1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/cpu-timers.h" 28 #include "sysemu/kvm.h" 29 #include "sysemu/tcg.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #include "semihosting/common-semi.h" 38 #endif 39 40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 41 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ 42 43 #ifndef CONFIG_USER_ONLY 44 45 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 46 MMUAccessType access_type, ARMMMUIdx mmu_idx, 47 bool s1_is_el0, 48 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 49 target_ulong *page_size_ptr, 50 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 51 __attribute__((nonnull)); 52 #endif 53 54 static void switch_mode(CPUARMState *env, int mode); 55 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 56 57 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 58 { 59 ARMCPU *cpu = env_archcpu(env); 60 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 61 62 /* VFP data registers are always little-endian. */ 63 if (reg < nregs) { 64 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg)); 65 } 66 if (arm_feature(env, ARM_FEATURE_NEON)) { 67 /* Aliases for Q regs. */ 68 nregs += 16; 69 if (reg < nregs) { 70 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 71 return gdb_get_reg128(buf, q[0], q[1]); 72 } 73 } 74 switch (reg - nregs) { 75 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break; 76 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break; 77 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break; 78 } 79 return 0; 80 } 81 82 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 83 { 84 ARMCPU *cpu = env_archcpu(env); 85 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 86 87 if (reg < nregs) { 88 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 89 return 8; 90 } 91 if (arm_feature(env, ARM_FEATURE_NEON)) { 92 nregs += 16; 93 if (reg < nregs) { 94 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 95 q[0] = ldq_le_p(buf); 96 q[1] = ldq_le_p(buf + 8); 97 return 16; 98 } 99 } 100 switch (reg - nregs) { 101 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 102 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 103 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 104 } 105 return 0; 106 } 107 108 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 109 { 110 switch (reg) { 111 case 0 ... 31: 112 { 113 /* 128 bit FP register - quads are in LE order */ 114 uint64_t *q = aa64_vfp_qreg(env, reg); 115 return gdb_get_reg128(buf, q[1], q[0]); 116 } 117 case 32: 118 /* FPSR */ 119 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 120 case 33: 121 /* FPCR */ 122 return gdb_get_reg32(buf,vfp_get_fpcr(env)); 123 default: 124 return 0; 125 } 126 } 127 128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 129 { 130 switch (reg) { 131 case 0 ... 31: 132 /* 128 bit FP register */ 133 { 134 uint64_t *q = aa64_vfp_qreg(env, reg); 135 q[0] = ldq_le_p(buf); 136 q[1] = ldq_le_p(buf + 8); 137 return 16; 138 } 139 case 32: 140 /* FPSR */ 141 vfp_set_fpsr(env, ldl_p(buf)); 142 return 4; 143 case 33: 144 /* FPCR */ 145 vfp_set_fpcr(env, ldl_p(buf)); 146 return 4; 147 default: 148 return 0; 149 } 150 } 151 152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 153 { 154 assert(ri->fieldoffset); 155 if (cpreg_field_is_64bit(ri)) { 156 return CPREG_FIELD64(env, ri); 157 } else { 158 return CPREG_FIELD32(env, ri); 159 } 160 } 161 162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 163 uint64_t value) 164 { 165 assert(ri->fieldoffset); 166 if (cpreg_field_is_64bit(ri)) { 167 CPREG_FIELD64(env, ri) = value; 168 } else { 169 CPREG_FIELD32(env, ri) = value; 170 } 171 } 172 173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 174 { 175 return (char *)env + ri->fieldoffset; 176 } 177 178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 179 { 180 /* Raw read of a coprocessor register (as needed for migration, etc). */ 181 if (ri->type & ARM_CP_CONST) { 182 return ri->resetvalue; 183 } else if (ri->raw_readfn) { 184 return ri->raw_readfn(env, ri); 185 } else if (ri->readfn) { 186 return ri->readfn(env, ri); 187 } else { 188 return raw_read(env, ri); 189 } 190 } 191 192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 193 uint64_t v) 194 { 195 /* Raw write of a coprocessor register (as needed for migration, etc). 196 * Note that constant registers are treated as write-ignored; the 197 * caller should check for success by whether a readback gives the 198 * value written. 199 */ 200 if (ri->type & ARM_CP_CONST) { 201 return; 202 } else if (ri->raw_writefn) { 203 ri->raw_writefn(env, ri, v); 204 } else if (ri->writefn) { 205 ri->writefn(env, ri, v); 206 } else { 207 raw_write(env, ri, v); 208 } 209 } 210 211 /** 212 * arm_get/set_gdb_*: get/set a gdb register 213 * @env: the CPU state 214 * @buf: a buffer to copy to/from 215 * @reg: register number (offset from start of group) 216 * 217 * We return the number of bytes copied 218 */ 219 220 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) 221 { 222 ARMCPU *cpu = env_archcpu(env); 223 const ARMCPRegInfo *ri; 224 uint32_t key; 225 226 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg]; 227 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 228 if (ri) { 229 if (cpreg_field_is_64bit(ri)) { 230 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 231 } else { 232 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 233 } 234 } 235 return 0; 236 } 237 238 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 239 { 240 return 0; 241 } 242 243 #ifdef TARGET_AARCH64 244 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg) 245 { 246 ARMCPU *cpu = env_archcpu(env); 247 248 switch (reg) { 249 /* The first 32 registers are the zregs */ 250 case 0 ... 31: 251 { 252 int vq, len = 0; 253 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 254 len += gdb_get_reg128(buf, 255 env->vfp.zregs[reg].d[vq * 2 + 1], 256 env->vfp.zregs[reg].d[vq * 2]); 257 } 258 return len; 259 } 260 case 32: 261 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 262 case 33: 263 return gdb_get_reg32(buf, vfp_get_fpcr(env)); 264 /* then 16 predicates and the ffr */ 265 case 34 ... 50: 266 { 267 int preg = reg - 34; 268 int vq, len = 0; 269 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 270 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]); 271 } 272 return len; 273 } 274 case 51: 275 { 276 /* 277 * We report in Vector Granules (VG) which is 64bit in a Z reg 278 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks. 279 */ 280 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1; 281 return gdb_get_reg64(buf, vq * 2); 282 } 283 default: 284 /* gdbstub asked for something out our range */ 285 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg); 286 break; 287 } 288 289 return 0; 290 } 291 292 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg) 293 { 294 ARMCPU *cpu = env_archcpu(env); 295 296 /* The first 32 registers are the zregs */ 297 switch (reg) { 298 /* The first 32 registers are the zregs */ 299 case 0 ... 31: 300 { 301 int vq, len = 0; 302 uint64_t *p = (uint64_t *) buf; 303 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 304 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++; 305 env->vfp.zregs[reg].d[vq * 2] = *p++; 306 len += 16; 307 } 308 return len; 309 } 310 case 32: 311 vfp_set_fpsr(env, *(uint32_t *)buf); 312 return 4; 313 case 33: 314 vfp_set_fpcr(env, *(uint32_t *)buf); 315 return 4; 316 case 34 ... 50: 317 { 318 int preg = reg - 34; 319 int vq, len = 0; 320 uint64_t *p = (uint64_t *) buf; 321 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 322 env->vfp.pregs[preg].p[vq / 4] = *p++; 323 len += 8; 324 } 325 return len; 326 } 327 case 51: 328 /* cannot set vg via gdbstub */ 329 return 0; 330 default: 331 /* gdbstub asked for something out our range */ 332 break; 333 } 334 335 return 0; 336 } 337 #endif /* TARGET_AARCH64 */ 338 339 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 340 { 341 /* Return true if the regdef would cause an assertion if you called 342 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 343 * program bug for it not to have the NO_RAW flag). 344 * NB that returning false here doesn't necessarily mean that calling 345 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 346 * read/write access functions which are safe for raw use" from "has 347 * read/write access functions which have side effects but has forgotten 348 * to provide raw access functions". 349 * The tests here line up with the conditions in read/write_raw_cp_reg() 350 * and assertions in raw_read()/raw_write(). 351 */ 352 if ((ri->type & ARM_CP_CONST) || 353 ri->fieldoffset || 354 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 355 return false; 356 } 357 return true; 358 } 359 360 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 361 { 362 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 363 int i; 364 bool ok = true; 365 366 for (i = 0; i < cpu->cpreg_array_len; i++) { 367 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 368 const ARMCPRegInfo *ri; 369 uint64_t newval; 370 371 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 372 if (!ri) { 373 ok = false; 374 continue; 375 } 376 if (ri->type & ARM_CP_NO_RAW) { 377 continue; 378 } 379 380 newval = read_raw_cp_reg(&cpu->env, ri); 381 if (kvm_sync) { 382 /* 383 * Only sync if the previous list->cpustate sync succeeded. 384 * Rather than tracking the success/failure state for every 385 * item in the list, we just recheck "does the raw write we must 386 * have made in write_list_to_cpustate() read back OK" here. 387 */ 388 uint64_t oldval = cpu->cpreg_values[i]; 389 390 if (oldval == newval) { 391 continue; 392 } 393 394 write_raw_cp_reg(&cpu->env, ri, oldval); 395 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 396 continue; 397 } 398 399 write_raw_cp_reg(&cpu->env, ri, newval); 400 } 401 cpu->cpreg_values[i] = newval; 402 } 403 return ok; 404 } 405 406 bool write_list_to_cpustate(ARMCPU *cpu) 407 { 408 int i; 409 bool ok = true; 410 411 for (i = 0; i < cpu->cpreg_array_len; i++) { 412 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 413 uint64_t v = cpu->cpreg_values[i]; 414 const ARMCPRegInfo *ri; 415 416 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 417 if (!ri) { 418 ok = false; 419 continue; 420 } 421 if (ri->type & ARM_CP_NO_RAW) { 422 continue; 423 } 424 /* Write value and confirm it reads back as written 425 * (to catch read-only registers and partially read-only 426 * registers where the incoming migration value doesn't match) 427 */ 428 write_raw_cp_reg(&cpu->env, ri, v); 429 if (read_raw_cp_reg(&cpu->env, ri) != v) { 430 ok = false; 431 } 432 } 433 return ok; 434 } 435 436 static void add_cpreg_to_list(gpointer key, gpointer opaque) 437 { 438 ARMCPU *cpu = opaque; 439 uint64_t regidx; 440 const ARMCPRegInfo *ri; 441 442 regidx = *(uint32_t *)key; 443 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 444 445 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 446 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 447 /* The value array need not be initialized at this point */ 448 cpu->cpreg_array_len++; 449 } 450 } 451 452 static void count_cpreg(gpointer key, gpointer opaque) 453 { 454 ARMCPU *cpu = opaque; 455 uint64_t regidx; 456 const ARMCPRegInfo *ri; 457 458 regidx = *(uint32_t *)key; 459 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 460 461 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 462 cpu->cpreg_array_len++; 463 } 464 } 465 466 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 467 { 468 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 469 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 470 471 if (aidx > bidx) { 472 return 1; 473 } 474 if (aidx < bidx) { 475 return -1; 476 } 477 return 0; 478 } 479 480 void init_cpreg_list(ARMCPU *cpu) 481 { 482 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 483 * Note that we require cpreg_tuples[] to be sorted by key ID. 484 */ 485 GList *keys; 486 int arraylen; 487 488 keys = g_hash_table_get_keys(cpu->cp_regs); 489 keys = g_list_sort(keys, cpreg_key_compare); 490 491 cpu->cpreg_array_len = 0; 492 493 g_list_foreach(keys, count_cpreg, cpu); 494 495 arraylen = cpu->cpreg_array_len; 496 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 497 cpu->cpreg_values = g_new(uint64_t, arraylen); 498 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 499 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 500 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 501 cpu->cpreg_array_len = 0; 502 503 g_list_foreach(keys, add_cpreg_to_list, cpu); 504 505 assert(cpu->cpreg_array_len == arraylen); 506 507 g_list_free(keys); 508 } 509 510 /* 511 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 512 */ 513 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 514 const ARMCPRegInfo *ri, 515 bool isread) 516 { 517 if (!is_a64(env) && arm_current_el(env) == 3 && 518 arm_is_secure_below_el3(env)) { 519 return CP_ACCESS_TRAP_UNCATEGORIZED; 520 } 521 return CP_ACCESS_OK; 522 } 523 524 /* Some secure-only AArch32 registers trap to EL3 if used from 525 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 526 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 527 * We assume that the .access field is set to PL1_RW. 528 */ 529 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 530 const ARMCPRegInfo *ri, 531 bool isread) 532 { 533 if (arm_current_el(env) == 3) { 534 return CP_ACCESS_OK; 535 } 536 if (arm_is_secure_below_el3(env)) { 537 if (env->cp15.scr_el3 & SCR_EEL2) { 538 return CP_ACCESS_TRAP_EL2; 539 } 540 return CP_ACCESS_TRAP_EL3; 541 } 542 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 543 return CP_ACCESS_TRAP_UNCATEGORIZED; 544 } 545 546 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 547 { 548 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 549 } 550 551 /* Check for traps to "powerdown debug" registers, which are controlled 552 * by MDCR.TDOSA 553 */ 554 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 555 bool isread) 556 { 557 int el = arm_current_el(env); 558 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 559 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 560 (arm_hcr_el2_eff(env) & HCR_TGE); 561 562 if (el < 2 && mdcr_el2_tdosa) { 563 return CP_ACCESS_TRAP_EL2; 564 } 565 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 566 return CP_ACCESS_TRAP_EL3; 567 } 568 return CP_ACCESS_OK; 569 } 570 571 /* Check for traps to "debug ROM" registers, which are controlled 572 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 573 */ 574 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 575 bool isread) 576 { 577 int el = arm_current_el(env); 578 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 579 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 580 (arm_hcr_el2_eff(env) & HCR_TGE); 581 582 if (el < 2 && mdcr_el2_tdra) { 583 return CP_ACCESS_TRAP_EL2; 584 } 585 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 586 return CP_ACCESS_TRAP_EL3; 587 } 588 return CP_ACCESS_OK; 589 } 590 591 /* Check for traps to general debug registers, which are controlled 592 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 593 */ 594 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 595 bool isread) 596 { 597 int el = arm_current_el(env); 598 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 599 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 600 (arm_hcr_el2_eff(env) & HCR_TGE); 601 602 if (el < 2 && mdcr_el2_tda) { 603 return CP_ACCESS_TRAP_EL2; 604 } 605 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 606 return CP_ACCESS_TRAP_EL3; 607 } 608 return CP_ACCESS_OK; 609 } 610 611 /* Check for traps to performance monitor registers, which are controlled 612 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 613 */ 614 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 615 bool isread) 616 { 617 int el = arm_current_el(env); 618 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 619 620 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 621 return CP_ACCESS_TRAP_EL2; 622 } 623 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 624 return CP_ACCESS_TRAP_EL3; 625 } 626 return CP_ACCESS_OK; 627 } 628 629 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 630 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 631 bool isread) 632 { 633 if (arm_current_el(env) == 1) { 634 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 635 if (arm_hcr_el2_eff(env) & trap) { 636 return CP_ACCESS_TRAP_EL2; 637 } 638 } 639 return CP_ACCESS_OK; 640 } 641 642 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 643 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 644 bool isread) 645 { 646 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 647 return CP_ACCESS_TRAP_EL2; 648 } 649 return CP_ACCESS_OK; 650 } 651 652 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 653 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 654 bool isread) 655 { 656 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 657 return CP_ACCESS_TRAP_EL2; 658 } 659 return CP_ACCESS_OK; 660 } 661 662 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 663 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 664 bool isread) 665 { 666 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 667 return CP_ACCESS_TRAP_EL2; 668 } 669 return CP_ACCESS_OK; 670 } 671 672 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 673 { 674 ARMCPU *cpu = env_archcpu(env); 675 676 raw_write(env, ri, value); 677 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 678 } 679 680 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 681 { 682 ARMCPU *cpu = env_archcpu(env); 683 684 if (raw_read(env, ri) != value) { 685 /* Unlike real hardware the qemu TLB uses virtual addresses, 686 * not modified virtual addresses, so this causes a TLB flush. 687 */ 688 tlb_flush(CPU(cpu)); 689 raw_write(env, ri, value); 690 } 691 } 692 693 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 694 uint64_t value) 695 { 696 ARMCPU *cpu = env_archcpu(env); 697 698 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 699 && !extended_addresses_enabled(env)) { 700 /* For VMSA (when not using the LPAE long descriptor page table 701 * format) this register includes the ASID, so do a TLB flush. 702 * For PMSA it is purely a process ID and no action is needed. 703 */ 704 tlb_flush(CPU(cpu)); 705 } 706 raw_write(env, ri, value); 707 } 708 709 /* IS variants of TLB operations must affect all cores */ 710 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 711 uint64_t value) 712 { 713 CPUState *cs = env_cpu(env); 714 715 tlb_flush_all_cpus_synced(cs); 716 } 717 718 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 719 uint64_t value) 720 { 721 CPUState *cs = env_cpu(env); 722 723 tlb_flush_all_cpus_synced(cs); 724 } 725 726 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 727 uint64_t value) 728 { 729 CPUState *cs = env_cpu(env); 730 731 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 732 } 733 734 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 735 uint64_t value) 736 { 737 CPUState *cs = env_cpu(env); 738 739 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 740 } 741 742 /* 743 * Non-IS variants of TLB operations are upgraded to 744 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 745 * force broadcast of these operations. 746 */ 747 static bool tlb_force_broadcast(CPUARMState *env) 748 { 749 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 750 } 751 752 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 753 uint64_t value) 754 { 755 /* Invalidate all (TLBIALL) */ 756 CPUState *cs = env_cpu(env); 757 758 if (tlb_force_broadcast(env)) { 759 tlb_flush_all_cpus_synced(cs); 760 } else { 761 tlb_flush(cs); 762 } 763 } 764 765 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 766 uint64_t value) 767 { 768 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 769 CPUState *cs = env_cpu(env); 770 771 value &= TARGET_PAGE_MASK; 772 if (tlb_force_broadcast(env)) { 773 tlb_flush_page_all_cpus_synced(cs, value); 774 } else { 775 tlb_flush_page(cs, value); 776 } 777 } 778 779 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 780 uint64_t value) 781 { 782 /* Invalidate by ASID (TLBIASID) */ 783 CPUState *cs = env_cpu(env); 784 785 if (tlb_force_broadcast(env)) { 786 tlb_flush_all_cpus_synced(cs); 787 } else { 788 tlb_flush(cs); 789 } 790 } 791 792 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 793 uint64_t value) 794 { 795 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 796 CPUState *cs = env_cpu(env); 797 798 value &= TARGET_PAGE_MASK; 799 if (tlb_force_broadcast(env)) { 800 tlb_flush_page_all_cpus_synced(cs, value); 801 } else { 802 tlb_flush_page(cs, value); 803 } 804 } 805 806 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 807 uint64_t value) 808 { 809 CPUState *cs = env_cpu(env); 810 811 tlb_flush_by_mmuidx(cs, 812 ARMMMUIdxBit_E10_1 | 813 ARMMMUIdxBit_E10_1_PAN | 814 ARMMMUIdxBit_E10_0); 815 } 816 817 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 818 uint64_t value) 819 { 820 CPUState *cs = env_cpu(env); 821 822 tlb_flush_by_mmuidx_all_cpus_synced(cs, 823 ARMMMUIdxBit_E10_1 | 824 ARMMMUIdxBit_E10_1_PAN | 825 ARMMMUIdxBit_E10_0); 826 } 827 828 829 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 830 uint64_t value) 831 { 832 CPUState *cs = env_cpu(env); 833 834 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 835 } 836 837 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 838 uint64_t value) 839 { 840 CPUState *cs = env_cpu(env); 841 842 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 843 } 844 845 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 846 uint64_t value) 847 { 848 CPUState *cs = env_cpu(env); 849 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 850 851 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 852 } 853 854 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 855 uint64_t value) 856 { 857 CPUState *cs = env_cpu(env); 858 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 859 860 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 861 ARMMMUIdxBit_E2); 862 } 863 864 static const ARMCPRegInfo cp_reginfo[] = { 865 /* Define the secure and non-secure FCSE identifier CP registers 866 * separately because there is no secure bank in V8 (no _EL3). This allows 867 * the secure register to be properly reset and migrated. There is also no 868 * v8 EL1 version of the register so the non-secure instance stands alone. 869 */ 870 { .name = "FCSEIDR", 871 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 872 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 873 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 874 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 875 { .name = "FCSEIDR_S", 876 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 877 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 878 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 879 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 880 /* Define the secure and non-secure context identifier CP registers 881 * separately because there is no secure bank in V8 (no _EL3). This allows 882 * the secure register to be properly reset and migrated. In the 883 * non-secure case, the 32-bit register will have reset and migration 884 * disabled during registration as it is handled by the 64-bit instance. 885 */ 886 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 887 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 888 .access = PL1_RW, .accessfn = access_tvm_trvm, 889 .secure = ARM_CP_SECSTATE_NS, 890 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 891 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 892 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 893 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 894 .access = PL1_RW, .accessfn = access_tvm_trvm, 895 .secure = ARM_CP_SECSTATE_S, 896 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 897 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 898 REGINFO_SENTINEL 899 }; 900 901 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 902 /* NB: Some of these registers exist in v8 but with more precise 903 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 904 */ 905 /* MMU Domain access control / MPU write buffer control */ 906 { .name = "DACR", 907 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 908 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 909 .writefn = dacr_write, .raw_writefn = raw_write, 910 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 911 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 912 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 913 * For v6 and v5, these mappings are overly broad. 914 */ 915 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 916 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 917 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 918 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 919 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 920 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 921 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 922 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 923 /* Cache maintenance ops; some of this space may be overridden later. */ 924 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 925 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 926 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 927 REGINFO_SENTINEL 928 }; 929 930 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 931 /* Not all pre-v6 cores implemented this WFI, so this is slightly 932 * over-broad. 933 */ 934 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 935 .access = PL1_W, .type = ARM_CP_WFI }, 936 REGINFO_SENTINEL 937 }; 938 939 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 940 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 941 * is UNPREDICTABLE; we choose to NOP as most implementations do). 942 */ 943 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 944 .access = PL1_W, .type = ARM_CP_WFI }, 945 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 946 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 947 * OMAPCP will override this space. 948 */ 949 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 950 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 951 .resetvalue = 0 }, 952 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 953 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 954 .resetvalue = 0 }, 955 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 956 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 957 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 958 .resetvalue = 0 }, 959 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 960 * implementing it as RAZ means the "debug architecture version" bits 961 * will read as a reserved value, which should cause Linux to not try 962 * to use the debug hardware. 963 */ 964 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 965 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 966 /* MMU TLB control. Note that the wildcarding means we cover not just 967 * the unified TLB ops but also the dside/iside/inner-shareable variants. 968 */ 969 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 970 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 971 .type = ARM_CP_NO_RAW }, 972 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 973 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 974 .type = ARM_CP_NO_RAW }, 975 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 976 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 977 .type = ARM_CP_NO_RAW }, 978 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 979 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 980 .type = ARM_CP_NO_RAW }, 981 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 982 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 983 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 984 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 985 REGINFO_SENTINEL 986 }; 987 988 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 989 uint64_t value) 990 { 991 uint32_t mask = 0; 992 993 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 994 if (!arm_feature(env, ARM_FEATURE_V8)) { 995 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 996 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 997 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 998 */ 999 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 1000 /* VFP coprocessor: cp10 & cp11 [23:20] */ 1001 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 1002 1003 if (!arm_feature(env, ARM_FEATURE_NEON)) { 1004 /* ASEDIS [31] bit is RAO/WI */ 1005 value |= (1 << 31); 1006 } 1007 1008 /* VFPv3 and upwards with NEON implement 32 double precision 1009 * registers (D0-D31). 1010 */ 1011 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 1012 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 1013 value |= (1 << 30); 1014 } 1015 } 1016 value &= mask; 1017 } 1018 1019 /* 1020 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1021 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1022 */ 1023 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1024 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1025 value &= ~(0xf << 20); 1026 value |= env->cp15.cpacr_el1 & (0xf << 20); 1027 } 1028 1029 env->cp15.cpacr_el1 = value; 1030 } 1031 1032 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1033 { 1034 /* 1035 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1036 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1037 */ 1038 uint64_t value = env->cp15.cpacr_el1; 1039 1040 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1041 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1042 value &= ~(0xf << 20); 1043 } 1044 return value; 1045 } 1046 1047 1048 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1049 { 1050 /* Call cpacr_write() so that we reset with the correct RAO bits set 1051 * for our CPU features. 1052 */ 1053 cpacr_write(env, ri, 0); 1054 } 1055 1056 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1057 bool isread) 1058 { 1059 if (arm_feature(env, ARM_FEATURE_V8)) { 1060 /* Check if CPACR accesses are to be trapped to EL2 */ 1061 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 1062 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 1063 return CP_ACCESS_TRAP_EL2; 1064 /* Check if CPACR accesses are to be trapped to EL3 */ 1065 } else if (arm_current_el(env) < 3 && 1066 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1067 return CP_ACCESS_TRAP_EL3; 1068 } 1069 } 1070 1071 return CP_ACCESS_OK; 1072 } 1073 1074 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1075 bool isread) 1076 { 1077 /* Check if CPTR accesses are set to trap to EL3 */ 1078 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1079 return CP_ACCESS_TRAP_EL3; 1080 } 1081 1082 return CP_ACCESS_OK; 1083 } 1084 1085 static const ARMCPRegInfo v6_cp_reginfo[] = { 1086 /* prefetch by MVA in v6, NOP in v7 */ 1087 { .name = "MVA_prefetch", 1088 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 1089 .access = PL1_W, .type = ARM_CP_NOP }, 1090 /* We need to break the TB after ISB to execute self-modifying code 1091 * correctly and also to take any pending interrupts immediately. 1092 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 1093 */ 1094 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 1095 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 1096 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 1097 .access = PL0_W, .type = ARM_CP_NOP }, 1098 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 1099 .access = PL0_W, .type = ARM_CP_NOP }, 1100 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 1101 .access = PL1_RW, .accessfn = access_tvm_trvm, 1102 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1103 offsetof(CPUARMState, cp15.ifar_ns) }, 1104 .resetvalue = 0, }, 1105 /* Watchpoint Fault Address Register : should actually only be present 1106 * for 1136, 1176, 11MPCore. 1107 */ 1108 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1109 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1110 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1111 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1112 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1113 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1114 REGINFO_SENTINEL 1115 }; 1116 1117 /* Definitions for the PMU registers */ 1118 #define PMCRN_MASK 0xf800 1119 #define PMCRN_SHIFT 11 1120 #define PMCRLC 0x40 1121 #define PMCRDP 0x20 1122 #define PMCRX 0x10 1123 #define PMCRD 0x8 1124 #define PMCRC 0x4 1125 #define PMCRP 0x2 1126 #define PMCRE 0x1 1127 /* 1128 * Mask of PMCR bits writeable by guest (not including WO bits like C, P, 1129 * which can be written as 1 to trigger behaviour but which stay RAZ). 1130 */ 1131 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1132 1133 #define PMXEVTYPER_P 0x80000000 1134 #define PMXEVTYPER_U 0x40000000 1135 #define PMXEVTYPER_NSK 0x20000000 1136 #define PMXEVTYPER_NSU 0x10000000 1137 #define PMXEVTYPER_NSH 0x08000000 1138 #define PMXEVTYPER_M 0x04000000 1139 #define PMXEVTYPER_MT 0x02000000 1140 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1141 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1142 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1143 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1144 PMXEVTYPER_EVTCOUNT) 1145 1146 #define PMCCFILTR 0xf8000000 1147 #define PMCCFILTR_M PMXEVTYPER_M 1148 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1149 1150 static inline uint32_t pmu_num_counters(CPUARMState *env) 1151 { 1152 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1153 } 1154 1155 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1156 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1157 { 1158 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1159 } 1160 1161 typedef struct pm_event { 1162 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1163 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1164 bool (*supported)(CPUARMState *); 1165 /* 1166 * Retrieve the current count of the underlying event. The programmed 1167 * counters hold a difference from the return value from this function 1168 */ 1169 uint64_t (*get_count)(CPUARMState *); 1170 /* 1171 * Return how many nanoseconds it will take (at a minimum) for count events 1172 * to occur. A negative value indicates the counter will never overflow, or 1173 * that the counter has otherwise arranged for the overflow bit to be set 1174 * and the PMU interrupt to be raised on overflow. 1175 */ 1176 int64_t (*ns_per_count)(uint64_t); 1177 } pm_event; 1178 1179 static bool event_always_supported(CPUARMState *env) 1180 { 1181 return true; 1182 } 1183 1184 static uint64_t swinc_get_count(CPUARMState *env) 1185 { 1186 /* 1187 * SW_INCR events are written directly to the pmevcntr's by writes to 1188 * PMSWINC, so there is no underlying count maintained by the PMU itself 1189 */ 1190 return 0; 1191 } 1192 1193 static int64_t swinc_ns_per(uint64_t ignored) 1194 { 1195 return -1; 1196 } 1197 1198 /* 1199 * Return the underlying cycle count for the PMU cycle counters. If we're in 1200 * usermode, simply return 0. 1201 */ 1202 static uint64_t cycles_get_count(CPUARMState *env) 1203 { 1204 #ifndef CONFIG_USER_ONLY 1205 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1206 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1207 #else 1208 return cpu_get_host_ticks(); 1209 #endif 1210 } 1211 1212 #ifndef CONFIG_USER_ONLY 1213 static int64_t cycles_ns_per(uint64_t cycles) 1214 { 1215 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1216 } 1217 1218 static bool instructions_supported(CPUARMState *env) 1219 { 1220 return icount_enabled() == 1; /* Precise instruction counting */ 1221 } 1222 1223 static uint64_t instructions_get_count(CPUARMState *env) 1224 { 1225 return (uint64_t)icount_get_raw(); 1226 } 1227 1228 static int64_t instructions_ns_per(uint64_t icount) 1229 { 1230 return icount_to_ns((int64_t)icount); 1231 } 1232 #endif 1233 1234 static bool pmu_8_1_events_supported(CPUARMState *env) 1235 { 1236 /* For events which are supported in any v8.1 PMU */ 1237 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 1238 } 1239 1240 static bool pmu_8_4_events_supported(CPUARMState *env) 1241 { 1242 /* For events which are supported in any v8.1 PMU */ 1243 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 1244 } 1245 1246 static uint64_t zero_event_get_count(CPUARMState *env) 1247 { 1248 /* For events which on QEMU never fire, so their count is always zero */ 1249 return 0; 1250 } 1251 1252 static int64_t zero_event_ns_per(uint64_t cycles) 1253 { 1254 /* An event which never fires can never overflow */ 1255 return -1; 1256 } 1257 1258 static const pm_event pm_events[] = { 1259 { .number = 0x000, /* SW_INCR */ 1260 .supported = event_always_supported, 1261 .get_count = swinc_get_count, 1262 .ns_per_count = swinc_ns_per, 1263 }, 1264 #ifndef CONFIG_USER_ONLY 1265 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1266 .supported = instructions_supported, 1267 .get_count = instructions_get_count, 1268 .ns_per_count = instructions_ns_per, 1269 }, 1270 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1271 .supported = event_always_supported, 1272 .get_count = cycles_get_count, 1273 .ns_per_count = cycles_ns_per, 1274 }, 1275 #endif 1276 { .number = 0x023, /* STALL_FRONTEND */ 1277 .supported = pmu_8_1_events_supported, 1278 .get_count = zero_event_get_count, 1279 .ns_per_count = zero_event_ns_per, 1280 }, 1281 { .number = 0x024, /* STALL_BACKEND */ 1282 .supported = pmu_8_1_events_supported, 1283 .get_count = zero_event_get_count, 1284 .ns_per_count = zero_event_ns_per, 1285 }, 1286 { .number = 0x03c, /* STALL */ 1287 .supported = pmu_8_4_events_supported, 1288 .get_count = zero_event_get_count, 1289 .ns_per_count = zero_event_ns_per, 1290 }, 1291 }; 1292 1293 /* 1294 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1295 * events (i.e. the statistical profiling extension), this implementation 1296 * should first be updated to something sparse instead of the current 1297 * supported_event_map[] array. 1298 */ 1299 #define MAX_EVENT_ID 0x3c 1300 #define UNSUPPORTED_EVENT UINT16_MAX 1301 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1302 1303 /* 1304 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1305 * of ARM event numbers to indices in our pm_events array. 1306 * 1307 * Note: Events in the 0x40XX range are not currently supported. 1308 */ 1309 void pmu_init(ARMCPU *cpu) 1310 { 1311 unsigned int i; 1312 1313 /* 1314 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1315 * events to them 1316 */ 1317 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1318 supported_event_map[i] = UNSUPPORTED_EVENT; 1319 } 1320 cpu->pmceid0 = 0; 1321 cpu->pmceid1 = 0; 1322 1323 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1324 const pm_event *cnt = &pm_events[i]; 1325 assert(cnt->number <= MAX_EVENT_ID); 1326 /* We do not currently support events in the 0x40xx range */ 1327 assert(cnt->number <= 0x3f); 1328 1329 if (cnt->supported(&cpu->env)) { 1330 supported_event_map[cnt->number] = i; 1331 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1332 if (cnt->number & 0x20) { 1333 cpu->pmceid1 |= event_mask; 1334 } else { 1335 cpu->pmceid0 |= event_mask; 1336 } 1337 } 1338 } 1339 } 1340 1341 /* 1342 * Check at runtime whether a PMU event is supported for the current machine 1343 */ 1344 static bool event_supported(uint16_t number) 1345 { 1346 if (number > MAX_EVENT_ID) { 1347 return false; 1348 } 1349 return supported_event_map[number] != UNSUPPORTED_EVENT; 1350 } 1351 1352 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1353 bool isread) 1354 { 1355 /* Performance monitor registers user accessibility is controlled 1356 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1357 * trapping to EL2 or EL3 for other accesses. 1358 */ 1359 int el = arm_current_el(env); 1360 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1361 1362 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1363 return CP_ACCESS_TRAP; 1364 } 1365 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1366 return CP_ACCESS_TRAP_EL2; 1367 } 1368 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1369 return CP_ACCESS_TRAP_EL3; 1370 } 1371 1372 return CP_ACCESS_OK; 1373 } 1374 1375 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1376 const ARMCPRegInfo *ri, 1377 bool isread) 1378 { 1379 /* ER: event counter read trap control */ 1380 if (arm_feature(env, ARM_FEATURE_V8) 1381 && arm_current_el(env) == 0 1382 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1383 && isread) { 1384 return CP_ACCESS_OK; 1385 } 1386 1387 return pmreg_access(env, ri, isread); 1388 } 1389 1390 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1391 const ARMCPRegInfo *ri, 1392 bool isread) 1393 { 1394 /* SW: software increment write trap control */ 1395 if (arm_feature(env, ARM_FEATURE_V8) 1396 && arm_current_el(env) == 0 1397 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1398 && !isread) { 1399 return CP_ACCESS_OK; 1400 } 1401 1402 return pmreg_access(env, ri, isread); 1403 } 1404 1405 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1406 const ARMCPRegInfo *ri, 1407 bool isread) 1408 { 1409 /* ER: event counter read trap control */ 1410 if (arm_feature(env, ARM_FEATURE_V8) 1411 && arm_current_el(env) == 0 1412 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1413 return CP_ACCESS_OK; 1414 } 1415 1416 return pmreg_access(env, ri, isread); 1417 } 1418 1419 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1420 const ARMCPRegInfo *ri, 1421 bool isread) 1422 { 1423 /* CR: cycle counter read trap control */ 1424 if (arm_feature(env, ARM_FEATURE_V8) 1425 && arm_current_el(env) == 0 1426 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1427 && isread) { 1428 return CP_ACCESS_OK; 1429 } 1430 1431 return pmreg_access(env, ri, isread); 1432 } 1433 1434 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1435 * the current EL, security state, and register configuration. 