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11319 11320 /* 11321 * id_aa64mmfr0 is a read-only register so values outside of the 11322 * supported mappings can be considered an implementation error. 11323 */ 11324 assert(parange < ARRAY_SIZE(pamax_map)); 11325 return pamax_map[parange]; 11326 } 11327 11328 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11329 { 11330 if (regime_has_2_ranges(mmu_idx)) { 11331 return extract64(tcr, 37, 2); 11332 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11333 return 0; /* VTCR_EL2 */ 11334 } else { 11335 /* Replicate the single TBI bit so we always have 2 bits. */ 11336 return extract32(tcr, 20, 1) * 3; 11337 } 11338 } 11339 11340 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11341 { 11342 if (regime_has_2_ranges(mmu_idx)) { 11343 return extract64(tcr, 51, 2); 11344 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11345 return 0; /* VTCR_EL2 */ 11346 } else { 11347 /* Replicate the single TBID bit so we always have 2 bits. */ 11348 return extract32(tcr, 29, 1) * 3; 11349 } 11350 } 11351 11352 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11353 { 11354 if (regime_has_2_ranges(mmu_idx)) { 11355 return extract64(tcr, 57, 2); 11356 } else { 11357 /* Replicate the single TCMA bit so we always have 2 bits. */ 11358 return extract32(tcr, 30, 1) * 3; 11359 } 11360 } 11361 11362 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11363 ARMMMUIdx mmu_idx, bool data) 11364 { 11365 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11366 bool epd, hpd, using16k, using64k, tsz_oob, ds; 11367 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11368 ARMCPU *cpu = env_archcpu(env); 11369 11370 if (!regime_has_2_ranges(mmu_idx)) { 11371 select = 0; 11372 tsz = extract32(tcr, 0, 6); 11373 using64k = extract32(tcr, 14, 1); 11374 using16k = extract32(tcr, 15, 1); 11375 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11376 /* VTCR_EL2 */ 11377 hpd = false; 11378 } else { 11379 hpd = extract32(tcr, 24, 1); 11380 } 11381 epd = false; 11382 sh = extract32(tcr, 12, 2); 11383 ps = extract32(tcr, 16, 3); 11384 ds = extract64(tcr, 32, 1); 11385 } else { 11386 /* 11387 * Bit 55 is always between the two regions, and is canonical for 11388 * determining if address tagging is enabled. 11389 */ 11390 select = extract64(va, 55, 1); 11391 if (!select) { 11392 tsz = extract32(tcr, 0, 6); 11393 epd = extract32(tcr, 7, 1); 11394 sh = extract32(tcr, 12, 2); 11395 using64k = extract32(tcr, 14, 1); 11396 using16k = extract32(tcr, 15, 1); 11397 hpd = extract64(tcr, 41, 1); 11398 } else { 11399 int tg = extract32(tcr, 30, 2); 11400 using16k = tg == 1; 11401 using64k = tg == 3; 11402 tsz = extract32(tcr, 16, 6); 11403 epd = extract32(tcr, 23, 1); 11404 sh = extract32(tcr, 28, 2); 11405 hpd = extract64(tcr, 42, 1); 11406 } 11407 ps = extract64(tcr, 32, 3); 11408 ds = extract64(tcr, 59, 1); 11409 } 11410 11411 if (cpu_isar_feature(aa64_st, cpu)) { 11412 max_tsz = 48 - using64k; 11413 } else { 11414 max_tsz = 39; 11415 } 11416 11417 /* 11418 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11419 * adjust the effective value of DS, as documented. 11420 */ 11421 min_tsz = 16; 11422 if (using64k) { 11423 if (cpu_isar_feature(aa64_lva, cpu)) { 11424 min_tsz = 12; 11425 } 11426 ds = false; 11427 } else if (ds) { 11428 switch (mmu_idx) { 11429 case ARMMMUIdx_Stage2: 11430 case ARMMMUIdx_Stage2_S: 11431 if (using16k) { 11432 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11433 } else { 11434 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11435 } 11436 break; 11437 default: 11438 if (using16k) { 11439 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11440 } else { 11441 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11442 } 11443 break; 11444 } 11445 if (ds) { 11446 min_tsz = 12; 11447 } 11448 } 11449 11450 if (tsz > max_tsz) { 11451 tsz = max_tsz; 11452 tsz_oob = true; 11453 } else if (tsz < min_tsz) { 11454 tsz = min_tsz; 11455 tsz_oob = true; 11456 } else { 11457 tsz_oob = false; 11458 } 11459 11460 /* Present TBI as a composite with TBID. */ 11461 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11462 if (!data) { 11463 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11464 } 11465 tbi = (tbi >> select) & 1; 11466 11467 return (ARMVAParameters) { 11468 .tsz = tsz, 11469 .ps = ps, 11470 .sh = sh, 11471 .select = select, 11472 .tbi = tbi, 11473 .epd = epd, 11474 .hpd = hpd, 11475 .using16k = using16k, 11476 .using64k = using64k, 11477 .tsz_oob = tsz_oob, 11478 .ds = ds, 11479 }; 11480 } 11481 11482 #ifndef CONFIG_USER_ONLY 11483 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11484 ARMMMUIdx mmu_idx) 11485 { 11486 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11487 uint32_t el = regime_el(env, mmu_idx); 11488 int select, tsz; 11489 bool epd, hpd; 11490 11491 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11492 11493 if (mmu_idx == ARMMMUIdx_Stage2) { 11494 /* VTCR */ 11495 bool sext = extract32(tcr, 4, 1); 11496 bool sign = extract32(tcr, 3, 1); 11497 11498 /* 11499 * If the sign-extend bit is not the same as t0sz[3], the result 11500 * is unpredictable. Flag this as a guest error. 11501 */ 11502 if (sign != sext) { 11503 qemu_log_mask(LOG_GUEST_ERROR, 11504 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11505 } 11506 tsz = sextract32(tcr, 0, 4) + 8; 11507 select = 0; 11508 hpd = false; 11509 epd = false; 11510 } else if (el == 2) { 11511 /* HTCR */ 11512 tsz = extract32(tcr, 0, 3); 11513 select = 0; 11514 hpd = extract64(tcr, 24, 1); 11515 epd = false; 11516 } else { 11517 int t0sz = extract32(tcr, 0, 3); 11518 int t1sz = extract32(tcr, 16, 3); 11519 11520 if (t1sz == 0) { 11521 select = va > (0xffffffffu >> t0sz); 11522 } else { 11523 /* Note that we will detect errors later. */ 11524 select = va >= ~(0xffffffffu >> t1sz); 11525 } 11526 if (!select) { 11527 tsz = t0sz; 11528 epd = extract32(tcr, 7, 1); 11529 hpd = extract64(tcr, 41, 1); 11530 } else { 11531 tsz = t1sz; 11532 epd = extract32(tcr, 23, 1); 11533 hpd = extract64(tcr, 42, 1); 11534 } 11535 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11536 hpd &= extract32(tcr, 6, 1); 11537 } 11538 11539 return (ARMVAParameters) { 11540 .tsz = tsz, 11541 .select = select, 11542 .epd = epd, 11543 .hpd = hpd, 11544 }; 11545 } 11546 11547 /** 11548 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11549 * 11550 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11551 * prot and page_size may not be filled in, and the populated fsr value provides 11552 * information on why the translation aborted, in the format of a long-format 11553 * DFSR/IFSR fault register, with the following caveats: 11554 * * the WnR bit is never set (the caller must do this). 11555 * 11556 * @env: CPUARMState 11557 * @address: virtual address to get physical address for 11558 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11559 * @mmu_idx: MMU index indicating required translation regime 11560 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11561 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11562 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11563 * @phys_ptr: set to the physical address corresponding to the virtual address 11564 * @attrs: set to the memory transaction attributes to use 11565 * @prot: set to the permissions for the page containing phys_ptr 11566 * @page_size_ptr: set to the size of the page containing phys_ptr 11567 * @fi: set to fault info if the translation fails 11568 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11569 */ 11570 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11571 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11572 bool s1_is_el0, 11573 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11574 target_ulong *page_size_ptr, 11575 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11576 { 11577 ARMCPU *cpu = env_archcpu(env); 11578 CPUState *cs = CPU(cpu); 11579 /* Read an LPAE long-descriptor translation table. */ 11580 ARMFaultType fault_type = ARMFault_Translation; 11581 uint32_t level; 11582 ARMVAParameters param; 11583 uint64_t ttbr; 11584 hwaddr descaddr, indexmask, indexmask_grainsize; 11585 uint32_t tableattrs; 11586 target_ulong page_size; 11587 uint32_t attrs; 11588 int32_t stride; 11589 int addrsize, inputsize, outputsize; 11590 TCR *tcr = regime_tcr(env, mmu_idx); 11591 int ap, ns, xn, pxn; 11592 uint32_t el = regime_el(env, mmu_idx); 11593 uint64_t descaddrmask; 11594 bool aarch64 = arm_el_is_aa64(env, el); 11595 bool guarded = false; 11596 11597 /* TODO: This code does not support shareability levels. */ 11598 if (aarch64) { 11599 int ps; 11600 11601 param = aa64_va_parameters(env, address, mmu_idx, 11602 access_type != MMU_INST_FETCH); 11603 level = 0; 11604 11605 /* 11606 * If TxSZ is programmed to a value larger than the maximum, 11607 * or smaller than the effective minimum, it is IMPLEMENTATION 11608 * DEFINED whether we behave as if the field were programmed 11609 * within bounds, or if a level 0 Translation fault is generated. 11610 * 11611 * With FEAT_LVA, fault on less than minimum becomes required, 11612 * so our choice is to always raise the fault. 11613 */ 11614 if (param.tsz_oob) { 11615 fault_type = ARMFault_Translation; 11616 goto do_fault; 11617 } 11618 11619 addrsize = 64 - 8 * param.tbi; 11620 inputsize = 64 - param.tsz; 11621 11622 /* 11623 * Bound PS by PARANGE to find the effective output address size. 11624 * ID_AA64MMFR0 is a read-only register so values outside of the 11625 * supported mappings can be considered an implementation error. 11626 */ 11627 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11628 ps = MIN(ps, param.ps); 11629 assert(ps < ARRAY_SIZE(pamax_map)); 11630 outputsize = pamax_map[ps]; 11631 } else { 11632 param = aa32_va_parameters(env, address, mmu_idx); 11633 level = 1; 11634 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11635 inputsize = addrsize - param.tsz; 11636 outputsize = 40; 11637 } 11638 11639 /* 11640 * We determined the region when collecting the parameters, but we 11641 * have not yet validated that the address is valid for the region. 11642 * Extract the top bits and verify that they all match select. 11643 * 11644 * For aa32, if inputsize == addrsize, then we have selected the 11645 * region by exclusion in aa32_va_parameters and there is no more 11646 * validation to do here. 11647 */ 11648 if (inputsize < addrsize) { 11649 target_ulong top_bits = sextract64(address, inputsize, 11650 addrsize - inputsize); 11651 if (-top_bits != param.select) { 11652 /* The gap between the two regions is a Translation fault */ 11653 fault_type = ARMFault_Translation; 11654 goto do_fault; 11655 } 11656 } 11657 11658 if (param.using64k) { 11659 stride = 13; 11660 } else if (param.using16k) { 11661 stride = 11; 11662 } else { 11663 stride = 9; 11664 } 11665 11666 /* Note that QEMU ignores shareability and cacheability attributes, 11667 * so we don't need to do anything with the SH, ORGN, IRGN fields 11668 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11669 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11670 * implement any ASID-like capability so we can ignore it (instead 11671 * we will always flush the TLB any time the ASID is changed). 