1 #include "qemu/osdep.h" 2 #include "target/arm/idau.h" 3 #include "trace.h" 4 #include "cpu.h" 5 #include "internals.h" 6 #include "exec/gdbstub.h" 7 #include "exec/helper-proto.h" 8 #include "qemu/host-utils.h" 9 #include "sysemu/arch_init.h" 10 #include "sysemu/sysemu.h" 11 #include "qemu/bitops.h" 12 #include "qemu/crc32c.h" 13 #include "exec/exec-all.h" 14 #include "exec/cpu_ldst.h" 15 #include "arm_ldst.h" 16 #include <zlib.h> /* For crc32 */ 17 #include "exec/semihost.h" 18 #include "sysemu/kvm.h" 19 #include "fpu/softfloat.h" 20 21 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 22 23 #ifndef CONFIG_USER_ONLY 24 /* Cacheability and shareability attributes for a memory access */ 25 typedef struct ARMCacheAttrs { 26 unsigned int attrs:8; /* as in the MAIR register encoding */ 27 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 28 } ARMCacheAttrs; 29 30 static bool get_phys_addr(CPUARMState *env, target_ulong address, 31 MMUAccessType access_type, ARMMMUIdx mmu_idx, 32 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 33 target_ulong *page_size, 34 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 35 36 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 37 MMUAccessType access_type, ARMMMUIdx mmu_idx, 38 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 39 target_ulong *page_size_ptr, 40 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 41 42 /* Security attributes for an address, as returned by v8m_security_lookup. */ 43 typedef struct V8M_SAttributes { 44 bool ns; 45 bool nsc; 46 uint8_t sregion; 47 bool srvalid; 48 uint8_t iregion; 49 bool irvalid; 50 } V8M_SAttributes; 51 52 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 53 MMUAccessType access_type, ARMMMUIdx mmu_idx, 54 V8M_SAttributes *sattrs); 55 #endif 56 57 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 58 { 59 int nregs; 60 61 /* VFP data registers are always little-endian. */ 62 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 63 if (reg < nregs) { 64 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 65 return 8; 66 } 67 if (arm_feature(env, ARM_FEATURE_NEON)) { 68 /* Aliases for Q regs. */ 69 nregs += 16; 70 if (reg < nregs) { 71 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 72 stq_le_p(buf, q[0]); 73 stq_le_p(buf + 8, q[1]); 74 return 16; 75 } 76 } 77 switch (reg - nregs) { 78 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 79 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; 80 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 81 } 82 return 0; 83 } 84 85 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 86 { 87 int nregs; 88 89 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 90 if (reg < nregs) { 91 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 92 return 8; 93 } 94 if (arm_feature(env, ARM_FEATURE_NEON)) { 95 nregs += 16; 96 if (reg < nregs) { 97 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 98 q[0] = ldq_le_p(buf); 99 q[1] = ldq_le_p(buf + 8); 100 return 16; 101 } 102 } 103 switch (reg - nregs) { 104 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 105 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; 106 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 107 } 108 return 0; 109 } 110 111 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 112 { 113 switch (reg) { 114 case 0 ... 31: 115 /* 128 bit FP register */ 116 { 117 uint64_t *q = aa64_vfp_qreg(env, reg); 118 stq_le_p(buf, q[0]); 119 stq_le_p(buf + 8, q[1]); 120 return 16; 121 } 122 case 32: 123 /* FPSR */ 124 stl_p(buf, vfp_get_fpsr(env)); 125 return 4; 126 case 33: 127 /* FPCR */ 128 stl_p(buf, vfp_get_fpcr(env)); 129 return 4; 130 default: 131 return 0; 132 } 133 } 134 135 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 136 { 137 switch (reg) { 138 case 0 ... 31: 139 /* 128 bit FP register */ 140 { 141 uint64_t *q = aa64_vfp_qreg(env, reg); 142 q[0] = ldq_le_p(buf); 143 q[1] = ldq_le_p(buf + 8); 144 return 16; 145 } 146 case 32: 147 /* FPSR */ 148 vfp_set_fpsr(env, ldl_p(buf)); 149 return 4; 150 case 33: 151 /* FPCR */ 152 vfp_set_fpcr(env, ldl_p(buf)); 153 return 4; 154 default: 155 return 0; 156 } 157 } 158 159 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 160 { 161 assert(ri->fieldoffset); 162 if (cpreg_field_is_64bit(ri)) { 163 return CPREG_FIELD64(env, ri); 164 } else { 165 return CPREG_FIELD32(env, ri); 166 } 167 } 168 169 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 170 uint64_t value) 171 { 172 assert(ri->fieldoffset); 173 if (cpreg_field_is_64bit(ri)) { 174 CPREG_FIELD64(env, ri) = value; 175 } else { 176 CPREG_FIELD32(env, ri) = value; 177 } 178 } 179 180 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 181 { 182 return (char *)env + ri->fieldoffset; 183 } 184 185 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 186 { 187 /* Raw read of a coprocessor register (as needed for migration, etc). */ 188 if (ri->type & ARM_CP_CONST) { 189 return ri->resetvalue; 190 } else if (ri->raw_readfn) { 191 return ri->raw_readfn(env, ri); 192 } else if (ri->readfn) { 193 return ri->readfn(env, ri); 194 } else { 195 return raw_read(env, ri); 196 } 197 } 198 199 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 200 uint64_t v) 201 { 202 /* Raw write of a coprocessor register (as needed for migration, etc). 203 * Note that constant registers are treated as write-ignored; the 204 * caller should check for success by whether a readback gives the 205 * value written. 206 */ 207 if (ri->type & ARM_CP_CONST) { 208 return; 209 } else if (ri->raw_writefn) { 210 ri->raw_writefn(env, ri, v); 211 } else if (ri->writefn) { 212 ri->writefn(env, ri, v); 213 } else { 214 raw_write(env, ri, v); 215 } 216 } 217 218 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 219 { 220 /* Return true if the regdef would cause an assertion if you called 221 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 222 * program bug for it not to have the NO_RAW flag). 223 * NB that returning false here doesn't necessarily mean that calling 224 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 225 * read/write access functions which are safe for raw use" from "has 226 * read/write access functions which have side effects but has forgotten 227 * to provide raw access functions". 228 * The tests here line up with the conditions in read/write_raw_cp_reg() 229 * and assertions in raw_read()/raw_write(). 230 */ 231 if ((ri->type & ARM_CP_CONST) || 232 ri->fieldoffset || 233 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 234 return false; 235 } 236 return true; 237 } 238 239 bool write_cpustate_to_list(ARMCPU *cpu) 240 { 241 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 242 int i; 243 bool ok = true; 244 245 for (i = 0; i < cpu->cpreg_array_len; i++) { 246 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 247 const ARMCPRegInfo *ri; 248 249 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 250 if (!ri) { 251 ok = false; 252 continue; 253 } 254 if (ri->type & ARM_CP_NO_RAW) { 255 continue; 256 } 257 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); 258 } 259 return ok; 260 } 261 262 bool write_list_to_cpustate(ARMCPU *cpu) 263 { 264 int i; 265 bool ok = true; 266 267 for (i = 0; i < cpu->cpreg_array_len; i++) { 268 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 269 uint64_t v = cpu->cpreg_values[i]; 270 const ARMCPRegInfo *ri; 271 272 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 273 if (!ri) { 274 ok = false; 275 continue; 276 } 277 if (ri->type & ARM_CP_NO_RAW) { 278 continue; 279 } 280 /* Write value and confirm it reads back as written 281 * (to catch read-only registers and partially read-only 282 * registers where the incoming migration value doesn't match) 283 */ 284 write_raw_cp_reg(&cpu->env, ri, v); 285 if (read_raw_cp_reg(&cpu->env, ri) != v) { 286 ok = false; 287 } 288 } 289 return ok; 290 } 291 292 static void add_cpreg_to_list(gpointer key, gpointer opaque) 293 { 294 ARMCPU *cpu = opaque; 295 uint64_t regidx; 296 const ARMCPRegInfo *ri; 297 298 regidx = *(uint32_t *)key; 299 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 300 301 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 302 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 303 /* The value array need not be initialized at this point */ 304 cpu->cpreg_array_len++; 305 } 306 } 307 308 static void count_cpreg(gpointer key, gpointer opaque) 309 { 310 ARMCPU *cpu = opaque; 311 uint64_t regidx; 312 const ARMCPRegInfo *ri; 313 314 regidx = *(uint32_t *)key; 315 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 316 317 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 318 cpu->cpreg_array_len++; 319 } 320 } 321 322 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 323 { 324 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 325 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 326 327 if (aidx > bidx) { 328 return 1; 329 } 330 if (aidx < bidx) { 331 return -1; 332 } 333 return 0; 334 } 335 336 void init_cpreg_list(ARMCPU *cpu) 337 { 338 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 339 * Note that we require cpreg_tuples[] to be sorted by key ID. 340 */ 341 GList *keys; 342 int arraylen; 343 344 keys = g_hash_table_get_keys(cpu->cp_regs); 345 keys = g_list_sort(keys, cpreg_key_compare); 346 347 cpu->cpreg_array_len = 0; 348 349 g_list_foreach(keys, count_cpreg, cpu); 350 351 arraylen = cpu->cpreg_array_len; 352 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 353 cpu->cpreg_values = g_new(uint64_t, arraylen); 354 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 355 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 356 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 357 cpu->cpreg_array_len = 0; 358 359 g_list_foreach(keys, add_cpreg_to_list, cpu); 360 361 assert(cpu->cpreg_array_len == arraylen); 362 363 g_list_free(keys); 364 } 365 366 /* 367 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 368 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 369 * 370 * access_el3_aa32ns: Used to check AArch32 register views. 371 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 372 */ 373 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 374 const ARMCPRegInfo *ri, 375 bool isread) 376 { 377 bool secure = arm_is_secure_below_el3(env); 378 379 assert(!arm_el_is_aa64(env, 3)); 380 if (secure) { 381 return CP_ACCESS_TRAP_UNCATEGORIZED; 382 } 383 return CP_ACCESS_OK; 384 } 385 386 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 387 const ARMCPRegInfo *ri, 388 bool isread) 389 { 390 if (!arm_el_is_aa64(env, 3)) { 391 return access_el3_aa32ns(env, ri, isread); 392 } 393 return CP_ACCESS_OK; 394 } 395 396 /* Some secure-only AArch32 registers trap to EL3 if used from 397 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 398 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 399 * We assume that the .access field is set to PL1_RW. 400 */ 401 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 402 const ARMCPRegInfo *ri, 403 bool isread) 404 { 405 if (arm_current_el(env) == 3) { 406 return CP_ACCESS_OK; 407 } 408 if (arm_is_secure_below_el3(env)) { 409 return CP_ACCESS_TRAP_EL3; 410 } 411 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 412 return CP_ACCESS_TRAP_UNCATEGORIZED; 413 } 414 415 /* Check for traps to "powerdown debug" registers, which are controlled 416 * by MDCR.TDOSA 417 */ 418 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 419 bool isread) 420 { 421 int el = arm_current_el(env); 422 423 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA) 424 && !arm_is_secure_below_el3(env)) { 425 return CP_ACCESS_TRAP_EL2; 426 } 427 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 428 return CP_ACCESS_TRAP_EL3; 429 } 430 return CP_ACCESS_OK; 431 } 432 433 /* Check for traps to "debug ROM" registers, which are controlled 434 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 435 */ 436 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 437 bool isread) 438 { 439 int el = arm_current_el(env); 440 441 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA) 442 && !arm_is_secure_below_el3(env)) { 443 return CP_ACCESS_TRAP_EL2; 444 } 445 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 446 return CP_ACCESS_TRAP_EL3; 447 } 448 return CP_ACCESS_OK; 449 } 450 451 /* Check for traps to general debug registers, which are controlled 452 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 453 */ 454 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 455 bool isread) 456 { 457 int el = arm_current_el(env); 458 459 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA) 460 && !arm_is_secure_below_el3(env)) { 461 return CP_ACCESS_TRAP_EL2; 462 } 463 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 464 return CP_ACCESS_TRAP_EL3; 465 } 466 return CP_ACCESS_OK; 467 } 468 469 /* Check for traps to performance monitor registers, which are controlled 470 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 471 */ 472 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 473 bool isread) 474 { 475 int el = arm_current_el(env); 476 477 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 478 && !arm_is_secure_below_el3(env)) { 479 return CP_ACCESS_TRAP_EL2; 480 } 481 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 482 return CP_ACCESS_TRAP_EL3; 483 } 484 return CP_ACCESS_OK; 485 } 486 487 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 488 { 489 ARMCPU *cpu = arm_env_get_cpu(env); 490 491 raw_write(env, ri, value); 492 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 493 } 494 495 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 496 { 497 ARMCPU *cpu = arm_env_get_cpu(env); 498 499 if (raw_read(env, ri) != value) { 500 /* Unlike real hardware the qemu TLB uses virtual addresses, 501 * not modified virtual addresses, so this causes a TLB flush. 502 */ 503 tlb_flush(CPU(cpu)); 504 raw_write(env, ri, value); 505 } 506 } 507 508 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 509 uint64_t value) 510 { 511 ARMCPU *cpu = arm_env_get_cpu(env); 512 513 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 514 && !extended_addresses_enabled(env)) { 515 /* For VMSA (when not using the LPAE long descriptor page table 516 * format) this register includes the ASID, so do a TLB flush. 517 * For PMSA it is purely a process ID and no action is needed. 518 */ 519 tlb_flush(CPU(cpu)); 520 } 521 raw_write(env, ri, value); 522 } 523 524 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 525 uint64_t value) 526 { 527 /* Invalidate all (TLBIALL) */ 528 ARMCPU *cpu = arm_env_get_cpu(env); 529 530 tlb_flush(CPU(cpu)); 531 } 532 533 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 534 uint64_t value) 535 { 536 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 537 ARMCPU *cpu = arm_env_get_cpu(env); 538 539 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 540 } 541 542 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 543 uint64_t value) 544 { 545 /* Invalidate by ASID (TLBIASID) */ 546 ARMCPU *cpu = arm_env_get_cpu(env); 547 548 tlb_flush(CPU(cpu)); 549 } 550 551 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 552 uint64_t value) 553 { 554 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 555 ARMCPU *cpu = arm_env_get_cpu(env); 556 557 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 558 } 559 560 /* IS variants of TLB operations must affect all cores */ 561 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 562 uint64_t value) 563 { 564 CPUState *cs = ENV_GET_CPU(env); 565 566 tlb_flush_all_cpus_synced(cs); 567 } 568 569 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 570 uint64_t value) 571 { 572 CPUState *cs = ENV_GET_CPU(env); 573 574 tlb_flush_all_cpus_synced(cs); 575 } 576 577 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 578 uint64_t value) 579 { 580 CPUState *cs = ENV_GET_CPU(env); 581 582 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 583 } 584 585 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 586 uint64_t value) 587 { 588 CPUState *cs = ENV_GET_CPU(env); 589 590 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 591 } 592 593 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 594 uint64_t value) 595 { 596 CPUState *cs = ENV_GET_CPU(env); 597 598 tlb_flush_by_mmuidx(cs, 599 ARMMMUIdxBit_S12NSE1 | 600 ARMMMUIdxBit_S12NSE0 | 601 ARMMMUIdxBit_S2NS); 602 } 603 604 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 605 uint64_t value) 606 { 607 CPUState *cs = ENV_GET_CPU(env); 608 609 tlb_flush_by_mmuidx_all_cpus_synced(cs, 610 ARMMMUIdxBit_S12NSE1 | 611 ARMMMUIdxBit_S12NSE0 | 612 ARMMMUIdxBit_S2NS); 613 } 614 615 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 616 uint64_t value) 617 { 618 /* Invalidate by IPA. This has to invalidate any structures that 619 * contain only stage 2 translation information, but does not need 620 * to apply to structures that contain combined stage 1 and stage 2 621 * translation information. 622 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 623 */ 624 CPUState *cs = ENV_GET_CPU(env); 625 uint64_t pageaddr; 626 627 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 628 return; 629 } 630 631 pageaddr = sextract64(value << 12, 0, 40); 632 633 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 634 } 635 636 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 637 uint64_t value) 638 { 639 CPUState *cs = ENV_GET_CPU(env); 640 uint64_t pageaddr; 641 642 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 643 return; 644 } 645 646 pageaddr = sextract64(value << 12, 0, 40); 647 648 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 649 ARMMMUIdxBit_S2NS); 650 } 651 652 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 653 uint64_t value) 654 { 655 CPUState *cs = ENV_GET_CPU(env); 656 657 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 658 } 659 660 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 661 uint64_t value) 662 { 663 CPUState *cs = ENV_GET_CPU(env); 664 665 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 666 } 667 668 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 669 uint64_t value) 670 { 671 CPUState *cs = ENV_GET_CPU(env); 672 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 673 674 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 675 } 676 677 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 678 uint64_t value) 679 { 680 CPUState *cs = ENV_GET_CPU(env); 681 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 682 683 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 684 ARMMMUIdxBit_S1E2); 685 } 686 687 static const ARMCPRegInfo cp_reginfo[] = { 688 /* Define the secure and non-secure FCSE identifier CP registers 689 * separately because there is no secure bank in V8 (no _EL3). This allows 690 * the secure register to be properly reset and migrated. There is also no 691 * v8 EL1 version of the register so the non-secure instance stands alone. 692 */ 693 { .name = "FCSEIDR(NS)", 694 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 695 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 696 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 697 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 698 { .name = "FCSEIDR(S)", 699 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 700 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 701 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 702 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 703 /* Define the secure and non-secure context identifier CP registers 704 * separately because there is no secure bank in V8 (no _EL3). This allows 705 * the secure register to be properly reset and migrated. In the 706 * non-secure case, the 32-bit register will have reset and migration 707 * disabled during registration as it is handled by the 64-bit instance. 708 */ 709 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 710 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 711 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 712 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 713 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 714 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, 715 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 716 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 717 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 718 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 719 REGINFO_SENTINEL 720 }; 721 722 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 723 /* NB: Some of these registers exist in v8 but with more precise 724 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 725 */ 726 /* MMU Domain access control / MPU write buffer control */ 727 { .name = "DACR", 728 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 729 .access = PL1_RW, .resetvalue = 0, 730 .writefn = dacr_write, .raw_writefn = raw_write, 731 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 732 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 733 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 734 * For v6 and v5, these mappings are overly broad. 735 */ 736 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 737 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 738 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 739 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 740 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 741 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 742 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 743 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 744 /* Cache maintenance ops; some of this space may be overridden later. */ 745 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 746 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 747 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 748 REGINFO_SENTINEL 749 }; 750 751 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 752 /* Not all pre-v6 cores implemented this WFI, so this is slightly 753 * over-broad. 754 */ 755 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 756 .access = PL1_W, .type = ARM_CP_WFI }, 757 REGINFO_SENTINEL 758 }; 759 760 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 761 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 762 * is UNPREDICTABLE; we choose to NOP as most implementations do). 763 */ 764 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 765 .access = PL1_W, .type = ARM_CP_WFI }, 766 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 767 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 768 * OMAPCP will override this space. 769 */ 770 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 771 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 772 .resetvalue = 0 }, 773 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 774 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 775 .resetvalue = 0 }, 776 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 777 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 778 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 779 .resetvalue = 0 }, 780 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 781 * implementing it as RAZ means the "debug architecture version" bits 782 * will read as a reserved value, which should cause Linux to not try 783 * to use the debug hardware. 784 */ 785 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 786 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 787 /* MMU TLB control. Note that the wildcarding means we cover not just 788 * the unified TLB ops but also the dside/iside/inner-shareable variants. 789 */ 790 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 791 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 792 .type = ARM_CP_NO_RAW }, 793 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 794 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 795 .type = ARM_CP_NO_RAW }, 796 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 797 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 798 .type = ARM_CP_NO_RAW }, 799 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 800 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 801 .type = ARM_CP_NO_RAW }, 802 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 803 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 804 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 805 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 806 REGINFO_SENTINEL 807 }; 808 809 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 810 uint64_t value) 811 { 812 uint32_t mask = 0; 813 814 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 815 if (!arm_feature(env, ARM_FEATURE_V8)) { 816 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 817 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 818 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 819 */ 820 if (arm_feature(env, ARM_FEATURE_VFP)) { 821 /* VFP coprocessor: cp10 & cp11 [23:20] */ 822 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 823 824 if (!arm_feature(env, ARM_FEATURE_NEON)) { 825 /* ASEDIS [31] bit is RAO/WI */ 826 value |= (1 << 31); 827 } 828 829 /* VFPv3 and upwards with NEON implement 32 double precision 830 * registers (D0-D31). 831 */ 832 if (!arm_feature(env, ARM_FEATURE_NEON) || 833 !arm_feature(env, ARM_FEATURE_VFP3)) { 834 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 835 value |= (1 << 30); 836 } 837 } 838 value &= mask; 839 } 840 env->cp15.cpacr_el1 = value; 841 } 842 843 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 844 bool isread) 845 { 846 if (arm_feature(env, ARM_FEATURE_V8)) { 847 /* Check if CPACR accesses are to be trapped to EL2 */ 848 if (arm_current_el(env) == 1 && 849 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 850 return CP_ACCESS_TRAP_EL2; 851 /* Check if CPACR accesses are to be trapped to EL3 */ 852 } else if (arm_current_el(env) < 3 && 853 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 854 return CP_ACCESS_TRAP_EL3; 855 } 856 } 857 858 return CP_ACCESS_OK; 859 } 860 861 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 862 bool isread) 863 { 864 /* Check if CPTR accesses are set to trap to EL3 */ 865 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 866 return CP_ACCESS_TRAP_EL3; 867 } 868 869 return CP_ACCESS_OK; 870 } 871 872 static const ARMCPRegInfo v6_cp_reginfo[] = { 873 /* prefetch by MVA in v6, NOP in v7 */ 874 { .name = "MVA_prefetch", 875 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 876 .access = PL1_W, .type = ARM_CP_NOP }, 877 /* We need to break the TB after ISB to execute self-modifying code 878 * correctly and also to take any pending interrupts immediately. 879 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 880 */ 881 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 882 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 883 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 884 .access = PL0_W, .type = ARM_CP_NOP }, 885 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 886 .access = PL0_W, .type = ARM_CP_NOP }, 887 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 888 .access = PL1_RW, 889 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 890 offsetof(CPUARMState, cp15.ifar_ns) }, 891 .resetvalue = 0, }, 892 /* Watchpoint Fault Address Register : should actually only be present 893 * for 1136, 1176, 11MPCore. 894 */ 895 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 896 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 897 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 898 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 899 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 900 .resetvalue = 0, .writefn = cpacr_write }, 901 REGINFO_SENTINEL 902 }; 903 904 /* Definitions for the PMU registers */ 905 #define PMCRN_MASK 0xf800 906 #define PMCRN_SHIFT 11 907 #define PMCRD 0x8 908 #define PMCRC 0x4 909 #define PMCRE 0x1 910 911 static inline uint32_t pmu_num_counters(CPUARMState *env) 912 { 913 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 914 } 915 916 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 917 static inline uint64_t pmu_counter_mask(CPUARMState *env) 918 { 919 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 920 } 921 922 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 923 bool isread) 924 { 925 /* Performance monitor registers user accessibility is controlled 926 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 927 * trapping to EL2 or EL3 for other accesses. 928 */ 929 int el = arm_current_el(env); 930 931 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 932 return CP_ACCESS_TRAP; 933 } 934 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 935 && !arm_is_secure_below_el3(env)) { 936 return CP_ACCESS_TRAP_EL2; 937 } 938 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 939 return CP_ACCESS_TRAP_EL3; 940 } 941 942 return CP_ACCESS_OK; 943 } 944 945 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 946 const ARMCPRegInfo *ri, 947 bool isread) 948 { 949 /* ER: event counter read trap control */ 950 if (arm_feature(env, ARM_FEATURE_V8) 951 && arm_current_el(env) == 0 952 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 953 && isread) { 954 return CP_ACCESS_OK; 955 } 956 957 return pmreg_access(env, ri, isread); 958 } 959 960 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 961 const ARMCPRegInfo *ri, 962 bool isread) 963 { 964 /* SW: software increment write trap control */ 965 if (arm_feature(env, ARM_FEATURE_V8) 966 && arm_current_el(env) == 0 967 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 968 && !isread) { 969 return CP_ACCESS_OK; 970 } 971 972 return pmreg_access(env, ri, isread); 973 } 974 975 #ifndef CONFIG_USER_ONLY 976 977 static CPAccessResult pmreg_access_selr(CPUARMState *env, 978 const ARMCPRegInfo *ri, 979 bool isread) 980 { 981 /* ER: event counter read trap control */ 982 if (arm_feature(env, ARM_FEATURE_V8) 983 && arm_current_el(env) == 0 984 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 985 return CP_ACCESS_OK; 986 } 987 988 return pmreg_access(env, ri, isread); 989 } 990 991 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 992 const ARMCPRegInfo *ri, 993 bool isread) 994 { 995 /* CR: cycle counter read trap control */ 996 if (arm_feature(env, ARM_FEATURE_V8) 997 && arm_current_el(env) == 0 998 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 999 && isread) { 1000 return CP_ACCESS_OK; 1001 } 1002 1003 return pmreg_access(env, ri, isread); 1004 } 1005 1006 static inline bool arm_ccnt_enabled(CPUARMState *env) 1007 { 1008 /* This does not support checking PMCCFILTR_EL0 register */ 1009 1010 if (!(env->cp15.c9_pmcr & PMCRE) || !(env->cp15.c9_pmcnten & (1 << 31))) { 1011 return false; 1012 } 1013 1014 return true; 1015 } 1016 1017 void pmccntr_sync(CPUARMState *env) 1018 { 1019 uint64_t temp_ticks; 1020 1021 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1022 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1023 1024 if (env->cp15.c9_pmcr & PMCRD) { 1025 /* Increment once every 64 processor clock cycles */ 1026 temp_ticks /= 64; 1027 } 1028 1029 if (arm_ccnt_enabled(env)) { 1030 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; 1031 } 1032 } 1033 1034 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1035 uint64_t value) 1036 { 1037 pmccntr_sync(env); 1038 1039 if (value & PMCRC) { 1040 /* The counter has been reset */ 1041 env->cp15.c15_ccnt = 0; 1042 } 1043 1044 /* only the DP, X, D and E bits are writable */ 1045 env->cp15.c9_pmcr &= ~0x39; 1046 env->cp15.c9_pmcr |= (value & 0x39); 1047 1048 pmccntr_sync(env); 1049 } 1050 1051 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1052 { 1053 uint64_t total_ticks; 1054 1055 if (!arm_ccnt_enabled(env)) { 1056 /* Counter is disabled, do not change value */ 1057 return env->cp15.c15_ccnt; 1058 } 1059 1060 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1061 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1062 1063 if (env->cp15.c9_pmcr & PMCRD) { 1064 /* Increment once every 64 processor clock cycles */ 1065 total_ticks /= 64; 1066 } 1067 return total_ticks - env->cp15.c15_ccnt; 1068 } 1069 1070 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1071 uint64_t value) 1072 { 1073 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1074 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1075 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1076 * accessed. 1077 */ 1078 env->cp15.c9_pmselr = value & 0x1f; 1079 } 1080 1081 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1082 uint64_t value) 1083 { 1084 uint64_t total_ticks; 1085 1086 if (!arm_ccnt_enabled(env)) { 1087 /* Counter is disabled, set the absolute value */ 1088 env->cp15.c15_ccnt = value; 1089 return; 1090 } 1091 1092 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1093 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1094 1095 if (env->cp15.c9_pmcr & PMCRD) { 1096 /* Increment once every 64 processor clock cycles */ 1097 total_ticks /= 64; 1098 } 1099 env->cp15.c15_ccnt = total_ticks - value; 1100 } 1101 1102 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1103 uint64_t value) 1104 { 1105 uint64_t cur_val = pmccntr_read(env, NULL); 1106 1107 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1108 } 1109 1110 #else /* CONFIG_USER_ONLY */ 1111 1112 void pmccntr_sync(CPUARMState *env) 1113 { 1114 } 1115 1116 #endif 1117 1118 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1119 uint64_t value) 1120 { 1121 pmccntr_sync(env); 1122 env->cp15.pmccfiltr_el0 = value & 0x7E000000; 1123 pmccntr_sync(env); 1124 } 1125 1126 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1127 uint64_t value) 1128 { 1129 value &= pmu_counter_mask(env); 1130 env->cp15.c9_pmcnten |= value; 1131 } 1132 1133 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1134 uint64_t value) 1135 { 1136 value &= pmu_counter_mask(env); 1137 env->cp15.c9_pmcnten &= ~value; 1138 } 1139 1140 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1141 uint64_t value) 1142 { 1143 env->cp15.c9_pmovsr &= ~value; 1144 } 1145 1146 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1147 uint64_t value) 1148 { 1149 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1150 * PMSELR value is equal to or greater than the number of implemented 1151 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1152 */ 1153 if (env->cp15.c9_pmselr == 0x1f) { 1154 pmccfiltr_write(env, ri, value); 1155 } 1156 } 1157 1158 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1159 { 1160 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1161 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write(). 1162 */ 1163 if (env->cp15.c9_pmselr == 0x1f) { 1164 return env->cp15.pmccfiltr_el0; 1165 } else { 1166 return 0; 1167 } 1168 } 1169 1170 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1171 uint64_t value) 1172 { 1173 if (arm_feature(env, ARM_FEATURE_V8)) { 1174 env->cp15.c9_pmuserenr = value & 0xf; 1175 } else { 1176 env->cp15.c9_pmuserenr = value & 1; 1177 } 1178 } 1179 1180 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1181 uint64_t value) 1182 { 1183 /* We have no event counters so only the C bit can be changed */ 1184 value &= pmu_counter_mask(env); 1185 env->cp15.c9_pminten |= value; 1186 } 1187 1188 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1189 uint64_t value) 1190 { 1191 value &= pmu_counter_mask(env); 1192 env->cp15.c9_pminten &= ~value; 1193 } 1194 1195 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1196 uint64_t value) 1197 { 1198 /* Note that even though the AArch64 view of this register has bits 1199 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1200 * architectural requirements for bits which are RES0 only in some 1201 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1202 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1203 */ 1204 raw_write(env, ri, value & ~0x1FULL); 1205 } 1206 1207 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1208 { 1209 /* We only mask off bits that are RES0 both for AArch64 and AArch32. 1210 * For bits that vary between AArch32/64, code needs to check the 1211 * current execution mode before directly using the feature bit. 1212 */ 1213 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; 1214 1215 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1216 valid_mask &= ~SCR_HCE; 1217 1218 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1219 * supported if EL2 exists. The bit is UNK/SBZP when 1220 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1221 * when EL2 is unavailable. 1222 * On ARMv8, this bit is always available. 1223 */ 1224 if (arm_feature(env, ARM_FEATURE_V7) && 1225 !arm_feature(env, ARM_FEATURE_V8)) { 1226 valid_mask &= ~SCR_SMD; 1227 } 1228 } 1229 1230 /* Clear all-context RES0 bits. */ 1231 value &= valid_mask; 1232 raw_write(env, ri, value); 1233 } 1234 1235 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1236 { 1237 ARMCPU *cpu = arm_env_get_cpu(env); 1238 1239 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1240 * bank 1241 */ 1242 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1243 ri->secure & ARM_CP_SECSTATE_S); 1244 1245 return cpu->ccsidr[index]; 1246 } 1247 1248 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1249 uint64_t value) 1250 { 1251 raw_write(env, ri, value & 0xf); 1252 } 1253 1254 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1255 { 1256 CPUState *cs = ENV_GET_CPU(env); 1257 uint64_t ret = 0; 1258 1259 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1260 ret |= CPSR_I; 1261 } 1262 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1263 ret |= CPSR_F; 1264 } 1265 /* External aborts are not possible in QEMU so A bit is always clear */ 1266 return ret; 1267 } 1268 1269 static const ARMCPRegInfo v7_cp_reginfo[] = { 1270 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1271 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1272 .access = PL1_W, .type = ARM_CP_NOP }, 1273 /* Performance monitors are implementation defined in v7, 1274 * but with an ARM recommended set of registers, which we 1275 * follow (although we don't actually implement any counters) 1276 * 1277 * Performance registers fall into three categories: 1278 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1279 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1280 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1281 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1282 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1283 */ 1284 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1285 .access = PL0_RW, .type = ARM_CP_ALIAS, 1286 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1287 .writefn = pmcntenset_write, 1288 .accessfn = pmreg_access, 1289 .raw_writefn = raw_write }, 1290 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1291 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1292 .access = PL0_RW, .accessfn = pmreg_access, 1293 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1294 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1295 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1296 .access = PL0_RW, 1297 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1298 .accessfn = pmreg_access, 1299 .writefn = pmcntenclr_write, 1300 .type = ARM_CP_ALIAS }, 1301 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1302 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1303 .access = PL0_RW, .accessfn = pmreg_access, 1304 .type = ARM_CP_ALIAS, 1305 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1306 .writefn = pmcntenclr_write }, 1307 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1308 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1309 .accessfn = pmreg_access, 1310 .writefn = pmovsr_write, 1311 .raw_writefn = raw_write }, 1312 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1313 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1314 .access = PL0_RW, .accessfn = pmreg_access, 1315 .type = ARM_CP_ALIAS, 1316 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1317 .writefn = pmovsr_write, 1318 .raw_writefn = raw_write }, 1319 /* Unimplemented so WI. */ 1320 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1321 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP }, 1322 #ifndef CONFIG_USER_ONLY 1323 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1324 .access = PL0_RW, .type = ARM_CP_ALIAS, 1325 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1326 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1327 .raw_writefn = raw_write}, 1328 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1329 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1330 .access = PL0_RW, .accessfn = pmreg_access_selr, 1331 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1332 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1333 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1334 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1335 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1336 .accessfn = pmreg_access_ccntr }, 1337 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1338 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1339 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1340 .type = ARM_CP_IO, 1341 .readfn = pmccntr_read, .writefn = pmccntr_write, }, 1342 #endif 1343 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1344 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1345 .writefn = pmccfiltr_write, 1346 .access = PL0_RW, .accessfn = pmreg_access, 1347 .type = ARM_CP_IO, 1348 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1349 .resetvalue = 0, }, 1350 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1351 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1352 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1353 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1354 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1355 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1356 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1357 /* Unimplemented, RAZ/WI. */ 1358 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1359 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, 1360 .accessfn = pmreg_access_xevcntr }, 1361 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1362 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1363 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1364 .resetvalue = 0, 1365 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1366 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 1367 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 1368 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1369 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1370 .resetvalue = 0, 1371 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1372 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 1373 .access = PL1_RW, .accessfn = access_tpm, 1374 .type = ARM_CP_ALIAS, 1375 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 1376 .resetvalue = 0, 1377 .writefn = pmintenset_write, .raw_writefn = raw_write }, 1378 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 1379 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 1380 .access = PL1_RW, .accessfn = access_tpm, 1381 .type = ARM_CP_IO, 1382 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1383 .writefn = pmintenset_write, .raw_writefn = raw_write, 1384 .resetvalue = 0x0 }, 1385 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 1386 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1387 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1388 .writefn = pmintenclr_write, }, 1389 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 1390 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 1391 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1392 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1393 .writefn = pmintenclr_write }, 1394 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 1395 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 1396 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 1397 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 1398 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 1399 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 1400 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 1401 offsetof(CPUARMState, cp15.csselr_ns) } }, 1402 /* Auxiliary ID register: this actually has an IMPDEF value but for now 1403 * just RAZ for all cores: 1404 */ 1405 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 1406 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 1407 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 1408 /* Auxiliary fault status registers: these also are IMPDEF, and we 1409 * choose to RAZ/WI for all cores. 1410 */ 1411 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 1412 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 1413 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1414 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 1415 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 1416 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1417 /* MAIR can just read-as-written because we don't implement caches 1418 * and so don't need to care about memory attributes. 1419 */ 1420 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 1421 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 1422 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 1423 .resetvalue = 0 }, 1424 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 1425 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 1426 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 1427 .resetvalue = 0 }, 1428 /* For non-long-descriptor page tables these are PRRR and NMRR; 1429 * regardless they still act as reads-as-written for QEMU. 1430 */ 1431 /* MAIR0/1 are defined separately from their 64-bit counterpart which 1432 * allows them to assign the correct fieldoffset based on the endianness 1433 * handled in the field definitions. 1434 */ 1435 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 1436 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 1437 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 1438 offsetof(CPUARMState, cp15.mair0_ns) }, 1439 .resetfn = arm_cp_reset_ignore }, 1440 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 1441 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 1442 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 1443 offsetof(CPUARMState, cp15.mair1_ns) }, 1444 .resetfn = arm_cp_reset_ignore }, 1445 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 1446 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 1447 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 1448 /* 32 bit ITLB invalidates */ 1449 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 1450 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1451 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 1452 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1453 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 1454 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1455 /* 32 bit DTLB invalidates */ 1456 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 1457 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1458 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 1459 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1460 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 1461 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1462 /* 32 bit TLB invalidates */ 1463 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 1464 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1465 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 1466 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1467 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 1468 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1469 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 1470 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 1471 REGINFO_SENTINEL 1472 }; 1473 1474 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 1475 /* 32 bit TLB invalidates, Inner Shareable */ 1476 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 1477 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 1478 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 1479 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 1480 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 1481 .type = ARM_CP_NO_RAW, .access = PL1_W, 1482 .writefn = tlbiasid_is_write }, 1483 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 1484 .type = ARM_CP_NO_RAW, .access = PL1_W, 1485 .writefn = tlbimvaa_is_write }, 1486 REGINFO_SENTINEL 1487 }; 1488 1489 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1490 uint64_t value) 1491 { 1492 value &= 1; 1493 env->teecr = value; 1494 } 1495 1496 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1497 bool isread) 1498 { 1499 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 1500 return CP_ACCESS_TRAP; 1501 } 1502 return CP_ACCESS_OK; 1503 } 1504 1505 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 1506 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 1507 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 1508 .resetvalue = 0, 1509 .writefn = teecr_write }, 1510 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 1511 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 1512 .accessfn = teehbr_access, .resetvalue = 0 }, 1513 REGINFO_SENTINEL 1514 }; 1515 1516 static const ARMCPRegInfo v6k_cp_reginfo[] = { 1517 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 1518 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 1519 .access = PL0_RW, 1520 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 1521 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 1522 .access = PL0_RW, 1523 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 1524 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 1525 .resetfn = arm_cp_reset_ignore }, 1526 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 1527 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 1528 .access = PL0_R|PL1_W, 1529 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 1530 .resetvalue = 0}, 1531 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 1532 .access = PL0_R|PL1_W, 1533 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 1534 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 1535 .resetfn = arm_cp_reset_ignore }, 1536 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 1537 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 1538 .access = PL1_RW, 1539 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 1540 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 1541 .access = PL1_RW, 1542 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 1543 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 1544 .resetvalue = 0 }, 1545 REGINFO_SENTINEL 1546 }; 1547 1548 #ifndef CONFIG_USER_ONLY 1549 1550 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 1551 bool isread) 1552 { 1553 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 1554 * Writable only at the highest implemented exception level. 