1436 */ 1437 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1438 { 1439 uint64_t filter; 1440 bool e, p, u, nsk, nsu, nsh, m; 1441 bool enabled, prohibited, filtered; 1442 bool secure = arm_is_secure(env); 1443 int el = arm_current_el(env); 1444 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1445 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1446 1447 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1448 return false; 1449 } 1450 1451 if (!arm_feature(env, ARM_FEATURE_EL2) || 1452 (counter < hpmn || counter == 31)) { 1453 e = env->cp15.c9_pmcr & PMCRE; 1454 } else { 1455 e = mdcr_el2 & MDCR_HPME; 1456 } 1457 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1458 1459 if (!secure) { 1460 if (el == 2 && (counter < hpmn || counter == 31)) { 1461 prohibited = mdcr_el2 & MDCR_HPMD; 1462 } else { 1463 prohibited = false; 1464 } 1465 } else { 1466 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1467 !(env->cp15.mdcr_el3 & MDCR_SPME); 1468 } 1469 1470 if (prohibited && counter == 31) { 1471 prohibited = env->cp15.c9_pmcr & PMCRDP; 1472 } 1473 1474 if (counter == 31) { 1475 filter = env->cp15.pmccfiltr_el0; 1476 } else { 1477 filter = env->cp15.c14_pmevtyper[counter]; 1478 } 1479 1480 p = filter & PMXEVTYPER_P; 1481 u = filter & PMXEVTYPER_U; 1482 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1483 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1484 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1485 m = arm_el_is_aa64(env, 1) && 1486 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1487 1488 if (el == 0) { 1489 filtered = secure ? u : u != nsu; 1490 } else if (el == 1) { 1491 filtered = secure ? p : p != nsk; 1492 } else if (el == 2) { 1493 filtered = !nsh; 1494 } else { /* EL3 */ 1495 filtered = m != p; 1496 } 1497 1498 if (counter != 31) { 1499 /* 1500 * If not checking PMCCNTR, ensure the counter is setup to an event we 1501 * support 1502 */ 1503 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1504 if (!event_supported(event)) { 1505 return false; 1506 } 1507 } 1508 1509 return enabled && !prohibited && !filtered; 1510 } 1511 1512 static void pmu_update_irq(CPUARMState *env) 1513 { 1514 ARMCPU *cpu = env_archcpu(env); 1515 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1516 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1517 } 1518 1519 /* 1520 * Ensure c15_ccnt is the guest-visible count so that operations such as 1521 * enabling/disabling the counter or filtering, modifying the count itself, 1522 * etc. can be done logically. This is essentially a no-op if the counter is 1523 * not enabled at the time of the call. 1524 */ 1525 static void pmccntr_op_start(CPUARMState *env) 1526 { 1527 uint64_t cycles = cycles_get_count(env); 1528 1529 if (pmu_counter_enabled(env, 31)) { 1530 uint64_t eff_cycles = cycles; 1531 if (env->cp15.c9_pmcr & PMCRD) { 1532 /* Increment once every 64 processor clock cycles */ 1533 eff_cycles /= 64; 1534 } 1535 1536 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1537 1538 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1539 1ull << 63 : 1ull << 31; 1540 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1541 env->cp15.c9_pmovsr |= (1 << 31); 1542 pmu_update_irq(env); 1543 } 1544 1545 env->cp15.c15_ccnt = new_pmccntr; 1546 } 1547 env->cp15.c15_ccnt_delta = cycles; 1548 } 1549 1550 /* 1551 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1552 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1553 * pmccntr_op_start. 1554 */ 1555 static void pmccntr_op_finish(CPUARMState *env) 1556 { 1557 if (pmu_counter_enabled(env, 31)) { 1558 #ifndef CONFIG_USER_ONLY 1559 /* Calculate when the counter will next overflow */ 1560 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1561 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1562 remaining_cycles = (uint32_t)remaining_cycles; 1563 } 1564 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1565 1566 if (overflow_in > 0) { 1567 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1568 overflow_in; 1569 ARMCPU *cpu = env_archcpu(env); 1570 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1571 } 1572 #endif 1573 1574 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1575 if (env->cp15.c9_pmcr & PMCRD) { 1576 /* Increment once every 64 processor clock cycles */ 1577 prev_cycles /= 64; 1578 } 1579 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1580 } 1581 } 1582 1583 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1584 { 1585 1586 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1587 uint64_t count = 0; 1588 if (event_supported(event)) { 1589 uint16_t event_idx = supported_event_map[event]; 1590 count = pm_events[event_idx].get_count(env); 1591 } 1592 1593 if (pmu_counter_enabled(env, counter)) { 1594 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1595 1596 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1597 env->cp15.c9_pmovsr |= (1 << counter); 1598 pmu_update_irq(env); 1599 } 1600 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1601 } 1602 env->cp15.c14_pmevcntr_delta[counter] = count; 1603 } 1604 1605 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1606 { 1607 if (pmu_counter_enabled(env, counter)) { 1608 #ifndef CONFIG_USER_ONLY 1609 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1610 uint16_t event_idx = supported_event_map[event]; 1611 uint64_t delta = UINT32_MAX - 1612 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1613 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1614 1615 if (overflow_in > 0) { 1616 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1617 overflow_in; 1618 ARMCPU *cpu = env_archcpu(env); 1619 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1620 } 1621 #endif 1622 1623 env->cp15.c14_pmevcntr_delta[counter] -= 1624 env->cp15.c14_pmevcntr[counter]; 1625 } 1626 } 1627 1628 void pmu_op_start(CPUARMState *env) 1629 { 1630 unsigned int i; 1631 pmccntr_op_start(env); 1632 for (i = 0; i < pmu_num_counters(env); i++) { 1633 pmevcntr_op_start(env, i); 1634 } 1635 } 1636 1637 void pmu_op_finish(CPUARMState *env) 1638 { 1639 unsigned int i; 1640 pmccntr_op_finish(env); 1641 for (i = 0; i < pmu_num_counters(env); i++) { 1642 pmevcntr_op_finish(env, i); 1643 } 1644 } 1645 1646 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1647 { 1648 pmu_op_start(&cpu->env); 1649 } 1650 1651 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1652 { 1653 pmu_op_finish(&cpu->env); 1654 } 1655 1656 void arm_pmu_timer_cb(void *opaque) 1657 { 1658 ARMCPU *cpu = opaque; 1659 1660 /* 1661 * Update all the counter values based on the current underlying counts, 1662 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1663 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1664 * counter may expire. 1665 */ 1666 pmu_op_start(&cpu->env); 1667 pmu_op_finish(&cpu->env); 1668 } 1669 1670 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1671 uint64_t value) 1672 { 1673 pmu_op_start(env); 1674 1675 if (value & PMCRC) { 1676 /* The counter has been reset */ 1677 env->cp15.c15_ccnt = 0; 1678 } 1679 1680 if (value & PMCRP) { 1681 unsigned int i; 1682 for (i = 0; i < pmu_num_counters(env); i++) { 1683 env->cp15.c14_pmevcntr[i] = 0; 1684 } 1685 } 1686 1687 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1688 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1689 1690 pmu_op_finish(env); 1691 } 1692 1693 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1694 uint64_t value) 1695 { 1696 unsigned int i; 1697 for (i = 0; i < pmu_num_counters(env); i++) { 1698 /* Increment a counter's count iff: */ 1699 if ((value & (1 << i)) && /* counter's bit is set */ 1700 /* counter is enabled and not filtered */ 1701 pmu_counter_enabled(env, i) && 1702 /* counter is SW_INCR */ 1703 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1704 pmevcntr_op_start(env, i); 1705 1706 /* 1707 * Detect if this write causes an overflow since we can't predict 1708 * PMSWINC overflows like we can for other events 1709 */ 1710 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1711 1712 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1713 env->cp15.c9_pmovsr |= (1 << i); 1714 pmu_update_irq(env); 1715 } 1716 1717 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1718 1719 pmevcntr_op_finish(env, i); 1720 } 1721 } 1722 } 1723 1724 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1725 { 1726 uint64_t ret; 1727 pmccntr_op_start(env); 1728 ret = env->cp15.c15_ccnt; 1729 pmccntr_op_finish(env); 1730 return ret; 1731 } 1732 1733 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1734 uint64_t value) 1735 { 1736 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1737 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1738 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1739 * accessed. 1740 */ 1741 env->cp15.c9_pmselr = value & 0x1f; 1742 } 1743 1744 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1745 uint64_t value) 1746 { 1747 pmccntr_op_start(env); 1748 env->cp15.c15_ccnt = value; 1749 pmccntr_op_finish(env); 1750 } 1751 1752 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1753 uint64_t value) 1754 { 1755 uint64_t cur_val = pmccntr_read(env, NULL); 1756 1757 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1758 } 1759 1760 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1761 uint64_t value) 1762 { 1763 pmccntr_op_start(env); 1764 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1765 pmccntr_op_finish(env); 1766 } 1767 1768 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1769 uint64_t value) 1770 { 1771 pmccntr_op_start(env); 1772 /* M is not accessible from AArch32 */ 1773 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1774 (value & PMCCFILTR); 1775 pmccntr_op_finish(env); 1776 } 1777 1778 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1779 { 1780 /* M is not visible in AArch32 */ 1781 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1782 } 1783 1784 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1785 uint64_t value) 1786 { 1787 value &= pmu_counter_mask(env); 1788 env->cp15.c9_pmcnten |= value; 1789 } 1790 1791 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1792 uint64_t value) 1793 { 1794 value &= pmu_counter_mask(env); 1795 env->cp15.c9_pmcnten &= ~value; 1796 } 1797 1798 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1799 uint64_t value) 1800 { 1801 value &= pmu_counter_mask(env); 1802 env->cp15.c9_pmovsr &= ~value; 1803 pmu_update_irq(env); 1804 } 1805 1806 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1807 uint64_t value) 1808 { 1809 value &= pmu_counter_mask(env); 1810 env->cp15.c9_pmovsr |= value; 1811 pmu_update_irq(env); 1812 } 1813 1814 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1815 uint64_t value, const uint8_t counter) 1816 { 1817 if (counter == 31) { 1818 pmccfiltr_write(env, ri, value); 1819 } else if (counter < pmu_num_counters(env)) { 1820 pmevcntr_op_start(env, counter); 1821 1822 /* 1823 * If this counter's event type is changing, store the current 1824 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1825 * pmevcntr_op_finish has the correct baseline when it converts back to 1826 * a delta. 1827 */ 1828 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1829 PMXEVTYPER_EVTCOUNT; 1830 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1831 if (old_event != new_event) { 1832 uint64_t count = 0; 1833 if (event_supported(new_event)) { 1834 uint16_t event_idx = supported_event_map[new_event]; 1835 count = pm_events[event_idx].get_count(env); 1836 } 1837 env->cp15.c14_pmevcntr_delta[counter] = count; 1838 } 1839 1840 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1841 pmevcntr_op_finish(env, counter); 1842 } 1843 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1844 * PMSELR value is equal to or greater than the number of implemented 1845 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1846 */ 1847 } 1848 1849 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1850 const uint8_t counter) 1851 { 1852 if (counter == 31) { 1853 return env->cp15.pmccfiltr_el0; 1854 } else if (counter < pmu_num_counters(env)) { 1855 return env->cp15.c14_pmevtyper[counter]; 1856 } else { 1857 /* 1858 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1859 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1860 */ 1861 return 0; 1862 } 1863 } 1864 1865 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1866 uint64_t value) 1867 { 1868 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1869 pmevtyper_write(env, ri, value, counter); 1870 } 1871 1872 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1873 uint64_t value) 1874 { 1875 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1876 env->cp15.c14_pmevtyper[counter] = value; 1877 1878 /* 1879 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1880 * pmu_op_finish calls when loading saved state for a migration. Because 1881 * we're potentially updating the type of event here, the value written to 1882 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1883 * different counter type. Therefore, we need to set this value to the 1884 * current count for the counter type we're writing so that pmu_op_finish 1885 * has the correct count for its calculation. 1886 */ 1887 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1888 if (event_supported(event)) { 1889 uint16_t event_idx = supported_event_map[event]; 1890 env->cp15.c14_pmevcntr_delta[counter] = 1891 pm_events[event_idx].get_count(env); 1892 } 1893 } 1894 1895 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1896 { 1897 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1898 return pmevtyper_read(env, ri, counter); 1899 } 1900 1901 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1902 uint64_t value) 1903 { 1904 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1905 } 1906 1907 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1908 { 1909 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1910 } 1911 1912 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1913 uint64_t value, uint8_t counter) 1914 { 1915 if (counter < pmu_num_counters(env)) { 1916 pmevcntr_op_start(env, counter); 1917 env->cp15.c14_pmevcntr[counter] = value; 1918 pmevcntr_op_finish(env, counter); 1919 } 1920 /* 1921 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1922 * are CONSTRAINED UNPREDICTABLE. 1923 */ 1924 } 1925 1926 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1927 uint8_t counter) 1928 { 1929 if (counter < pmu_num_counters(env)) { 1930 uint64_t ret; 1931 pmevcntr_op_start(env, counter); 1932 ret = env->cp15.c14_pmevcntr[counter]; 1933 pmevcntr_op_finish(env, counter); 1934 return ret; 1935 } else { 1936 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1937 * are CONSTRAINED UNPREDICTABLE. */ 1938 return 0; 1939 } 1940 } 1941 1942 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1943 uint64_t value) 1944 { 1945 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1946 pmevcntr_write(env, ri, value, counter); 1947 } 1948 1949 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1950 { 1951 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1952 return pmevcntr_read(env, ri, counter); 1953 } 1954 1955 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1956 uint64_t value) 1957 { 1958 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1959 assert(counter < pmu_num_counters(env)); 1960 env->cp15.c14_pmevcntr[counter] = value; 1961 pmevcntr_write(env, ri, value, counter); 1962 } 1963 1964 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1965 { 1966 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1967 assert(counter < pmu_num_counters(env)); 1968 return env->cp15.c14_pmevcntr[counter]; 1969 } 1970 1971 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1972 uint64_t value) 1973 { 1974 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1975 } 1976 1977 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1978 { 1979 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1980 } 1981 1982 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1983 uint64_t value) 1984 { 1985 if (arm_feature(env, ARM_FEATURE_V8)) { 1986 env->cp15.c9_pmuserenr = value & 0xf; 1987 } else { 1988 env->cp15.c9_pmuserenr = value & 1; 1989 } 1990 } 1991 1992 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1993 uint64_t value) 1994 { 1995 /* We have no event counters so only the C bit can be changed */ 1996 value &= pmu_counter_mask(env); 1997 env->cp15.c9_pminten |= value; 1998 pmu_update_irq(env); 1999 } 2000 2001 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2002 uint64_t value) 2003 { 2004 value &= pmu_counter_mask(env); 2005 env->cp15.c9_pminten &= ~value; 2006 pmu_update_irq(env); 2007 } 2008 2009 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2010 uint64_t value) 2011 { 2012 /* Note that even though the AArch64 view of this register has bits 2013 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 2014 * architectural requirements for bits which are RES0 only in some 2015 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 2016 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 2017 */ 2018 raw_write(env, ri, value & ~0x1FULL); 2019 } 2020 2021 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2022 { 2023 /* Begin with base v8.0 state. */ 2024 uint32_t valid_mask = 0x3fff; 2025 ARMCPU *cpu = env_archcpu(env); 2026 2027 if (ri->state == ARM_CP_STATE_AA64) { 2028 if (arm_feature(env, ARM_FEATURE_AARCH64) && 2029 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 2030 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 2031 } 2032 valid_mask &= ~SCR_NET; 2033 2034 if (cpu_isar_feature(aa64_lor, cpu)) { 2035 valid_mask |= SCR_TLOR; 2036 } 2037 if (cpu_isar_feature(aa64_pauth, cpu)) { 2038 valid_mask |= SCR_API | SCR_APK; 2039 } 2040 if (cpu_isar_feature(aa64_sel2, cpu)) { 2041 valid_mask |= SCR_EEL2; 2042 } 2043 if (cpu_isar_feature(aa64_mte, cpu)) { 2044 valid_mask |= SCR_ATA; 2045 } 2046 } else { 2047 valid_mask &= ~(SCR_RW | SCR_ST); 2048 } 2049 2050 if (!arm_feature(env, ARM_FEATURE_EL2)) { 2051 valid_mask &= ~SCR_HCE; 2052 2053 /* On ARMv7, SMD (or SCD as it is called in v7) is only 2054 * supported if EL2 exists. The bit is UNK/SBZP when 2055 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 2056 * when EL2 is unavailable. 2057 * On ARMv8, this bit is always available. 2058 */ 2059 if (arm_feature(env, ARM_FEATURE_V7) && 2060 !arm_feature(env, ARM_FEATURE_V8)) { 2061 valid_mask &= ~SCR_SMD; 2062 } 2063 } 2064 2065 /* Clear all-context RES0 bits. */ 2066 value &= valid_mask; 2067 raw_write(env, ri, value); 2068 } 2069 2070 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2071 { 2072 /* 2073 * scr_write will set the RES1 bits on an AArch64-only CPU. 2074 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 2075 */ 2076 scr_write(env, ri, 0); 2077 } 2078 2079 static CPAccessResult access_aa64_tid2(CPUARMState *env, 2080 const ARMCPRegInfo *ri, 2081 bool isread) 2082 { 2083 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 2084 return CP_ACCESS_TRAP_EL2; 2085 } 2086 2087 return CP_ACCESS_OK; 2088 } 2089 2090 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2091 { 2092 ARMCPU *cpu = env_archcpu(env); 2093 2094 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 2095 * bank 2096 */ 2097 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2098 ri->secure & ARM_CP_SECSTATE_S); 2099 2100 return cpu->ccsidr[index]; 2101 } 2102 2103 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2104 uint64_t value) 2105 { 2106 raw_write(env, ri, value & 0xf); 2107 } 2108 2109 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2110 { 2111 CPUState *cs = env_cpu(env); 2112 bool el1 = arm_current_el(env) == 1; 2113 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 2114 uint64_t ret = 0; 2115 2116 if (hcr_el2 & HCR_IMO) { 2117 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2118 ret |= CPSR_I; 2119 } 2120 } else { 2121 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2122 ret |= CPSR_I; 2123 } 2124 } 2125 2126 if (hcr_el2 & HCR_FMO) { 2127 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2128 ret |= CPSR_F; 2129 } 2130 } else { 2131 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2132 ret |= CPSR_F; 2133 } 2134 } 2135 2136 /* External aborts are not possible in QEMU so A bit is always clear */ 2137 return ret; 2138 } 2139 2140 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2141 bool isread) 2142 { 2143 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2144 return CP_ACCESS_TRAP_EL2; 2145 } 2146 2147 return CP_ACCESS_OK; 2148 } 2149 2150 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2151 bool isread) 2152 { 2153 if (arm_feature(env, ARM_FEATURE_V8)) { 2154 return access_aa64_tid1(env, ri, isread); 2155 } 2156 2157 return CP_ACCESS_OK; 2158 } 2159 2160 static const ARMCPRegInfo v7_cp_reginfo[] = { 2161 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2162 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2163 .access = PL1_W, .type = ARM_CP_NOP }, 2164 /* Performance monitors are implementation defined in v7, 2165 * but with an ARM recommended set of registers, which we 2166 * follow. 2167 * 2168 * Performance registers fall into three categories: 2169 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2170 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2171 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2172 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2173 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2174 */ 2175 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2176 .access = PL0_RW, .type = ARM_CP_ALIAS, 2177 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2178 .writefn = pmcntenset_write, 2179 .accessfn = pmreg_access, 2180 .raw_writefn = raw_write }, 2181 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 2182 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2183 .access = PL0_RW, .accessfn = pmreg_access, 2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2185 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2186 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2187 .access = PL0_RW, 2188 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2189 .accessfn = pmreg_access, 2190 .writefn = pmcntenclr_write, 2191 .type = ARM_CP_ALIAS }, 2192 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2193 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2194 .access = PL0_RW, .accessfn = pmreg_access, 2195 .type = ARM_CP_ALIAS, 2196 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2197 .writefn = pmcntenclr_write }, 2198 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2199 .access = PL0_RW, .type = ARM_CP_IO, 2200 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2201 .accessfn = pmreg_access, 2202 .writefn = pmovsr_write, 2203 .raw_writefn = raw_write }, 2204 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2205 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2206 .access = PL0_RW, .accessfn = pmreg_access, 2207 .type = ARM_CP_ALIAS | ARM_CP_IO, 2208 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2209 .writefn = pmovsr_write, 2210 .raw_writefn = raw_write }, 2211 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2212 .access = PL0_W, .accessfn = pmreg_access_swinc, 2213 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2214 .writefn = pmswinc_write }, 2215 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2216 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2217 .access = PL0_W, .accessfn = pmreg_access_swinc, 2218 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2219 .writefn = pmswinc_write }, 2220 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2221 .access = PL0_RW, .type = ARM_CP_ALIAS, 2222 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2223 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2224 .raw_writefn = raw_write}, 2225 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2226 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2227 .access = PL0_RW, .accessfn = pmreg_access_selr, 2228 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2229 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2230 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2231 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2232 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2233 .accessfn = pmreg_access_ccntr }, 2234 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2235 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2236 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2237 .type = ARM_CP_IO, 2238 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2239 .readfn = pmccntr_read, .writefn = pmccntr_write, 2240 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2241 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2242 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2243 .access = PL0_RW, .accessfn = pmreg_access, 2244 .type = ARM_CP_ALIAS | ARM_CP_IO, 2245 .resetvalue = 0, }, 2246 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2247 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2248 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2249 .access = PL0_RW, .accessfn = pmreg_access, 2250 .type = ARM_CP_IO, 2251 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2252 .resetvalue = 0, }, 2253 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2254 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2255 .accessfn = pmreg_access, 2256 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2257 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2258 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2259 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2260 .accessfn = pmreg_access, 2261 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2262 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2263 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2264 .accessfn = pmreg_access_xevcntr, 2265 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2266 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2267 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2268 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2269 .accessfn = pmreg_access_xevcntr, 2270 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2271 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2272 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2273 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2274 .resetvalue = 0, 2275 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2276 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2277 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2278 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2279 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2280 .resetvalue = 0, 2281 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2282 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2283 .access = PL1_RW, .accessfn = access_tpm, 2284 .type = ARM_CP_ALIAS | ARM_CP_IO, 2285 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2286 .resetvalue = 0, 2287 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2288 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2289 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2290 .access = PL1_RW, .accessfn = access_tpm, 2291 .type = ARM_CP_IO, 2292 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2293 .writefn = pmintenset_write, .raw_writefn = raw_write, 2294 .resetvalue = 0x0 }, 2295 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2296 .access = PL1_RW, .accessfn = access_tpm, 2297 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2298 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2299 .writefn = pmintenclr_write, }, 2300 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2301 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2302 .access = PL1_RW, .accessfn = access_tpm, 2303 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2304 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2305 .writefn = pmintenclr_write }, 2306 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2307 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2308 .access = PL1_R, 2309 .accessfn = access_aa64_tid2, 2310 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2311 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2312 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2313 .access = PL1_RW, 2314 .accessfn = access_aa64_tid2, 2315 .writefn = csselr_write, .resetvalue = 0, 2316 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2317 offsetof(CPUARMState, cp15.csselr_ns) } }, 2318 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2319 * just RAZ for all cores: 2320 */ 2321 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2322 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2323 .access = PL1_R, .type = ARM_CP_CONST, 2324 .accessfn = access_aa64_tid1, 2325 .resetvalue = 0 }, 2326 /* Auxiliary fault status registers: these also are IMPDEF, and we 2327 * choose to RAZ/WI for all cores. 2328 */ 2329 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2330 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2331 .access = PL1_RW, .accessfn = access_tvm_trvm, 2332 .type = ARM_CP_CONST, .resetvalue = 0 }, 2333 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2334 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2335 .access = PL1_RW, .accessfn = access_tvm_trvm, 2336 .type = ARM_CP_CONST, .resetvalue = 0 }, 2337 /* MAIR can just read-as-written because we don't implement caches 2338 * and so don't need to care about memory attributes. 2339 */ 2340 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2341 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2342 .access = PL1_RW, .accessfn = access_tvm_trvm, 2343 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2344 .resetvalue = 0 }, 2345 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2346 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2347 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2348 .resetvalue = 0 }, 2349 /* For non-long-descriptor page tables these are PRRR and NMRR; 2350 * regardless they still act as reads-as-written for QEMU. 2351 */ 2352 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2353 * allows them to assign the correct fieldoffset based on the endianness 2354 * handled in the field definitions. 2355 */ 2356 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2357 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2358 .access = PL1_RW, .accessfn = access_tvm_trvm, 2359 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2360 offsetof(CPUARMState, cp15.mair0_ns) }, 2361 .resetfn = arm_cp_reset_ignore }, 2362 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2363 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2364 .access = PL1_RW, .accessfn = access_tvm_trvm, 2365 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2366 offsetof(CPUARMState, cp15.mair1_ns) }, 2367 .resetfn = arm_cp_reset_ignore }, 2368 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2369 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2370 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2371 /* 32 bit ITLB invalidates */ 2372 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2373 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2374 .writefn = tlbiall_write }, 2375 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2376 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2377 .writefn = tlbimva_write }, 2378 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2379 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2380 .writefn = tlbiasid_write }, 2381 /* 32 bit DTLB invalidates */ 2382 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2383 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2384 .writefn = tlbiall_write }, 2385 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2386 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2387 .writefn = tlbimva_write }, 2388 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2389 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2390 .writefn = tlbiasid_write }, 2391 /* 32 bit TLB invalidates */ 2392 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2393 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2394 .writefn = tlbiall_write }, 2395 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2396 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2397 .writefn = tlbimva_write }, 2398 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2399 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2400 .writefn = tlbiasid_write }, 2401 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2402 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2403 .writefn = tlbimvaa_write }, 2404 REGINFO_SENTINEL 2405 }; 2406 2407 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2408 /* 32 bit TLB invalidates, Inner Shareable */ 2409 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2410 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2411 .writefn = tlbiall_is_write }, 2412 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2413 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2414 .writefn = tlbimva_is_write }, 2415 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2416 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2417 .writefn = tlbiasid_is_write }, 2418 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2419 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2420 .writefn = tlbimvaa_is_write }, 2421 REGINFO_SENTINEL 2422 }; 2423 2424 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2425 /* PMOVSSET is not implemented in v7 before v7ve */ 2426 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2427 .access = PL0_RW, .accessfn = pmreg_access, 2428 .type = ARM_CP_ALIAS | ARM_CP_IO, 2429 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2430 .writefn = pmovsset_write, 2431 .raw_writefn = raw_write }, 2432 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2433 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2434 .access = PL0_RW, .accessfn = pmreg_access, 2435 .type = ARM_CP_ALIAS | ARM_CP_IO, 2436 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2437 .writefn = pmovsset_write, 2438 .raw_writefn = raw_write }, 2439 REGINFO_SENTINEL 2440 }; 2441 2442 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2443 uint64_t value) 2444 { 2445 value &= 1; 2446 env->teecr = value; 2447 } 2448 2449 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2450 bool isread) 2451 { 2452 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2453 return CP_ACCESS_TRAP; 2454 } 2455 return CP_ACCESS_OK; 2456 } 2457 2458 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2459 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2460 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2461 .resetvalue = 0, 2462 .writefn = teecr_write }, 2463 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2464 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2465 .accessfn = teehbr_access, .resetvalue = 0 }, 2466 REGINFO_SENTINEL 2467 }; 2468 2469 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2470 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2471 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2472 .access = PL0_RW, 2473 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2474 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2475 .access = PL0_RW, 2476 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2477 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2478 .resetfn = arm_cp_reset_ignore }, 2479 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2480 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2481 .access = PL0_R|PL1_W, 2482 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2483 .resetvalue = 0}, 2484 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2485 .access = PL0_R|PL1_W, 2486 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2487 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2488 .resetfn = arm_cp_reset_ignore }, 2489 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2490 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2491 .access = PL1_RW, 2492 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2493 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2494 .access = PL1_RW, 2495 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2496 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2497 .resetvalue = 0 }, 2498 REGINFO_SENTINEL 2499 }; 2500 2501 #ifndef CONFIG_USER_ONLY 2502 2503 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2504 bool isread) 2505 { 2506 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2507 * Writable only at the highest implemented exception level. 2508 */ 2509 int el = arm_current_el(env); 2510 uint64_t hcr; 2511 uint32_t cntkctl; 2512 2513 switch (el) { 2514 case 0: 2515 hcr = arm_hcr_el2_eff(env); 2516 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2517 cntkctl = env->cp15.cnthctl_el2; 2518 } else { 2519 cntkctl = env->cp15.c14_cntkctl; 2520 } 2521 if (!extract32(cntkctl, 0, 2)) { 2522 return CP_ACCESS_TRAP; 2523 } 2524 break; 2525 case 1: 2526 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2527 arm_is_secure_below_el3(env)) { 2528 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2529 return CP_ACCESS_TRAP_UNCATEGORIZED; 2530 } 2531 break; 2532 case 2: 2533 case 3: 2534 break; 2535 } 2536 2537 if (!isread && el < arm_highest_el(env)) { 2538 return CP_ACCESS_TRAP_UNCATEGORIZED; 2539 } 2540 2541 return CP_ACCESS_OK; 2542 } 2543 2544 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2545 bool isread) 2546 { 2547 unsigned int cur_el = arm_current_el(env); 2548 bool has_el2 = arm_is_el2_enabled(env); 2549 uint64_t hcr = arm_hcr_el2_eff(env); 2550 2551 switch (cur_el) { 2552 case 0: 2553 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2554 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2555 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2556 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2557 } 2558 2559 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2560 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2561 return CP_ACCESS_TRAP; 2562 } 2563 2564 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2565 if (hcr & HCR_E2H) { 2566 if (timeridx == GTIMER_PHYS && 2567 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2568 return CP_ACCESS_TRAP_EL2; 2569 } 2570 } else { 2571 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2572 if (has_el2 && timeridx == GTIMER_PHYS && 2573 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2574 return CP_ACCESS_TRAP_EL2; 2575 } 2576 } 2577 break; 2578 2579 case 1: 2580 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2581 if (has_el2 && timeridx == GTIMER_PHYS && 2582 (hcr & HCR_E2H 2583 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2584 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2585 return CP_ACCESS_TRAP_EL2; 2586 } 2587 break; 2588 } 2589 return CP_ACCESS_OK; 2590 } 2591 2592 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2593 bool isread) 2594 { 2595 unsigned int cur_el = arm_current_el(env); 2596 bool has_el2 = arm_is_el2_enabled(env); 2597 uint64_t hcr = arm_hcr_el2_eff(env); 2598 2599 switch (cur_el) { 2600 case 0: 2601 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2602 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2603 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2604 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2605 } 2606 2607 /* 2608 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2609 * EL0 if EL0[PV]TEN is zero. 2610 */ 2611 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2612 return CP_ACCESS_TRAP; 2613 } 2614 /* fall through */ 2615 2616 case 1: 2617 if (has_el2 && timeridx == GTIMER_PHYS) { 2618 if (hcr & HCR_E2H) { 2619 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2620 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2621 return CP_ACCESS_TRAP_EL2; 2622 } 2623 } else { 2624 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2625 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2626 return CP_ACCESS_TRAP_EL2; 2627 } 2628 } 2629 } 2630 break; 2631 } 2632 return CP_ACCESS_OK; 2633 } 2634 2635 static CPAccessResult gt_pct_access(CPUARMState *env, 2636 const ARMCPRegInfo *ri, 2637 bool isread) 2638 { 2639 return gt_counter_access(env, GTIMER_PHYS, isread); 2640 } 2641 2642 static CPAccessResult gt_vct_access(CPUARMState *env, 2643 const ARMCPRegInfo *ri, 2644 bool isread) 2645 { 2646 return gt_counter_access(env, GTIMER_VIRT, isread); 2647 } 2648 2649 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2650 bool isread) 2651 { 2652 return gt_timer_access(env, GTIMER_PHYS, isread); 2653 } 2654 2655 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2656 bool isread) 2657 { 2658 return gt_timer_access(env, GTIMER_VIRT, isread); 2659 } 2660 2661 static CPAccessResult gt_stimer_access(CPUARMState *env, 2662 const ARMCPRegInfo *ri, 2663 bool isread) 2664 { 2665 /* The AArch64 register view of the secure physical timer is 2666 * always accessible from EL3, and configurably accessible from 2667 * Secure EL1. 2668 */ 2669 switch (arm_current_el(env)) { 2670 case 1: 2671 if (!arm_is_secure(env)) { 2672 return CP_ACCESS_TRAP; 2673 } 2674 if (!(env->cp15.scr_el3 & SCR_ST)) { 2675 return CP_ACCESS_TRAP_EL3; 2676 } 2677 return CP_ACCESS_OK; 2678 case 0: 2679 case 2: 2680 return CP_ACCESS_TRAP; 2681 case 3: 2682 return CP_ACCESS_OK; 2683 default: 2684 g_assert_not_reached(); 2685 } 2686 } 2687 2688 static uint64_t gt_get_countervalue(CPUARMState *env) 2689 { 2690 ARMCPU *cpu = env_archcpu(env); 2691 2692 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2693 } 2694 2695 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2696 { 2697 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2698 2699 if (gt->ctl & 1) { 2700 /* Timer enabled: calculate and set current ISTATUS, irq, and 2701 * reset timer to when ISTATUS next has to change 2702 */ 2703 uint64_t offset = timeridx == GTIMER_VIRT ? 2704 cpu->env.cp15.cntvoff_el2 : 0; 2705 uint64_t count = gt_get_countervalue(&cpu->env); 2706 /* Note that this must be unsigned 64 bit arithmetic: */ 2707 int istatus = count - offset >= gt->cval; 2708 uint64_t nexttick; 2709 int irqstate; 2710 2711 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2712 2713 irqstate = (istatus && !(gt->ctl & 2)); 2714 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2715 2716 if (istatus) { 2717 /* Next transition is when count rolls back over to zero */ 2718 nexttick = UINT64_MAX; 2719 } else { 2720 /* Next transition is when we hit cval */ 2721 nexttick = gt->cval + offset; 2722 } 2723 /* Note that the desired next expiry time might be beyond the 2724 * signed-64-bit range of a QEMUTimer -- in this case we just 2725 * set the timer for as far in the future as possible. When the 2726 * timer expires we will reset the timer for any remaining period. 