11672 */ 11673 ttbr = regime_ttbr(env, mmu_idx, param.select); 11674 11675 /* Here we should have set up all the parameters for the translation: 11676 * inputsize, ttbr, epd, stride, tbi 11677 */ 11678 11679 if (param.epd) { 11680 /* Translation table walk disabled => Translation fault on TLB miss 11681 * Note: This is always 0 on 64-bit EL2 and EL3. 11682 */ 11683 goto do_fault; 11684 } 11685 11686 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11687 /* The starting level depends on the virtual address size (which can 11688 * be up to 48 bits) and the translation granule size. It indicates 11689 * the number of strides (stride bits at a time) needed to 11690 * consume the bits of the input address. In the pseudocode this is: 11691 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11692 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11693 * our 'stride + 3' and 'stride' is our 'stride'. 11694 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11695 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11696 * = 4 - (inputsize - 4) / stride; 11697 */ 11698 level = 4 - (inputsize - 4) / stride; 11699 } else { 11700 /* For stage 2 translations the starting level is specified by the 11701 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11702 */ 11703 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11704 uint32_t sl2 = extract64(tcr->raw_tcr, 33, 1); 11705 uint32_t startlevel; 11706 bool ok; 11707 11708 /* SL2 is RES0 unless DS=1 & 4kb granule. */ 11709 if (param.ds && stride == 9 && sl2) { 11710 if (sl0 != 0) { 11711 level = 0; 11712 fault_type = ARMFault_Translation; 11713 goto do_fault; 11714 } 11715 startlevel = -1; 11716 } else if (!aarch64 || stride == 9) { 11717 /* AArch32 or 4KB pages */ 11718 startlevel = 2 - sl0; 11719 11720 if (cpu_isar_feature(aa64_st, cpu)) { 11721 startlevel &= 3; 11722 } 11723 } else { 11724 /* 16KB or 64KB pages */ 11725 startlevel = 3 - sl0; 11726 } 11727 11728 /* Check that the starting level is valid. */ 11729 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11730 inputsize, stride, outputsize); 11731 if (!ok) { 11732 fault_type = ARMFault_Translation; 11733 goto do_fault; 11734 } 11735 level = startlevel; 11736 } 11737 11738 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 11739 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 11740 11741 /* Now we can extract the actual base address from the TTBR */ 11742 descaddr = extract64(ttbr, 0, 48); 11743 11744 /* 11745 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 11746 * 11747 * Otherwise, if the base address is out of range, raise AddressSizeFault. 11748 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 11749 * but we've just cleared the bits above 47, so simplify the test. 11750 */ 11751 if (outputsize > 48) { 11752 descaddr |= extract64(ttbr, 2, 4) << 48; 11753 } else if (descaddr >> outputsize) { 11754 level = 0; 11755 fault_type = ARMFault_AddressSize; 11756 goto do_fault; 11757 } 11758 11759 /* 11760 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11761 * and also to mask out CnP (bit 0) which could validly be non-zero. 11762 */ 11763 descaddr &= ~indexmask; 11764 11765 /* 11766 * For AArch32, the address field in the descriptor goes up to bit 39 11767 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 11768 * or an AddressSize fault is raised. So for v8 we extract those SBZ 11769 * bits as part of the address, which will be checked via outputsize. 11770 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 11771 * the highest bits of a 52-bit output are placed elsewhere. 11772 */ 11773 if (param.ds) { 11774 descaddrmask = MAKE_64BIT_MASK(0, 50); 11775 } else if (arm_feature(env, ARM_FEATURE_V8)) { 11776 descaddrmask = MAKE_64BIT_MASK(0, 48); 11777 } else { 11778 descaddrmask = MAKE_64BIT_MASK(0, 40); 11779 } 11780 descaddrmask &= ~indexmask_grainsize; 11781 11782 /* Secure accesses start with the page table in secure memory and 11783 * can be downgraded to non-secure at any step. Non-secure accesses 11784 * remain non-secure. We implement this by just ORing in the NSTable/NS 11785 * bits at each step. 11786 */ 11787 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11788 for (;;) { 11789 uint64_t descriptor; 11790 bool nstable; 11791 11792 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11793 descaddr &= ~7ULL; 11794 nstable = extract32(tableattrs, 4, 1); 11795 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11796 if (fi->type != ARMFault_None) { 11797 goto do_fault; 11798 } 11799 11800 if (!(descriptor & 1) || 11801 (!(descriptor & 2) && (level == 3))) { 11802 /* Invalid, or the Reserved level 3 encoding */ 11803 goto do_fault; 11804 } 11805 11806 descaddr = descriptor & descaddrmask; 11807 11808 /* 11809 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 11810 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 11811 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 11812 * raise AddressSizeFault. 11813 */ 11814 if (outputsize > 48) { 11815 if (param.ds) { 11816 descaddr |= extract64(descriptor, 8, 2) << 50; 11817 } else { 11818 descaddr |= extract64(descriptor, 12, 4) << 48; 11819 } 11820 } else if (descaddr >> outputsize) { 11821 fault_type = ARMFault_AddressSize; 11822 goto do_fault; 11823 } 11824 11825 if ((descriptor & 2) && (level < 3)) { 11826 /* Table entry. The top five bits are attributes which may 11827 * propagate down through lower levels of the table (and 11828 * which are all arranged so that 0 means "no effect", so 11829 * we can gather them up by ORing in the bits at each level). 11830 */ 11831 tableattrs |= extract64(descriptor, 59, 5); 11832 level++; 11833 indexmask = indexmask_grainsize; 11834 continue; 11835 } 11836 /* 11837 * Block entry at level 1 or 2, or page entry at level 3. 11838 * These are basically the same thing, although the number 11839 * of bits we pull in from the vaddr varies. Note that although 11840 * descaddrmask masks enough of the low bits of the descriptor 11841 * to give a correct page or table address, the address field 11842 * in a block descriptor is smaller; so we need to explicitly 11843 * clear the lower bits here before ORing in the low vaddr bits. 11844 */ 11845 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11846 descaddr &= ~(page_size - 1); 11847 descaddr |= (address & (page_size - 1)); 11848 /* Extract attributes from the descriptor */ 11849 attrs = extract64(descriptor, 2, 10) 11850 | (extract64(descriptor, 52, 12) << 10); 11851 11852 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11853 /* Stage 2 table descriptors do not include any attribute fields */ 11854 break; 11855 } 11856 /* Merge in attributes from table descriptors */ 11857 attrs |= nstable << 3; /* NS */ 11858 guarded = extract64(descriptor, 50, 1); /* GP */ 11859 if (param.hpd) { 11860 /* HPD disables all the table attributes except NSTable. */ 11861 break; 11862 } 11863 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11864 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11865 * means "force PL1 access only", which means forcing AP[1] to 0. 11866 */ 11867 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11868 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11869 break; 11870 } 11871 /* Here descaddr is the final physical address, and attributes 11872 * are all in attrs. 11873 */ 11874 fault_type = ARMFault_AccessFlag; 11875 if ((attrs & (1 << 8)) == 0) { 11876 /* Access flag */ 11877 goto do_fault; 11878 } 11879 11880 ap = extract32(attrs, 4, 2); 11881 11882 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11883 ns = mmu_idx == ARMMMUIdx_Stage2; 11884 xn = extract32(attrs, 11, 2); 11885 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11886 } else { 11887 ns = extract32(attrs, 3, 1); 11888 xn = extract32(attrs, 12, 1); 11889 pxn = extract32(attrs, 11, 1); 11890 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11891 } 11892 11893 fault_type = ARMFault_Permission; 11894 if (!(*prot & (1 << access_type))) { 11895 goto do_fault; 11896 } 11897 11898 if (ns) { 11899 /* The NS bit will (as required by the architecture) have no effect if 11900 * the CPU doesn't support TZ or this is a non-secure translation 11901 * regime, because the attribute will already be non-secure. 11902 */ 11903 txattrs->secure = false; 11904 } 11905 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11906 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11907 arm_tlb_bti_gp(txattrs) = true; 11908 } 11909 11910 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11911 cacheattrs->is_s2_format = true; 11912 cacheattrs->attrs = extract32(attrs, 0, 4); 11913 } else { 11914 /* Index into MAIR registers for cache attributes */ 11915 uint8_t attrindx = extract32(attrs, 0, 3); 11916 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11917 assert(attrindx <= 7); 11918 cacheattrs->is_s2_format = false; 11919 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11920 } 11921 11922 /* 11923 * For FEAT_LPA2 and effective DS, the SH field in the attributes 11924 * was re-purposed for output address bits. The SH attribute in 11925 * that case comes from TCR_ELx, which we extracted earlier. 11926 */ 11927 if (param.ds) { 11928 cacheattrs->shareability = param.sh; 11929 } else { 11930 cacheattrs->shareability = extract32(attrs, 6, 2); 11931 } 11932 11933 *phys_ptr = descaddr; 11934 *page_size_ptr = page_size; 11935 return false; 11936 11937 do_fault: 11938 fi->type = fault_type; 11939 fi->level = level; 11940 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11941 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11942 mmu_idx == ARMMMUIdx_Stage2_S); 11943 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11944 return true; 11945 } 11946 11947 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11948 ARMMMUIdx mmu_idx, 11949 int32_t address, int *prot) 11950 { 11951 if (!arm_feature(env, ARM_FEATURE_M)) { 11952 *prot = PAGE_READ | PAGE_WRITE; 11953 switch (address) { 11954 case 0xF0000000 ... 0xFFFFFFFF: 11955 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11956 /* hivecs execing is ok */ 11957 *prot |= PAGE_EXEC; 11958 } 11959 break; 11960 case 0x00000000 ... 0x7FFFFFFF: 11961 *prot |= PAGE_EXEC; 11962 break; 11963 } 11964 } else { 11965 /* Default system address map for M profile cores. 11966 * The architecture specifies which regions are execute-never; 11967 * at the MPU level no other checks are defined. 11968 */ 11969 switch (address) { 11970 case 0x00000000 ... 0x1fffffff: /* ROM */ 11971 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11972 case 0x60000000 ... 