1555 */ 1556 int el = arm_current_el(env); 1557 1558 switch (el) { 1559 case 0: 1560 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 1561 return CP_ACCESS_TRAP; 1562 } 1563 break; 1564 case 1: 1565 if (!isread && ri->state == ARM_CP_STATE_AA32 && 1566 arm_is_secure_below_el3(env)) { 1567 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 1568 return CP_ACCESS_TRAP_UNCATEGORIZED; 1569 } 1570 break; 1571 case 2: 1572 case 3: 1573 break; 1574 } 1575 1576 if (!isread && el < arm_highest_el(env)) { 1577 return CP_ACCESS_TRAP_UNCATEGORIZED; 1578 } 1579 1580 return CP_ACCESS_OK; 1581 } 1582 1583 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 1584 bool isread) 1585 { 1586 unsigned int cur_el = arm_current_el(env); 1587 bool secure = arm_is_secure(env); 1588 1589 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 1590 if (cur_el == 0 && 1591 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 1592 return CP_ACCESS_TRAP; 1593 } 1594 1595 if (arm_feature(env, ARM_FEATURE_EL2) && 1596 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1597 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 1598 return CP_ACCESS_TRAP_EL2; 1599 } 1600 return CP_ACCESS_OK; 1601 } 1602 1603 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 1604 bool isread) 1605 { 1606 unsigned int cur_el = arm_current_el(env); 1607 bool secure = arm_is_secure(env); 1608 1609 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 1610 * EL0[PV]TEN is zero. 1611 */ 1612 if (cur_el == 0 && 1613 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 1614 return CP_ACCESS_TRAP; 1615 } 1616 1617 if (arm_feature(env, ARM_FEATURE_EL2) && 1618 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1619 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 1620 return CP_ACCESS_TRAP_EL2; 1621 } 1622 return CP_ACCESS_OK; 1623 } 1624 1625 static CPAccessResult gt_pct_access(CPUARMState *env, 1626 const ARMCPRegInfo *ri, 1627 bool isread) 1628 { 1629 return gt_counter_access(env, GTIMER_PHYS, isread); 1630 } 1631 1632 static CPAccessResult gt_vct_access(CPUARMState *env, 1633 const ARMCPRegInfo *ri, 1634 bool isread) 1635 { 1636 return gt_counter_access(env, GTIMER_VIRT, isread); 1637 } 1638 1639 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1640 bool isread) 1641 { 1642 return gt_timer_access(env, GTIMER_PHYS, isread); 1643 } 1644 1645 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1646 bool isread) 1647 { 1648 return gt_timer_access(env, GTIMER_VIRT, isread); 1649 } 1650 1651 static CPAccessResult gt_stimer_access(CPUARMState *env, 1652 const ARMCPRegInfo *ri, 1653 bool isread) 1654 { 1655 /* The AArch64 register view of the secure physical timer is 1656 * always accessible from EL3, and configurably accessible from 1657 * Secure EL1. 1658 */ 1659 switch (arm_current_el(env)) { 1660 case 1: 1661 if (!arm_is_secure(env)) { 1662 return CP_ACCESS_TRAP; 1663 } 1664 if (!(env->cp15.scr_el3 & SCR_ST)) { 1665 return CP_ACCESS_TRAP_EL3; 1666 } 1667 return CP_ACCESS_OK; 1668 case 0: 1669 case 2: 1670 return CP_ACCESS_TRAP; 1671 case 3: 1672 return CP_ACCESS_OK; 1673 default: 1674 g_assert_not_reached(); 1675 } 1676 } 1677 1678 static uint64_t gt_get_countervalue(CPUARMState *env) 1679 { 1680 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 1681 } 1682 1683 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 1684 { 1685 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 1686 1687 if (gt->ctl & 1) { 1688 /* Timer enabled: calculate and set current ISTATUS, irq, and 1689 * reset timer to when ISTATUS next has to change 1690 */ 1691 uint64_t offset = timeridx == GTIMER_VIRT ? 1692 cpu->env.cp15.cntvoff_el2 : 0; 1693 uint64_t count = gt_get_countervalue(&cpu->env); 1694 /* Note that this must be unsigned 64 bit arithmetic: */ 1695 int istatus = count - offset >= gt->cval; 1696 uint64_t nexttick; 1697 int irqstate; 1698 1699 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 1700 1701 irqstate = (istatus && !(gt->ctl & 2)); 1702 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1703 1704 if (istatus) { 1705 /* Next transition is when count rolls back over to zero */ 1706 nexttick = UINT64_MAX; 1707 } else { 1708 /* Next transition is when we hit cval */ 1709 nexttick = gt->cval + offset; 1710 } 1711 /* Note that the desired next expiry time might be beyond the 1712 * signed-64-bit range of a QEMUTimer -- in this case we just 1713 * set the timer for as far in the future as possible. When the 1714 * timer expires we will reset the timer for any remaining period. 1715 */ 1716 if (nexttick > INT64_MAX / GTIMER_SCALE) { 1717 nexttick = INT64_MAX / GTIMER_SCALE; 1718 } 1719 timer_mod(cpu->gt_timer[timeridx], nexttick); 1720 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 1721 } else { 1722 /* Timer disabled: ISTATUS and timer output always clear */ 1723 gt->ctl &= ~4; 1724 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 1725 timer_del(cpu->gt_timer[timeridx]); 1726 trace_arm_gt_recalc_disabled(timeridx); 1727 } 1728 } 1729 1730 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 1731 int timeridx) 1732 { 1733 ARMCPU *cpu = arm_env_get_cpu(env); 1734 1735 timer_del(cpu->gt_timer[timeridx]); 1736 } 1737 1738 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1739 { 1740 return gt_get_countervalue(env); 1741 } 1742 1743 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1744 { 1745 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 1746 } 1747 1748 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1749 int timeridx, 1750 uint64_t value) 1751 { 1752 trace_arm_gt_cval_write(timeridx, value); 1753 env->cp15.c14_timer[timeridx].cval = value; 1754 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1755 } 1756 1757 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 1758 int timeridx) 1759 { 1760 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1761 1762 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 1763 (gt_get_countervalue(env) - offset)); 1764 } 1765 1766 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1767 int timeridx, 1768 uint64_t value) 1769 { 1770 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1771 1772 trace_arm_gt_tval_write(timeridx, value); 1773 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 1774 sextract64(value, 0, 32); 1775 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1776 } 1777 1778 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1779 int timeridx, 1780 uint64_t value) 1781 { 1782 ARMCPU *cpu = arm_env_get_cpu(env); 1783 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 1784 1785 trace_arm_gt_ctl_write(timeridx, value); 1786 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 1787 if ((oldval ^ value) & 1) { 1788 /* Enable toggled */ 1789 gt_recalc_timer(cpu, timeridx); 1790 } else if ((oldval ^ value) & 2) { 1791 /* IMASK toggled: don't need to recalculate, 1792 * just set the interrupt line based on ISTATUS 1793 */ 1794 int irqstate = (oldval & 4) && !(value & 2); 1795 1796 trace_arm_gt_imask_toggle(timeridx, irqstate); 1797 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1798 } 1799 } 1800 1801 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1802 { 1803 gt_timer_reset(env, ri, GTIMER_PHYS); 1804 } 1805 1806 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1807 uint64_t value) 1808 { 1809 gt_cval_write(env, ri, GTIMER_PHYS, value); 1810 } 1811 1812 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1813 { 1814 return gt_tval_read(env, ri, GTIMER_PHYS); 1815 } 1816 1817 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1818 uint64_t value) 1819 { 1820 gt_tval_write(env, ri, GTIMER_PHYS, value); 1821 } 1822 1823 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1824 uint64_t value) 1825 { 1826 gt_ctl_write(env, ri, GTIMER_PHYS, value); 1827 } 1828 1829 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1830 { 1831 gt_timer_reset(env, ri, GTIMER_VIRT); 1832 } 1833 1834 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1835 uint64_t value) 1836 { 1837 gt_cval_write(env, ri, GTIMER_VIRT, value); 1838 } 1839 1840 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1841 { 1842 return gt_tval_read(env, ri, GTIMER_VIRT); 1843 } 1844 1845 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1846 uint64_t value) 1847 { 1848 gt_tval_write(env, ri, GTIMER_VIRT, value); 1849 } 1850 1851 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1852 uint64_t value) 1853 { 1854 gt_ctl_write(env, ri, GTIMER_VIRT, value); 1855 } 1856 1857 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 1858 uint64_t value) 1859 { 1860 ARMCPU *cpu = arm_env_get_cpu(env); 1861 1862 trace_arm_gt_cntvoff_write(value); 1863 raw_write(env, ri, value); 1864 gt_recalc_timer(cpu, GTIMER_VIRT); 1865 } 1866 1867 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1868 { 1869 gt_timer_reset(env, ri, GTIMER_HYP); 1870 } 1871 1872 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1873 uint64_t value) 1874 { 1875 gt_cval_write(env, ri, GTIMER_HYP, value); 1876 } 1877 1878 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1879 { 1880 return gt_tval_read(env, ri, GTIMER_HYP); 1881 } 1882 1883 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1884 uint64_t value) 1885 { 1886 gt_tval_write(env, ri, GTIMER_HYP, value); 1887 } 1888 1889 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1890 uint64_t value) 1891 { 1892 gt_ctl_write(env, ri, GTIMER_HYP, value); 1893 } 1894 1895 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1896 { 1897 gt_timer_reset(env, ri, GTIMER_SEC); 1898 } 1899 1900 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1901 uint64_t value) 1902 { 1903 gt_cval_write(env, ri, GTIMER_SEC, value); 1904 } 1905 1906 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1907 { 1908 return gt_tval_read(env, ri, GTIMER_SEC); 1909 } 1910 1911 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1912 uint64_t value) 1913 { 1914 gt_tval_write(env, ri, GTIMER_SEC, value); 1915 } 1916 1917 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1918 uint64_t value) 1919 { 1920 gt_ctl_write(env, ri, GTIMER_SEC, value); 1921 } 1922 1923 void arm_gt_ptimer_cb(void *opaque) 1924 { 1925 ARMCPU *cpu = opaque; 1926 1927 gt_recalc_timer(cpu, GTIMER_PHYS); 1928 } 1929 1930 void arm_gt_vtimer_cb(void *opaque) 1931 { 1932 ARMCPU *cpu = opaque; 1933 1934 gt_recalc_timer(cpu, GTIMER_VIRT); 1935 } 1936 1937 void arm_gt_htimer_cb(void *opaque) 1938 { 1939 ARMCPU *cpu = opaque; 1940 1941 gt_recalc_timer(cpu, GTIMER_HYP); 1942 } 1943 1944 void arm_gt_stimer_cb(void *opaque) 1945 { 1946 ARMCPU *cpu = opaque; 1947 1948 gt_recalc_timer(cpu, GTIMER_SEC); 1949 } 1950 1951 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 1952 /* Note that CNTFRQ is purely reads-as-written for the benefit 1953 * of software; writing it doesn't actually change the timer frequency. 1954 * Our reset value matches the fixed frequency we implement the timer at. 1955 */ 1956 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 1957 .type = ARM_CP_ALIAS, 1958 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1959 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 1960 }, 1961 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 1962 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 1963 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1964 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 1965 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 1966 }, 1967 /* overall control: mostly access permissions */ 1968 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 1969 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 1970 .access = PL1_RW, 1971 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 1972 .resetvalue = 0, 1973 }, 1974 /* per-timer control */ 1975 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1976 .secure = ARM_CP_SECSTATE_NS, 1977 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1978 .accessfn = gt_ptimer_access, 1979 .fieldoffset = offsetoflow32(CPUARMState, 1980 cp15.c14_timer[GTIMER_PHYS].ctl), 1981 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1982 }, 1983 { .name = "CNTP_CTL(S)", 1984 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1985 .secure = ARM_CP_SECSTATE_S, 1986 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1987 .accessfn = gt_ptimer_access, 1988 .fieldoffset = offsetoflow32(CPUARMState, 1989 cp15.c14_timer[GTIMER_SEC].ctl), 1990 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 1991 }, 1992 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 1993 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 1994 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1995 .accessfn = gt_ptimer_access, 1996 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 1997 .resetvalue = 0, 1998 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1999 }, 2000 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2001 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2002 .accessfn = gt_vtimer_access, 2003 .fieldoffset = offsetoflow32(CPUARMState, 2004 cp15.c14_timer[GTIMER_VIRT].ctl), 2005 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2006 }, 2007 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2008 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2009 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 2010 .accessfn = gt_vtimer_access, 2011 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2012 .resetvalue = 0, 2013 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2014 }, 2015 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2016 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2017 .secure = ARM_CP_SECSTATE_NS, 2018 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2019 .accessfn = gt_ptimer_access, 2020 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2021 }, 2022 { .name = "CNTP_TVAL(S)", 2023 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2024 .secure = ARM_CP_SECSTATE_S, 2025 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2026 .accessfn = gt_ptimer_access, 2027 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2028 }, 2029 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2030 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2031 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2032 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2033 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2034 }, 2035 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2036 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2037 .accessfn = gt_vtimer_access, 2038 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2039 }, 2040 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2041 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2042 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2043 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2044 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2045 }, 2046 /* The counter itself */ 2047 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2048 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2049 .accessfn = gt_pct_access, 2050 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2051 }, 2052 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2053 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2054 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2055 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2056 }, 2057 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2058 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2059 .accessfn = gt_vct_access, 2060 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2061 }, 2062 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2063 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2064 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2065 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2066 }, 2067 /* Comparison value, indicating when the timer goes off */ 2068 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2069 .secure = ARM_CP_SECSTATE_NS, 2070 .access = PL1_RW | PL0_R, 2071 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2072 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2073 .accessfn = gt_ptimer_access, 2074 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2075 }, 2076 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, 2077 .secure = ARM_CP_SECSTATE_S, 2078 .access = PL1_RW | PL0_R, 2079 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2080 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2081 .accessfn = gt_ptimer_access, 2082 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2083 }, 2084 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2085 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2086 .access = PL1_RW | PL0_R, 2087 .type = ARM_CP_IO, 2088 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2089 .resetvalue = 0, .accessfn = gt_ptimer_access, 2090 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2091 }, 2092 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2093 .access = PL1_RW | PL0_R, 2094 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2095 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2096 .accessfn = gt_vtimer_access, 2097 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2098 }, 2099 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2100 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2101 .access = PL1_RW | PL0_R, 2102 .type = ARM_CP_IO, 2103 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2104 .resetvalue = 0, .accessfn = gt_vtimer_access, 2105 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2106 }, 2107 /* Secure timer -- this is actually restricted to only EL3 2108 * and configurably Secure-EL1 via the accessfn. 2109 */ 2110 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2111 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2112 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2113 .accessfn = gt_stimer_access, 2114 .readfn = gt_sec_tval_read, 2115 .writefn = gt_sec_tval_write, 2116 .resetfn = gt_sec_timer_reset, 2117 }, 2118 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2119 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2120 .type = ARM_CP_IO, .access = PL1_RW, 2121 .accessfn = gt_stimer_access, 2122 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2123 .resetvalue = 0, 2124 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2125 }, 2126 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2127 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2128 .type = ARM_CP_IO, .access = PL1_RW, 2129 .accessfn = gt_stimer_access, 2130 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2131 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2132 }, 2133 REGINFO_SENTINEL 2134 }; 2135 2136 #else 2137 /* In user-mode none of the generic timer registers are accessible, 2138 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, 2139 * so instead just don't register any of them. 2140 */ 2141 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2142 REGINFO_SENTINEL 2143 }; 2144 2145 #endif 2146 2147 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2148 { 2149 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2150 raw_write(env, ri, value); 2151 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2152 raw_write(env, ri, value & 0xfffff6ff); 2153 } else { 2154 raw_write(env, ri, value & 0xfffff1ff); 2155 } 2156 } 2157 2158 #ifndef CONFIG_USER_ONLY 2159 /* get_phys_addr() isn't present for user-mode-only targets */ 2160 2161 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2162 bool isread) 2163 { 2164 if (ri->opc2 & 4) { 2165 /* The ATS12NSO* operations must trap to EL3 if executed in 2166 * Secure EL1 (which can only happen if EL3 is AArch64). 2167 * They are simply UNDEF if executed from NS EL1. 2168 * They function normally from EL2 or EL3. 2169 */ 2170 if (arm_current_el(env) == 1) { 2171 if (arm_is_secure_below_el3(env)) { 2172 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2173 } 2174 return CP_ACCESS_TRAP_UNCATEGORIZED; 2175 } 2176 } 2177 return CP_ACCESS_OK; 2178 } 2179 2180 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2181 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2182 { 2183 hwaddr phys_addr; 2184 target_ulong page_size; 2185 int prot; 2186 bool ret; 2187 uint64_t par64; 2188 bool format64 = false; 2189 MemTxAttrs attrs = {}; 2190 ARMMMUFaultInfo fi = {}; 2191 ARMCacheAttrs cacheattrs = {}; 2192 2193 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2194 &prot, &page_size, &fi, &cacheattrs); 2195 2196 if (is_a64(env)) { 2197 format64 = true; 2198 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 2199 /* 2200 * ATS1Cxx: 2201 * * TTBCR.EAE determines whether the result is returned using the 2202 * 32-bit or the 64-bit PAR format 2203 * * Instructions executed in Hyp mode always use the 64bit format 2204 * 2205 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 2206 * * The Non-secure TTBCR.EAE bit is set to 1 2207 * * The implementation includes EL2, and the value of HCR.VM is 1 2208 * 2209 * ATS1Hx always uses the 64bit format (not supported yet). 2210 */ 2211 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 2212 2213 if (arm_feature(env, ARM_FEATURE_EL2)) { 2214 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 2215 format64 |= env->cp15.hcr_el2 & HCR_VM; 2216 } else { 2217 format64 |= arm_current_el(env) == 2; 2218 } 2219 } 2220 } 2221 2222 if (format64) { 2223 /* Create a 64-bit PAR */ 2224 par64 = (1 << 11); /* LPAE bit always set */ 2225 if (!ret) { 2226 par64 |= phys_addr & ~0xfffULL; 2227 if (!attrs.secure) { 2228 par64 |= (1 << 9); /* NS */ 2229 } 2230 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 2231 par64 |= cacheattrs.shareability << 7; /* SH */ 2232 } else { 2233 uint32_t fsr = arm_fi_to_lfsc(&fi); 2234 2235 par64 |= 1; /* F */ 2236 par64 |= (fsr & 0x3f) << 1; /* FS */ 2237 /* Note that S2WLK and FSTAGE are always zero, because we don't 2238 * implement virtualization and therefore there can't be a stage 2 2239 * fault. 2240 */ 2241 } 2242 } else { 2243 /* fsr is a DFSR/IFSR value for the short descriptor 2244 * translation table format (with WnR always clear). 2245 * Convert it to a 32-bit PAR. 2246 */ 2247 if (!ret) { 2248 /* We do not set any attribute bits in the PAR */ 2249 if (page_size == (1 << 24) 2250 && arm_feature(env, ARM_FEATURE_V7)) { 2251 par64 = (phys_addr & 0xff000000) | (1 << 1); 2252 } else { 2253 par64 = phys_addr & 0xfffff000; 2254 } 2255 if (!attrs.secure) { 2256 par64 |= (1 << 9); /* NS */ 2257 } 2258 } else { 2259 uint32_t fsr = arm_fi_to_sfsc(&fi); 2260 2261 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 2262 ((fsr & 0xf) << 1) | 1; 2263 } 2264 } 2265 return par64; 2266 } 2267 2268 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2269 { 2270 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2271 uint64_t par64; 2272 ARMMMUIdx mmu_idx; 2273 int el = arm_current_el(env); 2274 bool secure = arm_is_secure_below_el3(env); 2275 2276 switch (ri->opc2 & 6) { 2277 case 0: 2278 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 2279 switch (el) { 2280 case 3: 2281 mmu_idx = ARMMMUIdx_S1E3; 2282 break; 2283 case 2: 2284 mmu_idx = ARMMMUIdx_S1NSE1; 2285 break; 2286 case 1: 2287 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2288 break; 2289 default: 2290 g_assert_not_reached(); 2291 } 2292 break; 2293 case 2: 2294 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 2295 switch (el) { 2296 case 3: 2297 mmu_idx = ARMMMUIdx_S1SE0; 2298 break; 2299 case 2: 2300 mmu_idx = ARMMMUIdx_S1NSE0; 2301 break; 2302 case 1: 2303 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2304 break; 2305 default: 2306 g_assert_not_reached(); 2307 } 2308 break; 2309 case 4: 2310 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 2311 mmu_idx = ARMMMUIdx_S12NSE1; 2312 break; 2313 case 6: 2314 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 2315 mmu_idx = ARMMMUIdx_S12NSE0; 2316 break; 2317 default: 2318 g_assert_not_reached(); 2319 } 2320 2321 par64 = do_ats_write(env, value, access_type, mmu_idx); 2322 2323 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2324 } 2325 2326 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 2327 uint64_t value) 2328 { 2329 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2330 uint64_t par64; 2331 2332 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); 2333 2334 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2335 } 2336 2337 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 2338 bool isread) 2339 { 2340 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 2341 return CP_ACCESS_TRAP; 2342 } 2343 return CP_ACCESS_OK; 2344 } 2345 2346 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 2347 uint64_t value) 2348 { 2349 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2350 ARMMMUIdx mmu_idx; 2351 int secure = arm_is_secure_below_el3(env); 2352 2353 switch (ri->opc2 & 6) { 2354 case 0: 2355 switch (ri->opc1) { 2356 case 0: /* AT S1E1R, AT S1E1W */ 2357 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2358 break; 2359 case 4: /* AT S1E2R, AT S1E2W */ 2360 mmu_idx = ARMMMUIdx_S1E2; 2361 break; 2362 case 6: /* AT S1E3R, AT S1E3W */ 2363 mmu_idx = ARMMMUIdx_S1E3; 2364 break; 2365 default: 2366 g_assert_not_reached(); 2367 } 2368 break; 2369 case 2: /* AT S1E0R, AT S1E0W */ 2370 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2371 break; 2372 case 4: /* AT S12E1R, AT S12E1W */ 2373 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 2374 break; 2375 case 6: /* AT S12E0R, AT S12E0W */ 2376 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 2377 break; 2378 default: 2379 g_assert_not_reached(); 2380 } 2381 2382 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 2383 } 2384 #endif 2385 2386 static const ARMCPRegInfo vapa_cp_reginfo[] = { 2387 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 2388 .access = PL1_RW, .resetvalue = 0, 2389 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 2390 offsetoflow32(CPUARMState, cp15.par_ns) }, 2391 .writefn = par_write }, 2392 #ifndef CONFIG_USER_ONLY 2393 /* This underdecoding is safe because the reginfo is NO_RAW. */ 2394 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 2395 .access = PL1_W, .accessfn = ats_access, 2396 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 2397 #endif 2398 REGINFO_SENTINEL 2399 }; 2400 2401 /* Return basic MPU access permission bits. */ 2402 static uint32_t simple_mpu_ap_bits(uint32_t val) 2403 { 2404 uint32_t ret; 2405 uint32_t mask; 2406 int i; 2407 ret = 0; 2408 mask = 3; 2409 for (i = 0; i < 16; i += 2) { 2410 ret |= (val >> i) & mask; 2411 mask <<= 2; 2412 } 2413 return ret; 2414 } 2415 2416 /* Pad basic MPU access permission bits to extended format. */ 2417 static uint32_t extended_mpu_ap_bits(uint32_t val) 2418 { 2419 uint32_t ret; 2420 uint32_t mask; 2421 int i; 2422 ret = 0; 2423 mask = 3; 2424 for (i = 0; i < 16; i += 2) { 2425 ret |= (val & mask) << i; 2426 mask <<= 2; 2427 } 2428 return ret; 2429 } 2430 2431 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2432 uint64_t value) 2433 { 2434 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 2435 } 2436 2437 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2438 { 2439 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 2440 } 2441 2442 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2443 uint64_t value) 2444 { 2445 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 2446 } 2447 2448 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2449 { 2450 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 2451 } 2452 2453 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 2454 { 2455 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2456 2457 if (!u32p) { 2458 return 0; 2459 } 2460 2461 u32p += env->pmsav7.rnr[M_REG_NS]; 2462 return *u32p; 2463 } 2464 2465 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 2466 uint64_t value) 2467 { 2468 ARMCPU *cpu = arm_env_get_cpu(env); 2469 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2470 2471 if (!u32p) { 2472 return; 2473 } 2474 2475 u32p += env->pmsav7.rnr[M_REG_NS]; 2476 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 2477 *u32p = value; 2478 } 2479 2480 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2481 uint64_t value) 2482 { 2483 ARMCPU *cpu = arm_env_get_cpu(env); 2484 uint32_t nrgs = cpu->pmsav7_dregion; 2485 2486 if (value >= nrgs) { 2487 qemu_log_mask(LOG_GUEST_ERROR, 2488 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 2489 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 2490 return; 2491 } 2492 2493 raw_write(env, ri, value); 2494 } 2495 2496 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 2497 /* Reset for all these registers is handled in arm_cpu_reset(), 2498 * because the PMSAv7 is also used by M-profile CPUs, which do 2499 * not register cpregs but still need the state to be reset. 2500 */ 2501 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 2502 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2503 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 2504 .readfn = pmsav7_read, .writefn = pmsav7_write, 2505 .resetfn = arm_cp_reset_ignore }, 2506 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 2507 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2508 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 2509 .readfn = pmsav7_read, .writefn = pmsav7_write, 2510 .resetfn = arm_cp_reset_ignore }, 2511 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 2512 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2513 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 2514 .readfn = pmsav7_read, .writefn = pmsav7_write, 2515 .resetfn = arm_cp_reset_ignore }, 2516 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 2517 .access = PL1_RW, 2518 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 2519 .writefn = pmsav7_rgnr_write, 2520 .resetfn = arm_cp_reset_ignore }, 2521 REGINFO_SENTINEL 2522 }; 2523 2524 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 2525 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2526 .access = PL1_RW, .type = ARM_CP_ALIAS, 2527 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2528 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 2529 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2530 .access = PL1_RW, .type = ARM_CP_ALIAS, 2531 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2532 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 2533 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 2534 .access = PL1_RW, 2535 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2536 .resetvalue = 0, }, 2537 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 2538 .access = PL1_RW, 2539 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2540 .resetvalue = 0, }, 2541 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 2542 .access = PL1_RW, 2543 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 2544 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 2545 .access = PL1_RW, 2546 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 2547 /* Protection region base and size registers */ 2548 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 2549 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2550 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 2551 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 2552 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2553 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 2554 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 2555 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2556 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 2557 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 2558 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2559 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 2560 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 2561 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2562 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 2563 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 2564 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2565 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 2566 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 2567 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2568 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 2569 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 2570 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2571 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 2572 REGINFO_SENTINEL 2573 }; 2574 2575 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 2576 uint64_t value) 2577 { 2578 TCR *tcr = raw_ptr(env, ri); 2579 int maskshift = extract32(value, 0, 3); 2580 2581 if (!arm_feature(env, ARM_FEATURE_V8)) { 2582 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 2583 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 2584 * using Long-desciptor translation table format */ 2585 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 2586 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 2587 /* In an implementation that includes the Security Extensions 2588 * TTBCR has additional fields PD0 [4] and PD1 [5] for 2589 * Short-descriptor translation table format. 2590 */ 2591 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 2592 } else { 2593 value &= TTBCR_N; 2594 } 2595 } 2596 2597 /* Update the masks corresponding to the TCR bank being written 2598 * Note that we always calculate mask and base_mask, but 2599 * they are only used for short-descriptor tables (ie if EAE is 0); 2600 * for long-descriptor tables the TCR fields are used differently 2601 * and the mask and base_mask values are meaningless. 2602 */ 2603 tcr->raw_tcr = value; 2604 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 2605 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 2606 } 2607 2608 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2609 uint64_t value) 2610 { 2611 ARMCPU *cpu = arm_env_get_cpu(env); 2612 2613 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2614 /* With LPAE the TTBCR could result in a change of ASID 2615 * via the TTBCR.A1 bit, so do a TLB flush. 2616 */ 2617 tlb_flush(CPU(cpu)); 2618 } 2619 vmsa_ttbcr_raw_write(env, ri, value); 2620 } 2621 2622 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2623 { 2624 TCR *tcr = raw_ptr(env, ri); 2625 2626 /* Reset both the TCR as well as the masks corresponding to the bank of 2627 * the TCR being reset. 2628 */ 2629 tcr->raw_tcr = 0; 2630 tcr->mask = 0; 2631 tcr->base_mask = 0xffffc000u; 2632 } 2633 2634 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2635 uint64_t value) 2636 { 2637 ARMCPU *cpu = arm_env_get_cpu(env); 2638 TCR *tcr = raw_ptr(env, ri); 2639 2640 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 2641 tlb_flush(CPU(cpu)); 2642 tcr->raw_tcr = value; 2643 } 2644 2645 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2646 uint64_t value) 2647 { 2648 /* 64 bit accesses to the TTBRs can change the ASID and so we 2649 * must flush the TLB. 2650 */ 2651 if (cpreg_field_is_64bit(ri)) { 2652 ARMCPU *cpu = arm_env_get_cpu(env); 2653 2654 tlb_flush(CPU(cpu)); 2655 } 2656 raw_write(env, ri, value); 2657 } 2658 2659 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2660 uint64_t value) 2661 { 2662 ARMCPU *cpu = arm_env_get_cpu(env); 2663 CPUState *cs = CPU(cpu); 2664 2665 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 2666 if (raw_read(env, ri) != value) { 2667 tlb_flush_by_mmuidx(cs, 2668 ARMMMUIdxBit_S12NSE1 | 2669 ARMMMUIdxBit_S12NSE0 | 2670 ARMMMUIdxBit_S2NS); 2671 raw_write(env, ri, value); 2672 } 2673 } 2674 2675 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 2676 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2677 .access = PL1_RW, .type = ARM_CP_ALIAS, 2678 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 2679 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 2680 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2681 .access = PL1_RW, .resetvalue = 0, 2682 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 2683 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 2684 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 2685 .access = PL1_RW, .resetvalue = 0, 2686 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 2687 offsetof(CPUARMState, cp15.dfar_ns) } }, 2688 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 2689 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 2690 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 2691 .resetvalue = 0, }, 2692 REGINFO_SENTINEL 2693 }; 2694 2695 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 2696 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 2697 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 2698 .access = PL1_RW, 2699 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 2700 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 2701 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 2702 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2703 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2704 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 2705 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 2706 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 2707 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2708 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2709 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 2710 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 2711 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2712 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 2713 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 2714 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 2715 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2716 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 2717 .raw_writefn = vmsa_ttbcr_raw_write, 2718 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 2719 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 2720 REGINFO_SENTINEL 2721 }; 2722 2723 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 2724 uint64_t value) 2725 { 2726 env->cp15.c15_ticonfig = value & 0xe7; 2727 /* The OS_TYPE bit in this register changes the reported CPUID! */ 2728 env->cp15.c0_cpuid = (value & (1 << 5)) ? 2729 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 2730 } 2731 2732 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 2733 uint64_t value) 2734 { 2735 env->cp15.c15_threadid = value & 0xffff; 2736 } 2737 2738 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 2739 uint64_t value) 2740 { 2741 /* Wait-for-interrupt (deprecated) */ 2742 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); 2743 } 2744 2745 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 2746 uint64_t value) 2747 { 2748 /* On OMAP there are registers indicating the max/min index of dcache lines 2749 * containing a dirty line; cache flush operations have to reset these. 2750 */ 2751 env->cp15.c15_i_max = 0x000; 2752 env->cp15.c15_i_min = 0xff0; 2753 } 2754 2755 static const ARMCPRegInfo omap_cp_reginfo[] = { 2756 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 2757 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 2758 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 2759 .resetvalue = 0, }, 2760 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 2761 .access = PL1_RW, .type = ARM_CP_NOP }, 2762 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 2763 .access = PL1_RW, 2764 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 2765 .writefn = omap_ticonfig_write }, 2766 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 2767 .access = PL1_RW, 2768 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 2769 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 2770 .access = PL1_RW, .resetvalue = 0xff0, 2771 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 2772 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 2773 .access = PL1_RW, 2774 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 2775 .writefn = omap_threadid_write }, 2776 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 2777 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2778 .type = ARM_CP_NO_RAW, 2779 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 2780 /* TODO: Peripheral port remap register: 2781 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 2782 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 2783 * when MMU is off. 2784 */ 2785 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 2786 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 2787 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 2788 .writefn = omap_cachemaint_write }, 2789 { .name = "C9", .cp = 15, .crn = 9, 2790 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 2791 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 2792 REGINFO_SENTINEL 2793 }; 2794 2795 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2796 uint64_t value) 2797 { 2798 env->cp15.c15_cpar = value & 0x3fff; 2799 } 2800 2801 static const ARMCPRegInfo xscale_cp_reginfo[] = { 2802 { .name = "XSCALE_CPAR", 2803 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2804 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 2805 .writefn = xscale_cpar_write, }, 2806 { .name = "XSCALE_AUXCR", 2807 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 2808 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 2809 .resetvalue = 0, }, 2810 /* XScale specific cache-lockdown: since we have no cache we NOP these 2811 * and hope the guest does not really rely on cache behaviour. 2812 */ 2813 { .name = "XSCALE_LOCK_ICACHE_LINE", 2814 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 2815 .access = PL1_W, .type = ARM_CP_NOP }, 2816 { .name = "XSCALE_UNLOCK_ICACHE", 2817 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 2818 .access = PL1_W, .type = ARM_CP_NOP }, 2819 { .name = "XSCALE_DCACHE_LOCK", 2820 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 2821 .access = PL1_RW, .type = ARM_CP_NOP }, 2822 { .name = "XSCALE_UNLOCK_DCACHE", 2823 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 2824 .access = PL1_W, .type = ARM_CP_NOP }, 2825 REGINFO_SENTINEL 2826 }; 2827 2828 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 2829 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 2830 * implementation of this implementation-defined space. 2831 * Ideally this should eventually disappear in favour of actually 2832 * implementing the correct behaviour for all cores. 2833 */ 2834 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 2835 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2836 .access = PL1_RW, 2837 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 2838 .resetvalue = 0 }, 2839 REGINFO_SENTINEL 2840 }; 2841 2842 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 2843 /* Cache status: RAZ because we have no cache so it's always clean */ 2844 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 2845 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2846 .resetvalue = 0 }, 2847 REGINFO_SENTINEL 2848 }; 2849 2850 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 2851 /* We never have a a block transfer operation in progress */ 2852 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 2853 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2854 .resetvalue = 0 }, 2855 /* The cache ops themselves: these all NOP for QEMU */ 2856 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 2857 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2858 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 2859 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2860 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 2861 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2862 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 2863 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2864 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 2865 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2866 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 2867 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2868 REGINFO_SENTINEL 2869 }; 2870 2871 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 2872 /* The cache test-and-clean instructions always return (1 << 30) 2873 * to indicate that there are no dirty cache lines. 2874 */ 2875 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 2876 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2877 .resetvalue = (1 << 30) }, 2878 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 2879 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2880 .resetvalue = (1 << 30) }, 2881 REGINFO_SENTINEL 2882 }; 2883 2884 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 2885 /* Ignore ReadBuffer accesses */ 2886 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 2887 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2888 .access = PL1_RW, .resetvalue = 0, 2889 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 2890 REGINFO_SENTINEL 2891 }; 2892 2893 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2894 { 2895 ARMCPU *cpu = arm_env_get_cpu(env); 2896 unsigned int cur_el = arm_current_el(env); 2897 bool secure = arm_is_secure(env); 2898 2899 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2900 return env->cp15.vpidr_el2; 2901 } 2902 return raw_read(env, ri); 2903 } 2904 2905 static uint64_t mpidr_read_val(CPUARMState *env) 2906 { 2907 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); 2908 uint64_t mpidr = cpu->mp_affinity; 2909 2910 if (arm_feature(env, ARM_FEATURE_V7MP)) { 2911 mpidr |= (1U << 31); 2912 /* Cores which are uniprocessor (non-coherent) 2913 * but still implement the MP extensions set 2914 * bit 30. (For instance, Cortex-R5). 2915 */ 2916 if (cpu->mp_is_up) { 2917 mpidr |= (1u << 30); 2918 } 2919 } 2920 return mpidr; 2921 } 2922 2923 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2924 { 2925 unsigned int cur_el = arm_current_el(env); 2926 bool secure = arm_is_secure(env); 2927 2928 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2929 return env->cp15.vmpidr_el2; 2930 } 2931 return mpidr_read_val(env); 2932 } 2933 2934 static const ARMCPRegInfo mpidr_cp_reginfo[] = { 2935 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, 2936 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 2937 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 2938 REGINFO_SENTINEL 2939 }; 2940 2941 static const ARMCPRegInfo lpae_cp_reginfo[] = { 2942 /* NOP AMAIR0/1 */ 2943 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 2944 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 2945 .access = PL1_RW, .type = ARM_CP_CONST, 2946 .resetvalue = 0 }, 2947 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 2948 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 2949 .access = PL1_RW, .type = ARM_CP_CONST, 2950 .resetvalue = 0 }, 2951 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 2952 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 2953 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 2954 offsetof(CPUARMState, cp15.par_ns)} }, 2955 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 2956 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2957 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2958 offsetof(CPUARMState, cp15.ttbr0_ns) }, 2959 .writefn = vmsa_ttbr_write, }, 2960 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 2961 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2962 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2963 offsetof(CPUARMState, cp15.ttbr1_ns) }, 2964 .writefn = vmsa_ttbr_write, }, 2965 REGINFO_SENTINEL 2966 }; 2967 2968 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2969 { 2970 return vfp_get_fpcr(env); 2971 } 2972 2973 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2974 uint64_t value) 2975 { 2976 vfp_set_fpcr(env, value); 2977 } 2978 2979 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2980 { 2981 return vfp_get_fpsr(env); 2982 } 2983 2984 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2985 uint64_t value) 2986 { 2987 vfp_set_fpsr(env, value); 2988 } 2989 2990 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 2991 bool isread) 2992 { 2993 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 2994 return CP_ACCESS_TRAP; 2995 } 2996 return CP_ACCESS_OK; 2997 } 2998 2999 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 3000 uint64_t value) 3001 { 3002 env->daif = value & PSTATE_DAIF; 3003 } 3004 3005 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 3006 const ARMCPRegInfo *ri, 3007 bool isread) 3008 { 3009 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 3010 * SCTLR_EL1.UCI is set. 3011 */ 3012 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 3013 return CP_ACCESS_TRAP; 3014 } 3015 return CP_ACCESS_OK; 3016 } 3017 3018 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 3019 * Page D4-1736 (DDI0487A.b) 3020 */ 3021 3022 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3023 uint64_t value) 3024 { 3025 CPUState *cs = ENV_GET_CPU(env); 3026 3027 if (arm_is_secure_below_el3(env)) { 3028 tlb_flush_by_mmuidx(cs, 3029 ARMMMUIdxBit_S1SE1 | 3030 ARMMMUIdxBit_S1SE0); 3031 } else { 3032 tlb_flush_by_mmuidx(cs, 3033 ARMMMUIdxBit_S12NSE1 | 3034 ARMMMUIdxBit_S12NSE0); 3035 } 3036 } 3037 3038 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3039 uint64_t value) 3040 { 3041 CPUState *cs = ENV_GET_CPU(env); 3042 bool sec = arm_is_secure_below_el3(env); 3043 3044 if (sec) { 3045 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3046 ARMMMUIdxBit_S1SE1 | 3047 ARMMMUIdxBit_S1SE0); 3048 } else { 3049 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3050 ARMMMUIdxBit_S12NSE1 | 3051 ARMMMUIdxBit_S12NSE0); 3052 } 3053 } 3054 3055 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3056 uint64_t value) 3057 { 3058 /* Note that the 'ALL' scope must invalidate both stage 1 and 3059 * stage 2 translations, whereas most other scopes only invalidate 3060 * stage 1 translations. 3061 */ 3062 ARMCPU *cpu = arm_env_get_cpu(env); 3063 CPUState *cs = CPU(cpu); 3064 3065 if (arm_is_secure_below_el3(env)) { 3066 tlb_flush_by_mmuidx(cs, 3067 ARMMMUIdxBit_S1SE1 | 3068 ARMMMUIdxBit_S1SE0); 3069 } else { 3070 if (arm_feature(env, ARM_FEATURE_EL2)) { 3071 tlb_flush_by_mmuidx(cs, 3072 ARMMMUIdxBit_S12NSE1 | 3073 ARMMMUIdxBit_S12NSE0 | 3074 ARMMMUIdxBit_S2NS); 3075 } else { 3076 tlb_flush_by_mmuidx(cs, 3077 ARMMMUIdxBit_S12NSE1 | 3078 ARMMMUIdxBit_S12NSE0); 3079 } 3080 } 3081 } 3082 3083 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3084 uint64_t value) 3085 { 3086 ARMCPU *cpu = arm_env_get_cpu(env); 3087 CPUState *cs = CPU(cpu); 3088 3089 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3090 } 3091 3092 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3093 uint64_t value) 3094 { 3095 ARMCPU *cpu = arm_env_get_cpu(env); 3096 CPUState *cs = CPU(cpu); 3097 3098 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3099 } 3100 3101 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3102 uint64_t value) 3103 { 3104 /* Note that the 'ALL' scope must invalidate both stage 1 and 3105 * stage 2 translations, whereas most other scopes only invalidate 3106 * stage 1 translations. 3107 */ 3108 CPUState *cs = ENV_GET_CPU(env); 3109 bool sec = arm_is_secure_below_el3(env); 3110 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3111 3112 if (sec) { 3113 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3114 ARMMMUIdxBit_S1SE1 | 3115 ARMMMUIdxBit_S1SE0); 3116 } else if (has_el2) { 3117 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3118 ARMMMUIdxBit_S12NSE1 | 3119 ARMMMUIdxBit_S12NSE0 | 3120 ARMMMUIdxBit_S2NS); 3121 } else { 3122 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3123 ARMMMUIdxBit_S12NSE1 | 3124 ARMMMUIdxBit_S12NSE0); 3125 } 3126 } 3127 3128 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3129 uint64_t value) 3130 { 3131 CPUState *cs = ENV_GET_CPU(env); 3132 3133 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3134 } 3135 3136 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3137 uint64_t value) 3138 { 3139 CPUState *cs = ENV_GET_CPU(env); 3140 3141 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3142 } 3143 3144 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3145 uint64_t value) 3146 { 3147 /* Invalidate by VA, EL1&0 (AArch64 version). 