2727 */ 2728 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2729 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2730 } else { 2731 timer_mod(cpu->gt_timer[timeridx], nexttick); 2732 } 2733 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2734 } else { 2735 /* Timer disabled: ISTATUS and timer output always clear */ 2736 gt->ctl &= ~4; 2737 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2738 timer_del(cpu->gt_timer[timeridx]); 2739 trace_arm_gt_recalc_disabled(timeridx); 2740 } 2741 } 2742 2743 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2744 int timeridx) 2745 { 2746 ARMCPU *cpu = env_archcpu(env); 2747 2748 timer_del(cpu->gt_timer[timeridx]); 2749 } 2750 2751 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2752 { 2753 return gt_get_countervalue(env); 2754 } 2755 2756 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2757 { 2758 uint64_t hcr; 2759 2760 switch (arm_current_el(env)) { 2761 case 2: 2762 hcr = arm_hcr_el2_eff(env); 2763 if (hcr & HCR_E2H) { 2764 return 0; 2765 } 2766 break; 2767 case 0: 2768 hcr = arm_hcr_el2_eff(env); 2769 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2770 return 0; 2771 } 2772 break; 2773 } 2774 2775 return env->cp15.cntvoff_el2; 2776 } 2777 2778 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2779 { 2780 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2781 } 2782 2783 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2784 int timeridx, 2785 uint64_t value) 2786 { 2787 trace_arm_gt_cval_write(timeridx, value); 2788 env->cp15.c14_timer[timeridx].cval = value; 2789 gt_recalc_timer(env_archcpu(env), timeridx); 2790 } 2791 2792 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2793 int timeridx) 2794 { 2795 uint64_t offset = 0; 2796 2797 switch (timeridx) { 2798 case GTIMER_VIRT: 2799 case GTIMER_HYPVIRT: 2800 offset = gt_virt_cnt_offset(env); 2801 break; 2802 } 2803 2804 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2805 (gt_get_countervalue(env) - offset)); 2806 } 2807 2808 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2809 int timeridx, 2810 uint64_t value) 2811 { 2812 uint64_t offset = 0; 2813 2814 switch (timeridx) { 2815 case GTIMER_VIRT: 2816 case GTIMER_HYPVIRT: 2817 offset = gt_virt_cnt_offset(env); 2818 break; 2819 } 2820 2821 trace_arm_gt_tval_write(timeridx, value); 2822 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2823 sextract64(value, 0, 32); 2824 gt_recalc_timer(env_archcpu(env), timeridx); 2825 } 2826 2827 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2828 int timeridx, 2829 uint64_t value) 2830 { 2831 ARMCPU *cpu = env_archcpu(env); 2832 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2833 2834 trace_arm_gt_ctl_write(timeridx, value); 2835 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2836 if ((oldval ^ value) & 1) { 2837 /* Enable toggled */ 2838 gt_recalc_timer(cpu, timeridx); 2839 } else if ((oldval ^ value) & 2) { 2840 /* IMASK toggled: don't need to recalculate, 2841 * just set the interrupt line based on ISTATUS 2842 */ 2843 int irqstate = (oldval & 4) && !(value & 2); 2844 2845 trace_arm_gt_imask_toggle(timeridx, irqstate); 2846 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2847 } 2848 } 2849 2850 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2851 { 2852 gt_timer_reset(env, ri, GTIMER_PHYS); 2853 } 2854 2855 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2856 uint64_t value) 2857 { 2858 gt_cval_write(env, ri, GTIMER_PHYS, value); 2859 } 2860 2861 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2862 { 2863 return gt_tval_read(env, ri, GTIMER_PHYS); 2864 } 2865 2866 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2867 uint64_t value) 2868 { 2869 gt_tval_write(env, ri, GTIMER_PHYS, value); 2870 } 2871 2872 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2873 uint64_t value) 2874 { 2875 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2876 } 2877 2878 static int gt_phys_redir_timeridx(CPUARMState *env) 2879 { 2880 switch (arm_mmu_idx(env)) { 2881 case ARMMMUIdx_E20_0: 2882 case ARMMMUIdx_E20_2: 2883 case ARMMMUIdx_E20_2_PAN: 2884 case ARMMMUIdx_SE20_0: 2885 case ARMMMUIdx_SE20_2: 2886 case ARMMMUIdx_SE20_2_PAN: 2887 return GTIMER_HYP; 2888 default: 2889 return GTIMER_PHYS; 2890 } 2891 } 2892 2893 static int gt_virt_redir_timeridx(CPUARMState *env) 2894 { 2895 switch (arm_mmu_idx(env)) { 2896 case ARMMMUIdx_E20_0: 2897 case ARMMMUIdx_E20_2: 2898 case ARMMMUIdx_E20_2_PAN: 2899 case ARMMMUIdx_SE20_0: 2900 case ARMMMUIdx_SE20_2: 2901 case ARMMMUIdx_SE20_2_PAN: 2902 return GTIMER_HYPVIRT; 2903 default: 2904 return GTIMER_VIRT; 2905 } 2906 } 2907 2908 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2909 const ARMCPRegInfo *ri) 2910 { 2911 int timeridx = gt_phys_redir_timeridx(env); 2912 return env->cp15.c14_timer[timeridx].cval; 2913 } 2914 2915 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2916 uint64_t value) 2917 { 2918 int timeridx = gt_phys_redir_timeridx(env); 2919 gt_cval_write(env, ri, timeridx, value); 2920 } 2921 2922 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2923 const ARMCPRegInfo *ri) 2924 { 2925 int timeridx = gt_phys_redir_timeridx(env); 2926 return gt_tval_read(env, ri, timeridx); 2927 } 2928 2929 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2930 uint64_t value) 2931 { 2932 int timeridx = gt_phys_redir_timeridx(env); 2933 gt_tval_write(env, ri, timeridx, value); 2934 } 2935 2936 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2937 const ARMCPRegInfo *ri) 2938 { 2939 int timeridx = gt_phys_redir_timeridx(env); 2940 return env->cp15.c14_timer[timeridx].ctl; 2941 } 2942 2943 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2944 uint64_t value) 2945 { 2946 int timeridx = gt_phys_redir_timeridx(env); 2947 gt_ctl_write(env, ri, timeridx, value); 2948 } 2949 2950 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2951 { 2952 gt_timer_reset(env, ri, GTIMER_VIRT); 2953 } 2954 2955 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2956 uint64_t value) 2957 { 2958 gt_cval_write(env, ri, GTIMER_VIRT, value); 2959 } 2960 2961 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2962 { 2963 return gt_tval_read(env, ri, GTIMER_VIRT); 2964 } 2965 2966 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2967 uint64_t value) 2968 { 2969 gt_tval_write(env, ri, GTIMER_VIRT, value); 2970 } 2971 2972 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2973 uint64_t value) 2974 { 2975 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2976 } 2977 2978 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2979 uint64_t value) 2980 { 2981 ARMCPU *cpu = env_archcpu(env); 2982 2983 trace_arm_gt_cntvoff_write(value); 2984 raw_write(env, ri, value); 2985 gt_recalc_timer(cpu, GTIMER_VIRT); 2986 } 2987 2988 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2989 const ARMCPRegInfo *ri) 2990 { 2991 int timeridx = gt_virt_redir_timeridx(env); 2992 return env->cp15.c14_timer[timeridx].cval; 2993 } 2994 2995 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2996 uint64_t value) 2997 { 2998 int timeridx = gt_virt_redir_timeridx(env); 2999 gt_cval_write(env, ri, timeridx, value); 3000 } 3001 3002 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 3003 const ARMCPRegInfo *ri) 3004 { 3005 int timeridx = gt_virt_redir_timeridx(env); 3006 return gt_tval_read(env, ri, timeridx); 3007 } 3008 3009 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3010 uint64_t value) 3011 { 3012 int timeridx = gt_virt_redir_timeridx(env); 3013 gt_tval_write(env, ri, timeridx, value); 3014 } 3015 3016 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 3017 const ARMCPRegInfo *ri) 3018 { 3019 int timeridx = gt_virt_redir_timeridx(env); 3020 return env->cp15.c14_timer[timeridx].ctl; 3021 } 3022 3023 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3024 uint64_t value) 3025 { 3026 int timeridx = gt_virt_redir_timeridx(env); 3027 gt_ctl_write(env, ri, timeridx, value); 3028 } 3029 3030 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3031 { 3032 gt_timer_reset(env, ri, GTIMER_HYP); 3033 } 3034 3035 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3036 uint64_t value) 3037 { 3038 gt_cval_write(env, ri, GTIMER_HYP, value); 3039 } 3040 3041 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3042 { 3043 return gt_tval_read(env, ri, GTIMER_HYP); 3044 } 3045 3046 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3047 uint64_t value) 3048 { 3049 gt_tval_write(env, ri, GTIMER_HYP, value); 3050 } 3051 3052 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3053 uint64_t value) 3054 { 3055 gt_ctl_write(env, ri, GTIMER_HYP, value); 3056 } 3057 3058 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3059 { 3060 gt_timer_reset(env, ri, GTIMER_SEC); 3061 } 3062 3063 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3064 uint64_t value) 3065 { 3066 gt_cval_write(env, ri, GTIMER_SEC, value); 3067 } 3068 3069 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3070 { 3071 return gt_tval_read(env, ri, GTIMER_SEC); 3072 } 3073 3074 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3075 uint64_t value) 3076 { 3077 gt_tval_write(env, ri, GTIMER_SEC, value); 3078 } 3079 3080 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3081 uint64_t value) 3082 { 3083 gt_ctl_write(env, ri, GTIMER_SEC, value); 3084 } 3085 3086 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3087 { 3088 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3089 } 3090 3091 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3092 uint64_t value) 3093 { 3094 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3095 } 3096 3097 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3098 { 3099 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3100 } 3101 3102 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3103 uint64_t value) 3104 { 3105 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3106 } 3107 3108 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3109 uint64_t value) 3110 { 3111 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3112 } 3113 3114 void arm_gt_ptimer_cb(void *opaque) 3115 { 3116 ARMCPU *cpu = opaque; 3117 3118 gt_recalc_timer(cpu, GTIMER_PHYS); 3119 } 3120 3121 void arm_gt_vtimer_cb(void *opaque) 3122 { 3123 ARMCPU *cpu = opaque; 3124 3125 gt_recalc_timer(cpu, GTIMER_VIRT); 3126 } 3127 3128 void arm_gt_htimer_cb(void *opaque) 3129 { 3130 ARMCPU *cpu = opaque; 3131 3132 gt_recalc_timer(cpu, GTIMER_HYP); 3133 } 3134 3135 void arm_gt_stimer_cb(void *opaque) 3136 { 3137 ARMCPU *cpu = opaque; 3138 3139 gt_recalc_timer(cpu, GTIMER_SEC); 3140 } 3141 3142 void arm_gt_hvtimer_cb(void *opaque) 3143 { 3144 ARMCPU *cpu = opaque; 3145 3146 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3147 } 3148 3149 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3150 { 3151 ARMCPU *cpu = env_archcpu(env); 3152 3153 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3154 } 3155 3156 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3157 /* Note that CNTFRQ is purely reads-as-written for the benefit 3158 * of software; writing it doesn't actually change the timer frequency. 3159 * Our reset value matches the fixed frequency we implement the timer at. 3160 */ 3161 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3162 .type = ARM_CP_ALIAS, 3163 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3164 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3165 }, 3166 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3167 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3168 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3169 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3170 .resetfn = arm_gt_cntfrq_reset, 3171 }, 3172 /* overall control: mostly access permissions */ 3173 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3174 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3175 .access = PL1_RW, 3176 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3177 .resetvalue = 0, 3178 }, 3179 /* per-timer control */ 3180 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3181 .secure = ARM_CP_SECSTATE_NS, 3182 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3183 .accessfn = gt_ptimer_access, 3184 .fieldoffset = offsetoflow32(CPUARMState, 3185 cp15.c14_timer[GTIMER_PHYS].ctl), 3186 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3187 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3188 }, 3189 { .name = "CNTP_CTL_S", 3190 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3191 .secure = ARM_CP_SECSTATE_S, 3192 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3193 .accessfn = gt_ptimer_access, 3194 .fieldoffset = offsetoflow32(CPUARMState, 3195 cp15.c14_timer[GTIMER_SEC].ctl), 3196 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3197 }, 3198 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3199 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3200 .type = ARM_CP_IO, .access = PL0_RW, 3201 .accessfn = gt_ptimer_access, 3202 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3203 .resetvalue = 0, 3204 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3205 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3206 }, 3207 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3208 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3209 .accessfn = gt_vtimer_access, 3210 .fieldoffset = offsetoflow32(CPUARMState, 3211 cp15.c14_timer[GTIMER_VIRT].ctl), 3212 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3213 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3214 }, 3215 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3216 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3217 .type = ARM_CP_IO, .access = PL0_RW, 3218 .accessfn = gt_vtimer_access, 3219 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3220 .resetvalue = 0, 3221 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3222 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3223 }, 3224 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3225 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3226 .secure = ARM_CP_SECSTATE_NS, 3227 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3228 .accessfn = gt_ptimer_access, 3229 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3230 }, 3231 { .name = "CNTP_TVAL_S", 3232 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3233 .secure = ARM_CP_SECSTATE_S, 3234 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3235 .accessfn = gt_ptimer_access, 3236 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3237 }, 3238 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3239 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3240 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3241 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3242 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3243 }, 3244 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3245 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3246 .accessfn = gt_vtimer_access, 3247 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3248 }, 3249 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3250 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3251 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3252 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3253 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3254 }, 3255 /* The counter itself */ 3256 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3257 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3258 .accessfn = gt_pct_access, 3259 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3260 }, 3261 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3262 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3263 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3264 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3265 }, 3266 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3267 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3268 .accessfn = gt_vct_access, 3269 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3270 }, 3271 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3272 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3273 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3274 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3275 }, 3276 /* Comparison value, indicating when the timer goes off */ 3277 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3278 .secure = ARM_CP_SECSTATE_NS, 3279 .access = PL0_RW, 3280 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3281 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3282 .accessfn = gt_ptimer_access, 3283 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3284 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3285 }, 3286 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3287 .secure = ARM_CP_SECSTATE_S, 3288 .access = PL0_RW, 3289 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3290 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3291 .accessfn = gt_ptimer_access, 3292 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3293 }, 3294 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3295 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3296 .access = PL0_RW, 3297 .type = ARM_CP_IO, 3298 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3299 .resetvalue = 0, .accessfn = gt_ptimer_access, 3300 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3301 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3302 }, 3303 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3304 .access = PL0_RW, 3305 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3306 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3307 .accessfn = gt_vtimer_access, 3308 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3309 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3310 }, 3311 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3312 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3313 .access = PL0_RW, 3314 .type = ARM_CP_IO, 3315 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3316 .resetvalue = 0, .accessfn = gt_vtimer_access, 3317 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3318 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3319 }, 3320 /* Secure timer -- this is actually restricted to only EL3 3321 * and configurably Secure-EL1 via the accessfn. 3322 */ 3323 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3324 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3325 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3326 .accessfn = gt_stimer_access, 3327 .readfn = gt_sec_tval_read, 3328 .writefn = gt_sec_tval_write, 3329 .resetfn = gt_sec_timer_reset, 3330 }, 3331 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3332 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3333 .type = ARM_CP_IO, .access = PL1_RW, 3334 .accessfn = gt_stimer_access, 3335 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3336 .resetvalue = 0, 3337 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3338 }, 3339 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3340 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3341 .type = ARM_CP_IO, .access = PL1_RW, 3342 .accessfn = gt_stimer_access, 3343 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3344 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3345 }, 3346 REGINFO_SENTINEL 3347 }; 3348 3349 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3350 bool isread) 3351 { 3352 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3353 return CP_ACCESS_TRAP; 3354 } 3355 return CP_ACCESS_OK; 3356 } 3357 3358 #else 3359 3360 /* In user-mode most of the generic timer registers are inaccessible 3361 * however modern kernels (4.12+) allow access to cntvct_el0 3362 */ 3363 3364 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3365 { 3366 ARMCPU *cpu = env_archcpu(env); 3367 3368 /* Currently we have no support for QEMUTimer in linux-user so we 3369 * can't call gt_get_countervalue(env), instead we directly 3370 * call the lower level functions. 3371 */ 3372 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3373 } 3374 3375 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3376 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3377 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3378 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3379 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3380 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3381 }, 3382 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3383 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3384 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3385 .readfn = gt_virt_cnt_read, 3386 }, 3387 REGINFO_SENTINEL 3388 }; 3389 3390 #endif 3391 3392 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3393 { 3394 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3395 raw_write(env, ri, value); 3396 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3397 raw_write(env, ri, value & 0xfffff6ff); 3398 } else { 3399 raw_write(env, ri, value & 0xfffff1ff); 3400 } 3401 } 3402 3403 #ifndef CONFIG_USER_ONLY 3404 /* get_phys_addr() isn't present for user-mode-only targets */ 3405 3406 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3407 bool isread) 3408 { 3409 if (ri->opc2 & 4) { 3410 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3411 * Secure EL1 (which can only happen if EL3 is AArch64). 3412 * They are simply UNDEF if executed from NS EL1. 3413 * They function normally from EL2 or EL3. 3414 */ 3415 if (arm_current_el(env) == 1) { 3416 if (arm_is_secure_below_el3(env)) { 3417 if (env->cp15.scr_el3 & SCR_EEL2) { 3418 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3419 } 3420 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3421 } 3422 return CP_ACCESS_TRAP_UNCATEGORIZED; 3423 } 3424 } 3425 return CP_ACCESS_OK; 3426 } 3427 3428 #ifdef CONFIG_TCG 3429 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3430 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3431 { 3432 hwaddr phys_addr; 3433 target_ulong page_size; 3434 int prot; 3435 bool ret; 3436 uint64_t par64; 3437 bool format64 = false; 3438 MemTxAttrs attrs = {}; 3439 ARMMMUFaultInfo fi = {}; 3440 ARMCacheAttrs cacheattrs = {}; 3441 3442 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3443 &prot, &page_size, &fi, &cacheattrs); 3444 3445 if (ret) { 3446 /* 3447 * Some kinds of translation fault must cause exceptions rather 3448 * than being reported in the PAR. 3449 */ 3450 int current_el = arm_current_el(env); 3451 int target_el; 3452 uint32_t syn, fsr, fsc; 3453 bool take_exc = false; 3454 3455 if (fi.s1ptw && current_el == 1 3456 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3457 /* 3458 * Synchronous stage 2 fault on an access made as part of the 3459 * translation table walk for AT S1E0* or AT S1E1* insn 3460 * executed from NS EL1. If this is a synchronous external abort 3461 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3462 * to EL3. Otherwise the fault is taken as an exception to EL2, 3463 * and HPFAR_EL2 holds the faulting IPA. 3464 */ 3465 if (fi.type == ARMFault_SyncExternalOnWalk && 3466 (env->cp15.scr_el3 & SCR_EA)) { 3467 target_el = 3; 3468 } else { 3469 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3470 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3471 env->cp15.hpfar_el2 |= HPFAR_NS; 3472 } 3473 target_el = 2; 3474 } 3475 take_exc = true; 3476 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3477 /* 3478 * Synchronous external aborts during a translation table walk 3479 * are taken as Data Abort exceptions. 3480 */ 3481 if (fi.stage2) { 3482 if (current_el == 3) { 3483 target_el = 3; 3484 } else { 3485 target_el = 2; 3486 } 3487 } else { 3488 target_el = exception_target_el(env); 3489 } 3490 take_exc = true; 3491 } 3492 3493 if (take_exc) { 3494 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3495 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3496 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3497 fsr = arm_fi_to_lfsc(&fi); 3498 fsc = extract32(fsr, 0, 6); 3499 } else { 3500 fsr = arm_fi_to_sfsc(&fi); 3501 fsc = 0x3f; 3502 } 3503 /* 3504 * Report exception with ESR indicating a fault due to a 3505 * translation table walk for a cache maintenance instruction. 3506 */ 3507 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3508 fi.ea, 1, fi.s1ptw, 1, fsc); 3509 env->exception.vaddress = value; 3510 env->exception.fsr = fsr; 3511 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3512 } 3513 } 3514 3515 if (is_a64(env)) { 3516 format64 = true; 3517 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3518 /* 3519 * ATS1Cxx: 3520 * * TTBCR.EAE determines whether the result is returned using the 3521 * 32-bit or the 64-bit PAR format 3522 * * Instructions executed in Hyp mode always use the 64bit format 3523 * 3524 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3525 * * The Non-secure TTBCR.EAE bit is set to 1 3526 * * The implementation includes EL2, and the value of HCR.VM is 1 3527 * 3528 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3529 * 3530 * ATS1Hx always uses the 64bit format. 3531 */ 3532 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3533 3534 if (arm_feature(env, ARM_FEATURE_EL2)) { 3535 if (mmu_idx == ARMMMUIdx_E10_0 || 3536 mmu_idx == ARMMMUIdx_E10_1 || 3537 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3538 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3539 } else { 3540 format64 |= arm_current_el(env) == 2; 3541 } 3542 } 3543 } 3544 3545 if (format64) { 3546 /* Create a 64-bit PAR */ 3547 par64 = (1 << 11); /* LPAE bit always set */ 3548 if (!ret) { 3549 par64 |= phys_addr & ~0xfffULL; 3550 if (!attrs.secure) { 3551 par64 |= (1 << 9); /* NS */ 3552 } 3553 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3554 par64 |= cacheattrs.shareability << 7; /* SH */ 3555 } else { 3556 uint32_t fsr = arm_fi_to_lfsc(&fi); 3557 3558 par64 |= 1; /* F */ 3559 par64 |= (fsr & 0x3f) << 1; /* FS */ 3560 if (fi.stage2) { 3561 par64 |= (1 << 9); /* S */ 3562 } 3563 if (fi.s1ptw) { 3564 par64 |= (1 << 8); /* PTW */ 3565 } 3566 } 3567 } else { 3568 /* fsr is a DFSR/IFSR value for the short descriptor 3569 * translation table format (with WnR always clear). 3570 * Convert it to a 32-bit PAR. 3571 */ 3572 if (!ret) { 3573 /* We do not set any attribute bits in the PAR */ 3574 if (page_size == (1 << 24) 3575 && arm_feature(env, ARM_FEATURE_V7)) { 3576 par64 = (phys_addr & 0xff000000) | (1 << 1); 3577 } else { 3578 par64 = phys_addr & 0xfffff000; 3579 } 3580 if (!attrs.secure) { 3581 par64 |= (1 << 9); /* NS */ 3582 } 3583 } else { 3584 uint32_t fsr = arm_fi_to_sfsc(&fi); 3585 3586 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3587 ((fsr & 0xf) << 1) | 1; 3588 } 3589 } 3590 return par64; 3591 } 3592 #endif /* CONFIG_TCG */ 3593 3594 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3595 { 3596 #ifdef CONFIG_TCG 3597 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3598 uint64_t par64; 3599 ARMMMUIdx mmu_idx; 3600 int el = arm_current_el(env); 3601 bool secure = arm_is_secure_below_el3(env); 3602 3603 switch (ri->opc2 & 6) { 3604 case 0: 3605 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3606 switch (el) { 3607 case 3: 3608 mmu_idx = ARMMMUIdx_SE3; 3609 break; 3610 case 2: 3611 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3612 /* fall through */ 3613 case 1: 3614 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3615 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3616 : ARMMMUIdx_Stage1_E1_PAN); 3617 } else { 3618 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3619 } 3620 break; 3621 default: 3622 g_assert_not_reached(); 3623 } 3624 break; 3625 case 2: 3626 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3627 switch (el) { 3628 case 3: 3629 mmu_idx = ARMMMUIdx_SE10_0; 3630 break; 3631 case 2: 3632 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3633 mmu_idx = ARMMMUIdx_Stage1_E0; 3634 break; 3635 case 1: 3636 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3637 break; 3638 default: 3639 g_assert_not_reached(); 3640 } 3641 break; 3642 case 4: 3643 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3644 mmu_idx = ARMMMUIdx_E10_1; 3645 break; 3646 case 6: 3647 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3648 mmu_idx = ARMMMUIdx_E10_0; 3649 break; 3650 default: 3651 g_assert_not_reached(); 3652 } 3653 3654 par64 = do_ats_write(env, value, access_type, mmu_idx); 3655 3656 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3657 #else 3658 /* Handled by hardware accelerator. */ 3659 g_assert_not_reached(); 3660 #endif /* CONFIG_TCG */ 3661 } 3662 3663 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3664 uint64_t value) 3665 { 3666 #ifdef CONFIG_TCG 3667 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3668 uint64_t par64; 3669 3670 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3671 3672 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3673 #else 3674 /* Handled by hardware accelerator. */ 3675 g_assert_not_reached(); 3676 #endif /* CONFIG_TCG */ 3677 } 3678 3679 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3680 bool isread) 3681 { 3682 if (arm_current_el(env) == 3 && 3683 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3684 return CP_ACCESS_TRAP; 3685 } 3686 return CP_ACCESS_OK; 3687 } 3688 3689 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3690 uint64_t value) 3691 { 3692 #ifdef CONFIG_TCG 3693 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3694 ARMMMUIdx mmu_idx; 3695 int secure = arm_is_secure_below_el3(env); 3696 3697 switch (ri->opc2 & 6) { 3698 case 0: 3699 switch (ri->opc1) { 3700 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3701 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3702 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3703 : ARMMMUIdx_Stage1_E1_PAN); 3704 } else { 3705 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3706 } 3707 break; 3708 case 4: /* AT S1E2R, AT S1E2W */ 3709 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3710 break; 3711 case 6: /* AT S1E3R, AT S1E3W */ 3712 mmu_idx = ARMMMUIdx_SE3; 3713 break; 3714 default: 3715 g_assert_not_reached(); 3716 } 3717 break; 3718 case 2: /* AT S1E0R, AT S1E0W */ 3719 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3720 break; 3721 case 4: /* AT S12E1R, AT S12E1W */ 3722 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3723 break; 3724 case 6: /* AT S12E0R, AT S12E0W */ 3725 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3726 break; 3727 default: 3728 g_assert_not_reached(); 3729 } 3730 3731 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3732 #else 3733 /* Handled by hardware accelerator. */ 3734 g_assert_not_reached(); 3735 #endif /* CONFIG_TCG */ 3736 } 3737 #endif 3738 3739 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3740 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3741 .access = PL1_RW, .resetvalue = 0, 3742 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3743 offsetoflow32(CPUARMState, cp15.par_ns) }, 3744 .writefn = par_write }, 3745 #ifndef CONFIG_USER_ONLY 3746 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3747 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3748 .access = PL1_W, .accessfn = ats_access, 3749 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3750 #endif 3751 REGINFO_SENTINEL 3752 }; 3753 3754 /* Return basic MPU access permission bits. */ 3755 static uint32_t simple_mpu_ap_bits(uint32_t val) 3756 { 3757 uint32_t ret; 3758 uint32_t mask; 3759 int i; 3760 ret = 0; 3761 mask = 3; 3762 for (i = 0; i < 16; i += 2) { 3763 ret |= (val >> i) & mask; 3764 mask <<= 2; 3765 } 3766 return ret; 3767 } 3768 3769 /* Pad basic MPU access permission bits to extended format. */ 3770 static uint32_t extended_mpu_ap_bits(uint32_t val) 3771 { 3772 uint32_t ret; 3773 uint32_t mask; 3774 int i; 3775 ret = 0; 3776 mask = 3; 3777 for (i = 0; i < 16; i += 2) { 3778 ret |= (val & mask) << i; 3779 mask <<= 2; 3780 } 3781 return ret; 3782 } 3783 3784 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3785 uint64_t value) 3786 { 3787 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3788 } 3789 3790 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3791 { 3792 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3793 } 3794 3795 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3796 uint64_t value) 3797 { 3798 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3799 } 3800 3801 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3802 { 3803 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3804 } 3805 3806 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3807 { 3808 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3809 3810 if (!u32p) { 3811 return 0; 3812 } 3813 3814 u32p += env->pmsav7.rnr[M_REG_NS]; 3815 return *u32p; 3816 } 3817 3818 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3819 uint64_t value) 3820 { 3821 ARMCPU *cpu = env_archcpu(env); 3822 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3823 3824 if (!u32p) { 3825 return; 3826 } 3827 3828 u32p += env->pmsav7.rnr[M_REG_NS]; 3829 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3830 *u32p = value; 3831 } 3832 3833 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3834 uint64_t value) 3835 { 3836 ARMCPU *cpu = env_archcpu(env); 3837 uint32_t nrgs = cpu->pmsav7_dregion; 3838 3839 if (value >= nrgs) { 3840 qemu_log_mask(LOG_GUEST_ERROR, 3841 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3842 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3843 return; 3844 } 3845 3846 raw_write(env, ri, value); 3847 } 3848 3849 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3850 /* Reset for all these registers is handled in arm_cpu_reset(), 3851 * because the PMSAv7 is also used by M-profile CPUs, which do 3852 * not register cpregs but still need the state to be reset. 3853 */ 3854 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3855 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3856 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3857 .readfn = pmsav7_read, .writefn = pmsav7_write, 3858 .resetfn = arm_cp_reset_ignore }, 3859 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3860 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3861 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3862 .readfn = pmsav7_read, .writefn = pmsav7_write, 3863 .resetfn = arm_cp_reset_ignore }, 3864 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3865 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3866 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3867 .readfn = pmsav7_read, .writefn = pmsav7_write, 3868 .resetfn = arm_cp_reset_ignore }, 3869 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3870 .access = PL1_RW, 3871 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3872 .writefn = pmsav7_rgnr_write, 3873 .resetfn = arm_cp_reset_ignore }, 3874 REGINFO_SENTINEL 3875 }; 3876 3877 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3878 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3879 .access = PL1_RW, .type = ARM_CP_ALIAS, 3880 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3881 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3882 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3883 .access = PL1_RW, .type = ARM_CP_ALIAS, 3884 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3885 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3886 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3887 .access = PL1_RW, 3888 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3889 .resetvalue = 0, }, 3890 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3891 .access = PL1_RW, 3892 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3893 .resetvalue = 0, }, 3894 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3895 .access = PL1_RW, 3896 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3897 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3898 .access = PL1_RW, 3899 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3900 /* Protection region base and size registers */ 3901 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3902 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3903 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3904 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3905 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3906 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3907 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3908 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3909 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3910 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3911 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3912 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3913 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3914 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3915 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3916 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3917 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3918 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3919 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3920 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3921 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3922 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3923 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3924 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3925 REGINFO_SENTINEL 3926 }; 3927 3928 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3929 uint64_t value) 3930 { 3931 TCR *tcr = raw_ptr(env, ri); 3932 int maskshift = extract32(value, 0, 3); 3933 3934 if (!arm_feature(env, ARM_FEATURE_V8)) { 3935 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3936 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3937 * using Long-desciptor translation table format */ 3938 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3939 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3940 /* In an implementation that includes the Security Extensions 3941 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3942 * Short-descriptor translation table format. 3943 */ 3944 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3945 } else { 3946 value &= TTBCR_N; 3947 } 3948 } 3949 3950 /* Update the masks corresponding to the TCR bank being written 3951 * Note that we always calculate mask and base_mask, but 3952 * they are only used for short-descriptor tables (ie if EAE is 0); 3953 * for long-descriptor tables the TCR fields are used differently 3954 * and the mask and base_mask values are meaningless. 3955 */ 3956 tcr->raw_tcr = value; 3957 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3958 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3959 } 3960 3961 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3962 uint64_t value) 3963 { 3964 ARMCPU *cpu = env_archcpu(env); 3965 TCR *tcr = raw_ptr(env, ri); 3966 3967 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3968 /* With LPAE the TTBCR could result in a change of ASID 3969 * via the TTBCR.A1 bit, so do a TLB flush. 3970 */ 3971 tlb_flush(CPU(cpu)); 3972 } 3973 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3974 value = deposit64(tcr->raw_tcr, 0, 32, value); 3975 vmsa_ttbcr_raw_write(env, ri, value); 3976 } 3977 3978 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3979 { 3980 TCR *tcr = raw_ptr(env, ri); 3981 3982 /* Reset both the TCR as well as the masks corresponding to the bank of 3983 * the TCR being reset. 3984 */ 3985 tcr->raw_tcr = 0; 3986 tcr->mask = 0; 3987 tcr->base_mask = 0xffffc000u; 3988 } 3989 3990 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3991 uint64_t value) 3992 { 3993 ARMCPU *cpu = env_archcpu(env); 3994 TCR *tcr = raw_ptr(env, ri); 3995 3996 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3997 tlb_flush(CPU(cpu)); 3998 tcr->raw_tcr = value; 3999 } 4000 4001 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4002 uint64_t value) 4003 { 4004 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4005 if (cpreg_field_is_64bit(ri) && 4006 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4007 ARMCPU *cpu = env_archcpu(env); 4008 tlb_flush(CPU(cpu)); 4009 } 4010 raw_write(env, ri, value); 4011 } 4012 4013 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4014 uint64_t value) 4015 { 4016 /* 4017 * If we are running with E2&0 regime, then an ASID is active. 4018 * Flush if that might be changing. Note we're not checking 4019 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4020 * holds the active ASID, only checking the field that might. 4021 */ 4022 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4023 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4024 uint16_t mask = ARMMMUIdxBit_E20_2 | 4025 ARMMMUIdxBit_E20_2_PAN | 4026 ARMMMUIdxBit_E20_0; 4027 4028 if (arm_is_secure_below_el3(env)) { 4029 mask >>= ARM_MMU_IDX_A_NS; 4030 } 4031 4032 tlb_flush_by_mmuidx(env_cpu(env), mask); 4033 } 4034 raw_write(env, ri, value); 4035 } 4036 4037 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4038 uint64_t value) 4039 { 4040 ARMCPU *cpu = env_archcpu(env); 4041 CPUState *cs = CPU(cpu); 4042 4043 /* 4044 * A change in VMID to the stage2 page table (Stage2) invalidates 4045 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 4046 */ 4047 if (raw_read(env, ri) != value) { 4048 uint16_t mask = ARMMMUIdxBit_E10_1 | 4049 ARMMMUIdxBit_E10_1_PAN | 4050 ARMMMUIdxBit_E10_0; 4051 4052 if (arm_is_secure_below_el3(env)) { 4053 mask >>= ARM_MMU_IDX_A_NS; 4054 } 4055 4056 tlb_flush_by_mmuidx(cs, mask); 4057 raw_write(env, ri, value); 4058 } 4059 } 4060 4061 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4062 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4063 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4064 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4065 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4066 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4067 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4068 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4069 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4070 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4071 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4072 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4073 offsetof(CPUARMState, cp15.dfar_ns) } }, 4074 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4075 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4076 .access = PL1_RW, .accessfn = access_tvm_trvm, 4077 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4078 .resetvalue = 0, }, 4079 REGINFO_SENTINEL 4080 }; 4081 4082 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4083 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4084 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4085 .access = PL1_RW, .accessfn = access_tvm_trvm, 4086 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4087 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4088 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4089 .access = PL1_RW, .accessfn = access_tvm_trvm, 4090 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4091 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4092 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4093 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4094 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4095 .access = PL1_RW, .accessfn = access_tvm_trvm, 4096 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4097 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4098 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4099 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4100 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4101 .access = PL1_RW, .accessfn = access_tvm_trvm, 4102 .writefn = vmsa_tcr_el12_write, 4103 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 4104 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4105 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4106 .access = PL1_RW, .accessfn = access_tvm_trvm, 4107 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4108 .raw_writefn = vmsa_ttbcr_raw_write, 4109 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4110 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4111 REGINFO_SENTINEL 4112 }; 4113 4114 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4115 * qemu tlbs nor adjusting cached masks. 