0x7fffffff: /* RAM */ 11973 case 0x80000000 ... 0x9fffffff: /* RAM */ 11974 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11975 break; 11976 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11977 case 0xa0000000 ... 0xbfffffff: /* Device */ 11978 case 0xc0000000 ... 0xdfffffff: /* Device */ 11979 case 0xe0000000 ... 0xffffffff: /* System */ 11980 *prot = PAGE_READ | PAGE_WRITE; 11981 break; 11982 default: 11983 g_assert_not_reached(); 11984 } 11985 } 11986 } 11987 11988 static bool pmsav7_use_background_region(ARMCPU *cpu, 11989 ARMMMUIdx mmu_idx, bool is_user) 11990 { 11991 /* Return true if we should use the default memory map as a 11992 * "background" region if there are no hits against any MPU regions. 11993 */ 11994 CPUARMState *env = &cpu->env; 11995 11996 if (is_user) { 11997 return false; 11998 } 11999 12000 if (arm_feature(env, ARM_FEATURE_M)) { 12001 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 12002 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 12003 } else { 12004 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 12005 } 12006 } 12007 12008 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 12009 { 12010 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 12011 return arm_feature(env, ARM_FEATURE_M) && 12012 extract32(address, 20, 12) == 0xe00; 12013 } 12014 12015 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 12016 { 12017 /* True if address is in the M profile system region 12018 * 0xe0000000 - 0xffffffff 12019 */ 12020 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 12021 } 12022 12023 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 12024 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12025 hwaddr *phys_ptr, int *prot, 12026 target_ulong *page_size, 12027 ARMMMUFaultInfo *fi) 12028 { 12029 ARMCPU *cpu = env_archcpu(env); 12030 int n; 12031 bool is_user = regime_is_user(env, mmu_idx); 12032 12033 *phys_ptr = address; 12034 *page_size = TARGET_PAGE_SIZE; 12035 *prot = 0; 12036 12037 if (regime_translation_disabled(env, mmu_idx) || 12038 m_is_ppb_region(env, address)) { 12039 /* MPU disabled or M profile PPB access: use default memory map. 12040 * The other case which uses the default memory map in the 12041 * v7M ARM ARM pseudocode is exception vector reads from the vector 12042 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 12043 * which always does a direct read using address_space_ldl(), rather 12044 * than going via this function, so we don't need to check that here. 12045 */ 12046 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12047 } else { /* MPU enabled */ 12048 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12049 /* region search */ 12050 uint32_t base = env->pmsav7.drbar[n]; 12051 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 12052 uint32_t rmask; 12053 bool srdis = false; 12054 12055 if (!(env->pmsav7.drsr[n] & 0x1)) { 12056 continue; 12057 } 12058 12059 if (!rsize) { 12060 qemu_log_mask(LOG_GUEST_ERROR, 12061 "DRSR[%d]: Rsize field cannot be 0\n", n); 12062 continue; 12063 } 12064 rsize++; 12065 rmask = (1ull << rsize) - 1; 12066 12067 if (base & rmask) { 12068 qemu_log_mask(LOG_GUEST_ERROR, 12069 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 12070 "to DRSR region size, mask = 0x%" PRIx32 "\n", 12071 n, base, rmask); 12072 continue; 12073 } 12074 12075 if (address < base || address > base + rmask) { 12076 /* 12077 * Address not in this region. We must check whether the 12078 * region covers addresses in the same page as our address. 12079 * In that case we must not report a size that covers the 12080 * whole page for a subsequent hit against a different MPU 12081 * region or the background region, because it would result in 12082 * incorrect TLB hits for subsequent accesses to addresses that 12083 * are in this MPU region. 12084 */ 12085 if (ranges_overlap(base, rmask, 12086 address & TARGET_PAGE_MASK, 12087 TARGET_PAGE_SIZE)) { 12088 *page_size = 1; 12089 } 12090 continue; 12091 } 12092 12093 /* Region matched */ 12094 12095 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 12096 int i, snd; 12097 uint32_t srdis_mask; 12098 12099 rsize -= 3; /* sub region size (power of 2) */ 12100 snd = ((address - base) >> rsize) & 0x7; 12101 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 12102 12103 srdis_mask = srdis ? 0x3 : 0x0; 12104 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 12105 /* This will check in groups of 2, 4 and then 8, whether 12106 * the subregion bits are consistent. rsize is incremented 12107 * back up to give the region size, considering consistent 12108 * adjacent subregions as one region. Stop testing if rsize 12109 * is already big enough for an entire QEMU page. 12110 */ 12111 int snd_rounded = snd & ~(i - 1); 12112 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 12113 snd_rounded + 8, i); 12114 if (srdis_mask ^ srdis_multi) { 12115 break; 12116 } 12117 srdis_mask = (srdis_mask << i) | srdis_mask; 12118 rsize++; 12119 } 12120 } 12121 if (srdis) { 12122 continue; 12123 } 12124 if (rsize < TARGET_PAGE_BITS) { 12125 *page_size = 1 << rsize; 12126 } 12127 break; 12128 } 12129 12130 if (n == -1) { /* no hits */ 12131 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12132 /* background fault */ 12133 fi->type = ARMFault_Background; 12134 return true; 12135 } 12136 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12137 } else { /* a MPU hit! */ 12138 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 12139 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 12140 12141 if (m_is_system_region(env, address)) { 12142 /* System space is always execute never */ 12143 xn = 1; 12144 } 12145 12146 if (is_user) { /* User mode AP bit decoding */ 12147 switch (ap) { 12148 case 0: 12149 case 1: 12150 case 5: 12151 break; /* no access */ 12152 case 3: 12153 *prot |= PAGE_WRITE; 12154 /* fall through */ 12155 case 2: 12156 case 6: 12157 *prot |= PAGE_READ | PAGE_EXEC; 12158 break; 12159 case 7: 12160 /* for v7M, same as 6; for R profile a reserved value */ 12161 if (arm_feature(env, ARM_FEATURE_M)) { 12162 *prot |= PAGE_READ | PAGE_EXEC; 12163 break; 12164 } 12165 /* fall through */ 12166 default: 12167 qemu_log_mask(LOG_GUEST_ERROR, 12168 "DRACR[%d]: Bad value for AP bits: 0x%" 12169 PRIx32 "\n", n, ap); 12170 } 12171 } else { /* Priv. mode AP bits decoding */ 12172 switch (ap) { 12173 case 0: 12174 break; /* no access */ 12175 case 1: 12176 case 2: 12177 case 3: 12178 *prot |= PAGE_WRITE; 12179 /* fall through */ 12180 case 5: 12181 case 6: 12182 *prot |= PAGE_READ | PAGE_EXEC; 12183 break; 12184 case 7: 12185 /* for v7M, same as 6; for R profile a reserved value */ 12186 if (arm_feature(env, ARM_FEATURE_M)) { 12187 *prot |= PAGE_READ | PAGE_EXEC; 12188 break; 12189 } 12190 /* fall through */ 12191 default: 12192 qemu_log_mask(LOG_GUEST_ERROR, 12193 "DRACR[%d]: Bad value for AP bits: 0x%" 12194 PRIx32 "\n", n, ap); 12195 } 12196 } 12197 12198 /* execute never */ 12199 if (xn) { 12200 *prot &= ~PAGE_EXEC; 12201 } 12202 } 12203 } 12204 12205 fi->type = ARMFault_Permission; 12206 fi->level = 1; 12207 return !(*prot & (1 << access_type)); 12208 } 12209 12210 static bool v8m_is_sau_exempt(CPUARMState *env, 12211 uint32_t address, MMUAccessType access_type) 12212 { 12213 /* The architecture specifies that certain address ranges are 12214 * exempt from v8M SAU/IDAU checks. 12215 */ 12216 return 12217 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 12218 (address >= 0xe0000000 && address <= 0xe0002fff) || 12219 (address >= 0xe000e000 && address <= 0xe000efff) || 12220 (address >= 0xe002e000 && address <= 0xe002efff) || 12221 (address >= 0xe0040000 && address <= 0xe0041fff) || 12222 (address >= 0xe00ff000 && address <= 0xe00fffff); 12223 } 12224 12225 void v8m_security_lookup(CPUARMState *env, uint32_t address, 12226 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12227 V8M_SAttributes *sattrs) 12228 { 12229 /* Look up the security attributes for this address. Compare the 12230 * pseudocode SecurityCheck() function. 12231 * We assume the caller has zero-initialized *sattrs. 12232 */ 12233 ARMCPU *cpu = env_archcpu(env); 12234 int r; 12235 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 12236 int idau_region = IREGION_NOTVALID; 12237 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12238 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12239 12240 if (cpu->idau) { 12241 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 12242 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 12243 12244 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 12245 &idau_nsc); 12246 } 12247 12248 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 12249 /* 0xf0000000..0xffffffff is always S for insn fetches */ 12250 return; 12251 } 12252 12253 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 12254 sattrs->ns = !regime_is_secure(env, mmu_idx); 12255 return; 12256 } 12257 12258 if (idau_region != IREGION_NOTVALID) { 12259 sattrs->irvalid = true; 12260 sattrs->iregion = idau_region; 12261 } 12262 12263 switch (env->sau.ctrl & 3) { 12264 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 12265 break; 12266 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 12267 sattrs->ns = true; 12268 break; 12269 default: /* SAU.ENABLE == 1 */ 12270 for (r = 0; r < cpu->sau_sregion; r++) { 12271 if (env->sau.rlar[r] & 1) { 12272 uint32_t base = env->sau.rbar[r] & ~0x1f; 12273 uint32_t limit = env->sau.rlar[r] | 0x1f; 12274 12275 if (base <= address && limit >= address) { 12276 if (base > addr_page_base || limit < addr_page_limit) { 12277 sattrs->subpage = true; 12278 } 12279 if (sattrs->srvalid) { 12280 /* If we hit in more than one region then we must report 12281 * as Secure, not NS-Callable, with no valid region 12282 * number info. 12283 */ 12284 sattrs->ns = false; 12285 sattrs->nsc = false; 12286 sattrs->sregion = 0; 12287 sattrs->srvalid = false; 12288 break; 12289 } else { 12290 if (env->sau.rlar[r] & 2) { 12291 sattrs->nsc = true; 12292 } else { 12293 sattrs->ns = true; 12294 } 12295 sattrs->srvalid = true; 12296 sattrs->sregion = r; 12297 } 12298 } else { 12299 /* 12300 * Address not in this region. We must check whether the 12301 * region covers addresses in the same page as our address. 12302 * In that case we must not report a size that covers the 12303 * whole page for a subsequent hit against a different MPU 12304 * region or the background region, because it would result 12305 * in incorrect TLB hits for subsequent accesses to 12306 * addresses that are in this MPU region. 