3148 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 3149 * since we don't support flush-for-specific-ASID-only or 3150 * flush-last-level-only. 3151 */ 3152 ARMCPU *cpu = arm_env_get_cpu(env); 3153 CPUState *cs = CPU(cpu); 3154 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3155 3156 if (arm_is_secure_below_el3(env)) { 3157 tlb_flush_page_by_mmuidx(cs, pageaddr, 3158 ARMMMUIdxBit_S1SE1 | 3159 ARMMMUIdxBit_S1SE0); 3160 } else { 3161 tlb_flush_page_by_mmuidx(cs, pageaddr, 3162 ARMMMUIdxBit_S12NSE1 | 3163 ARMMMUIdxBit_S12NSE0); 3164 } 3165 } 3166 3167 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3168 uint64_t value) 3169 { 3170 /* Invalidate by VA, EL2 3171 * Currently handles both VAE2 and VALE2, since we don't support 3172 * flush-last-level-only. 3173 */ 3174 ARMCPU *cpu = arm_env_get_cpu(env); 3175 CPUState *cs = CPU(cpu); 3176 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3177 3178 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3179 } 3180 3181 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3182 uint64_t value) 3183 { 3184 /* Invalidate by VA, EL3 3185 * Currently handles both VAE3 and VALE3, since we don't support 3186 * flush-last-level-only. 3187 */ 3188 ARMCPU *cpu = arm_env_get_cpu(env); 3189 CPUState *cs = CPU(cpu); 3190 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3191 3192 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 3193 } 3194 3195 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3196 uint64_t value) 3197 { 3198 ARMCPU *cpu = arm_env_get_cpu(env); 3199 CPUState *cs = CPU(cpu); 3200 bool sec = arm_is_secure_below_el3(env); 3201 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3202 3203 if (sec) { 3204 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3205 ARMMMUIdxBit_S1SE1 | 3206 ARMMMUIdxBit_S1SE0); 3207 } else { 3208 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3209 ARMMMUIdxBit_S12NSE1 | 3210 ARMMMUIdxBit_S12NSE0); 3211 } 3212 } 3213 3214 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3215 uint64_t value) 3216 { 3217 CPUState *cs = ENV_GET_CPU(env); 3218 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3219 3220 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3221 ARMMMUIdxBit_S1E2); 3222 } 3223 3224 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3225 uint64_t value) 3226 { 3227 CPUState *cs = ENV_GET_CPU(env); 3228 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3229 3230 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3231 ARMMMUIdxBit_S1E3); 3232 } 3233 3234 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3235 uint64_t value) 3236 { 3237 /* Invalidate by IPA. This has to invalidate any structures that 3238 * contain only stage 2 translation information, but does not need 3239 * to apply to structures that contain combined stage 1 and stage 2 3240 * translation information. 3241 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 3242 */ 3243 ARMCPU *cpu = arm_env_get_cpu(env); 3244 CPUState *cs = CPU(cpu); 3245 uint64_t pageaddr; 3246 3247 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3248 return; 3249 } 3250 3251 pageaddr = sextract64(value << 12, 0, 48); 3252 3253 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 3254 } 3255 3256 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3257 uint64_t value) 3258 { 3259 CPUState *cs = ENV_GET_CPU(env); 3260 uint64_t pageaddr; 3261 3262 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3263 return; 3264 } 3265 3266 pageaddr = sextract64(value << 12, 0, 48); 3267 3268 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3269 ARMMMUIdxBit_S2NS); 3270 } 3271 3272 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 3273 bool isread) 3274 { 3275 /* We don't implement EL2, so the only control on DC ZVA is the 3276 * bit in the SCTLR which can prohibit access for EL0. 3277 */ 3278 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 3279 return CP_ACCESS_TRAP; 3280 } 3281 return CP_ACCESS_OK; 3282 } 3283 3284 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 3285 { 3286 ARMCPU *cpu = arm_env_get_cpu(env); 3287 int dzp_bit = 1 << 4; 3288 3289 /* DZP indicates whether DC ZVA access is allowed */ 3290 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 3291 dzp_bit = 0; 3292 } 3293 return cpu->dcz_blocksize | dzp_bit; 3294 } 3295 3296 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 3297 bool isread) 3298 { 3299 if (!(env->pstate & PSTATE_SP)) { 3300 /* Access to SP_EL0 is undefined if it's being used as 3301 * the stack pointer. 3302 */ 3303 return CP_ACCESS_TRAP_UNCATEGORIZED; 3304 } 3305 return CP_ACCESS_OK; 3306 } 3307 3308 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 3309 { 3310 return env->pstate & PSTATE_SP; 3311 } 3312 3313 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 3314 { 3315 update_spsel(env, val); 3316 } 3317 3318 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3319 uint64_t value) 3320 { 3321 ARMCPU *cpu = arm_env_get_cpu(env); 3322 3323 if (raw_read(env, ri) == value) { 3324 /* Skip the TLB flush if nothing actually changed; Linux likes 3325 * to do a lot of pointless SCTLR writes. 3326 */ 3327 return; 3328 } 3329 3330 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 3331 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 3332 value &= ~SCTLR_M; 3333 } 3334 3335 raw_write(env, ri, value); 3336 /* ??? Lots of these bits are not implemented. */ 3337 /* This may enable/disable the MMU, so do a TLB flush. */ 3338 tlb_flush(CPU(cpu)); 3339 } 3340 3341 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 3342 bool isread) 3343 { 3344 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 3345 return CP_ACCESS_TRAP_FP_EL2; 3346 } 3347 if (env->cp15.cptr_el[3] & CPTR_TFP) { 3348 return CP_ACCESS_TRAP_FP_EL3; 3349 } 3350 return CP_ACCESS_OK; 3351 } 3352 3353 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3354 uint64_t value) 3355 { 3356 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 3357 } 3358 3359 static const ARMCPRegInfo v8_cp_reginfo[] = { 3360 /* Minimal set of EL0-visible registers. This will need to be expanded 3361 * significantly for system emulation of AArch64 CPUs. 3362 */ 3363 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 3364 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 3365 .access = PL0_RW, .type = ARM_CP_NZCV }, 3366 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 3367 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 3368 .type = ARM_CP_NO_RAW, 3369 .access = PL0_RW, .accessfn = aa64_daif_access, 3370 .fieldoffset = offsetof(CPUARMState, daif), 3371 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 3372 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 3373 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 3374 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 3375 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 3376 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 3377 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 3378 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 3379 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 3380 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 3381 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 3382 .access = PL0_R, .type = ARM_CP_NO_RAW, 3383 .readfn = aa64_dczid_read }, 3384 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 3385 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 3386 .access = PL0_W, .type = ARM_CP_DC_ZVA, 3387 #ifndef CONFIG_USER_ONLY 3388 /* Avoid overhead of an access check that always passes in user-mode */ 3389 .accessfn = aa64_zva_access, 3390 #endif 3391 }, 3392 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 3393 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 3394 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 3395 /* Cache ops: all NOPs since we don't emulate caches */ 3396 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 3397 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3398 .access = PL1_W, .type = ARM_CP_NOP }, 3399 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 3400 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3401 .access = PL1_W, .type = ARM_CP_NOP }, 3402 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 3403 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 3404 .access = PL0_W, .type = ARM_CP_NOP, 3405 .accessfn = aa64_cacheop_access }, 3406 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 3407 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3408 .access = PL1_W, .type = ARM_CP_NOP }, 3409 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 3410 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3411 .access = PL1_W, .type = ARM_CP_NOP }, 3412 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 3413 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 3414 .access = PL0_W, .type = ARM_CP_NOP, 3415 .accessfn = aa64_cacheop_access }, 3416 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 3417 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3418 .access = PL1_W, .type = ARM_CP_NOP }, 3419 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 3420 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 3421 .access = PL0_W, .type = ARM_CP_NOP, 3422 .accessfn = aa64_cacheop_access }, 3423 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 3424 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 3425 .access = PL0_W, .type = ARM_CP_NOP, 3426 .accessfn = aa64_cacheop_access }, 3427 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 3428 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3429 .access = PL1_W, .type = ARM_CP_NOP }, 3430 /* TLBI operations */ 3431 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 3432 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 3433 .access = PL1_W, .type = ARM_CP_NO_RAW, 3434 .writefn = tlbi_aa64_vmalle1is_write }, 3435 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 3436 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 3437 .access = PL1_W, .type = ARM_CP_NO_RAW, 3438 .writefn = tlbi_aa64_vae1is_write }, 3439 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 3440 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 3441 .access = PL1_W, .type = ARM_CP_NO_RAW, 3442 .writefn = tlbi_aa64_vmalle1is_write }, 3443 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 3444 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 3445 .access = PL1_W, .type = ARM_CP_NO_RAW, 3446 .writefn = tlbi_aa64_vae1is_write }, 3447 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 3448 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3449 .access = PL1_W, .type = ARM_CP_NO_RAW, 3450 .writefn = tlbi_aa64_vae1is_write }, 3451 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 3452 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3453 .access = PL1_W, .type = ARM_CP_NO_RAW, 3454 .writefn = tlbi_aa64_vae1is_write }, 3455 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 3456 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 3457 .access = PL1_W, .type = ARM_CP_NO_RAW, 3458 .writefn = tlbi_aa64_vmalle1_write }, 3459 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 3460 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 3461 .access = PL1_W, .type = ARM_CP_NO_RAW, 3462 .writefn = tlbi_aa64_vae1_write }, 3463 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 3464 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 3465 .access = PL1_W, .type = ARM_CP_NO_RAW, 3466 .writefn = tlbi_aa64_vmalle1_write }, 3467 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 3468 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 3469 .access = PL1_W, .type = ARM_CP_NO_RAW, 3470 .writefn = tlbi_aa64_vae1_write }, 3471 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 3472 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3473 .access = PL1_W, .type = ARM_CP_NO_RAW, 3474 .writefn = tlbi_aa64_vae1_write }, 3475 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 3476 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3477 .access = PL1_W, .type = ARM_CP_NO_RAW, 3478 .writefn = tlbi_aa64_vae1_write }, 3479 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 3480 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3481 .access = PL2_W, .type = ARM_CP_NO_RAW, 3482 .writefn = tlbi_aa64_ipas2e1is_write }, 3483 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 3484 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3485 .access = PL2_W, .type = ARM_CP_NO_RAW, 3486 .writefn = tlbi_aa64_ipas2e1is_write }, 3487 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 3488 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3489 .access = PL2_W, .type = ARM_CP_NO_RAW, 3490 .writefn = tlbi_aa64_alle1is_write }, 3491 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 3492 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 3493 .access = PL2_W, .type = ARM_CP_NO_RAW, 3494 .writefn = tlbi_aa64_alle1is_write }, 3495 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 3496 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3497 .access = PL2_W, .type = ARM_CP_NO_RAW, 3498 .writefn = tlbi_aa64_ipas2e1_write }, 3499 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 3500 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3501 .access = PL2_W, .type = ARM_CP_NO_RAW, 3502 .writefn = tlbi_aa64_ipas2e1_write }, 3503 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 3504 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3505 .access = PL2_W, .type = ARM_CP_NO_RAW, 3506 .writefn = tlbi_aa64_alle1_write }, 3507 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 3508 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 3509 .access = PL2_W, .type = ARM_CP_NO_RAW, 3510 .writefn = tlbi_aa64_alle1is_write }, 3511 #ifndef CONFIG_USER_ONLY 3512 /* 64 bit address translation operations */ 3513 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 3514 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 3515 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3516 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 3517 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 3518 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3519 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 3520 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 3521 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3522 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 3523 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 3524 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3525 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 3526 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 3527 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3528 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 3529 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 3530 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3531 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 3532 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 3533 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3534 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 3535 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 3536 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3537 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 3538 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 3539 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 3540 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3541 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 3542 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 3543 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3544 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 3545 .type = ARM_CP_ALIAS, 3546 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 3547 .access = PL1_RW, .resetvalue = 0, 3548 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 3549 .writefn = par_write }, 3550 #endif 3551 /* TLB invalidate last level of translation table walk */ 3552 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3553 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 3554 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3555 .type = ARM_CP_NO_RAW, .access = PL1_W, 3556 .writefn = tlbimvaa_is_write }, 3557 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3558 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 3559 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3560 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 3561 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3562 .type = ARM_CP_NO_RAW, .access = PL2_W, 3563 .writefn = tlbimva_hyp_write }, 3564 { .name = "TLBIMVALHIS", 3565 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3566 .type = ARM_CP_NO_RAW, .access = PL2_W, 3567 .writefn = tlbimva_hyp_is_write }, 3568 { .name = "TLBIIPAS2", 3569 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3570 .type = ARM_CP_NO_RAW, .access = PL2_W, 3571 .writefn = tlbiipas2_write }, 3572 { .name = "TLBIIPAS2IS", 3573 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3574 .type = ARM_CP_NO_RAW, .access = PL2_W, 3575 .writefn = tlbiipas2_is_write }, 3576 { .name = "TLBIIPAS2L", 3577 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3578 .type = ARM_CP_NO_RAW, .access = PL2_W, 3579 .writefn = tlbiipas2_write }, 3580 { .name = "TLBIIPAS2LIS", 3581 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3582 .type = ARM_CP_NO_RAW, .access = PL2_W, 3583 .writefn = tlbiipas2_is_write }, 3584 /* 32 bit cache operations */ 3585 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3586 .type = ARM_CP_NOP, .access = PL1_W }, 3587 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 3588 .type = ARM_CP_NOP, .access = PL1_W }, 3589 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3590 .type = ARM_CP_NOP, .access = PL1_W }, 3591 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 3592 .type = ARM_CP_NOP, .access = PL1_W }, 3593 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 3594 .type = ARM_CP_NOP, .access = PL1_W }, 3595 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 3596 .type = ARM_CP_NOP, .access = PL1_W }, 3597 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3598 .type = ARM_CP_NOP, .access = PL1_W }, 3599 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3600 .type = ARM_CP_NOP, .access = PL1_W }, 3601 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 3602 .type = ARM_CP_NOP, .access = PL1_W }, 3603 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3604 .type = ARM_CP_NOP, .access = PL1_W }, 3605 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 3606 .type = ARM_CP_NOP, .access = PL1_W }, 3607 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 3608 .type = ARM_CP_NOP, .access = PL1_W }, 3609 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3610 .type = ARM_CP_NOP, .access = PL1_W }, 3611 /* MMU Domain access control / MPU write buffer control */ 3612 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 3613 .access = PL1_RW, .resetvalue = 0, 3614 .writefn = dacr_write, .raw_writefn = raw_write, 3615 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 3616 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 3617 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 3618 .type = ARM_CP_ALIAS, 3619 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 3620 .access = PL1_RW, 3621 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 3622 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 3623 .type = ARM_CP_ALIAS, 3624 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 3625 .access = PL1_RW, 3626 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 3627 /* We rely on the access checks not allowing the guest to write to the 3628 * state field when SPSel indicates that it's being used as the stack 3629 * pointer. 3630 */ 3631 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 3632 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 3633 .access = PL1_RW, .accessfn = sp_el0_access, 3634 .type = ARM_CP_ALIAS, 3635 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 3636 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 3637 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 3638 .access = PL2_RW, .type = ARM_CP_ALIAS, 3639 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 3640 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 3641 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 3642 .type = ARM_CP_NO_RAW, 3643 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 3644 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 3645 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 3646 .type = ARM_CP_ALIAS, 3647 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 3648 .access = PL2_RW, .accessfn = fpexc32_access }, 3649 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 3650 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 3651 .access = PL2_RW, .resetvalue = 0, 3652 .writefn = dacr_write, .raw_writefn = raw_write, 3653 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 3654 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 3655 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 3656 .access = PL2_RW, .resetvalue = 0, 3657 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 3658 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 3659 .type = ARM_CP_ALIAS, 3660 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 3661 .access = PL2_RW, 3662 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 3663 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 3664 .type = ARM_CP_ALIAS, 3665 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 3666 .access = PL2_RW, 3667 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 3668 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 3669 .type = ARM_CP_ALIAS, 3670 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 3671 .access = PL2_RW, 3672 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 3673 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 3674 .type = ARM_CP_ALIAS, 3675 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 3676 .access = PL2_RW, 3677 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 3678 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 3679 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 3680 .resetvalue = 0, 3681 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 3682 { .name = "SDCR", .type = ARM_CP_ALIAS, 3683 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 3684 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3685 .writefn = sdcr_write, 3686 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 3687 REGINFO_SENTINEL 3688 }; 3689 3690 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 3691 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 3692 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3693 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3694 .access = PL2_RW, 3695 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3696 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3697 .type = ARM_CP_NO_RAW, 3698 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3699 .access = PL2_RW, 3700 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3701 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3702 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3703 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3704 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3705 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3706 .access = PL2_RW, .type = ARM_CP_CONST, 3707 .resetvalue = 0 }, 3708 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3709 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3710 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3711 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3712 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3713 .access = PL2_RW, .type = ARM_CP_CONST, 3714 .resetvalue = 0 }, 3715 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3716 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3717 .access = PL2_RW, .type = ARM_CP_CONST, 3718 .resetvalue = 0 }, 3719 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3720 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3721 .access = PL2_RW, .type = ARM_CP_CONST, 3722 .resetvalue = 0 }, 3723 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3724 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3725 .access = PL2_RW, .type = ARM_CP_CONST, 3726 .resetvalue = 0 }, 3727 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3728 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3729 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3730 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 3731 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3732 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3733 .type = ARM_CP_CONST, .resetvalue = 0 }, 3734 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3735 .cp = 15, .opc1 = 6, .crm = 2, 3736 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3737 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 3738 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3739 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3740 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3741 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3742 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3743 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3744 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3745 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3746 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3747 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3748 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3749 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3750 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3751 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3752 .resetvalue = 0 }, 3753 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3754 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3755 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3756 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3757 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3758 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3759 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3760 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3761 .resetvalue = 0 }, 3762 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3763 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3764 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3765 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3766 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3767 .resetvalue = 0 }, 3768 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3769 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3770 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3771 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3772 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3773 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3774 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3775 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3776 .access = PL2_RW, .accessfn = access_tda, 3777 .type = ARM_CP_CONST, .resetvalue = 0 }, 3778 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 3779 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3780 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3781 .type = ARM_CP_CONST, .resetvalue = 0 }, 3782 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3783 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3784 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3785 REGINFO_SENTINEL 3786 }; 3787 3788 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3789 { 3790 ARMCPU *cpu = arm_env_get_cpu(env); 3791 uint64_t valid_mask = HCR_MASK; 3792 3793 if (arm_feature(env, ARM_FEATURE_EL3)) { 3794 valid_mask &= ~HCR_HCD; 3795 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 3796 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 3797 * However, if we're using the SMC PSCI conduit then QEMU is 3798 * effectively acting like EL3 firmware and so the guest at 3799 * EL2 should retain the ability to prevent EL1 from being 3800 * able to make SMC calls into the ersatz firmware, so in 3801 * that case HCR.TSC should be read/write. 3802 */ 3803 valid_mask &= ~HCR_TSC; 3804 } 3805 3806 /* Clear RES0 bits. */ 3807 value &= valid_mask; 3808 3809 /* These bits change the MMU setup: 3810 * HCR_VM enables stage 2 translation 3811 * HCR_PTW forbids certain page-table setups 3812 * HCR_DC Disables stage1 and enables stage2 translation 3813 */ 3814 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 3815 tlb_flush(CPU(cpu)); 3816 } 3817 raw_write(env, ri, value); 3818 } 3819 3820 static const ARMCPRegInfo el2_cp_reginfo[] = { 3821 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3822 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3823 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 3824 .writefn = hcr_write }, 3825 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 3826 .type = ARM_CP_ALIAS, 3827 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 3828 .access = PL2_RW, 3829 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 3830 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, 3831 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 3832 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 3833 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, 3834 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 3835 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 3836 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 3837 .type = ARM_CP_ALIAS, 3838 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 3839 .access = PL2_RW, 3840 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 3841 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3842 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3843 .access = PL2_RW, .writefn = vbar_write, 3844 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 3845 .resetvalue = 0 }, 3846 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 3847 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 3848 .access = PL3_RW, .type = ARM_CP_ALIAS, 3849 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 3850 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3851 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3852 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 3853 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, 3854 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3855 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3856 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 3857 .resetvalue = 0 }, 3858 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3859 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3860 .access = PL2_RW, .type = ARM_CP_ALIAS, 3861 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 3862 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3863 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3864 .access = PL2_RW, .type = ARM_CP_CONST, 3865 .resetvalue = 0 }, 3866 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 3867 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3868 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3869 .access = PL2_RW, .type = ARM_CP_CONST, 3870 .resetvalue = 0 }, 3871 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3872 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3873 .access = PL2_RW, .type = ARM_CP_CONST, 3874 .resetvalue = 0 }, 3875 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3876 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3877 .access = PL2_RW, .type = ARM_CP_CONST, 3878 .resetvalue = 0 }, 3879 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3880 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3881 .access = PL2_RW, 3882 /* no .writefn needed as this can't cause an ASID change; 3883 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3884 */ 3885 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 3886 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 3887 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3888 .type = ARM_CP_ALIAS, 3889 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3890 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3891 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 3892 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3893 .access = PL2_RW, 3894 /* no .writefn needed as this can't cause an ASID change; 3895 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3896 */ 3897 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3898 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3899 .cp = 15, .opc1 = 6, .crm = 2, 3900 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3901 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3902 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 3903 .writefn = vttbr_write }, 3904 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3905 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3906 .access = PL2_RW, .writefn = vttbr_write, 3907 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 3908 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3909 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3910 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 3911 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 3912 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3913 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3914 .access = PL2_RW, .resetvalue = 0, 3915 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 3916 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3917 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3918 .access = PL2_RW, .resetvalue = 0, 3919 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3920 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3921 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3922 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3923 { .name = "TLBIALLNSNH", 3924 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3925 .type = ARM_CP_NO_RAW, .access = PL2_W, 3926 .writefn = tlbiall_nsnh_write }, 3927 { .name = "TLBIALLNSNHIS", 3928 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3929 .type = ARM_CP_NO_RAW, .access = PL2_W, 3930 .writefn = tlbiall_nsnh_is_write }, 3931 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3932 .type = ARM_CP_NO_RAW, .access = PL2_W, 3933 .writefn = tlbiall_hyp_write }, 3934 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3935 .type = ARM_CP_NO_RAW, .access = PL2_W, 3936 .writefn = tlbiall_hyp_is_write }, 3937 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3938 .type = ARM_CP_NO_RAW, .access = PL2_W, 3939 .writefn = tlbimva_hyp_write }, 3940 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3941 .type = ARM_CP_NO_RAW, .access = PL2_W, 3942 .writefn = tlbimva_hyp_is_write }, 3943 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 3944 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3945 .type = ARM_CP_NO_RAW, .access = PL2_W, 3946 .writefn = tlbi_aa64_alle2_write }, 3947 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 3948 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3949 .type = ARM_CP_NO_RAW, .access = PL2_W, 3950 .writefn = tlbi_aa64_vae2_write }, 3951 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 3952 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3953 .access = PL2_W, .type = ARM_CP_NO_RAW, 3954 .writefn = tlbi_aa64_vae2_write }, 3955 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 3956 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3957 .access = PL2_W, .type = ARM_CP_NO_RAW, 3958 .writefn = tlbi_aa64_alle2is_write }, 3959 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 3960 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3961 .type = ARM_CP_NO_RAW, .access = PL2_W, 3962 .writefn = tlbi_aa64_vae2is_write }, 3963 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 3964 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3965 .access = PL2_W, .type = ARM_CP_NO_RAW, 3966 .writefn = tlbi_aa64_vae2is_write }, 3967 #ifndef CONFIG_USER_ONLY 3968 /* Unlike the other EL2-related AT operations, these must 3969 * UNDEF from EL3 if EL2 is not implemented, which is why we 3970 * define them here rather than with the rest of the AT ops. 3971 */ 3972 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 3973 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3974 .access = PL2_W, .accessfn = at_s1e2_access, 3975 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3976 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 3977 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3978 .access = PL2_W, .accessfn = at_s1e2_access, 3979 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3980 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 3981 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 3982 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 3983 * to behave as if SCR.NS was 1. 3984 */ 3985 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3986 .access = PL2_W, 3987 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3988 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3989 .access = PL2_W, 3990 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3991 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3992 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3993 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 3994 * reset values as IMPDEF. We choose to reset to 3 to comply with 3995 * both ARMv7 and ARMv8. 3996 */ 3997 .access = PL2_RW, .resetvalue = 3, 3998 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 3999 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4000 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4001 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 4002 .writefn = gt_cntvoff_write, 4003 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4004 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4005 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 4006 .writefn = gt_cntvoff_write, 4007 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4008 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4009 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4010 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4011 .type = ARM_CP_IO, .access = PL2_RW, 4012 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4013 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4014 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4015 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 4016 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4017 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4018 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4019 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 4020 .resetfn = gt_hyp_timer_reset, 4021 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 4022 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4023 .type = ARM_CP_IO, 4024 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4025 .access = PL2_RW, 4026 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 4027 .resetvalue = 0, 4028 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 4029 #endif 4030 /* The only field of MDCR_EL2 that has a defined architectural reset value 4031 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 4032 * don't impelment any PMU event counters, so using zero as a reset 4033 * value for MDCR_EL2 is okay 4034 */ 4035 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4036 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4037 .access = PL2_RW, .resetvalue = 0, 4038 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 4039 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 4040 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4041 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4042 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4043 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 4044 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4045 .access = PL2_RW, 4046 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4047 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4048 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4049 .access = PL2_RW, 4050 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 4051 REGINFO_SENTINEL 4052 }; 4053 4054 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 4055 bool isread) 4056 { 4057 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 4058 * At Secure EL1 it traps to EL3. 4059 */ 4060 if (arm_current_el(env) == 3) { 4061 return CP_ACCESS_OK; 4062 } 4063 if (arm_is_secure_below_el3(env)) { 4064 return CP_ACCESS_TRAP_EL3; 4065 } 4066 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 4067 if (isread) { 4068 return CP_ACCESS_OK; 4069 } 4070 return CP_ACCESS_TRAP_UNCATEGORIZED; 4071 } 4072 4073 static const ARMCPRegInfo el3_cp_reginfo[] = { 4074 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 4075 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 4076 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 4077 .resetvalue = 0, .writefn = scr_write }, 4078 { .name = "SCR", .type = ARM_CP_ALIAS, 4079 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 4080 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4081 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 4082 .writefn = scr_write }, 4083 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 4084 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 4085 .access = PL3_RW, .resetvalue = 0, 4086 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 4087 { .name = "SDER", 4088 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 4089 .access = PL3_RW, .resetvalue = 0, 4090 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 4091 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4092 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4093 .writefn = vbar_write, .resetvalue = 0, 4094 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 4095 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 4096 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 4097 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 4098 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 4099 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 4100 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 4101 .access = PL3_RW, 4102 /* no .writefn needed as this can't cause an ASID change; 4103 * we must provide a .raw_writefn and .resetfn because we handle 4104 * reset and migration for the AArch32 TTBCR(S), which might be 4105 * using mask and base_mask. 4106 */ 4107 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 4108 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 4109 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 4110 .type = ARM_CP_ALIAS, 4111 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 4112 .access = PL3_RW, 4113 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 4114 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 4115 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 4116 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 4117 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 4118 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 4119 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 4120 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 4121 .type = ARM_CP_ALIAS, 4122 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 4123 .access = PL3_RW, 4124 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 4125 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 4126 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 4127 .access = PL3_RW, .writefn = vbar_write, 4128 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 4129 .resetvalue = 0 }, 4130 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 4131 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 4132 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 4133 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 4134 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 4135 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 4136 .access = PL3_RW, .resetvalue = 0, 4137 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 4138 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 4139 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 4140 .access = PL3_RW, .type = ARM_CP_CONST, 4141 .resetvalue = 0 }, 4142 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 4143 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 4144 .access = PL3_RW, .type = ARM_CP_CONST, 4145 .resetvalue = 0 }, 4146 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 4147 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 4148 .access = PL3_RW, .type = ARM_CP_CONST, 4149 .resetvalue = 0 }, 4150 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 4151 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 4152 .access = PL3_W, .type = ARM_CP_NO_RAW, 4153 .writefn = tlbi_aa64_alle3is_write }, 4154 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 4155 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 4156 .access = PL3_W, .type = ARM_CP_NO_RAW, 4157 .writefn = tlbi_aa64_vae3is_write }, 4158 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 4159 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 4160 .access = PL3_W, .type = ARM_CP_NO_RAW, 4161 .writefn = tlbi_aa64_vae3is_write }, 4162 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 4163 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 4164 .access = PL3_W, .type = ARM_CP_NO_RAW, 4165 .writefn = tlbi_aa64_alle3_write }, 4166 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 4167 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 4168 .access = PL3_W, .type = ARM_CP_NO_RAW, 4169 .writefn = tlbi_aa64_vae3_write }, 4170 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 4171 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 4172 .access = PL3_W, .type = ARM_CP_NO_RAW, 4173 .writefn = tlbi_aa64_vae3_write }, 4174 REGINFO_SENTINEL 4175 }; 4176 4177 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4178 bool isread) 4179 { 4180 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 4181 * but the AArch32 CTR has its own reginfo struct) 4182 */ 4183 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 4184 return CP_ACCESS_TRAP; 4185 } 4186 return CP_ACCESS_OK; 4187 } 4188 4189 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4190 uint64_t value) 4191 { 4192 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 4193 * read via a bit in OSLSR_EL1. 4194 */ 4195 int oslock; 4196 4197 if (ri->state == ARM_CP_STATE_AA32) { 4198 oslock = (value == 0xC5ACCE55); 4199 } else { 4200 oslock = value & 1; 4201 } 4202 4203 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 4204 } 4205 4206 static const ARMCPRegInfo debug_cp_reginfo[] = { 4207 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 4208 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 4209 * unlike DBGDRAR it is never accessible from EL0. 4210 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 4211 * accessor. 4212 */ 4213 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 4214 .access = PL0_R, .accessfn = access_tdra, 4215 .type = ARM_CP_CONST, .resetvalue = 0 }, 4216 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 4217 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 4218 .access = PL1_R, .accessfn = access_tdra, 4219 .type = ARM_CP_CONST, .resetvalue = 0 }, 4220 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4221 .access = PL0_R, .accessfn = access_tdra, 4222 .type = ARM_CP_CONST, .resetvalue = 0 }, 4223 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 4224 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 4225 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4226 .access = PL1_RW, .accessfn = access_tda, 4227 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 4228 .resetvalue = 0 }, 4229 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 4230 * We don't implement the configurable EL0 access. 4231 */ 4232 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 4233 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4234 .type = ARM_CP_ALIAS, 4235 .access = PL1_R, .accessfn = access_tda, 4236 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 4237 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 4238 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 4239 .access = PL1_W, .type = ARM_CP_NO_RAW, 4240 .accessfn = access_tdosa, 4241 .writefn = oslar_write }, 4242 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 4243 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 4244 .access = PL1_R, .resetvalue = 10, 4245 .accessfn = access_tdosa, 4246 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 4247 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 4248 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 4249 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 4250 .access = PL1_RW, .accessfn = access_tdosa, 4251 .type = ARM_CP_NOP }, 4252 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 4253 * implement vector catch debug events yet. 4254 */ 4255 { .name = "DBGVCR", 4256 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4257 .access = PL1_RW, .accessfn = access_tda, 4258 .type = ARM_CP_NOP }, 4259 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 4260 * to save and restore a 32-bit guest's DBGVCR) 4261 */ 4262 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 4263 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 4264 .access = PL2_RW, .accessfn = access_tda, 4265 .type = ARM_CP_NOP }, 4266 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 4267 * Channel but Linux may try to access this register. The 32-bit 4268 * alias is DBGDCCINT. 4269 */ 4270 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 4271 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4272 .access = PL1_RW, .accessfn = access_tda, 4273 .type = ARM_CP_NOP }, 4274 REGINFO_SENTINEL 4275 }; 4276 4277 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 4278 /* 64 bit access versions of the (dummy) debug registers */ 4279 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 4280 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4281 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 4282 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4283 REGINFO_SENTINEL 4284 }; 4285 4286 /* Return the exception level to which SVE-disabled exceptions should 4287 * be taken, or 0 if SVE is enabled. 4288 */ 4289 static int sve_exception_el(CPUARMState *env) 4290 { 4291 #ifndef CONFIG_USER_ONLY 4292 unsigned current_el = arm_current_el(env); 4293 4294 /* The CPACR.ZEN controls traps to EL1: 4295 * 0, 2 : trap EL0 and EL1 accesses 4296 * 1 : trap only EL0 accesses 4297 * 3 : trap no accesses 4298 */ 4299 switch (extract32(env->cp15.cpacr_el1, 16, 2)) { 4300 default: 4301 if (current_el <= 1) { 4302 /* Trap to PL1, which might be EL1 or EL3 */ 4303 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 4304 return 3; 4305 } 4306 return 1; 4307 } 4308 break; 4309 case 1: 4310 if (current_el == 0) { 4311 return 1; 4312 } 4313 break; 4314 case 3: 4315 break; 4316 } 4317 4318 /* Similarly for CPACR.FPEN, after having checked ZEN. */ 4319 switch (extract32(env->cp15.cpacr_el1, 20, 2)) { 4320 default: 4321 if (current_el <= 1) { 4322 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 4323 return 3; 4324 } 4325 return 1; 4326 } 4327 break; 4328 case 1: 4329 if (current_el == 0) { 4330 return 1; 4331 } 4332 break; 4333 case 3: 4334 break; 4335 } 4336 4337 /* CPTR_EL2. Check both TZ and TFP. */ 4338 if (current_el <= 2 4339 && (env->cp15.cptr_el[2] & (CPTR_TFP | CPTR_TZ)) 4340 && !arm_is_secure_below_el3(env)) { 4341 return 2; 4342 } 4343 4344 /* CPTR_EL3. Check both EZ and TFP. */ 4345 if (!