4116 */ 4117 static const ARMCPRegInfo ttbcr2_reginfo = { 4118 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4119 .access = PL1_RW, .accessfn = access_tvm_trvm, 4120 .type = ARM_CP_ALIAS, 4121 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4122 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 4123 }; 4124 4125 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4126 uint64_t value) 4127 { 4128 env->cp15.c15_ticonfig = value & 0xe7; 4129 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4130 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4131 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4132 } 4133 4134 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4135 uint64_t value) 4136 { 4137 env->cp15.c15_threadid = value & 0xffff; 4138 } 4139 4140 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4141 uint64_t value) 4142 { 4143 /* Wait-for-interrupt (deprecated) */ 4144 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4145 } 4146 4147 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4148 uint64_t value) 4149 { 4150 /* On OMAP there are registers indicating the max/min index of dcache lines 4151 * containing a dirty line; cache flush operations have to reset these. 4152 */ 4153 env->cp15.c15_i_max = 0x000; 4154 env->cp15.c15_i_min = 0xff0; 4155 } 4156 4157 static const ARMCPRegInfo omap_cp_reginfo[] = { 4158 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4159 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4160 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4161 .resetvalue = 0, }, 4162 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4163 .access = PL1_RW, .type = ARM_CP_NOP }, 4164 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4165 .access = PL1_RW, 4166 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4167 .writefn = omap_ticonfig_write }, 4168 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4169 .access = PL1_RW, 4170 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4171 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4172 .access = PL1_RW, .resetvalue = 0xff0, 4173 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4174 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4175 .access = PL1_RW, 4176 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4177 .writefn = omap_threadid_write }, 4178 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4179 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4180 .type = ARM_CP_NO_RAW, 4181 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4182 /* TODO: Peripheral port remap register: 4183 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4184 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4185 * when MMU is off. 4186 */ 4187 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4188 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4189 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4190 .writefn = omap_cachemaint_write }, 4191 { .name = "C9", .cp = 15, .crn = 9, 4192 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4193 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4194 REGINFO_SENTINEL 4195 }; 4196 4197 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4198 uint64_t value) 4199 { 4200 env->cp15.c15_cpar = value & 0x3fff; 4201 } 4202 4203 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4204 { .name = "XSCALE_CPAR", 4205 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4206 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4207 .writefn = xscale_cpar_write, }, 4208 { .name = "XSCALE_AUXCR", 4209 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4210 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4211 .resetvalue = 0, }, 4212 /* XScale specific cache-lockdown: since we have no cache we NOP these 4213 * and hope the guest does not really rely on cache behaviour. 4214 */ 4215 { .name = "XSCALE_LOCK_ICACHE_LINE", 4216 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4217 .access = PL1_W, .type = ARM_CP_NOP }, 4218 { .name = "XSCALE_UNLOCK_ICACHE", 4219 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4220 .access = PL1_W, .type = ARM_CP_NOP }, 4221 { .name = "XSCALE_DCACHE_LOCK", 4222 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4223 .access = PL1_RW, .type = ARM_CP_NOP }, 4224 { .name = "XSCALE_UNLOCK_DCACHE", 4225 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4226 .access = PL1_W, .type = ARM_CP_NOP }, 4227 REGINFO_SENTINEL 4228 }; 4229 4230 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4231 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 4232 * implementation of this implementation-defined space. 4233 * Ideally this should eventually disappear in favour of actually 4234 * implementing the correct behaviour for all cores. 4235 */ 4236 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4237 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4238 .access = PL1_RW, 4239 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4240 .resetvalue = 0 }, 4241 REGINFO_SENTINEL 4242 }; 4243 4244 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4245 /* Cache status: RAZ because we have no cache so it's always clean */ 4246 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4247 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4248 .resetvalue = 0 }, 4249 REGINFO_SENTINEL 4250 }; 4251 4252 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4253 /* We never have a a block transfer operation in progress */ 4254 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4255 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4256 .resetvalue = 0 }, 4257 /* The cache ops themselves: these all NOP for QEMU */ 4258 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4259 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4260 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4261 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4262 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4263 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4264 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4265 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4266 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4267 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4268 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4269 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4270 REGINFO_SENTINEL 4271 }; 4272 4273 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4274 /* The cache test-and-clean instructions always return (1 << 30) 4275 * to indicate that there are no dirty cache lines. 4276 */ 4277 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4278 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4279 .resetvalue = (1 << 30) }, 4280 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4281 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4282 .resetvalue = (1 << 30) }, 4283 REGINFO_SENTINEL 4284 }; 4285 4286 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4287 /* Ignore ReadBuffer accesses */ 4288 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4289 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4290 .access = PL1_RW, .resetvalue = 0, 4291 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4292 REGINFO_SENTINEL 4293 }; 4294 4295 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4296 { 4297 unsigned int cur_el = arm_current_el(env); 4298 4299 if (arm_is_el2_enabled(env) && cur_el == 1) { 4300 return env->cp15.vpidr_el2; 4301 } 4302 return raw_read(env, ri); 4303 } 4304 4305 static uint64_t mpidr_read_val(CPUARMState *env) 4306 { 4307 ARMCPU *cpu = env_archcpu(env); 4308 uint64_t mpidr = cpu->mp_affinity; 4309 4310 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4311 mpidr |= (1U << 31); 4312 /* Cores which are uniprocessor (non-coherent) 4313 * but still implement the MP extensions set 4314 * bit 30. (For instance, Cortex-R5). 4315 */ 4316 if (cpu->mp_is_up) { 4317 mpidr |= (1u << 30); 4318 } 4319 } 4320 return mpidr; 4321 } 4322 4323 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4324 { 4325 unsigned int cur_el = arm_current_el(env); 4326 4327 if (arm_is_el2_enabled(env) && cur_el == 1) { 4328 return env->cp15.vmpidr_el2; 4329 } 4330 return mpidr_read_val(env); 4331 } 4332 4333 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4334 /* NOP AMAIR0/1 */ 4335 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4336 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4337 .access = PL1_RW, .accessfn = access_tvm_trvm, 4338 .type = ARM_CP_CONST, .resetvalue = 0 }, 4339 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4340 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4341 .access = PL1_RW, .accessfn = access_tvm_trvm, 4342 .type = ARM_CP_CONST, .resetvalue = 0 }, 4343 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4344 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4345 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4346 offsetof(CPUARMState, cp15.par_ns)} }, 4347 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4348 .access = PL1_RW, .accessfn = access_tvm_trvm, 4349 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4350 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4351 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4352 .writefn = vmsa_ttbr_write, }, 4353 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4354 .access = PL1_RW, .accessfn = access_tvm_trvm, 4355 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4356 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4357 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4358 .writefn = vmsa_ttbr_write, }, 4359 REGINFO_SENTINEL 4360 }; 4361 4362 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4363 { 4364 return vfp_get_fpcr(env); 4365 } 4366 4367 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4368 uint64_t value) 4369 { 4370 vfp_set_fpcr(env, value); 4371 } 4372 4373 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4374 { 4375 return vfp_get_fpsr(env); 4376 } 4377 4378 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4379 uint64_t value) 4380 { 4381 vfp_set_fpsr(env, value); 4382 } 4383 4384 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4385 bool isread) 4386 { 4387 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4388 return CP_ACCESS_TRAP; 4389 } 4390 return CP_ACCESS_OK; 4391 } 4392 4393 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4394 uint64_t value) 4395 { 4396 env->daif = value & PSTATE_DAIF; 4397 } 4398 4399 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4400 { 4401 return env->pstate & PSTATE_PAN; 4402 } 4403 4404 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4405 uint64_t value) 4406 { 4407 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4408 } 4409 4410 static const ARMCPRegInfo pan_reginfo = { 4411 .name = "PAN", .state = ARM_CP_STATE_AA64, 4412 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4413 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4414 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4415 }; 4416 4417 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4418 { 4419 return env->pstate & PSTATE_UAO; 4420 } 4421 4422 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4423 uint64_t value) 4424 { 4425 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4426 } 4427 4428 static const ARMCPRegInfo uao_reginfo = { 4429 .name = "UAO", .state = ARM_CP_STATE_AA64, 4430 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4431 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4432 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4433 }; 4434 4435 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4436 { 4437 return env->pstate & PSTATE_DIT; 4438 } 4439 4440 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4441 uint64_t value) 4442 { 4443 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4444 } 4445 4446 static const ARMCPRegInfo dit_reginfo = { 4447 .name = "DIT", .state = ARM_CP_STATE_AA64, 4448 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4449 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4450 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4451 }; 4452 4453 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4454 { 4455 return env->pstate & PSTATE_SSBS; 4456 } 4457 4458 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4459 uint64_t value) 4460 { 4461 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4462 } 4463 4464 static const ARMCPRegInfo ssbs_reginfo = { 4465 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4466 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4467 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4468 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4469 }; 4470 4471 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4472 const ARMCPRegInfo *ri, 4473 bool isread) 4474 { 4475 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4476 switch (arm_current_el(env)) { 4477 case 0: 4478 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4479 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4480 return CP_ACCESS_TRAP; 4481 } 4482 /* fall through */ 4483 case 1: 4484 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4485 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4486 return CP_ACCESS_TRAP_EL2; 4487 } 4488 break; 4489 } 4490 return CP_ACCESS_OK; 4491 } 4492 4493 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4494 const ARMCPRegInfo *ri, 4495 bool isread) 4496 { 4497 /* Cache invalidate/clean to Point of Unification... */ 4498 switch (arm_current_el(env)) { 4499 case 0: 4500 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4501 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4502 return CP_ACCESS_TRAP; 4503 } 4504 /* fall through */ 4505 case 1: 4506 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4507 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4508 return CP_ACCESS_TRAP_EL2; 4509 } 4510 break; 4511 } 4512 return CP_ACCESS_OK; 4513 } 4514 4515 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4516 * Page D4-1736 (DDI0487A.b) 4517 */ 4518 4519 static int vae1_tlbmask(CPUARMState *env) 4520 { 4521 uint64_t hcr = arm_hcr_el2_eff(env); 4522 uint16_t mask; 4523 4524 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4525 mask = ARMMMUIdxBit_E20_2 | 4526 ARMMMUIdxBit_E20_2_PAN | 4527 ARMMMUIdxBit_E20_0; 4528 } else { 4529 mask = ARMMMUIdxBit_E10_1 | 4530 ARMMMUIdxBit_E10_1_PAN | 4531 ARMMMUIdxBit_E10_0; 4532 } 4533 4534 if (arm_is_secure_below_el3(env)) { 4535 mask >>= ARM_MMU_IDX_A_NS; 4536 } 4537 4538 return mask; 4539 } 4540 4541 /* Return 56 if TBI is enabled, 64 otherwise. */ 4542 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4543 uint64_t addr) 4544 { 4545 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4546 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4547 int select = extract64(addr, 55, 1); 4548 4549 return (tbi >> select) & 1 ? 56 : 64; 4550 } 4551 4552 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4553 { 4554 uint64_t hcr = arm_hcr_el2_eff(env); 4555 ARMMMUIdx mmu_idx; 4556 4557 /* Only the regime of the mmu_idx below is significant. */ 4558 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4559 mmu_idx = ARMMMUIdx_E20_0; 4560 } else { 4561 mmu_idx = ARMMMUIdx_E10_0; 4562 } 4563 4564 if (arm_is_secure_below_el3(env)) { 4565 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4566 } 4567 4568 return tlbbits_for_regime(env, mmu_idx, addr); 4569 } 4570 4571 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4572 uint64_t value) 4573 { 4574 CPUState *cs = env_cpu(env); 4575 int mask = vae1_tlbmask(env); 4576 4577 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4578 } 4579 4580 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4581 uint64_t value) 4582 { 4583 CPUState *cs = env_cpu(env); 4584 int mask = vae1_tlbmask(env); 4585 4586 if (tlb_force_broadcast(env)) { 4587 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4588 } else { 4589 tlb_flush_by_mmuidx(cs, mask); 4590 } 4591 } 4592 4593 static int alle1_tlbmask(CPUARMState *env) 4594 { 4595 /* 4596 * Note that the 'ALL' scope must invalidate both stage 1 and 4597 * stage 2 translations, whereas most other scopes only invalidate 4598 * stage 1 translations. 4599 */ 4600 if (arm_is_secure_below_el3(env)) { 4601 return ARMMMUIdxBit_SE10_1 | 4602 ARMMMUIdxBit_SE10_1_PAN | 4603 ARMMMUIdxBit_SE10_0; 4604 } else { 4605 return ARMMMUIdxBit_E10_1 | 4606 ARMMMUIdxBit_E10_1_PAN | 4607 ARMMMUIdxBit_E10_0; 4608 } 4609 } 4610 4611 static int e2_tlbmask(CPUARMState *env) 4612 { 4613 if (arm_is_secure_below_el3(env)) { 4614 return ARMMMUIdxBit_SE20_0 | 4615 ARMMMUIdxBit_SE20_2 | 4616 ARMMMUIdxBit_SE20_2_PAN | 4617 ARMMMUIdxBit_SE2; 4618 } else { 4619 return ARMMMUIdxBit_E20_0 | 4620 ARMMMUIdxBit_E20_2 | 4621 ARMMMUIdxBit_E20_2_PAN | 4622 ARMMMUIdxBit_E2; 4623 } 4624 } 4625 4626 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4627 uint64_t value) 4628 { 4629 CPUState *cs = env_cpu(env); 4630 int mask = alle1_tlbmask(env); 4631 4632 tlb_flush_by_mmuidx(cs, mask); 4633 } 4634 4635 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4636 uint64_t value) 4637 { 4638 CPUState *cs = env_cpu(env); 4639 int mask = e2_tlbmask(env); 4640 4641 tlb_flush_by_mmuidx(cs, mask); 4642 } 4643 4644 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4645 uint64_t value) 4646 { 4647 ARMCPU *cpu = env_archcpu(env); 4648 CPUState *cs = CPU(cpu); 4649 4650 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4651 } 4652 4653 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4654 uint64_t value) 4655 { 4656 CPUState *cs = env_cpu(env); 4657 int mask = alle1_tlbmask(env); 4658 4659 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4660 } 4661 4662 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4663 uint64_t value) 4664 { 4665 CPUState *cs = env_cpu(env); 4666 int mask = e2_tlbmask(env); 4667 4668 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4669 } 4670 4671 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4672 uint64_t value) 4673 { 4674 CPUState *cs = env_cpu(env); 4675 4676 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4677 } 4678 4679 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4680 uint64_t value) 4681 { 4682 /* Invalidate by VA, EL2 4683 * Currently handles both VAE2 and VALE2, since we don't support 4684 * flush-last-level-only. 4685 */ 4686 CPUState *cs = env_cpu(env); 4687 int mask = e2_tlbmask(env); 4688 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4689 4690 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4691 } 4692 4693 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4694 uint64_t value) 4695 { 4696 /* Invalidate by VA, EL3 4697 * Currently handles both VAE3 and VALE3, since we don't support 4698 * flush-last-level-only. 4699 */ 4700 ARMCPU *cpu = env_archcpu(env); 4701 CPUState *cs = CPU(cpu); 4702 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4703 4704 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4705 } 4706 4707 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4708 uint64_t value) 4709 { 4710 CPUState *cs = env_cpu(env); 4711 int mask = vae1_tlbmask(env); 4712 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4713 int bits = vae1_tlbbits(env, pageaddr); 4714 4715 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4716 } 4717 4718 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4719 uint64_t value) 4720 { 4721 /* Invalidate by VA, EL1&0 (AArch64 version). 4722 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4723 * since we don't support flush-for-specific-ASID-only or 4724 * flush-last-level-only. 4725 */ 4726 CPUState *cs = env_cpu(env); 4727 int mask = vae1_tlbmask(env); 4728 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4729 int bits = vae1_tlbbits(env, pageaddr); 4730 4731 if (tlb_force_broadcast(env)) { 4732 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4733 } else { 4734 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4735 } 4736 } 4737 4738 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4739 uint64_t value) 4740 { 4741 CPUState *cs = env_cpu(env); 4742 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4743 bool secure = arm_is_secure_below_el3(env); 4744 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4745 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_E2 : ARMMMUIdx_SE2, 4746 pageaddr); 4747 4748 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4749 } 4750 4751 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4752 uint64_t value) 4753 { 4754 CPUState *cs = env_cpu(env); 4755 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4756 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4757 4758 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4759 ARMMMUIdxBit_SE3, bits); 4760 } 4761 4762 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4763 bool isread) 4764 { 4765 int cur_el = arm_current_el(env); 4766 4767 if (cur_el < 2) { 4768 uint64_t hcr = arm_hcr_el2_eff(env); 4769 4770 if (cur_el == 0) { 4771 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4772 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4773 return CP_ACCESS_TRAP_EL2; 4774 } 4775 } else { 4776 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4777 return CP_ACCESS_TRAP; 4778 } 4779 if (hcr & HCR_TDZ) { 4780 return CP_ACCESS_TRAP_EL2; 4781 } 4782 } 4783 } else if (hcr & HCR_TDZ) { 4784 return CP_ACCESS_TRAP_EL2; 4785 } 4786 } 4787 return CP_ACCESS_OK; 4788 } 4789 4790 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4791 { 4792 ARMCPU *cpu = env_archcpu(env); 4793 int dzp_bit = 1 << 4; 4794 4795 /* DZP indicates whether DC ZVA access is allowed */ 4796 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4797 dzp_bit = 0; 4798 } 4799 return cpu->dcz_blocksize | dzp_bit; 4800 } 4801 4802 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4803 bool isread) 4804 { 4805 if (!(env->pstate & PSTATE_SP)) { 4806 /* Access to SP_EL0 is undefined if it's being used as 4807 * the stack pointer. 4808 */ 4809 return CP_ACCESS_TRAP_UNCATEGORIZED; 4810 } 4811 return CP_ACCESS_OK; 4812 } 4813 4814 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4815 { 4816 return env->pstate & PSTATE_SP; 4817 } 4818 4819 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4820 { 4821 update_spsel(env, val); 4822 } 4823 4824 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4825 uint64_t value) 4826 { 4827 ARMCPU *cpu = env_archcpu(env); 4828 4829 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4830 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4831 value &= ~SCTLR_M; 4832 } 4833 4834 /* ??? Lots of these bits are not implemented. */ 4835 4836 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4837 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4838 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4839 } else { 4840 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4841 SCTLR_ATA0 | SCTLR_ATA); 4842 } 4843 } 4844 4845 if (raw_read(env, ri) == value) { 4846 /* Skip the TLB flush if nothing actually changed; Linux likes 4847 * to do a lot of pointless SCTLR writes. 4848 */ 4849 return; 4850 } 4851 4852 raw_write(env, ri, value); 4853 4854 /* This may enable/disable the MMU, so do a TLB flush. */ 4855 tlb_flush(CPU(cpu)); 4856 4857 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4858 /* 4859 * Normally we would always end the TB on an SCTLR write; see the 4860 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4861 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4862 * of hflags from the translator, so do it here. 4863 */ 4864 arm_rebuild_hflags(env); 4865 } 4866 } 4867 4868 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4869 bool isread) 4870 { 4871 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4872 return CP_ACCESS_TRAP_FP_EL2; 4873 } 4874 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4875 return CP_ACCESS_TRAP_FP_EL3; 4876 } 4877 return CP_ACCESS_OK; 4878 } 4879 4880 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4881 uint64_t value) 4882 { 4883 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4884 } 4885 4886 static const ARMCPRegInfo v8_cp_reginfo[] = { 4887 /* Minimal set of EL0-visible registers. This will need to be expanded 4888 * significantly for system emulation of AArch64 CPUs. 4889 */ 4890 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4891 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4892 .access = PL0_RW, .type = ARM_CP_NZCV }, 4893 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4894 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4895 .type = ARM_CP_NO_RAW, 4896 .access = PL0_RW, .accessfn = aa64_daif_access, 4897 .fieldoffset = offsetof(CPUARMState, daif), 4898 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4899 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4900 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4901 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4902 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4903 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4904 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4905 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4906 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4907 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4908 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4909 .access = PL0_R, .type = ARM_CP_NO_RAW, 4910 .readfn = aa64_dczid_read }, 4911 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4912 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4913 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4914 #ifndef CONFIG_USER_ONLY 4915 /* Avoid overhead of an access check that always passes in user-mode */ 4916 .accessfn = aa64_zva_access, 4917 #endif 4918 }, 4919 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4920 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4921 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4922 /* Cache ops: all NOPs since we don't emulate caches */ 4923 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4924 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4925 .access = PL1_W, .type = ARM_CP_NOP, 4926 .accessfn = aa64_cacheop_pou_access }, 4927 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4928 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4929 .access = PL1_W, .type = ARM_CP_NOP, 4930 .accessfn = aa64_cacheop_pou_access }, 4931 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4932 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4933 .access = PL0_W, .type = ARM_CP_NOP, 4934 .accessfn = aa64_cacheop_pou_access }, 4935 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4936 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4937 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4938 .type = ARM_CP_NOP }, 4939 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4940 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4941 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4942 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4943 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4944 .access = PL0_W, .type = ARM_CP_NOP, 4945 .accessfn = aa64_cacheop_poc_access }, 4946 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4947 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4948 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4949 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4950 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4951 .access = PL0_W, .type = ARM_CP_NOP, 4952 .accessfn = aa64_cacheop_pou_access }, 4953 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4954 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4955 .access = PL0_W, .type = ARM_CP_NOP, 4956 .accessfn = aa64_cacheop_poc_access }, 4957 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4958 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4959 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4960 /* TLBI operations */ 4961 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4962 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4963 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4964 .writefn = tlbi_aa64_vmalle1is_write }, 4965 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4966 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4967 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4968 .writefn = tlbi_aa64_vae1is_write }, 4969 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4970 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4971 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4972 .writefn = tlbi_aa64_vmalle1is_write }, 4973 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4974 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4975 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4976 .writefn = tlbi_aa64_vae1is_write }, 4977 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4978 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4979 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4980 .writefn = tlbi_aa64_vae1is_write }, 4981 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4982 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4983 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4984 .writefn = tlbi_aa64_vae1is_write }, 4985 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4986 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4987 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4988 .writefn = tlbi_aa64_vmalle1_write }, 4989 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4990 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4991 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4992 .writefn = tlbi_aa64_vae1_write }, 4993 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4994 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4995 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4996 .writefn = tlbi_aa64_vmalle1_write }, 4997 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4998 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4999 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5000 .writefn = tlbi_aa64_vae1_write }, 5001 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5002 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5003 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5004 .writefn = tlbi_aa64_vae1_write }, 5005 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5006 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5007 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5008 .writefn = tlbi_aa64_vae1_write }, 5009 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5010 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5011 .access = PL2_W, .type = ARM_CP_NOP }, 5012 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5013 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5014 .access = PL2_W, .type = ARM_CP_NOP }, 5015 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5016 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5017 .access = PL2_W, .type = ARM_CP_NO_RAW, 5018 .writefn = tlbi_aa64_alle1is_write }, 5019 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5020 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5021 .access = PL2_W, .type = ARM_CP_NO_RAW, 5022 .writefn = tlbi_aa64_alle1is_write }, 5023 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5024 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5025 .access = PL2_W, .type = ARM_CP_NOP }, 5026 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5027 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5028 .access = PL2_W, .type = ARM_CP_NOP }, 5029 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5030 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5031 .access = PL2_W, .type = ARM_CP_NO_RAW, 5032 .writefn = tlbi_aa64_alle1_write }, 5033 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5034 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5035 .access = PL2_W, .type = ARM_CP_NO_RAW, 5036 .writefn = tlbi_aa64_alle1is_write }, 5037 #ifndef CONFIG_USER_ONLY 5038 /* 64 bit address translation operations */ 5039 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5040 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5041 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5042 .writefn = ats_write64 }, 5043 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5044 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5045 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5046 .writefn = ats_write64 }, 5047 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5048 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5049 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5050 .writefn = ats_write64 }, 5051 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5052 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5053 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5054 .writefn = ats_write64 }, 5055 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5056 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5057 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5058 .writefn = ats_write64 }, 5059 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5060 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5061 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5062 .writefn = ats_write64 }, 5063 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5064 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5065 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5066 .writefn = ats_write64 }, 5067 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5068 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5069 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5070 .writefn = ats_write64 }, 5071 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5072 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5073 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5074 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5075 .writefn = ats_write64 }, 5076 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5077 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5078 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5079 .writefn = ats_write64 }, 5080 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5081 .type = ARM_CP_ALIAS, 5082 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5083 .access = PL1_RW, .resetvalue = 0, 5084 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5085 .writefn = par_write }, 5086 #endif 5087 /* TLB invalidate last level of translation table walk */ 5088 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5089 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5090 .writefn = tlbimva_is_write }, 5091 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5092 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5093 .writefn = tlbimvaa_is_write }, 5094 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5095 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5096 .writefn = tlbimva_write }, 5097 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5098 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5099 .writefn = tlbimvaa_write }, 5100 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5101 .type = ARM_CP_NO_RAW, .access = PL2_W, 5102 .writefn = tlbimva_hyp_write }, 5103 { .name = "TLBIMVALHIS", 5104 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5105 .type = ARM_CP_NO_RAW, .access = PL2_W, 5106 .writefn = tlbimva_hyp_is_write }, 5107 { .name = "TLBIIPAS2", 5108 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5109 .type = ARM_CP_NOP, .access = PL2_W }, 5110 { .name = "TLBIIPAS2IS", 5111 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5112 .type = ARM_CP_NOP, .access = PL2_W }, 5113 { .name = "TLBIIPAS2L", 5114 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5115 .type = ARM_CP_NOP, .access = PL2_W }, 5116 { .name = "TLBIIPAS2LIS", 5117 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5118 .type = ARM_CP_NOP, .access = PL2_W }, 5119 /* 32 bit cache operations */ 5120 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5121 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5122 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5123 .type = ARM_CP_NOP, .access = PL1_W }, 5124 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5125 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5126 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5127 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5128 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5129 .type = ARM_CP_NOP, .access = PL1_W }, 5130 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5131 .type = ARM_CP_NOP, .access = PL1_W }, 5132 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5133 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5134 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5135 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5136 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5137 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5138 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5139 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5140 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5141 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5142 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5143 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5144 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5145 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5146 /* MMU Domain access control / MPU write buffer control */ 5147 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5148 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5149 .writefn = dacr_write, .raw_writefn = raw_write, 5150 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5151 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5152 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5153 .type = ARM_CP_ALIAS, 5154 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5155 .access = PL1_RW, 5156 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5157 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5158 .type = ARM_CP_ALIAS, 5159 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5160 .access = PL1_RW, 5161 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5162 /* We rely on the access checks not allowing the guest to write to the 5163 * state field when SPSel indicates that it's being used as the stack 5164 * pointer. 