12307 */ 12308 if (limit >= base && 12309 ranges_overlap(base, limit - base + 1, 12310 addr_page_base, 12311 TARGET_PAGE_SIZE)) { 12312 sattrs->subpage = true; 12313 } 12314 } 12315 } 12316 } 12317 break; 12318 } 12319 12320 /* 12321 * The IDAU will override the SAU lookup results if it specifies 12322 * higher security than the SAU does. 12323 */ 12324 if (!idau_ns) { 12325 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 12326 sattrs->ns = false; 12327 sattrs->nsc = idau_nsc; 12328 } 12329 } 12330 } 12331 12332 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 12333 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12334 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12335 int *prot, bool *is_subpage, 12336 ARMMMUFaultInfo *fi, uint32_t *mregion) 12337 { 12338 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 12339 * that a full phys-to-virt translation does). 12340 * mregion is (if not NULL) set to the region number which matched, 12341 * or -1 if no region number is returned (MPU off, address did not 12342 * hit a region, address hit in multiple regions). 12343 * We set is_subpage to true if the region hit doesn't cover the 12344 * entire TARGET_PAGE the address is within. 12345 */ 12346 ARMCPU *cpu = env_archcpu(env); 12347 bool is_user = regime_is_user(env, mmu_idx); 12348 uint32_t secure = regime_is_secure(env, mmu_idx); 12349 int n; 12350 int matchregion = -1; 12351 bool hit = false; 12352 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12353 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12354 12355 *is_subpage = false; 12356 *phys_ptr = address; 12357 *prot = 0; 12358 if (mregion) { 12359 *mregion = -1; 12360 } 12361 12362 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 12363 * was an exception vector read from the vector table (which is always 12364 * done using the default system address map), because those accesses 12365 * are done in arm_v7m_load_vector(), which always does a direct 12366 * read using address_space_ldl(), rather than going via this function. 12367 */ 12368 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 12369 hit = true; 12370 } else if (m_is_ppb_region(env, address)) { 12371 hit = true; 12372 } else { 12373 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12374 hit = true; 12375 } 12376 12377 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12378 /* region search */ 12379 /* Note that the base address is bits [31:5] from the register 12380 * with bits [4:0] all zeroes, but the limit address is bits 12381 * [31:5] from the register with bits [4:0] all ones. 12382 */ 12383 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 12384 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12385 12386 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12387 /* Region disabled */ 12388 continue; 12389 } 12390 12391 if (address < base || address > limit) { 12392 /* 12393 * Address not in this region. We must check whether the 12394 * region covers addresses in the same page as our address. 12395 * In that case we must not report a size that covers the 12396 * whole page for a subsequent hit against a different MPU 12397 * region or the background region, because it would result in 12398 * incorrect TLB hits for subsequent accesses to addresses that 12399 * are in this MPU region. 12400 */ 12401 if (limit >= base && 12402 ranges_overlap(base, limit - base + 1, 12403 addr_page_base, 12404 TARGET_PAGE_SIZE)) { 12405 *is_subpage = true; 12406 } 12407 continue; 12408 } 12409 12410 if (base > addr_page_base || limit < addr_page_limit) { 12411 *is_subpage = true; 12412 } 12413 12414 if (matchregion != -1) { 12415 /* Multiple regions match -- always a failure (unlike 12416 * PMSAv7 where highest-numbered-region wins) 12417 */ 12418 fi->type = ARMFault_Permission; 12419 fi->level = 1; 12420 return true; 12421 } 12422 12423 matchregion = n; 12424 hit = true; 12425 } 12426 } 12427 12428 if (!hit) { 12429 /* background fault */ 12430 fi->type = ARMFault_Background; 12431 return true; 12432 } 12433 12434 if (matchregion == -1) { 12435 /* hit using the background region */ 12436 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12437 } else { 12438 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12439 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12440 bool pxn = false; 12441 12442 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 12443 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 12444 } 12445 12446 if (m_is_system_region(env, address)) { 12447 /* System space is always execute never */ 12448 xn = 1; 12449 } 12450 12451 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12452 if (*prot && !xn && !(pxn && !is_user)) { 12453 *prot |= PAGE_EXEC; 12454 } 12455 /* We don't need to look the attribute up in the MAIR0/MAIR1 12456 * registers because that only tells us about cacheability. 12457 */ 12458 if (mregion) { 12459 *mregion = matchregion; 12460 } 12461 } 12462 12463 fi->type = ARMFault_Permission; 12464 fi->level = 1; 12465 return !(*prot & (1 << access_type)); 12466 } 12467 12468 12469 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12470 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12471 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12472 int *prot, target_ulong *page_size, 12473 ARMMMUFaultInfo *fi) 12474 { 12475 uint32_t secure = regime_is_secure(env, mmu_idx); 12476 V8M_SAttributes sattrs = {}; 12477 bool ret; 12478 bool mpu_is_subpage; 12479 12480 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12481 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12482 if (access_type == MMU_INST_FETCH) { 12483 /* Instruction fetches always use the MMU bank and the 12484 * transaction attribute determined by the fetch address, 12485 * regardless of CPU state. This is painful for QEMU 12486 * to handle, because it would mean we need to encode 12487 * into the mmu_idx not just the (user, negpri) information 12488 * for the current security state but also that for the 12489 * other security state, which would balloon the number 12490 * of mmu_idx values needed alarmingly. 12491 * Fortunately we can avoid this because it's not actually 12492 * possible to arbitrarily execute code from memory with 12493 * the wrong security attribute: it will always generate 12494 * an exception of some kind or another, apart from the 12495 * special case of an NS CPU executing an SG instruction 12496 * in S&NSC memory. So we always just fail the translation 12497 * here and sort things out in the exception handler 12498 * (including possibly emulating an SG instruction). 12499 */ 12500 if (sattrs.ns != !secure) { 12501 if (sattrs.nsc) { 12502 fi->type = ARMFault_QEMU_NSCExec; 12503 } else { 12504 fi->type = ARMFault_QEMU_SFault; 12505 } 12506 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12507 *phys_ptr = address; 12508 *prot = 0; 12509 return true; 12510 } 12511 } else { 12512 /* For data accesses we always use the MMU bank indicated 12513 * by the current CPU state, but the security attributes 12514 * might downgrade a secure access to nonsecure. 12515 */ 12516 if (sattrs.ns) { 12517 txattrs->secure = false; 12518 } else if (!secure) { 12519 /* NS access to S memory must fault. 12520 * Architecturally we should first check whether the 12521 * MPU information for this address indicates that we 12522 * are doing an unaligned access to Device memory, which 12523 * should generate a UsageFault instead. QEMU does not 12524 * currently check for that kind of unaligned access though. 12525 * If we added it we would need to do so as a special case 12526 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12527 */ 12528 fi->type = ARMFault_QEMU_SFault; 12529 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12530 *phys_ptr = address; 12531 *prot = 0; 12532 return true; 12533 } 12534 } 12535 } 12536 12537 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12538 txattrs, prot, &mpu_is_subpage, fi, NULL); 12539 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12540 return ret; 12541 } 12542 12543 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12544 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12545 hwaddr *phys_ptr, int *prot, 12546 ARMMMUFaultInfo *fi) 12547 { 12548 int n; 12549 uint32_t mask; 12550 uint32_t base; 12551 bool is_user = regime_is_user(env, mmu_idx); 12552 12553 if (regime_translation_disabled(env, mmu_idx)) { 12554 /* MPU disabled. */ 12555 *phys_ptr = address; 12556 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12557 return false; 12558 } 12559 12560 *phys_ptr = address; 12561 for (n = 7; n >= 0; n--) { 12562 base = env->cp15.c6_region[n]; 12563 if ((base & 1) == 0) { 12564 continue; 12565 } 12566 mask = 1 << ((base >> 1) & 0x1f); 12567 /* Keep this shift separate from the above to avoid an 12568 (undefined) << 32. */ 12569 mask = (mask << 1) - 1; 12570 if (((base ^ address) & ~mask) == 0) { 12571 break; 12572 } 12573 } 12574 if (n < 0) { 12575 fi->type = ARMFault_Background; 12576 return true; 12577 } 12578 12579 if (access_type == MMU_INST_FETCH) { 12580 mask = env->cp15.pmsav5_insn_ap; 12581 } else { 12582 mask = env->cp15.pmsav5_data_ap; 12583 } 12584 mask = (mask >> (n * 4)) & 0xf; 12585 switch (mask) { 12586 case 0: 12587 fi->type = ARMFault_Permission; 12588 fi->level = 1; 12589 return true; 12590 case 1: 12591 if (is_user) { 12592 fi->type = ARMFault_Permission; 12593 fi->level = 1; 12594 return true; 12595 } 12596 *prot = PAGE_READ | PAGE_WRITE; 12597 break; 12598 case 2: 12599 *prot = PAGE_READ; 12600 if (!is_user) { 12601 *prot |= PAGE_WRITE; 12602 } 12603 break; 12604 case 3: 12605 *prot = PAGE_READ | PAGE_WRITE; 12606 break; 12607 case 5: 12608 if (is_user) { 12609 fi->type = ARMFault_Permission; 12610 fi->level = 1; 12611 return true; 12612 } 12613 *prot = PAGE_READ; 12614 break; 12615 case 6: 12616 *prot = PAGE_READ; 12617 break; 12618 default: 12619 /* Bad permission. */ 12620 fi->type = ARMFault_Permission; 12621 fi->level = 1; 12622 return true; 12623 } 12624 *prot |= PAGE_EXEC; 12625 return false; 12626 } 12627 12628 /* Combine either inner or outer cacheability attributes for normal 12629 * memory, according to table D4-42 and pseudocode procedure 12630 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12631 * 12632 * NB: only stage 1 includes allocation hints (RW bits), leading to 12633 * some asymmetry. 12634 */ 12635 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12636 { 12637 if (s1 == 4 || s2 == 4) { 12638 /* non-cacheable has precedence */ 12639 return 4; 12640 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12641 /* stage 1 write-through takes precedence */ 12642 return s1; 12643 } else if (extract32(s2, 2, 2) == 2) { 12644 /* stage 2 write-through takes precedence, but the allocation hint 12645 * is still taken from stage 1 12646 */ 12647 return (2 << 2) | extract32(s1, 0, 2); 12648 } else { /* write-back */ 12649 return s1; 12650 } 12651 } 12652 12653 /* 12654 * Combine the memory type and cacheability attributes of 12655 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the 12656 * combined attributes in MAIR_EL1 format. 