(env->cp15.cptr_el[3] & CPTR_EZ) 4346 || (env->cp15.cptr_el[3] & CPTR_TFP)) { 4347 return 3; 4348 } 4349 #endif 4350 return 0; 4351 } 4352 4353 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4354 uint64_t value) 4355 { 4356 /* Bits other than [3:0] are RAZ/WI. */ 4357 raw_write(env, ri, value & 0xf); 4358 } 4359 4360 static const ARMCPRegInfo zcr_el1_reginfo = { 4361 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 4362 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 4363 .access = PL1_RW, .type = ARM_CP_SVE | ARM_CP_FPU, 4364 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 4365 .writefn = zcr_write, .raw_writefn = raw_write 4366 }; 4367 4368 static const ARMCPRegInfo zcr_el2_reginfo = { 4369 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 4370 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 4371 .access = PL2_RW, .type = ARM_CP_SVE | ARM_CP_FPU, 4372 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 4373 .writefn = zcr_write, .raw_writefn = raw_write 4374 }; 4375 4376 static const ARMCPRegInfo zcr_no_el2_reginfo = { 4377 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 4378 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 4379 .access = PL2_RW, .type = ARM_CP_SVE | ARM_CP_FPU, 4380 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 4381 }; 4382 4383 static const ARMCPRegInfo zcr_el3_reginfo = { 4384 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 4385 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 4386 .access = PL3_RW, .type = ARM_CP_SVE | ARM_CP_FPU, 4387 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 4388 .writefn = zcr_write, .raw_writefn = raw_write 4389 }; 4390 4391 void hw_watchpoint_update(ARMCPU *cpu, int n) 4392 { 4393 CPUARMState *env = &cpu->env; 4394 vaddr len = 0; 4395 vaddr wvr = env->cp15.dbgwvr[n]; 4396 uint64_t wcr = env->cp15.dbgwcr[n]; 4397 int mask; 4398 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 4399 4400 if (env->cpu_watchpoint[n]) { 4401 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 4402 env->cpu_watchpoint[n] = NULL; 4403 } 4404 4405 if (!extract64(wcr, 0, 1)) { 4406 /* E bit clear : watchpoint disabled */ 4407 return; 4408 } 4409 4410 switch (extract64(wcr, 3, 2)) { 4411 case 0: 4412 /* LSC 00 is reserved and must behave as if the wp is disabled */ 4413 return; 4414 case 1: 4415 flags |= BP_MEM_READ; 4416 break; 4417 case 2: 4418 flags |= BP_MEM_WRITE; 4419 break; 4420 case 3: 4421 flags |= BP_MEM_ACCESS; 4422 break; 4423 } 4424 4425 /* Attempts to use both MASK and BAS fields simultaneously are 4426 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 4427 * thus generating a watchpoint for every byte in the masked region. 4428 */ 4429 mask = extract64(wcr, 24, 4); 4430 if (mask == 1 || mask == 2) { 4431 /* Reserved values of MASK; we must act as if the mask value was 4432 * some non-reserved value, or as if the watchpoint were disabled. 4433 * We choose the latter. 4434 */ 4435 return; 4436 } else if (mask) { 4437 /* Watchpoint covers an aligned area up to 2GB in size */ 4438 len = 1ULL << mask; 4439 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 4440 * whether the watchpoint fires when the unmasked bits match; we opt 4441 * to generate the exceptions. 4442 */ 4443 wvr &= ~(len - 1); 4444 } else { 4445 /* Watchpoint covers bytes defined by the byte address select bits */ 4446 int bas = extract64(wcr, 5, 8); 4447 int basstart; 4448 4449 if (bas == 0) { 4450 /* This must act as if the watchpoint is disabled */ 4451 return; 4452 } 4453 4454 if (extract64(wvr, 2, 1)) { 4455 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 4456 * ignored, and BAS[3:0] define which bytes to watch. 4457 */ 4458 bas &= 0xf; 4459 } 4460 /* The BAS bits are supposed to be programmed to indicate a contiguous 4461 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 4462 * we fire for each byte in the word/doubleword addressed by the WVR. 4463 * We choose to ignore any non-zero bits after the first range of 1s. 4464 */ 4465 basstart = ctz32(bas); 4466 len = cto32(bas >> basstart); 4467 wvr += basstart; 4468 } 4469 4470 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 4471 &env->cpu_watchpoint[n]); 4472 } 4473 4474 void hw_watchpoint_update_all(ARMCPU *cpu) 4475 { 4476 int i; 4477 CPUARMState *env = &cpu->env; 4478 4479 /* Completely clear out existing QEMU watchpoints and our array, to 4480 * avoid possible stale entries following migration load. 4481 */ 4482 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 4483 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 4484 4485 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 4486 hw_watchpoint_update(cpu, i); 4487 } 4488 } 4489 4490 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4491 uint64_t value) 4492 { 4493 ARMCPU *cpu = arm_env_get_cpu(env); 4494 int i = ri->crm; 4495 4496 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 4497 * register reads and behaves as if values written are sign extended. 4498 * Bits [1:0] are RES0. 4499 */ 4500 value = sextract64(value, 0, 49) & ~3ULL; 4501 4502 raw_write(env, ri, value); 4503 hw_watchpoint_update(cpu, i); 4504 } 4505 4506 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4507 uint64_t value) 4508 { 4509 ARMCPU *cpu = arm_env_get_cpu(env); 4510 int i = ri->crm; 4511 4512 raw_write(env, ri, value); 4513 hw_watchpoint_update(cpu, i); 4514 } 4515 4516 void hw_breakpoint_update(ARMCPU *cpu, int n) 4517 { 4518 CPUARMState *env = &cpu->env; 4519 uint64_t bvr = env->cp15.dbgbvr[n]; 4520 uint64_t bcr = env->cp15.dbgbcr[n]; 4521 vaddr addr; 4522 int bt; 4523 int flags = BP_CPU; 4524 4525 if (env->cpu_breakpoint[n]) { 4526 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 4527 env->cpu_breakpoint[n] = NULL; 4528 } 4529 4530 if (!extract64(bcr, 0, 1)) { 4531 /* E bit clear : watchpoint disabled */ 4532 return; 4533 } 4534 4535 bt = extract64(bcr, 20, 4); 4536 4537 switch (bt) { 4538 case 4: /* unlinked address mismatch (reserved if AArch64) */ 4539 case 5: /* linked address mismatch (reserved if AArch64) */ 4540 qemu_log_mask(LOG_UNIMP, 4541 "arm: address mismatch breakpoint types not implemented"); 4542 return; 4543 case 0: /* unlinked address match */ 4544 case 1: /* linked address match */ 4545 { 4546 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 4547 * we behave as if the register was sign extended. Bits [1:0] are 4548 * RES0. The BAS field is used to allow setting breakpoints on 16 4549 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 4550 * a bp will fire if the addresses covered by the bp and the addresses 4551 * covered by the insn overlap but the insn doesn't start at the 4552 * start of the bp address range. We choose to require the insn and 4553 * the bp to have the same address. The constraints on writing to 4554 * BAS enforced in dbgbcr_write mean we have only four cases: 4555 * 0b0000 => no breakpoint 4556 * 0b0011 => breakpoint on addr 4557 * 0b1100 => breakpoint on addr + 2 4558 * 0b1111 => breakpoint on addr 4559 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 4560 */ 4561 int bas = extract64(bcr, 5, 4); 4562 addr = sextract64(bvr, 0, 49) & ~3ULL; 4563 if (bas == 0) { 4564 return; 4565 } 4566 if (bas == 0xc) { 4567 addr += 2; 4568 } 4569 break; 4570 } 4571 case 2: /* unlinked context ID match */ 4572 case 8: /* unlinked VMID match (reserved if no EL2) */ 4573 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 4574 qemu_log_mask(LOG_UNIMP, 4575 "arm: unlinked context breakpoint types not implemented"); 4576 return; 4577 case 9: /* linked VMID match (reserved if no EL2) */ 4578 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 4579 case 3: /* linked context ID match */ 4580 default: 4581 /* We must generate no events for Linked context matches (unless 4582 * they are linked to by some other bp/wp, which is handled in 4583 * updates for the linking bp/wp). We choose to also generate no events 4584 * for reserved values. 4585 */ 4586 return; 4587 } 4588 4589 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 4590 } 4591 4592 void hw_breakpoint_update_all(ARMCPU *cpu) 4593 { 4594 int i; 4595 CPUARMState *env = &cpu->env; 4596 4597 /* Completely clear out existing QEMU breakpoints and our array, to 4598 * avoid possible stale entries following migration load. 4599 */ 4600 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 4601 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 4602 4603 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 4604 hw_breakpoint_update(cpu, i); 4605 } 4606 } 4607 4608 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4609 uint64_t value) 4610 { 4611 ARMCPU *cpu = arm_env_get_cpu(env); 4612 int i = ri->crm; 4613 4614 raw_write(env, ri, value); 4615 hw_breakpoint_update(cpu, i); 4616 } 4617 4618 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4619 uint64_t value) 4620 { 4621 ARMCPU *cpu = arm_env_get_cpu(env); 4622 int i = ri->crm; 4623 4624 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 4625 * copy of BAS[0]. 4626 */ 4627 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 4628 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 4629 4630 raw_write(env, ri, value); 4631 hw_breakpoint_update(cpu, i); 4632 } 4633 4634 static void define_debug_regs(ARMCPU *cpu) 4635 { 4636 /* Define v7 and v8 architectural debug registers. 4637 * These are just dummy implementations for now. 4638 */ 4639 int i; 4640 int wrps, brps, ctx_cmps; 4641 ARMCPRegInfo dbgdidr = { 4642 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 4643 .access = PL0_R, .accessfn = access_tda, 4644 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 4645 }; 4646 4647 /* Note that all these register fields hold "number of Xs minus 1". */ 4648 brps = extract32(cpu->dbgdidr, 24, 4); 4649 wrps = extract32(cpu->dbgdidr, 28, 4); 4650 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 4651 4652 assert(ctx_cmps <= brps); 4653 4654 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 4655 * of the debug registers such as number of breakpoints; 4656 * check that if they both exist then they agree. 4657 */ 4658 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 4659 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 4660 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 4661 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 4662 } 4663 4664 define_one_arm_cp_reg(cpu, &dbgdidr); 4665 define_arm_cp_regs(cpu, debug_cp_reginfo); 4666 4667 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 4668 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 4669 } 4670 4671 for (i = 0; i < brps + 1; i++) { 4672 ARMCPRegInfo dbgregs[] = { 4673 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 4674 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 4675 .access = PL1_RW, .accessfn = access_tda, 4676 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 4677 .writefn = dbgbvr_write, .raw_writefn = raw_write 4678 }, 4679 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 4680 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 4681 .access = PL1_RW, .accessfn = access_tda, 4682 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 4683 .writefn = dbgbcr_write, .raw_writefn = raw_write 4684 }, 4685 REGINFO_SENTINEL 4686 }; 4687 define_arm_cp_regs(cpu, dbgregs); 4688 } 4689 4690 for (i = 0; i < wrps + 1; i++) { 4691 ARMCPRegInfo dbgregs[] = { 4692 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 4693 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 4694 .access = PL1_RW, .accessfn = access_tda, 4695 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 4696 .writefn = dbgwvr_write, .raw_writefn = raw_write 4697 }, 4698 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 4699 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 4700 .access = PL1_RW, .accessfn = access_tda, 4701 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 4702 .writefn = dbgwcr_write, .raw_writefn = raw_write 4703 }, 4704 REGINFO_SENTINEL 4705 }; 4706 define_arm_cp_regs(cpu, dbgregs); 4707 } 4708 } 4709 4710 /* We don't know until after realize whether there's a GICv3 4711 * attached, and that is what registers the gicv3 sysregs. 4712 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 4713 * at runtime. 4714 */ 4715 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 4716 { 4717 ARMCPU *cpu = arm_env_get_cpu(env); 4718 uint64_t pfr1 = cpu->id_pfr1; 4719 4720 if (env->gicv3state) { 4721 pfr1 |= 1 << 28; 4722 } 4723 return pfr1; 4724 } 4725 4726 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 4727 { 4728 ARMCPU *cpu = arm_env_get_cpu(env); 4729 uint64_t pfr0 = cpu->id_aa64pfr0; 4730 4731 if (env->gicv3state) { 4732 pfr0 |= 1 << 24; 4733 } 4734 return pfr0; 4735 } 4736 4737 void register_cp_regs_for_features(ARMCPU *cpu) 4738 { 4739 /* Register all the coprocessor registers based on feature bits */ 4740 CPUARMState *env = &cpu->env; 4741 if (arm_feature(env, ARM_FEATURE_M)) { 4742 /* M profile has no coprocessor registers */ 4743 return; 4744 } 4745 4746 define_arm_cp_regs(cpu, cp_reginfo); 4747 if (!arm_feature(env, ARM_FEATURE_V8)) { 4748 /* Must go early as it is full of wildcards that may be 4749 * overridden by later definitions. 4750 */ 4751 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 4752 } 4753 4754 if (arm_feature(env, ARM_FEATURE_V6)) { 4755 /* The ID registers all have impdef reset values */ 4756 ARMCPRegInfo v6_idregs[] = { 4757 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 4758 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4759 .access = PL1_R, .type = ARM_CP_CONST, 4760 .resetvalue = cpu->id_pfr0 }, 4761 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 4762 * the value of the GIC field until after we define these regs. 4763 */ 4764 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 4765 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 4766 .access = PL1_R, .type = ARM_CP_NO_RAW, 4767 .readfn = id_pfr1_read, 4768 .writefn = arm_cp_write_ignore }, 4769 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 4770 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 4771 .access = PL1_R, .type = ARM_CP_CONST, 4772 .resetvalue = cpu->id_dfr0 }, 4773 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 4774 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 4775 .access = PL1_R, .type = ARM_CP_CONST, 4776 .resetvalue = cpu->id_afr0 }, 4777 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 4778 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 4779 .access = PL1_R, .type = ARM_CP_CONST, 4780 .resetvalue = cpu->id_mmfr0 }, 4781 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 4782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 4783 .access = PL1_R, .type = ARM_CP_CONST, 4784 .resetvalue = cpu->id_mmfr1 }, 4785 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 4786 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 4787 .access = PL1_R, .type = ARM_CP_CONST, 4788 .resetvalue = cpu->id_mmfr2 }, 4789 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 4790 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 4791 .access = PL1_R, .type = ARM_CP_CONST, 4792 .resetvalue = cpu->id_mmfr3 }, 4793 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 4794 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4795 .access = PL1_R, .type = ARM_CP_CONST, 4796 .resetvalue = cpu->id_isar0 }, 4797 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 4798 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 4799 .access = PL1_R, .type = ARM_CP_CONST, 4800 .resetvalue = cpu->id_isar1 }, 4801 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 4802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4803 .access = PL1_R, .type = ARM_CP_CONST, 4804 .resetvalue = cpu->id_isar2 }, 4805 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 4806 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 4807 .access = PL1_R, .type = ARM_CP_CONST, 4808 .resetvalue = cpu->id_isar3 }, 4809 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 4810 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 4811 .access = PL1_R, .type = ARM_CP_CONST, 4812 .resetvalue = cpu->id_isar4 }, 4813 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 4814 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 4815 .access = PL1_R, .type = ARM_CP_CONST, 4816 .resetvalue = cpu->id_isar5 }, 4817 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 4818 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 4819 .access = PL1_R, .type = ARM_CP_CONST, 4820 .resetvalue = cpu->id_mmfr4 }, 4821 /* 7 is as yet unallocated and must RAZ */ 4822 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH, 4823 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 4824 .access = PL1_R, .type = ARM_CP_CONST, 4825 .resetvalue = 0 }, 4826 REGINFO_SENTINEL 4827 }; 4828 define_arm_cp_regs(cpu, v6_idregs); 4829 define_arm_cp_regs(cpu, v6_cp_reginfo); 4830 } else { 4831 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 4832 } 4833 if (arm_feature(env, ARM_FEATURE_V6K)) { 4834 define_arm_cp_regs(cpu, v6k_cp_reginfo); 4835 } 4836 if (arm_feature(env, ARM_FEATURE_V7MP) && 4837 !arm_feature(env, ARM_FEATURE_PMSA)) { 4838 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 4839 } 4840 if (arm_feature(env, ARM_FEATURE_V7)) { 4841 /* v7 performance monitor control register: same implementor 4842 * field as main ID register, and we implement only the cycle 4843 * count register. 4844 */ 4845 #ifndef CONFIG_USER_ONLY 4846 ARMCPRegInfo pmcr = { 4847 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 4848 .access = PL0_RW, 4849 .type = ARM_CP_IO | ARM_CP_ALIAS, 4850 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 4851 .accessfn = pmreg_access, .writefn = pmcr_write, 4852 .raw_writefn = raw_write, 4853 }; 4854 ARMCPRegInfo pmcr64 = { 4855 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 4856 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 4857 .access = PL0_RW, .accessfn = pmreg_access, 4858 .type = ARM_CP_IO, 4859 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 4860 .resetvalue = cpu->midr & 0xff000000, 4861 .writefn = pmcr_write, .raw_writefn = raw_write, 4862 }; 4863 define_one_arm_cp_reg(cpu, &pmcr); 4864 define_one_arm_cp_reg(cpu, &pmcr64); 4865 #endif 4866 ARMCPRegInfo clidr = { 4867 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 4868 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 4869 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 4870 }; 4871 define_one_arm_cp_reg(cpu, &clidr); 4872 define_arm_cp_regs(cpu, v7_cp_reginfo); 4873 define_debug_regs(cpu); 4874 } else { 4875 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 4876 } 4877 if (arm_feature(env, ARM_FEATURE_V8)) { 4878 /* AArch64 ID registers, which all have impdef reset values. 4879 * Note that within the ID register ranges the unused slots 4880 * must all RAZ, not UNDEF; future architecture versions may 4881 * define new registers here. 4882 */ 4883 ARMCPRegInfo v8_idregs[] = { 4884 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 4885 * know the right value for the GIC field until after we 4886 * define these regs. 4887 */ 4888 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 4889 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 4890 .access = PL1_R, .type = ARM_CP_NO_RAW, 4891 .readfn = id_aa64pfr0_read, 4892 .writefn = arm_cp_write_ignore }, 4893 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 4894 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 4895 .access = PL1_R, .type = ARM_CP_CONST, 4896 .resetvalue = cpu->id_aa64pfr1}, 4897 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4898 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 4899 .access = PL1_R, .type = ARM_CP_CONST, 4900 .resetvalue = 0 }, 4901 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4902 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 4903 .access = PL1_R, .type = ARM_CP_CONST, 4904 .resetvalue = 0 }, 4905 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4906 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 4907 .access = PL1_R, .type = ARM_CP_CONST, 4908 .resetvalue = 0 }, 4909 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4910 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 4911 .access = PL1_R, .type = ARM_CP_CONST, 4912 .resetvalue = 0 }, 4913 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4914 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 4915 .access = PL1_R, .type = ARM_CP_CONST, 4916 .resetvalue = 0 }, 4917 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4918 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 4919 .access = PL1_R, .type = ARM_CP_CONST, 4920 .resetvalue = 0 }, 4921 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 4922 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 4923 .access = PL1_R, .type = ARM_CP_CONST, 4924 .resetvalue = cpu->id_aa64dfr0 }, 4925 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 4926 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 4927 .access = PL1_R, .type = ARM_CP_CONST, 4928 .resetvalue = cpu->id_aa64dfr1 }, 4929 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4930 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 4931 .access = PL1_R, .type = ARM_CP_CONST, 4932 .resetvalue = 0 }, 4933 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4934 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 4935 .access = PL1_R, .type = ARM_CP_CONST, 4936 .resetvalue = 0 }, 4937 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 4938 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 4939 .access = PL1_R, .type = ARM_CP_CONST, 4940 .resetvalue = cpu->id_aa64afr0 }, 4941 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 4942 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 4943 .access = PL1_R, .type = ARM_CP_CONST, 4944 .resetvalue = cpu->id_aa64afr1 }, 4945 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4946 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 4947 .access = PL1_R, .type = ARM_CP_CONST, 4948 .resetvalue = 0 }, 4949 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4950 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 4951 .access = PL1_R, .type = ARM_CP_CONST, 4952 .resetvalue = 0 }, 4953 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 4954 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 4955 .access = PL1_R, .type = ARM_CP_CONST, 4956 .resetvalue = cpu->id_aa64isar0 }, 4957 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 4958 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 4959 .access = PL1_R, .type = ARM_CP_CONST, 4960 .resetvalue = cpu->id_aa64isar1 }, 4961 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4962 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 4963 .access = PL1_R, .type = ARM_CP_CONST, 4964 .resetvalue = 0 }, 4965 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4966 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 4967 .access = PL1_R, .type = ARM_CP_CONST, 4968 .resetvalue = 0 }, 4969 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4970 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 4971 .access = PL1_R, .type = ARM_CP_CONST, 4972 .resetvalue = 0 }, 4973 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4974 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 4975 .access = PL1_R, .type = ARM_CP_CONST, 4976 .resetvalue = 0 }, 4977 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4978 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 4979 .access = PL1_R, .type = ARM_CP_CONST, 4980 .resetvalue = 0 }, 4981 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4982 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 4983 .access = PL1_R, .type = ARM_CP_CONST, 4984 .resetvalue = 0 }, 4985 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 4986 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4987 .access = PL1_R, .type = ARM_CP_CONST, 4988 .resetvalue = cpu->id_aa64mmfr0 }, 4989 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 4990 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 4991 .access = PL1_R, .type = ARM_CP_CONST, 4992 .resetvalue = cpu->id_aa64mmfr1 }, 4993 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4994 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 4995 .access = PL1_R, .type = ARM_CP_CONST, 4996 .resetvalue = 0 }, 4997 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4998 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 4999 .access = PL1_R, .type = ARM_CP_CONST, 5000 .resetvalue = 0 }, 5001 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5002 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 5003 .access = PL1_R, .type = ARM_CP_CONST, 5004 .resetvalue = 0 }, 5005 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5006 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 5007 .access = PL1_R, .type = ARM_CP_CONST, 5008 .resetvalue = 0 }, 5009 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5010 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 5011 .access = PL1_R, .type = ARM_CP_CONST, 5012 .resetvalue = 0 }, 5013 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5014 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 5015 .access = PL1_R, .type = ARM_CP_CONST, 5016 .resetvalue = 0 }, 5017 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 5018 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 5019 .access = PL1_R, .type = ARM_CP_CONST, 5020 .resetvalue = cpu->mvfr0 }, 5021 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 5022 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 5023 .access = PL1_R, .type = ARM_CP_CONST, 5024 .resetvalue = cpu->mvfr1 }, 5025 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 5026 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 5027 .access = PL1_R, .type = ARM_CP_CONST, 5028 .resetvalue = cpu->mvfr2 }, 5029 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5030 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 5031 .access = PL1_R, .type = ARM_CP_CONST, 5032 .resetvalue = 0 }, 5033 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5034 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 5035 .access = PL1_R, .type = ARM_CP_CONST, 5036 .resetvalue = 0 }, 5037 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5038 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 5039 .access = PL1_R, .type = ARM_CP_CONST, 5040 .resetvalue = 0 }, 5041 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5042 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 5043 .access = PL1_R, .type = ARM_CP_CONST, 5044 .resetvalue = 0 }, 5045 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5046 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 5047 .access = PL1_R, .type = ARM_CP_CONST, 5048 .resetvalue = 0 }, 5049 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 5050 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 5051 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5052 .resetvalue = cpu->pmceid0 }, 5053 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 5054 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 5055 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5056 .resetvalue = cpu->pmceid0 }, 5057 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 5058 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 5059 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5060 .resetvalue = cpu->pmceid1 }, 5061 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 5062 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 5063 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5064 .resetvalue = cpu->pmceid1 }, 5065 REGINFO_SENTINEL 5066 }; 5067 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 5068 if (!arm_feature(env, ARM_FEATURE_EL3) && 5069 !arm_feature(env, ARM_FEATURE_EL2)) { 5070 ARMCPRegInfo rvbar = { 5071 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 5072 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5073 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 5074 }; 5075 define_one_arm_cp_reg(cpu, &rvbar); 5076 } 5077 define_arm_cp_regs(cpu, v8_idregs); 5078 define_arm_cp_regs(cpu, v8_cp_reginfo); 5079 } 5080 if (arm_feature(env, ARM_FEATURE_EL2)) { 5081 uint64_t vmpidr_def = mpidr_read_val(env); 5082 ARMCPRegInfo vpidr_regs[] = { 5083 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 5084 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5085 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5086 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 5087 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 5088 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 5089 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5090 .access = PL2_RW, .resetvalue = cpu->midr, 5091 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 5092 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 5093 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5094 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5095 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 5096 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 5097 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 5098 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5099 .access = PL2_RW, 5100 .resetvalue = vmpidr_def, 5101 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 5102 REGINFO_SENTINEL 5103 }; 5104 define_arm_cp_regs(cpu, vpidr_regs); 5105 define_arm_cp_regs(cpu, el2_cp_reginfo); 5106 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 5107 if (!arm_feature(env, ARM_FEATURE_EL3)) { 5108 ARMCPRegInfo rvbar = { 5109 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 5110 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 5111 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 5112 }; 5113 define_one_arm_cp_reg(cpu, &rvbar); 5114 } 5115 } else { 5116 /* If EL2 is missing but higher ELs are enabled, we need to 5117 * register the no_el2 reginfos. 5118 */ 5119 if (arm_feature(env, ARM_FEATURE_EL3)) { 5120 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 5121 * of MIDR_EL1 and MPIDR_EL1. 5122 */ 5123 ARMCPRegInfo vpidr_regs[] = { 5124 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5125 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5126 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5127 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 5128 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 5129 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5130 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5131 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5132 .type = ARM_CP_NO_RAW, 5133 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 5134 REGINFO_SENTINEL 5135 }; 5136 define_arm_cp_regs(cpu, vpidr_regs); 5137 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 5138 } 5139 } 5140 if (arm_feature(env, ARM_FEATURE_EL3)) { 5141 define_arm_cp_regs(cpu, el3_cp_reginfo); 5142 ARMCPRegInfo el3_regs[] = { 5143 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 5144 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 5145 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 5146 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 5147 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 5148 .access = PL3_RW, 5149 .raw_writefn = raw_write, .writefn = sctlr_write, 5150 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 5151 .resetvalue = cpu->reset_sctlr }, 5152 REGINFO_SENTINEL 5153 }; 5154 5155 define_arm_cp_regs(cpu, el3_regs); 5156 } 5157 /* The behaviour of NSACR is sufficiently various that we don't 5158 * try to describe it in a single reginfo: 5159 * if EL3 is 64 bit, then trap to EL3 from S EL1, 5160 * reads as constant 0xc00 from NS EL1 and NS EL2 5161 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 5162 * if v7 without EL3, register doesn't exist 5163 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 5164 */ 5165 if (arm_feature(env, ARM_FEATURE_EL3)) { 5166 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5167 ARMCPRegInfo nsacr = { 5168 .name = "NSACR", .type = ARM_CP_CONST, 5169 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5170 .access = PL1_RW, .accessfn = nsacr_access, 5171 .resetvalue = 0xc00 5172 }; 5173 define_one_arm_cp_reg(cpu, &nsacr); 5174 } else { 5175 ARMCPRegInfo nsacr = { 5176 .name = "NSACR", 5177 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5178 .access = PL3_RW | PL1_R, 5179 .resetvalue = 0, 5180 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 5181 }; 5182 define_one_arm_cp_reg(cpu, &nsacr); 5183 } 5184 } else { 5185 if (arm_feature(env, ARM_FEATURE_V8)) { 5186 ARMCPRegInfo nsacr = { 5187 .name = "NSACR", .type = ARM_CP_CONST, 5188 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5189 .access = PL1_R, 5190 .resetvalue = 0xc00 5191 }; 5192 define_one_arm_cp_reg(cpu, &nsacr); 5193 } 5194 } 5195 5196 if (arm_feature(env, ARM_FEATURE_PMSA)) { 5197 if (arm_feature(env, ARM_FEATURE_V6)) { 5198 /* PMSAv6 not implemented */ 5199 assert(arm_feature(env, ARM_FEATURE_V7)); 5200 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5201 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 5202 } else { 5203 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 5204 } 5205 } else { 5206 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5207 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 5208 } 5209 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 5210 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 5211 } 5212 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 5213 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 5214 } 5215 if (arm_feature(env, ARM_FEATURE_VAPA)) { 5216 define_arm_cp_regs(cpu, vapa_cp_reginfo); 5217 } 5218 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 5219 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 5220 } 5221 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 5222 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 5223 } 5224 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 5225 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 5226 } 5227 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 5228 define_arm_cp_regs(cpu, omap_cp_reginfo); 5229 } 5230 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 5231 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 5232 } 5233 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5234 define_arm_cp_regs(cpu, xscale_cp_reginfo); 5235 } 5236 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 5237 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 5238 } 5239 if (arm_feature(env, ARM_FEATURE_LPAE)) { 5240 define_arm_cp_regs(cpu, lpae_cp_reginfo); 5241 } 5242 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 5243 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 5244 * be read-only (ie write causes UNDEF exception). 5245 */ 5246 { 5247 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 5248 /* Pre-v8 MIDR space. 5249 * Note that the MIDR isn't a simple constant register because 5250 * of the TI925 behaviour where writes to another register can 5251 * cause the MIDR value to change. 5252 * 5253 * Unimplemented registers in the c15 0 0 0 space default to 5254 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 5255 * and friends override accordingly. 5256 */ 5257 { .name = "MIDR", 5258 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 5259 .access = PL1_R, .resetvalue = cpu->midr, 5260 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 5261 .readfn = midr_read, 5262 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5263 .type = ARM_CP_OVERRIDE }, 5264 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 5265 { .name = "DUMMY", 5266 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 5267 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5268 { .name = "DUMMY", 5269 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 5270 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5271 { .name = "DUMMY", 5272 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 5273 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5274 { .name = "DUMMY", 5275 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 5276 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5277 { .name = "DUMMY", 5278 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 5279 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5280 REGINFO_SENTINEL 5281 }; 5282 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 5283 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 5284 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 5285 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 5286 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5287 .readfn = midr_read }, 5288 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 5289 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5290 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5291 .access = PL1_R, .resetvalue = cpu->midr }, 5292 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5293 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 5294 .access = PL1_R, .resetvalue = cpu->midr }, 5295 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 5296 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 5297 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 5298 REGINFO_SENTINEL 5299 }; 5300 ARMCPRegInfo id_cp_reginfo[] = { 5301 /* These are common to v8 and pre-v8 */ 5302 { .name = "CTR", 5303 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 5304 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5305 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 5306 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 5307 .access = PL0_R, .accessfn = ctr_el0_access, 5308 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5309 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 5310 { .name = "TCMTR", 5311 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 5312 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5313 REGINFO_SENTINEL 5314 }; 5315 /* TLBTR is specific to VMSA */ 5316 ARMCPRegInfo id_tlbtr_reginfo = { 5317 .name = "TLBTR", 5318 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 5319 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 5320 }; 5321 /* MPUIR is specific to PMSA V6+ */ 5322 ARMCPRegInfo id_mpuir_reginfo = { 5323 .name = "MPUIR", 5324 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5325 .access = PL1_R, .type = ARM_CP_CONST, 5326 .resetvalue = cpu->pmsav7_dregion << 8 5327 }; 5328 ARMCPRegInfo crn0_wi_reginfo = { 5329 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 5330 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 5331 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 5332 }; 5333 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 5334 arm_feature(env, ARM_FEATURE_STRONGARM)) { 5335 ARMCPRegInfo *r; 5336 /* Register the blanket "writes ignored" value first to cover the 5337 * whole space. Then update the specific ID registers to allow write 5338 * access, so that they ignore writes rather than causing them to 5339 * UNDEF. 5340 */ 5341 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 5342 for (r = id_pre_v8_midr_cp_reginfo; 5343 r->type != ARM_CP_SENTINEL; r++) { 5344 r->access = PL1_RW; 5345 } 5346 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 5347 r->access = PL1_RW; 5348 } 5349 id_tlbtr_reginfo.access = PL1_RW; 5350 id_tlbtr_reginfo.access = PL1_RW; 5351 } 5352 if (arm_feature(env, ARM_FEATURE_V8)) { 5353 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 5354 } else { 5355 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 5356 } 5357 define_arm_cp_regs(cpu, id_cp_reginfo); 5358 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 5359 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 5360 } else if (arm_feature(env, ARM_FEATURE_V7)) { 5361 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 5362 } 5363 } 5364 5365 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 5366 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 5367 } 5368 5369 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 5370 ARMCPRegInfo auxcr_reginfo[] = { 5371 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 5372 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 5373 .access = PL1_RW, .type = ARM_CP_CONST, 5374 .resetvalue = cpu->reset_auxcr }, 5375 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 5376 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 5377 .access = PL2_RW, .type = ARM_CP_CONST, 5378 .resetvalue = 0 }, 5379 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 5380 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 5381 .access = PL3_RW, .type = ARM_CP_CONST, 5382 .resetvalue = 0 }, 5383 REGINFO_SENTINEL 5384 }; 5385 define_arm_cp_regs(cpu, auxcr_reginfo); 5386 } 5387 5388 if (arm_feature(env, ARM_FEATURE_CBAR)) { 5389 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5390 /* 32 bit view is [31:18] 0...0 [43:32]. */ 5391 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 5392 | extract64(cpu->reset_cbar, 32, 12); 5393 ARMCPRegInfo cbar_reginfo[] = { 5394 { .name = "CBAR", 5395 .type = ARM_CP_CONST, 5396 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5397 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 5398 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 5399 .type = ARM_CP_CONST, 5400 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 5401 .access = PL1_R, .resetvalue = cbar32 }, 5402 REGINFO_SENTINEL 5403 }; 5404 /* We don't implement a r/w 64 bit CBAR currently */ 5405 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 5406 define_arm_cp_regs(cpu, cbar_reginfo); 5407 } else { 5408 ARMCPRegInfo cbar = { 5409 .name = "CBAR", 5410 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5411 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 5412 .fieldoffset = offsetof(CPUARMState, 5413 cp15.c15_config_base_address) 5414 }; 5415 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 5416 cbar.access = PL1_R; 5417 cbar.fieldoffset = 0; 5418 cbar.type = ARM_CP_CONST; 5419 } 5420 define_one_arm_cp_reg(cpu, &cbar); 5421 } 5422 } 5423 5424 if (arm_feature(env, ARM_FEATURE_VBAR)) { 5425 ARMCPRegInfo vbar_cp_reginfo[] = { 5426 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 5427 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 5428 .access = PL1_RW, .writefn = vbar_write, 5429 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 5430 offsetof(CPUARMState, cp15.vbar_ns) }, 5431 .resetvalue = 0 }, 5432 REGINFO_SENTINEL 5433 }; 5434 define_arm_cp_regs(cpu, vbar_cp_reginfo); 5435 } 5436 5437 /* Generic registers whose values depend on the implementation */ 5438 { 5439 ARMCPRegInfo sctlr = { 5440 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 5441 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5442 .access = PL1_RW, 5443 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 5444 offsetof(CPUARMState, cp15.sctlr_ns) }, 5445 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 5446 .raw_writefn = raw_write, 5447 }; 5448 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5449 /* Normally we would always end the TB on an SCTLR write, but Linux 5450 * arch/arm/mach-pxa/sleep.S expects two instructions following 5451 * an MMU enable to execute from cache. Imitate this behaviour. 5452 */ 5453 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 5454 } 5455 define_one_arm_cp_reg(cpu, &sctlr); 5456 } 5457 5458 if (arm_feature(env, ARM_FEATURE_SVE)) { 5459 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 5460 if (arm_feature(env, ARM_FEATURE_EL2)) { 5461 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 5462 } else { 5463 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 5464 } 5465 if (arm_feature(env, ARM_FEATURE_EL3)) { 5466 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 5467 } 5468 } 5469 } 5470 5471 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 5472 { 5473 CPUState *cs = CPU(cpu); 5474 CPUARMState *env = &cpu->env; 5475 5476 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5477 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 5478 aarch64_fpu_gdb_set_reg, 5479 34, "aarch64-fpu.xml", 0); 5480 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 5481 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5482 51, "arm-neon.xml", 0); 5483 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 5484 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5485 35, "arm-vfp3.xml", 0); 5486 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 5487 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5488 19, "arm-vfp.xml", 0); 5489 } 5490 } 5491 5492 /* Sort alphabetically by type name, except for "any". */ 5493 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 5494 { 5495 ObjectClass *class_a = (ObjectClass *)a; 5496 ObjectClass *class_b = (ObjectClass *)b; 5497 const char *name_a, *name_b; 5498 5499 name_a = object_class_get_name(class_a); 5500 name_b = object_class_get_name(class_b); 5501 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 5502 return 1; 5503 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 5504 return -1; 5505 } else { 5506 return strcmp(name_a, name_b); 5507 } 5508 } 5509 5510 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 5511 { 5512 ObjectClass *oc = data; 5513 CPUListState *s = user_data; 5514 const char *typename; 5515 char *name; 5516 5517 typename = object_class_get_name(oc); 5518 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5519 (*s->cpu_fprintf)(s->file, " %s\n", 5520 name); 5521 g_free(name); 5522 } 5523 5524 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) 5525 { 5526 CPUListState s = { 5527 .file = f, 5528 .cpu_fprintf = cpu_fprintf, 5529 }; 5530 GSList *list; 5531 5532 list = object_class_get_list(TYPE_ARM_CPU, false); 5533 list = g_slist_sort(list, arm_cpu_list_compare); 5534 (*cpu_fprintf)(f, "Available CPUs:\n"); 5535 g_slist_foreach(list, arm_cpu_list_entry, &s); 5536 g_slist_free(list); 5537 #ifdef CONFIG_KVM 5538 /* The 'host' CPU type is dynamically registered only if KVM is 5539 * enabled, so we have to special-case it here: 5540 */ 5541 (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); 5542 #endif 5543 } 5544 5545 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 5546 { 5547 ObjectClass *oc = data; 5548 CpuDefinitionInfoList **cpu_list = user_data; 5549 CpuDefinitionInfoList *entry; 5550 CpuDefinitionInfo *info; 5551 const char *typename; 5552 5553 typename = object_class_get_name(oc); 5554 info = g_malloc0(sizeof(*info)); 5555 info->name = g_strndup(typename, 5556 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5557 info->q_typename = g_strdup(typename); 5558 5559 entry = g_malloc0(sizeof(*entry)); 5560 entry->value = info; 5561 entry->next = *cpu_list; 5562 *cpu_list = entry; 5563 } 5564 5565 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) 5566 { 5567 CpuDefinitionInfoList *cpu_list = NULL; 5568 GSList *list; 5569 5570 list = object_class_get_list(TYPE_ARM_CPU, false); 5571 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 5572 g_slist_free(list); 5573 5574 return cpu_list; 5575 } 5576 5577 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 5578 void *opaque, int state, int secstate, 5579 int crm, int opc1, int opc2) 5580 { 5581 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 5582 * add a single reginfo struct to the hash table. 5583 */ 5584 uint32_t *key = g_new(uint32_t, 1); 5585 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 5586 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 5587 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 5588 5589 /* Reset the secure state to the specific incoming state. This is 5590 * necessary as the register may have been defined with both states. 5591 */ 5592 r2->secure = secstate; 5593 5594 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5595 /* Register is banked (using both entries in array). 5596 * Overwriting fieldoffset as the array is only used to define 5597 * banked registers but later only fieldoffset is used. 5598 */ 5599 r2->fieldoffset = r->bank_fieldoffsets[ns]; 5600 } 5601 5602 if (state == ARM_CP_STATE_AA32) { 5603 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5604 /* If the register is banked then we don't need to migrate or 5605 * reset the 32-bit instance in certain cases: 5606 * 5607 * 1) If the register has both 32-bit and 64-bit instances then we 5608 * can count on the 64-bit instance taking care of the 5609 * non-secure bank. 5610 * 2) If ARMv8 is enabled then we can count on a 64-bit version 5611 * taking care of the secure bank. This requires that separate 5612 * 32 and 64-bit definitions are provided. 5613 */ 5614 if ((r->state == ARM_CP_STATE_BOTH && ns) || 5615 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 5616 r2->type |= ARM_CP_ALIAS; 5617 } 5618 } else if ((secstate != r->secure) && !ns) { 5619 /* The register is not banked so we only want to allow migration of 5620 * the non-secure instance. 5621 */ 5622 r2->type |= ARM_CP_ALIAS; 5623 } 5624 5625 if (r->state == ARM_CP_STATE_BOTH) { 5626 /* We assume it is a cp15 register if the .cp field is left unset. 5627 */ 5628 if (r2->cp == 0) { 5629 r2->cp = 15; 5630 } 5631 5632 #ifdef HOST_WORDS_BIGENDIAN 5633 if (r2->fieldoffset) { 5634 r2->fieldoffset += sizeof(uint32_t); 5635 } 5636 #endif 5637 } 5638 } 5639 if (state == ARM_CP_STATE_AA64) { 5640 /* To allow abbreviation of ARMCPRegInfo 5641 * definitions, we treat cp == 0 as equivalent to 5642 * the value for "standard guest-visible sysreg". 5643 * STATE_BOTH definitions are also always "standard 5644 * sysreg" in their AArch64 view (the .cp value may 5645 * be non-zero for the benefit of the AArch32 view). 5646 */ 5647 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 5648 r2->cp = CP_REG_ARM64_SYSREG_CP; 5649 } 5650 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 5651 r2->opc0, opc1, opc2); 5652 } else { 5653 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 5654 } 5655 if (opaque) { 5656 r2->opaque = opaque; 5657 } 5658 /* reginfo passed to helpers is correct for the actual access, 5659 * and is never ARM_CP_STATE_BOTH: 5660 */ 5661 r2->state = state; 5662 /* Make sure reginfo passed to helpers for wildcarded regs 5663 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 5664 */ 5665 r2->crm = crm; 5666 r2->opc1 = opc1; 5667 r2->opc2 = opc2; 5668 /* By convention, for wildcarded registers only the first 5669 * entry is used for migration; the others are marked as 5670 * ALIAS so we don't try to transfer the register 5671 * multiple times. Special registers (ie NOP/WFI) are 5672 * never migratable and not even raw-accessible. 5673 */ 5674 if ((r->type & ARM_CP_SPECIAL)) { 5675 r2->type |= ARM_CP_NO_RAW; 5676 } 5677 if (((r->crm == CP_ANY) && crm != 0) || 5678 ((r->opc1 == CP_ANY) && opc1 != 0) || 5679 ((r->opc2 == CP_ANY) && opc2 != 0)) { 5680 r2->type |= ARM_CP_ALIAS; 5681 } 5682 5683 /* Check that raw accesses are either forbidden or handled. Note that 5684 * we can't assert this earlier because the setup of fieldoffset for 5685 * banked registers has to be done first. 5686 */ 5687 if (!(r2->type & ARM_CP_NO_RAW)) { 5688 assert(!raw_accessors_invalid(r2)); 5689 } 5690 5691 /* Overriding of an existing definition must be explicitly 5692 * requested. 5693 */ 5694 if (!(r->type & ARM_CP_OVERRIDE)) { 5695 ARMCPRegInfo *oldreg; 5696 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 5697 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 5698 fprintf(stderr, "Register redefined: cp=%d %d bit " 5699 "crn=%d crm=%d opc1=%d opc2=%d, " 5700 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 5701 r2->crn, r2->crm, r2->opc1, r2->opc2, 5702 oldreg->name, r2->name); 5703 g_assert_not_reached(); 5704 } 5705 } 5706 g_hash_table_insert(cpu->cp_regs, key, r2); 5707 } 5708 5709 5710 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 5711 const ARMCPRegInfo *r, void *opaque) 5712 { 5713 /* Define implementations of coprocessor registers. 5714 * We store these in a hashtable because typically 5715 * there are less than 150 registers in a space which 5716 * is 16*16*16*8*8 = 262144 in size. 5717 * Wildcarding is supported for the crm, opc1 and opc2 fields. 