5165 */ 5166 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5167 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5168 .access = PL1_RW, .accessfn = sp_el0_access, 5169 .type = ARM_CP_ALIAS, 5170 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5171 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5172 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5173 .access = PL2_RW, .type = ARM_CP_ALIAS, 5174 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5175 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5176 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5177 .type = ARM_CP_NO_RAW, 5178 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5179 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5180 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5181 .type = ARM_CP_ALIAS, 5182 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5183 .access = PL2_RW, .accessfn = fpexc32_access }, 5184 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5185 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5186 .access = PL2_RW, .resetvalue = 0, 5187 .writefn = dacr_write, .raw_writefn = raw_write, 5188 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5189 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5190 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5191 .access = PL2_RW, .resetvalue = 0, 5192 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5193 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5194 .type = ARM_CP_ALIAS, 5195 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5196 .access = PL2_RW, 5197 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5198 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5199 .type = ARM_CP_ALIAS, 5200 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5201 .access = PL2_RW, 5202 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5203 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5204 .type = ARM_CP_ALIAS, 5205 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5206 .access = PL2_RW, 5207 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5208 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5209 .type = ARM_CP_ALIAS, 5210 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5211 .access = PL2_RW, 5212 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5213 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5214 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5215 .resetvalue = 0, 5216 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5217 { .name = "SDCR", .type = ARM_CP_ALIAS, 5218 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5219 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5220 .writefn = sdcr_write, 5221 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5222 REGINFO_SENTINEL 5223 }; 5224 5225 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5226 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5227 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5228 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5229 .access = PL2_RW, 5230 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5231 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5232 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5233 .access = PL2_RW, 5234 .type = ARM_CP_CONST, .resetvalue = 0 }, 5235 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5236 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5237 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5238 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5239 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5240 .access = PL2_RW, 5241 .type = ARM_CP_CONST, .resetvalue = 0 }, 5242 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5243 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5244 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5245 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5246 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5247 .access = PL2_RW, .type = ARM_CP_CONST, 5248 .resetvalue = 0 }, 5249 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5250 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5251 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5252 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5253 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5254 .access = PL2_RW, .type = ARM_CP_CONST, 5255 .resetvalue = 0 }, 5256 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5257 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5258 .access = PL2_RW, .type = ARM_CP_CONST, 5259 .resetvalue = 0 }, 5260 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5261 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5262 .access = PL2_RW, .type = ARM_CP_CONST, 5263 .resetvalue = 0 }, 5264 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5265 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5266 .access = PL2_RW, .type = ARM_CP_CONST, 5267 .resetvalue = 0 }, 5268 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5269 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5270 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5271 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5272 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5273 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5274 .type = ARM_CP_CONST, .resetvalue = 0 }, 5275 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5276 .cp = 15, .opc1 = 6, .crm = 2, 5277 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5278 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5279 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5280 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5281 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5282 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5283 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5284 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5285 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5286 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5287 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5288 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5289 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5290 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5291 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5292 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5293 .resetvalue = 0 }, 5294 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5295 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5296 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5297 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5298 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5299 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5300 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5301 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5302 .resetvalue = 0 }, 5303 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5304 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5305 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5306 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5307 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5308 .resetvalue = 0 }, 5309 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5310 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5311 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5312 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5313 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5314 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5315 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5316 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5317 .access = PL2_RW, .accessfn = access_tda, 5318 .type = ARM_CP_CONST, .resetvalue = 0 }, 5319 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5320 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5321 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5322 .type = ARM_CP_CONST, .resetvalue = 0 }, 5323 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5324 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5325 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5326 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5327 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5328 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5329 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5330 .type = ARM_CP_CONST, 5331 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5332 .access = PL2_RW, .resetvalue = 0 }, 5333 REGINFO_SENTINEL 5334 }; 5335 5336 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5337 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5338 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5339 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5340 .access = PL2_RW, 5341 .type = ARM_CP_CONST, .resetvalue = 0 }, 5342 REGINFO_SENTINEL 5343 }; 5344 5345 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5346 { 5347 ARMCPU *cpu = env_archcpu(env); 5348 5349 if (arm_feature(env, ARM_FEATURE_V8)) { 5350 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5351 } else { 5352 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5353 } 5354 5355 if (arm_feature(env, ARM_FEATURE_EL3)) { 5356 valid_mask &= ~HCR_HCD; 5357 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5358 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5359 * However, if we're using the SMC PSCI conduit then QEMU is 5360 * effectively acting like EL3 firmware and so the guest at 5361 * EL2 should retain the ability to prevent EL1 from being 5362 * able to make SMC calls into the ersatz firmware, so in 5363 * that case HCR.TSC should be read/write. 5364 */ 5365 valid_mask &= ~HCR_TSC; 5366 } 5367 5368 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5369 if (cpu_isar_feature(aa64_vh, cpu)) { 5370 valid_mask |= HCR_E2H; 5371 } 5372 if (cpu_isar_feature(aa64_lor, cpu)) { 5373 valid_mask |= HCR_TLOR; 5374 } 5375 if (cpu_isar_feature(aa64_pauth, cpu)) { 5376 valid_mask |= HCR_API | HCR_APK; 5377 } 5378 if (cpu_isar_feature(aa64_mte, cpu)) { 5379 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5380 } 5381 } 5382 5383 /* Clear RES0 bits. */ 5384 value &= valid_mask; 5385 5386 /* 5387 * These bits change the MMU setup: 5388 * HCR_VM enables stage 2 translation 5389 * HCR_PTW forbids certain page-table setups 5390 * HCR_DC disables stage1 and enables stage2 translation 5391 * HCR_DCT enables tagging on (disabled) stage1 translation 5392 */ 5393 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5394 tlb_flush(CPU(cpu)); 5395 } 5396 env->cp15.hcr_el2 = value; 5397 5398 /* 5399 * Updates to VI and VF require us to update the status of 5400 * virtual interrupts, which are the logical OR of these bits 5401 * and the state of the input lines from the GIC. (This requires 5402 * that we have the iothread lock, which is done by marking the 5403 * reginfo structs as ARM_CP_IO.) 5404 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5405 * possible for it to be taken immediately, because VIRQ and 5406 * VFIQ are masked unless running at EL0 or EL1, and HCR 5407 * can only be written at EL2. 5408 */ 5409 g_assert(qemu_mutex_iothread_locked()); 5410 arm_cpu_update_virq(cpu); 5411 arm_cpu_update_vfiq(cpu); 5412 } 5413 5414 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5415 { 5416 do_hcr_write(env, value, 0); 5417 } 5418 5419 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5420 uint64_t value) 5421 { 5422 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5423 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5424 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5425 } 5426 5427 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5428 uint64_t value) 5429 { 5430 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5431 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5432 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5433 } 5434 5435 /* 5436 * Return the effective value of HCR_EL2. 5437 * Bits that are not included here: 5438 * RW (read from SCR_EL3.RW as needed) 5439 */ 5440 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5441 { 5442 uint64_t ret = env->cp15.hcr_el2; 5443 5444 if (!arm_is_el2_enabled(env)) { 5445 /* 5446 * "This register has no effect if EL2 is not enabled in the 5447 * current Security state". This is ARMv8.4-SecEL2 speak for 5448 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5449 * 5450 * Prior to that, the language was "In an implementation that 5451 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5452 * as if this field is 0 for all purposes other than a direct 5453 * read or write access of HCR_EL2". With lots of enumeration 5454 * on a per-field basis. In current QEMU, this is condition 5455 * is arm_is_secure_below_el3. 5456 * 5457 * Since the v8.4 language applies to the entire register, and 5458 * appears to be backward compatible, use that. 5459 */ 5460 return 0; 5461 } 5462 5463 /* 5464 * For a cpu that supports both aarch64 and aarch32, we can set bits 5465 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5466 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5467 */ 5468 if (!arm_el_is_aa64(env, 2)) { 5469 uint64_t aa32_valid; 5470 5471 /* 5472 * These bits are up-to-date as of ARMv8.6. 5473 * For HCR, it's easiest to list just the 2 bits that are invalid. 5474 * For HCR2, list those that are valid. 5475 */ 5476 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5477 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5478 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5479 ret &= aa32_valid; 5480 } 5481 5482 if (ret & HCR_TGE) { 5483 /* These bits are up-to-date as of ARMv8.6. */ 5484 if (ret & HCR_E2H) { 5485 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5486 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5487 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5488 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5489 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5490 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5491 } else { 5492 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5493 } 5494 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5495 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5496 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5497 HCR_TLOR); 5498 } 5499 5500 return ret; 5501 } 5502 5503 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5504 uint64_t value) 5505 { 5506 /* 5507 * For A-profile AArch32 EL3, if NSACR.CP10 5508 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5509 */ 5510 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5511 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5512 value &= ~(0x3 << 10); 5513 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5514 } 5515 env->cp15.cptr_el[2] = value; 5516 } 5517 5518 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5519 { 5520 /* 5521 * For A-profile AArch32 EL3, if NSACR.CP10 5522 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5523 */ 5524 uint64_t value = env->cp15.cptr_el[2]; 5525 5526 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5527 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5528 value |= 0x3 << 10; 5529 } 5530 return value; 5531 } 5532 5533 static const ARMCPRegInfo el2_cp_reginfo[] = { 5534 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5535 .type = ARM_CP_IO, 5536 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5537 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5538 .writefn = hcr_write }, 5539 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5540 .type = ARM_CP_ALIAS | ARM_CP_IO, 5541 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5542 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5543 .writefn = hcr_writelow }, 5544 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5545 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5546 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5547 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5548 .type = ARM_CP_ALIAS, 5549 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5550 .access = PL2_RW, 5551 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5552 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5553 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5554 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5555 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5556 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5557 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5558 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5559 .type = ARM_CP_ALIAS, 5560 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5561 .access = PL2_RW, 5562 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5563 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5564 .type = ARM_CP_ALIAS, 5565 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5566 .access = PL2_RW, 5567 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5568 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5569 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5570 .access = PL2_RW, .writefn = vbar_write, 5571 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5572 .resetvalue = 0 }, 5573 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5574 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5575 .access = PL3_RW, .type = ARM_CP_ALIAS, 5576 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5577 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5578 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5579 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5580 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5581 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5582 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5583 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5584 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5585 .resetvalue = 0 }, 5586 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5587 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5588 .access = PL2_RW, .type = ARM_CP_ALIAS, 5589 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5590 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5591 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5592 .access = PL2_RW, .type = ARM_CP_CONST, 5593 .resetvalue = 0 }, 5594 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5595 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5596 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5597 .access = PL2_RW, .type = ARM_CP_CONST, 5598 .resetvalue = 0 }, 5599 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5600 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5601 .access = PL2_RW, .type = ARM_CP_CONST, 5602 .resetvalue = 0 }, 5603 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5604 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5605 .access = PL2_RW, .type = ARM_CP_CONST, 5606 .resetvalue = 0 }, 5607 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5608 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5609 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5610 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5611 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5612 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5613 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5614 .type = ARM_CP_ALIAS, 5615 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5616 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5617 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5618 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5619 .access = PL2_RW, 5620 /* no .writefn needed as this can't cause an ASID change; 5621 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5622 */ 5623 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5624 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5625 .cp = 15, .opc1 = 6, .crm = 2, 5626 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5627 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5628 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5629 .writefn = vttbr_write }, 5630 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5631 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5632 .access = PL2_RW, .writefn = vttbr_write, 5633 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5634 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5635 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5636 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5637 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5638 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5639 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5640 .access = PL2_RW, .resetvalue = 0, 5641 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5642 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5643 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5644 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5645 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5646 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5647 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5648 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5649 { .name = "TLBIALLNSNH", 5650 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5651 .type = ARM_CP_NO_RAW, .access = PL2_W, 5652 .writefn = tlbiall_nsnh_write }, 5653 { .name = "TLBIALLNSNHIS", 5654 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5655 .type = ARM_CP_NO_RAW, .access = PL2_W, 5656 .writefn = tlbiall_nsnh_is_write }, 5657 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5658 .type = ARM_CP_NO_RAW, .access = PL2_W, 5659 .writefn = tlbiall_hyp_write }, 5660 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5661 .type = ARM_CP_NO_RAW, .access = PL2_W, 5662 .writefn = tlbiall_hyp_is_write }, 5663 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5664 .type = ARM_CP_NO_RAW, .access = PL2_W, 5665 .writefn = tlbimva_hyp_write }, 5666 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5667 .type = ARM_CP_NO_RAW, .access = PL2_W, 5668 .writefn = tlbimva_hyp_is_write }, 5669 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5670 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5671 .type = ARM_CP_NO_RAW, .access = PL2_W, 5672 .writefn = tlbi_aa64_alle2_write }, 5673 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5674 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5675 .type = ARM_CP_NO_RAW, .access = PL2_W, 5676 .writefn = tlbi_aa64_vae2_write }, 5677 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5678 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5679 .access = PL2_W, .type = ARM_CP_NO_RAW, 5680 .writefn = tlbi_aa64_vae2_write }, 5681 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5682 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5683 .access = PL2_W, .type = ARM_CP_NO_RAW, 5684 .writefn = tlbi_aa64_alle2is_write }, 5685 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5686 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5687 .type = ARM_CP_NO_RAW, .access = PL2_W, 5688 .writefn = tlbi_aa64_vae2is_write }, 5689 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5690 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5691 .access = PL2_W, .type = ARM_CP_NO_RAW, 5692 .writefn = tlbi_aa64_vae2is_write }, 5693 #ifndef CONFIG_USER_ONLY 5694 /* Unlike the other EL2-related AT operations, these must 5695 * UNDEF from EL3 if EL2 is not implemented, which is why we 5696 * define them here rather than with the rest of the AT ops. 5697 */ 5698 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5699 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5700 .access = PL2_W, .accessfn = at_s1e2_access, 5701 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5702 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5703 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5704 .access = PL2_W, .accessfn = at_s1e2_access, 5705 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5706 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5707 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5708 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5709 * to behave as if SCR.NS was 1. 5710 */ 5711 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5712 .access = PL2_W, 5713 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5714 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5715 .access = PL2_W, 5716 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5717 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5718 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5719 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5720 * reset values as IMPDEF. We choose to reset to 3 to comply with 5721 * both ARMv7 and ARMv8. 5722 */ 5723 .access = PL2_RW, .resetvalue = 3, 5724 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5725 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5726 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5727 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5728 .writefn = gt_cntvoff_write, 5729 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5730 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5731 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5732 .writefn = gt_cntvoff_write, 5733 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5734 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5735 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5736 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5737 .type = ARM_CP_IO, .access = PL2_RW, 5738 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5739 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5740 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5741 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5742 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5743 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5744 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5745 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5746 .resetfn = gt_hyp_timer_reset, 5747 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5748 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5749 .type = ARM_CP_IO, 5750 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5751 .access = PL2_RW, 5752 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5753 .resetvalue = 0, 5754 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5755 #endif 5756 /* The only field of MDCR_EL2 that has a defined architectural reset value 5757 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 5758 */ 5759 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5760 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5761 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, 5762 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5763 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5764 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5765 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5766 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5767 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5768 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5769 .access = PL2_RW, 5770 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5771 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5772 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5773 .access = PL2_RW, 5774 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5775 REGINFO_SENTINEL 5776 }; 5777 5778 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5779 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5780 .type = ARM_CP_ALIAS | ARM_CP_IO, 5781 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5782 .access = PL2_RW, 5783 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5784 .writefn = hcr_writehigh }, 5785 REGINFO_SENTINEL 5786 }; 5787 5788 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5789 bool isread) 5790 { 5791 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5792 return CP_ACCESS_OK; 5793 } 5794 return CP_ACCESS_TRAP_UNCATEGORIZED; 5795 } 5796 5797 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5798 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5799 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5800 .access = PL2_RW, .accessfn = sel2_access, 5801 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5802 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5803 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5804 .access = PL2_RW, .accessfn = sel2_access, 5805 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5806 REGINFO_SENTINEL 5807 }; 5808 5809 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5810 bool isread) 5811 { 5812 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5813 * At Secure EL1 it traps to EL3 or EL2. 5814 */ 5815 if (arm_current_el(env) == 3) { 5816 return CP_ACCESS_OK; 5817 } 5818 if (arm_is_secure_below_el3(env)) { 5819 if (env->cp15.scr_el3 & SCR_EEL2) { 5820 return CP_ACCESS_TRAP_EL2; 5821 } 5822 return CP_ACCESS_TRAP_EL3; 5823 } 5824 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5825 if (isread) { 5826 return CP_ACCESS_OK; 5827 } 5828 return CP_ACCESS_TRAP_UNCATEGORIZED; 5829 } 5830 5831 static const ARMCPRegInfo el3_cp_reginfo[] = { 5832 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5833 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5834 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5835 .resetfn = scr_reset, .writefn = scr_write }, 5836 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5837 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5838 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5839 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5840 .writefn = scr_write }, 5841 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5842 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5843 .access = PL3_RW, .resetvalue = 0, 5844 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5845 { .name = "SDER", 5846 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5847 .access = PL3_RW, .resetvalue = 0, 5848 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5849 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5850 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5851 .writefn = vbar_write, .resetvalue = 0, 5852 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5853 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5854 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5855 .access = PL3_RW, .resetvalue = 0, 5856 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5857 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5858 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5859 .access = PL3_RW, 5860 /* no .writefn needed as this can't cause an ASID change; 5861 * we must provide a .raw_writefn and .resetfn because we handle 5862 * reset and migration for the AArch32 TTBCR(S), which might be 5863 * using mask and base_mask. 5864 */ 5865 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5866 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5867 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5868 .type = ARM_CP_ALIAS, 5869 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5870 .access = PL3_RW, 5871 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5872 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5873 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5874 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5875 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5876 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5877 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5878 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5879 .type = ARM_CP_ALIAS, 5880 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5881 .access = PL3_RW, 5882 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5883 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5884 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5885 .access = PL3_RW, .writefn = vbar_write, 5886 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5887 .resetvalue = 0 }, 5888 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5889 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5890 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5891 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5892 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5893 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5894 .access = PL3_RW, .resetvalue = 0, 5895 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5896 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5897 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5898 .access = PL3_RW, .type = ARM_CP_CONST, 5899 .resetvalue = 0 }, 5900 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5901 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5902 .access = PL3_RW, .type = ARM_CP_CONST, 5903 .resetvalue = 0 }, 5904 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5905 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5906 .access = PL3_RW, .type = ARM_CP_CONST, 5907 .resetvalue = 0 }, 5908 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5909 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5910 .access = PL3_W, .type = ARM_CP_NO_RAW, 5911 .writefn = tlbi_aa64_alle3is_write }, 5912 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5913 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5914 .access = PL3_W, .type = ARM_CP_NO_RAW, 5915 .writefn = tlbi_aa64_vae3is_write }, 5916 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5917 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5918 .access = PL3_W, .type = ARM_CP_NO_RAW, 5919 .writefn = tlbi_aa64_vae3is_write }, 5920 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5921 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5922 .access = PL3_W, .type = ARM_CP_NO_RAW, 5923 .writefn = tlbi_aa64_alle3_write }, 5924 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5925 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5926 .access = PL3_W, .type = ARM_CP_NO_RAW, 5927 .writefn = tlbi_aa64_vae3_write }, 5928 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5929 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5930 .access = PL3_W, .type = ARM_CP_NO_RAW, 5931 .writefn = tlbi_aa64_vae3_write }, 5932 REGINFO_SENTINEL 5933 }; 5934 5935 #ifndef CONFIG_USER_ONLY 5936 /* Test if system register redirection is to occur in the current state. */ 5937 static bool redirect_for_e2h(CPUARMState *env) 5938 { 5939 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5940 } 5941 5942 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5943 { 5944 CPReadFn *readfn; 5945 5946 if (redirect_for_e2h(env)) { 5947 /* Switch to the saved EL2 version of the register. */ 5948 ri = ri->opaque; 5949 readfn = ri->readfn; 5950 } else { 5951 readfn = ri->orig_readfn; 5952 } 5953 if (readfn == NULL) { 5954 readfn = raw_read; 5955 } 5956 return readfn(env, ri); 5957 } 5958 5959 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5960 uint64_t value) 5961 { 5962 CPWriteFn *writefn; 5963 5964 if (redirect_for_e2h(env)) { 5965 /* Switch to the saved EL2 version of the register. */ 5966 ri = ri->opaque; 5967 writefn = ri->writefn; 5968 } else { 5969 writefn = ri->orig_writefn; 5970 } 5971 if (writefn == NULL) { 5972 writefn = raw_write; 5973 } 5974 writefn(env, ri, value); 5975 } 5976 5977 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5978 { 5979 struct E2HAlias { 5980 uint32_t src_key, dst_key, new_key; 5981 const char *src_name, *dst_name, *new_name; 5982 bool (*feature)(const ARMISARegisters *id); 5983 }; 5984 5985 #define K(op0, op1, crn, crm, op2) \ 5986 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5987 5988 static const struct E2HAlias aliases[] = { 5989 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5990 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5991 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5992 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5993 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5994 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5995 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5996 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5997 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5998 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5999 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6000 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6001 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6002 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6003 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6004 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6005 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6006 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6007 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6008 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6009 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6010 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6011 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6012 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6013 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6014 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6015 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6016 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6017 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6018 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6019 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6020 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6021 6022 /* 6023 * Note that redirection of ZCR is mentioned in the description 6024 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6025 * not in the summary table. 6026 */ 6027 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6028 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6029 6030 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6031 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6032 6033 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6034 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6035 }; 6036 #undef K 6037 6038 size_t i; 6039 6040 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6041 const struct E2HAlias *a = &aliases[i]; 6042 ARMCPRegInfo *src_reg, *dst_reg; 6043 6044 if (a->feature && !a->feature(&cpu->isar)) { 6045 continue; 6046 } 6047 6048 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 6049 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 6050 g_assert(src_reg != NULL); 6051 g_assert(dst_reg != NULL); 6052 6053 /* Cross-compare names to detect typos in the keys. */ 6054 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6055 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6056 6057 /* None of the core system registers use opaque; we will. */ 6058 g_assert(src_reg->opaque == NULL); 6059 6060 /* Create alias before redirection so we dup the right data. */ 6061 if (a->new_key) { 6062 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6063 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 6064 bool ok; 6065 6066 new_reg->name = a->new_name; 6067 new_reg->type |= ARM_CP_ALIAS; 6068 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6069 new_reg->access &= PL2_RW | PL3_RW; 6070 6071 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 6072 g_assert(ok); 6073 } 6074 6075 src_reg->opaque = dst_reg; 6076 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6077 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6078 if (!src_reg->raw_readfn) { 6079 src_reg->raw_readfn = raw_read; 6080 } 6081 if (!src_reg->raw_writefn) { 6082 src_reg->raw_writefn = raw_write; 6083 } 6084 src_reg->readfn = el2_e2h_read; 6085 src_reg->writefn = el2_e2h_write; 6086 } 6087 } 6088 #endif 6089 6090 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6091 bool isread) 6092 { 6093 int cur_el = arm_current_el(env); 6094 6095 if (cur_el < 2) { 6096 uint64_t hcr = arm_hcr_el2_eff(env); 6097 6098 if (cur_el == 0) { 6099 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6100 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6101 return CP_ACCESS_TRAP_EL2; 6102 } 6103 } else { 6104 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6105 return CP_ACCESS_TRAP; 6106 } 6107 if (hcr & HCR_TID2) { 6108 return CP_ACCESS_TRAP_EL2; 6109 } 6110 } 6111 } else if (hcr & HCR_TID2) { 6112 return CP_ACCESS_TRAP_EL2; 6113 } 6114 } 6115 6116 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6117 return CP_ACCESS_TRAP_EL2; 6118 } 6119 6120 return CP_ACCESS_OK; 6121 } 6122 6123 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6124 uint64_t value) 6125 { 6126 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6127 * read via a bit in OSLSR_EL1. 6128 */ 6129 int oslock; 6130 6131 if (ri->state == ARM_CP_STATE_AA32) { 6132 oslock = (value == 0xC5ACCE55); 6133 } else { 6134 oslock = value & 1; 6135 } 6136 6137 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6138 } 6139 6140 static const ARMCPRegInfo debug_cp_reginfo[] = { 6141 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6142 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6143 * unlike DBGDRAR it is never accessible from EL0. 6144 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6145 * accessor. 6146 */ 6147 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6148 .access = PL0_R, .accessfn = access_tdra, 6149 .type = ARM_CP_CONST, .resetvalue = 0 }, 6150 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6151 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6152 .access = PL1_R, .accessfn = access_tdra, 6153 .type = ARM_CP_CONST, .resetvalue = 0 }, 6154 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6155 .access = PL0_R, .accessfn = access_tdra, 6156 .type = ARM_CP_CONST, .resetvalue = 0 }, 6157 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6158 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6159 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6160 .access = PL1_RW, .accessfn = access_tda, 6161 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6162 .resetvalue = 0 }, 6163 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 6164 * We don't implement the configurable EL0 access. 6165 */ 6166 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 6167 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6168 .type = ARM_CP_ALIAS, 6169 .access = PL1_R, .accessfn = access_tda, 6170 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6171 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6172 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6173 .access = PL1_W, .type = ARM_CP_NO_RAW, 6174 .accessfn = access_tdosa, 6175 .writefn = oslar_write }, 6176 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6177 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6178 .access = PL1_R, .resetvalue = 10, 6179 .accessfn = access_tdosa, 6180 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6181 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6182 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6183 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6184 .access = PL1_RW, .accessfn = access_tdosa, 6185 .type = ARM_CP_NOP }, 6186 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6187 * implement vector catch debug events yet. 6188 */ 6189 { .name = "DBGVCR", 6190 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6191 .access = PL1_RW, .accessfn = access_tda, 6192 .type = ARM_CP_NOP }, 6193 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6194 * to save and restore a 32-bit guest's DBGVCR) 6195 */ 6196 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6197 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6198 .access = PL2_RW, .accessfn = access_tda, 6199 .type = ARM_CP_NOP }, 6200 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6201 * Channel but Linux may try to access this register. The 32-bit 6202 * alias is DBGDCCINT. 6203 */ 6204 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6205 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6206 .access = PL1_RW, .accessfn = access_tda, 6207 .type = ARM_CP_NOP }, 6208 REGINFO_SENTINEL 6209 }; 6210 6211 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6212 /* 64 bit access versions of the (dummy) debug registers */ 6213 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6214 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6215 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6216 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6217 REGINFO_SENTINEL 6218 }; 6219 6220 /* Return the exception level to which exceptions should be taken 6221 * via SVEAccessTrap. If an exception should be routed through 6222 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6223 * take care of raising that exception. 