12657 */ 12658 static uint8_t combined_attrs_nofwb(CPUARMState *env, 12659 ARMCacheAttrs s1, ARMCacheAttrs s2) 12660 { 12661 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; 12662 12663 s2_mair_attrs = convert_stage2_attrs(env, s2.attrs); 12664 12665 s1lo = extract32(s1.attrs, 0, 4); 12666 s2lo = extract32(s2_mair_attrs, 0, 4); 12667 s1hi = extract32(s1.attrs, 4, 4); 12668 s2hi = extract32(s2_mair_attrs, 4, 4); 12669 12670 /* Combine memory type and cacheability attributes */ 12671 if (s1hi == 0 || s2hi == 0) { 12672 /* Device has precedence over normal */ 12673 if (s1lo == 0 || s2lo == 0) { 12674 /* nGnRnE has precedence over anything */ 12675 ret_attrs = 0; 12676 } else if (s1lo == 4 || s2lo == 4) { 12677 /* non-Reordering has precedence over Reordering */ 12678 ret_attrs = 4; /* nGnRE */ 12679 } else if (s1lo == 8 || s2lo == 8) { 12680 /* non-Gathering has precedence over Gathering */ 12681 ret_attrs = 8; /* nGRE */ 12682 } else { 12683 ret_attrs = 0xc; /* GRE */ 12684 } 12685 } else { /* Normal memory */ 12686 /* Outer/inner cacheability combine independently */ 12687 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12688 | combine_cacheattr_nibble(s1lo, s2lo); 12689 } 12690 return ret_attrs; 12691 } 12692 12693 static uint8_t force_cacheattr_nibble_wb(uint8_t attr) 12694 { 12695 /* 12696 * Given the 4 bits specifying the outer or inner cacheability 12697 * in MAIR format, return a value specifying Normal Write-Back, 12698 * with the allocation and transient hints taken from the input 12699 * if the input specified some kind of cacheable attribute. 12700 */ 12701 if (attr == 0 || attr == 4) { 12702 /* 12703 * 0 == an UNPREDICTABLE encoding 12704 * 4 == Non-cacheable 12705 * Either way, force Write-Back RW allocate non-transient 12706 */ 12707 return 0xf; 12708 } 12709 /* Change WriteThrough to WriteBack, keep allocation and transient hints */ 12710 return attr | 4; 12711 } 12712 12713 /* 12714 * Combine the memory type and cacheability attributes of 12715 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the 12716 * combined attributes in MAIR_EL1 format. 12717 */ 12718 static uint8_t combined_attrs_fwb(CPUARMState *env, 12719 ARMCacheAttrs s1, ARMCacheAttrs s2) 12720 { 12721 switch (s2.attrs) { 12722 case 7: 12723 /* Use stage 1 attributes */ 12724 return s1.attrs; 12725 case 6: 12726 /* 12727 * Force Normal Write-Back. Note that if S1 is Normal cacheable 12728 * then we take the allocation hints from it; otherwise it is 12729 * RW allocate, non-transient. 12730 */ 12731 if ((s1.attrs & 0xf0) == 0) { 12732 /* S1 is Device */ 12733 return 0xff; 12734 } 12735 /* Need to check the Inner and Outer nibbles separately */ 12736 return force_cacheattr_nibble_wb(s1.attrs & 0xf) | 12737 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; 12738 case 5: 12739 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ 12740 if ((s1.attrs & 0xf0) == 0) { 12741 return s1.attrs; 12742 } 12743 return 0x44; 12744 case 0 ... 3: 12745 /* Force Device, of subtype specified by S2 */ 12746 return s2.attrs << 2; 12747 default: 12748 /* 12749 * RESERVED values (including RES0 descriptor bit [5] being nonzero); 12750 * arbitrarily force Device. 12751 */ 12752 return 0; 12753 } 12754 } 12755 12756 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12757 * and CombineS1S2Desc() 12758 * 12759 * @env: CPUARMState 12760 * @s1: Attributes from stage 1 walk 12761 * @s2: Attributes from stage 2 walk 12762 */ 12763 static ARMCacheAttrs combine_cacheattrs(CPUARMState *env, 12764 ARMCacheAttrs s1, ARMCacheAttrs s2) 12765 { 12766 ARMCacheAttrs ret; 12767 bool tagged = false; 12768 12769 assert(s2.is_s2_format && !s1.is_s2_format); 12770 ret.is_s2_format = false; 12771 12772 if (s1.attrs == 0xf0) { 12773 tagged = true; 12774 s1.attrs = 0xff; 12775 } 12776 12777 /* Combine shareability attributes (table D4-43) */ 12778 if (s1.shareability == 2 || s2.shareability == 2) { 12779 /* if either are outer-shareable, the result is outer-shareable */ 12780 ret.shareability = 2; 12781 } else if (s1.shareability == 3 || s2.shareability == 3) { 12782 /* if either are inner-shareable, the result is inner-shareable */ 12783 ret.shareability = 3; 12784 } else { 12785 /* both non-shareable */ 12786 ret.shareability = 0; 12787 } 12788 12789 /* Combine memory type and cacheability attributes */ 12790 if (arm_hcr_el2_eff(env) & HCR_FWB) { 12791 ret.attrs = combined_attrs_fwb(env, s1, s2); 12792 } else { 12793 ret.attrs = combined_attrs_nofwb(env, s1, s2); 12794 } 12795 12796 /* 12797 * Any location for which the resultant memory type is any 12798 * type of Device memory is always treated as Outer Shareable. 12799 * Any location for which the resultant memory type is Normal 12800 * Inner Non-cacheable, Outer Non-cacheable is always treated 12801 * as Outer Shareable. 12802 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC 12803 */ 12804 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { 12805 ret.shareability = 2; 12806 } 12807 12808 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12809 if (tagged && ret.attrs == 0xff) { 12810 ret.attrs = 0xf0; 12811 } 12812 12813 return ret; 12814 } 12815 12816 12817 /* get_phys_addr - get the physical address for this virtual address 12818 * 12819 * Find the physical address corresponding to the given virtual address, 12820 * by doing a translation table walk on MMU based systems or using the 12821 * MPU state on MPU based systems. 12822 * 12823 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12824 * prot and page_size may not be filled in, and the populated fsr value provides 12825 * information on why the translation aborted, in the format of a 12826 * DFSR/IFSR fault register, with the following caveats: 12827 * * we honour the short vs long DFSR format differences. 12828 * * the WnR bit is never set (the caller must do this). 12829 * * for PSMAv5 based systems we don't bother to return a full FSR format 12830 * value. 12831 * 12832 * @env: CPUARMState 12833 * @address: virtual address to get physical address for 12834 * @access_type: 0 for read, 1 for write, 2 for execute 12835 * @mmu_idx: MMU index indicating required translation regime 12836 * @phys_ptr: set to the physical address corresponding to the virtual address 12837 * @attrs: set to the memory transaction attributes to use 12838 * @prot: set to the permissions for the page containing phys_ptr 12839 * @page_size: set to the size of the page containing phys_ptr 12840 * @fi: set to fault info if the translation fails 12841 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12842 */ 12843 bool get_phys_addr(CPUARMState *env, target_ulong address, 12844 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12845 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12846 target_ulong *page_size, 12847 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12848 { 12849 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12850 12851 if (mmu_idx != s1_mmu_idx) { 12852 /* Call ourselves recursively to do the stage 1 and then stage 2 12853 * translations if mmu_idx is a two-stage regime. 12854 */ 12855 if (arm_feature(env, ARM_FEATURE_EL2)) { 12856 hwaddr ipa; 12857 int s2_prot; 12858 int ret; 12859 bool ipa_secure; 12860 ARMCacheAttrs cacheattrs2 = {}; 12861 ARMMMUIdx s2_mmu_idx; 12862 bool is_el0; 12863 12864 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12865 attrs, prot, page_size, fi, cacheattrs); 12866 12867 /* If S1 fails or S2 is disabled, return early. */ 12868 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12869 *phys_ptr = ipa; 12870 return ret; 12871 } 12872 12873 ipa_secure = attrs->secure; 12874 if (arm_is_secure_below_el3(env)) { 12875 if (ipa_secure) { 12876 attrs->secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 12877 } else { 12878 attrs->secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 12879 } 12880 } else { 12881 assert(!ipa_secure); 12882 } 12883 12884 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12885 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12886 12887 /* S1 is done. Now do S2 translation. */ 12888 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12889 phys_ptr, attrs, &s2_prot, 12890 page_size, fi, &cacheattrs2); 12891 fi->s2addr = ipa; 12892 /* Combine the S1 and S2 perms. */ 12893 *prot &= s2_prot; 12894 12895 /* If S2 fails, return early. */ 12896 if (ret) { 12897 return ret; 12898 } 12899 12900 /* Combine the S1 and S2 cache attributes. */ 12901 if (arm_hcr_el2_eff(env) & HCR_DC) { 12902 /* 12903 * HCR.DC forces the first stage attributes to 12904 * Normal Non-Shareable, 12905 * Inner Write-Back Read-Allocate Write-Allocate, 12906 * Outer Write-Back Read-Allocate Write-Allocate. 12907 * Do not overwrite Tagged within attrs. 12908 */ 12909 if (cacheattrs->attrs != 0xf0) { 12910 cacheattrs->attrs = 0xff; 12911 } 12912 cacheattrs->shareability = 0; 12913 } 12914 *cacheattrs = combine_cacheattrs(env, *cacheattrs, cacheattrs2); 12915 12916 /* Check if IPA translates to secure or non-secure PA space. */ 12917 if (arm_is_secure_below_el3(env)) { 12918 if (ipa_secure) { 12919 attrs->secure = 12920 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12921 } else { 12922 attrs->secure = 12923 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12924 || (env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW))); 12925 } 12926 } 12927 return 0; 12928 } else { 12929 /* 12930 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12931 */ 12932 mmu_idx = stage_1_mmu_idx(mmu_idx); 12933 } 12934 } 12935 12936 /* The page table entries may downgrade secure to non-secure, but 12937 * cannot upgrade an non-secure translation regime's attributes 12938 * to secure. 12939 */ 12940 attrs->secure = regime_is_secure(env, mmu_idx); 12941 attrs->user = regime_is_user(env, mmu_idx); 12942 12943 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12944 * In v7 and earlier it affects all stage 1 translations. 12945 */ 12946 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12947 && !arm_feature(env, ARM_FEATURE_V8)) { 12948 if (regime_el(env, mmu_idx) == 3) { 12949 address += env->cp15.fcseidr_s; 12950 } else { 12951 address += env->cp15.fcseidr_ns; 12952 } 12953 } 12954 12955 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12956 bool ret; 12957 *page_size = TARGET_PAGE_SIZE; 12958 12959 if (arm_feature(env, ARM_FEATURE_V8)) { 12960 /* PMSAv8 */ 12961 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12962 phys_ptr, attrs, prot, page_size, fi); 12963 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12964 /* PMSAv7 */ 12965 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12966 phys_ptr, prot, page_size, fi); 12967 } else { 12968 /* Pre-v7 MPU */ 12969 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12970 phys_ptr, prot, fi); 12971 } 12972 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12973 " mmu_idx %u -> %s (prot %c%c%c)\n", 12974 access_type == MMU_DATA_LOAD ? "reading" : 12975 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12976 (uint32_t)address, mmu_idx, 12977 ret ? "Miss" : "Hit", 12978 *prot & PAGE_READ ? 