5718 * If a register is defined twice then the second definition is 5719 * used, so this can be used to define some generic registers and 5720 * then override them with implementation specific variations. 5721 * At least one of the original and the second definition should 5722 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 5723 * against accidental use. 5724 * 5725 * The state field defines whether the register is to be 5726 * visible in the AArch32 or AArch64 execution state. If the 5727 * state is set to ARM_CP_STATE_BOTH then we synthesise a 5728 * reginfo structure for the AArch32 view, which sees the lower 5729 * 32 bits of the 64 bit register. 5730 * 5731 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 5732 * be wildcarded. AArch64 registers are always considered to be 64 5733 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 5734 * the register, if any. 5735 */ 5736 int crm, opc1, opc2, state; 5737 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 5738 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 5739 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 5740 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 5741 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 5742 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 5743 /* 64 bit registers have only CRm and Opc1 fields */ 5744 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 5745 /* op0 only exists in the AArch64 encodings */ 5746 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 5747 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 5748 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 5749 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 5750 * encodes a minimum access level for the register. We roll this 5751 * runtime check into our general permission check code, so check 5752 * here that the reginfo's specified permissions are strict enough 5753 * to encompass the generic architectural permission check. 5754 */ 5755 if (r->state != ARM_CP_STATE_AA32) { 5756 int mask = 0; 5757 switch (r->opc1) { 5758 case 0: case 1: case 2: 5759 /* min_EL EL1 */ 5760 mask = PL1_RW; 5761 break; 5762 case 3: 5763 /* min_EL EL0 */ 5764 mask = PL0_RW; 5765 break; 5766 case 4: 5767 /* min_EL EL2 */ 5768 mask = PL2_RW; 5769 break; 5770 case 5: 5771 /* unallocated encoding, so not possible */ 5772 assert(false); 5773 break; 5774 case 6: 5775 /* min_EL EL3 */ 5776 mask = PL3_RW; 5777 break; 5778 case 7: 5779 /* min_EL EL1, secure mode only (we don't check the latter) */ 5780 mask = PL1_RW; 5781 break; 5782 default: 5783 /* broken reginfo with out-of-range opc1 */ 5784 assert(false); 5785 break; 5786 } 5787 /* assert our permissions are not too lax (stricter is fine) */ 5788 assert((r->access & ~mask) == 0); 5789 } 5790 5791 /* Check that the register definition has enough info to handle 5792 * reads and writes if they are permitted. 5793 */ 5794 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 5795 if (r->access & PL3_R) { 5796 assert((r->fieldoffset || 5797 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5798 r->readfn); 5799 } 5800 if (r->access & PL3_W) { 5801 assert((r->fieldoffset || 5802 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5803 r->writefn); 5804 } 5805 } 5806 /* Bad type field probably means missing sentinel at end of reg list */ 5807 assert(cptype_valid(r->type)); 5808 for (crm = crmmin; crm <= crmmax; crm++) { 5809 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 5810 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 5811 for (state = ARM_CP_STATE_AA32; 5812 state <= ARM_CP_STATE_AA64; state++) { 5813 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 5814 continue; 5815 } 5816 if (state == ARM_CP_STATE_AA32) { 5817 /* Under AArch32 CP registers can be common 5818 * (same for secure and non-secure world) or banked. 5819 */ 5820 switch (r->secure) { 5821 case ARM_CP_SECSTATE_S: 5822 case ARM_CP_SECSTATE_NS: 5823 add_cpreg_to_hashtable(cpu, r, opaque, state, 5824 r->secure, crm, opc1, opc2); 5825 break; 5826 default: 5827 add_cpreg_to_hashtable(cpu, r, opaque, state, 5828 ARM_CP_SECSTATE_S, 5829 crm, opc1, opc2); 5830 add_cpreg_to_hashtable(cpu, r, opaque, state, 5831 ARM_CP_SECSTATE_NS, 5832 crm, opc1, opc2); 5833 break; 5834 } 5835 } else { 5836 /* AArch64 registers get mapped to non-secure instance 5837 * of AArch32 */ 5838 add_cpreg_to_hashtable(cpu, r, opaque, state, 5839 ARM_CP_SECSTATE_NS, 5840 crm, opc1, opc2); 5841 } 5842 } 5843 } 5844 } 5845 } 5846 } 5847 5848 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 5849 const ARMCPRegInfo *regs, void *opaque) 5850 { 5851 /* Define a whole list of registers */ 5852 const ARMCPRegInfo *r; 5853 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 5854 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 5855 } 5856 } 5857 5858 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 5859 { 5860 return g_hash_table_lookup(cpregs, &encoded_cp); 5861 } 5862 5863 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 5864 uint64_t value) 5865 { 5866 /* Helper coprocessor write function for write-ignore registers */ 5867 } 5868 5869 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 5870 { 5871 /* Helper coprocessor write function for read-as-zero registers */ 5872 return 0; 5873 } 5874 5875 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 5876 { 5877 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 5878 } 5879 5880 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 5881 { 5882 /* Return true if it is not valid for us to switch to 5883 * this CPU mode (ie all the UNPREDICTABLE cases in 5884 * the ARM ARM CPSRWriteByInstr pseudocode). 5885 */ 5886 5887 /* Changes to or from Hyp via MSR and CPS are illegal. */ 5888 if (write_type == CPSRWriteByInstr && 5889 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 5890 mode == ARM_CPU_MODE_HYP)) { 5891 return 1; 5892 } 5893 5894 switch (mode) { 5895 case ARM_CPU_MODE_USR: 5896 return 0; 5897 case ARM_CPU_MODE_SYS: 5898 case ARM_CPU_MODE_SVC: 5899 case ARM_CPU_MODE_ABT: 5900 case ARM_CPU_MODE_UND: 5901 case ARM_CPU_MODE_IRQ: 5902 case ARM_CPU_MODE_FIQ: 5903 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 5904 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 5905 */ 5906 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 5907 * and CPS are treated as illegal mode changes. 5908 */ 5909 if (write_type == CPSRWriteByInstr && 5910 (env->cp15.hcr_el2 & HCR_TGE) && 5911 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 5912 !arm_is_secure_below_el3(env)) { 5913 return 1; 5914 } 5915 return 0; 5916 case ARM_CPU_MODE_HYP: 5917 return !arm_feature(env, ARM_FEATURE_EL2) 5918 || arm_current_el(env) < 2 || arm_is_secure(env); 5919 case ARM_CPU_MODE_MON: 5920 return arm_current_el(env) < 3; 5921 default: 5922 return 1; 5923 } 5924 } 5925 5926 uint32_t cpsr_read(CPUARMState *env) 5927 { 5928 int ZF; 5929 ZF = (env->ZF == 0); 5930 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 5931 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 5932 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 5933 | ((env->condexec_bits & 0xfc) << 8) 5934 | (env->GE << 16) | (env->daif & CPSR_AIF); 5935 } 5936 5937 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 5938 CPSRWriteType write_type) 5939 { 5940 uint32_t changed_daif; 5941 5942 if (mask & CPSR_NZCV) { 5943 env->ZF = (~val) & CPSR_Z; 5944 env->NF = val; 5945 env->CF = (val >> 29) & 1; 5946 env->VF = (val << 3) & 0x80000000; 5947 } 5948 if (mask & CPSR_Q) 5949 env->QF = ((val & CPSR_Q) != 0); 5950 if (mask & CPSR_T) 5951 env->thumb = ((val & CPSR_T) != 0); 5952 if (mask & CPSR_IT_0_1) { 5953 env->condexec_bits &= ~3; 5954 env->condexec_bits |= (val >> 25) & 3; 5955 } 5956 if (mask & CPSR_IT_2_7) { 5957 env->condexec_bits &= 3; 5958 env->condexec_bits |= (val >> 8) & 0xfc; 5959 } 5960 if (mask & CPSR_GE) { 5961 env->GE = (val >> 16) & 0xf; 5962 } 5963 5964 /* In a V7 implementation that includes the security extensions but does 5965 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 5966 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 5967 * bits respectively. 5968 * 5969 * In a V8 implementation, it is permitted for privileged software to 5970 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 5971 */ 5972 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 5973 arm_feature(env, ARM_FEATURE_EL3) && 5974 !arm_feature(env, ARM_FEATURE_EL2) && 5975 !arm_is_secure(env)) { 5976 5977 changed_daif = (env->daif ^ val) & mask; 5978 5979 if (changed_daif & CPSR_A) { 5980 /* Check to see if we are allowed to change the masking of async 5981 * abort exceptions from a non-secure state. 5982 */ 5983 if (!(env->cp15.scr_el3 & SCR_AW)) { 5984 qemu_log_mask(LOG_GUEST_ERROR, 5985 "Ignoring attempt to switch CPSR_A flag from " 5986 "non-secure world with SCR.AW bit clear\n"); 5987 mask &= ~CPSR_A; 5988 } 5989 } 5990 5991 if (changed_daif & CPSR_F) { 5992 /* Check to see if we are allowed to change the masking of FIQ 5993 * exceptions from a non-secure state. 5994 */ 5995 if (!(env->cp15.scr_el3 & SCR_FW)) { 5996 qemu_log_mask(LOG_GUEST_ERROR, 5997 "Ignoring attempt to switch CPSR_F flag from " 5998 "non-secure world with SCR.FW bit clear\n"); 5999 mask &= ~CPSR_F; 6000 } 6001 6002 /* Check whether non-maskable FIQ (NMFI) support is enabled. 6003 * If this bit is set software is not allowed to mask 6004 * FIQs, but is allowed to set CPSR_F to 0. 6005 */ 6006 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 6007 (val & CPSR_F)) { 6008 qemu_log_mask(LOG_GUEST_ERROR, 6009 "Ignoring attempt to enable CPSR_F flag " 6010 "(non-maskable FIQ [NMFI] support enabled)\n"); 6011 mask &= ~CPSR_F; 6012 } 6013 } 6014 } 6015 6016 env->daif &= ~(CPSR_AIF & mask); 6017 env->daif |= val & CPSR_AIF & mask; 6018 6019 if (write_type != CPSRWriteRaw && 6020 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 6021 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 6022 /* Note that we can only get here in USR mode if this is a 6023 * gdb stub write; for this case we follow the architectural 6024 * behaviour for guest writes in USR mode of ignoring an attempt 6025 * to switch mode. (Those are caught by translate.c for writes 6026 * triggered by guest instructions.) 6027 */ 6028 mask &= ~CPSR_M; 6029 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 6030 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 6031 * v7, and has defined behaviour in v8: 6032 * + leave CPSR.M untouched 6033 * + allow changes to the other CPSR fields 6034 * + set PSTATE.IL 6035 * For user changes via the GDB stub, we don't set PSTATE.IL, 6036 * as this would be unnecessarily harsh for a user error. 6037 */ 6038 mask &= ~CPSR_M; 6039 if (write_type != CPSRWriteByGDBStub && 6040 arm_feature(env, ARM_FEATURE_V8)) { 6041 mask |= CPSR_IL; 6042 val |= CPSR_IL; 6043 } 6044 } else { 6045 switch_mode(env, val & CPSR_M); 6046 } 6047 } 6048 mask &= ~CACHED_CPSR_BITS; 6049 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 6050 } 6051 6052 /* Sign/zero extend */ 6053 uint32_t HELPER(sxtb16)(uint32_t x) 6054 { 6055 uint32_t res; 6056 res = (uint16_t)(int8_t)x; 6057 res |= (uint32_t)(int8_t)(x >> 16) << 16; 6058 return res; 6059 } 6060 6061 uint32_t HELPER(uxtb16)(uint32_t x) 6062 { 6063 uint32_t res; 6064 res = (uint16_t)(uint8_t)x; 6065 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 6066 return res; 6067 } 6068 6069 int32_t HELPER(sdiv)(int32_t num, int32_t den) 6070 { 6071 if (den == 0) 6072 return 0; 6073 if (num == INT_MIN && den == -1) 6074 return INT_MIN; 6075 return num / den; 6076 } 6077 6078 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 6079 { 6080 if (den == 0) 6081 return 0; 6082 return num / den; 6083 } 6084 6085 uint32_t HELPER(rbit)(uint32_t x) 6086 { 6087 return revbit32(x); 6088 } 6089 6090 #if defined(CONFIG_USER_ONLY) 6091 6092 /* These should probably raise undefined insn exceptions. */ 6093 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 6094 { 6095 ARMCPU *cpu = arm_env_get_cpu(env); 6096 6097 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 6098 } 6099 6100 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 6101 { 6102 ARMCPU *cpu = arm_env_get_cpu(env); 6103 6104 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 6105 return 0; 6106 } 6107 6108 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6109 { 6110 /* translate.c should never generate calls here in user-only mode */ 6111 g_assert_not_reached(); 6112 } 6113 6114 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6115 { 6116 /* translate.c should never generate calls here in user-only mode */ 6117 g_assert_not_reached(); 6118 } 6119 6120 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 6121 { 6122 /* The TT instructions can be used by unprivileged code, but in 6123 * user-only emulation we don't have the MPU. 6124 * Luckily since we know we are NonSecure unprivileged (and that in 6125 * turn means that the A flag wasn't specified), all the bits in the 6126 * register must be zero: 6127 * IREGION: 0 because IRVALID is 0 6128 * IRVALID: 0 because NS 6129 * S: 0 because NS 6130 * NSRW: 0 because NS 6131 * NSR: 0 because NS 6132 * RW: 0 because unpriv and A flag not set 6133 * R: 0 because unpriv and A flag not set 6134 * SRVALID: 0 because NS 6135 * MRVALID: 0 because unpriv and A flag not set 6136 * SREGION: 0 becaus SRVALID is 0 6137 * MREGION: 0 because MRVALID is 0 6138 */ 6139 return 0; 6140 } 6141 6142 void switch_mode(CPUARMState *env, int mode) 6143 { 6144 ARMCPU *cpu = arm_env_get_cpu(env); 6145 6146 if (mode != ARM_CPU_MODE_USR) { 6147 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 6148 } 6149 } 6150 6151 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6152 uint32_t cur_el, bool secure) 6153 { 6154 return 1; 6155 } 6156 6157 void aarch64_sync_64_to_32(CPUARMState *env) 6158 { 6159 g_assert_not_reached(); 6160 } 6161 6162 #else 6163 6164 void switch_mode(CPUARMState *env, int mode) 6165 { 6166 int old_mode; 6167 int i; 6168 6169 old_mode = env->uncached_cpsr & CPSR_M; 6170 if (mode == old_mode) 6171 return; 6172 6173 if (old_mode == ARM_CPU_MODE_FIQ) { 6174 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6175 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 6176 } else if (mode == ARM_CPU_MODE_FIQ) { 6177 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6178 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 6179 } 6180 6181 i = bank_number(old_mode); 6182 env->banked_r13[i] = env->regs[13]; 6183 env->banked_r14[i] = env->regs[14]; 6184 env->banked_spsr[i] = env->spsr; 6185 6186 i = bank_number(mode); 6187 env->regs[13] = env->banked_r13[i]; 6188 env->regs[14] = env->banked_r14[i]; 6189 env->spsr = env->banked_spsr[i]; 6190 } 6191 6192 /* Physical Interrupt Target EL Lookup Table 6193 * 6194 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 6195 * 6196 * The below multi-dimensional table is used for looking up the target 6197 * exception level given numerous condition criteria. Specifically, the 6198 * target EL is based on SCR and HCR routing controls as well as the 6199 * currently executing EL and secure state. 6200 * 6201 * Dimensions: 6202 * target_el_table[2][2][2][2][2][4] 6203 * | | | | | +--- Current EL 6204 * | | | | +------ Non-secure(0)/Secure(1) 6205 * | | | +--------- HCR mask override 6206 * | | +------------ SCR exec state control 6207 * | +--------------- SCR mask override 6208 * +------------------ 32-bit(0)/64-bit(1) EL3 6209 * 6210 * The table values are as such: 6211 * 0-3 = EL0-EL3 6212 * -1 = Cannot occur 6213 * 6214 * The ARM ARM target EL table includes entries indicating that an "exception 6215 * is not taken". The two cases where this is applicable are: 6216 * 1) An exception is taken from EL3 but the SCR does not have the exception 6217 * routed to EL3. 6218 * 2) An exception is taken from EL2 but the HCR does not have the exception 6219 * routed to EL2. 6220 * In these two cases, the below table contain a target of EL1. This value is 6221 * returned as it is expected that the consumer of the table data will check 6222 * for "target EL >= current EL" to ensure the exception is not taken. 6223 * 6224 * SCR HCR 6225 * 64 EA AMO From 6226 * BIT IRQ IMO Non-secure Secure 6227 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 6228 */ 6229 static const int8_t target_el_table[2][2][2][2][2][4] = { 6230 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6231 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 6232 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6233 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 6234 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6235 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 6236 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6237 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 6238 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 6239 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 6240 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 6241 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 6242 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6243 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 6244 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6245 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 6246 }; 6247 6248 /* 6249 * Determine the target EL for physical exceptions 6250 */ 6251 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6252 uint32_t cur_el, bool secure) 6253 { 6254 CPUARMState *env = cs->env_ptr; 6255 int rw; 6256 int scr; 6257 int hcr; 6258 int target_el; 6259 /* Is the highest EL AArch64? */ 6260 int is64 = arm_feature(env, ARM_FEATURE_AARCH64); 6261 6262 if (arm_feature(env, ARM_FEATURE_EL3)) { 6263 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 6264 } else { 6265 /* Either EL2 is the highest EL (and so the EL2 register width 6266 * is given by is64); or there is no EL2 or EL3, in which case 6267 * the value of 'rw' does not affect the table lookup anyway. 6268 */ 6269 rw = is64; 6270 } 6271 6272 switch (excp_idx) { 6273 case EXCP_IRQ: 6274 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 6275 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); 6276 break; 6277 case EXCP_FIQ: 6278 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 6279 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); 6280 break; 6281 default: 6282 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 6283 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); 6284 break; 6285 }; 6286 6287 /* If HCR.TGE is set then HCR is treated as being 1 */ 6288 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); 6289 6290 /* Perform a table-lookup for the target EL given the current state */ 6291 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 6292 6293 assert(target_el > 0); 6294 6295 return target_el; 6296 } 6297 6298 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value, 6299 ARMMMUIdx mmu_idx, bool ignfault) 6300 { 6301 CPUState *cs = CPU(cpu); 6302 CPUARMState *env = &cpu->env; 6303 MemTxAttrs attrs = {}; 6304 MemTxResult txres; 6305 target_ulong page_size; 6306 hwaddr physaddr; 6307 int prot; 6308 ARMMMUFaultInfo fi; 6309 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 6310 int exc; 6311 bool exc_secure; 6312 6313 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr, 6314 &attrs, &prot, &page_size, &fi, NULL)) { 6315 /* MPU/SAU lookup failed */ 6316 if (fi.type == ARMFault_QEMU_SFault) { 6317 qemu_log_mask(CPU_LOG_INT, 6318 "...SecureFault with SFSR.AUVIOL during stacking\n"); 6319 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 6320 env->v7m.sfar = addr; 6321 exc = ARMV7M_EXCP_SECURE; 6322 exc_secure = false; 6323 } else { 6324 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n"); 6325 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK; 6326 exc = ARMV7M_EXCP_MEM; 6327 exc_secure = secure; 6328 } 6329 goto pend_fault; 6330 } 6331 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value, 6332 attrs, &txres); 6333 if (txres != MEMTX_OK) { 6334 /* BusFault trying to write the data */ 6335 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n"); 6336 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK; 6337 exc = ARMV7M_EXCP_BUS; 6338 exc_secure = false; 6339 goto pend_fault; 6340 } 6341 return true; 6342 6343 pend_fault: 6344 /* By pending the exception at this point we are making 6345 * the IMPDEF choice "overridden exceptions pended" (see the 6346 * MergeExcInfo() pseudocode). The other choice would be to not 6347 * pend them now and then make a choice about which to throw away 6348 * later if we have two derived exceptions. 6349 * The only case when we must not pend the exception but instead 6350 * throw it away is if we are doing the push of the callee registers 6351 * and we've already generated a derived exception. Even in this 6352 * case we will still update the fault status registers. 6353 */ 6354 if (!ignfault) { 6355 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure); 6356 } 6357 return false; 6358 } 6359 6360 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr, 6361 ARMMMUIdx mmu_idx) 6362 { 6363 CPUState *cs = CPU(cpu); 6364 CPUARMState *env = &cpu->env; 6365 MemTxAttrs attrs = {}; 6366 MemTxResult txres; 6367 target_ulong page_size; 6368 hwaddr physaddr; 6369 int prot; 6370 ARMMMUFaultInfo fi; 6371 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 6372 int exc; 6373 bool exc_secure; 6374 uint32_t value; 6375 6376 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr, 6377 &attrs, &prot, &page_size, &fi, NULL)) { 6378 /* MPU/SAU lookup failed */ 6379 if (fi.type == ARMFault_QEMU_SFault) { 6380 qemu_log_mask(CPU_LOG_INT, 6381 "...SecureFault with SFSR.AUVIOL during unstack\n"); 6382 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 6383 env->v7m.sfar = addr; 6384 exc = ARMV7M_EXCP_SECURE; 6385 exc_secure = false; 6386 } else { 6387 qemu_log_mask(CPU_LOG_INT, 6388 "...MemManageFault with CFSR.MUNSTKERR\n"); 6389 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK; 6390 exc = ARMV7M_EXCP_MEM; 6391 exc_secure = secure; 6392 } 6393 goto pend_fault; 6394 } 6395 6396 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr, 6397 attrs, &txres); 6398 if (txres != MEMTX_OK) { 6399 /* BusFault trying to read the data */ 6400 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n"); 6401 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK; 6402 exc = ARMV7M_EXCP_BUS; 6403 exc_secure = false; 6404 goto pend_fault; 6405 } 6406 6407 *dest = value; 6408 return true; 6409 6410 pend_fault: 6411 /* By pending the exception at this point we are making 6412 * the IMPDEF choice "overridden exceptions pended" (see the 6413 * MergeExcInfo() pseudocode). The other choice would be to not 6414 * pend them now and then make a choice about which to throw away 6415 * later if we have two derived exceptions. 6416 */ 6417 armv7m_nvic_set_pending(env->nvic, exc, exc_secure); 6418 return false; 6419 } 6420 6421 /* Return true if we're using the process stack pointer (not the MSP) */ 6422 static bool v7m_using_psp(CPUARMState *env) 6423 { 6424 /* Handler mode always uses the main stack; for thread mode 6425 * the CONTROL.SPSEL bit determines the answer. 6426 * Note that in v7M it is not possible to be in Handler mode with 6427 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 6428 */ 6429 return !arm_v7m_is_handler_mode(env) && 6430 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 6431 } 6432 6433 /* Write to v7M CONTROL.SPSEL bit for the specified security bank. 6434 * This may change the current stack pointer between Main and Process 6435 * stack pointers if it is done for the CONTROL register for the current 6436 * security state. 6437 */ 6438 static void write_v7m_control_spsel_for_secstate(CPUARMState *env, 6439 bool new_spsel, 6440 bool secstate) 6441 { 6442 bool old_is_psp = v7m_using_psp(env); 6443 6444 env->v7m.control[secstate] = 6445 deposit32(env->v7m.control[secstate], 6446 R_V7M_CONTROL_SPSEL_SHIFT, 6447 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); 6448 6449 if (secstate == env->v7m.secure) { 6450 bool new_is_psp = v7m_using_psp(env); 6451 uint32_t tmp; 6452 6453 if (old_is_psp != new_is_psp) { 6454 tmp = env->v7m.other_sp; 6455 env->v7m.other_sp = env->regs[13]; 6456 env->regs[13] = tmp; 6457 } 6458 } 6459 } 6460 6461 /* Write to v7M CONTROL.SPSEL bit. This may change the current 6462 * stack pointer between Main and Process stack pointers. 6463 */ 6464 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) 6465 { 6466 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); 6467 } 6468 6469 void write_v7m_exception(CPUARMState *env, uint32_t new_exc) 6470 { 6471 /* Write a new value to v7m.exception, thus transitioning into or out 6472 * of Handler mode; this may result in a change of active stack pointer. 6473 */ 6474 bool new_is_psp, old_is_psp = v7m_using_psp(env); 6475 uint32_t tmp; 6476 6477 env->v7m.exception = new_exc; 6478 6479 new_is_psp = v7m_using_psp(env); 6480 6481 if (old_is_psp != new_is_psp) { 6482 tmp = env->v7m.other_sp; 6483 env->v7m.other_sp = env->regs[13]; 6484 env->regs[13] = tmp; 6485 } 6486 } 6487 6488 /* Switch M profile security state between NS and S */ 6489 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) 6490 { 6491 uint32_t new_ss_msp, new_ss_psp; 6492 6493 if (env->v7m.secure == new_secstate) { 6494 return; 6495 } 6496 6497 /* All the banked state is accessed by looking at env->v7m.secure 6498 * except for the stack pointer; rearrange the SP appropriately. 6499 */ 6500 new_ss_msp = env->v7m.other_ss_msp; 6501 new_ss_psp = env->v7m.other_ss_psp; 6502 6503 if (v7m_using_psp(env)) { 6504 env->v7m.other_ss_psp = env->regs[13]; 6505 env->v7m.other_ss_msp = env->v7m.other_sp; 6506 } else { 6507 env->v7m.other_ss_msp = env->regs[13]; 6508 env->v7m.other_ss_psp = env->v7m.other_sp; 6509 } 6510 6511 env->v7m.secure = new_secstate; 6512 6513 if (v7m_using_psp(env)) { 6514 env->regs[13] = new_ss_psp; 6515 env->v7m.other_sp = new_ss_msp; 6516 } else { 6517 env->regs[13] = new_ss_msp; 6518 env->v7m.other_sp = new_ss_psp; 6519 } 6520 } 6521 6522 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6523 { 6524 /* Handle v7M BXNS: 6525 * - if the return value is a magic value, do exception return (like BX) 6526 * - otherwise bit 0 of the return value is the target security state 6527 */ 6528 uint32_t min_magic; 6529 6530 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6531 /* Covers FNC_RETURN and EXC_RETURN magic */ 6532 min_magic = FNC_RETURN_MIN_MAGIC; 6533 } else { 6534 /* EXC_RETURN magic only */ 6535 min_magic = EXC_RETURN_MIN_MAGIC; 6536 } 6537 6538 if (dest >= min_magic) { 6539 /* This is an exception return magic value; put it where 6540 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. 6541 * Note that if we ever add gen_ss_advance() singlestep support to 6542 * M profile this should count as an "instruction execution complete" 6543 * event (compare gen_bx_excret_final_code()). 6544 */ 6545 env->regs[15] = dest & ~1; 6546 env->thumb = dest & 1; 6547 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); 6548 /* notreached */ 6549 } 6550 6551 /* translate.c should have made BXNS UNDEF unless we're secure */ 6552 assert(env->v7m.secure); 6553 6554 switch_v7m_security_state(env, dest & 1); 6555 env->thumb = 1; 6556 env->regs[15] = dest & ~1; 6557 } 6558 6559 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6560 { 6561 /* Handle v7M BLXNS: 6562 * - bit 0 of the destination address is the target security state 6563 */ 6564 6565 /* At this point regs[15] is the address just after the BLXNS */ 6566 uint32_t nextinst = env->regs[15] | 1; 6567 uint32_t sp = env->regs[13] - 8; 6568 uint32_t saved_psr; 6569 6570 /* translate.c will have made BLXNS UNDEF unless we're secure */ 6571 assert(env->v7m.secure); 6572 6573 if (dest & 1) { 6574 /* target is Secure, so this is just a normal BLX, 6575 * except that the low bit doesn't indicate Thumb/not. 6576 */ 6577 env->regs[14] = nextinst; 6578 env->thumb = 1; 6579 env->regs[15] = dest & ~1; 6580 return; 6581 } 6582 6583 /* Target is non-secure: first push a stack frame */ 6584 if (!QEMU_IS_ALIGNED(sp, 8)) { 6585 qemu_log_mask(LOG_GUEST_ERROR, 6586 "BLXNS with misaligned SP is UNPREDICTABLE\n"); 6587 } 6588 6589 saved_psr = env->v7m.exception; 6590 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { 6591 saved_psr |= XPSR_SFPA; 6592 } 6593 6594 /* Note that these stores can throw exceptions on MPU faults */ 6595 cpu_stl_data(env, sp, nextinst); 6596 cpu_stl_data(env, sp + 4, saved_psr); 6597 6598 env->regs[13] = sp; 6599 env->regs[14] = 0xfeffffff; 6600 if (arm_v7m_is_handler_mode(env)) { 6601 /* Write a dummy value to IPSR, to avoid leaking the current secure 6602 * exception number to non-secure code. This is guaranteed not 6603 * to cause write_v7m_exception() to actually change stacks. 6604 */ 6605 write_v7m_exception(env, 1); 6606 } 6607 switch_v7m_security_state(env, 0); 6608 env->thumb = 1; 6609 env->regs[15] = dest; 6610 } 6611 6612 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, 6613 bool spsel) 6614 { 6615 /* Return a pointer to the location where we currently store the 6616 * stack pointer for the requested security state and thread mode. 6617 * This pointer will become invalid if the CPU state is updated 6618 * such that the stack pointers are switched around (eg changing 6619 * the SPSEL control bit). 6620 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). 6621 * Unlike that pseudocode, we require the caller to pass us in the 6622 * SPSEL control bit value; this is because we also use this 6623 * function in handling of pushing of the callee-saves registers 6624 * part of the v8M stack frame (pseudocode PushCalleeStack()), 6625 * and in the tailchain codepath the SPSEL bit comes from the exception 6626 * return magic LR value from the previous exception. The pseudocode 6627 * opencodes the stack-selection in PushCalleeStack(), but we prefer 6628 * to make this utility function generic enough to do the job. 6629 */ 6630 bool want_psp = threadmode && spsel; 6631 6632 if (secure == env->v7m.secure) { 6633 if (want_psp == v7m_using_psp(env)) { 6634 return &env->regs[13]; 6635 } else { 6636 return &env->v7m.other_sp; 6637 } 6638 } else { 6639 if (want_psp) { 6640 return &env->v7m.other_ss_psp; 6641 } else { 6642 return &env->v7m.other_ss_msp; 6643 } 6644 } 6645 } 6646 6647 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure, 6648 uint32_t *pvec) 6649 { 6650 CPUState *cs = CPU(cpu); 6651 CPUARMState *env = &cpu->env; 6652 MemTxResult result; 6653 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4; 6654 uint32_t vector_entry; 6655 MemTxAttrs attrs = {}; 6656 ARMMMUIdx mmu_idx; 6657 bool exc_secure; 6658 6659 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true); 6660 6661 /* We don't do a get_phys_addr() here because the rules for vector 6662 * loads are special: they always use the default memory map, and 6663 * the default memory map permits reads from all addresses. 6664 * Since there's no easy way to pass through to pmsav8_mpu_lookup() 6665 * that we want this special case which would always say "yes", 6666 * we just do the SAU lookup here followed by a direct physical load. 6667 */ 6668 attrs.secure = targets_secure; 6669 attrs.user = false; 6670 6671 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6672 V8M_SAttributes sattrs = {}; 6673 6674 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 6675 if (sattrs.ns) { 6676 attrs.secure = false; 6677 } else if (!targets_secure) { 6678 /* NS access to S memory */ 6679 goto load_fail; 6680 } 6681 } 6682 6683 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr, 6684 attrs, &result); 6685 if (result != MEMTX_OK) { 6686 goto load_fail; 6687 } 6688 *pvec = vector_entry; 6689 return true; 6690 6691 load_fail: 6692 /* All vector table fetch fails are reported as HardFault, with 6693 * HFSR.VECTTBL and .FORCED set. (FORCED is set because 6694 * technically the underlying exception is a MemManage or BusFault 6695 * that is escalated to HardFault.) This is a terminal exception, 6696 * so we will either take the HardFault immediately or else enter 6697 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()). 6698 */ 6699 exc_secure = targets_secure || 6700 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 6701 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK; 6702 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure); 6703 return false; 6704 } 6705 6706 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain, 6707 bool ignore_faults) 6708 { 6709 /* For v8M, push the callee-saves register part of the stack frame. 6710 * Compare the v8M pseudocode PushCalleeStack(). 6711 * In the tailchaining case this may not be the current stack. 6712 */ 6713 CPUARMState *env = &cpu->env; 6714 uint32_t *frame_sp_p; 6715 uint32_t frameptr; 6716 ARMMMUIdx mmu_idx; 6717 bool stacked_ok; 6718 6719 if (dotailchain) { 6720 bool mode = lr & R_V7M_EXCRET_MODE_MASK; 6721 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) || 6722 !mode; 6723 6724 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv); 6725 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode, 6726 lr & R_V7M_EXCRET_SPSEL_MASK); 6727 } else { 6728 mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 6729 frame_sp_p = &env->regs[13]; 6730 } 6731 6732 frameptr = *frame_sp_p - 0x28; 6733 6734 /* Write as much of the stack frame as we can. A write failure may 6735 * cause us to pend a derived exception. 6736 */ 6737 stacked_ok = 6738 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) && 6739 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, 6740 ignore_faults) && 6741 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, 6742 ignore_faults) && 6743 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, 6744 ignore_faults) && 6745 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, 6746 ignore_faults) && 6747 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, 6748 ignore_faults) && 6749 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, 6750 ignore_faults) && 6751 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, 6752 ignore_faults) && 6753 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, 6754 ignore_faults); 6755 6756 /* Update SP regardless of whether any of the stack accesses failed. 6757 * When we implement v8M stack limit checking then this attempt to 6758 * update SP might also fail and result in a derived exception. 6759 */ 6760 *frame_sp_p = frameptr; 6761 6762 return !stacked_ok; 6763 } 6764 6765 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain, 6766 bool ignore_stackfaults) 6767 { 6768 /* Do the "take the exception" parts of exception entry, 6769 * but not the pushing of state to the stack. This is 6770 * similar to the pseudocode ExceptionTaken() function. 6771 */ 6772 CPUARMState *env = &cpu->env; 6773 uint32_t addr; 6774 bool targets_secure; 6775 int exc; 6776 bool push_failed = false; 6777 6778 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure); 6779 6780 if (arm_feature(env, ARM_FEATURE_V8)) { 6781 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 6782 (lr & R_V7M_EXCRET_S_MASK)) { 6783 /* The background code (the owner of the registers in the 6784 * exception frame) is Secure. This means it may either already 6785 * have or now needs to push callee-saves registers. 6786 */ 6787 if (targets_secure) { 6788 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { 6789 /* We took an exception from Secure to NonSecure 6790 * (which means the callee-saved registers got stacked) 6791 * and are now tailchaining to a Secure exception. 6792 * Clear DCRS so eventual return from this Secure 6793 * exception unstacks the callee-saved registers. 6794 */ 6795 lr &= ~R_V7M_EXCRET_DCRS_MASK; 6796 } 6797 } else { 6798 /* We're going to a non-secure exception; push the 6799 * callee-saves registers to the stack now, if they're 6800 * not already saved. 6801 */ 6802 if (lr & R_V7M_EXCRET_DCRS_MASK && 6803 !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) { 6804 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain, 6805 ignore_stackfaults); 6806 } 6807 lr |= R_V7M_EXCRET_DCRS_MASK; 6808 } 6809 } 6810 6811 lr &= ~R_V7M_EXCRET_ES_MASK; 6812 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6813 lr |= R_V7M_EXCRET_ES_MASK; 6814 } 6815 lr &= ~R_V7M_EXCRET_SPSEL_MASK; 6816 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { 6817 lr |= R_V7M_EXCRET_SPSEL_MASK; 6818 } 6819 6820 /* Clear registers if necessary to prevent non-secure exception 6821 * code being able to see register values from secure code. 6822 * Where register values become architecturally UNKNOWN we leave 6823 * them with their previous values. 6824 */ 6825 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6826 if (!targets_secure) { 6827 /* Always clear the caller-saved registers (they have been 6828 * pushed to the stack earlier in v7m_push_stack()). 6829 * Clear callee-saved registers if the background code is 6830 * Secure (in which case these regs were saved in 6831 * v7m_push_callee_stack()). 6832 */ 6833 int i; 6834 6835 for (i = 0; i < 13; i++) { 6836 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ 6837 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { 6838 env->regs[i] = 0; 6839 } 6840 } 6841 /* Clear EAPSR */ 6842 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); 6843 } 6844 } 6845 } 6846 6847 if (push_failed && !ignore_stackfaults) { 6848 /* Derived exception on callee-saves register stacking: 6849 * we might now want to take a different exception which 6850 * targets a different security state, so try again from the top. 6851 */ 6852 v7m_exception_taken(cpu, lr, true, true); 6853 return; 6854 } 6855 6856 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) { 6857 /* Vector load failed: derived exception */ 6858 v7m_exception_taken(cpu, lr, true, true); 6859 return; 6860 } 6861 6862 /* Now we've done everything that might cause a derived exception 6863 * we can go ahead and activate whichever exception we're going to 6864 * take (which might now be the derived exception). 6865 */ 6866 armv7m_nvic_acknowledge_irq(env->nvic); 6867 6868 /* Switch to target security state -- must do this before writing SPSEL */ 6869 switch_v7m_security_state(env, targets_secure); 6870 write_v7m_control_spsel(env, 0); 6871 arm_clear_exclusive(env); 6872 /* Clear IT bits */ 6873 env->condexec_bits = 0; 6874 env->regs[14] = lr; 6875 env->regs[15] = addr & 0xfffffffe; 6876 env->thumb = addr & 1; 6877 } 6878 6879 static bool v7m_push_stack(ARMCPU *cpu) 6880 { 6881 /* Do the "set up stack frame" part of exception entry, 6882 * similar to pseudocode PushStack(). 6883 * Return true if we generate a derived exception (and so 6884 * should ignore further stack faults trying to process 6885 * that derived exception.) 6886 */ 6887 bool stacked_ok; 6888 CPUARMState *env = &cpu->env; 6889 uint32_t xpsr = xpsr_read(env); 6890 uint32_t frameptr = env->regs[13]; 6891 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 6892 6893 /* Align stack pointer if the guest wants that */ 6894 if ((frameptr & 4) && 6895 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { 6896 frameptr -= 4; 6897 xpsr |= XPSR_SPREALIGN; 6898 } 6899 6900 frameptr -= 0x20; 6901 6902 /* Write as much of the stack frame as we can. If we fail a stack 6903 * write this will result in a derived exception being pended 6904 * (which may be taken in preference to the one we started with 6905 * if it has higher priority). 6906 */ 6907 stacked_ok = 6908 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) && 6909 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) && 6910 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) && 6911 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) && 6912 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) && 6913 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) && 6914 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) && 6915 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false); 6916 6917 /* Update SP regardless of whether any of the stack accesses failed. 6918 * When we implement v8M stack limit checking then this attempt to 6919 * update SP might also fail and result in a derived exception. 6920 */ 6921 env->regs[13] = frameptr; 6922 6923 return !stacked_ok; 6924 } 6925 6926 static void do_v7m_exception_exit(ARMCPU *cpu) 6927 { 6928 CPUARMState *env = &cpu->env; 6929 uint32_t excret; 6930 uint32_t xpsr; 6931 bool ufault = false; 6932 bool sfault = false; 6933 bool return_to_sp_process; 6934 bool return_to_handler; 6935 bool rettobase = false; 6936 bool exc_secure = false; 6937 bool return_to_secure; 6938 6939 /* If we're not in Handler mode then jumps to magic exception-exit 6940 * addresses don't have magic behaviour. However for the v8M 6941 * security extensions the magic secure-function-return has to 6942 * work in thread mode too, so to avoid doing an extra check in 6943 * the generated code we allow exception-exit magic to also cause the 6944 * internal exception and bring us here in thread mode. Correct code 6945 * will never try to do this (the following insn fetch will always 6946 * fault) so we the overhead of having taken an unnecessary exception 6947 * doesn't matter. 6948 */ 6949 if (!arm_v7m_is_handler_mode(env)) { 6950 return; 6951 } 6952 6953 /* In the spec pseudocode ExceptionReturn() is called directly 6954 * from BXWritePC() and gets the full target PC value including 6955 * bit zero. In QEMU's implementation we treat it as a normal 6956 * jump-to-register (which is then caught later on), and so split 6957 * the target value up between env->regs[15] and env->thumb in 6958 * gen_bx(). Reconstitute it. 6959 */ 6960 excret = env->regs[15]; 6961 if (env->thumb) { 6962 excret |= 1; 6963 } 6964 6965 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 6966 " previous exception %d\n", 6967 excret, env->v7m.exception); 6968 6969 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { 6970 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " 6971 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", 6972 excret); 6973 } 6974 6975 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6976 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before 6977 * we pick which FAULTMASK to clear. 6978 */ 6979 if (!env->v7m.secure && 6980 ((excret & R_V7M_EXCRET_ES_MASK) || 6981 !(excret & R_V7M_EXCRET_DCRS_MASK))) { 6982 sfault = 1; 6983 /* For all other purposes, treat ES as 0 (R_HXSR) */ 6984 excret &= ~R_V7M_EXCRET_ES_MASK; 6985 } 6986 } 6987 6988 if (env->v7m.exception != ARMV7M_EXCP_NMI) { 6989 /* Auto-clear FAULTMASK on return from other than NMI. 6990 * If the security extension is implemented then this only 6991 * happens if the raw execution priority is >= 0; the 6992 * value of the ES bit in the exception return value indicates 6993 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) 6994 */ 6995 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6996 exc_secure = excret & R_V7M_EXCRET_ES_MASK; 6997 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { 6998 env->v7m.faultmask[exc_secure] = 0; 6999 } 7000 } else { 7001 env->v7m.faultmask[M_REG_NS] = 0; 7002 } 7003 } 7004 7005 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, 7006 exc_secure)) { 7007 case -1: 7008 /* attempt to exit an exception that isn't active */ 7009 ufault = true; 7010 break; 7011 case 0: 7012 /* still an irq active now */ 7013 break; 7014 case 1: 7015 /* we returned to base exception level, no nesting. 7016 * (In the pseudocode this is written using "NestedActivation != 1" 7017 * where we have 'rettobase == false'.) 7018 */ 7019 rettobase = true; 7020 break; 7021 default: 7022 g_assert_not_reached(); 7023 } 7024 7025 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); 7026 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; 7027 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && 7028 (excret & R_V7M_EXCRET_S_MASK); 7029 7030 if (arm_feature(env, ARM_FEATURE_V8)) { 7031 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7032 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); 7033 * we choose to take the UsageFault. 7034 */ 7035 if ((excret & R_V7M_EXCRET_S_MASK) || 7036 (excret & R_V7M_EXCRET_ES_MASK) || 7037 !(excret & R_V7M_EXCRET_DCRS_MASK)) { 7038 ufault = true; 7039 } 7040 } 7041 if (excret & R_V7M_EXCRET_RES0_MASK) { 7042 ufault = true; 7043 } 7044 } else { 7045 /* For v7M we only recognize certain combinations of the low bits */ 7046 switch (excret & 0xf) { 7047 case 1: /* Return to Handler */ 7048 break; 7049 case 13: /* Return to Thread using Process stack */ 7050 case 9: /* Return to Thread using Main stack */ 7051 /* We only need to check NONBASETHRDENA for v7M, because in 7052 * v8M this bit does not exist (it is RES1). 7053 */ 7054 if (!rettobase && 7055 !(env->v7m.ccr[env->v7m.secure] & 7056 R_V7M_CCR_NONBASETHRDENA_MASK)) { 7057 ufault = true; 7058 } 7059 break; 7060 default: 7061 ufault = true; 7062 } 7063 } 7064 7065 if (sfault) { 7066 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; 7067 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7068 v7m_exception_taken(cpu, excret, true, false); 7069 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 7070 "stackframe: failed EXC_RETURN.ES validity check\n"); 7071 return; 7072 } 7073 7074 if (ufault) { 7075 /* Bad exception return: instead of popping the exception 7076 * stack, directly take a usage fault on the current stack. 7077 */ 7078 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7079 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7080 v7m_exception_taken(cpu, excret, true, false); 7081 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 7082 "stackframe: failed exception return integrity check\n"); 7083 return; 7084 } 7085 7086 /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in 7087 * Handler mode (and will be until we write the new XPSR.Interrupt 7088 * field) this does not switch around the current stack pointer. 7089 */ 7090 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); 7091 7092 switch_v7m_security_state(env, return_to_secure); 7093 7094 { 7095 /* The stack pointer we should be reading the exception frame from 7096 * depends on bits in the magic exception return type value (and 7097 * for v8M isn't necessarily the stack pointer we will eventually 7098 * end up resuming execution with). Get a pointer to the location 7099 * in the CPU state struct where the SP we need is currently being 7100 * stored; we will use and modify it in place. 7101 * We use this limited C variable scope so we don't accidentally 7102 * use 'frame_sp_p' after we do something that makes it invalid. 7103 */ 7104 uint32_t *frame_sp_p = get_v7m_sp_ptr(env, 7105 return_to_secure, 7106 !return_to_handler, 7107 return_to_sp_process); 7108 uint32_t frameptr = *frame_sp_p; 7109 bool pop_ok = true; 7110 ARMMMUIdx mmu_idx; 7111 7112 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure, 7113 !return_to_handler); 7114 7115 if (!QEMU_IS_ALIGNED(frameptr, 8) && 7116 arm_feature(env, ARM_FEATURE_V8)) { 7117 qemu_log_mask(LOG_GUEST_ERROR, 7118 "M profile exception return with non-8-aligned SP " 7119 "for destination state is UNPREDICTABLE\n"); 7120 } 7121 7122 /* Do we need to pop callee-saved registers? */ 7123 if (return_to_secure && 7124 ((excret & R_V7M_EXCRET_ES_MASK) == 0 || 7125 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { 7126 uint32_t expected_sig = 0xfefa125b; 7127 uint32_t actual_sig; 7128 7129 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx); 7130 7131 if (pop_ok && expected_sig != actual_sig) { 7132 /* Take a SecureFault on the current stack */ 7133 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; 7134 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7135 v7m_exception_taken(cpu, excret, true, false); 7136 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 7137 "stackframe: failed exception return integrity " 7138 "signature check\n"); 7139 return; 7140 } 7141 7142 pop_ok = pop_ok && 7143 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && 7144 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && 7145 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) && 7146 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) && 7147 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) && 7148 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) && 7149 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) && 7150 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) && 7151 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx); 7152 7153 frameptr += 0x28; 7154 } 7155 7156 /* Pop registers */ 7157 pop_ok = pop_ok && 7158 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) && 7159 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) && 7160 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) && 7161 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) && 7162 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) && 7163 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) && 7164 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) && 7165 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx); 7166 7167 if (!pop_ok) { 7168 /* v7m_stack_read() pended a fault, so take it (as a tail 7169 * chained exception on the same stack frame) 7170 */ 7171 v7m_exception_taken(cpu, excret, true, false); 7172 return; 7173 } 7174 7175 /* Returning from an exception with a PC with bit 0 set is defined 7176 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified 7177 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore 7178 * the lsbit, and there are several RTOSes out there which incorrectly 7179 * assume the r15 in the stack frame should be a Thumb-style "lsbit 7180 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but 7181 * complain about the badly behaved guest. 7182 */ 7183 if (env->regs[15] & 1) { 7184 env->regs[15] &= ~1U; 7185 if (!arm_feature(env, ARM_FEATURE_V8)) { 7186 qemu_log_mask(LOG_GUEST_ERROR, 7187 "M profile return from interrupt with misaligned " 7188 "PC is UNPREDICTABLE on v7M\n"); 7189 } 7190 } 7191 7192 if (arm_feature(env, ARM_FEATURE_V8)) { 7193 /* For v8M we have to check whether the xPSR exception field 7194 * matches the EXCRET value for return to handler/thread 7195 * before we commit to changing the SP and xPSR. 7196 */ 7197 bool will_be_handler = (xpsr & XPSR_EXCP) != 0; 7198 if (return_to_handler != will_be_handler) { 7199 /* Take an INVPC UsageFault on the current stack. 7200 * By this point we will have switched to the security state 7201 * for the background state, so this UsageFault will target 7202 * that state. 7203 */ 7204 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7205 env->v7m.secure); 7206 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7207 v7m_exception_taken(cpu, excret, true, false); 7208 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 7209 "stackframe: failed exception return integrity " 7210 "check\n"); 7211 return; 7212 } 7213 } 7214 7215 /* Commit to consuming the stack frame */ 7216 frameptr += 0x20; 7217 /* Undo stack alignment (the SPREALIGN bit indicates that the original 7218 * pre-exception SP was not 8-aligned and we added a padding word to 7219 * align it, so we undo this by ORing in the bit that increases it 7220 * from the current 8-aligned value to the 8-unaligned value. (Adding 4 7221 * would work too but a logical OR is how the pseudocode specifies it.) 7222 */ 7223 if (xpsr & XPSR_SPREALIGN) { 7224 frameptr |= 4; 7225 } 7226 *frame_sp_p = frameptr; 7227 } 7228 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ 7229 xpsr_write(env, xpsr, ~XPSR_SPREALIGN); 7230 7231 /* The restored xPSR exception field will be zero if we're 7232 * resuming in Thread mode. If that doesn't match what the 7233 * exception return excret specified then this is a UsageFault. 