6224 * C.f. the ARM pseudocode function CheckSVEEnabled. 6225 */ 6226 int sve_exception_el(CPUARMState *env, int el) 6227 { 6228 #ifndef CONFIG_USER_ONLY 6229 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6230 6231 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6232 bool disabled = false; 6233 6234 /* The CPACR.ZEN controls traps to EL1: 6235 * 0, 2 : trap EL0 and EL1 accesses 6236 * 1 : trap only EL0 accesses 6237 * 3 : trap no accesses 6238 */ 6239 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 6240 disabled = true; 6241 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 6242 disabled = el == 0; 6243 } 6244 if (disabled) { 6245 /* route_to_el2 */ 6246 return hcr_el2 & HCR_TGE ? 2 : 1; 6247 } 6248 6249 /* Check CPACR.FPEN. */ 6250 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 6251 disabled = true; 6252 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 6253 disabled = el == 0; 6254 } 6255 if (disabled) { 6256 return 0; 6257 } 6258 } 6259 6260 /* CPTR_EL2. Since TZ and TFP are positive, 6261 * they will be zero when EL2 is not present. 6262 */ 6263 if (el <= 2 && arm_is_el2_enabled(env)) { 6264 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6265 return 2; 6266 } 6267 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6268 return 0; 6269 } 6270 } 6271 6272 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6273 if (arm_feature(env, ARM_FEATURE_EL3) 6274 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6275 return 3; 6276 } 6277 #endif 6278 return 0; 6279 } 6280 6281 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6282 { 6283 uint32_t end_len; 6284 6285 end_len = start_len &= 0xf; 6286 if (!test_bit(start_len, cpu->sve_vq_map)) { 6287 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6288 assert(end_len < start_len); 6289 } 6290 return end_len; 6291 } 6292 6293 /* 6294 * Given that SVE is enabled, return the vector length for EL. 6295 */ 6296 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6297 { 6298 ARMCPU *cpu = env_archcpu(env); 6299 uint32_t zcr_len = cpu->sve_max_vq - 1; 6300 6301 if (el <= 1) { 6302 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6303 } 6304 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6305 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6306 } 6307 if (arm_feature(env, ARM_FEATURE_EL3)) { 6308 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6309 } 6310 6311 return sve_zcr_get_valid_len(cpu, zcr_len); 6312 } 6313 6314 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6315 uint64_t value) 6316 { 6317 int cur_el = arm_current_el(env); 6318 int old_len = sve_zcr_len_for_el(env, cur_el); 6319 int new_len; 6320 6321 /* Bits other than [3:0] are RAZ/WI. */ 6322 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6323 raw_write(env, ri, value & 0xf); 6324 6325 /* 6326 * Because we arrived here, we know both FP and SVE are enabled; 6327 * otherwise we would have trapped access to the ZCR_ELn register. 6328 */ 6329 new_len = sve_zcr_len_for_el(env, cur_el); 6330 if (new_len < old_len) { 6331 aarch64_sve_narrow_vq(env, new_len + 1); 6332 } 6333 } 6334 6335 static const ARMCPRegInfo zcr_el1_reginfo = { 6336 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6337 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6338 .access = PL1_RW, .type = ARM_CP_SVE, 6339 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6340 .writefn = zcr_write, .raw_writefn = raw_write 6341 }; 6342 6343 static const ARMCPRegInfo zcr_el2_reginfo = { 6344 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6345 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6346 .access = PL2_RW, .type = ARM_CP_SVE, 6347 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6348 .writefn = zcr_write, .raw_writefn = raw_write 6349 }; 6350 6351 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6352 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6353 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6354 .access = PL2_RW, .type = ARM_CP_SVE, 6355 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6356 }; 6357 6358 static const ARMCPRegInfo zcr_el3_reginfo = { 6359 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6360 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6361 .access = PL3_RW, .type = ARM_CP_SVE, 6362 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6363 .writefn = zcr_write, .raw_writefn = raw_write 6364 }; 6365 6366 void hw_watchpoint_update(ARMCPU *cpu, int n) 6367 { 6368 CPUARMState *env = &cpu->env; 6369 vaddr len = 0; 6370 vaddr wvr = env->cp15.dbgwvr[n]; 6371 uint64_t wcr = env->cp15.dbgwcr[n]; 6372 int mask; 6373 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6374 6375 if (env->cpu_watchpoint[n]) { 6376 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6377 env->cpu_watchpoint[n] = NULL; 6378 } 6379 6380 if (!extract64(wcr, 0, 1)) { 6381 /* E bit clear : watchpoint disabled */ 6382 return; 6383 } 6384 6385 switch (extract64(wcr, 3, 2)) { 6386 case 0: 6387 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6388 return; 6389 case 1: 6390 flags |= BP_MEM_READ; 6391 break; 6392 case 2: 6393 flags |= BP_MEM_WRITE; 6394 break; 6395 case 3: 6396 flags |= BP_MEM_ACCESS; 6397 break; 6398 } 6399 6400 /* Attempts to use both MASK and BAS fields simultaneously are 6401 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6402 * thus generating a watchpoint for every byte in the masked region. 6403 */ 6404 mask = extract64(wcr, 24, 4); 6405 if (mask == 1 || mask == 2) { 6406 /* Reserved values of MASK; we must act as if the mask value was 6407 * some non-reserved value, or as if the watchpoint were disabled. 6408 * We choose the latter. 6409 */ 6410 return; 6411 } else if (mask) { 6412 /* Watchpoint covers an aligned area up to 2GB in size */ 6413 len = 1ULL << mask; 6414 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6415 * whether the watchpoint fires when the unmasked bits match; we opt 6416 * to generate the exceptions. 6417 */ 6418 wvr &= ~(len - 1); 6419 } else { 6420 /* Watchpoint covers bytes defined by the byte address select bits */ 6421 int bas = extract64(wcr, 5, 8); 6422 int basstart; 6423 6424 if (extract64(wvr, 2, 1)) { 6425 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6426 * ignored, and BAS[3:0] define which bytes to watch. 6427 */ 6428 bas &= 0xf; 6429 } 6430 6431 if (bas == 0) { 6432 /* This must act as if the watchpoint is disabled */ 6433 return; 6434 } 6435 6436 /* The BAS bits are supposed to be programmed to indicate a contiguous 6437 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6438 * we fire for each byte in the word/doubleword addressed by the WVR. 6439 * We choose to ignore any non-zero bits after the first range of 1s. 6440 */ 6441 basstart = ctz32(bas); 6442 len = cto32(bas >> basstart); 6443 wvr += basstart; 6444 } 6445 6446 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6447 &env->cpu_watchpoint[n]); 6448 } 6449 6450 void hw_watchpoint_update_all(ARMCPU *cpu) 6451 { 6452 int i; 6453 CPUARMState *env = &cpu->env; 6454 6455 /* Completely clear out existing QEMU watchpoints and our array, to 6456 * avoid possible stale entries following migration load. 6457 */ 6458 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6459 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6460 6461 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6462 hw_watchpoint_update(cpu, i); 6463 } 6464 } 6465 6466 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6467 uint64_t value) 6468 { 6469 ARMCPU *cpu = env_archcpu(env); 6470 int i = ri->crm; 6471 6472 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6473 * register reads and behaves as if values written are sign extended. 6474 * Bits [1:0] are RES0. 6475 */ 6476 value = sextract64(value, 0, 49) & ~3ULL; 6477 6478 raw_write(env, ri, value); 6479 hw_watchpoint_update(cpu, i); 6480 } 6481 6482 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6483 uint64_t value) 6484 { 6485 ARMCPU *cpu = env_archcpu(env); 6486 int i = ri->crm; 6487 6488 raw_write(env, ri, value); 6489 hw_watchpoint_update(cpu, i); 6490 } 6491 6492 void hw_breakpoint_update(ARMCPU *cpu, int n) 6493 { 6494 CPUARMState *env = &cpu->env; 6495 uint64_t bvr = env->cp15.dbgbvr[n]; 6496 uint64_t bcr = env->cp15.dbgbcr[n]; 6497 vaddr addr; 6498 int bt; 6499 int flags = BP_CPU; 6500 6501 if (env->cpu_breakpoint[n]) { 6502 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6503 env->cpu_breakpoint[n] = NULL; 6504 } 6505 6506 if (!extract64(bcr, 0, 1)) { 6507 /* E bit clear : watchpoint disabled */ 6508 return; 6509 } 6510 6511 bt = extract64(bcr, 20, 4); 6512 6513 switch (bt) { 6514 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6515 case 5: /* linked address mismatch (reserved if AArch64) */ 6516 qemu_log_mask(LOG_UNIMP, 6517 "arm: address mismatch breakpoint types not implemented\n"); 6518 return; 6519 case 0: /* unlinked address match */ 6520 case 1: /* linked address match */ 6521 { 6522 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6523 * we behave as if the register was sign extended. Bits [1:0] are 6524 * RES0. The BAS field is used to allow setting breakpoints on 16 6525 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6526 * a bp will fire if the addresses covered by the bp and the addresses 6527 * covered by the insn overlap but the insn doesn't start at the 6528 * start of the bp address range. We choose to require the insn and 6529 * the bp to have the same address. The constraints on writing to 6530 * BAS enforced in dbgbcr_write mean we have only four cases: 6531 * 0b0000 => no breakpoint 6532 * 0b0011 => breakpoint on addr 6533 * 0b1100 => breakpoint on addr + 2 6534 * 0b1111 => breakpoint on addr 6535 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6536 */ 6537 int bas = extract64(bcr, 5, 4); 6538 addr = sextract64(bvr, 0, 49) & ~3ULL; 6539 if (bas == 0) { 6540 return; 6541 } 6542 if (bas == 0xc) { 6543 addr += 2; 6544 } 6545 break; 6546 } 6547 case 2: /* unlinked context ID match */ 6548 case 8: /* unlinked VMID match (reserved if no EL2) */ 6549 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6550 qemu_log_mask(LOG_UNIMP, 6551 "arm: unlinked context breakpoint types not implemented\n"); 6552 return; 6553 case 9: /* linked VMID match (reserved if no EL2) */ 6554 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6555 case 3: /* linked context ID match */ 6556 default: 6557 /* We must generate no events for Linked context matches (unless 6558 * they are linked to by some other bp/wp, which is handled in 6559 * updates for the linking bp/wp). We choose to also generate no events 6560 * for reserved values. 6561 */ 6562 return; 6563 } 6564 6565 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6566 } 6567 6568 void hw_breakpoint_update_all(ARMCPU *cpu) 6569 { 6570 int i; 6571 CPUARMState *env = &cpu->env; 6572 6573 /* Completely clear out existing QEMU breakpoints and our array, to 6574 * avoid possible stale entries following migration load. 6575 */ 6576 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6577 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6578 6579 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6580 hw_breakpoint_update(cpu, i); 6581 } 6582 } 6583 6584 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6585 uint64_t value) 6586 { 6587 ARMCPU *cpu = env_archcpu(env); 6588 int i = ri->crm; 6589 6590 raw_write(env, ri, value); 6591 hw_breakpoint_update(cpu, i); 6592 } 6593 6594 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6595 uint64_t value) 6596 { 6597 ARMCPU *cpu = env_archcpu(env); 6598 int i = ri->crm; 6599 6600 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6601 * copy of BAS[0]. 6602 */ 6603 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6604 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6605 6606 raw_write(env, ri, value); 6607 hw_breakpoint_update(cpu, i); 6608 } 6609 6610 static void define_debug_regs(ARMCPU *cpu) 6611 { 6612 /* Define v7 and v8 architectural debug registers. 6613 * These are just dummy implementations for now. 6614 */ 6615 int i; 6616 int wrps, brps, ctx_cmps; 6617 6618 /* 6619 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6620 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6621 * the register must not exist for this cpu. 6622 */ 6623 if (cpu->isar.dbgdidr != 0) { 6624 ARMCPRegInfo dbgdidr = { 6625 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6626 .opc1 = 0, .opc2 = 0, 6627 .access = PL0_R, .accessfn = access_tda, 6628 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6629 }; 6630 define_one_arm_cp_reg(cpu, &dbgdidr); 6631 } 6632 6633 /* Note that all these register fields hold "number of Xs minus 1". */ 6634 brps = arm_num_brps(cpu); 6635 wrps = arm_num_wrps(cpu); 6636 ctx_cmps = arm_num_ctx_cmps(cpu); 6637 6638 assert(ctx_cmps <= brps); 6639 6640 define_arm_cp_regs(cpu, debug_cp_reginfo); 6641 6642 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6643 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6644 } 6645 6646 for (i = 0; i < brps; i++) { 6647 ARMCPRegInfo dbgregs[] = { 6648 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6649 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6650 .access = PL1_RW, .accessfn = access_tda, 6651 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6652 .writefn = dbgbvr_write, .raw_writefn = raw_write 6653 }, 6654 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6655 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6656 .access = PL1_RW, .accessfn = access_tda, 6657 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6658 .writefn = dbgbcr_write, .raw_writefn = raw_write 6659 }, 6660 REGINFO_SENTINEL 6661 }; 6662 define_arm_cp_regs(cpu, dbgregs); 6663 } 6664 6665 for (i = 0; i < wrps; i++) { 6666 ARMCPRegInfo dbgregs[] = { 6667 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6668 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6669 .access = PL1_RW, .accessfn = access_tda, 6670 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6671 .writefn = dbgwvr_write, .raw_writefn = raw_write 6672 }, 6673 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6674 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6675 .access = PL1_RW, .accessfn = access_tda, 6676 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6677 .writefn = dbgwcr_write, .raw_writefn = raw_write 6678 }, 6679 REGINFO_SENTINEL 6680 }; 6681 define_arm_cp_regs(cpu, dbgregs); 6682 } 6683 } 6684 6685 static void define_pmu_regs(ARMCPU *cpu) 6686 { 6687 /* 6688 * v7 performance monitor control register: same implementor 6689 * field as main ID register, and we implement four counters in 6690 * addition to the cycle count register. 6691 */ 6692 unsigned int i, pmcrn = PMCR_NUM_COUNTERS; 6693 ARMCPRegInfo pmcr = { 6694 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6695 .access = PL0_RW, 6696 .type = ARM_CP_IO | ARM_CP_ALIAS, 6697 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6698 .accessfn = pmreg_access, .writefn = pmcr_write, 6699 .raw_writefn = raw_write, 6700 }; 6701 ARMCPRegInfo pmcr64 = { 6702 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6703 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6704 .access = PL0_RW, .accessfn = pmreg_access, 6705 .type = ARM_CP_IO, 6706 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6707 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6708 PMCRLC, 6709 .writefn = pmcr_write, .raw_writefn = raw_write, 6710 }; 6711 define_one_arm_cp_reg(cpu, &pmcr); 6712 define_one_arm_cp_reg(cpu, &pmcr64); 6713 for (i = 0; i < pmcrn; i++) { 6714 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6715 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6716 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6717 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6718 ARMCPRegInfo pmev_regs[] = { 6719 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6720 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6721 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6722 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6723 .accessfn = pmreg_access }, 6724 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6725 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6726 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6727 .type = ARM_CP_IO, 6728 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6729 .raw_readfn = pmevcntr_rawread, 6730 .raw_writefn = pmevcntr_rawwrite }, 6731 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6732 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6733 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6734 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6735 .accessfn = pmreg_access }, 6736 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6737 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6738 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6739 .type = ARM_CP_IO, 6740 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6741 .raw_writefn = pmevtyper_rawwrite }, 6742 REGINFO_SENTINEL 6743 }; 6744 define_arm_cp_regs(cpu, pmev_regs); 6745 g_free(pmevcntr_name); 6746 g_free(pmevcntr_el0_name); 6747 g_free(pmevtyper_name); 6748 g_free(pmevtyper_el0_name); 6749 } 6750 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6751 ARMCPRegInfo v81_pmu_regs[] = { 6752 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6753 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6754 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6755 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6756 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6757 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6758 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6759 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6760 REGINFO_SENTINEL 6761 }; 6762 define_arm_cp_regs(cpu, v81_pmu_regs); 6763 } 6764 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6765 static const ARMCPRegInfo v84_pmmir = { 6766 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6767 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6768 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6769 .resetvalue = 0 6770 }; 6771 define_one_arm_cp_reg(cpu, &v84_pmmir); 6772 } 6773 } 6774 6775 /* We don't know until after realize whether there's a GICv3 6776 * attached, and that is what registers the gicv3 sysregs. 6777 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6778 * at runtime. 6779 */ 6780 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6781 { 6782 ARMCPU *cpu = env_archcpu(env); 6783 uint64_t pfr1 = cpu->isar.id_pfr1; 6784 6785 if (env->gicv3state) { 6786 pfr1 |= 1 << 28; 6787 } 6788 return pfr1; 6789 } 6790 6791 #ifndef CONFIG_USER_ONLY 6792 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6793 { 6794 ARMCPU *cpu = env_archcpu(env); 6795 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6796 6797 if (env->gicv3state) { 6798 pfr0 |= 1 << 24; 6799 } 6800 return pfr0; 6801 } 6802 #endif 6803 6804 /* Shared logic between LORID and the rest of the LOR* registers. 6805 * Secure state exclusion has already been dealt with. 6806 */ 6807 static CPAccessResult access_lor_ns(CPUARMState *env, 6808 const ARMCPRegInfo *ri, bool isread) 6809 { 6810 int el = arm_current_el(env); 6811 6812 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6813 return CP_ACCESS_TRAP_EL2; 6814 } 6815 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6816 return CP_ACCESS_TRAP_EL3; 6817 } 6818 return CP_ACCESS_OK; 6819 } 6820 6821 static CPAccessResult access_lor_other(CPUARMState *env, 6822 const ARMCPRegInfo *ri, bool isread) 6823 { 6824 if (arm_is_secure_below_el3(env)) { 6825 /* Access denied in secure mode. */ 6826 return CP_ACCESS_TRAP; 6827 } 6828 return access_lor_ns(env, ri, isread); 6829 } 6830 6831 /* 6832 * A trivial implementation of ARMv8.1-LOR leaves all of these 6833 * registers fixed at 0, which indicates that there are zero 6834 * supported Limited Ordering regions. 6835 */ 6836 static const ARMCPRegInfo lor_reginfo[] = { 6837 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6838 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6839 .access = PL1_RW, .accessfn = access_lor_other, 6840 .type = ARM_CP_CONST, .resetvalue = 0 }, 6841 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6842 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6843 .access = PL1_RW, .accessfn = access_lor_other, 6844 .type = ARM_CP_CONST, .resetvalue = 0 }, 6845 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6846 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6847 .access = PL1_RW, .accessfn = access_lor_other, 6848 .type = ARM_CP_CONST, .resetvalue = 0 }, 6849 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6850 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6851 .access = PL1_RW, .accessfn = access_lor_other, 6852 .type = ARM_CP_CONST, .resetvalue = 0 }, 6853 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6854 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6855 .access = PL1_R, .accessfn = access_lor_ns, 6856 .type = ARM_CP_CONST, .resetvalue = 0 }, 6857 REGINFO_SENTINEL 6858 }; 6859 6860 #ifdef TARGET_AARCH64 6861 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6862 bool isread) 6863 { 6864 int el = arm_current_el(env); 6865 6866 if (el < 2 && 6867 arm_feature(env, ARM_FEATURE_EL2) && 6868 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6869 return CP_ACCESS_TRAP_EL2; 6870 } 6871 if (el < 3 && 6872 arm_feature(env, ARM_FEATURE_EL3) && 6873 !(env->cp15.scr_el3 & SCR_APK)) { 6874 return CP_ACCESS_TRAP_EL3; 6875 } 6876 return CP_ACCESS_OK; 6877 } 6878 6879 static const ARMCPRegInfo pauth_reginfo[] = { 6880 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6881 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6882 .access = PL1_RW, .accessfn = access_pauth, 6883 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6884 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6885 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6886 .access = PL1_RW, .accessfn = access_pauth, 6887 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6888 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6889 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6890 .access = PL1_RW, .accessfn = access_pauth, 6891 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6892 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6893 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6894 .access = PL1_RW, .accessfn = access_pauth, 6895 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6896 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6897 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6898 .access = PL1_RW, .accessfn = access_pauth, 6899 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6900 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6901 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6902 .access = PL1_RW, .accessfn = access_pauth, 6903 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6904 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6905 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6906 .access = PL1_RW, .accessfn = access_pauth, 6907 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6908 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6909 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6910 .access = PL1_RW, .accessfn = access_pauth, 6911 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6912 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6913 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6914 .access = PL1_RW, .accessfn = access_pauth, 6915 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6916 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6917 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6918 .access = PL1_RW, .accessfn = access_pauth, 6919 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6920 REGINFO_SENTINEL 6921 }; 6922 6923 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6924 { 6925 Error *err = NULL; 6926 uint64_t ret; 6927 6928 /* Success sets NZCV = 0000. */ 6929 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6930 6931 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6932 /* 6933 * ??? Failed, for unknown reasons in the crypto subsystem. 6934 * The best we can do is log the reason and return the 6935 * timed-out indication to the guest. There is no reason 6936 * we know to expect this failure to be transitory, so the 6937 * guest may well hang retrying the operation. 6938 */ 6939 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6940 ri->name, error_get_pretty(err)); 6941 error_free(err); 6942 6943 env->ZF = 0; /* NZCF = 0100 */ 6944 return 0; 6945 } 6946 return ret; 6947 } 6948 6949 /* We do not support re-seeding, so the two registers operate the same. */ 6950 static const ARMCPRegInfo rndr_reginfo[] = { 6951 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6952 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6953 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6954 .access = PL0_R, .readfn = rndr_readfn }, 6955 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6956 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6957 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6958 .access = PL0_R, .readfn = rndr_readfn }, 6959 REGINFO_SENTINEL 6960 }; 6961 6962 #ifndef CONFIG_USER_ONLY 6963 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6964 uint64_t value) 6965 { 6966 ARMCPU *cpu = env_archcpu(env); 6967 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6968 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6969 uint64_t vaddr_in = (uint64_t) value; 6970 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6971 void *haddr; 6972 int mem_idx = cpu_mmu_index(env, false); 6973 6974 /* This won't be crossing page boundaries */ 6975 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6976 if (haddr) { 6977 6978 ram_addr_t offset; 6979 MemoryRegion *mr; 6980 6981 /* RCU lock is already being held */ 6982 mr = memory_region_from_host(haddr, &offset); 6983 6984 if (mr) { 6985 memory_region_writeback(mr, offset, dline_size); 6986 } 6987 } 6988 } 6989 6990 static const ARMCPRegInfo dcpop_reg[] = { 6991 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6992 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6993 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6994 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6995 REGINFO_SENTINEL 6996 }; 6997 6998 static const ARMCPRegInfo dcpodp_reg[] = { 6999 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7000 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7001 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7002 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7003 REGINFO_SENTINEL 7004 }; 7005 #endif /*CONFIG_USER_ONLY*/ 7006 7007 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7008 bool isread) 7009 { 7010 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7011 return CP_ACCESS_TRAP_EL2; 7012 } 7013 7014 return CP_ACCESS_OK; 7015 } 7016 7017 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7018 bool isread) 7019 { 7020 int el = arm_current_el(env); 7021 7022 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 7023 uint64_t hcr = arm_hcr_el2_eff(env); 7024 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7025 return CP_ACCESS_TRAP_EL2; 7026 } 7027 } 7028 if (el < 3 && 7029 arm_feature(env, ARM_FEATURE_EL3) && 7030 !(env->cp15.scr_el3 & SCR_ATA)) { 7031 return CP_ACCESS_TRAP_EL3; 7032 } 7033 return CP_ACCESS_OK; 7034 } 7035 7036 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7037 { 7038 return env->pstate & PSTATE_TCO; 7039 } 7040 7041 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7042 { 7043 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7044 } 7045 7046 static const ARMCPRegInfo mte_reginfo[] = { 7047 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7048 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7049 .access = PL1_RW, .accessfn = access_mte, 7050 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7051 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7052 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7053 .access = PL1_RW, .accessfn = access_mte, 7054 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7055 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7056 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7057 .access = PL2_RW, .accessfn = access_mte, 7058 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7059 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7060 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7061 .access = PL3_RW, 7062 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7063 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7064 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7065 .access = PL1_RW, .accessfn = access_mte, 7066 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7067 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7068 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7069 .access = PL1_RW, .accessfn = access_mte, 7070 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7071 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7072 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7073 .access = PL1_R, .accessfn = access_aa64_tid5, 7074 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7075 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7076 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7077 .type = ARM_CP_NO_RAW, 7078 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7079 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7080 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7081 .type = ARM_CP_NOP, .access = PL1_W, 7082 .accessfn = aa64_cacheop_poc_access }, 7083 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7084 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7085 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7086 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7087 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7088 .type = ARM_CP_NOP, .access = PL1_W, 7089 .accessfn = aa64_cacheop_poc_access }, 7090 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7091 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7092 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7093 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7094 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7095 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7096 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7097 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7098 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7099 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7100 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7101 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7102 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7103 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7104 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7105 REGINFO_SENTINEL 7106 }; 7107 7108 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7109 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7110 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7111 .type = ARM_CP_CONST, .access = PL0_RW, }, 7112 REGINFO_SENTINEL 7113 }; 7114 7115 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7116 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7117 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7118 .type = ARM_CP_NOP, .access = PL0_W, 7119 .accessfn = aa64_cacheop_poc_access }, 7120 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7121 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7122 .type = ARM_CP_NOP, .access = PL0_W, 7123 .accessfn = aa64_cacheop_poc_access }, 7124 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7125 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7126 .type = ARM_CP_NOP, .access = PL0_W, 7127 .accessfn = aa64_cacheop_poc_access }, 7128 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7129 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7130 .type = ARM_CP_NOP, .access = PL0_W, 7131 .accessfn = aa64_cacheop_poc_access }, 7132 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7133 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7134 .type = ARM_CP_NOP, .access = PL0_W, 7135 .accessfn = aa64_cacheop_poc_access }, 7136 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7137 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7138 .type = ARM_CP_NOP, .access = PL0_W, 7139 .accessfn = aa64_cacheop_poc_access }, 7140 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7141 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7142 .type = ARM_CP_NOP, .access = PL0_W, 7143 .accessfn = aa64_cacheop_poc_access }, 7144 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7145 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7146 .type = ARM_CP_NOP, .access = PL0_W, 7147 .accessfn = aa64_cacheop_poc_access }, 7148 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7149 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7150 .access = PL0_W, .type = ARM_CP_DC_GVA, 7151 #ifndef CONFIG_USER_ONLY 7152 /* Avoid overhead of an access check that always passes in user-mode */ 7153 .accessfn = aa64_zva_access, 7154 #endif 7155 }, 7156 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7157 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7158 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7159 #ifndef CONFIG_USER_ONLY 7160 /* Avoid overhead of an access check that always passes in user-mode */ 7161 .accessfn = aa64_zva_access, 7162 #endif 7163 }, 7164 REGINFO_SENTINEL 7165 }; 7166 7167 #endif 7168 7169 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7170 bool isread) 7171 { 7172 int el = arm_current_el(env); 7173 7174 if (el == 0) { 7175 uint64_t sctlr = arm_sctlr(env, el); 7176 if (!(sctlr & SCTLR_EnRCTX)) { 7177 return CP_ACCESS_TRAP; 7178 } 7179 } else if (el == 1) { 7180 uint64_t hcr = arm_hcr_el2_eff(env); 7181 if (hcr & HCR_NV) { 7182 return CP_ACCESS_TRAP_EL2; 7183 } 7184 } 7185 return CP_ACCESS_OK; 7186 } 7187 7188 static const ARMCPRegInfo predinv_reginfo[] = { 7189 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7190 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7191 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7192 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7193 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7194 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7195 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7196 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7197 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7198 /* 7199 * Note the AArch32 opcodes have a different OPC1. 7200 */ 7201 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7202 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7203 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7204 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7205 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7206 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7207 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7208 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7209 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7210 REGINFO_SENTINEL 7211 }; 7212 7213 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7214 { 7215 /* Read the high 32 bits of the current CCSIDR */ 7216 return extract64(ccsidr_read(env, ri), 32, 32); 7217 } 7218 7219 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7220 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7221 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7222 .access = PL1_R, 7223 .accessfn = access_aa64_tid2, 7224 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7225 REGINFO_SENTINEL 7226 }; 7227 7228 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7229 bool isread) 7230 { 7231 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7232 return CP_ACCESS_TRAP_EL2; 7233 } 7234 7235 return CP_ACCESS_OK; 7236 } 7237 7238 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7239 bool isread) 7240 { 7241 if (arm_feature(env, ARM_FEATURE_V8)) { 7242 return access_aa64_tid3(env, ri, isread); 7243 } 7244 7245 return CP_ACCESS_OK; 7246 } 7247 7248 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7249 bool isread) 7250 { 7251 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7252 return CP_ACCESS_TRAP_EL2; 7253 } 7254 7255 return CP_ACCESS_OK; 7256 } 7257 7258 static const ARMCPRegInfo jazelle_regs[] = { 7259 { .name = "JIDR", 7260 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7261 .access = PL1_R, .accessfn = access_jazelle, 7262 .type = ARM_CP_CONST, .resetvalue = 0 }, 7263 { .name = "JOSCR", 7264 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7265 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7266 { .name = "JMCR", 7267 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7268 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7269 REGINFO_SENTINEL 7270 }; 7271 7272 static const ARMCPRegInfo vhe_reginfo[] = { 7273 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7274 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7275 .access = PL2_RW, 7276 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7277 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7278 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7279 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7280 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7281 #ifndef CONFIG_USER_ONLY 7282 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7283 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7284 .fieldoffset = 7285 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7286 .type = ARM_CP_IO, .access = PL2_RW, 7287 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7288 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7289 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7290 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7291 .resetfn = gt_hv_timer_reset, 7292 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7293 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7294 .type = ARM_CP_IO, 7295 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7296 .access = PL2_RW, 7297 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7298 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7299 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7300 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7301 .type = ARM_CP_IO | ARM_CP_ALIAS, 7302 .access = PL2_RW, .accessfn = e2h_access, 7303 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7304 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7305 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7306 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7307 .type = ARM_CP_IO | ARM_CP_ALIAS, 7308 .access = PL2_RW, .accessfn = e2h_access, 7309 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7310 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7311 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7312 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7313 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7314 .access = PL2_RW, .accessfn = e2h_access, 7315 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7316 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7317 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7318 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7319 .access = PL2_RW, .accessfn = e2h_access, 7320 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7321 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7322 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7323 .type = ARM_CP_IO | ARM_CP_ALIAS, 7324 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7325 .access = PL2_RW, .accessfn = e2h_access, 7326 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7327 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7328 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7329 .type = ARM_CP_IO | ARM_CP_ALIAS, 7330 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7331 .access = PL2_RW, .accessfn = e2h_access, 7332 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7333 #endif 7334 REGINFO_SENTINEL 7335 }; 7336 7337 #ifndef CONFIG_USER_ONLY 7338 static const ARMCPRegInfo ats1e1_reginfo[] = { 7339 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7340 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7341 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7342 .writefn = ats_write64 }, 7343 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7344 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7345 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7346 .writefn = ats_write64 }, 7347 REGINFO_SENTINEL 7348 }; 7349 7350 static const ARMCPRegInfo ats1cp_reginfo[] = { 7351 { .name = "ATS1CPRP", 7352 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7353 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7354 .writefn = ats_write }, 7355 { .name = "ATS1CPWP", 7356 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7357 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7358 .writefn = ats_write }, 7359 REGINFO_SENTINEL 7360 }; 7361 #endif 7362 7363 /* 7364 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7365 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7366 * is non-zero, which is never for ARMv7, optionally in ARMv8 7367 * and mandatorily for ARMv8.2 and up. 7368 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7369 * implementation is RAZ/WI we can ignore this detail, as we 7370 * do for ACTLR. 7371 */ 7372 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7373 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7374 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7375 .access = PL1_RW, .accessfn = access_tacr, 7376 .type = ARM_CP_CONST, .resetvalue = 0 }, 7377 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7378 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7379 .access = PL2_RW, .type = ARM_CP_CONST, 7380 .resetvalue = 0 }, 7381 REGINFO_SENTINEL 7382 }; 7383 7384 void register_cp_regs_for_features(ARMCPU *cpu) 7385 { 7386 /* Register all the coprocessor registers based on feature bits */ 7387 CPUARMState *env = &cpu->env; 7388 if (arm_feature(env, ARM_FEATURE_M)) { 7389 /* M profile has no coprocessor registers */ 7390 return; 7391 } 7392 7393 define_arm_cp_regs(cpu, cp_reginfo); 7394 if (!arm_feature(env, ARM_FEATURE_V8)) { 7395 /* Must go early as it is full of wildcards that may be 7396 * overridden by later definitions. 