'r' : '-', 12979 *prot & PAGE_WRITE ? 'w' : '-', 12980 *prot & PAGE_EXEC ? 'x' : '-'); 12981 12982 return ret; 12983 } 12984 12985 /* Definitely a real MMU, not an MPU */ 12986 12987 if (regime_translation_disabled(env, mmu_idx)) { 12988 uint64_t hcr; 12989 uint8_t memattr; 12990 12991 /* 12992 * MMU disabled. S1 addresses within aa64 translation regimes are 12993 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12994 */ 12995 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12996 int r_el = regime_el(env, mmu_idx); 12997 if (arm_el_is_aa64(env, r_el)) { 12998 int pamax = arm_pamax(env_archcpu(env)); 12999 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 13000 int addrtop, tbi; 13001 13002 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 13003 if (access_type == MMU_INST_FETCH) { 13004 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 13005 } 13006 tbi = (tbi >> extract64(address, 55, 1)) & 1; 13007 addrtop = (tbi ? 55 : 63); 13008 13009 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 13010 fi->type = ARMFault_AddressSize; 13011 fi->level = 0; 13012 fi->stage2 = false; 13013 return 1; 13014 } 13015 13016 /* 13017 * When TBI is disabled, we've just validated that all of the 13018 * bits above PAMax are zero, so logically we only need to 13019 * clear the top byte for TBI. But it's clearer to follow 13020 * the pseudocode set of addrdesc.paddress. 13021 */ 13022 address = extract64(address, 0, 52); 13023 } 13024 } 13025 *phys_ptr = address; 13026 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 13027 *page_size = TARGET_PAGE_SIZE; 13028 13029 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 13030 hcr = arm_hcr_el2_eff(env); 13031 cacheattrs->shareability = 0; 13032 cacheattrs->is_s2_format = false; 13033 if (hcr & HCR_DC) { 13034 if (hcr & HCR_DCT) { 13035 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 13036 } else { 13037 memattr = 0xff; /* Normal, WB, RWA */ 13038 } 13039 } else if (access_type == MMU_INST_FETCH) { 13040 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 13041 memattr = 0xee; /* Normal, WT, RA, NT */ 13042 } else { 13043 memattr = 0x44; /* Normal, NC, No */ 13044 } 13045 cacheattrs->shareability = 2; /* outer sharable */ 13046 } else { 13047 memattr = 0x00; /* Device, nGnRnE */ 13048 } 13049 cacheattrs->attrs = memattr; 13050 return 0; 13051 } 13052 13053 if (regime_using_lpae_format(env, mmu_idx)) { 13054 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 13055 phys_ptr, attrs, prot, page_size, 13056 fi, cacheattrs); 13057 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 13058 return get_phys_addr_v6(env, address, access_type, mmu_idx, 13059 phys_ptr, attrs, prot, page_size, fi); 13060 } else { 13061 return get_phys_addr_v5(env, address, access_type, mmu_idx, 13062 phys_ptr, prot, page_size, fi); 13063 } 13064 } 13065 13066 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 13067 MemTxAttrs *attrs) 13068 { 13069 ARMCPU *cpu = ARM_CPU(cs); 13070 CPUARMState *env = &cpu->env; 13071 hwaddr phys_addr; 13072 target_ulong page_size; 13073 int prot; 13074 bool ret; 13075 ARMMMUFaultInfo fi = {}; 13076 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 13077 ARMCacheAttrs cacheattrs = {}; 13078 13079 *attrs = (MemTxAttrs) {}; 13080 13081 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 13082 attrs, &prot, &page_size, &fi, &cacheattrs); 13083 13084 if (ret) { 13085 return -1; 13086 } 13087 return phys_addr; 13088 } 13089 13090 #endif 13091 13092 /* Note that signed overflow is undefined in C. The following routines are 13093 careful to use unsigned types where modulo arithmetic is required. 13094 Failure to do so _will_ break on newer gcc. */ 13095 13096 /* Signed saturating arithmetic. */ 13097 13098 /* Perform 16-bit signed saturating addition. */ 13099 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 13100 { 13101 uint16_t res; 13102 13103 res = a + b; 13104 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 13105 if (a & 0x8000) 13106 res = 0x8000; 13107 else 13108 res = 0x7fff; 13109 } 13110 return res; 13111 } 13112 13113 /* Perform 8-bit signed saturating addition. */ 13114 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 13115 { 13116 uint8_t res; 13117 13118 res = a + b; 13119 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 13120 if (a & 0x80) 13121 res = 0x80; 13122 else 13123 res = 0x7f; 13124 } 13125 return res; 13126 } 13127 13128 /* Perform 16-bit signed saturating subtraction. */ 13129 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 13130 { 13131 uint16_t res; 13132 13133 res = a - b; 13134 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 13135 if (a & 0x8000) 13136 res = 0x8000; 13137 else 13138 res = 0x7fff; 13139 } 13140 return res; 13141 } 13142 13143 /* Perform 8-bit signed saturating subtraction. */ 13144 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 13145 { 13146 uint8_t res; 13147 13148 res = a - b; 13149 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 13150 if (a & 0x80) 13151 res = 0x80; 13152 else 13153 res = 0x7f; 13154 } 13155 return res; 13156 } 13157 13158 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 13159 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 13160 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 13161 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 13162 #define PFX q 13163 13164 #include "op_addsub.h" 13165 13166 /* Unsigned saturating arithmetic. */ 13167 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 13168 { 13169 uint16_t res; 13170 res = a + b; 13171 if (res < a) 13172 res = 0xffff; 13173 return res; 13174 } 13175 13176 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 13177 { 13178 if (a > b) 13179 return a - b; 13180 else 13181 return 0; 13182 } 13183 13184 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 13185 { 13186 uint8_t res; 13187 res = a + b; 13188 if (res < a) 13189 res = 0xff; 13190 return res; 13191 } 13192 13193 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 13194 { 13195 if (a > b) 13196 return a - b; 13197 else 13198 return 0; 13199 } 13200 13201 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 13202 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 13203 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 13204 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 13205 #define PFX uq 13206 13207 #include "op_addsub.h" 13208 13209 /* Signed modulo arithmetic. */ 13210 #define SARITH16(a, b, n, op) do { \ 13211 int32_t sum; \ 13212 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 13213 RESULT(sum, n, 16); \ 13214 if (sum >= 0) \ 13215 ge |= 3 << (n * 2); \ 13216 } while(0) 13217 13218 #define SARITH8(a, b, n, op) do { \ 13219 int32_t sum; \ 13220 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 13221 RESULT(sum, n, 8); \ 13222 if (sum >= 0) \ 13223 ge |= 1 << n; \ 13224 } while(0) 13225 13226 13227 #define ADD16(a, b, n) SARITH16(a, b, n, +) 13228 #define SUB16(a, b, n) SARITH16(a, b, n, -) 13229 #define ADD8(a, b, n) SARITH8(a, b, n, +) 13230 #define SUB8(a, b, n) SARITH8(a, b, n, -) 13231 #define PFX s 13232 #define ARITH_GE 13233 13234 #include "op_addsub.h" 13235 13236 /* Unsigned modulo arithmetic. */ 13237 #define ADD16(a, b, n) do { \ 13238 uint32_t sum; \ 13239 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 13240 RESULT(sum, n, 16); \ 13241 if ((sum >> 16) == 1) \ 13242 ge |= 3 << (n * 2); \ 13243 } while(0) 13244 13245 #define ADD8(a, b, n) do { \ 13246 uint32_t sum; \ 13247 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 13248 RESULT(sum, n, 8); \ 13249 if ((sum >> 8) == 1) \ 13250 ge |= 1 << n; \ 13251 } while(0) 13252 13253 #define SUB16(a, b, n) do { \ 13254 uint32_t sum; \ 13255 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 13256 RESULT(sum, n, 16); \ 13257 if ((sum >> 16) == 0) \ 13258 ge |= 3 << (n * 2); \ 13259 } while(0) 13260 13261 #define SUB8(a, b, n) do { \ 13262 uint32_t sum; \ 13263 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 13264 RESULT(sum, n, 8); \ 13265 if ((sum >> 8) == 0) \ 13266 ge |= 1 << n; \ 13267 } while(0) 13268 13269 #define PFX u 13270 #define ARITH_GE 13271 13272 #include "op_addsub.h" 13273 13274 /* Halved signed arithmetic. */ 13275 #define ADD16(a, b, n) \ 13276 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 13277 #define SUB16(a, b, n) \ 13278 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 13279 #define ADD8(a, b, n) \ 13280 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 13281 #define SUB8(a, b, n) \ 13282 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 13283 #define PFX sh 13284 13285 #include "op_addsub.h" 13286 13287 /* Halved unsigned arithmetic. */ 13288 #define ADD16(a, b, n) \ 13289 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13290 #define SUB16(a, b, n) \ 13291 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13292 #define ADD8(a, b, n) \ 13293 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13294 #define SUB8(a, b, n) \ 13295 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13296 #define PFX uh 13297 13298 #include "op_addsub.h" 13299 13300 static inline uint8_t do_usad(uint8_t a, uint8_t b) 13301 { 13302 if (a > b) 13303 return a - b; 13304 else 13305 return b - a; 13306 } 13307 13308 /* Unsigned sum of absolute byte differences. */ 13309 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 13310 { 13311 uint32_t sum; 13312 sum = do_usad(a, b); 13313 sum += do_usad(a >> 8, b >> 8); 13314 sum += do_usad(a >> 16, b >> 16); 13315 sum += do_usad(a >> 24, b >> 24); 13316 return sum; 13317 } 13318 13319 /* For ARMv6 SEL instruction. */ 13320 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 13321 { 13322 uint32_t mask; 13323 13324 mask = 0; 13325 if (flags & 1) 13326 mask |= 0xff; 13327 if (flags & 2) 13328 mask |= 0xff00; 13329 if (flags & 4) 13330 mask |= 0xff0000; 13331 if (flags & 8) 13332 mask |= 0xff000000; 13333 return (a & mask) | (b & ~mask); 13334 } 13335 13336 /* CRC helpers. 13337 * The upper bytes of val (above the number specified by 'bytes') must have 13338 * been zeroed out by the caller. 13339 */ 13340 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 13341 { 13342 uint8_t buf[4]; 13343 13344 stl_le_p(buf, val); 13345 13346 /* zlib crc32 converts the accumulator and output to one's complement. */ 13347 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 13348 } 13349 13350 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 13351 { 13352 uint8_t buf[4]; 13353 13354 stl_le_p(buf, val); 13355 13356 /* Linux crc32c converts the output to one's complement. */ 13357 return crc32c(acc, buf, bytes) ^ 0xffffffff; 13358 } 13359 13360 /* Return the exception level to which FP-disabled exceptions should 13361 * be taken, or 0 if FP is enabled. 