7234 * v7M requires we make this check here; v8M did it earlier. 7235 */ 7236 if (return_to_handler != arm_v7m_is_handler_mode(env)) { 7237 /* Take an INVPC UsageFault by pushing the stack again; 7238 * we know we're v7M so this is never a Secure UsageFault. 7239 */ 7240 bool ignore_stackfaults; 7241 7242 assert(!arm_feature(env, ARM_FEATURE_V8)); 7243 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); 7244 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7245 ignore_stackfaults = v7m_push_stack(cpu); 7246 v7m_exception_taken(cpu, excret, false, ignore_stackfaults); 7247 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " 7248 "failed exception return integrity check\n"); 7249 return; 7250 } 7251 7252 /* Otherwise, we have a successful exception exit. */ 7253 arm_clear_exclusive(env); 7254 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); 7255 } 7256 7257 static bool do_v7m_function_return(ARMCPU *cpu) 7258 { 7259 /* v8M security extensions magic function return. 7260 * We may either: 7261 * (1) throw an exception (longjump) 7262 * (2) return true if we successfully handled the function return 7263 * (3) return false if we failed a consistency check and have 7264 * pended a UsageFault that needs to be taken now 7265 * 7266 * At this point the magic return value is split between env->regs[15] 7267 * and env->thumb. We don't bother to reconstitute it because we don't 7268 * need it (all values are handled the same way). 7269 */ 7270 CPUARMState *env = &cpu->env; 7271 uint32_t newpc, newpsr, newpsr_exc; 7272 7273 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); 7274 7275 { 7276 bool threadmode, spsel; 7277 TCGMemOpIdx oi; 7278 ARMMMUIdx mmu_idx; 7279 uint32_t *frame_sp_p; 7280 uint32_t frameptr; 7281 7282 /* Pull the return address and IPSR from the Secure stack */ 7283 threadmode = !arm_v7m_is_handler_mode(env); 7284 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; 7285 7286 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); 7287 frameptr = *frame_sp_p; 7288 7289 /* These loads may throw an exception (for MPU faults). We want to 7290 * do them as secure, so work out what MMU index that is. 7291 */ 7292 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7293 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); 7294 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); 7295 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); 7296 7297 /* Consistency checks on new IPSR */ 7298 newpsr_exc = newpsr & XPSR_EXCP; 7299 if (!((env->v7m.exception == 0 && newpsr_exc == 0) || 7300 (env->v7m.exception == 1 && newpsr_exc != 0))) { 7301 /* Pend the fault and tell our caller to take it */ 7302 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7303 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7304 env->v7m.secure); 7305 qemu_log_mask(CPU_LOG_INT, 7306 "...taking INVPC UsageFault: " 7307 "IPSR consistency check failed\n"); 7308 return false; 7309 } 7310 7311 *frame_sp_p = frameptr + 8; 7312 } 7313 7314 /* This invalidates frame_sp_p */ 7315 switch_v7m_security_state(env, true); 7316 env->v7m.exception = newpsr_exc; 7317 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 7318 if (newpsr & XPSR_SFPA) { 7319 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; 7320 } 7321 xpsr_write(env, 0, XPSR_IT); 7322 env->thumb = newpc & 1; 7323 env->regs[15] = newpc & ~1; 7324 7325 qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); 7326 return true; 7327 } 7328 7329 static void arm_log_exception(int idx) 7330 { 7331 if (qemu_loglevel_mask(CPU_LOG_INT)) { 7332 const char *exc = NULL; 7333 static const char * const excnames[] = { 7334 [EXCP_UDEF] = "Undefined Instruction", 7335 [EXCP_SWI] = "SVC", 7336 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 7337 [EXCP_DATA_ABORT] = "Data Abort", 7338 [EXCP_IRQ] = "IRQ", 7339 [EXCP_FIQ] = "FIQ", 7340 [EXCP_BKPT] = "Breakpoint", 7341 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 7342 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 7343 [EXCP_HVC] = "Hypervisor Call", 7344 [EXCP_HYP_TRAP] = "Hypervisor Trap", 7345 [EXCP_SMC] = "Secure Monitor Call", 7346 [EXCP_VIRQ] = "Virtual IRQ", 7347 [EXCP_VFIQ] = "Virtual FIQ", 7348 [EXCP_SEMIHOST] = "Semihosting call", 7349 [EXCP_NOCP] = "v7M NOCP UsageFault", 7350 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 7351 }; 7352 7353 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 7354 exc = excnames[idx]; 7355 } 7356 if (!exc) { 7357 exc = "unknown"; 7358 } 7359 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 7360 } 7361 } 7362 7363 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, 7364 uint32_t addr, uint16_t *insn) 7365 { 7366 /* Load a 16-bit portion of a v7M instruction, returning true on success, 7367 * or false on failure (in which case we will have pended the appropriate 7368 * exception). 7369 * We need to do the instruction fetch's MPU and SAU checks 7370 * like this because there is no MMU index that would allow 7371 * doing the load with a single function call. Instead we must 7372 * first check that the security attributes permit the load 7373 * and that they don't mismatch on the two halves of the instruction, 7374 * and then we do the load as a secure load (ie using the security 7375 * attributes of the address, not the CPU, as architecturally required). 7376 */ 7377 CPUState *cs = CPU(cpu); 7378 CPUARMState *env = &cpu->env; 7379 V8M_SAttributes sattrs = {}; 7380 MemTxAttrs attrs = {}; 7381 ARMMMUFaultInfo fi = {}; 7382 MemTxResult txres; 7383 target_ulong page_size; 7384 hwaddr physaddr; 7385 int prot; 7386 7387 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); 7388 if (!sattrs.nsc || sattrs.ns) { 7389 /* This must be the second half of the insn, and it straddles a 7390 * region boundary with the second half not being S&NSC. 7391 */ 7392 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7393 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7394 qemu_log_mask(CPU_LOG_INT, 7395 "...really SecureFault with SFSR.INVEP\n"); 7396 return false; 7397 } 7398 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, 7399 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) { 7400 /* the MPU lookup failed */ 7401 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7402 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); 7403 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); 7404 return false; 7405 } 7406 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, 7407 attrs, &txres); 7408 if (txres != MEMTX_OK) { 7409 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7410 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7411 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); 7412 return false; 7413 } 7414 return true; 7415 } 7416 7417 static bool v7m_handle_execute_nsc(ARMCPU *cpu) 7418 { 7419 /* Check whether this attempt to execute code in a Secure & NS-Callable 7420 * memory region is for an SG instruction; if so, then emulate the 7421 * effect of the SG instruction and return true. Otherwise pend 7422 * the correct kind of exception and return false. 7423 */ 7424 CPUARMState *env = &cpu->env; 7425 ARMMMUIdx mmu_idx; 7426 uint16_t insn; 7427 7428 /* We should never get here unless get_phys_addr_pmsav8() caused 7429 * an exception for NS executing in S&NSC memory. 7430 */ 7431 assert(!env->v7m.secure); 7432 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7433 7434 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ 7435 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7436 7437 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { 7438 return false; 7439 } 7440 7441 if (!env->thumb) { 7442 goto gen_invep; 7443 } 7444 7445 if (insn != 0xe97f) { 7446 /* Not an SG instruction first half (we choose the IMPDEF 7447 * early-SG-check option). 7448 */ 7449 goto gen_invep; 7450 } 7451 7452 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { 7453 return false; 7454 } 7455 7456 if (insn != 0xe97f) { 7457 /* Not an SG instruction second half (yes, both halves of the SG 7458 * insn have the same hex value) 7459 */ 7460 goto gen_invep; 7461 } 7462 7463 /* OK, we have confirmed that we really have an SG instruction. 7464 * We know we're NS in S memory so don't need to repeat those checks. 7465 */ 7466 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 7467 ", executing it\n", env->regs[15]); 7468 env->regs[14] &= ~1; 7469 switch_v7m_security_state(env, true); 7470 xpsr_write(env, 0, XPSR_IT); 7471 env->regs[15] += 4; 7472 return true; 7473 7474 gen_invep: 7475 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7476 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7477 qemu_log_mask(CPU_LOG_INT, 7478 "...really SecureFault with SFSR.INVEP\n"); 7479 return false; 7480 } 7481 7482 void arm_v7m_cpu_do_interrupt(CPUState *cs) 7483 { 7484 ARMCPU *cpu = ARM_CPU(cs); 7485 CPUARMState *env = &cpu->env; 7486 uint32_t lr; 7487 bool ignore_stackfaults; 7488 7489 arm_log_exception(cs->exception_index); 7490 7491 /* For exceptions we just mark as pending on the NVIC, and let that 7492 handle it. */ 7493 switch (cs->exception_index) { 7494 case EXCP_UDEF: 7495 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7496 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; 7497 break; 7498 case EXCP_NOCP: 7499 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7500 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; 7501 break; 7502 case EXCP_INVSTATE: 7503 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7504 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; 7505 break; 7506 case EXCP_SWI: 7507 /* The PC already points to the next instruction. */ 7508 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); 7509 break; 7510 case EXCP_PREFETCH_ABORT: 7511 case EXCP_DATA_ABORT: 7512 /* Note that for M profile we don't have a guest facing FSR, but 7513 * the env->exception.fsr will be populated by the code that 7514 * raises the fault, in the A profile short-descriptor format. 7515 */ 7516 switch (env->exception.fsr & 0xf) { 7517 case M_FAKE_FSR_NSC_EXEC: 7518 /* Exception generated when we try to execute code at an address 7519 * which is marked as Secure & Non-Secure Callable and the CPU 7520 * is in the Non-Secure state. The only instruction which can 7521 * be executed like this is SG (and that only if both halves of 7522 * the SG instruction have the same security attributes.) 7523 * Everything else must generate an INVEP SecureFault, so we 7524 * emulate the SG instruction here. 7525 */ 7526 if (v7m_handle_execute_nsc(cpu)) { 7527 return; 7528 } 7529 break; 7530 case M_FAKE_FSR_SFAULT: 7531 /* Various flavours of SecureFault for attempts to execute or 7532 * access data in the wrong security state. 7533 */ 7534 switch (cs->exception_index) { 7535 case EXCP_PREFETCH_ABORT: 7536 if (env->v7m.secure) { 7537 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; 7538 qemu_log_mask(CPU_LOG_INT, 7539 "...really SecureFault with SFSR.INVTRAN\n"); 7540 } else { 7541 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7542 qemu_log_mask(CPU_LOG_INT, 7543 "...really SecureFault with SFSR.INVEP\n"); 7544 } 7545 break; 7546 case EXCP_DATA_ABORT: 7547 /* This must be an NS access to S memory */ 7548 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; 7549 qemu_log_mask(CPU_LOG_INT, 7550 "...really SecureFault with SFSR.AUVIOL\n"); 7551 break; 7552 } 7553 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7554 break; 7555 case 0x8: /* External Abort */ 7556 switch (cs->exception_index) { 7557 case EXCP_PREFETCH_ABORT: 7558 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7559 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); 7560 break; 7561 case EXCP_DATA_ABORT: 7562 env->v7m.cfsr[M_REG_NS] |= 7563 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); 7564 env->v7m.bfar = env->exception.vaddress; 7565 qemu_log_mask(CPU_LOG_INT, 7566 "...with CFSR.PRECISERR and BFAR 0x%x\n", 7567 env->v7m.bfar); 7568 break; 7569 } 7570 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7571 break; 7572 default: 7573 /* All other FSR values are either MPU faults or "can't happen 7574 * for M profile" cases. 7575 */ 7576 switch (cs->exception_index) { 7577 case EXCP_PREFETCH_ABORT: 7578 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7579 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); 7580 break; 7581 case EXCP_DATA_ABORT: 7582 env->v7m.cfsr[env->v7m.secure] |= 7583 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); 7584 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; 7585 qemu_log_mask(CPU_LOG_INT, 7586 "...with CFSR.DACCVIOL and MMFAR 0x%x\n", 7587 env->v7m.mmfar[env->v7m.secure]); 7588 break; 7589 } 7590 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, 7591 env->v7m.secure); 7592 break; 7593 } 7594 break; 7595 case EXCP_BKPT: 7596 if (semihosting_enabled()) { 7597 int nr; 7598 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 7599 if (nr == 0xab) { 7600 env->regs[15] += 2; 7601 qemu_log_mask(CPU_LOG_INT, 7602 "...handling as semihosting call 0x%x\n", 7603 env->regs[0]); 7604 env->regs[0] = do_arm_semihosting(env); 7605 return; 7606 } 7607 } 7608 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); 7609 break; 7610 case EXCP_IRQ: 7611 break; 7612 case EXCP_EXCEPTION_EXIT: 7613 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { 7614 /* Must be v8M security extension function return */ 7615 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); 7616 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7617 if (do_v7m_function_return(cpu)) { 7618 return; 7619 } 7620 } else { 7621 do_v7m_exception_exit(cpu); 7622 return; 7623 } 7624 break; 7625 default: 7626 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7627 return; /* Never happens. Keep compiler happy. */ 7628 } 7629 7630 if (arm_feature(env, ARM_FEATURE_V8)) { 7631 lr = R_V7M_EXCRET_RES1_MASK | 7632 R_V7M_EXCRET_DCRS_MASK | 7633 R_V7M_EXCRET_FTYPE_MASK; 7634 /* The S bit indicates whether we should return to Secure 7635 * or NonSecure (ie our current state). 7636 * The ES bit indicates whether we're taking this exception 7637 * to Secure or NonSecure (ie our target state). We set it 7638 * later, in v7m_exception_taken(). 7639 * The SPSEL bit is also set in v7m_exception_taken() for v8M. 7640 * This corresponds to the ARM ARM pseudocode for v8M setting 7641 * some LR bits in PushStack() and some in ExceptionTaken(); 7642 * the distinction matters for the tailchain cases where we 7643 * can take an exception without pushing the stack. 7644 */ 7645 if (env->v7m.secure) { 7646 lr |= R_V7M_EXCRET_S_MASK; 7647 } 7648 } else { 7649 lr = R_V7M_EXCRET_RES1_MASK | 7650 R_V7M_EXCRET_S_MASK | 7651 R_V7M_EXCRET_DCRS_MASK | 7652 R_V7M_EXCRET_FTYPE_MASK | 7653 R_V7M_EXCRET_ES_MASK; 7654 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { 7655 lr |= R_V7M_EXCRET_SPSEL_MASK; 7656 } 7657 } 7658 if (!arm_v7m_is_handler_mode(env)) { 7659 lr |= R_V7M_EXCRET_MODE_MASK; 7660 } 7661 7662 ignore_stackfaults = v7m_push_stack(cpu); 7663 v7m_exception_taken(cpu, lr, false, ignore_stackfaults); 7664 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception); 7665 } 7666 7667 /* Function used to synchronize QEMU's AArch64 register set with AArch32 7668 * register set. This is necessary when switching between AArch32 and AArch64 7669 * execution state. 7670 */ 7671 void aarch64_sync_32_to_64(CPUARMState *env) 7672 { 7673 int i; 7674 uint32_t mode = env->uncached_cpsr & CPSR_M; 7675 7676 /* We can blanket copy R[0:7] to X[0:7] */ 7677 for (i = 0; i < 8; i++) { 7678 env->xregs[i] = env->regs[i]; 7679 } 7680 7681 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 7682 * Otherwise, they come from the banked user regs. 7683 */ 7684 if (mode == ARM_CPU_MODE_FIQ) { 7685 for (i = 8; i < 13; i++) { 7686 env->xregs[i] = env->usr_regs[i - 8]; 7687 } 7688 } else { 7689 for (i = 8; i < 13; i++) { 7690 env->xregs[i] = env->regs[i]; 7691 } 7692 } 7693 7694 /* Registers x13-x23 are the various mode SP and FP registers. Registers 7695 * r13 and r14 are only copied if we are in that mode, otherwise we copy 7696 * from the mode banked register. 7697 */ 7698 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7699 env->xregs[13] = env->regs[13]; 7700 env->xregs[14] = env->regs[14]; 7701 } else { 7702 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 7703 /* HYP is an exception in that it is copied from r14 */ 7704 if (mode == ARM_CPU_MODE_HYP) { 7705 env->xregs[14] = env->regs[14]; 7706 } else { 7707 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; 7708 } 7709 } 7710 7711 if (mode == ARM_CPU_MODE_HYP) { 7712 env->xregs[15] = env->regs[13]; 7713 } else { 7714 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 7715 } 7716 7717 if (mode == ARM_CPU_MODE_IRQ) { 7718 env->xregs[16] = env->regs[14]; 7719 env->xregs[17] = env->regs[13]; 7720 } else { 7721 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; 7722 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 7723 } 7724 7725 if (mode == ARM_CPU_MODE_SVC) { 7726 env->xregs[18] = env->regs[14]; 7727 env->xregs[19] = env->regs[13]; 7728 } else { 7729 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; 7730 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 7731 } 7732 7733 if (mode == ARM_CPU_MODE_ABT) { 7734 env->xregs[20] = env->regs[14]; 7735 env->xregs[21] = env->regs[13]; 7736 } else { 7737 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; 7738 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 7739 } 7740 7741 if (mode == ARM_CPU_MODE_UND) { 7742 env->xregs[22] = env->regs[14]; 7743 env->xregs[23] = env->regs[13]; 7744 } else { 7745 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; 7746 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 7747 } 7748 7749 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7750 * mode, then we can copy from r8-r14. Otherwise, we copy from the 7751 * FIQ bank for r8-r14. 7752 */ 7753 if (mode == ARM_CPU_MODE_FIQ) { 7754 for (i = 24; i < 31; i++) { 7755 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 7756 } 7757 } else { 7758 for (i = 24; i < 29; i++) { 7759 env->xregs[i] = env->fiq_regs[i - 24]; 7760 } 7761 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 7762 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; 7763 } 7764 7765 env->pc = env->regs[15]; 7766 } 7767 7768 /* Function used to synchronize QEMU's AArch32 register set with AArch64 7769 * register set. This is necessary when switching between AArch32 and AArch64 7770 * execution state. 7771 */ 7772 void aarch64_sync_64_to_32(CPUARMState *env) 7773 { 7774 int i; 7775 uint32_t mode = env->uncached_cpsr & CPSR_M; 7776 7777 /* We can blanket copy X[0:7] to R[0:7] */ 7778 for (i = 0; i < 8; i++) { 7779 env->regs[i] = env->xregs[i]; 7780 } 7781 7782 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 7783 * Otherwise, we copy x8-x12 into the banked user regs. 7784 */ 7785 if (mode == ARM_CPU_MODE_FIQ) { 7786 for (i = 8; i < 13; i++) { 7787 env->usr_regs[i - 8] = env->xregs[i]; 7788 } 7789 } else { 7790 for (i = 8; i < 13; i++) { 7791 env->regs[i] = env->xregs[i]; 7792 } 7793 } 7794 7795 /* Registers r13 & r14 depend on the current mode. 7796 * If we are in a given mode, we copy the corresponding x registers to r13 7797 * and r14. Otherwise, we copy the x register to the banked r13 and r14 7798 * for the mode. 7799 */ 7800 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7801 env->regs[13] = env->xregs[13]; 7802 env->regs[14] = env->xregs[14]; 7803 } else { 7804 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 7805 7806 /* HYP is an exception in that it does not have its own banked r14 but 7807 * shares the USR r14 7808 */ 7809 if (mode == ARM_CPU_MODE_HYP) { 7810 env->regs[14] = env->xregs[14]; 7811 } else { 7812 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 7813 } 7814 } 7815 7816 if (mode == ARM_CPU_MODE_HYP) { 7817 env->regs[13] = env->xregs[15]; 7818 } else { 7819 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 7820 } 7821 7822 if (mode == ARM_CPU_MODE_IRQ) { 7823 env->regs[14] = env->xregs[16]; 7824 env->regs[13] = env->xregs[17]; 7825 } else { 7826 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 7827 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 7828 } 7829 7830 if (mode == ARM_CPU_MODE_SVC) { 7831 env->regs[14] = env->xregs[18]; 7832 env->regs[13] = env->xregs[19]; 7833 } else { 7834 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 7835 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 7836 } 7837 7838 if (mode == ARM_CPU_MODE_ABT) { 7839 env->regs[14] = env->xregs[20]; 7840 env->regs[13] = env->xregs[21]; 7841 } else { 7842 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 7843 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 7844 } 7845 7846 if (mode == ARM_CPU_MODE_UND) { 7847 env->regs[14] = env->xregs[22]; 7848 env->regs[13] = env->xregs[23]; 7849 } else { 7850 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 7851 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 7852 } 7853 7854 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7855 * mode, then we can copy to r8-r14. Otherwise, we copy to the 7856 * FIQ bank for r8-r14. 7857 */ 7858 if (mode == ARM_CPU_MODE_FIQ) { 7859 for (i = 24; i < 31; i++) { 7860 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 7861 } 7862 } else { 7863 for (i = 24; i < 29; i++) { 7864 env->fiq_regs[i - 24] = env->xregs[i]; 7865 } 7866 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 7867 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 7868 } 7869 7870 env->regs[15] = env->pc; 7871 } 7872 7873 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 7874 { 7875 ARMCPU *cpu = ARM_CPU(cs); 7876 CPUARMState *env = &cpu->env; 7877 uint32_t addr; 7878 uint32_t mask; 7879 int new_mode; 7880 uint32_t offset; 7881 uint32_t moe; 7882 7883 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 7884 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { 7885 case EC_BREAKPOINT: 7886 case EC_BREAKPOINT_SAME_EL: 7887 moe = 1; 7888 break; 7889 case EC_WATCHPOINT: 7890 case EC_WATCHPOINT_SAME_EL: 7891 moe = 10; 7892 break; 7893 case EC_AA32_BKPT: 7894 moe = 3; 7895 break; 7896 case EC_VECTORCATCH: 7897 moe = 5; 7898 break; 7899 default: 7900 moe = 0; 7901 break; 7902 } 7903 7904 if (moe) { 7905 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 7906 } 7907 7908 /* TODO: Vectored interrupt controller. */ 7909 switch (cs->exception_index) { 7910 case EXCP_UDEF: 7911 new_mode = ARM_CPU_MODE_UND; 7912 addr = 0x04; 7913 mask = CPSR_I; 7914 if (env->thumb) 7915 offset = 2; 7916 else 7917 offset = 4; 7918 break; 7919 case EXCP_SWI: 7920 new_mode = ARM_CPU_MODE_SVC; 7921 addr = 0x08; 7922 mask = CPSR_I; 7923 /* The PC already points to the next instruction. */ 7924 offset = 0; 7925 break; 7926 case EXCP_BKPT: 7927 /* Fall through to prefetch abort. */ 7928 case EXCP_PREFETCH_ABORT: 7929 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 7930 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 7931 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 7932 env->exception.fsr, (uint32_t)env->exception.vaddress); 7933 new_mode = ARM_CPU_MODE_ABT; 7934 addr = 0x0c; 7935 mask = CPSR_A | CPSR_I; 7936 offset = 4; 7937 break; 7938 case EXCP_DATA_ABORT: 7939 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 7940 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 7941 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 7942 env->exception.fsr, 7943 (uint32_t)env->exception.vaddress); 7944 new_mode = ARM_CPU_MODE_ABT; 7945 addr = 0x10; 7946 mask = CPSR_A | CPSR_I; 7947 offset = 8; 7948 break; 7949 case EXCP_IRQ: 7950 new_mode = ARM_CPU_MODE_IRQ; 7951 addr = 0x18; 7952 /* Disable IRQ and imprecise data aborts. */ 7953 mask = CPSR_A | CPSR_I; 7954 offset = 4; 7955 if (env->cp15.scr_el3 & SCR_IRQ) { 7956 /* IRQ routed to monitor mode */ 7957 new_mode = ARM_CPU_MODE_MON; 7958 mask |= CPSR_F; 7959 } 7960 break; 7961 case EXCP_FIQ: 7962 new_mode = ARM_CPU_MODE_FIQ; 7963 addr = 0x1c; 7964 /* Disable FIQ, IRQ and imprecise data aborts. */ 7965 mask = CPSR_A | CPSR_I | CPSR_F; 7966 if (env->cp15.scr_el3 & SCR_FIQ) { 7967 /* FIQ routed to monitor mode */ 7968 new_mode = ARM_CPU_MODE_MON; 7969 } 7970 offset = 4; 7971 break; 7972 case EXCP_VIRQ: 7973 new_mode = ARM_CPU_MODE_IRQ; 7974 addr = 0x18; 7975 /* Disable IRQ and imprecise data aborts. */ 7976 mask = CPSR_A | CPSR_I; 7977 offset = 4; 7978 break; 7979 case EXCP_VFIQ: 7980 new_mode = ARM_CPU_MODE_FIQ; 7981 addr = 0x1c; 7982 /* Disable FIQ, IRQ and imprecise data aborts. */ 7983 mask = CPSR_A | CPSR_I | CPSR_F; 7984 offset = 4; 7985 break; 7986 case EXCP_SMC: 7987 new_mode = ARM_CPU_MODE_MON; 7988 addr = 0x08; 7989 mask = CPSR_A | CPSR_I | CPSR_F; 7990 offset = 0; 7991 break; 7992 default: 7993 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7994 return; /* Never happens. Keep compiler happy. */ 7995 } 7996 7997 if (new_mode == ARM_CPU_MODE_MON) { 7998 addr += env->cp15.mvbar; 7999 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 8000 /* High vectors. When enabled, base address cannot be remapped. */ 8001 addr += 0xffff0000; 8002 } else { 8003 /* ARM v7 architectures provide a vector base address register to remap 8004 * the interrupt vector table. 8005 * This register is only followed in non-monitor mode, and is banked. 8006 * Note: only bits 31:5 are valid. 8007 */ 8008 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 8009 } 8010 8011 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 8012 env->cp15.scr_el3 &= ~SCR_NS; 8013 } 8014 8015 switch_mode (env, new_mode); 8016 /* For exceptions taken to AArch32 we must clear the SS bit in both 8017 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 8018 */ 8019 env->uncached_cpsr &= ~PSTATE_SS; 8020 env->spsr = cpsr_read(env); 8021 /* Clear IT bits. */ 8022 env->condexec_bits = 0; 8023 /* Switch to the new mode, and to the correct instruction set. */ 8024 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 8025 /* Set new mode endianness */ 8026 env->uncached_cpsr &= ~CPSR_E; 8027 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 8028 env->uncached_cpsr |= CPSR_E; 8029 } 8030 env->daif |= mask; 8031 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares 8032 * and we should just guard the thumb mode on V4 */ 8033 if (arm_feature(env, ARM_FEATURE_V4T)) { 8034 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 8035 } 8036 env->regs[14] = env->regs[15] + offset; 8037 env->regs[15] = addr; 8038 } 8039 8040 /* Handle exception entry to a target EL which is using AArch64 */ 8041 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 8042 { 8043 ARMCPU *cpu = ARM_CPU(cs); 8044 CPUARMState *env = &cpu->env; 8045 unsigned int new_el = env->exception.target_el; 8046 target_ulong addr = env->cp15.vbar_el[new_el]; 8047 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 8048 8049 if (arm_current_el(env) < new_el) { 8050 /* Entry vector offset depends on whether the implemented EL 8051 * immediately lower than the target level is using AArch32 or AArch64 8052 */ 8053 bool is_aa64; 8054 8055 switch (new_el) { 8056 case 3: 8057 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 8058 break; 8059 case 2: 8060 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 8061 break; 8062 case 1: 8063 is_aa64 = is_a64(env); 8064 break; 8065 default: 8066 g_assert_not_reached(); 8067 } 8068 8069 if (is_aa64) { 8070 addr += 0x400; 8071 } else { 8072 addr += 0x600; 8073 } 8074 } else if (pstate_read(env) & PSTATE_SP) { 8075 addr += 0x200; 8076 } 8077 8078 switch (cs->exception_index) { 8079 case EXCP_PREFETCH_ABORT: 8080 case EXCP_DATA_ABORT: 8081 env->cp15.far_el[new_el] = env->exception.vaddress; 8082 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 8083 env->cp15.far_el[new_el]); 8084 /* fall through */ 8085 case EXCP_BKPT: 8086 case EXCP_UDEF: 8087 case EXCP_SWI: 8088 case EXCP_HVC: 8089 case EXCP_HYP_TRAP: 8090 case EXCP_SMC: 8091 env->cp15.esr_el[new_el] = env->exception.syndrome; 8092 break; 8093 case EXCP_IRQ: 8094 case EXCP_VIRQ: 8095 addr += 0x80; 8096 break; 8097 case EXCP_FIQ: 8098 case EXCP_VFIQ: 8099 addr += 0x100; 8100 break; 8101 case EXCP_SEMIHOST: 8102 qemu_log_mask(CPU_LOG_INT, 8103 "...handling as semihosting call 0x%" PRIx64 "\n", 8104 env->xregs[0]); 8105 env->xregs[0] = do_arm_semihosting(env); 8106 return; 8107 default: 8108 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8109 } 8110 8111 if (is_a64(env)) { 8112 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 8113 aarch64_save_sp(env, arm_current_el(env)); 8114 env->elr_el[new_el] = env->pc; 8115 } else { 8116 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 8117 env->elr_el[new_el] = env->regs[15]; 8118 8119 aarch64_sync_32_to_64(env); 8120 8121 env->condexec_bits = 0; 8122 } 8123 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 8124 env->elr_el[new_el]); 8125 8126 pstate_write(env, PSTATE_DAIF | new_mode); 8127 env->aarch64 = 1; 8128 aarch64_restore_sp(env, new_el); 8129 8130 env->pc = addr; 8131 8132 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 8133 new_el, env->pc, pstate_read(env)); 8134 } 8135 8136 static inline bool check_for_semihosting(CPUState *cs) 8137 { 8138 /* Check whether this exception is a semihosting call; if so 8139 * then handle it and return true; otherwise return false. 8140 */ 8141 ARMCPU *cpu = ARM_CPU(cs); 8142 CPUARMState *env = &cpu->env; 8143 8144 if (is_a64(env)) { 8145 if (cs->exception_index == EXCP_SEMIHOST) { 8146 /* This is always the 64-bit semihosting exception. 8147 * The "is this usermode" and "is semihosting enabled" 8148 * checks have been done at translate time. 8149 */ 8150 qemu_log_mask(CPU_LOG_INT, 8151 "...handling as semihosting call 0x%" PRIx64 "\n", 8152 env->xregs[0]); 8153 env->xregs[0] = do_arm_semihosting(env); 8154 return true; 8155 } 8156 return false; 8157 } else { 8158 uint32_t imm; 8159 8160 /* Only intercept calls from privileged modes, to provide some 8161 * semblance of security. 8162 */ 8163 if (cs->exception_index != EXCP_SEMIHOST && 8164 (!semihosting_enabled() || 8165 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 8166 return false; 8167 } 8168 8169 switch (cs->exception_index) { 8170 case EXCP_SEMIHOST: 8171 /* This is always a semihosting call; the "is this usermode" 8172 * and "is semihosting enabled" checks have been done at 8173 * translate time. 8174 */ 8175 break; 8176 case EXCP_SWI: 8177 /* Check for semihosting interrupt. */ 8178 if (env->thumb) { 8179 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 8180 & 0xff; 8181 if (imm == 0xab) { 8182 break; 8183 } 8184 } else { 8185 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 8186 & 0xffffff; 8187 if (imm == 0x123456) { 8188 break; 8189 } 8190 } 8191 return false; 8192 case EXCP_BKPT: 8193 /* See if this is a semihosting syscall. */ 8194 if (env->thumb) { 8195 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 8196 & 0xff; 8197 if (imm == 0xab) { 8198 env->regs[15] += 2; 8199 break; 8200 } 8201 } 8202 return false; 8203 default: 8204 return false; 8205 } 8206 8207 qemu_log_mask(CPU_LOG_INT, 8208 "...handling as semihosting call 0x%x\n", 8209 env->regs[0]); 8210 env->regs[0] = do_arm_semihosting(env); 8211 return true; 8212 } 8213 } 8214 8215 /* Handle a CPU exception for A and R profile CPUs. 8216 * Do any appropriate logging, handle PSCI calls, and then hand off 8217 * to the AArch64-entry or AArch32-entry function depending on the 8218 * target exception level's register width. 8219 */ 8220 void arm_cpu_do_interrupt(CPUState *cs) 8221 { 8222 ARMCPU *cpu = ARM_CPU(cs); 8223 CPUARMState *env = &cpu->env; 8224 unsigned int new_el = env->exception.target_el; 8225 8226 assert(!arm_feature(env, ARM_FEATURE_M)); 8227 8228 arm_log_exception(cs->exception_index); 8229 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 8230 new_el); 8231 if (qemu_loglevel_mask(CPU_LOG_INT) 8232 && !excp_is_internal(cs->exception_index)) { 8233 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 8234 env->exception.syndrome >> ARM_EL_EC_SHIFT, 8235 env->exception.syndrome); 8236 } 8237 8238 if (arm_is_psci_call(cpu, cs->exception_index)) { 8239 arm_handle_psci_call(cpu); 8240 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 8241 return; 8242 } 8243 8244 /* Semihosting semantics depend on the register width of the 8245 * code that caused the exception, not the target exception level, 8246 * so must be handled here. 8247 */ 8248 if (check_for_semihosting(cs)) { 8249 return; 8250 } 8251 8252 assert(!excp_is_internal(cs->exception_index)); 8253 if (arm_el_is_aa64(env, new_el)) { 8254 arm_cpu_do_interrupt_aarch64(cs); 8255 } else { 8256 arm_cpu_do_interrupt_aarch32(cs); 8257 } 8258 8259 /* Hooks may change global state so BQL should be held, also the 8260 * BQL needs to be held for any modification of 8261 * cs->interrupt_request. 8262 */ 8263 g_assert(qemu_mutex_iothread_locked()); 8264 8265 arm_call_el_change_hook(cpu); 8266 8267 if (!kvm_enabled()) { 8268 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 8269 } 8270 } 8271 8272 /* Return the exception level which controls this address translation regime */ 8273 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 8274 { 8275 switch (mmu_idx) { 8276 case ARMMMUIdx_S2NS: 8277 case ARMMMUIdx_S1E2: 8278 return 2; 8279 case ARMMMUIdx_S1E3: 8280 return 3; 8281 case ARMMMUIdx_S1SE0: 8282 return arm_el_is_aa64(env, 3) ? 1 : 3; 8283 case ARMMMUIdx_S1SE1: 8284 case ARMMMUIdx_S1NSE0: 8285 case ARMMMUIdx_S1NSE1: 8286 case ARMMMUIdx_MPrivNegPri: 8287 case ARMMMUIdx_MUserNegPri: 8288 case ARMMMUIdx_MPriv: 8289 case ARMMMUIdx_MUser: 8290 case ARMMMUIdx_MSPrivNegPri: 8291 case ARMMMUIdx_MSUserNegPri: 8292 case ARMMMUIdx_MSPriv: 8293 case ARMMMUIdx_MSUser: 8294 return 1; 8295 default: 8296 g_assert_not_reached(); 8297 } 8298 } 8299 8300 /* Return the SCTLR value which controls this address translation regime */ 8301 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 8302 { 8303 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 8304 } 8305 8306 /* Return true if the specified stage of address translation is disabled */ 8307 static inline bool regime_translation_disabled(CPUARMState *env, 8308 ARMMMUIdx mmu_idx) 8309 { 8310 if (arm_feature(env, ARM_FEATURE_M)) { 8311 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 8312 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 8313 case R_V7M_MPU_CTRL_ENABLE_MASK: 8314 /* Enabled, but not for HardFault and NMI */ 8315 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 8316 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 8317 /* Enabled for all cases */ 8318 return false; 8319 case 0: 8320 default: 8321 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 8322 * we warned about that in armv7m_nvic.c when the guest set it. 8323 */ 8324 return true; 8325 } 8326 } 8327 8328 if (mmu_idx == ARMMMUIdx_S2NS) { 8329 return (env->cp15.hcr_el2 & HCR_VM) == 0; 8330 } 8331 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 8332 } 8333 8334 static inline bool regime_translation_big_endian(CPUARMState *env, 8335 ARMMMUIdx mmu_idx) 8336 { 8337 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 8338 } 8339 8340 /* Return the TCR controlling this translation regime */ 8341 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 8342 { 8343 if (mmu_idx == ARMMMUIdx_S2NS) { 8344 return &env->cp15.vtcr_el2; 8345 } 8346 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 8347 } 8348 8349 /* Convert a possible stage1+2 MMU index into the appropriate 8350 * stage 1 MMU index 8351 */ 8352 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 8353 { 8354 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 8355 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 8356 } 8357 return mmu_idx; 8358 } 8359 8360 /* Returns TBI0 value for current regime el */ 8361 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 8362 { 8363 TCR *tcr; 8364 uint32_t el; 8365 8366 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 8367 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 8368 */ 8369 mmu_idx = stage_1_mmu_idx(mmu_idx); 8370 8371 tcr = regime_tcr(env, mmu_idx); 8372 el = regime_el(env, mmu_idx); 8373 8374 if (el > 1) { 8375 return extract64(tcr->raw_tcr, 20, 1); 8376 } else { 8377 return extract64(tcr->raw_tcr, 37, 1); 8378 } 8379 } 8380 8381 /* Returns TBI1 value for current regime el */ 8382 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 8383 { 8384 TCR *tcr; 8385 uint32_t el; 8386 8387 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 8388 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 8389 */ 8390 mmu_idx = stage_1_mmu_idx(mmu_idx); 8391 8392 tcr = regime_tcr(env, mmu_idx); 8393 el = regime_el(env, mmu_idx); 8394 8395 if (el > 1) { 8396 return 0; 8397 } else { 8398 return extract64(tcr->raw_tcr, 38, 1); 8399 } 8400 } 8401 8402 /* Return the TTBR associated with this translation regime */ 8403 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 8404 int ttbrn) 8405 { 8406 if (mmu_idx == ARMMMUIdx_S2NS) { 8407 return env->cp15.vttbr_el2; 8408 } 8409 if (ttbrn == 0) { 8410 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 8411 } else { 8412 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 8413 } 8414 } 8415 8416 /* Return true if the translation regime is using LPAE format page tables */ 8417 static inline bool regime_using_lpae_format(CPUARMState *env, 8418 ARMMMUIdx mmu_idx) 8419 { 8420 int el = regime_el(env, mmu_idx); 8421 if (el == 2 || arm_el_is_aa64(env, el)) { 8422 return true; 8423 } 8424 if (arm_feature(env, ARM_FEATURE_LPAE) 8425 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 8426 return true; 8427 } 8428 return false; 8429 } 8430 8431 /* Returns true if the stage 1 translation regime is using LPAE format page 8432 * tables. Used when raising alignment exceptions, whose FSR changes depending 8433 * on whether the long or short descriptor format is in use. */ 8434 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 8435 { 8436 mmu_idx = stage_1_mmu_idx(mmu_idx); 8437 8438 return regime_using_lpae_format(env, mmu_idx); 8439 } 8440 8441 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 8442 { 8443 switch (mmu_idx) { 8444 case ARMMMUIdx_S1SE0: 8445 case ARMMMUIdx_S1NSE0: 8446 case ARMMMUIdx_MUser: 8447 case ARMMMUIdx_MSUser: 8448 case ARMMMUIdx_MUserNegPri: 8449 case ARMMMUIdx_MSUserNegPri: 8450 return true; 8451 default: 8452 return false; 8453 case ARMMMUIdx_S12NSE0: 8454 case ARMMMUIdx_S12NSE1: 8455 g_assert_not_reached(); 8456 } 8457 } 8458 8459 /* Translate section/page access permissions to page 8460 * R/W protection flags 8461 * 8462 * @env: CPUARMState 8463 * @mmu_idx: MMU index indicating required translation regime 8464 * @ap: The 3-bit access permissions (AP[2:0]) 8465 * @domain_prot: The 2-bit domain access permissions 8466 */ 8467 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 8468 int ap, int domain_prot) 8469 { 8470 bool is_user = regime_is_user(env, mmu_idx); 8471 8472 if (domain_prot == 3) { 8473 return PAGE_READ | PAGE_WRITE; 8474 } 8475 8476 switch (ap) { 8477 case 0: 8478 if (arm_feature(env, ARM_FEATURE_V7)) { 8479 return 0; 8480 } 8481 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 8482 case SCTLR_S: 8483 return is_user ? 0 : PAGE_READ; 8484 case SCTLR_R: 8485 return PAGE_READ; 8486 default: 8487 return 0; 8488 } 8489 case 1: 8490 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8491 case 2: 8492 if (is_user) { 8493 return PAGE_READ; 8494 } else { 8495 return PAGE_READ | PAGE_WRITE; 8496 } 8497 case 3: 8498 return PAGE_READ | PAGE_WRITE; 8499 case 4: /* Reserved. */ 8500 return 0; 8501 case 5: 8502 return is_user ? 0 : PAGE_READ; 8503 case 6: 8504 return PAGE_READ; 8505 case 7: 8506 if (!arm_feature(env, ARM_FEATURE_V6K)) { 8507 return 0; 8508 } 8509 return PAGE_READ; 8510 default: 8511 g_assert_not_reached(); 8512 } 8513 } 8514 8515 /* Translate section/page access permissions to page 8516 * R/W protection flags. 8517 * 8518 * @ap: The 2-bit simple AP (AP[2:1]) 8519 * @is_user: TRUE if accessing from PL0 8520 */ 8521 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 8522 { 8523 switch (ap) { 8524 case 0: 8525 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8526 case 1: 8527 return PAGE_READ | PAGE_WRITE; 8528 case 2: 8529 return is_user ? 0 : PAGE_READ; 8530 case 3: 8531 return PAGE_READ; 8532 default: 8533 g_assert_not_reached(); 8534 } 8535 } 8536 8537 static inline int 8538 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 8539 { 8540 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 8541 } 8542 8543 /* Translate S2 section/page access permissions to protection flags 8544 * 8545 * @env: CPUARMState 8546 * @s2ap: The 2-bit stage2 access permissions (S2AP) 8547 * @xn: XN (execute-never) bit 8548 */ 8549 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 8550 { 8551 int prot = 0; 8552 8553 if (s2ap & 1) { 8554 prot |= PAGE_READ; 8555 } 8556 if (s2ap & 2) { 8557 prot |= PAGE_WRITE; 8558 } 8559 if (!xn) { 8560 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 8561 prot |= PAGE_EXEC; 8562 } 8563 } 8564 return prot; 8565 } 8566 8567 /* Translate section/page access permissions to protection flags 8568 * 8569 * @env: CPUARMState 8570 * @mmu_idx: MMU index indicating required translation regime 8571 * @is_aa64: TRUE if AArch64 8572 * @ap: The 2-bit simple AP (AP[2:1]) 8573 * @ns: NS (non-secure) bit 8574 * @xn: XN (execute-never) bit 8575 * @pxn: PXN (privileged execute-never) bit 8576 */ 8577 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 8578 int ap, int ns, int xn, int pxn) 8579 { 8580 bool is_user = regime_is_user(env, mmu_idx); 8581 int prot_rw, user_rw; 8582 bool have_wxn; 8583 int wxn = 0; 8584 8585 assert(mmu_idx != ARMMMUIdx_S2NS); 8586 8587 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 8588 if (is_user) { 8589 prot_rw = user_rw; 8590 } else { 8591 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 8592 } 8593 8594 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 8595 return prot_rw; 8596 } 8597 8598 /* TODO have_wxn should be replaced with 8599 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 8600 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 8601 * compatible processors have EL2, which is required for [U]WXN. 8602 */ 8603 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 8604 8605 if (have_wxn) { 8606 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 8607 } 8608 8609 if (is_aa64) { 8610 switch (regime_el(env, mmu_idx)) { 8611 case 1: 8612 if (!is_user) { 8613 xn = pxn || (user_rw & PAGE_WRITE); 8614 } 8615 break; 8616 case 2: 8617 case 3: 8618 break; 8619 } 8620 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8621 switch (regime_el(env, mmu_idx)) { 8622 case 1: 8623 case 3: 8624 if (is_user) { 8625 xn = xn || !(user_rw & PAGE_READ); 8626 } else { 8627 int uwxn = 0; 8628 if (have_wxn) { 8629 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 8630 } 8631 xn = xn || !(prot_rw & PAGE_READ) || pxn || 8632 (uwxn && (user_rw & PAGE_WRITE)); 8633 } 8634 break; 8635 case 2: 8636 break; 8637 } 8638 } else { 8639 xn = wxn = 0; 8640 } 8641 8642 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 8643 return prot_rw; 8644 } 8645 return prot_rw | PAGE_EXEC; 8646 } 8647 8648 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 8649 uint32_t *table, uint32_t address) 8650 { 8651 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 8652 TCR *tcr = regime_tcr(env, mmu_idx); 8653 8654 if (address & tcr->mask) { 8655 if (tcr->raw_tcr & TTBCR_PD1) { 8656 /* Translation table walk disabled for TTBR1 */ 8657 return false; 8658 } 8659 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 8660 } else { 8661 if (tcr->raw_tcr & TTBCR_PD0) { 8662 /* Translation table walk disabled for TTBR0 */ 8663 return false; 8664 } 8665 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 8666 } 8667 *table |= (address >> 18) & 0x3ffc; 8668 return true; 8669 } 8670 8671 /* Translate a S1 pagetable walk through S2 if needed. */ 8672 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 8673 hwaddr addr, MemTxAttrs txattrs, 8674 ARMMMUFaultInfo *fi) 8675 { 8676 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 8677 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 8678 target_ulong s2size; 8679 hwaddr s2pa; 8680 int s2prot; 8681 int ret; 8682 8683 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 8684 &txattrs, &s2prot, &s2size, fi, NULL); 8685 if (ret) { 8686 assert(fi->type != ARMFault_None); 8687 fi->s2addr = addr; 8688 fi->stage2 = true; 8689 fi->s1ptw = true; 8690 return ~0; 8691 } 8692 addr = s2pa; 8693 } 8694 return addr; 8695 } 8696 8697 /* All loads done in the course of a page table walk go through here. */ 8698 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8699 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8700 { 8701 ARMCPU *cpu = ARM_CPU(cs); 8702 CPUARMState *env = &cpu->env; 8703 MemTxAttrs attrs = {}; 8704 MemTxResult result = MEMTX_OK; 8705 AddressSpace *as; 8706 uint32_t data; 8707 8708 attrs.secure = is_secure; 8709 as = arm_addressspace(cs, attrs); 8710 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8711 if (fi->s1ptw) { 8712 return 0; 8713 } 8714 if (regime_translation_big_endian(env, mmu_idx)) { 8715 data = address_space_ldl_be(as, addr, attrs, &result); 8716 } else { 8717 data = address_space_ldl_le(as, addr, attrs, &result); 8718 } 8719 if (result == MEMTX_OK) { 8720 return data; 8721 } 8722 fi->type = ARMFault_SyncExternalOnWalk; 8723 fi->ea = arm_extabort_type(result); 8724 return 0; 8725 } 8726 8727 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8728 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8729 { 8730 ARMCPU *cpu = ARM_CPU(cs); 8731 CPUARMState *env = &cpu->env; 8732 MemTxAttrs attrs = {}; 8733 MemTxResult result = MEMTX_OK; 8734 AddressSpace *as; 8735 uint64_t data; 8736 8737 attrs.secure = is_secure; 8738 as = arm_addressspace(cs, attrs); 8739 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8740 if (fi->s1ptw) { 8741 return 0; 8742 } 8743 if (regime_translation_big_endian(env, mmu_idx)) { 8744 data = address_space_ldq_be(as, addr, attrs, &result); 8745 } else { 8746 data = address_space_ldq_le(as, addr, attrs, &result); 8747 } 8748 if (result == MEMTX_OK) { 8749 return data; 8750 } 8751 fi->type = ARMFault_SyncExternalOnWalk; 8752 fi->ea = arm_extabort_type(result); 8753 return 0; 8754 } 8755 8756 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 8757 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8758 hwaddr *phys_ptr, int *prot, 8759 target_ulong *page_size, 8760 ARMMMUFaultInfo *fi) 8761 { 8762 CPUState *cs = CPU(arm_env_get_cpu(env)); 8763 int level = 1; 8764 uint32_t table; 8765 uint32_t desc; 8766 int type; 8767 int ap; 8768 int domain = 0; 8769 int domain_prot; 8770 hwaddr phys_addr; 8771 uint32_t dacr; 8772 8773 /* Pagetable walk. */ 8774 /* Lookup l1 descriptor. */ 8775 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8776 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8777 fi->type = ARMFault_Translation; 8778 goto do_fault; 8779 } 8780 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8781 mmu_idx, fi); 8782 if (fi->type != ARMFault_None) { 8783 goto do_fault; 8784 } 8785 type = (desc & 3); 8786 domain = (desc >> 5) & 0x0f; 8787 if (regime_el(env, mmu_idx) == 1) { 8788 dacr = env->cp15.dacr_ns; 8789 } else { 8790 dacr = env->cp15.dacr_s; 8791 } 8792 domain_prot = (dacr >> (domain * 2)) & 3; 8793 if (type == 0) { 8794 /* Section translation fault. */ 8795 fi->type = ARMFault_Translation; 8796 goto do_fault; 8797 } 8798 if (type != 2) { 8799 level = 2; 8800 } 8801 if (domain_prot == 0 || domain_prot == 2) { 8802 fi->type = ARMFault_Domain; 8803 goto do_fault; 8804 } 8805 if (type == 2) { 8806 /* 1Mb section. */ 8807 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8808 ap = (desc >> 10) & 3; 8809 *page_size = 1024 * 1024; 8810 } else { 8811 /* Lookup l2 entry. */ 8812 if (type == 1) { 8813 /* Coarse pagetable. */ 8814 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8815 } else { 8816 /* Fine pagetable. */ 8817 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 8818 } 8819 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8820 mmu_idx, fi); 8821 if (fi->type != ARMFault_None) { 8822 goto do_fault; 8823 } 8824 switch (desc & 3) { 8825 case 0: /* Page translation fault. */ 8826 fi->type = ARMFault_Translation; 8827 goto do_fault; 8828 case 1: /* 64k page. */ 8829 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 8830 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 8831 *page_size = 0x10000; 8832 break; 8833 case 2: /* 4k page. */ 8834 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8835 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 8836 *page_size = 0x1000; 8837 break; 8838 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 8839 if (type == 1) { 8840 /* ARMv6/XScale extended small page format */ 8841 if (arm_feature(env, ARM_FEATURE_XSCALE) 8842 || arm_feature(env, ARM_FEATURE_V6)) { 8843 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8844 *page_size = 0x1000; 8845 } else { 8846 /* UNPREDICTABLE in ARMv5; we choose to take a 8847 * page translation fault. 8848 */ 8849 fi->type = ARMFault_Translation; 8850 goto do_fault; 8851 } 8852 } else { 8853 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 8854 *page_size = 0x400; 8855 } 8856 ap = (desc >> 4) & 3; 8857 break; 8858 default: 8859 /* Never happens, but compiler isn't smart enough to tell. */ 8860 abort(); 8861 } 8862 } 8863 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 8864 *prot |= *prot ? PAGE_EXEC : 0; 8865 if (!(*prot & (1 << access_type))) { 8866 /* Access permission fault. */ 8867 fi->type = ARMFault_Permission; 8868 goto do_fault; 8869 } 8870 *phys_ptr = phys_addr; 8871 return false; 8872 do_fault: 8873 fi->domain = domain; 8874 fi->level = level; 8875 return true; 8876 } 8877 8878 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 8879 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8880 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 8881 target_ulong *page_size, ARMMMUFaultInfo *fi) 8882 { 8883 CPUState *cs = CPU(arm_env_get_cpu(env)); 8884 int level = 1; 8885 uint32_t table; 8886 uint32_t desc; 8887 uint32_t xn; 8888 uint32_t pxn = 0; 8889 int type; 8890 int ap; 8891 int domain = 0; 8892 int domain_prot; 8893 hwaddr phys_addr; 8894 uint32_t dacr; 8895 bool ns; 8896 8897 /* Pagetable walk. */ 8898 /* Lookup l1 descriptor. */ 8899 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8900 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8901 fi->type = ARMFault_Translation; 8902 goto do_fault; 8903 } 8904 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8905 mmu_idx, fi); 8906 if (fi->type != ARMFault_None) { 8907 goto do_fault; 8908 } 8909 type = (desc & 3); 8910 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 8911 /* Section translation fault, or attempt to use the encoding 8912 * which is Reserved on implementations without PXN. 8913 */ 8914 fi->type = ARMFault_Translation; 8915 goto do_fault; 8916 } 8917 if ((type == 1) || !