7397 */ 7398 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7399 } 7400 7401 if (arm_feature(env, ARM_FEATURE_V6)) { 7402 /* The ID registers all have impdef reset values */ 7403 ARMCPRegInfo v6_idregs[] = { 7404 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7405 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7406 .access = PL1_R, .type = ARM_CP_CONST, 7407 .accessfn = access_aa32_tid3, 7408 .resetvalue = cpu->isar.id_pfr0 }, 7409 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7410 * the value of the GIC field until after we define these regs. 7411 */ 7412 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7413 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7414 .access = PL1_R, .type = ARM_CP_NO_RAW, 7415 .accessfn = access_aa32_tid3, 7416 .readfn = id_pfr1_read, 7417 .writefn = arm_cp_write_ignore }, 7418 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7419 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7420 .access = PL1_R, .type = ARM_CP_CONST, 7421 .accessfn = access_aa32_tid3, 7422 .resetvalue = cpu->isar.id_dfr0 }, 7423 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7424 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7425 .access = PL1_R, .type = ARM_CP_CONST, 7426 .accessfn = access_aa32_tid3, 7427 .resetvalue = cpu->id_afr0 }, 7428 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7429 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7430 .access = PL1_R, .type = ARM_CP_CONST, 7431 .accessfn = access_aa32_tid3, 7432 .resetvalue = cpu->isar.id_mmfr0 }, 7433 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7434 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7435 .access = PL1_R, .type = ARM_CP_CONST, 7436 .accessfn = access_aa32_tid3, 7437 .resetvalue = cpu->isar.id_mmfr1 }, 7438 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7439 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7440 .access = PL1_R, .type = ARM_CP_CONST, 7441 .accessfn = access_aa32_tid3, 7442 .resetvalue = cpu->isar.id_mmfr2 }, 7443 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7444 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7445 .access = PL1_R, .type = ARM_CP_CONST, 7446 .accessfn = access_aa32_tid3, 7447 .resetvalue = cpu->isar.id_mmfr3 }, 7448 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7449 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7450 .access = PL1_R, .type = ARM_CP_CONST, 7451 .accessfn = access_aa32_tid3, 7452 .resetvalue = cpu->isar.id_isar0 }, 7453 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7454 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7455 .access = PL1_R, .type = ARM_CP_CONST, 7456 .accessfn = access_aa32_tid3, 7457 .resetvalue = cpu->isar.id_isar1 }, 7458 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7459 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7460 .access = PL1_R, .type = ARM_CP_CONST, 7461 .accessfn = access_aa32_tid3, 7462 .resetvalue = cpu->isar.id_isar2 }, 7463 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7464 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7465 .access = PL1_R, .type = ARM_CP_CONST, 7466 .accessfn = access_aa32_tid3, 7467 .resetvalue = cpu->isar.id_isar3 }, 7468 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7469 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7470 .access = PL1_R, .type = ARM_CP_CONST, 7471 .accessfn = access_aa32_tid3, 7472 .resetvalue = cpu->isar.id_isar4 }, 7473 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7474 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7475 .access = PL1_R, .type = ARM_CP_CONST, 7476 .accessfn = access_aa32_tid3, 7477 .resetvalue = cpu->isar.id_isar5 }, 7478 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7479 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7480 .access = PL1_R, .type = ARM_CP_CONST, 7481 .accessfn = access_aa32_tid3, 7482 .resetvalue = cpu->isar.id_mmfr4 }, 7483 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7484 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7485 .access = PL1_R, .type = ARM_CP_CONST, 7486 .accessfn = access_aa32_tid3, 7487 .resetvalue = cpu->isar.id_isar6 }, 7488 REGINFO_SENTINEL 7489 }; 7490 define_arm_cp_regs(cpu, v6_idregs); 7491 define_arm_cp_regs(cpu, v6_cp_reginfo); 7492 } else { 7493 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7494 } 7495 if (arm_feature(env, ARM_FEATURE_V6K)) { 7496 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7497 } 7498 if (arm_feature(env, ARM_FEATURE_V7MP) && 7499 !arm_feature(env, ARM_FEATURE_PMSA)) { 7500 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7501 } 7502 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7503 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7504 } 7505 if (arm_feature(env, ARM_FEATURE_V7)) { 7506 ARMCPRegInfo clidr = { 7507 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7508 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7509 .access = PL1_R, .type = ARM_CP_CONST, 7510 .accessfn = access_aa64_tid2, 7511 .resetvalue = cpu->clidr 7512 }; 7513 define_one_arm_cp_reg(cpu, &clidr); 7514 define_arm_cp_regs(cpu, v7_cp_reginfo); 7515 define_debug_regs(cpu); 7516 define_pmu_regs(cpu); 7517 } else { 7518 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7519 } 7520 if (arm_feature(env, ARM_FEATURE_V8)) { 7521 /* AArch64 ID registers, which all have impdef reset values. 7522 * Note that within the ID register ranges the unused slots 7523 * must all RAZ, not UNDEF; future architecture versions may 7524 * define new registers here. 7525 */ 7526 ARMCPRegInfo v8_idregs[] = { 7527 /* 7528 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7529 * emulation because we don't know the right value for the 7530 * GIC field until after we define these regs. 7531 */ 7532 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7533 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7534 .access = PL1_R, 7535 #ifdef CONFIG_USER_ONLY 7536 .type = ARM_CP_CONST, 7537 .resetvalue = cpu->isar.id_aa64pfr0 7538 #else 7539 .type = ARM_CP_NO_RAW, 7540 .accessfn = access_aa64_tid3, 7541 .readfn = id_aa64pfr0_read, 7542 .writefn = arm_cp_write_ignore 7543 #endif 7544 }, 7545 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7546 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7547 .access = PL1_R, .type = ARM_CP_CONST, 7548 .accessfn = access_aa64_tid3, 7549 .resetvalue = cpu->isar.id_aa64pfr1}, 7550 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7551 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7552 .access = PL1_R, .type = ARM_CP_CONST, 7553 .accessfn = access_aa64_tid3, 7554 .resetvalue = 0 }, 7555 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7556 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7557 .access = PL1_R, .type = ARM_CP_CONST, 7558 .accessfn = access_aa64_tid3, 7559 .resetvalue = 0 }, 7560 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7561 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7562 .access = PL1_R, .type = ARM_CP_CONST, 7563 .accessfn = access_aa64_tid3, 7564 /* At present, only SVEver == 0 is defined anyway. */ 7565 .resetvalue = 0 }, 7566 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7567 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7568 .access = PL1_R, .type = ARM_CP_CONST, 7569 .accessfn = access_aa64_tid3, 7570 .resetvalue = 0 }, 7571 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7572 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7573 .access = PL1_R, .type = ARM_CP_CONST, 7574 .accessfn = access_aa64_tid3, 7575 .resetvalue = 0 }, 7576 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7577 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7578 .access = PL1_R, .type = ARM_CP_CONST, 7579 .accessfn = access_aa64_tid3, 7580 .resetvalue = 0 }, 7581 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7582 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7583 .access = PL1_R, .type = ARM_CP_CONST, 7584 .accessfn = access_aa64_tid3, 7585 .resetvalue = cpu->isar.id_aa64dfr0 }, 7586 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7587 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7588 .access = PL1_R, .type = ARM_CP_CONST, 7589 .accessfn = access_aa64_tid3, 7590 .resetvalue = cpu->isar.id_aa64dfr1 }, 7591 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7592 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7593 .access = PL1_R, .type = ARM_CP_CONST, 7594 .accessfn = access_aa64_tid3, 7595 .resetvalue = 0 }, 7596 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7597 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7598 .access = PL1_R, .type = ARM_CP_CONST, 7599 .accessfn = access_aa64_tid3, 7600 .resetvalue = 0 }, 7601 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7602 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7603 .access = PL1_R, .type = ARM_CP_CONST, 7604 .accessfn = access_aa64_tid3, 7605 .resetvalue = cpu->id_aa64afr0 }, 7606 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7607 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7608 .access = PL1_R, .type = ARM_CP_CONST, 7609 .accessfn = access_aa64_tid3, 7610 .resetvalue = cpu->id_aa64afr1 }, 7611 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7612 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7613 .access = PL1_R, .type = ARM_CP_CONST, 7614 .accessfn = access_aa64_tid3, 7615 .resetvalue = 0 }, 7616 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7617 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7618 .access = PL1_R, .type = ARM_CP_CONST, 7619 .accessfn = access_aa64_tid3, 7620 .resetvalue = 0 }, 7621 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7622 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7623 .access = PL1_R, .type = ARM_CP_CONST, 7624 .accessfn = access_aa64_tid3, 7625 .resetvalue = cpu->isar.id_aa64isar0 }, 7626 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7627 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7628 .access = PL1_R, .type = ARM_CP_CONST, 7629 .accessfn = access_aa64_tid3, 7630 .resetvalue = cpu->isar.id_aa64isar1 }, 7631 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7632 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7633 .access = PL1_R, .type = ARM_CP_CONST, 7634 .accessfn = access_aa64_tid3, 7635 .resetvalue = 0 }, 7636 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7637 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7638 .access = PL1_R, .type = ARM_CP_CONST, 7639 .accessfn = access_aa64_tid3, 7640 .resetvalue = 0 }, 7641 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7642 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7643 .access = PL1_R, .type = ARM_CP_CONST, 7644 .accessfn = access_aa64_tid3, 7645 .resetvalue = 0 }, 7646 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7647 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7648 .access = PL1_R, .type = ARM_CP_CONST, 7649 .accessfn = access_aa64_tid3, 7650 .resetvalue = 0 }, 7651 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7652 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7653 .access = PL1_R, .type = ARM_CP_CONST, 7654 .accessfn = access_aa64_tid3, 7655 .resetvalue = 0 }, 7656 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7657 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7658 .access = PL1_R, .type = ARM_CP_CONST, 7659 .accessfn = access_aa64_tid3, 7660 .resetvalue = 0 }, 7661 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7662 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7663 .access = PL1_R, .type = ARM_CP_CONST, 7664 .accessfn = access_aa64_tid3, 7665 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7666 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7667 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7668 .access = PL1_R, .type = ARM_CP_CONST, 7669 .accessfn = access_aa64_tid3, 7670 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7671 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7672 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7673 .access = PL1_R, .type = ARM_CP_CONST, 7674 .accessfn = access_aa64_tid3, 7675 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7676 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7677 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7678 .access = PL1_R, .type = ARM_CP_CONST, 7679 .accessfn = access_aa64_tid3, 7680 .resetvalue = 0 }, 7681 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7682 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7683 .access = PL1_R, .type = ARM_CP_CONST, 7684 .accessfn = access_aa64_tid3, 7685 .resetvalue = 0 }, 7686 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7687 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7688 .access = PL1_R, .type = ARM_CP_CONST, 7689 .accessfn = access_aa64_tid3, 7690 .resetvalue = 0 }, 7691 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7692 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7693 .access = PL1_R, .type = ARM_CP_CONST, 7694 .accessfn = access_aa64_tid3, 7695 .resetvalue = 0 }, 7696 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7697 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7698 .access = PL1_R, .type = ARM_CP_CONST, 7699 .accessfn = access_aa64_tid3, 7700 .resetvalue = 0 }, 7701 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7702 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7703 .access = PL1_R, .type = ARM_CP_CONST, 7704 .accessfn = access_aa64_tid3, 7705 .resetvalue = cpu->isar.mvfr0 }, 7706 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7707 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7708 .access = PL1_R, .type = ARM_CP_CONST, 7709 .accessfn = access_aa64_tid3, 7710 .resetvalue = cpu->isar.mvfr1 }, 7711 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7712 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7713 .access = PL1_R, .type = ARM_CP_CONST, 7714 .accessfn = access_aa64_tid3, 7715 .resetvalue = cpu->isar.mvfr2 }, 7716 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7717 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7718 .access = PL1_R, .type = ARM_CP_CONST, 7719 .accessfn = access_aa64_tid3, 7720 .resetvalue = 0 }, 7721 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7722 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7723 .access = PL1_R, .type = ARM_CP_CONST, 7724 .accessfn = access_aa64_tid3, 7725 .resetvalue = cpu->isar.id_pfr2 }, 7726 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7727 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7728 .access = PL1_R, .type = ARM_CP_CONST, 7729 .accessfn = access_aa64_tid3, 7730 .resetvalue = 0 }, 7731 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7732 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7733 .access = PL1_R, .type = ARM_CP_CONST, 7734 .accessfn = access_aa64_tid3, 7735 .resetvalue = 0 }, 7736 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7737 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7738 .access = PL1_R, .type = ARM_CP_CONST, 7739 .accessfn = access_aa64_tid3, 7740 .resetvalue = 0 }, 7741 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7742 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7743 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7744 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7745 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7746 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7747 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7748 .resetvalue = cpu->pmceid0 }, 7749 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7750 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7751 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7752 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7753 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7754 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7755 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7756 .resetvalue = cpu->pmceid1 }, 7757 REGINFO_SENTINEL 7758 }; 7759 #ifdef CONFIG_USER_ONLY 7760 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7761 { .name = "ID_AA64PFR0_EL1", 7762 .exported_bits = 0x000f000f00ff0000, 7763 .fixed_bits = 0x0000000000000011 }, 7764 { .name = "ID_AA64PFR1_EL1", 7765 .exported_bits = 0x00000000000000f0 }, 7766 { .name = "ID_AA64PFR*_EL1_RESERVED", 7767 .is_glob = true }, 7768 { .name = "ID_AA64ZFR0_EL1" }, 7769 { .name = "ID_AA64MMFR0_EL1", 7770 .fixed_bits = 0x00000000ff000000 }, 7771 { .name = "ID_AA64MMFR1_EL1" }, 7772 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7773 .is_glob = true }, 7774 { .name = "ID_AA64DFR0_EL1", 7775 .fixed_bits = 0x0000000000000006 }, 7776 { .name = "ID_AA64DFR1_EL1" }, 7777 { .name = "ID_AA64DFR*_EL1_RESERVED", 7778 .is_glob = true }, 7779 { .name = "ID_AA64AFR*", 7780 .is_glob = true }, 7781 { .name = "ID_AA64ISAR0_EL1", 7782 .exported_bits = 0x00fffffff0fffff0 }, 7783 { .name = "ID_AA64ISAR1_EL1", 7784 .exported_bits = 0x000000f0ffffffff }, 7785 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7786 .is_glob = true }, 7787 REGUSERINFO_SENTINEL 7788 }; 7789 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7790 #endif 7791 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7792 if (!arm_feature(env, ARM_FEATURE_EL3) && 7793 !arm_feature(env, ARM_FEATURE_EL2)) { 7794 ARMCPRegInfo rvbar = { 7795 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7796 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7797 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 7798 }; 7799 define_one_arm_cp_reg(cpu, &rvbar); 7800 } 7801 define_arm_cp_regs(cpu, v8_idregs); 7802 define_arm_cp_regs(cpu, v8_cp_reginfo); 7803 } 7804 if (arm_feature(env, ARM_FEATURE_EL2)) { 7805 uint64_t vmpidr_def = mpidr_read_val(env); 7806 ARMCPRegInfo vpidr_regs[] = { 7807 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7808 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7809 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7810 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7811 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7812 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7813 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7814 .access = PL2_RW, .resetvalue = cpu->midr, 7815 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7816 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7817 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7818 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7819 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7820 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7821 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7822 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7823 .access = PL2_RW, 7824 .resetvalue = vmpidr_def, 7825 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7826 REGINFO_SENTINEL 7827 }; 7828 define_arm_cp_regs(cpu, vpidr_regs); 7829 define_arm_cp_regs(cpu, el2_cp_reginfo); 7830 if (arm_feature(env, ARM_FEATURE_V8)) { 7831 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7832 } 7833 if (cpu_isar_feature(aa64_sel2, cpu)) { 7834 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7835 } 7836 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7837 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7838 ARMCPRegInfo rvbar = { 7839 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7840 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7841 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 7842 }; 7843 define_one_arm_cp_reg(cpu, &rvbar); 7844 } 7845 } else { 7846 /* If EL2 is missing but higher ELs are enabled, we need to 7847 * register the no_el2 reginfos. 7848 */ 7849 if (arm_feature(env, ARM_FEATURE_EL3)) { 7850 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 7851 * of MIDR_EL1 and MPIDR_EL1. 7852 */ 7853 ARMCPRegInfo vpidr_regs[] = { 7854 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7855 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7856 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7857 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 7858 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7859 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7860 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7861 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7862 .type = ARM_CP_NO_RAW, 7863 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 7864 REGINFO_SENTINEL 7865 }; 7866 define_arm_cp_regs(cpu, vpidr_regs); 7867 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 7868 if (arm_feature(env, ARM_FEATURE_V8)) { 7869 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 7870 } 7871 } 7872 } 7873 if (arm_feature(env, ARM_FEATURE_EL3)) { 7874 define_arm_cp_regs(cpu, el3_cp_reginfo); 7875 ARMCPRegInfo el3_regs[] = { 7876 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7877 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7878 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 7879 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7880 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7881 .access = PL3_RW, 7882 .raw_writefn = raw_write, .writefn = sctlr_write, 7883 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7884 .resetvalue = cpu->reset_sctlr }, 7885 REGINFO_SENTINEL 7886 }; 7887 7888 define_arm_cp_regs(cpu, el3_regs); 7889 } 7890 /* The behaviour of NSACR is sufficiently various that we don't 7891 * try to describe it in a single reginfo: 7892 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7893 * reads as constant 0xc00 from NS EL1 and NS EL2 7894 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7895 * if v7 without EL3, register doesn't exist 7896 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7897 */ 7898 if (arm_feature(env, ARM_FEATURE_EL3)) { 7899 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7900 ARMCPRegInfo nsacr = { 7901 .name = "NSACR", .type = ARM_CP_CONST, 7902 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7903 .access = PL1_RW, .accessfn = nsacr_access, 7904 .resetvalue = 0xc00 7905 }; 7906 define_one_arm_cp_reg(cpu, &nsacr); 7907 } else { 7908 ARMCPRegInfo nsacr = { 7909 .name = "NSACR", 7910 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7911 .access = PL3_RW | PL1_R, 7912 .resetvalue = 0, 7913 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 7914 }; 7915 define_one_arm_cp_reg(cpu, &nsacr); 7916 } 7917 } else { 7918 if (arm_feature(env, ARM_FEATURE_V8)) { 7919 ARMCPRegInfo nsacr = { 7920 .name = "NSACR", .type = ARM_CP_CONST, 7921 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7922 .access = PL1_R, 7923 .resetvalue = 0xc00 7924 }; 7925 define_one_arm_cp_reg(cpu, &nsacr); 7926 } 7927 } 7928 7929 if (arm_feature(env, ARM_FEATURE_PMSA)) { 7930 if (arm_feature(env, ARM_FEATURE_V6)) { 7931 /* PMSAv6 not implemented */ 7932 assert(arm_feature(env, ARM_FEATURE_V7)); 7933 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7934 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 7935 } else { 7936 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 7937 } 7938 } else { 7939 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7940 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 7941 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 7942 if (cpu_isar_feature(aa32_hpd, cpu)) { 7943 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 7944 } 7945 } 7946 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 7947 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 7948 } 7949 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 7950 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 7951 } 7952 if (arm_feature(env, ARM_FEATURE_VAPA)) { 7953 define_arm_cp_regs(cpu, vapa_cp_reginfo); 7954 } 7955 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 7956 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 7957 } 7958 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 7959 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 7960 } 7961 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 7962 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 7963 } 7964 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 7965 define_arm_cp_regs(cpu, omap_cp_reginfo); 7966 } 7967 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 7968 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 7969 } 7970 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7971 define_arm_cp_regs(cpu, xscale_cp_reginfo); 7972 } 7973 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 7974 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 7975 } 7976 if (arm_feature(env, ARM_FEATURE_LPAE)) { 7977 define_arm_cp_regs(cpu, lpae_cp_reginfo); 7978 } 7979 if (cpu_isar_feature(aa32_jazelle, cpu)) { 7980 define_arm_cp_regs(cpu, jazelle_regs); 7981 } 7982 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 7983 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 7984 * be read-only (ie write causes UNDEF exception). 7985 */ 7986 { 7987 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 7988 /* Pre-v8 MIDR space. 7989 * Note that the MIDR isn't a simple constant register because 7990 * of the TI925 behaviour where writes to another register can 7991 * cause the MIDR value to change. 7992 * 7993 * Unimplemented registers in the c15 0 0 0 space default to 7994 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 7995 * and friends override accordingly. 7996 */ 7997 { .name = "MIDR", 7998 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 7999 .access = PL1_R, .resetvalue = cpu->midr, 8000 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8001 .readfn = midr_read, 8002 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8003 .type = ARM_CP_OVERRIDE }, 8004 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8005 { .name = "DUMMY", 8006 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8007 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8008 { .name = "DUMMY", 8009 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8010 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8011 { .name = "DUMMY", 8012 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8013 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8014 { .name = "DUMMY", 8015 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8016 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8017 { .name = "DUMMY", 8018 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8019 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8020 REGINFO_SENTINEL 8021 }; 8022 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8023 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8024 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8025 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8026 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8027 .readfn = midr_read }, 8028 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8029 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8030 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8031 .access = PL1_R, .resetvalue = cpu->midr }, 8032 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8033 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8034 .access = PL1_R, .resetvalue = cpu->midr }, 8035 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8036 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8037 .access = PL1_R, 8038 .accessfn = access_aa64_tid1, 8039 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8040 REGINFO_SENTINEL 8041 }; 8042 ARMCPRegInfo id_cp_reginfo[] = { 8043 /* These are common to v8 and pre-v8 */ 8044 { .name = "CTR", 8045 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8046 .access = PL1_R, .accessfn = ctr_el0_access, 8047 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8048 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8049 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8050 .access = PL0_R, .accessfn = ctr_el0_access, 8051 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8052 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8053 { .name = "TCMTR", 8054 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8055 .access = PL1_R, 8056 .accessfn = access_aa32_tid1, 8057 .type = ARM_CP_CONST, .resetvalue = 0 }, 8058 REGINFO_SENTINEL 8059 }; 8060 /* TLBTR is specific to VMSA */ 8061 ARMCPRegInfo id_tlbtr_reginfo = { 8062 .name = "TLBTR", 8063 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8064 .access = PL1_R, 8065 .accessfn = access_aa32_tid1, 8066 .type = ARM_CP_CONST, .resetvalue = 0, 8067 }; 8068 /* MPUIR is specific to PMSA V6+ */ 8069 ARMCPRegInfo id_mpuir_reginfo = { 8070 .name = "MPUIR", 8071 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8072 .access = PL1_R, .type = ARM_CP_CONST, 8073 .resetvalue = cpu->pmsav7_dregion << 8 8074 }; 8075 ARMCPRegInfo crn0_wi_reginfo = { 8076 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8077 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8078 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8079 }; 8080 #ifdef CONFIG_USER_ONLY 8081 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8082 { .name = "MIDR_EL1", 8083 .exported_bits = 0x00000000ffffffff }, 8084 { .name = "REVIDR_EL1" }, 8085 REGUSERINFO_SENTINEL 8086 }; 8087 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8088 #endif 8089 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8090 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8091 ARMCPRegInfo *r; 8092 /* Register the blanket "writes ignored" value first to cover the 8093 * whole space. Then update the specific ID registers to allow write 8094 * access, so that they ignore writes rather than causing them to 8095 * UNDEF. 8096 */ 8097 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8098 for (r = id_pre_v8_midr_cp_reginfo; 8099 r->type != ARM_CP_SENTINEL; r++) { 8100 r->access = PL1_RW; 8101 } 8102 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 8103 r->access = PL1_RW; 8104 } 8105 id_mpuir_reginfo.access = PL1_RW; 8106 id_tlbtr_reginfo.access = PL1_RW; 8107 } 8108 if (arm_feature(env, ARM_FEATURE_V8)) { 8109 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8110 } else { 8111 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8112 } 8113 define_arm_cp_regs(cpu, id_cp_reginfo); 8114 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8115 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8116 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8117 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8118 } 8119 } 8120 8121 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8122 ARMCPRegInfo mpidr_cp_reginfo[] = { 8123 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8124 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8125 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8126 REGINFO_SENTINEL 8127 }; 8128 #ifdef CONFIG_USER_ONLY 8129 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8130 { .name = "MPIDR_EL1", 8131 .fixed_bits = 0x0000000080000000 }, 8132 REGUSERINFO_SENTINEL 8133 }; 8134 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8135 #endif 8136 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8137 } 8138 8139 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8140 ARMCPRegInfo auxcr_reginfo[] = { 8141 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8142 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8143 .access = PL1_RW, .accessfn = access_tacr, 8144 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8145 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8146 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8147 .access = PL2_RW, .type = ARM_CP_CONST, 8148 .resetvalue = 0 }, 8149 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8150 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8151 .access = PL3_RW, .type = ARM_CP_CONST, 8152 .resetvalue = 0 }, 8153 REGINFO_SENTINEL 8154 }; 8155 define_arm_cp_regs(cpu, auxcr_reginfo); 8156 if (cpu_isar_feature(aa32_ac2, cpu)) { 8157 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8158 } 8159 } 8160 8161 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8162 /* 8163 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8164 * There are two flavours: 8165 * (1) older 32-bit only cores have a simple 32-bit CBAR 8166 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8167 * 32-bit register visible to AArch32 at a different encoding 8168 * to the "flavour 1" register and with the bits rearranged to 8169 * be able to squash a 64-bit address into the 32-bit view. 8170 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8171 * in future if we support AArch32-only configs of some of the 8172 * AArch64 cores we might need to add a specific feature flag 8173 * to indicate cores with "flavour 2" CBAR. 8174 */ 8175 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8176 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8177 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8178 | extract64(cpu->reset_cbar, 32, 12); 8179 ARMCPRegInfo cbar_reginfo[] = { 8180 { .name = "CBAR", 8181 .type = ARM_CP_CONST, 8182 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8183 .access = PL1_R, .resetvalue = cbar32 }, 8184 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8185 .type = ARM_CP_CONST, 8186 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8187 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8188 REGINFO_SENTINEL 8189 }; 8190 /* We don't implement a r/w 64 bit CBAR currently */ 8191 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8192 define_arm_cp_regs(cpu, cbar_reginfo); 8193 } else { 8194 ARMCPRegInfo cbar = { 8195 .name = "CBAR", 8196 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8197 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8198 .fieldoffset = offsetof(CPUARMState, 8199 cp15.c15_config_base_address) 8200 }; 8201 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8202 cbar.access = PL1_R; 8203 cbar.fieldoffset = 0; 8204 cbar.type = ARM_CP_CONST; 8205 } 8206 define_one_arm_cp_reg(cpu, &cbar); 8207 } 8208 } 8209 8210 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8211 ARMCPRegInfo vbar_cp_reginfo[] = { 8212 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8213 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8214 .access = PL1_RW, .writefn = vbar_write, 8215 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8216 offsetof(CPUARMState, cp15.vbar_ns) }, 8217 .resetvalue = 0 }, 8218 REGINFO_SENTINEL 8219 }; 8220 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8221 } 8222 8223 /* Generic registers whose values depend on the implementation */ 8224 { 8225 ARMCPRegInfo sctlr = { 8226 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8227 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8228 .access = PL1_RW, .accessfn = access_tvm_trvm, 8229 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8230 offsetof(CPUARMState, cp15.sctlr_ns) }, 8231 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8232 .raw_writefn = raw_write, 8233 }; 8234 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8235 /* Normally we would always end the TB on an SCTLR write, but Linux 8236 * arch/arm/mach-pxa/sleep.S expects two instructions following 8237 * an MMU enable to execute from cache. Imitate this behaviour. 8238 */ 8239 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8240 } 8241 define_one_arm_cp_reg(cpu, &sctlr); 8242 } 8243 8244 if (cpu_isar_feature(aa64_lor, cpu)) { 8245 define_arm_cp_regs(cpu, lor_reginfo); 8246 } 8247 if (cpu_isar_feature(aa64_pan, cpu)) { 8248 define_one_arm_cp_reg(cpu, &pan_reginfo); 8249 } 8250 #ifndef CONFIG_USER_ONLY 8251 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8252 define_arm_cp_regs(cpu, ats1e1_reginfo); 8253 } 8254 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8255 define_arm_cp_regs(cpu, ats1cp_reginfo); 8256 } 8257 #endif 8258 if (cpu_isar_feature(aa64_uao, cpu)) { 8259 define_one_arm_cp_reg(cpu, &uao_reginfo); 8260 } 8261 8262 if (cpu_isar_feature(aa64_dit, cpu)) { 8263 define_one_arm_cp_reg(cpu, &dit_reginfo); 8264 } 8265 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8266 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8267 } 8268 8269 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8270 define_arm_cp_regs(cpu, vhe_reginfo); 8271 } 8272 8273 if (cpu_isar_feature(aa64_sve, cpu)) { 8274 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8275 if (arm_feature(env, ARM_FEATURE_EL2)) { 8276 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8277 } else { 8278 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8279 } 8280 if (arm_feature(env, ARM_FEATURE_EL3)) { 8281 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8282 } 8283 } 8284 8285 #ifdef TARGET_AARCH64 8286 if (cpu_isar_feature(aa64_pauth, cpu)) { 8287 define_arm_cp_regs(cpu, pauth_reginfo); 8288 } 8289 if (cpu_isar_feature(aa64_rndr, cpu)) { 8290 define_arm_cp_regs(cpu, rndr_reginfo); 8291 } 8292 #ifndef CONFIG_USER_ONLY 8293 /* Data Cache clean instructions up to PoP */ 8294 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8295 define_one_arm_cp_reg(cpu, dcpop_reg); 8296 8297 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8298 define_one_arm_cp_reg(cpu, dcpodp_reg); 8299 } 8300 } 8301 #endif /*CONFIG_USER_ONLY*/ 8302 8303 /* 8304 * If full MTE is enabled, add all of the system registers. 8305 * If only "instructions available at EL0" are enabled, 8306 * then define only a RAZ/WI version of PSTATE.TCO. 8307 */ 8308 if (cpu_isar_feature(aa64_mte, cpu)) { 8309 define_arm_cp_regs(cpu, mte_reginfo); 8310 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8311 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8312 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8313 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8314 } 8315 #endif 8316 8317 if (cpu_isar_feature(any_predinv, cpu)) { 8318 define_arm_cp_regs(cpu, predinv_reginfo); 8319 } 8320 8321 if (cpu_isar_feature(any_ccidx, cpu)) { 8322 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8323 } 8324 8325 #ifndef CONFIG_USER_ONLY 8326 /* 8327 * Register redirections and aliases must be done last, 8328 * after the registers from the other extensions have been defined. 8329 */ 8330 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8331 define_arm_vh_e2h_redirects_aliases(cpu); 8332 } 8333 #endif 8334 } 8335 8336 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 8337 { 8338 CPUState *cs = CPU(cpu); 8339 CPUARMState *env = &cpu->env; 8340 8341 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8342 /* 8343 * The lower part of each SVE register aliases to the FPU 8344 * registers so we don't need to include both. 8345 */ 8346 #ifdef TARGET_AARCH64 8347 if (isar_feature_aa64_sve(&cpu->isar)) { 8348 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg, 8349 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs), 8350 "sve-registers.xml", 0); 8351 } else 8352 #endif 8353 { 8354 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 8355 aarch64_fpu_gdb_set_reg, 8356 34, "aarch64-fpu.xml", 0); 8357 } 8358 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 8359 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8360 51, "arm-neon.xml", 0); 8361 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { 8362 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8363 35, "arm-vfp3.xml", 0); 8364 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 8365 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8366 19, "arm-vfp.xml", 0); 8367 } 8368 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 8369 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs), 8370 "system-registers.xml", 0); 8371 8372 } 8373 8374 /* Sort alphabetically by type name, except for "any". */ 8375 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8376 { 8377 ObjectClass *class_a = (ObjectClass *)a; 8378 ObjectClass *class_b = (ObjectClass *)b; 8379 const char *name_a, *name_b; 8380 8381 name_a = object_class_get_name(class_a); 8382 name_b = object_class_get_name(class_b); 8383 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8384 return 1; 8385 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8386 return -1; 8387 } else { 8388 return strcmp(name_a, name_b); 8389 } 8390 } 8391 8392 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8393 { 8394 ObjectClass *oc = data; 8395 const char *typename; 8396 char *name; 8397 8398 typename = object_class_get_name(oc); 8399 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8400 qemu_printf(" %s\n", name); 8401 g_free(name); 8402 } 8403 8404 void arm_cpu_list(void) 8405 { 8406 GSList *list; 8407 8408 list = object_class_get_list(TYPE_ARM_CPU, false); 8409 list = g_slist_sort(list, arm_cpu_list_compare); 8410 qemu_printf("Available CPUs:\n"); 8411 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8412 g_slist_free(list); 8413 } 8414 8415 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8416 { 8417 ObjectClass *oc = data; 8418 CpuDefinitionInfoList **cpu_list = user_data; 8419 CpuDefinitionInfo *info; 8420 const char *typename; 8421 8422 typename = object_class_get_name(oc); 8423 info = g_malloc0(sizeof(*info)); 8424 info->name = g_strndup(typename, 8425 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8426 info->q_typename = g_strdup(typename); 8427 8428 QAPI_LIST_PREPEND(*cpu_list, info); 8429 } 8430 8431 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8432 { 8433 CpuDefinitionInfoList *cpu_list = NULL; 8434 GSList *list; 8435 8436 list = object_class_get_list(TYPE_ARM_CPU, false); 8437 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8438 g_slist_free(list); 8439 8440 return cpu_list; 8441 } 8442 8443 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8444 void *opaque, int state, int secstate, 8445 int crm, int opc1, int opc2, 8446 const char *name) 8447 { 8448 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8449 * add a single reginfo struct to the hash table. 8450 */ 8451 uint32_t *key = g_new(uint32_t, 1); 8452 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8453 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8454 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8455 8456 r2->name = g_strdup(name); 8457 /* Reset the secure state to the specific incoming state. This is 8458 * necessary as the register may have been defined with both states. 8459 */ 8460 r2->secure = secstate; 8461 8462 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8463 /* Register is banked (using both entries in array). 