13362 */ 13363 int fp_exception_el(CPUARMState *env, int cur_el) 13364 { 13365 #ifndef CONFIG_USER_ONLY 13366 uint64_t hcr_el2; 13367 13368 /* CPACR and the CPTR registers don't exist before v6, so FP is 13369 * always accessible 13370 */ 13371 if (!arm_feature(env, ARM_FEATURE_V6)) { 13372 return 0; 13373 } 13374 13375 if (arm_feature(env, ARM_FEATURE_M)) { 13376 /* CPACR can cause a NOCP UsageFault taken to current security state */ 13377 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 13378 return 1; 13379 } 13380 13381 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 13382 if (!extract32(env->v7m.nsacr, 10, 1)) { 13383 /* FP insns cause a NOCP UsageFault taken to Secure */ 13384 return 3; 13385 } 13386 } 13387 13388 return 0; 13389 } 13390 13391 hcr_el2 = arm_hcr_el2_eff(env); 13392 13393 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 13394 * 0, 2 : trap EL0 and EL1/PL1 accesses 13395 * 1 : trap only EL0 accesses 13396 * 3 : trap no accesses 13397 * This register is ignored if E2H+TGE are both set. 13398 */ 13399 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13400 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 13401 13402 switch (fpen) { 13403 case 0: 13404 case 2: 13405 if (cur_el == 0 || cur_el == 1) { 13406 /* Trap to PL1, which might be EL1 or EL3 */ 13407 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 13408 return 3; 13409 } 13410 return 1; 13411 } 13412 if (cur_el == 3 && !is_a64(env)) { 13413 /* Secure PL1 running at EL3 */ 13414 return 3; 13415 } 13416 break; 13417 case 1: 13418 if (cur_el == 0) { 13419 return 1; 13420 } 13421 break; 13422 case 3: 13423 break; 13424 } 13425 } 13426 13427 /* 13428 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 13429 * to control non-secure access to the FPU. It doesn't have any 13430 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 13431 */ 13432 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 13433 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 13434 if (!extract32(env->cp15.nsacr, 10, 1)) { 13435 /* FP insns act as UNDEF */ 13436 return cur_el == 2 ? 2 : 1; 13437 } 13438 } 13439 13440 /* 13441 * CPTR_EL2 is present in v7VE or v8, and changes format 13442 * with HCR_EL2.E2H (regardless of TGE). 13443 */ 13444 if (cur_el <= 2) { 13445 if (hcr_el2 & HCR_E2H) { 13446 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 13447 case 1: 13448 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 13449 break; 13450 } 13451 /* fall through */ 13452 case 0: 13453 case 2: 13454 return 2; 13455 } 13456 } else if (arm_is_el2_enabled(env)) { 13457 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 13458 return 2; 13459 } 13460 } 13461 } 13462 13463 /* CPTR_EL3 : present in v8 */ 13464 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 13465 /* Trap all FP ops to EL3 */ 13466 return 3; 13467 } 13468 #endif 13469 return 0; 13470 } 13471 13472 /* Return the exception level we're running at if this is our mmu_idx */ 13473 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 13474 { 13475 if (mmu_idx & ARM_MMU_IDX_M) { 13476 return mmu_idx & ARM_MMU_IDX_M_PRIV; 13477 } 13478 13479 switch (mmu_idx) { 13480 case ARMMMUIdx_E10_0: 13481 case ARMMMUIdx_E20_0: 13482 case ARMMMUIdx_SE10_0: 13483 case ARMMMUIdx_SE20_0: 13484 return 0; 13485 case ARMMMUIdx_E10_1: 13486 case ARMMMUIdx_E10_1_PAN: 13487 case ARMMMUIdx_SE10_1: 13488 case ARMMMUIdx_SE10_1_PAN: 13489 return 1; 13490 case ARMMMUIdx_E2: 13491 case ARMMMUIdx_E20_2: 13492 case ARMMMUIdx_E20_2_PAN: 13493 case ARMMMUIdx_SE2: 13494 case ARMMMUIdx_SE20_2: 13495 case ARMMMUIdx_SE20_2_PAN: 13496 return 2; 13497 case ARMMMUIdx_SE3: 13498 return 3; 13499 default: 13500 g_assert_not_reached(); 13501 } 13502 } 13503 13504 #ifndef CONFIG_TCG 13505 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13506 { 13507 g_assert_not_reached(); 13508 } 13509 #endif 13510 13511 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 13512 { 13513 ARMMMUIdx idx; 13514 uint64_t hcr; 13515 13516 if (arm_feature(env, ARM_FEATURE_M)) { 13517 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13518 } 13519 13520 /* See ARM pseudo-function ELIsInHost. */ 13521 switch (el) { 13522 case 0: 13523 hcr = arm_hcr_el2_eff(env); 13524 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 13525 idx = ARMMMUIdx_E20_0; 13526 } else { 13527 idx = ARMMMUIdx_E10_0; 13528 } 13529 break; 13530 case 1: 13531 if (env->pstate & PSTATE_PAN) { 13532 idx = ARMMMUIdx_E10_1_PAN; 13533 } else { 13534 idx = ARMMMUIdx_E10_1; 13535 } 13536 break; 13537 case 2: 13538 /* Note that TGE does not apply at EL2. */ 13539 if (arm_hcr_el2_eff(env) & HCR_E2H) { 13540 if (env->pstate & PSTATE_PAN) { 13541 idx = ARMMMUIdx_E20_2_PAN; 13542 } else { 13543 idx = ARMMMUIdx_E20_2; 13544 } 13545 } else { 13546 idx = ARMMMUIdx_E2; 13547 } 13548 break; 13549 case 3: 13550 return ARMMMUIdx_SE3; 13551 default: 13552 g_assert_not_reached(); 13553 } 13554 13555 if (arm_is_secure_below_el3(env)) { 13556 idx &= ~ARM_MMU_IDX_A_NS; 13557 } 13558 13559 return idx; 13560 } 13561 13562 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13563 { 13564 return arm_mmu_idx_el(env, arm_current_el(env)); 13565 } 13566 13567 #ifndef CONFIG_USER_ONLY 13568 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13569 { 13570 return stage_1_mmu_idx(arm_mmu_idx(env)); 13571 } 13572 #endif 13573 13574 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 13575 ARMMMUIdx mmu_idx, 13576 CPUARMTBFlags flags) 13577 { 13578 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 13579 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13580 13581 if (arm_singlestep_active(env)) { 13582 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 13583 } 13584 return flags; 13585 } 13586 13587 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13588 ARMMMUIdx mmu_idx, 13589 CPUARMTBFlags flags) 13590 { 13591 bool sctlr_b = arm_sctlr_b(env); 13592 13593 if (sctlr_b) { 13594 DP_TBFLAG_A32(flags, SCTLR__B, 1); 13595 } 13596 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13597 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13598 } 13599 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 13600 13601 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13602 } 13603 13604 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 13605 ARMMMUIdx mmu_idx) 13606 { 13607 CPUARMTBFlags flags = {}; 13608 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 13609 13610 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 13611 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 13612 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13613 } 13614 13615 if (arm_v7m_is_handler_mode(env)) { 13616 DP_TBFLAG_M32(flags, HANDLER, 1); 13617 } 13618 13619 /* 13620 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13621 * is suppressing them because the requested execution priority 13622 * is less than 0. 13623 */ 13624 if (arm_feature(env, ARM_FEATURE_V8) && 13625 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13626 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13627 DP_TBFLAG_M32(flags, STACKCHECK, 1); 13628 } 13629 13630 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13631 } 13632 13633 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) 13634 { 13635 CPUARMTBFlags flags = {}; 13636 13637 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); 13638 return flags; 13639 } 13640 13641 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 13642 ARMMMUIdx mmu_idx) 13643 { 13644 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13645 int el = arm_current_el(env); 13646 13647 if (arm_sctlr(env, el) & SCTLR_A) { 13648 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13649 } 13650 13651 if (arm_el_is_aa64(env, 1)) { 13652 DP_TBFLAG_A32(flags, VFPEN, 1); 13653 } 13654 13655 if (el < 2 && env->cp15.hstr_el2 && 13656 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13657 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 13658 } 13659 13660 if (env->uncached_cpsr & CPSR_IL) { 13661 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13662 } 13663 13664 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13665 } 13666 13667 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13668 ARMMMUIdx mmu_idx) 13669 { 13670 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13671 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13672 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13673 uint64_t sctlr; 13674 int tbii, tbid; 13675 13676 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 13677 13678 /* Get control bits for tagged addresses. */ 13679 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13680 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13681 13682 DP_TBFLAG_A64(flags, TBII, tbii); 13683 DP_TBFLAG_A64(flags, TBID, tbid); 13684 13685 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13686 int sve_el = sve_exception_el(env, el); 13687 uint32_t zcr_len; 13688 13689 /* 13690 * If SVE is disabled, but FP is enabled, 13691 * then the effective len is 0. 13692 */ 13693 if (sve_el != 0 && fp_el == 0) { 13694 zcr_len = 0; 13695 } else { 13696 zcr_len = sve_zcr_len_for_el(env, el); 13697 } 13698 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 13699 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len); 13700 } 13701 13702 sctlr = regime_sctlr(env, stage1); 13703 13704 if (sctlr & SCTLR_A) { 13705 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13706 } 13707 13708 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13709 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13710 } 13711 13712 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13713 /* 13714 * In order to save space in flags, we record only whether 13715 * pauth is "inactive", meaning all insns are implemented as 13716 * a nop, or "active" when some action must be performed. 13717 * The decision of which action to take is left to a helper. 13718 */ 13719 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13720 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 13721 } 13722 } 13723 13724 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13725 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13726 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13727 DP_TBFLAG_A64(flags, BT, 1); 13728 } 13729 } 13730 13731 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13732 if (!