(desc & (1 << 18))) { 8918 /* Page or Section. */ 8919 domain = (desc >> 5) & 0x0f; 8920 } 8921 if (regime_el(env, mmu_idx) == 1) { 8922 dacr = env->cp15.dacr_ns; 8923 } else { 8924 dacr = env->cp15.dacr_s; 8925 } 8926 if (type == 1) { 8927 level = 2; 8928 } 8929 domain_prot = (dacr >> (domain * 2)) & 3; 8930 if (domain_prot == 0 || domain_prot == 2) { 8931 /* Section or Page domain fault */ 8932 fi->type = ARMFault_Domain; 8933 goto do_fault; 8934 } 8935 if (type != 1) { 8936 if (desc & (1 << 18)) { 8937 /* Supersection. */ 8938 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 8939 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 8940 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 8941 *page_size = 0x1000000; 8942 } else { 8943 /* Section. */ 8944 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8945 *page_size = 0x100000; 8946 } 8947 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 8948 xn = desc & (1 << 4); 8949 pxn = desc & 1; 8950 ns = extract32(desc, 19, 1); 8951 } else { 8952 if (arm_feature(env, ARM_FEATURE_PXN)) { 8953 pxn = (desc >> 2) & 1; 8954 } 8955 ns = extract32(desc, 3, 1); 8956 /* Lookup l2 entry. */ 8957 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8958 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8959 mmu_idx, fi); 8960 if (fi->type != ARMFault_None) { 8961 goto do_fault; 8962 } 8963 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 8964 switch (desc & 3) { 8965 case 0: /* Page translation fault. */ 8966 fi->type = ARMFault_Translation; 8967 goto do_fault; 8968 case 1: /* 64k page. */ 8969 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 8970 xn = desc & (1 << 15); 8971 *page_size = 0x10000; 8972 break; 8973 case 2: case 3: /* 4k page. */ 8974 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8975 xn = desc & 1; 8976 *page_size = 0x1000; 8977 break; 8978 default: 8979 /* Never happens, but compiler isn't smart enough to tell. */ 8980 abort(); 8981 } 8982 } 8983 if (domain_prot == 3) { 8984 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 8985 } else { 8986 if (pxn && !regime_is_user(env, mmu_idx)) { 8987 xn = 1; 8988 } 8989 if (xn && access_type == MMU_INST_FETCH) { 8990 fi->type = ARMFault_Permission; 8991 goto do_fault; 8992 } 8993 8994 if (arm_feature(env, ARM_FEATURE_V6K) && 8995 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 8996 /* The simplified model uses AP[0] as an access control bit. */ 8997 if ((ap & 1) == 0) { 8998 /* Access flag fault. */ 8999 fi->type = ARMFault_AccessFlag; 9000 goto do_fault; 9001 } 9002 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 9003 } else { 9004 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9005 } 9006 if (*prot && !xn) { 9007 *prot |= PAGE_EXEC; 9008 } 9009 if (!(*prot & (1 << access_type))) { 9010 /* Access permission fault. */ 9011 fi->type = ARMFault_Permission; 9012 goto do_fault; 9013 } 9014 } 9015 if (ns) { 9016 /* The NS bit will (as required by the architecture) have no effect if 9017 * the CPU doesn't support TZ or this is a non-secure translation 9018 * regime, because the attribute will already be non-secure. 9019 */ 9020 attrs->secure = false; 9021 } 9022 *phys_ptr = phys_addr; 9023 return false; 9024 do_fault: 9025 fi->domain = domain; 9026 fi->level = level; 9027 return true; 9028 } 9029 9030 /* 9031 * check_s2_mmu_setup 9032 * @cpu: ARMCPU 9033 * @is_aa64: True if the translation regime is in AArch64 state 9034 * @startlevel: Suggested starting level 9035 * @inputsize: Bitsize of IPAs 9036 * @stride: Page-table stride (See the ARM ARM) 9037 * 9038 * Returns true if the suggested S2 translation parameters are OK and 9039 * false otherwise. 9040 */ 9041 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 9042 int inputsize, int stride) 9043 { 9044 const int grainsize = stride + 3; 9045 int startsizecheck; 9046 9047 /* Negative levels are never allowed. */ 9048 if (level < 0) { 9049 return false; 9050 } 9051 9052 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 9053 if (startsizecheck < 1 || startsizecheck > stride + 4) { 9054 return false; 9055 } 9056 9057 if (is_aa64) { 9058 CPUARMState *env = &cpu->env; 9059 unsigned int pamax = arm_pamax(cpu); 9060 9061 switch (stride) { 9062 case 13: /* 64KB Pages. */ 9063 if (level == 0 || (level == 1 && pamax <= 42)) { 9064 return false; 9065 } 9066 break; 9067 case 11: /* 16KB Pages. */ 9068 if (level == 0 || (level == 1 && pamax <= 40)) { 9069 return false; 9070 } 9071 break; 9072 case 9: /* 4KB Pages. */ 9073 if (level == 0 && pamax <= 42) { 9074 return false; 9075 } 9076 break; 9077 default: 9078 g_assert_not_reached(); 9079 } 9080 9081 /* Inputsize checks. */ 9082 if (inputsize > pamax && 9083 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 9084 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 9085 return false; 9086 } 9087 } else { 9088 /* AArch32 only supports 4KB pages. Assert on that. */ 9089 assert(stride == 9); 9090 9091 if (level == 0) { 9092 return false; 9093 } 9094 } 9095 return true; 9096 } 9097 9098 /* Translate from the 4-bit stage 2 representation of 9099 * memory attributes (without cache-allocation hints) to 9100 * the 8-bit representation of the stage 1 MAIR registers 9101 * (which includes allocation hints). 9102 * 9103 * ref: shared/translation/attrs/S2AttrDecode() 9104 * .../S2ConvertAttrsHints() 9105 */ 9106 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 9107 { 9108 uint8_t hiattr = extract32(s2attrs, 2, 2); 9109 uint8_t loattr = extract32(s2attrs, 0, 2); 9110 uint8_t hihint = 0, lohint = 0; 9111 9112 if (hiattr != 0) { /* normal memory */ 9113 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 9114 hiattr = loattr = 1; /* non-cacheable */ 9115 } else { 9116 if (hiattr != 1) { /* Write-through or write-back */ 9117 hihint = 3; /* RW allocate */ 9118 } 9119 if (loattr != 1) { /* Write-through or write-back */ 9120 lohint = 3; /* RW allocate */ 9121 } 9122 } 9123 } 9124 9125 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 9126 } 9127 9128 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 9129 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9130 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 9131 target_ulong *page_size_ptr, 9132 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 9133 { 9134 ARMCPU *cpu = arm_env_get_cpu(env); 9135 CPUState *cs = CPU(cpu); 9136 /* Read an LPAE long-descriptor translation table. */ 9137 ARMFaultType fault_type = ARMFault_Translation; 9138 uint32_t level; 9139 uint32_t epd = 0; 9140 int32_t t0sz, t1sz; 9141 uint32_t tg; 9142 uint64_t ttbr; 9143 int ttbr_select; 9144 hwaddr descaddr, indexmask, indexmask_grainsize; 9145 uint32_t tableattrs; 9146 target_ulong page_size; 9147 uint32_t attrs; 9148 int32_t stride = 9; 9149 int32_t addrsize; 9150 int inputsize; 9151 int32_t tbi = 0; 9152 TCR *tcr = regime_tcr(env, mmu_idx); 9153 int ap, ns, xn, pxn; 9154 uint32_t el = regime_el(env, mmu_idx); 9155 bool ttbr1_valid = true; 9156 uint64_t descaddrmask; 9157 bool aarch64 = arm_el_is_aa64(env, el); 9158 9159 /* TODO: 9160 * This code does not handle the different format TCR for VTCR_EL2. 9161 * This code also does not support shareability levels. 9162 * Attribute and permission bit handling should also be checked when adding 9163 * support for those page table walks. 9164 */ 9165 if (aarch64) { 9166 level = 0; 9167 addrsize = 64; 9168 if (el > 1) { 9169 if (mmu_idx != ARMMMUIdx_S2NS) { 9170 tbi = extract64(tcr->raw_tcr, 20, 1); 9171 } 9172 } else { 9173 if (extract64(address, 55, 1)) { 9174 tbi = extract64(tcr->raw_tcr, 38, 1); 9175 } else { 9176 tbi = extract64(tcr->raw_tcr, 37, 1); 9177 } 9178 } 9179 tbi *= 8; 9180 9181 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 9182 * invalid. 9183 */ 9184 if (el > 1) { 9185 ttbr1_valid = false; 9186 } 9187 } else { 9188 level = 1; 9189 addrsize = 32; 9190 /* There is no TTBR1 for EL2 */ 9191 if (el == 2) { 9192 ttbr1_valid = false; 9193 } 9194 } 9195 9196 /* Determine whether this address is in the region controlled by 9197 * TTBR0 or TTBR1 (or if it is in neither region and should fault). 9198 * This is a Non-secure PL0/1 stage 1 translation, so controlled by 9199 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: 9200 */ 9201 if (aarch64) { 9202 /* AArch64 translation. */ 9203 t0sz = extract32(tcr->raw_tcr, 0, 6); 9204 t0sz = MIN(t0sz, 39); 9205 t0sz = MAX(t0sz, 16); 9206 } else if (mmu_idx != ARMMMUIdx_S2NS) { 9207 /* AArch32 stage 1 translation. */ 9208 t0sz = extract32(tcr->raw_tcr, 0, 3); 9209 } else { 9210 /* AArch32 stage 2 translation. */ 9211 bool sext = extract32(tcr->raw_tcr, 4, 1); 9212 bool sign = extract32(tcr->raw_tcr, 3, 1); 9213 /* Address size is 40-bit for a stage 2 translation, 9214 * and t0sz can be negative (from -8 to 7), 9215 * so we need to adjust it to use the TTBR selecting logic below. 9216 */ 9217 addrsize = 40; 9218 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; 9219 9220 /* If the sign-extend bit is not the same as t0sz[3], the result 9221 * is unpredictable. Flag this as a guest error. */ 9222 if (sign != sext) { 9223 qemu_log_mask(LOG_GUEST_ERROR, 9224 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 9225 } 9226 } 9227 t1sz = extract32(tcr->raw_tcr, 16, 6); 9228 if (aarch64) { 9229 t1sz = MIN(t1sz, 39); 9230 t1sz = MAX(t1sz, 16); 9231 } 9232 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { 9233 /* there is a ttbr0 region and we are in it (high bits all zero) */ 9234 ttbr_select = 0; 9235 } else if (ttbr1_valid && t1sz && 9236 !extract64(~address, addrsize - t1sz, t1sz - tbi)) { 9237 /* there is a ttbr1 region and we are in it (high bits all one) */ 9238 ttbr_select = 1; 9239 } else if (!t0sz) { 9240 /* ttbr0 region is "everything not in the ttbr1 region" */ 9241 ttbr_select = 0; 9242 } else if (!t1sz && ttbr1_valid) { 9243 /* ttbr1 region is "everything not in the ttbr0 region" */ 9244 ttbr_select = 1; 9245 } else { 9246 /* in the gap between the two regions, this is a Translation fault */ 9247 fault_type = ARMFault_Translation; 9248 goto do_fault; 9249 } 9250 9251 /* Note that QEMU ignores shareability and cacheability attributes, 9252 * so we don't need to do anything with the SH, ORGN, IRGN fields 9253 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 9254 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 9255 * implement any ASID-like capability so we can ignore it (instead 9256 * we will always flush the TLB any time the ASID is changed). 9257 */ 9258 if (ttbr_select == 0) { 9259 ttbr = regime_ttbr(env, mmu_idx, 0); 9260 if (el < 2) { 9261 epd = extract32(tcr->raw_tcr, 7, 1); 9262 } 9263 inputsize = addrsize - t0sz; 9264 9265 tg = extract32(tcr->raw_tcr, 14, 2); 9266 if (tg == 1) { /* 64KB pages */ 9267 stride = 13; 9268 } 9269 if (tg == 2) { /* 16KB pages */ 9270 stride = 11; 9271 } 9272 } else { 9273 /* We should only be here if TTBR1 is valid */ 9274 assert(ttbr1_valid); 9275 9276 ttbr = regime_ttbr(env, mmu_idx, 1); 9277 epd = extract32(tcr->raw_tcr, 23, 1); 9278 inputsize = addrsize - t1sz; 9279 9280 tg = extract32(tcr->raw_tcr, 30, 2); 9281 if (tg == 3) { /* 64KB pages */ 9282 stride = 13; 9283 } 9284 if (tg == 1) { /* 16KB pages */ 9285 stride = 11; 9286 } 9287 } 9288 9289 /* Here we should have set up all the parameters for the translation: 9290 * inputsize, ttbr, epd, stride, tbi 9291 */ 9292 9293 if (epd) { 9294 /* Translation table walk disabled => Translation fault on TLB miss 9295 * Note: This is always 0 on 64-bit EL2 and EL3. 9296 */ 9297 goto do_fault; 9298 } 9299 9300 if (mmu_idx != ARMMMUIdx_S2NS) { 9301 /* The starting level depends on the virtual address size (which can 9302 * be up to 48 bits) and the translation granule size. It indicates 9303 * the number of strides (stride bits at a time) needed to 9304 * consume the bits of the input address. In the pseudocode this is: 9305 * level = 4 - RoundUp((inputsize - grainsize) / stride) 9306 * where their 'inputsize' is our 'inputsize', 'grainsize' is 9307 * our 'stride + 3' and 'stride' is our 'stride'. 9308 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 9309 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 9310 * = 4 - (inputsize - 4) / stride; 9311 */ 9312 level = 4 - (inputsize - 4) / stride; 9313 } else { 9314 /* For stage 2 translations the starting level is specified by the 9315 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 9316 */ 9317 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 9318 uint32_t startlevel; 9319 bool ok; 9320 9321 if (!aarch64 || stride == 9) { 9322 /* AArch32 or 4KB pages */ 9323 startlevel = 2 - sl0; 9324 } else { 9325 /* 16KB or 64KB pages */ 9326 startlevel = 3 - sl0; 9327 } 9328 9329 /* Check that the starting level is valid. */ 9330 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 9331 inputsize, stride); 9332 if (!ok) { 9333 fault_type = ARMFault_Translation; 9334 goto do_fault; 9335 } 9336 level = startlevel; 9337 } 9338 9339 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 9340 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 9341 9342 /* Now we can extract the actual base address from the TTBR */ 9343 descaddr = extract64(ttbr, 0, 48); 9344 descaddr &= ~indexmask; 9345 9346 /* The address field in the descriptor goes up to bit 39 for ARMv7 9347 * but up to bit 47 for ARMv8, but we use the descaddrmask 9348 * up to bit 39 for AArch32, because we don't need other bits in that case 9349 * to construct next descriptor address (anyway they should be all zeroes). 9350 */ 9351 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 9352 ~indexmask_grainsize; 9353 9354 /* Secure accesses start with the page table in secure memory and 9355 * can be downgraded to non-secure at any step. Non-secure accesses 9356 * remain non-secure. We implement this by just ORing in the NSTable/NS 9357 * bits at each step. 9358 */ 9359 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 9360 for (;;) { 9361 uint64_t descriptor; 9362 bool nstable; 9363 9364 descaddr |= (address >> (stride * (4 - level))) & indexmask; 9365 descaddr &= ~7ULL; 9366 nstable = extract32(tableattrs, 4, 1); 9367 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 9368 if (fi->type != ARMFault_None) { 9369 goto do_fault; 9370 } 9371 9372 if (!(descriptor & 1) || 9373 (!(descriptor & 2) && (level == 3))) { 9374 /* Invalid, or the Reserved level 3 encoding */ 9375 goto do_fault; 9376 } 9377 descaddr = descriptor & descaddrmask; 9378 9379 if ((descriptor & 2) && (level < 3)) { 9380 /* Table entry. The top five bits are attributes which may 9381 * propagate down through lower levels of the table (and 9382 * which are all arranged so that 0 means "no effect", so 9383 * we can gather them up by ORing in the bits at each level). 9384 */ 9385 tableattrs |= extract64(descriptor, 59, 5); 9386 level++; 9387 indexmask = indexmask_grainsize; 9388 continue; 9389 } 9390 /* Block entry at level 1 or 2, or page entry at level 3. 9391 * These are basically the same thing, although the number 9392 * of bits we pull in from the vaddr varies. 9393 */ 9394 page_size = (1ULL << ((stride * (4 - level)) + 3)); 9395 descaddr |= (address & (page_size - 1)); 9396 /* Extract attributes from the descriptor */ 9397 attrs = extract64(descriptor, 2, 10) 9398 | (extract64(descriptor, 52, 12) << 10); 9399 9400 if (mmu_idx == ARMMMUIdx_S2NS) { 9401 /* Stage 2 table descriptors do not include any attribute fields */ 9402 break; 9403 } 9404 /* Merge in attributes from table descriptors */ 9405 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 9406 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ 9407 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 9408 * means "force PL1 access only", which means forcing AP[1] to 0. 9409 */ 9410 if (extract32(tableattrs, 2, 1)) { 9411 attrs &= ~(1 << 4); 9412 } 9413 attrs |= nstable << 3; /* NS */ 9414 break; 9415 } 9416 /* Here descaddr is the final physical address, and attributes 9417 * are all in attrs. 9418 */ 9419 fault_type = ARMFault_AccessFlag; 9420 if ((attrs & (1 << 8)) == 0) { 9421 /* Access flag */ 9422 goto do_fault; 9423 } 9424 9425 ap = extract32(attrs, 4, 2); 9426 xn = extract32(attrs, 12, 1); 9427 9428 if (mmu_idx == ARMMMUIdx_S2NS) { 9429 ns = true; 9430 *prot = get_S2prot(env, ap, xn); 9431 } else { 9432 ns = extract32(attrs, 3, 1); 9433 pxn = extract32(attrs, 11, 1); 9434 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 9435 } 9436 9437 fault_type = ARMFault_Permission; 9438 if (!(*prot & (1 << access_type))) { 9439 goto do_fault; 9440 } 9441 9442 if (ns) { 9443 /* The NS bit will (as required by the architecture) have no effect if 9444 * the CPU doesn't support TZ or this is a non-secure translation 9445 * regime, because the attribute will already be non-secure. 9446 */ 9447 txattrs->secure = false; 9448 } 9449 9450 if (cacheattrs != NULL) { 9451 if (mmu_idx == ARMMMUIdx_S2NS) { 9452 cacheattrs->attrs = convert_stage2_attrs(env, 9453 extract32(attrs, 0, 4)); 9454 } else { 9455 /* Index into MAIR registers for cache attributes */ 9456 uint8_t attrindx = extract32(attrs, 0, 3); 9457 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 9458 assert(attrindx <= 7); 9459 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 9460 } 9461 cacheattrs->shareability = extract32(attrs, 6, 2); 9462 } 9463 9464 *phys_ptr = descaddr; 9465 *page_size_ptr = page_size; 9466 return false; 9467 9468 do_fault: 9469 fi->type = fault_type; 9470 fi->level = level; 9471 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 9472 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 9473 return true; 9474 } 9475 9476 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 9477 ARMMMUIdx mmu_idx, 9478 int32_t address, int *prot) 9479 { 9480 if (!arm_feature(env, ARM_FEATURE_M)) { 9481 *prot = PAGE_READ | PAGE_WRITE; 9482 switch (address) { 9483 case 0xF0000000 ... 0xFFFFFFFF: 9484 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 9485 /* hivecs execing is ok */ 9486 *prot |= PAGE_EXEC; 9487 } 9488 break; 9489 case 0x00000000 ... 0x7FFFFFFF: 9490 *prot |= PAGE_EXEC; 9491 break; 9492 } 9493 } else { 9494 /* Default system address map for M profile cores. 9495 * The architecture specifies which regions are execute-never; 9496 * at the MPU level no other checks are defined. 9497 */ 9498 switch (address) { 9499 case 0x00000000 ... 0x1fffffff: /* ROM */ 9500 case 0x20000000 ... 0x3fffffff: /* SRAM */ 9501 case 0x60000000 ... 0x7fffffff: /* RAM */ 9502 case 0x80000000 ... 0x9fffffff: /* RAM */ 9503 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9504 break; 9505 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 9506 case 0xa0000000 ... 0xbfffffff: /* Device */ 9507 case 0xc0000000 ... 0xdfffffff: /* Device */ 9508 case 0xe0000000 ... 0xffffffff: /* System */ 9509 *prot = PAGE_READ | PAGE_WRITE; 9510 break; 9511 default: 9512 g_assert_not_reached(); 9513 } 9514 } 9515 } 9516 9517 static bool pmsav7_use_background_region(ARMCPU *cpu, 9518 ARMMMUIdx mmu_idx, bool is_user) 9519 { 9520 /* Return true if we should use the default memory map as a 9521 * "background" region if there are no hits against any MPU regions. 9522 */ 9523 CPUARMState *env = &cpu->env; 9524 9525 if (is_user) { 9526 return false; 9527 } 9528 9529 if (arm_feature(env, ARM_FEATURE_M)) { 9530 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 9531 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 9532 } else { 9533 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 9534 } 9535 } 9536 9537 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 9538 { 9539 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 9540 return arm_feature(env, ARM_FEATURE_M) && 9541 extract32(address, 20, 12) == 0xe00; 9542 } 9543 9544 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 9545 { 9546 /* True if address is in the M profile system region 9547 * 0xe0000000 - 0xffffffff 9548 */ 9549 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 9550 } 9551 9552 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 9553 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9554 hwaddr *phys_ptr, int *prot, 9555 ARMMMUFaultInfo *fi) 9556 { 9557 ARMCPU *cpu = arm_env_get_cpu(env); 9558 int n; 9559 bool is_user = regime_is_user(env, mmu_idx); 9560 9561 *phys_ptr = address; 9562 *prot = 0; 9563 9564 if (regime_translation_disabled(env, mmu_idx) || 9565 m_is_ppb_region(env, address)) { 9566 /* MPU disabled or M profile PPB access: use default memory map. 9567 * The other case which uses the default memory map in the 9568 * v7M ARM ARM pseudocode is exception vector reads from the vector 9569 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 9570 * which always does a direct read using address_space_ldl(), rather 9571 * than going via this function, so we don't need to check that here. 9572 */ 9573 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9574 } else { /* MPU enabled */ 9575 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9576 /* region search */ 9577 uint32_t base = env->pmsav7.drbar[n]; 9578 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 9579 uint32_t rmask; 9580 bool srdis = false; 9581 9582 if (!(env->pmsav7.drsr[n] & 0x1)) { 9583 continue; 9584 } 9585 9586 if (!rsize) { 9587 qemu_log_mask(LOG_GUEST_ERROR, 9588 "DRSR[%d]: Rsize field cannot be 0\n", n); 9589 continue; 9590 } 9591 rsize++; 9592 rmask = (1ull << rsize) - 1; 9593 9594 if (base & rmask) { 9595 qemu_log_mask(LOG_GUEST_ERROR, 9596 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 9597 "to DRSR region size, mask = 0x%" PRIx32 "\n", 9598 n, base, rmask); 9599 continue; 9600 } 9601 9602 if (address < base || address > base + rmask) { 9603 continue; 9604 } 9605 9606 /* Region matched */ 9607 9608 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 9609 int i, snd; 9610 uint32_t srdis_mask; 9611 9612 rsize -= 3; /* sub region size (power of 2) */ 9613 snd = ((address - base) >> rsize) & 0x7; 9614 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 9615 9616 srdis_mask = srdis ? 0x3 : 0x0; 9617 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 9618 /* This will check in groups of 2, 4 and then 8, whether 9619 * the subregion bits are consistent. rsize is incremented 9620 * back up to give the region size, considering consistent 9621 * adjacent subregions as one region. Stop testing if rsize 9622 * is already big enough for an entire QEMU page. 9623 */ 9624 int snd_rounded = snd & ~(i - 1); 9625 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 9626 snd_rounded + 8, i); 9627 if (srdis_mask ^ srdis_multi) { 9628 break; 9629 } 9630 srdis_mask = (srdis_mask << i) | srdis_mask; 9631 rsize++; 9632 } 9633 } 9634 if (rsize < TARGET_PAGE_BITS) { 9635 qemu_log_mask(LOG_UNIMP, 9636 "DRSR[%d]: No support for MPU (sub)region size of" 9637 " %" PRIu32 " bytes. Minimum is %d.\n", 9638 n, (1 << rsize), TARGET_PAGE_SIZE); 9639 continue; 9640 } 9641 if (srdis) { 9642 continue; 9643 } 9644 break; 9645 } 9646 9647 if (n == -1) { /* no hits */ 9648 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9649 /* background fault */ 9650 fi->type = ARMFault_Background; 9651 return true; 9652 } 9653 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9654 } else { /* a MPU hit! */ 9655 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 9656 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 9657 9658 if (m_is_system_region(env, address)) { 9659 /* System space is always execute never */ 9660 xn = 1; 9661 } 9662 9663 if (is_user) { /* User mode AP bit decoding */ 9664 switch (ap) { 9665 case 0: 9666 case 1: 9667 case 5: 9668 break; /* no access */ 9669 case 3: 9670 *prot |= PAGE_WRITE; 9671 /* fall through */ 9672 case 2: 9673 case 6: 9674 *prot |= PAGE_READ | PAGE_EXEC; 9675 break; 9676 case 7: 9677 /* for v7M, same as 6; for R profile a reserved value */ 9678 if (arm_feature(env, ARM_FEATURE_M)) { 9679 *prot |= PAGE_READ | PAGE_EXEC; 9680 break; 9681 } 9682 /* fall through */ 9683 default: 9684 qemu_log_mask(LOG_GUEST_ERROR, 9685 "DRACR[%d]: Bad value for AP bits: 0x%" 9686 PRIx32 "\n", n, ap); 9687 } 9688 } else { /* Priv. mode AP bits decoding */ 9689 switch (ap) { 9690 case 0: 9691 break; /* no access */ 9692 case 1: 9693 case 2: 9694 case 3: 9695 *prot |= PAGE_WRITE; 9696 /* fall through */ 9697 case 5: 9698 case 6: 9699 *prot |= PAGE_READ | PAGE_EXEC; 9700 break; 9701 case 7: 9702 /* for v7M, same as 6; for R profile a reserved value */ 9703 if (arm_feature(env, ARM_FEATURE_M)) { 9704 *prot |= PAGE_READ | PAGE_EXEC; 9705 break; 9706 } 9707 /* fall through */ 9708 default: 9709 qemu_log_mask(LOG_GUEST_ERROR, 9710 "DRACR[%d]: Bad value for AP bits: 0x%" 9711 PRIx32 "\n", n, ap); 9712 } 9713 } 9714 9715 /* execute never */ 9716 if (xn) { 9717 *prot &= ~PAGE_EXEC; 9718 } 9719 } 9720 } 9721 9722 fi->type = ARMFault_Permission; 9723 fi->level = 1; 9724 return !(*prot & (1 << access_type)); 9725 } 9726 9727 static bool v8m_is_sau_exempt(CPUARMState *env, 9728 uint32_t address, MMUAccessType access_type) 9729 { 9730 /* The architecture specifies that certain address ranges are 9731 * exempt from v8M SAU/IDAU checks. 9732 */ 9733 return 9734 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 9735 (address >= 0xe0000000 && address <= 0xe0002fff) || 9736 (address >= 0xe000e000 && address <= 0xe000efff) || 9737 (address >= 0xe002e000 && address <= 0xe002efff) || 9738 (address >= 0xe0040000 && address <= 0xe0041fff) || 9739 (address >= 0xe00ff000 && address <= 0xe00fffff); 9740 } 9741 9742 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 9743 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9744 V8M_SAttributes *sattrs) 9745 { 9746 /* Look up the security attributes for this address. Compare the 9747 * pseudocode SecurityCheck() function. 9748 * We assume the caller has zero-initialized *sattrs. 9749 */ 9750 ARMCPU *cpu = arm_env_get_cpu(env); 9751 int r; 9752 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 9753 int idau_region = IREGION_NOTVALID; 9754 9755 if (cpu->idau) { 9756 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 9757 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 9758 9759 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 9760 &idau_nsc); 9761 } 9762 9763 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 9764 /* 0xf0000000..0xffffffff is always S for insn fetches */ 9765 return; 9766 } 9767 9768 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 9769 sattrs->ns = !regime_is_secure(env, mmu_idx); 9770 return; 9771 } 9772 9773 if (idau_region != IREGION_NOTVALID) { 9774 sattrs->irvalid = true; 9775 sattrs->iregion = idau_region; 9776 } 9777 9778 switch (env->sau.ctrl & 3) { 9779 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 9780 break; 9781 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 9782 sattrs->ns = true; 9783 break; 9784 default: /* SAU.ENABLE == 1 */ 9785 for (r = 0; r < cpu->sau_sregion; r++) { 9786 if (env->sau.rlar[r] & 1) { 9787 uint32_t base = env->sau.rbar[r] & ~0x1f; 9788 uint32_t limit = env->sau.rlar[r] | 0x1f; 9789 9790 if (base <= address && limit >= address) { 9791 if (sattrs->srvalid) { 9792 /* If we hit in more than one region then we must report 9793 * as Secure, not NS-Callable, with no valid region 9794 * number info. 9795 */ 9796 sattrs->ns = false; 9797 sattrs->nsc = false; 9798 sattrs->sregion = 0; 9799 sattrs->srvalid = false; 9800 break; 9801 } else { 9802 if (env->sau.rlar[r] & 2) { 9803 sattrs->nsc = true; 9804 } else { 9805 sattrs->ns = true; 9806 } 9807 sattrs->srvalid = true; 9808 sattrs->sregion = r; 9809 } 9810 } 9811 } 9812 } 9813 9814 /* The IDAU will override the SAU lookup results if it specifies 9815 * higher security than the SAU does. 9816 */ 9817 if (!idau_ns) { 9818 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 9819 sattrs->ns = false; 9820 sattrs->nsc = idau_nsc; 9821 } 9822 } 9823 break; 9824 } 9825 } 9826 9827 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 9828 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9829 hwaddr *phys_ptr, MemTxAttrs *txattrs, 9830 int *prot, ARMMMUFaultInfo *fi, uint32_t *mregion) 9831 { 9832 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 9833 * that a full phys-to-virt translation does). 9834 * mregion is (if not NULL) set to the region number which matched, 9835 * or -1 if no region number is returned (MPU off, address did not 9836 * hit a region, address hit in multiple regions). 9837 */ 9838 ARMCPU *cpu = arm_env_get_cpu(env); 9839 bool is_user = regime_is_user(env, mmu_idx); 9840 uint32_t secure = regime_is_secure(env, mmu_idx); 9841 int n; 9842 int matchregion = -1; 9843 bool hit = false; 9844 9845 *phys_ptr = address; 9846 *prot = 0; 9847 if (mregion) { 9848 *mregion = -1; 9849 } 9850 9851 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 9852 * was an exception vector read from the vector table (which is always 9853 * done using the default system address map), because those accesses 9854 * are done in arm_v7m_load_vector(), which always does a direct 9855 * read using address_space_ldl(), rather than going via this function. 9856 */ 9857 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 9858 hit = true; 9859 } else if (m_is_ppb_region(env, address)) { 9860 hit = true; 9861 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9862 hit = true; 9863 } else { 9864 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9865 /* region search */ 9866 /* Note that the base address is bits [31:5] from the register 9867 * with bits [4:0] all zeroes, but the limit address is bits 9868 * [31:5] from the register with bits [4:0] all ones. 9869 */ 9870 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 9871 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 9872 9873 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 9874 /* Region disabled */ 9875 continue; 9876 } 9877 9878 if (address < base || address > limit) { 9879 continue; 9880 } 9881 9882 if (hit) { 9883 /* Multiple regions match -- always a failure (unlike 9884 * PMSAv7 where highest-numbered-region wins) 9885 */ 9886 fi->type = ARMFault_Permission; 9887 fi->level = 1; 9888 return true; 9889 } 9890 9891 matchregion = n; 9892 hit = true; 9893 9894 if (base & ~TARGET_PAGE_MASK) { 9895 qemu_log_mask(LOG_UNIMP, 9896 "MPU_RBAR[%d]: No support for MPU region base" 9897 "address of 0x%" PRIx32 ". Minimum alignment is " 9898 "%d\n", 9899 n, base, TARGET_PAGE_BITS); 9900 continue; 9901 } 9902 if ((limit + 1) & ~TARGET_PAGE_MASK) { 9903 qemu_log_mask(LOG_UNIMP, 9904 "MPU_RBAR[%d]: No support for MPU region limit" 9905 "address of 0x%" PRIx32 ". Minimum alignment is " 9906 "%d\n", 9907 n, limit, TARGET_PAGE_BITS); 9908 continue; 9909 } 9910 } 9911 } 9912 9913 if (!hit) { 9914 /* background fault */ 9915 fi->type = ARMFault_Background; 9916 return true; 9917 } 9918 9919 if (matchregion == -1) { 9920 /* hit using the background region */ 9921 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9922 } else { 9923 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 9924 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 9925 9926 if (m_is_system_region(env, address)) { 9927 /* System space is always execute never */ 9928 xn = 1; 9929 } 9930 9931 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 9932 if (*prot && !xn) { 9933 *prot |= PAGE_EXEC; 9934 } 9935 /* We don't need to look the attribute up in the MAIR0/MAIR1 9936 * registers because that only tells us about cacheability. 9937 */ 9938 if (mregion) { 9939 *mregion = matchregion; 9940 } 9941 } 9942 9943 fi->type = ARMFault_Permission; 9944 fi->level = 1; 9945 return !(*prot & (1 << access_type)); 9946 } 9947 9948 9949 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 9950 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9951 hwaddr *phys_ptr, MemTxAttrs *txattrs, 9952 int *prot, ARMMMUFaultInfo *fi) 9953 { 9954 uint32_t secure = regime_is_secure(env, mmu_idx); 9955 V8M_SAttributes sattrs = {}; 9956 9957 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 9958 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 9959 if (access_type == MMU_INST_FETCH) { 9960 /* Instruction fetches always use the MMU bank and the 9961 * transaction attribute determined by the fetch address, 9962 * regardless of CPU state. This is painful for QEMU 9963 * to handle, because it would mean we need to encode 9964 * into the mmu_idx not just the (user, negpri) information 9965 * for the current security state but also that for the 9966 * other security state, which would balloon the number 9967 * of mmu_idx values needed alarmingly. 9968 * Fortunately we can avoid this because it's not actually 9969 * possible to arbitrarily execute code from memory with 9970 * the wrong security attribute: it will always generate 9971 * an exception of some kind or another, apart from the 9972 * special case of an NS CPU executing an SG instruction 9973 * in S&NSC memory. So we always just fail the translation 9974 * here and sort things out in the exception handler 9975 * (including possibly emulating an SG instruction). 9976 */ 9977 if (sattrs.ns != !secure) { 9978 if (sattrs.nsc) { 9979 fi->type = ARMFault_QEMU_NSCExec; 9980 } else { 9981 fi->type = ARMFault_QEMU_SFault; 9982 } 9983 *phys_ptr = address; 9984 *prot = 0; 9985 return true; 9986 } 9987 } else { 9988 /* For data accesses we always use the MMU bank indicated 9989 * by the current CPU state, but the security attributes 9990 * might downgrade a secure access to nonsecure. 9991 */ 9992 if (sattrs.ns) { 9993 txattrs->secure = false; 9994 } else if (!secure) { 9995 /* NS access to S memory must fault. 9996 * Architecturally we should first check whether the 9997 * MPU information for this address indicates that we 9998 * are doing an unaligned access to Device memory, which 9999 * should generate a UsageFault instead. QEMU does not 10000 * currently check for that kind of unaligned access though. 10001 * If we added it we would need to do so as a special case 10002 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 10003 */ 10004 fi->type = ARMFault_QEMU_SFault; 10005 *phys_ptr = address; 10006 *prot = 0; 10007 return true; 10008 } 10009 } 10010 } 10011 10012 return pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 10013 txattrs, prot, fi, NULL); 10014 } 10015 10016 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 10017 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10018 hwaddr *phys_ptr, int *prot, 10019 ARMMMUFaultInfo *fi) 10020 { 10021 int n; 10022 uint32_t mask; 10023 uint32_t base; 10024 bool is_user = regime_is_user(env, mmu_idx); 10025 10026 if (regime_translation_disabled(env, mmu_idx)) { 10027 /* MPU disabled. */ 10028 *phys_ptr = address; 10029 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10030 return false; 10031 } 10032 10033 *phys_ptr = address; 10034 for (n = 7; n >= 0; n--) { 10035 base = env->cp15.c6_region[n]; 10036 if ((base & 1) == 0) { 10037 continue; 10038 } 10039 mask = 1 << ((base >> 1) & 0x1f); 10040 /* Keep this shift separate from the above to avoid an 10041 (undefined) << 32. */ 10042 mask = (mask << 1) - 1; 10043 if (((base ^ address) & ~mask) == 0) { 10044 break; 10045 } 10046 } 10047 if (n < 0) { 10048 fi->type = ARMFault_Background; 10049 return true; 10050 } 10051 10052 if (access_type == MMU_INST_FETCH) { 10053 mask = env->cp15.pmsav5_insn_ap; 10054 } else { 10055 mask = env->cp15.pmsav5_data_ap; 10056 } 10057 mask = (mask >> (n * 4)) & 0xf; 10058 switch (mask) { 10059 case 0: 10060 fi->type = ARMFault_Permission; 10061 fi->level = 1; 10062 return true; 10063 case 1: 10064 if (is_user) { 10065 fi->type = ARMFault_Permission; 10066 fi->level = 1; 10067 return true; 10068 } 10069 *prot = PAGE_READ | PAGE_WRITE; 10070 break; 10071 case 2: 10072 *prot = PAGE_READ; 10073 if (!is_user) { 10074 *prot |= PAGE_WRITE; 10075 } 10076 break; 10077 case 3: 10078 *prot = PAGE_READ | PAGE_WRITE; 10079 break; 10080 case 5: 10081 if (is_user) { 10082 fi->type = ARMFault_Permission; 10083 fi->level = 1; 10084 return true; 10085 } 10086 *prot = PAGE_READ; 10087 break; 10088 case 6: 10089 *prot = PAGE_READ; 10090 break; 10091 default: 10092 /* Bad permission. */ 10093 fi->type = ARMFault_Permission; 10094 fi->level = 1; 10095 return true; 10096 } 10097 *prot |= PAGE_EXEC; 10098 return false; 10099 } 10100 10101 /* Combine either inner or outer cacheability attributes for normal 10102 * memory, according to table D4-42 and pseudocode procedure 10103 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 10104 * 10105 * NB: only stage 1 includes allocation hints (RW bits), leading to 10106 * some asymmetry. 10107 */ 10108 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 10109 { 10110 if (s1 == 4 || s2 == 4) { 10111 /* non-cacheable has precedence */ 10112 return 4; 10113 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 10114 /* stage 1 write-through takes precedence */ 10115 return s1; 10116 } else if (extract32(s2, 2, 2) == 2) { 10117 /* stage 2 write-through takes precedence, but the allocation hint 10118 * is still taken from stage 1 10119 */ 10120 return (2 << 2) | extract32(s1, 0, 2); 10121 } else { /* write-back */ 10122 return s1; 10123 } 10124 } 10125 10126 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 10127 * and CombineS1S2Desc() 10128 * 10129 * @s1: Attributes from stage 1 walk 10130 * @s2: Attributes from stage 2 walk 10131 */ 10132 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 10133 { 10134 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 10135 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 10136 ARMCacheAttrs ret; 10137 10138 /* Combine shareability attributes (table D4-43) */ 10139 if (s1.shareability == 2 || s2.shareability == 2) { 10140 /* if either are outer-shareable, the result is outer-shareable */ 10141 ret.shareability = 2; 10142 } else if (s1.shareability == 3 || s2.shareability == 3) { 10143 /* if either are inner-shareable, the result is inner-shareable */ 10144 ret.shareability = 3; 10145 } else { 10146 /* both non-shareable */ 10147 ret.shareability = 0; 10148 } 10149 10150 /* Combine memory type and cacheability attributes */ 10151 if (s1hi == 0 || s2hi == 0) { 10152 /* Device has precedence over normal */ 10153 if (s1lo == 0 || s2lo == 0) { 10154 /* nGnRnE has precedence over anything */ 10155 ret.attrs = 0; 10156 } else if (s1lo == 4 || s2lo == 4) { 10157 /* non-Reordering has precedence over Reordering */ 10158 ret.attrs = 4; /* nGnRE */ 10159 } else if (s1lo == 8 || s2lo == 8) { 10160 /* non-Gathering has precedence over Gathering */ 10161 ret.attrs = 8; /* nGRE */ 10162 } else { 10163 ret.attrs = 0xc; /* GRE */ 10164 } 10165 10166 /* Any location for which the resultant memory type is any 10167 * type of Device memory is always treated as Outer Shareable. 10168 */ 10169 ret.shareability = 2; 10170 } else { /* Normal memory */ 10171 /* Outer/inner cacheability combine independently */ 10172 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 10173 | combine_cacheattr_nibble(s1lo, s2lo); 10174 10175 if (ret.attrs == 0x44) { 10176 /* Any location for which the resultant memory type is Normal 10177 * Inner Non-cacheable, Outer Non-cacheable is always treated 10178 * as Outer Shareable. 10179 */ 10180 ret.shareability = 2; 10181 } 10182 } 10183 10184 return ret; 10185 } 10186 10187 10188 /* get_phys_addr - get the physical address for this virtual address 10189 * 10190 * Find the physical address corresponding to the given virtual address, 10191 * by doing a translation table walk on MMU based systems or using the 10192 * MPU state on MPU based systems. 10193 * 10194 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10195 * prot and page_size may not be filled in, and the populated fsr value provides 10196 * information on why the translation aborted, in the format of a 10197 * DFSR/IFSR fault register, with the following caveats: 10198 * * we honour the short vs long DFSR format differences. 10199 * * the WnR bit is never set (the caller must do this). 10200 * * for PSMAv5 based systems we don't bother to return a full FSR format 10201 * value. 10202 * 10203 * @env: CPUARMState 10204 * @address: virtual address to get physical address for 10205 * @access_type: 0 for read, 1 for write, 2 for execute 10206 * @mmu_idx: MMU index indicating required translation regime 10207 * @phys_ptr: set to the physical address corresponding to the virtual address 10208 * @attrs: set to the memory transaction attributes to use 10209 * @prot: set to the permissions for the page containing phys_ptr 10210 * @page_size: set to the size of the page containing phys_ptr 10211 * @fi: set to fault info if the translation fails 10212 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 10213 */ 10214 static bool get_phys_addr(CPUARMState *env, target_ulong address, 10215 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10216 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10217 target_ulong *page_size, 10218 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10219 { 10220 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 10221 /* Call ourselves recursively to do the stage 1 and then stage 2 10222 * translations. 10223 */ 10224 if (arm_feature(env, ARM_FEATURE_EL2)) { 10225 hwaddr ipa; 10226 int s2_prot; 10227 int ret; 10228 ARMCacheAttrs cacheattrs2 = {}; 10229 10230 ret = get_phys_addr(env, address, access_type, 10231 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 10232 prot, page_size, fi, cacheattrs); 10233 10234 /* If S1 fails or S2 is disabled, return early. */ 10235 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 10236 *phys_ptr = ipa; 10237 return ret; 10238 } 10239 10240 /* S1 is done. Now do S2 translation. */ 10241 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 10242 phys_ptr, attrs, &s2_prot, 10243 page_size, fi, 10244 cacheattrs != NULL ? &cacheattrs2 : NULL); 10245 fi->s2addr = ipa; 10246 /* Combine the S1 and S2 perms. */ 10247 *prot &= s2_prot; 10248 10249 /* Combine the S1 and S2 cache attributes, if needed */ 10250 if (!ret && cacheattrs != NULL) { 10251 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 10252 } 10253 10254 return ret; 10255 } else { 10256 /* 10257 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 10258 */ 10259 mmu_idx = stage_1_mmu_idx(mmu_idx); 10260 } 10261 } 10262 10263 /* The page table entries may downgrade secure to non-secure, but 10264 * cannot upgrade an non-secure translation regime's attributes 10265 * to secure. 10266 */ 10267 attrs->secure = regime_is_secure(env, mmu_idx); 10268 attrs->user = regime_is_user(env, mmu_idx); 10269 10270 /* Fast Context Switch Extension. This doesn't exist at all in v8. 10271 * In v7 and earlier it affects all stage 1 translations. 10272 */ 10273 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 10274 && !arm_feature(env, ARM_FEATURE_V8)) { 10275 if (regime_el(env, mmu_idx) == 3) { 10276 address += env->cp15.fcseidr_s; 10277 } else { 10278 address += env->cp15.fcseidr_ns; 10279 } 10280 } 10281 10282 if (arm_feature(env, ARM_FEATURE_PMSA)) { 10283 bool ret; 10284 *page_size = TARGET_PAGE_SIZE; 10285 10286 if (arm_feature(env, ARM_FEATURE_V8)) { 10287 /* PMSAv8 */ 10288 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 10289 phys_ptr, attrs, prot, fi); 10290 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10291 /* PMSAv7 */ 10292 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 10293 phys_ptr, prot, fi); 10294 } else { 10295 /* Pre-v7 MPU */ 10296 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 10297 phys_ptr, prot, fi); 10298 } 10299 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 10300 " mmu_idx %u -> %s (prot %c%c%c)\n", 10301 access_type == MMU_DATA_LOAD ? "reading" : 10302 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 10303 (uint32_t)address, mmu_idx, 10304 ret ? "Miss" : "Hit", 10305 *prot & PAGE_READ ? 'r' : '-', 10306 *prot & PAGE_WRITE ? 'w' : '-', 10307 *prot & PAGE_EXEC ? 'x' : '-'); 10308 10309 return ret; 10310 } 10311 10312 /* Definitely a real MMU, not an MPU */ 10313 10314 if (regime_translation_disabled(env, mmu_idx)) { 10315 /* MMU disabled. */ 10316 *phys_ptr = address; 10317 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10318 *page_size = TARGET_PAGE_SIZE; 10319 return 0; 10320 } 10321 10322 if (regime_using_lpae_format(env, mmu_idx)) { 10323 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 10324 phys_ptr, attrs, prot, page_size, 10325 fi, cacheattrs); 10326 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 10327 return get_phys_addr_v6(env, address, access_type, mmu_idx, 10328 phys_ptr, attrs, prot, page_size, fi); 10329 } else { 10330 return get_phys_addr_v5(env, address, access_type, mmu_idx, 10331 phys_ptr, prot, page_size, fi); 10332 } 10333 } 10334 10335 /* Walk the page table and (if the mapping exists) add the page 10336 * to the TLB. Return false on success, or true on failure. Populate 10337 * fsr with ARM DFSR/IFSR fault register format value on failure. 10338 */ 10339 bool arm_tlb_fill(CPUState *cs, vaddr address, 10340 MMUAccessType access_type, int mmu_idx, 10341 ARMMMUFaultInfo *fi) 10342 { 10343 ARMCPU *cpu = ARM_CPU(cs); 10344 CPUARMState *env = &cpu->env; 10345 hwaddr phys_addr; 10346 target_ulong page_size; 10347 int prot; 10348 int ret; 10349 MemTxAttrs attrs = {}; 10350 10351 ret = get_phys_addr(env, address, access_type, 10352 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr, 10353 &attrs, &prot, &page_size, fi, NULL); 10354 if (!ret) { 10355 /* Map a single [sub]page. */ 10356 phys_addr &= TARGET_PAGE_MASK; 10357 address &= TARGET_PAGE_MASK; 10358 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 10359 prot, mmu_idx, page_size); 10360 return 0; 10361 } 10362 10363 return ret; 10364 } 10365 10366 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 10367 MemTxAttrs *attrs) 10368 { 10369 ARMCPU *cpu = ARM_CPU(cs); 10370 CPUARMState *env = &cpu->env; 10371 hwaddr phys_addr; 10372 target_ulong page_size; 10373 int prot; 10374 bool ret; 10375 ARMMMUFaultInfo fi = {}; 10376 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 10377 10378 *attrs = (MemTxAttrs) {}; 10379 10380 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 10381 attrs, &prot, &page_size, &fi, NULL); 10382 10383 if (ret) { 10384 return -1; 10385 } 10386 return phys_addr; 10387 } 10388 10389 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 10390 { 10391 uint32_t mask; 10392 unsigned el = arm_current_el(env); 10393 10394 /* First handle registers which unprivileged can read */ 10395 10396 switch (reg) { 10397 case 0 ... 7: /* xPSR sub-fields */ 10398 mask = 0; 10399 if ((reg & 1) && el) { 10400 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ 10401 } 10402 if (!(reg & 4)) { 10403 mask |= XPSR_NZCV | XPSR_Q; /* APSR */ 10404 } 10405 /* EPSR reads as zero */ 10406 return xpsr_read(env) & mask; 10407 break; 10408 case 20: /* CONTROL */ 10409 return env->v7m.control[env->v7m.secure]; 10410 case 0x94: /* CONTROL_NS */ 10411 /* We have to handle this here because unprivileged Secure code 10412 * can read the NS CONTROL register. 10413 */ 10414 if (!env->v7m.secure) { 10415 return 0; 10416 } 10417 return env->v7m.control[M_REG_NS]; 10418 } 10419 10420 if (el == 0) { 10421 return 0; /* unprivileged reads others as zero */ 10422 } 10423 10424 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10425 switch (reg) { 10426 case 0x88: /* MSP_NS */ 10427 if (!env->v7m.secure) { 10428 return 0; 10429 } 10430 return env->v7m.other_ss_msp; 10431 case 0x89: /* PSP_NS */ 10432 if (!env->v7m.secure) { 10433 return 0; 10434 } 10435 return env->v7m.other_ss_psp; 10436 case 0x8a: /* MSPLIM_NS */ 10437 if (!env->v7m.secure) { 10438 return 0; 10439 } 10440 return env->v7m.msplim[M_REG_NS]; 10441 case 0x8b: /* PSPLIM_NS */ 10442 if (!env->v7m.secure) { 10443 return 0; 10444 } 10445 return env->v7m.psplim[M_REG_NS]; 10446 case 0x90: /* PRIMASK_NS */ 10447 if (!env->v7m.secure) { 10448 return 0; 10449 } 10450 return env->v7m.primask[M_REG_NS]; 10451 case 0x91: /* BASEPRI_NS */ 10452 if (!env->v7m.secure) { 10453 return 0; 10454 } 10455 return env->v7m.basepri[M_REG_NS]; 10456 case 0x93: /* FAULTMASK_NS */ 10457 if (!env->v7m.secure) { 10458 return 0; 10459 } 10460 return env->v7m.faultmask[M_REG_NS]; 10461 case 0x98: /* SP_NS */ 10462 { 10463 /* This gives the non-secure SP selected based on whether we're 10464 * currently in handler mode or not, using the NS CONTROL.SPSEL. 10465 */ 10466 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 10467 10468 if (!env->v7m.secure) { 10469 return 0; 10470 } 10471 if (!arm_v7m_is_handler_mode(env) && spsel) { 10472 return env->v7m.other_ss_psp; 10473 } else { 10474 return env->v7m.other_ss_msp; 10475 } 10476 } 10477 default: 10478 break; 10479 } 10480 } 10481 10482 switch (reg) { 10483 case 8: /* MSP */ 10484 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13]; 10485 case 9: /* PSP */ 10486 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp; 10487 case 10: /* MSPLIM */ 10488 if (!arm_feature(env, ARM_FEATURE_V8)) { 10489 goto bad_reg; 10490 } 10491 return env->v7m.msplim[env->v7m.secure]; 10492 case 11: /* PSPLIM */ 10493 if (!arm_feature(env, ARM_FEATURE_V8)) { 10494 goto bad_reg; 10495 } 10496 return env->v7m.psplim[env->v7m.secure]; 10497 case 16: /* PRIMASK */ 10498 return env->v7m.primask[env->v7m.secure]; 10499 case 17: /* BASEPRI */ 10500 case 18: /* BASEPRI_MAX */ 10501 return env->v7m.basepri[env->v7m.secure]; 10502 case 19: /* FAULTMASK */ 10503 return env->v7m.faultmask[env->v7m.secure]; 10504 default: 10505 bad_reg: 10506 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" 10507 " register %d\n", reg); 10508 return 0; 10509 } 10510 } 10511 10512 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) 10513 { 10514 /* We're passed bits [11..0] of the instruction; extract 10515 * SYSm and the mask bits. 10516 * Invalid combinations of SYSm and mask are UNPREDICTABLE; 10517 * we choose to treat them as if the mask bits were valid. 10518 * NB that the pseudocode 'mask' variable is bits [11..10], 10519 * whereas ours is [11..8]. 10520 */ 10521 uint32_t mask = extract32(maskreg, 8, 4); 10522 uint32_t reg = extract32(maskreg, 0, 8); 10523 10524 if (arm_current_el(env) == 0 && reg > 7) { 10525 /* only xPSR sub-fields may be written by unprivileged */ 10526 return; 10527 } 10528 10529 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10530 switch (reg) { 10531 case 0x88: /* MSP_NS */ 10532 if (!env->v7m.secure) { 10533 return; 10534 } 10535 env->v7m.other_ss_msp = val; 10536 return; 10537 case 0x89: /* PSP_NS */ 10538 if (!env->v7m.secure) { 10539 return; 10540 } 10541 env->v7m.other_ss_psp = val; 10542 return; 10543 case 0x8a: /* MSPLIM_NS */ 10544 if (!env->v7m.secure) { 10545 return; 10546 } 10547 env->v7m.msplim[M_REG_NS] = val & ~7; 10548 return; 10549 case 0x8b: /* PSPLIM_NS */ 10550 if (!env->v7m.secure) { 10551 return; 10552 } 10553 env->v7m.psplim[M_REG_NS] = val & ~7; 10554 return; 10555 case 0x90: /* PRIMASK_NS */ 10556 if (!env->v7m.secure) { 10557 return; 10558 } 10559 env->v7m.primask[M_REG_NS] = val & 1; 10560 return; 10561 case 0x91: /* BASEPRI_NS */ 10562 if (!env->v7m.secure) { 10563 return; 10564 } 10565 env->v7m.basepri[M_REG_NS] = val & 0xff; 10566 return; 10567 case 0x93: /* FAULTMASK_NS */ 10568 if (!env->v7m.secure) { 10569 return; 10570 } 10571 env->v7m.faultmask[M_REG_NS] = val & 1; 10572 return; 10573 case 0x94: /* CONTROL_NS */ 10574 if (!env->v7m.secure) { 10575 return; 10576 } 10577 write_v7m_control_spsel_for_secstate(env, 10578 val & R_V7M_CONTROL_SPSEL_MASK, 10579 M_REG_NS); 10580 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK; 10581 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK; 10582 return; 10583 case 0x98: /* SP_NS */ 10584 { 10585 /* This gives the non-secure SP selected based on whether we're 10586 * currently in handler mode or not, using the NS CONTROL.SPSEL. 10587 */ 10588 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 10589 10590 if (!env->v7m.secure) { 10591 return; 10592 } 10593 if (!arm_v7m_is_handler_mode(env) && spsel) { 10594 env->v7m.other_ss_psp = val; 10595 } else { 10596 env->v7m.other_ss_msp = val; 10597 } 10598 return; 10599 } 10600 default: 10601 break; 10602 } 10603 } 10604 10605 switch (reg) { 10606 case 0 ... 7: /* xPSR sub-fields */ 10607 /* only APSR is actually writable */ 10608 if (!