(env->pstate & PSTATE_UAO)) { 13733 switch (mmu_idx) { 13734 case ARMMMUIdx_E10_1: 13735 case ARMMMUIdx_E10_1_PAN: 13736 case ARMMMUIdx_SE10_1: 13737 case ARMMMUIdx_SE10_1_PAN: 13738 /* TODO: ARMv8.3-NV */ 13739 DP_TBFLAG_A64(flags, UNPRIV, 1); 13740 break; 13741 case ARMMMUIdx_E20_2: 13742 case ARMMMUIdx_E20_2_PAN: 13743 case ARMMMUIdx_SE20_2: 13744 case ARMMMUIdx_SE20_2_PAN: 13745 /* 13746 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13747 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13748 */ 13749 if (env->cp15.hcr_el2 & HCR_TGE) { 13750 DP_TBFLAG_A64(flags, UNPRIV, 1); 13751 } 13752 break; 13753 default: 13754 break; 13755 } 13756 } 13757 13758 if (env->pstate & PSTATE_IL) { 13759 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13760 } 13761 13762 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13763 /* 13764 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13765 * if all accesses must be Unchecked: 13766 * 1) If no TBI, then there are no tags in the address to check, 13767 * 2) If Tag Check Override, then all accesses are Unchecked, 13768 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13769 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13770 */ 13771 if (allocation_tag_access_enabled(env, el, sctlr)) { 13772 DP_TBFLAG_A64(flags, ATA, 1); 13773 if (tbid 13774 && !(env->pstate & PSTATE_TCO) 13775 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13776 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 13777 } 13778 } 13779 /* And again for unprivileged accesses, if required. */ 13780 if (EX_TBFLAG_A64(flags, UNPRIV) 13781 && tbid 13782 && !(env->pstate & PSTATE_TCO) 13783 && (sctlr & SCTLR_TCF0) 13784 && allocation_tag_access_enabled(env, 0, sctlr)) { 13785 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 13786 } 13787 /* Cache TCMA as well as TBI. */ 13788 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 13789 } 13790 13791 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13792 } 13793 13794 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 13795 { 13796 int el = arm_current_el(env); 13797 int fp_el = fp_exception_el(env, el); 13798 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13799 13800 if (is_a64(env)) { 13801 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13802 } else if (arm_feature(env, ARM_FEATURE_M)) { 13803 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13804 } else { 13805 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13806 } 13807 } 13808 13809 void arm_rebuild_hflags(CPUARMState *env) 13810 { 13811 env->hflags = rebuild_hflags_internal(env); 13812 } 13813 13814 /* 13815 * If we have triggered a EL state change we can't rely on the 13816 * translator having passed it to us, we need to recompute. 13817 */ 13818 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13819 { 13820 int el = arm_current_el(env); 13821 int fp_el = fp_exception_el(env, el); 13822 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13823 13824 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13825 } 13826 13827 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13828 { 13829 int fp_el = fp_exception_el(env, el); 13830 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13831 13832 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13833 } 13834 13835 /* 13836 * If we have triggered a EL state change we can't rely on the 13837 * translator having passed it to us, we need to recompute. 13838 */ 13839 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13840 { 13841 int el = arm_current_el(env); 13842 int fp_el = fp_exception_el(env, el); 13843 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13844 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13845 } 13846 13847 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13848 { 13849 int fp_el = fp_exception_el(env, el); 13850 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13851 13852 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13853 } 13854 13855 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13856 { 13857 int fp_el = fp_exception_el(env, el); 13858 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13859 13860 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13861 } 13862 13863 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13864 { 13865 #ifdef CONFIG_DEBUG_TCG 13866 CPUARMTBFlags c = env->hflags; 13867 CPUARMTBFlags r = rebuild_hflags_internal(env); 13868 13869 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 13870 fprintf(stderr, "TCG hflags mismatch " 13871 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 13872 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 13873 c.flags, c.flags2, r.flags, r.flags2); 13874 abort(); 13875 } 13876 #endif 13877 } 13878 13879 static bool mve_no_pred(CPUARMState *env) 13880 { 13881 /* 13882 * Return true if there is definitely no predication of MVE 13883 * instructions by VPR or LTPSIZE. (Returning false even if there 13884 * isn't any predication is OK; generated code will just be 13885 * a little worse.) 13886 * If the CPU does not implement MVE then this TB flag is always 0. 13887 * 13888 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 13889 * logic in gen_update_fp_context() needs to be updated to match. 13890 * 13891 * We do not include the effect of the ECI bits here -- they are 13892 * tracked in other TB flags. This simplifies the logic for 13893 * "when did we emit code that changes the MVE_NO_PRED TB flag 13894 * and thus need to end the TB?". 13895 */ 13896 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 13897 return false; 13898 } 13899 if (env->v7m.vpr) { 13900 return false; 13901 } 13902 if (env->v7m.ltpsize < 4) { 13903 return false; 13904 } 13905 return true; 13906 } 13907 13908 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13909 target_ulong *cs_base, uint32_t *pflags) 13910 { 13911 CPUARMTBFlags flags; 13912 13913 assert_hflags_rebuild_correctly(env); 13914 flags = env->hflags; 13915 13916 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 13917 *pc = env->pc; 13918 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13919 DP_TBFLAG_A64(flags, BTYPE, env->btype); 13920 } 13921 } else { 13922 *pc = env->regs[15]; 13923 13924 if (arm_feature(env, ARM_FEATURE_M)) { 13925 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13926 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13927 != env->v7m.secure) { 13928 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 13929 } 13930 13931 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13932 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13933 (env->v7m.secure && 13934 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13935 /* 13936 * ASPEN is set, but FPCA/SFPA indicate that there is no 13937 * active FP context; we must create a new FP context before 13938 * executing any FP insn. 13939 */ 13940 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 13941 } 13942 13943 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13944 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13945 DP_TBFLAG_M32(flags, LSPACT, 1); 13946 } 13947 13948 if (mve_no_pred(env)) { 13949 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 13950 } 13951 } else { 13952 /* 13953 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13954 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13955 */ 13956 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13957 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 13958 } else { 13959 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 13960 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 13961 } 13962 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13963 DP_TBFLAG_A32(flags, VFPEN, 1); 13964 } 13965 } 13966 13967 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 13968 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 13969 } 13970 13971 /* 13972 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13973 * states defined in the ARM ARM for software singlestep: 13974 * SS_ACTIVE PSTATE.SS State 13975 * 0 x Inactive (the TB flag for SS is always 0) 13976 * 1 0 Active-pending 13977 * 1 1 Active-not-pending 13978 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 13979 */ 13980 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 13981 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 13982 } 13983 13984 *pflags = flags.flags; 13985 *cs_base = flags.flags2; 13986 } 13987 13988 #ifdef TARGET_AARCH64 13989 /* 13990 * The manual says that when SVE is enabled and VQ is widened the 13991 * implementation is allowed to zero the previously inaccessible 13992 * portion of the registers. The corollary to that is that when 13993 * SVE is enabled and VQ is narrowed we are also allowed to zero 13994 * the now inaccessible portion of the registers. 13995 * 13996 * The intent of this is that no predicate bit beyond VQ is ever set. 13997 * Which means that some operations on predicate registers themselves 13998 * may operate on full uint64_t or even unrolled across the maximum 13999 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 14000 * may well be cheaper than conditionals to restrict the operation 14001 * to the relevant portion of a uint16_t[16]. 14002 */ 14003 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 14004 { 14005 int i, j; 14006 uint64_t pmask; 14007 14008 assert(vq >= 1 && vq <= ARM_MAX_VQ); 14009 assert(vq <= env_archcpu(env)->sve_max_vq); 14010 14011 /* Zap the high bits of the zregs. */ 14012 for (i = 0; i < 32; i++) { 14013 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 14014 } 14015 14016 /* Zap the high bits of the pregs and ffr. */ 14017 pmask = 0; 14018 if (vq & 3) { 14019 pmask = ~(-1ULL << (16 * (vq & 3))); 14020 } 14021 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 14022 for (i = 0; i < 17; ++i) { 14023 env->vfp.pregs[i].p[j] &= pmask; 14024 } 14025 pmask = 0; 14026 } 14027 } 14028 14029 /* 14030 * Notice a change in SVE vector size when changing EL. 14031 */ 14032 void aarch64_sve_change_el(CPUARMState *env, int old_el, 14033 int new_el, bool el0_a64) 14034 { 14035 ARMCPU *cpu = env_archcpu(env); 14036 int old_len, new_len; 14037 bool old_a64, new_a64; 14038 14039 /* Nothing to do if no SVE. */ 14040 if (!cpu_isar_feature(aa64_sve, cpu)) { 14041 return; 14042 } 14043 14044 /* Nothing to do if FP is disabled in either EL. */ 14045 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 14046 return; 14047 } 14048 14049 /* 14050 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 14051 * at ELx, or not available because the EL is in AArch32 state, then 14052 * for all purposes other than a direct read, the ZCR_ELx.LEN field 14053 * has an effective value of 0". 14054 * 14055 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 14056 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 14057 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 14058 * we already have the correct register contents when encountering the 14059 * vq0->vq0 transition between EL0->EL1. 14060 */ 14061 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 14062 old_len = (old_a64 && !sve_exception_el(env, old_el) 14063 ? sve_zcr_len_for_el(env, old_el) : 0); 14064 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 14065 new_len = (new_a64 && !sve_exception_el(env, new_el) 14066 ? sve_zcr_len_for_el(env, new_el) : 0); 14067 14068 /* When changing vector length, clear inaccessible state. */ 14069 if (new_len < old_len) { 14070 aarch64_sve_narrow_vq(env, new_len + 1); 14071 } 14072 } 14073 #endif 14074