(reg & 4)) { 10609 uint32_t apsrmask = 0; 10610 10611 if (mask & 8) { 10612 apsrmask |= XPSR_NZCV | XPSR_Q; 10613 } 10614 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 10615 apsrmask |= XPSR_GE; 10616 } 10617 xpsr_write(env, val, apsrmask); 10618 } 10619 break; 10620 case 8: /* MSP */ 10621 if (v7m_using_psp(env)) { 10622 env->v7m.other_sp = val; 10623 } else { 10624 env->regs[13] = val; 10625 } 10626 break; 10627 case 9: /* PSP */ 10628 if (v7m_using_psp(env)) { 10629 env->regs[13] = val; 10630 } else { 10631 env->v7m.other_sp = val; 10632 } 10633 break; 10634 case 10: /* MSPLIM */ 10635 if (!arm_feature(env, ARM_FEATURE_V8)) { 10636 goto bad_reg; 10637 } 10638 env->v7m.msplim[env->v7m.secure] = val & ~7; 10639 break; 10640 case 11: /* PSPLIM */ 10641 if (!arm_feature(env, ARM_FEATURE_V8)) { 10642 goto bad_reg; 10643 } 10644 env->v7m.psplim[env->v7m.secure] = val & ~7; 10645 break; 10646 case 16: /* PRIMASK */ 10647 env->v7m.primask[env->v7m.secure] = val & 1; 10648 break; 10649 case 17: /* BASEPRI */ 10650 env->v7m.basepri[env->v7m.secure] = val & 0xff; 10651 break; 10652 case 18: /* BASEPRI_MAX */ 10653 val &= 0xff; 10654 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] 10655 || env->v7m.basepri[env->v7m.secure] == 0)) { 10656 env->v7m.basepri[env->v7m.secure] = val; 10657 } 10658 break; 10659 case 19: /* FAULTMASK */ 10660 env->v7m.faultmask[env->v7m.secure] = val & 1; 10661 break; 10662 case 20: /* CONTROL */ 10663 /* Writing to the SPSEL bit only has an effect if we are in 10664 * thread mode; other bits can be updated by any privileged code. 10665 * write_v7m_control_spsel() deals with updating the SPSEL bit in 10666 * env->v7m.control, so we only need update the others. 10667 * For v7M, we must just ignore explicit writes to SPSEL in handler 10668 * mode; for v8M the write is permitted but will have no effect. 10669 */ 10670 if (arm_feature(env, ARM_FEATURE_V8) || 10671 !arm_v7m_is_handler_mode(env)) { 10672 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); 10673 } 10674 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; 10675 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; 10676 break; 10677 default: 10678 bad_reg: 10679 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" 10680 " register %d\n", reg); 10681 return; 10682 } 10683 } 10684 10685 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 10686 { 10687 /* Implement the TT instruction. op is bits [7:6] of the insn. */ 10688 bool forceunpriv = op & 1; 10689 bool alt = op & 2; 10690 V8M_SAttributes sattrs = {}; 10691 uint32_t tt_resp; 10692 bool r, rw, nsr, nsrw, mrvalid; 10693 int prot; 10694 ARMMMUFaultInfo fi = {}; 10695 MemTxAttrs attrs = {}; 10696 hwaddr phys_addr; 10697 ARMMMUIdx mmu_idx; 10698 uint32_t mregion; 10699 bool targetpriv; 10700 bool targetsec = env->v7m.secure; 10701 10702 /* Work out what the security state and privilege level we're 10703 * interested in is... 10704 */ 10705 if (alt) { 10706 targetsec = !targetsec; 10707 } 10708 10709 if (forceunpriv) { 10710 targetpriv = false; 10711 } else { 10712 targetpriv = arm_v7m_is_handler_mode(env) || 10713 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK); 10714 } 10715 10716 /* ...and then figure out which MMU index this is */ 10717 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv); 10718 10719 /* We know that the MPU and SAU don't care about the access type 10720 * for our purposes beyond that we don't want to claim to be 10721 * an insn fetch, so we arbitrarily call this a read. 10722 */ 10723 10724 /* MPU region info only available for privileged or if 10725 * inspecting the other MPU state. 10726 */ 10727 if (arm_current_el(env) != 0 || alt) { 10728 /* We can ignore the return value as prot is always set */ 10729 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, 10730 &phys_addr, &attrs, &prot, &fi, &mregion); 10731 if (mregion == -1) { 10732 mrvalid = false; 10733 mregion = 0; 10734 } else { 10735 mrvalid = true; 10736 } 10737 r = prot & PAGE_READ; 10738 rw = prot & PAGE_WRITE; 10739 } else { 10740 r = false; 10741 rw = false; 10742 mrvalid = false; 10743 mregion = 0; 10744 } 10745 10746 if (env->v7m.secure) { 10747 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 10748 nsr = sattrs.ns && r; 10749 nsrw = sattrs.ns && rw; 10750 } else { 10751 sattrs.ns = true; 10752 nsr = false; 10753 nsrw = false; 10754 } 10755 10756 tt_resp = (sattrs.iregion << 24) | 10757 (sattrs.irvalid << 23) | 10758 ((!sattrs.ns) << 22) | 10759 (nsrw << 21) | 10760 (nsr << 20) | 10761 (rw << 19) | 10762 (r << 18) | 10763 (sattrs.srvalid << 17) | 10764 (mrvalid << 16) | 10765 (sattrs.sregion << 8) | 10766 mregion; 10767 10768 return tt_resp; 10769 } 10770 10771 #endif 10772 10773 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 10774 { 10775 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 10776 * Note that we do not implement the (architecturally mandated) 10777 * alignment fault for attempts to use this on Device memory 10778 * (which matches the usual QEMU behaviour of not implementing either 10779 * alignment faults or any memory attribute handling). 10780 */ 10781 10782 ARMCPU *cpu = arm_env_get_cpu(env); 10783 uint64_t blocklen = 4 << cpu->dcz_blocksize; 10784 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 10785 10786 #ifndef CONFIG_USER_ONLY 10787 { 10788 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 10789 * the block size so we might have to do more than one TLB lookup. 10790 * We know that in fact for any v8 CPU the page size is at least 4K 10791 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 10792 * 1K as an artefact of legacy v5 subpage support being present in the 10793 * same QEMU executable. 10794 */ 10795 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 10796 void *hostaddr[maxidx]; 10797 int try, i; 10798 unsigned mmu_idx = cpu_mmu_index(env, false); 10799 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 10800 10801 for (try = 0; try < 2; try++) { 10802 10803 for (i = 0; i < maxidx; i++) { 10804 hostaddr[i] = tlb_vaddr_to_host(env, 10805 vaddr + TARGET_PAGE_SIZE * i, 10806 1, mmu_idx); 10807 if (!hostaddr[i]) { 10808 break; 10809 } 10810 } 10811 if (i == maxidx) { 10812 /* If it's all in the TLB it's fair game for just writing to; 10813 * we know we don't need to update dirty status, etc. 10814 */ 10815 for (i = 0; i < maxidx - 1; i++) { 10816 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 10817 } 10818 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 10819 return; 10820 } 10821 /* OK, try a store and see if we can populate the tlb. This 10822 * might cause an exception if the memory isn't writable, 10823 * in which case we will longjmp out of here. We must for 10824 * this purpose use the actual register value passed to us 10825 * so that we get the fault address right. 10826 */ 10827 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 10828 /* Now we can populate the other TLB entries, if any */ 10829 for (i = 0; i < maxidx; i++) { 10830 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 10831 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 10832 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 10833 } 10834 } 10835 } 10836 10837 /* Slow path (probably attempt to do this to an I/O device or 10838 * similar, or clearing of a block of code we have translations 10839 * cached for). Just do a series of byte writes as the architecture 10840 * demands. It's not worth trying to use a cpu_physical_memory_map(), 10841 * memset(), unmap() sequence here because: 10842 * + we'd need to account for the blocksize being larger than a page 10843 * + the direct-RAM access case is almost always going to be dealt 10844 * with in the fastpath code above, so there's no speed benefit 10845 * + we would have to deal with the map returning NULL because the 10846 * bounce buffer was in use 10847 */ 10848 for (i = 0; i < blocklen; i++) { 10849 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 10850 } 10851 } 10852 #else 10853 memset(g2h(vaddr), 0, blocklen); 10854 #endif 10855 } 10856 10857 /* Note that signed overflow is undefined in C. The following routines are 10858 careful to use unsigned types where modulo arithmetic is required. 10859 Failure to do so _will_ break on newer gcc. */ 10860 10861 /* Signed saturating arithmetic. */ 10862 10863 /* Perform 16-bit signed saturating addition. */ 10864 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10865 { 10866 uint16_t res; 10867 10868 res = a + b; 10869 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10870 if (a & 0x8000) 10871 res = 0x8000; 10872 else 10873 res = 0x7fff; 10874 } 10875 return res; 10876 } 10877 10878 /* Perform 8-bit signed saturating addition. */ 10879 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10880 { 10881 uint8_t res; 10882 10883 res = a + b; 10884 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10885 if (a & 0x80) 10886 res = 0x80; 10887 else 10888 res = 0x7f; 10889 } 10890 return res; 10891 } 10892 10893 /* Perform 16-bit signed saturating subtraction. */ 10894 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10895 { 10896 uint16_t res; 10897 10898 res = a - b; 10899 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10900 if (a & 0x8000) 10901 res = 0x8000; 10902 else 10903 res = 0x7fff; 10904 } 10905 return res; 10906 } 10907 10908 /* Perform 8-bit signed saturating subtraction. */ 10909 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10910 { 10911 uint8_t res; 10912 10913 res = a - b; 10914 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10915 if (a & 0x80) 10916 res = 0x80; 10917 else 10918 res = 0x7f; 10919 } 10920 return res; 10921 } 10922 10923 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10924 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10925 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10926 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10927 #define PFX q 10928 10929 #include "op_addsub.h" 10930 10931 /* Unsigned saturating arithmetic. */ 10932 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10933 { 10934 uint16_t res; 10935 res = a + b; 10936 if (res < a) 10937 res = 0xffff; 10938 return res; 10939 } 10940 10941 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10942 { 10943 if (a > b) 10944 return a - b; 10945 else 10946 return 0; 10947 } 10948 10949 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10950 { 10951 uint8_t res; 10952 res = a + b; 10953 if (res < a) 10954 res = 0xff; 10955 return res; 10956 } 10957 10958 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10959 { 10960 if (a > b) 10961 return a - b; 10962 else 10963 return 0; 10964 } 10965 10966 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 10967 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 10968 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 10969 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 10970 #define PFX uq 10971 10972 #include "op_addsub.h" 10973 10974 /* Signed modulo arithmetic. */ 10975 #define SARITH16(a, b, n, op) do { \ 10976 int32_t sum; \ 10977 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 10978 RESULT(sum, n, 16); \ 10979 if (sum >= 0) \ 10980 ge |= 3 << (n * 2); \ 10981 } while(0) 10982 10983 #define SARITH8(a, b, n, op) do { \ 10984 int32_t sum; \ 10985 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 10986 RESULT(sum, n, 8); \ 10987 if (sum >= 0) \ 10988 ge |= 1 << n; \ 10989 } while(0) 10990 10991 10992 #define ADD16(a, b, n) SARITH16(a, b, n, +) 10993 #define SUB16(a, b, n) SARITH16(a, b, n, -) 10994 #define ADD8(a, b, n) SARITH8(a, b, n, +) 10995 #define SUB8(a, b, n) SARITH8(a, b, n, -) 10996 #define PFX s 10997 #define ARITH_GE 10998 10999 #include "op_addsub.h" 11000 11001 /* Unsigned modulo arithmetic. */ 11002 #define ADD16(a, b, n) do { \ 11003 uint32_t sum; \ 11004 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11005 RESULT(sum, n, 16); \ 11006 if ((sum >> 16) == 1) \ 11007 ge |= 3 << (n * 2); \ 11008 } while(0) 11009 11010 #define ADD8(a, b, n) do { \ 11011 uint32_t sum; \ 11012 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11013 RESULT(sum, n, 8); \ 11014 if ((sum >> 8) == 1) \ 11015 ge |= 1 << n; \ 11016 } while(0) 11017 11018 #define SUB16(a, b, n) do { \ 11019 uint32_t sum; \ 11020 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11021 RESULT(sum, n, 16); \ 11022 if ((sum >> 16) == 0) \ 11023 ge |= 3 << (n * 2); \ 11024 } while(0) 11025 11026 #define SUB8(a, b, n) do { \ 11027 uint32_t sum; \ 11028 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11029 RESULT(sum, n, 8); \ 11030 if ((sum >> 8) == 0) \ 11031 ge |= 1 << n; \ 11032 } while(0) 11033 11034 #define PFX u 11035 #define ARITH_GE 11036 11037 #include "op_addsub.h" 11038 11039 /* Halved signed arithmetic. */ 11040 #define ADD16(a, b, n) \ 11041 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11042 #define SUB16(a, b, n) \ 11043 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11044 #define ADD8(a, b, n) \ 11045 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11046 #define SUB8(a, b, n) \ 11047 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11048 #define PFX sh 11049 11050 #include "op_addsub.h" 11051 11052 /* Halved unsigned arithmetic. */ 11053 #define ADD16(a, b, n) \ 11054 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11055 #define SUB16(a, b, n) \ 11056 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11057 #define ADD8(a, b, n) \ 11058 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11059 #define SUB8(a, b, n) \ 11060 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11061 #define PFX uh 11062 11063 #include "op_addsub.h" 11064 11065 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11066 { 11067 if (a > b) 11068 return a - b; 11069 else 11070 return b - a; 11071 } 11072 11073 /* Unsigned sum of absolute byte differences. */ 11074 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11075 { 11076 uint32_t sum; 11077 sum = do_usad(a, b); 11078 sum += do_usad(a >> 8, b >> 8); 11079 sum += do_usad(a >> 16, b >>16); 11080 sum += do_usad(a >> 24, b >> 24); 11081 return sum; 11082 } 11083 11084 /* For ARMv6 SEL instruction. */ 11085 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11086 { 11087 uint32_t mask; 11088 11089 mask = 0; 11090 if (flags & 1) 11091 mask |= 0xff; 11092 if (flags & 2) 11093 mask |= 0xff00; 11094 if (flags & 4) 11095 mask |= 0xff0000; 11096 if (flags & 8) 11097 mask |= 0xff000000; 11098 return (a & mask) | (b & ~mask); 11099 } 11100 11101 /* VFP support. We follow the convention used for VFP instructions: 11102 Single precision routines have a "s" suffix, double precision a 11103 "d" suffix. */ 11104 11105 /* Convert host exception flags to vfp form. */ 11106 static inline int vfp_exceptbits_from_host(int host_bits) 11107 { 11108 int target_bits = 0; 11109 11110 if (host_bits & float_flag_invalid) 11111 target_bits |= 1; 11112 if (host_bits & float_flag_divbyzero) 11113 target_bits |= 2; 11114 if (host_bits & float_flag_overflow) 11115 target_bits |= 4; 11116 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) 11117 target_bits |= 8; 11118 if (host_bits & float_flag_inexact) 11119 target_bits |= 0x10; 11120 if (host_bits & float_flag_input_denormal) 11121 target_bits |= 0x80; 11122 return target_bits; 11123 } 11124 11125 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) 11126 { 11127 int i; 11128 uint32_t fpscr; 11129 11130 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) 11131 | (env->vfp.vec_len << 16) 11132 | (env->vfp.vec_stride << 20); 11133 i = get_float_exception_flags(&env->vfp.fp_status); 11134 i |= get_float_exception_flags(&env->vfp.standard_fp_status); 11135 i |= get_float_exception_flags(&env->vfp.fp_status_f16); 11136 fpscr |= vfp_exceptbits_from_host(i); 11137 return fpscr; 11138 } 11139 11140 uint32_t vfp_get_fpscr(CPUARMState *env) 11141 { 11142 return HELPER(vfp_get_fpscr)(env); 11143 } 11144 11145 /* Convert vfp exception flags to target form. */ 11146 static inline int vfp_exceptbits_to_host(int target_bits) 11147 { 11148 int host_bits = 0; 11149 11150 if (target_bits & 1) 11151 host_bits |= float_flag_invalid; 11152 if (target_bits & 2) 11153 host_bits |= float_flag_divbyzero; 11154 if (target_bits & 4) 11155 host_bits |= float_flag_overflow; 11156 if (target_bits & 8) 11157 host_bits |= float_flag_underflow; 11158 if (target_bits & 0x10) 11159 host_bits |= float_flag_inexact; 11160 if (target_bits & 0x80) 11161 host_bits |= float_flag_input_denormal; 11162 return host_bits; 11163 } 11164 11165 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) 11166 { 11167 int i; 11168 uint32_t changed; 11169 11170 changed = env->vfp.xregs[ARM_VFP_FPSCR]; 11171 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); 11172 env->vfp.vec_len = (val >> 16) & 7; 11173 env->vfp.vec_stride = (val >> 20) & 3; 11174 11175 changed ^= val; 11176 if (changed & (3 << 22)) { 11177 i = (val >> 22) & 3; 11178 switch (i) { 11179 case FPROUNDING_TIEEVEN: 11180 i = float_round_nearest_even; 11181 break; 11182 case FPROUNDING_POSINF: 11183 i = float_round_up; 11184 break; 11185 case FPROUNDING_NEGINF: 11186 i = float_round_down; 11187 break; 11188 case FPROUNDING_ZERO: 11189 i = float_round_to_zero; 11190 break; 11191 } 11192 set_float_rounding_mode(i, &env->vfp.fp_status); 11193 set_float_rounding_mode(i, &env->vfp.fp_status_f16); 11194 } 11195 if (changed & FPCR_FZ16) { 11196 bool ftz_enabled = val & FPCR_FZ16; 11197 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 11198 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 11199 } 11200 if (changed & FPCR_FZ) { 11201 bool ftz_enabled = val & FPCR_FZ; 11202 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status); 11203 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status); 11204 } 11205 if (changed & FPCR_DN) { 11206 bool dnan_enabled = val & FPCR_DN; 11207 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status); 11208 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16); 11209 } 11210 11211 /* The exception flags are ORed together when we read fpscr so we 11212 * only need to preserve the current state in one of our 11213 * float_status values. 11214 */ 11215 i = vfp_exceptbits_to_host(val); 11216 set_float_exception_flags(i, &env->vfp.fp_status); 11217 set_float_exception_flags(0, &env->vfp.fp_status_f16); 11218 set_float_exception_flags(0, &env->vfp.standard_fp_status); 11219 } 11220 11221 void vfp_set_fpscr(CPUARMState *env, uint32_t val) 11222 { 11223 HELPER(vfp_set_fpscr)(env, val); 11224 } 11225 11226 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) 11227 11228 #define VFP_BINOP(name) \ 11229 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ 11230 { \ 11231 float_status *fpst = fpstp; \ 11232 return float32_ ## name(a, b, fpst); \ 11233 } \ 11234 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ 11235 { \ 11236 float_status *fpst = fpstp; \ 11237 return float64_ ## name(a, b, fpst); \ 11238 } 11239 VFP_BINOP(add) 11240 VFP_BINOP(sub) 11241 VFP_BINOP(mul) 11242 VFP_BINOP(div) 11243 VFP_BINOP(min) 11244 VFP_BINOP(max) 11245 VFP_BINOP(minnum) 11246 VFP_BINOP(maxnum) 11247 #undef VFP_BINOP 11248 11249 float32 VFP_HELPER(neg, s)(float32 a) 11250 { 11251 return float32_chs(a); 11252 } 11253 11254 float64 VFP_HELPER(neg, d)(float64 a) 11255 { 11256 return float64_chs(a); 11257 } 11258 11259 float32 VFP_HELPER(abs, s)(float32 a) 11260 { 11261 return float32_abs(a); 11262 } 11263 11264 float64 VFP_HELPER(abs, d)(float64 a) 11265 { 11266 return float64_abs(a); 11267 } 11268 11269 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) 11270 { 11271 return float32_sqrt(a, &env->vfp.fp_status); 11272 } 11273 11274 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) 11275 { 11276 return float64_sqrt(a, &env->vfp.fp_status); 11277 } 11278 11279 /* XXX: check quiet/signaling case */ 11280 #define DO_VFP_cmp(p, type) \ 11281 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ 11282 { \ 11283 uint32_t flags; \ 11284 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ 11285 case 0: flags = 0x6; break; \ 11286 case -1: flags = 0x8; break; \ 11287 case 1: flags = 0x2; break; \ 11288 default: case 2: flags = 0x3; break; \ 11289 } \ 11290 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 11291 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 11292 } \ 11293 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ 11294 { \ 11295 uint32_t flags; \ 11296 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ 11297 case 0: flags = 0x6; break; \ 11298 case -1: flags = 0x8; break; \ 11299 case 1: flags = 0x2; break; \ 11300 default: case 2: flags = 0x3; break; \ 11301 } \ 11302 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 11303 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 11304 } 11305 DO_VFP_cmp(s, float32) 11306 DO_VFP_cmp(d, float64) 11307 #undef DO_VFP_cmp 11308 11309 /* Integer to float and float to integer conversions */ 11310 11311 #define CONV_ITOF(name, fsz, sign) \ 11312 float##fsz HELPER(name)(uint32_t x, void *fpstp) \ 11313 { \ 11314 float_status *fpst = fpstp; \ 11315 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ 11316 } 11317 11318 #define CONV_FTOI(name, fsz, sign, round) \ 11319 uint32_t HELPER(name)(float##fsz x, void *fpstp) \ 11320 { \ 11321 float_status *fpst = fpstp; \ 11322 if (float##fsz##_is_any_nan(x)) { \ 11323 float_raise(float_flag_invalid, fpst); \ 11324 return 0; \ 11325 } \ 11326 return float##fsz##_to_##sign##int32##round(x, fpst); \ 11327 } 11328 11329 #define FLOAT_CONVS(name, p, fsz, sign) \ 11330 CONV_ITOF(vfp_##name##to##p, fsz, sign) \ 11331 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ 11332 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) 11333 11334 FLOAT_CONVS(si, h, 16, ) 11335 FLOAT_CONVS(si, s, 32, ) 11336 FLOAT_CONVS(si, d, 64, ) 11337 FLOAT_CONVS(ui, h, 16, u) 11338 FLOAT_CONVS(ui, s, 32, u) 11339 FLOAT_CONVS(ui, d, 64, u) 11340 11341 #undef CONV_ITOF 11342 #undef CONV_FTOI 11343 #undef FLOAT_CONVS 11344 11345 /* floating point conversion */ 11346 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) 11347 { 11348 float64 r = float32_to_float64(x, &env->vfp.fp_status); 11349 /* ARM requires that S<->D conversion of any kind of NaN generates 11350 * a quiet NaN by forcing the most significant frac bit to 1. 11351 */ 11352 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 11353 } 11354 11355 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) 11356 { 11357 float32 r = float64_to_float32(x, &env->vfp.fp_status); 11358 /* ARM requires that S<->D conversion of any kind of NaN generates 11359 * a quiet NaN by forcing the most significant frac bit to 1. 11360 */ 11361 return float32_maybe_silence_nan(r, &env->vfp.fp_status); 11362 } 11363 11364 /* VFP3 fixed point conversion. */ 11365 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11366 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ 11367 void *fpstp) \ 11368 { \ 11369 float_status *fpst = fpstp; \ 11370 float##fsz tmp; \ 11371 tmp = itype##_to_##float##fsz(x, fpst); \ 11372 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ 11373 } 11374 11375 /* Notice that we want only input-denormal exception flags from the 11376 * scalbn operation: the other possible flags (overflow+inexact if 11377 * we overflow to infinity, output-denormal) aren't correct for the 11378 * complete scale-and-convert operation. 11379 */ 11380 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ 11381 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ 11382 uint32_t shift, \ 11383 void *fpstp) \ 11384 { \ 11385 float_status *fpst = fpstp; \ 11386 int old_exc_flags = get_float_exception_flags(fpst); \ 11387 float##fsz tmp; \ 11388 if (float##fsz##_is_any_nan(x)) { \ 11389 float_raise(float_flag_invalid, fpst); \ 11390 return 0; \ 11391 } \ 11392 tmp = float##fsz##_scalbn(x, shift, fpst); \ 11393 old_exc_flags |= get_float_exception_flags(fpst) \ 11394 & float_flag_input_denormal; \ 11395 set_float_exception_flags(old_exc_flags, fpst); \ 11396 return float##fsz##_to_##itype##round(tmp, fpst); \ 11397 } 11398 11399 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ 11400 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11401 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ 11402 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 11403 11404 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ 11405 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11406 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 11407 11408 VFP_CONV_FIX(sh, d, 64, 64, int16) 11409 VFP_CONV_FIX(sl, d, 64, 64, int32) 11410 VFP_CONV_FIX_A64(sq, d, 64, 64, int64) 11411 VFP_CONV_FIX(uh, d, 64, 64, uint16) 11412 VFP_CONV_FIX(ul, d, 64, 64, uint32) 11413 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) 11414 VFP_CONV_FIX(sh, s, 32, 32, int16) 11415 VFP_CONV_FIX(sl, s, 32, 32, int32) 11416 VFP_CONV_FIX_A64(sq, s, 32, 64, int64) 11417 VFP_CONV_FIX(uh, s, 32, 32, uint16) 11418 VFP_CONV_FIX(ul, s, 32, 32, uint32) 11419 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) 11420 VFP_CONV_FIX_A64(sl, h, 16, 32, int32) 11421 VFP_CONV_FIX_A64(ul, h, 16, 32, uint32) 11422 #undef VFP_CONV_FIX 11423 #undef VFP_CONV_FIX_FLOAT 11424 #undef VFP_CONV_FLOAT_FIX_ROUND 11425 11426 /* Set the current fp rounding mode and return the old one. 11427 * The argument is a softfloat float_round_ value. 11428 */ 11429 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp) 11430 { 11431 float_status *fp_status = fpstp; 11432 11433 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 11434 set_float_rounding_mode(rmode, fp_status); 11435 11436 return prev_rmode; 11437 } 11438 11439 /* Set the current fp rounding mode in the standard fp status and return 11440 * the old one. This is for NEON instructions that need to change the 11441 * rounding mode but wish to use the standard FPSCR values for everything 11442 * else. Always set the rounding mode back to the correct value after 11443 * modifying it. 11444 * The argument is a softfloat float_round_ value. 11445 */ 11446 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) 11447 { 11448 float_status *fp_status = &env->vfp.standard_fp_status; 11449 11450 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 11451 set_float_rounding_mode(rmode, fp_status); 11452 11453 return prev_rmode; 11454 } 11455 11456 /* Half precision conversions. */ 11457 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) 11458 { 11459 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 11460 float32 r = float16_to_float32(make_float16(a), ieee, s); 11461 if (ieee) { 11462 return float32_maybe_silence_nan(r, s); 11463 } 11464 return r; 11465 } 11466 11467 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) 11468 { 11469 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 11470 float16 r = float32_to_float16(a, ieee, s); 11471 if (ieee) { 11472 r = float16_maybe_silence_nan(r, s); 11473 } 11474 return float16_val(r); 11475 } 11476 11477 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 11478 { 11479 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); 11480 } 11481 11482 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 11483 { 11484 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); 11485 } 11486 11487 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 11488 { 11489 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); 11490 } 11491 11492 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 11493 { 11494 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); 11495 } 11496 11497 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) 11498 { 11499 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 11500 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); 11501 if (ieee) { 11502 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 11503 } 11504 return r; 11505 } 11506 11507 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) 11508 { 11509 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 11510 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); 11511 if (ieee) { 11512 r = float16_maybe_silence_nan(r, &env->vfp.fp_status); 11513 } 11514 return float16_val(r); 11515 } 11516 11517 #define float32_two make_float32(0x40000000) 11518 #define float32_three make_float32(0x40400000) 11519 #define float32_one_point_five make_float32(0x3fc00000) 11520 11521 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) 11522 { 11523 float_status *s = &env->vfp.standard_fp_status; 11524 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 11525 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 11526 if (!(float32_is_zero(a) || float32_is_zero(b))) { 11527 float_raise(float_flag_input_denormal, s); 11528 } 11529 return float32_two; 11530 } 11531 return float32_sub(float32_two, float32_mul(a, b, s), s); 11532 } 11533 11534 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) 11535 { 11536 float_status *s = &env->vfp.standard_fp_status; 11537 float32 product; 11538 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 11539 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 11540 if (!(float32_is_zero(a) || float32_is_zero(b))) { 11541 float_raise(float_flag_input_denormal, s); 11542 } 11543 return float32_one_point_five; 11544 } 11545 product = float32_mul(a, b, s); 11546 return float32_div(float32_sub(float32_three, product, s), float32_two, s); 11547 } 11548 11549 /* NEON helpers. */ 11550 11551 /* Constants 256 and 512 are used in some helpers; we avoid relying on 11552 * int->float conversions at run-time. */ 11553 #define float64_256 make_float64(0x4070000000000000LL) 11554 #define float64_512 make_float64(0x4080000000000000LL) 11555 #define float16_maxnorm make_float16(0x7bff) 11556 #define float32_maxnorm make_float32(0x7f7fffff) 11557 #define float64_maxnorm make_float64(0x7fefffffffffffffLL) 11558 11559 /* Reciprocal functions 11560 * 11561 * The algorithm that must be used to calculate the estimate 11562 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate 11563 */ 11564 11565 /* See RecipEstimate() 11566 * 11567 * input is a 9 bit fixed point number 11568 * input range 256 .. 511 for a number from 0.5 <= x < 1.0. 11569 * result range 256 .. 511 for a number from 1.0 to 511/256. 11570 */ 11571 11572 static int recip_estimate(int input) 11573 { 11574 int a, b, r; 11575 assert(256 <= input && input < 512); 11576 a = (input * 2) + 1; 11577 b = (1 << 19) / a; 11578 r = (b + 1) >> 1; 11579 assert(256 <= r && r < 512); 11580 return r; 11581 } 11582 11583 /* 11584 * Common wrapper to call recip_estimate 11585 * 11586 * The parameters are exponent and 64 bit fraction (without implicit 11587 * bit) where the binary point is nominally at bit 52. Returns a 11588 * float64 which can then be rounded to the appropriate size by the 11589 * callee. 11590 */ 11591 11592 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac) 11593 { 11594 uint32_t scaled, estimate; 11595 uint64_t result_frac; 11596 int result_exp; 11597 11598 /* Handle sub-normals */ 11599 if (*exp == 0) { 11600 if (extract64(frac, 51, 1) == 0) { 11601 *exp = -1; 11602 frac <<= 2; 11603 } else { 11604 frac <<= 1; 11605 } 11606 } 11607 11608 /* scaled = UInt('1':fraction<51:44>) */ 11609 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 11610 estimate = recip_estimate(scaled); 11611 11612 result_exp = exp_off - *exp; 11613 result_frac = deposit64(0, 44, 8, estimate); 11614 if (result_exp == 0) { 11615 result_frac = deposit64(result_frac >> 1, 51, 1, 1); 11616 } else if (result_exp == -1) { 11617 result_frac = deposit64(result_frac >> 2, 50, 2, 1); 11618 result_exp = 0; 11619 } 11620 11621 *exp = result_exp; 11622 11623 return result_frac; 11624 } 11625 11626 static bool round_to_inf(float_status *fpst, bool sign_bit) 11627 { 11628 switch (fpst->float_rounding_mode) { 11629 case float_round_nearest_even: /* Round to Nearest */ 11630 return true; 11631 case float_round_up: /* Round to +Inf */ 11632 return !sign_bit; 11633 case float_round_down: /* Round to -Inf */ 11634 return sign_bit; 11635 case float_round_to_zero: /* Round to Zero */ 11636 return false; 11637 } 11638 11639 g_assert_not_reached(); 11640 } 11641 11642 float16 HELPER(recpe_f16)(float16 input, void *fpstp) 11643 { 11644 float_status *fpst = fpstp; 11645 float16 f16 = float16_squash_input_denormal(input, fpst); 11646 uint32_t f16_val = float16_val(f16); 11647 uint32_t f16_sign = float16_is_neg(f16); 11648 int f16_exp = extract32(f16_val, 10, 5); 11649 uint32_t f16_frac = extract32(f16_val, 0, 10); 11650 uint64_t f64_frac; 11651 11652 if (float16_is_any_nan(f16)) { 11653 float16 nan = f16; 11654 if (float16_is_signaling_nan(f16, fpst)) { 11655 float_raise(float_flag_invalid, fpst); 11656 nan = float16_maybe_silence_nan(f16, fpst); 11657 } 11658 if (fpst->default_nan_mode) { 11659 nan = float16_default_nan(fpst); 11660 } 11661 return nan; 11662 } else if (float16_is_infinity(f16)) { 11663 return float16_set_sign(float16_zero, float16_is_neg(f16)); 11664 } else if (float16_is_zero(f16)) { 11665 float_raise(float_flag_divbyzero, fpst); 11666 return float16_set_sign(float16_infinity, float16_is_neg(f16)); 11667 } else if (float16_abs(f16) < (1 << 8)) { 11668 /* Abs(value) < 2.0^-16 */ 11669 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11670 if (round_to_inf(fpst, f16_sign)) { 11671 return float16_set_sign(float16_infinity, f16_sign); 11672 } else { 11673 return float16_set_sign(float16_maxnorm, f16_sign); 11674 } 11675 } else if (f16_exp >= 29 && fpst->flush_to_zero) { 11676 float_raise(float_flag_underflow, fpst); 11677 return float16_set_sign(float16_zero, float16_is_neg(f16)); 11678 } 11679 11680 f64_frac = call_recip_estimate(&f16_exp, 29, 11681 ((uint64_t) f16_frac) << (52 - 10)); 11682 11683 /* result = sign : result_exp<4:0> : fraction<51:42> */ 11684 f16_val = deposit32(0, 15, 1, f16_sign); 11685 f16_val = deposit32(f16_val, 10, 5, f16_exp); 11686 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10)); 11687 return make_float16(f16_val); 11688 } 11689 11690 float32 HELPER(recpe_f32)(float32 input, void *fpstp) 11691 { 11692 float_status *fpst = fpstp; 11693 float32 f32 = float32_squash_input_denormal(input, fpst); 11694 uint32_t f32_val = float32_val(f32); 11695 bool f32_sign = float32_is_neg(f32); 11696 int f32_exp = extract32(f32_val, 23, 8); 11697 uint32_t f32_frac = extract32(f32_val, 0, 23); 11698 uint64_t f64_frac; 11699 11700 if (float32_is_any_nan(f32)) { 11701 float32 nan = f32; 11702 if (float32_is_signaling_nan(f32, fpst)) { 11703 float_raise(float_flag_invalid, fpst); 11704 nan = float32_maybe_silence_nan(f32, fpst); 11705 } 11706 if (fpst->default_nan_mode) { 11707 nan = float32_default_nan(fpst); 11708 } 11709 return nan; 11710 } else if (float32_is_infinity(f32)) { 11711 return float32_set_sign(float32_zero, float32_is_neg(f32)); 11712 } else if (float32_is_zero(f32)) { 11713 float_raise(float_flag_divbyzero, fpst); 11714 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 11715 } else if (float32_abs(f32) < (1ULL << 21)) { 11716 /* Abs(value) < 2.0^-128 */ 11717 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11718 if (round_to_inf(fpst, f32_sign)) { 11719 return float32_set_sign(float32_infinity, f32_sign); 11720 } else { 11721 return float32_set_sign(float32_maxnorm, f32_sign); 11722 } 11723 } else if (f32_exp >= 253 && fpst->flush_to_zero) { 11724 float_raise(float_flag_underflow, fpst); 11725 return float32_set_sign(float32_zero, float32_is_neg(f32)); 11726 } 11727 11728 f64_frac = call_recip_estimate(&f32_exp, 253, 11729 ((uint64_t) f32_frac) << (52 - 23)); 11730 11731 /* result = sign : result_exp<7:0> : fraction<51:29> */ 11732 f32_val = deposit32(0, 31, 1, f32_sign); 11733 f32_val = deposit32(f32_val, 23, 8, f32_exp); 11734 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23)); 11735 return make_float32(f32_val); 11736 } 11737 11738 float64 HELPER(recpe_f64)(float64 input, void *fpstp) 11739 { 11740 float_status *fpst = fpstp; 11741 float64 f64 = float64_squash_input_denormal(input, fpst); 11742 uint64_t f64_val = float64_val(f64); 11743 bool f64_sign = float64_is_neg(f64); 11744 int f64_exp = extract64(f64_val, 52, 11); 11745 uint64_t f64_frac = extract64(f64_val, 0, 52); 11746 11747 /* Deal with any special cases */ 11748 if (float64_is_any_nan(f64)) { 11749 float64 nan = f64; 11750 if (float64_is_signaling_nan(f64, fpst)) { 11751 float_raise(float_flag_invalid, fpst); 11752 nan = float64_maybe_silence_nan(f64, fpst); 11753 } 11754 if (fpst->default_nan_mode) { 11755 nan = float64_default_nan(fpst); 11756 } 11757 return nan; 11758 } else if (float64_is_infinity(f64)) { 11759 return float64_set_sign(float64_zero, float64_is_neg(f64)); 11760 } else if (float64_is_zero(f64)) { 11761 float_raise(float_flag_divbyzero, fpst); 11762 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11763 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { 11764 /* Abs(value) < 2.0^-1024 */ 11765 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11766 if (round_to_inf(fpst, f64_sign)) { 11767 return float64_set_sign(float64_infinity, f64_sign); 11768 } else { 11769 return float64_set_sign(float64_maxnorm, f64_sign); 11770 } 11771 } else if (f64_exp >= 2045 && fpst->flush_to_zero) { 11772 float_raise(float_flag_underflow, fpst); 11773 return float64_set_sign(float64_zero, float64_is_neg(f64)); 11774 } 11775 11776 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac); 11777 11778 /* result = sign : result_exp<10:0> : fraction<51:0>; */ 11779 f64_val = deposit64(0, 63, 1, f64_sign); 11780 f64_val = deposit64(f64_val, 52, 11, f64_exp); 11781 f64_val = deposit64(f64_val, 0, 52, f64_frac); 11782 return make_float64(f64_val); 11783 } 11784 11785 /* The algorithm that must be used to calculate the estimate 11786 * is specified by the ARM ARM. 11787 */ 11788 11789 static int do_recip_sqrt_estimate(int a) 11790 { 11791 int b, estimate; 11792 11793 assert(128 <= a && a < 512); 11794 if (a < 256) { 11795 a = a * 2 + 1; 11796 } else { 11797 a = (a >> 1) << 1; 11798 a = (a + 1) * 2; 11799 } 11800 b = 512; 11801 while (a * (b + 1) * (b + 1) < (1 << 28)) { 11802 b += 1; 11803 } 11804 estimate = (b + 1) / 2; 11805 assert(256 <= estimate && estimate < 512); 11806 11807 return estimate; 11808 } 11809 11810 11811 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac) 11812 { 11813 int estimate; 11814 uint32_t scaled; 11815 11816 if (*exp == 0) { 11817 while (extract64(frac, 51, 1) == 0) { 11818 frac = frac << 1; 11819 *exp -= 1; 11820 } 11821 frac = extract64(frac, 0, 51) << 1; 11822 } 11823 11824 if (*exp & 1) { 11825 /* scaled = UInt('01':fraction<51:45>) */ 11826 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7)); 11827 } else { 11828 /* scaled = UInt('1':fraction<51:44>) */ 11829 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 11830 } 11831 estimate = do_recip_sqrt_estimate(scaled); 11832 11833 *exp = (exp_off - *exp) / 2; 11834 return extract64(estimate, 0, 8) << 44; 11835 } 11836 11837 float16 HELPER(rsqrte_f16)(float16 input, void *fpstp) 11838 { 11839 float_status *s = fpstp; 11840 float16 f16 = float16_squash_input_denormal(input, s); 11841 uint16_t val = float16_val(f16); 11842 bool f16_sign = float16_is_neg(f16); 11843 int f16_exp = extract32(val, 10, 5); 11844 uint16_t f16_frac = extract32(val, 0, 10); 11845 uint64_t f64_frac; 11846 11847 if (float16_is_any_nan(f16)) { 11848 float16 nan = f16; 11849 if (float16_is_signaling_nan(f16, s)) { 11850 float_raise(float_flag_invalid, s); 11851 nan = float16_maybe_silence_nan(f16, s); 11852 } 11853 if (s->default_nan_mode) { 11854 nan = float16_default_nan(s); 11855 } 11856 return nan; 11857 } else if (float16_is_zero(f16)) { 11858 float_raise(float_flag_divbyzero, s); 11859 return float16_set_sign(float16_infinity, f16_sign); 11860 } else if (f16_sign) { 11861 float_raise(float_flag_invalid, s); 11862 return float16_default_nan(s); 11863 } else if (float16_is_infinity(f16)) { 11864 return float16_zero; 11865 } 11866 11867 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 11868 * preserving the parity of the exponent. */ 11869 11870 f64_frac = ((uint64_t) f16_frac) << (52 - 10); 11871 11872 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac); 11873 11874 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */ 11875 val = deposit32(0, 15, 1, f16_sign); 11876 val = deposit32(val, 10, 5, f16_exp); 11877 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8)); 11878 return make_float16(val); 11879 } 11880 11881 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) 11882 { 11883 float_status *s = fpstp; 11884 float32 f32 = float32_squash_input_denormal(input, s); 11885 uint32_t val = float32_val(f32); 11886 uint32_t f32_sign = float32_is_neg(f32); 11887 int f32_exp = extract32(val, 23, 8); 11888 uint32_t f32_frac = extract32(val, 0, 23); 11889 uint64_t f64_frac; 11890 11891 if (float32_is_any_nan(f32)) { 11892 float32 nan = f32; 11893 if (float32_is_signaling_nan(f32, s)) { 11894 float_raise(float_flag_invalid, s); 11895 nan = float32_maybe_silence_nan(f32, s); 11896 } 11897 if (s->default_nan_mode) { 11898 nan = float32_default_nan(s); 11899 } 11900 return nan; 11901 } else if (float32_is_zero(f32)) { 11902 float_raise(float_flag_divbyzero, s); 11903 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 11904 } else if (float32_is_neg(f32)) { 11905 float_raise(float_flag_invalid, s); 11906 return float32_default_nan(s); 11907 } else if (float32_is_infinity(f32)) { 11908 return float32_zero; 11909 } 11910 11911 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 11912 * preserving the parity of the exponent. */ 11913 11914 f64_frac = ((uint64_t) f32_frac) << 29; 11915 11916 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac); 11917 11918 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */ 11919 val = deposit32(0, 31, 1, f32_sign); 11920 val = deposit32(val, 23, 8, f32_exp); 11921 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8)); 11922 return make_float32(val); 11923 } 11924 11925 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) 11926 { 11927 float_status *s = fpstp; 11928 float64 f64 = float64_squash_input_denormal(input, s); 11929 uint64_t val = float64_val(f64); 11930 bool f64_sign = float64_is_neg(f64); 11931 int f64_exp = extract64(val, 52, 11); 11932 uint64_t f64_frac = extract64(val, 0, 52); 11933 11934 if (float64_is_any_nan(f64)) { 11935 float64 nan = f64; 11936 if (float64_is_signaling_nan(f64, s)) { 11937 float_raise(float_flag_invalid, s); 11938 nan = float64_maybe_silence_nan(f64, s); 11939 } 11940 if (s->default_nan_mode) { 11941 nan = float64_default_nan(s); 11942 } 11943 return nan; 11944 } else if (float64_is_zero(f64)) { 11945 float_raise(float_flag_divbyzero, s); 11946 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11947 } else if (float64_is_neg(f64)) { 11948 float_raise(float_flag_invalid, s); 11949 return float64_default_nan(s); 11950 } else if (float64_is_infinity(f64)) { 11951 return float64_zero; 11952 } 11953 11954 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac); 11955 11956 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */ 11957 val = deposit64(0, 61, 1, f64_sign); 11958 val = deposit64(val, 52, 11, f64_exp); 11959 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8)); 11960 return make_float64(val); 11961 } 11962 11963 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) 11964 { 11965 /* float_status *s = fpstp; */ 11966 int input, estimate; 11967 11968 if ((a & 0x80000000) == 0) { 11969 return 0xffffffff; 11970 } 11971 11972 input = extract32(a, 23, 9); 11973 estimate = recip_estimate(input); 11974 11975 return deposit32(0, (32 - 9), 9, estimate); 11976 } 11977 11978 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) 11979 { 11980 int estimate; 11981 11982 if ((a & 0xc0000000) == 0) { 11983 return 0xffffffff; 11984 } 11985 11986 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9)); 11987 11988 return deposit32(0, 23, 9, estimate); 11989 } 11990 11991 /* VFPv4 fused multiply-accumulate */ 11992 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) 11993 { 11994 float_status *fpst = fpstp; 11995 return float32_muladd(a, b, c, 0, fpst); 11996 } 11997 11998 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) 11999 { 12000 float_status *fpst = fpstp; 12001 return float64_muladd(a, b, c, 0, fpst); 12002 } 12003 12004 /* ARMv8 round to integral */ 12005 float32 HELPER(rints_exact)(float32 x, void *fp_status) 12006 { 12007 return float32_round_to_int(x, fp_status); 12008 } 12009 12010 float64 HELPER(rintd_exact)(float64 x, void *fp_status) 12011 { 12012 return float64_round_to_int(x, fp_status); 12013 } 12014 12015 float32 HELPER(rints)(float32 x, void *fp_status) 12016 { 12017 int old_flags = get_float_exception_flags(fp_status), new_flags; 12018 float32 ret; 12019 12020 ret = float32_round_to_int(x, fp_status); 12021 12022 /* Suppress any inexact exceptions the conversion produced */ 12023 if (!(old_flags & float_flag_inexact)) { 12024 new_flags = get_float_exception_flags(fp_status); 12025 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 12026 } 12027 12028 return ret; 12029 } 12030 12031 float64 HELPER(rintd)(float64 x, void *fp_status) 12032 { 12033 int old_flags = get_float_exception_flags(fp_status), new_flags; 12034 float64 ret; 12035 12036 ret = float64_round_to_int(x, fp_status); 12037 12038 new_flags = get_float_exception_flags(fp_status); 12039 12040 /* Suppress any inexact exceptions the conversion produced */ 12041 if (!(old_flags & float_flag_inexact)) { 12042 new_flags = get_float_exception_flags(fp_status); 12043 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 12044 } 12045 12046 return ret; 12047 } 12048 12049 /* Convert ARM rounding mode to softfloat */ 12050 int arm_rmode_to_sf(int rmode) 12051 { 12052 switch (rmode) { 12053 case FPROUNDING_TIEAWAY: 12054 rmode = float_round_ties_away; 12055 break; 12056 case FPROUNDING_ODD: 12057 /* FIXME: add support for TIEAWAY and ODD */ 12058 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", 12059 rmode); 12060 case FPROUNDING_TIEEVEN: 12061 default: 12062 rmode = float_round_nearest_even; 12063 break; 12064 case FPROUNDING_POSINF: 12065 rmode = float_round_up; 12066 break; 12067 case FPROUNDING_NEGINF: 12068 rmode = float_round_down; 12069 break; 12070 case FPROUNDING_ZERO: 12071 rmode = float_round_to_zero; 12072 break; 12073 } 12074 return rmode; 12075 } 12076 12077 /* CRC helpers. 12078 * The upper bytes of val (above the number specified by 'bytes') must have 12079 * been zeroed out by the caller. 12080 */ 12081 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12082 { 12083 uint8_t buf[4]; 12084 12085 stl_le_p(buf, val); 12086 12087 /* zlib crc32 converts the accumulator and output to one's complement. */ 12088 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12089 } 12090 12091 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12092 { 12093 uint8_t buf[4]; 12094 12095 stl_le_p(buf, val); 12096 12097 /* Linux crc32c converts the output to one's complement. */ 12098 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12099 } 12100 12101 /* Return the exception level to which FP-disabled exceptions should 12102 * be taken, or 0 if FP is enabled. 12103 */ 12104 static inline int fp_exception_el(CPUARMState *env) 12105 { 12106 #ifndef CONFIG_USER_ONLY 12107 int fpen; 12108 int cur_el = arm_current_el(env); 12109 12110 /* CPACR and the CPTR registers don't exist before v6, so FP is 12111 * always accessible 12112 */ 12113 if (!arm_feature(env, ARM_FEATURE_V6)) { 12114 return 0; 12115 } 12116 12117 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12118 * 0, 2 : trap EL0 and EL1/PL1 accesses 12119 * 1 : trap only EL0 accesses 12120 * 3 : trap no accesses 12121 */ 12122 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12123 switch (fpen) { 12124 case 0: 12125 case 2: 12126 if (cur_el == 0 || cur_el == 1) { 12127 /* Trap to PL1, which might be EL1 or EL3 */ 12128 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12129 return 3; 12130 } 12131 return 1; 12132 } 12133 if (cur_el == 3 && !is_a64(env)) { 12134 /* Secure PL1 running at EL3 */ 12135 return 3; 12136 } 12137 break; 12138 case 1: 12139 if (cur_el == 0) { 12140 return 1; 12141 } 12142 break; 12143 case 3: 12144 break; 12145 } 12146 12147 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12148 * check because zero bits in the registers mean "don't trap". 12149 */ 12150 12151 /* CPTR_EL2 : present in v7VE or v8 */ 12152 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12153 && !arm_is_secure_below_el3(env)) { 12154 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12155 return 2; 12156 } 12157 12158 /* CPTR_EL3 : present in v8 */ 12159 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12160 /* Trap all FP ops to EL3 */ 12161 return 3; 12162 } 12163 #endif 12164 return 0; 12165 } 12166 12167 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 12168 target_ulong *cs_base, uint32_t *pflags) 12169 { 12170 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 12171 int fp_el = fp_exception_el(env); 12172 uint32_t flags; 12173 12174 if (is_a64(env)) { 12175 int sve_el = sve_exception_el(env); 12176 uint32_t zcr_len; 12177 12178 *pc = env->pc; 12179 flags = ARM_TBFLAG_AARCH64_STATE_MASK; 12180 /* Get control bits for tagged addresses */ 12181 flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT); 12182 flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT); 12183 flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT; 12184 12185 /* If SVE is disabled, but FP is enabled, 12186 then the effective len is 0. */ 12187 if (sve_el != 0 && fp_el == 0) { 12188 zcr_len = 0; 12189 } else { 12190 int current_el = arm_current_el(env); 12191 12192 zcr_len = env->vfp.zcr_el[current_el <= 1 ? 1 : current_el]; 12193 zcr_len &= 0xf; 12194 if (current_el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 12195 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 12196 } 12197 if (current_el < 3 && arm_feature(env, ARM_FEATURE_EL3)) { 12198 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 12199 } 12200 } 12201 flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT; 12202 } else { 12203 *pc = env->regs[15]; 12204 flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT) 12205 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT) 12206 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT) 12207 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT) 12208 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT); 12209 if (!(access_secure_reg(env))) { 12210 flags |= ARM_TBFLAG_NS_MASK; 12211 } 12212 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) 12213 || arm_el_is_aa64(env, 1)) { 12214 flags |= ARM_TBFLAG_VFPEN_MASK; 12215 } 12216 flags |= (extract32(env->cp15.c15_cpar, 0, 2) 12217 << ARM_TBFLAG_XSCALE_CPAR_SHIFT); 12218 } 12219 12220 flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT); 12221 12222 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12223 * states defined in the ARM ARM for software singlestep: 12224 * SS_ACTIVE PSTATE.SS State 12225 * 0 x Inactive (the TB flag for SS is always 0) 12226 * 1 0 Active-pending 12227 * 1 1 Active-not-pending 12228 */ 12229 if (arm_singlestep_active(env)) { 12230 flags |= ARM_TBFLAG_SS_ACTIVE_MASK; 12231 if (is_a64(env)) { 12232 if (env->pstate & PSTATE_SS) { 12233 flags |= ARM_TBFLAG_PSTATE_SS_MASK; 12234 } 12235 } else { 12236 if (env->uncached_cpsr & PSTATE_SS) { 12237 flags |= ARM_TBFLAG_PSTATE_SS_MASK; 12238 } 12239 } 12240 } 12241 if (arm_cpu_data_is_big_endian(env)) { 12242 flags |= ARM_TBFLAG_BE_DATA_MASK; 12243 } 12244 flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT; 12245 12246 if (arm_v7m_is_handler_mode(env)) { 12247 flags |= ARM_TBFLAG_HANDLER_MASK; 12248 } 12249 12250 *pflags = flags; 12251 *cs_base = 0; 12252 } 12253