8464 * Overwriting fieldoffset as the array is only used to define 8465 * banked registers but later only fieldoffset is used. 8466 */ 8467 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8468 } 8469 8470 if (state == ARM_CP_STATE_AA32) { 8471 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8472 /* If the register is banked then we don't need to migrate or 8473 * reset the 32-bit instance in certain cases: 8474 * 8475 * 1) If the register has both 32-bit and 64-bit instances then we 8476 * can count on the 64-bit instance taking care of the 8477 * non-secure bank. 8478 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8479 * taking care of the secure bank. This requires that separate 8480 * 32 and 64-bit definitions are provided. 8481 */ 8482 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8483 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8484 r2->type |= ARM_CP_ALIAS; 8485 } 8486 } else if ((secstate != r->secure) && !ns) { 8487 /* The register is not banked so we only want to allow migration of 8488 * the non-secure instance. 8489 */ 8490 r2->type |= ARM_CP_ALIAS; 8491 } 8492 8493 if (r->state == ARM_CP_STATE_BOTH) { 8494 /* We assume it is a cp15 register if the .cp field is left unset. 8495 */ 8496 if (r2->cp == 0) { 8497 r2->cp = 15; 8498 } 8499 8500 #ifdef HOST_WORDS_BIGENDIAN 8501 if (r2->fieldoffset) { 8502 r2->fieldoffset += sizeof(uint32_t); 8503 } 8504 #endif 8505 } 8506 } 8507 if (state == ARM_CP_STATE_AA64) { 8508 /* To allow abbreviation of ARMCPRegInfo 8509 * definitions, we treat cp == 0 as equivalent to 8510 * the value for "standard guest-visible sysreg". 8511 * STATE_BOTH definitions are also always "standard 8512 * sysreg" in their AArch64 view (the .cp value may 8513 * be non-zero for the benefit of the AArch32 view). 8514 */ 8515 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8516 r2->cp = CP_REG_ARM64_SYSREG_CP; 8517 } 8518 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8519 r2->opc0, opc1, opc2); 8520 } else { 8521 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8522 } 8523 if (opaque) { 8524 r2->opaque = opaque; 8525 } 8526 /* reginfo passed to helpers is correct for the actual access, 8527 * and is never ARM_CP_STATE_BOTH: 8528 */ 8529 r2->state = state; 8530 /* Make sure reginfo passed to helpers for wildcarded regs 8531 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8532 */ 8533 r2->crm = crm; 8534 r2->opc1 = opc1; 8535 r2->opc2 = opc2; 8536 /* By convention, for wildcarded registers only the first 8537 * entry is used for migration; the others are marked as 8538 * ALIAS so we don't try to transfer the register 8539 * multiple times. Special registers (ie NOP/WFI) are 8540 * never migratable and not even raw-accessible. 8541 */ 8542 if ((r->type & ARM_CP_SPECIAL)) { 8543 r2->type |= ARM_CP_NO_RAW; 8544 } 8545 if (((r->crm == CP_ANY) && crm != 0) || 8546 ((r->opc1 == CP_ANY) && opc1 != 0) || 8547 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8548 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8549 } 8550 8551 /* Check that raw accesses are either forbidden or handled. Note that 8552 * we can't assert this earlier because the setup of fieldoffset for 8553 * banked registers has to be done first. 8554 */ 8555 if (!(r2->type & ARM_CP_NO_RAW)) { 8556 assert(!raw_accessors_invalid(r2)); 8557 } 8558 8559 /* Overriding of an existing definition must be explicitly 8560 * requested. 8561 */ 8562 if (!(r->type & ARM_CP_OVERRIDE)) { 8563 ARMCPRegInfo *oldreg; 8564 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8565 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8566 fprintf(stderr, "Register redefined: cp=%d %d bit " 8567 "crn=%d crm=%d opc1=%d opc2=%d, " 8568 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8569 r2->crn, r2->crm, r2->opc1, r2->opc2, 8570 oldreg->name, r2->name); 8571 g_assert_not_reached(); 8572 } 8573 } 8574 g_hash_table_insert(cpu->cp_regs, key, r2); 8575 } 8576 8577 8578 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8579 const ARMCPRegInfo *r, void *opaque) 8580 { 8581 /* Define implementations of coprocessor registers. 8582 * We store these in a hashtable because typically 8583 * there are less than 150 registers in a space which 8584 * is 16*16*16*8*8 = 262144 in size. 8585 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8586 * If a register is defined twice then the second definition is 8587 * used, so this can be used to define some generic registers and 8588 * then override them with implementation specific variations. 8589 * At least one of the original and the second definition should 8590 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8591 * against accidental use. 8592 * 8593 * The state field defines whether the register is to be 8594 * visible in the AArch32 or AArch64 execution state. If the 8595 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8596 * reginfo structure for the AArch32 view, which sees the lower 8597 * 32 bits of the 64 bit register. 8598 * 8599 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8600 * be wildcarded. AArch64 registers are always considered to be 64 8601 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8602 * the register, if any. 8603 */ 8604 int crm, opc1, opc2, state; 8605 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8606 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8607 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8608 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8609 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8610 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8611 /* 64 bit registers have only CRm and Opc1 fields */ 8612 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8613 /* op0 only exists in the AArch64 encodings */ 8614 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8615 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8616 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8617 /* 8618 * This API is only for Arm's system coprocessors (14 and 15) or 8619 * (M-profile or v7A-and-earlier only) for implementation defined 8620 * coprocessors in the range 0..7. Our decode assumes this, since 8621 * 8..13 can be used for other insns including VFP and Neon. See 8622 * valid_cp() in translate.c. Assert here that we haven't tried 8623 * to use an invalid coprocessor number. 8624 */ 8625 switch (r->state) { 8626 case ARM_CP_STATE_BOTH: 8627 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8628 if (r->cp == 0) { 8629 break; 8630 } 8631 /* fall through */ 8632 case ARM_CP_STATE_AA32: 8633 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8634 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8635 assert(r->cp >= 14 && r->cp <= 15); 8636 } else { 8637 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8638 } 8639 break; 8640 case ARM_CP_STATE_AA64: 8641 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8642 break; 8643 default: 8644 g_assert_not_reached(); 8645 } 8646 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8647 * encodes a minimum access level for the register. We roll this 8648 * runtime check into our general permission check code, so check 8649 * here that the reginfo's specified permissions are strict enough 8650 * to encompass the generic architectural permission check. 8651 */ 8652 if (r->state != ARM_CP_STATE_AA32) { 8653 int mask = 0; 8654 switch (r->opc1) { 8655 case 0: 8656 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8657 mask = PL0U_R | PL1_RW; 8658 break; 8659 case 1: case 2: 8660 /* min_EL EL1 */ 8661 mask = PL1_RW; 8662 break; 8663 case 3: 8664 /* min_EL EL0 */ 8665 mask = PL0_RW; 8666 break; 8667 case 4: 8668 case 5: 8669 /* min_EL EL2 */ 8670 mask = PL2_RW; 8671 break; 8672 case 6: 8673 /* min_EL EL3 */ 8674 mask = PL3_RW; 8675 break; 8676 case 7: 8677 /* min_EL EL1, secure mode only (we don't check the latter) */ 8678 mask = PL1_RW; 8679 break; 8680 default: 8681 /* broken reginfo with out-of-range opc1 */ 8682 assert(false); 8683 break; 8684 } 8685 /* assert our permissions are not too lax (stricter is fine) */ 8686 assert((r->access & ~mask) == 0); 8687 } 8688 8689 /* Check that the register definition has enough info to handle 8690 * reads and writes if they are permitted. 8691 */ 8692 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8693 if (r->access & PL3_R) { 8694 assert((r->fieldoffset || 8695 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8696 r->readfn); 8697 } 8698 if (r->access & PL3_W) { 8699 assert((r->fieldoffset || 8700 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8701 r->writefn); 8702 } 8703 } 8704 /* Bad type field probably means missing sentinel at end of reg list */ 8705 assert(cptype_valid(r->type)); 8706 for (crm = crmmin; crm <= crmmax; crm++) { 8707 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8708 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8709 for (state = ARM_CP_STATE_AA32; 8710 state <= ARM_CP_STATE_AA64; state++) { 8711 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8712 continue; 8713 } 8714 if (state == ARM_CP_STATE_AA32) { 8715 /* Under AArch32 CP registers can be common 8716 * (same for secure and non-secure world) or banked. 8717 */ 8718 char *name; 8719 8720 switch (r->secure) { 8721 case ARM_CP_SECSTATE_S: 8722 case ARM_CP_SECSTATE_NS: 8723 add_cpreg_to_hashtable(cpu, r, opaque, state, 8724 r->secure, crm, opc1, opc2, 8725 r->name); 8726 break; 8727 default: 8728 name = g_strdup_printf("%s_S", r->name); 8729 add_cpreg_to_hashtable(cpu, r, opaque, state, 8730 ARM_CP_SECSTATE_S, 8731 crm, opc1, opc2, name); 8732 g_free(name); 8733 add_cpreg_to_hashtable(cpu, r, opaque, state, 8734 ARM_CP_SECSTATE_NS, 8735 crm, opc1, opc2, r->name); 8736 break; 8737 } 8738 } else { 8739 /* AArch64 registers get mapped to non-secure instance 8740 * of AArch32 */ 8741 add_cpreg_to_hashtable(cpu, r, opaque, state, 8742 ARM_CP_SECSTATE_NS, 8743 crm, opc1, opc2, r->name); 8744 } 8745 } 8746 } 8747 } 8748 } 8749 } 8750 8751 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8752 const ARMCPRegInfo *regs, void *opaque) 8753 { 8754 /* Define a whole list of registers */ 8755 const ARMCPRegInfo *r; 8756 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8757 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8758 } 8759 } 8760 8761 /* 8762 * Modify ARMCPRegInfo for access from userspace. 8763 * 8764 * This is a data driven modification directed by 8765 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8766 * user-space cannot alter any values and dynamic values pertaining to 8767 * execution state are hidden from user space view anyway. 8768 */ 8769 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8770 { 8771 const ARMCPRegUserSpaceInfo *m; 8772 ARMCPRegInfo *r; 8773 8774 for (m = mods; m->name; m++) { 8775 GPatternSpec *pat = NULL; 8776 if (m->is_glob) { 8777 pat = g_pattern_spec_new(m->name); 8778 } 8779 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8780 if (pat && g_pattern_match_string(pat, r->name)) { 8781 r->type = ARM_CP_CONST; 8782 r->access = PL0U_R; 8783 r->resetvalue = 0; 8784 /* continue */ 8785 } else if (strcmp(r->name, m->name) == 0) { 8786 r->type = ARM_CP_CONST; 8787 r->access = PL0U_R; 8788 r->resetvalue &= m->exported_bits; 8789 r->resetvalue |= m->fixed_bits; 8790 break; 8791 } 8792 } 8793 if (pat) { 8794 g_pattern_spec_free(pat); 8795 } 8796 } 8797 } 8798 8799 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8800 { 8801 return g_hash_table_lookup(cpregs, &encoded_cp); 8802 } 8803 8804 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8805 uint64_t value) 8806 { 8807 /* Helper coprocessor write function for write-ignore registers */ 8808 } 8809 8810 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8811 { 8812 /* Helper coprocessor write function for read-as-zero registers */ 8813 return 0; 8814 } 8815 8816 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8817 { 8818 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8819 } 8820 8821 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8822 { 8823 /* Return true if it is not valid for us to switch to 8824 * this CPU mode (ie all the UNPREDICTABLE cases in 8825 * the ARM ARM CPSRWriteByInstr pseudocode). 8826 */ 8827 8828 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8829 if (write_type == CPSRWriteByInstr && 8830 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8831 mode == ARM_CPU_MODE_HYP)) { 8832 return 1; 8833 } 8834 8835 switch (mode) { 8836 case ARM_CPU_MODE_USR: 8837 return 0; 8838 case ARM_CPU_MODE_SYS: 8839 case ARM_CPU_MODE_SVC: 8840 case ARM_CPU_MODE_ABT: 8841 case ARM_CPU_MODE_UND: 8842 case ARM_CPU_MODE_IRQ: 8843 case ARM_CPU_MODE_FIQ: 8844 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8845 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8846 */ 8847 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8848 * and CPS are treated as illegal mode changes. 8849 */ 8850 if (write_type == CPSRWriteByInstr && 8851 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8852 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8853 return 1; 8854 } 8855 return 0; 8856 case ARM_CPU_MODE_HYP: 8857 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 8858 case ARM_CPU_MODE_MON: 8859 return arm_current_el(env) < 3; 8860 default: 8861 return 1; 8862 } 8863 } 8864 8865 uint32_t cpsr_read(CPUARMState *env) 8866 { 8867 int ZF; 8868 ZF = (env->ZF == 0); 8869 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8870 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8871 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8872 | ((env->condexec_bits & 0xfc) << 8) 8873 | (env->GE << 16) | (env->daif & CPSR_AIF); 8874 } 8875 8876 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8877 CPSRWriteType write_type) 8878 { 8879 uint32_t changed_daif; 8880 8881 if (mask & CPSR_NZCV) { 8882 env->ZF = (~val) & CPSR_Z; 8883 env->NF = val; 8884 env->CF = (val >> 29) & 1; 8885 env->VF = (val << 3) & 0x80000000; 8886 } 8887 if (mask & CPSR_Q) 8888 env->QF = ((val & CPSR_Q) != 0); 8889 if (mask & CPSR_T) 8890 env->thumb = ((val & CPSR_T) != 0); 8891 if (mask & CPSR_IT_0_1) { 8892 env->condexec_bits &= ~3; 8893 env->condexec_bits |= (val >> 25) & 3; 8894 } 8895 if (mask & CPSR_IT_2_7) { 8896 env->condexec_bits &= 3; 8897 env->condexec_bits |= (val >> 8) & 0xfc; 8898 } 8899 if (mask & CPSR_GE) { 8900 env->GE = (val >> 16) & 0xf; 8901 } 8902 8903 /* In a V7 implementation that includes the security extensions but does 8904 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 8905 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 8906 * bits respectively. 8907 * 8908 * In a V8 implementation, it is permitted for privileged software to 8909 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 8910 */ 8911 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 8912 arm_feature(env, ARM_FEATURE_EL3) && 8913 !arm_feature(env, ARM_FEATURE_EL2) && 8914 !arm_is_secure(env)) { 8915 8916 changed_daif = (env->daif ^ val) & mask; 8917 8918 if (changed_daif & CPSR_A) { 8919 /* Check to see if we are allowed to change the masking of async 8920 * abort exceptions from a non-secure state. 8921 */ 8922 if (!(env->cp15.scr_el3 & SCR_AW)) { 8923 qemu_log_mask(LOG_GUEST_ERROR, 8924 "Ignoring attempt to switch CPSR_A flag from " 8925 "non-secure world with SCR.AW bit clear\n"); 8926 mask &= ~CPSR_A; 8927 } 8928 } 8929 8930 if (changed_daif & CPSR_F) { 8931 /* Check to see if we are allowed to change the masking of FIQ 8932 * exceptions from a non-secure state. 8933 */ 8934 if (!(env->cp15.scr_el3 & SCR_FW)) { 8935 qemu_log_mask(LOG_GUEST_ERROR, 8936 "Ignoring attempt to switch CPSR_F flag from " 8937 "non-secure world with SCR.FW bit clear\n"); 8938 mask &= ~CPSR_F; 8939 } 8940 8941 /* Check whether non-maskable FIQ (NMFI) support is enabled. 8942 * If this bit is set software is not allowed to mask 8943 * FIQs, but is allowed to set CPSR_F to 0. 8944 */ 8945 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 8946 (val & CPSR_F)) { 8947 qemu_log_mask(LOG_GUEST_ERROR, 8948 "Ignoring attempt to enable CPSR_F flag " 8949 "(non-maskable FIQ [NMFI] support enabled)\n"); 8950 mask &= ~CPSR_F; 8951 } 8952 } 8953 } 8954 8955 env->daif &= ~(CPSR_AIF & mask); 8956 env->daif |= val & CPSR_AIF & mask; 8957 8958 if (write_type != CPSRWriteRaw && 8959 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 8960 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 8961 /* Note that we can only get here in USR mode if this is a 8962 * gdb stub write; for this case we follow the architectural 8963 * behaviour for guest writes in USR mode of ignoring an attempt 8964 * to switch mode. (Those are caught by translate.c for writes 8965 * triggered by guest instructions.) 8966 */ 8967 mask &= ~CPSR_M; 8968 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 8969 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 8970 * v7, and has defined behaviour in v8: 8971 * + leave CPSR.M untouched 8972 * + allow changes to the other CPSR fields 8973 * + set PSTATE.IL 8974 * For user changes via the GDB stub, we don't set PSTATE.IL, 8975 * as this would be unnecessarily harsh for a user error. 8976 */ 8977 mask &= ~CPSR_M; 8978 if (write_type != CPSRWriteByGDBStub && 8979 arm_feature(env, ARM_FEATURE_V8)) { 8980 mask |= CPSR_IL; 8981 val |= CPSR_IL; 8982 } 8983 qemu_log_mask(LOG_GUEST_ERROR, 8984 "Illegal AArch32 mode switch attempt from %s to %s\n", 8985 aarch32_mode_name(env->uncached_cpsr), 8986 aarch32_mode_name(val)); 8987 } else { 8988 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 8989 write_type == CPSRWriteExceptionReturn ? 8990 "Exception return from AArch32" : 8991 "AArch32 mode switch from", 8992 aarch32_mode_name(env->uncached_cpsr), 8993 aarch32_mode_name(val), env->regs[15]); 8994 switch_mode(env, val & CPSR_M); 8995 } 8996 } 8997 mask &= ~CACHED_CPSR_BITS; 8998 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 8999 } 9000 9001 /* Sign/zero extend */ 9002 uint32_t HELPER(sxtb16)(uint32_t x) 9003 { 9004 uint32_t res; 9005 res = (uint16_t)(int8_t)x; 9006 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9007 return res; 9008 } 9009 9010 uint32_t HELPER(uxtb16)(uint32_t x) 9011 { 9012 uint32_t res; 9013 res = (uint16_t)(uint8_t)x; 9014 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9015 return res; 9016 } 9017 9018 int32_t HELPER(sdiv)(int32_t num, int32_t den) 9019 { 9020 if (den == 0) 9021 return 0; 9022 if (num == INT_MIN && den == -1) 9023 return INT_MIN; 9024 return num / den; 9025 } 9026 9027 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 9028 { 9029 if (den == 0) 9030 return 0; 9031 return num / den; 9032 } 9033 9034 uint32_t HELPER(rbit)(uint32_t x) 9035 { 9036 return revbit32(x); 9037 } 9038 9039 #ifdef CONFIG_USER_ONLY 9040 9041 static void switch_mode(CPUARMState *env, int mode) 9042 { 9043 ARMCPU *cpu = env_archcpu(env); 9044 9045 if (mode != ARM_CPU_MODE_USR) { 9046 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9047 } 9048 } 9049 9050 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9051 uint32_t cur_el, bool secure) 9052 { 9053 return 1; 9054 } 9055 9056 void aarch64_sync_64_to_32(CPUARMState *env) 9057 { 9058 g_assert_not_reached(); 9059 } 9060 9061 #else 9062 9063 static void switch_mode(CPUARMState *env, int mode) 9064 { 9065 int old_mode; 9066 int i; 9067 9068 old_mode = env->uncached_cpsr & CPSR_M; 9069 if (mode == old_mode) 9070 return; 9071 9072 if (old_mode == ARM_CPU_MODE_FIQ) { 9073 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9074 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9075 } else if (mode == ARM_CPU_MODE_FIQ) { 9076 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9077 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9078 } 9079 9080 i = bank_number(old_mode); 9081 env->banked_r13[i] = env->regs[13]; 9082 env->banked_spsr[i] = env->spsr; 9083 9084 i = bank_number(mode); 9085 env->regs[13] = env->banked_r13[i]; 9086 env->spsr = env->banked_spsr[i]; 9087 9088 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9089 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9090 } 9091 9092 /* Physical Interrupt Target EL Lookup Table 9093 * 9094 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9095 * 9096 * The below multi-dimensional table is used for looking up the target 9097 * exception level given numerous condition criteria. Specifically, the 9098 * target EL is based on SCR and HCR routing controls as well as the 9099 * currently executing EL and secure state. 9100 * 9101 * Dimensions: 9102 * target_el_table[2][2][2][2][2][4] 9103 * | | | | | +--- Current EL 9104 * | | | | +------ Non-secure(0)/Secure(1) 9105 * | | | +--------- HCR mask override 9106 * | | +------------ SCR exec state control 9107 * | +--------------- SCR mask override 9108 * +------------------ 32-bit(0)/64-bit(1) EL3 9109 * 9110 * The table values are as such: 9111 * 0-3 = EL0-EL3 9112 * -1 = Cannot occur 9113 * 9114 * The ARM ARM target EL table includes entries indicating that an "exception 9115 * is not taken". The two cases where this is applicable are: 9116 * 1) An exception is taken from EL3 but the SCR does not have the exception 9117 * routed to EL3. 9118 * 2) An exception is taken from EL2 but the HCR does not have the exception 9119 * routed to EL2. 9120 * In these two cases, the below table contain a target of EL1. This value is 9121 * returned as it is expected that the consumer of the table data will check 9122 * for "target EL >= current EL" to ensure the exception is not taken. 9123 * 9124 * SCR HCR 9125 * 64 EA AMO From 9126 * BIT IRQ IMO Non-secure Secure 9127 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9128 */ 9129 static const int8_t target_el_table[2][2][2][2][2][4] = { 9130 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9131 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9132 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9133 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9134 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9135 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9136 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9137 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9138 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9139 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9140 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9141 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9142 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9143 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9144 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9145 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9146 }; 9147 9148 /* 9149 * Determine the target EL for physical exceptions 9150 */ 9151 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9152 uint32_t cur_el, bool secure) 9153 { 9154 CPUARMState *env = cs->env_ptr; 9155 bool rw; 9156 bool scr; 9157 bool hcr; 9158 int target_el; 9159 /* Is the highest EL AArch64? */ 9160 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9161 uint64_t hcr_el2; 9162 9163 if (arm_feature(env, ARM_FEATURE_EL3)) { 9164 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9165 } else { 9166 /* Either EL2 is the highest EL (and so the EL2 register width 9167 * is given by is64); or there is no EL2 or EL3, in which case 9168 * the value of 'rw' does not affect the table lookup anyway. 9169 */ 9170 rw = is64; 9171 } 9172 9173 hcr_el2 = arm_hcr_el2_eff(env); 9174 switch (excp_idx) { 9175 case EXCP_IRQ: 9176 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9177 hcr = hcr_el2 & HCR_IMO; 9178 break; 9179 case EXCP_FIQ: 9180 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9181 hcr = hcr_el2 & HCR_FMO; 9182 break; 9183 default: 9184 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9185 hcr = hcr_el2 & HCR_AMO; 9186 break; 9187 }; 9188 9189 /* 9190 * For these purposes, TGE and AMO/IMO/FMO both force the 9191 * interrupt to EL2. Fold TGE into the bit extracted above. 9192 */ 9193 hcr |= (hcr_el2 & HCR_TGE) != 0; 9194 9195 /* Perform a table-lookup for the target EL given the current state */ 9196 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9197 9198 assert(target_el > 0); 9199 9200 return target_el; 9201 } 9202 9203 void arm_log_exception(int idx) 9204 { 9205 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9206 const char *exc = NULL; 9207 static const char * const excnames[] = { 9208 [EXCP_UDEF] = "Undefined Instruction", 9209 [EXCP_SWI] = "SVC", 9210 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9211 [EXCP_DATA_ABORT] = "Data Abort", 9212 [EXCP_IRQ] = "IRQ", 9213 [EXCP_FIQ] = "FIQ", 9214 [EXCP_BKPT] = "Breakpoint", 9215 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9216 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9217 [EXCP_HVC] = "Hypervisor Call", 9218 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9219 [EXCP_SMC] = "Secure Monitor Call", 9220 [EXCP_VIRQ] = "Virtual IRQ", 9221 [EXCP_VFIQ] = "Virtual FIQ", 9222 [EXCP_SEMIHOST] = "Semihosting call", 9223 [EXCP_NOCP] = "v7M NOCP UsageFault", 9224 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9225 [EXCP_STKOF] = "v8M STKOF UsageFault", 9226 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9227 [EXCP_LSERR] = "v8M LSERR UsageFault", 9228 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9229 }; 9230 9231 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9232 exc = excnames[idx]; 9233 } 9234 if (!exc) { 9235 exc = "unknown"; 9236 } 9237 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 9238 } 9239 } 9240 9241 /* 9242 * Function used to synchronize QEMU's AArch64 register set with AArch32 9243 * register set. This is necessary when switching between AArch32 and AArch64 9244 * execution state. 9245 */ 9246 void aarch64_sync_32_to_64(CPUARMState *env) 9247 { 9248 int i; 9249 uint32_t mode = env->uncached_cpsr & CPSR_M; 9250 9251 /* We can blanket copy R[0:7] to X[0:7] */ 9252 for (i = 0; i < 8; i++) { 9253 env->xregs[i] = env->regs[i]; 9254 } 9255 9256 /* 9257 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9258 * Otherwise, they come from the banked user regs. 9259 */ 9260 if (mode == ARM_CPU_MODE_FIQ) { 9261 for (i = 8; i < 13; i++) { 9262 env->xregs[i] = env->usr_regs[i - 8]; 9263 } 9264 } else { 9265 for (i = 8; i < 13; i++) { 9266 env->xregs[i] = env->regs[i]; 9267 } 9268 } 9269 9270 /* 9271 * Registers x13-x23 are the various mode SP and FP registers. Registers 9272 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9273 * from the mode banked register. 9274 */ 9275 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9276 env->xregs[13] = env->regs[13]; 9277 env->xregs[14] = env->regs[14]; 9278 } else { 9279 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9280 /* HYP is an exception in that it is copied from r14 */ 9281 if (mode == ARM_CPU_MODE_HYP) { 9282 env->xregs[14] = env->regs[14]; 9283 } else { 9284 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9285 } 9286 } 9287 9288 if (mode == ARM_CPU_MODE_HYP) { 9289 env->xregs[15] = env->regs[13]; 9290 } else { 9291 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9292 } 9293 9294 if (mode == ARM_CPU_MODE_IRQ) { 9295 env->xregs[16] = env->regs[14]; 9296 env->xregs[17] = env->regs[13]; 9297 } else { 9298 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9299 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9300 } 9301 9302 if (mode == ARM_CPU_MODE_SVC) { 9303 env->xregs[18] = env->regs[14]; 9304 env->xregs[19] = env->regs[13]; 9305 } else { 9306 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9307 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9308 } 9309 9310 if (mode == ARM_CPU_MODE_ABT) { 9311 env->xregs[20] = env->regs[14]; 9312 env->xregs[21] = env->regs[13]; 9313 } else { 9314 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9315 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9316 } 9317 9318 if (mode == ARM_CPU_MODE_UND) { 9319 env->xregs[22] = env->regs[14]; 9320 env->xregs[23] = env->regs[13]; 9321 } else { 9322 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9323 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9324 } 9325 9326 /* 9327 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9328 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9329 * FIQ bank for r8-r14. 9330 */ 9331 if (mode == ARM_CPU_MODE_FIQ) { 9332 for (i = 24; i < 31; i++) { 9333 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9334 } 9335 } else { 9336 for (i = 24; i < 29; i++) { 9337 env->xregs[i] = env->fiq_regs[i - 24]; 9338 } 9339 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9340 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9341 } 9342 9343 env->pc = env->regs[15]; 9344 } 9345 9346 /* 9347 * Function used to synchronize QEMU's AArch32 register set with AArch64 9348 * register set. This is necessary when switching between AArch32 and AArch64 9349 * execution state. 9350 */ 9351 void aarch64_sync_64_to_32(CPUARMState *env) 9352 { 9353 int i; 9354 uint32_t mode = env->uncached_cpsr & CPSR_M; 9355 9356 /* We can blanket copy X[0:7] to R[0:7] */ 9357 for (i = 0; i < 8; i++) { 9358 env->regs[i] = env->xregs[i]; 9359 } 9360 9361 /* 9362 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9363 * Otherwise, we copy x8-x12 into the banked user regs. 9364 */ 9365 if (mode == ARM_CPU_MODE_FIQ) { 9366 for (i = 8; i < 13; i++) { 9367 env->usr_regs[i - 8] = env->xregs[i]; 9368 } 9369 } else { 9370 for (i = 8; i < 13; i++) { 9371 env->regs[i] = env->xregs[i]; 9372 } 9373 } 9374 9375 /* 9376 * Registers r13 & r14 depend on the current mode. 9377 * If we are in a given mode, we copy the corresponding x registers to r13 9378 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9379 * for the mode. 9380 */ 9381 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9382 env->regs[13] = env->xregs[13]; 9383 env->regs[14] = env->xregs[14]; 9384 } else { 9385 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9386 9387 /* 9388 * HYP is an exception in that it does not have its own banked r14 but 9389 * shares the USR r14 9390 */ 9391 if (mode == ARM_CPU_MODE_HYP) { 9392 env->regs[14] = env->xregs[14]; 9393 } else { 9394 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9395 } 9396 } 9397 9398 if (mode == ARM_CPU_MODE_HYP) { 9399 env->regs[13] = env->xregs[15]; 9400 } else { 9401 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9402 } 9403 9404 if (mode == ARM_CPU_MODE_IRQ) { 9405 env->regs[14] = env->xregs[16]; 9406 env->regs[13] = env->xregs[17]; 9407 } else { 9408 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9409 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9410 } 9411 9412 if (mode == ARM_CPU_MODE_SVC) { 9413 env->regs[14] = env->xregs[18]; 9414 env->regs[13] = env->xregs[19]; 9415 } else { 9416 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9417 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9418 } 9419 9420 if (mode == ARM_CPU_MODE_ABT) { 9421 env->regs[14] = env->xregs[20]; 9422 env->regs[13] = env->xregs[21]; 9423 } else { 9424 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9425 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9426 } 9427 9428 if (mode == ARM_CPU_MODE_UND) { 9429 env->regs[14] = env->xregs[22]; 9430 env->regs[13] = env->xregs[23]; 9431 } else { 9432 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9433 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9434 } 9435 9436 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9437 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9438 * FIQ bank for r8-r14. 9439 */ 9440 if (mode == ARM_CPU_MODE_FIQ) { 9441 for (i = 24; i < 31; i++) { 9442 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9443 } 9444 } else { 9445 for (i = 24; i < 29; i++) { 9446 env->fiq_regs[i - 24] = env->xregs[i]; 9447 } 9448 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9449 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9450 } 9451 9452 env->regs[15] = env->pc; 9453 } 9454 9455 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9456 uint32_t mask, uint32_t offset, 9457 uint32_t newpc) 9458 { 9459 int new_el; 9460 9461 /* Change the CPU state so as to actually take the exception. */ 9462 switch_mode(env, new_mode); 9463 9464 /* 9465 * For exceptions taken to AArch32 we must clear the SS bit in both 9466 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9467 */ 9468 env->pstate &= ~PSTATE_SS; 9469 env->spsr = cpsr_read(env); 9470 /* Clear IT bits. */ 9471 env->condexec_bits = 0; 9472 /* Switch to the new mode, and to the correct instruction set. */ 9473 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9474 9475 /* This must be after mode switching. */ 9476 new_el = arm_current_el(env); 9477 9478 /* Set new mode endianness */ 9479 env->uncached_cpsr &= ~CPSR_E; 9480 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9481 env->uncached_cpsr |= CPSR_E; 9482 } 9483 /* J and IL must always be cleared for exception entry */ 9484 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9485 env->daif |= mask; 9486 9487 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9488 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9489 env->uncached_cpsr |= CPSR_SSBS; 9490 } else { 9491 env->uncached_cpsr &= ~CPSR_SSBS; 9492 } 9493 } 9494 9495 if (new_mode == ARM_CPU_MODE_HYP) { 9496 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9497 env->elr_el[2] = env->regs[15]; 9498 } else { 9499 /* CPSR.PAN is normally preserved preserved unless... */ 9500 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9501 switch (new_el) { 9502 case 3: 9503 if (!arm_is_secure_below_el3(env)) { 9504 /* ... the target is EL3, from non-secure state. */ 9505 env->uncached_cpsr &= ~CPSR_PAN; 9506 break; 9507 } 9508 /* ... the target is EL3, from secure state ... */ 9509 /* fall through */ 9510 case 1: 9511 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9512 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9513 env->uncached_cpsr |= CPSR_PAN; 9514 } 9515 break; 9516 } 9517 } 9518 /* 9519 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9520 * and we should just guard the thumb mode on V4 9521 */ 9522 if (arm_feature(env, ARM_FEATURE_V4T)) { 9523 env->thumb = 9524 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9525 } 9526 env->regs[14] = env->regs[15] + offset; 9527 } 9528 env->regs[15] = newpc; 9529 arm_rebuild_hflags(env); 9530 } 9531 9532 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9533 { 9534 /* 9535 * Handle exception entry to Hyp mode; this is sufficiently 9536 * different to entry to other AArch32 modes that we handle it 9537 * separately here. 9538 * 9539 * The vector table entry used is always the 0x14 Hyp mode entry point, 9540 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 9541 * The offset applied to the preferred return address is always zero 9542 * (see DDI0487C.a section G1.12.3). 9543 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9544 */ 9545 uint32_t addr, mask; 9546 ARMCPU *cpu = ARM_CPU(cs); 9547 CPUARMState *env = &cpu->env; 9548 9549 switch (cs->exception_index) { 9550 case EXCP_UDEF: 9551 addr = 0x04; 9552 break; 9553 case EXCP_SWI: 9554 addr = 0x14; 9555 break; 9556 case EXCP_BKPT: 9557 /* Fall through to prefetch abort. */ 9558 case EXCP_PREFETCH_ABORT: 9559 env->cp15.ifar_s = env->exception.vaddress; 9560 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9561 (uint32_t)env->exception.vaddress); 9562 addr = 0x0c; 9563 break; 9564 case EXCP_DATA_ABORT: 9565 env->cp15.dfar_s = env->exception.vaddress; 9566 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9567 (uint32_t)env->exception.vaddress); 9568 addr = 0x10; 9569 break; 9570 case EXCP_IRQ: 9571 addr = 0x18; 9572 break; 9573 case EXCP_FIQ: 9574 addr = 0x1c; 9575 break; 9576 case EXCP_HVC: 9577 addr = 0x08; 9578 break; 9579 case EXCP_HYP_TRAP: 9580 addr = 0x14; 9581 break; 9582 default: 9583 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9584 } 9585 9586 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9587 if (!arm_feature(env, ARM_FEATURE_V8)) { 9588 /* 9589 * QEMU syndrome values are v8-style. v7 has the IL bit 9590 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9591 * If this is a v7 CPU, squash the IL bit in those cases. 9592 */ 9593 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9594 (cs->exception_index == EXCP_DATA_ABORT && 9595 !(env->exception.syndrome & ARM_EL_ISV)) || 9596 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9597 env->exception.syndrome &= ~ARM_EL_IL; 9598 } 9599 } 9600 env->cp15.esr_el[2] = env->exception.syndrome; 9601 } 9602 9603 if (arm_current_el(env) != 2 && addr < 0x14) { 9604 addr = 0x14; 9605 } 9606 9607 mask = 0; 9608 if (!(env->cp15.scr_el3 & SCR_EA)) { 9609 mask |= CPSR_A; 9610 } 9611 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9612 mask |= CPSR_I; 9613 } 9614 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9615 mask |= CPSR_F; 9616 } 9617 9618 addr += env->cp15.hvbar; 9619 9620 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9621 } 9622 9623 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9624 { 9625 ARMCPU *cpu = ARM_CPU(cs); 9626 CPUARMState *env = &cpu->env; 9627 uint32_t addr; 9628 uint32_t mask; 9629 int new_mode; 9630 uint32_t offset; 9631 uint32_t moe; 9632 9633 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9634 switch (syn_get_ec(env->exception.syndrome)) { 9635 case EC_BREAKPOINT: 9636 case EC_BREAKPOINT_SAME_EL: 9637 moe = 1; 9638 break; 9639 case EC_WATCHPOINT: 9640 case EC_WATCHPOINT_SAME_EL: 9641 moe = 10; 9642 break; 9643 case EC_AA32_BKPT: 9644 moe = 3; 9645 break; 9646 case EC_VECTORCATCH: 9647 moe = 5; 9648 break; 9649 default: 9650 moe = 0; 9651 break; 9652 } 9653 9654 if (moe) { 9655 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9656 } 9657 9658 if (env->exception.target_el == 2) { 9659 arm_cpu_do_interrupt_aarch32_hyp(cs); 9660 return; 9661 } 9662 9663 switch (cs->exception_index) { 9664 case EXCP_UDEF: 9665 new_mode = ARM_CPU_MODE_UND; 9666 addr = 0x04; 9667 mask = CPSR_I; 9668 if (env->thumb) 9669 offset = 2; 9670 else 9671 offset = 4; 9672 break; 9673 case EXCP_SWI: 9674 new_mode = ARM_CPU_MODE_SVC; 9675 addr = 0x08; 9676 mask = CPSR_I; 9677 /* The PC already points to the next instruction. */ 9678 offset = 0; 9679 break; 9680 case EXCP_BKPT: 9681 /* Fall through to prefetch abort. */ 9682 case EXCP_PREFETCH_ABORT: 9683 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9684 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9685 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9686 env->exception.fsr, (uint32_t)env->exception.vaddress); 9687 new_mode = ARM_CPU_MODE_ABT; 9688 addr = 0x0c; 9689 mask = CPSR_A | CPSR_I; 9690 offset = 4; 9691 break; 9692 case EXCP_DATA_ABORT: 9693 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9694 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9695 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9696 env->exception.fsr, 9697 (uint32_t)env->exception.vaddress); 9698 new_mode = ARM_CPU_MODE_ABT; 9699 addr = 0x10; 9700 mask = CPSR_A | CPSR_I; 9701 offset = 8; 9702 break; 9703 case EXCP_IRQ: 9704 new_mode = ARM_CPU_MODE_IRQ; 9705 addr = 0x18; 9706 /* Disable IRQ and imprecise data aborts. */ 9707 mask = CPSR_A | CPSR_I; 9708 offset = 4; 9709 if (env->cp15.scr_el3 & SCR_IRQ) { 9710 /* IRQ routed to monitor mode */ 9711 new_mode = ARM_CPU_MODE_MON; 9712 mask |= CPSR_F; 9713 } 9714 break; 9715 case EXCP_FIQ: 9716 new_mode = ARM_CPU_MODE_FIQ; 9717 addr = 0x1c; 9718 /* Disable FIQ, IRQ and imprecise data aborts. */ 9719 mask = CPSR_A | CPSR_I | CPSR_F; 9720 if (env->cp15.scr_el3 & SCR_FIQ) { 9721 /* FIQ routed to monitor mode */ 9722 new_mode = ARM_CPU_MODE_MON; 9723 } 9724 offset = 4; 9725 break; 9726 case EXCP_VIRQ: 9727 new_mode = ARM_CPU_MODE_IRQ; 9728 addr = 0x18; 9729 /* Disable IRQ and imprecise data aborts. */ 9730 mask = CPSR_A | CPSR_I; 9731 offset = 4; 9732 break; 9733 case EXCP_VFIQ: 9734 new_mode = ARM_CPU_MODE_FIQ; 9735 addr = 0x1c; 9736 /* Disable FIQ, IRQ and imprecise data aborts. */ 9737 mask = CPSR_A | CPSR_I | CPSR_F; 9738 offset = 4; 9739 break; 9740 case EXCP_SMC: 9741 new_mode = ARM_CPU_MODE_MON; 9742 addr = 0x08; 9743 mask = CPSR_A | CPSR_I | CPSR_F; 9744 offset = 0; 9745 break; 9746 default: 9747 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9748 return; /* Never happens. Keep compiler happy. */ 9749 } 9750 9751 if (new_mode == ARM_CPU_MODE_MON) { 9752 addr += env->cp15.mvbar; 9753 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9754 /* High vectors. When enabled, base address cannot be remapped. */ 9755 addr += 0xffff0000; 9756 } else { 9757 /* ARM v7 architectures provide a vector base address register to remap 9758 * the interrupt vector table. 9759 * This register is only followed in non-monitor mode, and is banked. 9760 * Note: only bits 31:5 are valid. 9761 */ 9762 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9763 } 9764 9765 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9766 env->cp15.scr_el3 &= ~SCR_NS; 9767 } 9768 9769 take_aarch32_exception(env, new_mode, mask, offset, addr); 9770 } 9771 9772 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9773 { 9774 /* 9775 * Return the register number of the AArch64 view of the AArch32 9776 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9777 * be that of the AArch32 mode the exception came from. 9778 */ 9779 int mode = env->uncached_cpsr & CPSR_M; 9780 9781 switch (aarch32_reg) { 9782 case 0 ... 7: 9783 return aarch32_reg; 9784 case 8 ... 12: 9785 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9786 case 13: 9787 switch (mode) { 9788 case ARM_CPU_MODE_USR: 9789 case ARM_CPU_MODE_SYS: 9790 return 13; 9791 case ARM_CPU_MODE_HYP: 9792 return 15; 9793 case ARM_CPU_MODE_IRQ: 9794 return 17; 9795 case ARM_CPU_MODE_SVC: 9796 return 19; 9797 case ARM_CPU_MODE_ABT: 9798 return 21; 9799 case ARM_CPU_MODE_UND: 9800 return 23; 9801 case ARM_CPU_MODE_FIQ: 9802 return 29; 9803 default: 9804 g_assert_not_reached(); 9805 } 9806 case 14: 9807 switch (mode) { 9808 case ARM_CPU_MODE_USR: 9809 case ARM_CPU_MODE_SYS: 9810 case ARM_CPU_MODE_HYP: 9811 return 14; 9812 case ARM_CPU_MODE_IRQ: 9813 return 16; 9814 case ARM_CPU_MODE_SVC: 9815 return 18; 9816 case ARM_CPU_MODE_ABT: 9817 return 20; 9818 case ARM_CPU_MODE_UND: 9819 return 22; 9820 case ARM_CPU_MODE_FIQ: 9821 return 30; 9822 default: 9823 g_assert_not_reached(); 9824 } 9825 case 15: 9826 return 31; 9827 default: 9828 g_assert_not_reached(); 9829 } 9830 } 9831 9832 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 9833 { 9834 uint32_t ret = cpsr_read(env); 9835 9836 /* Move DIT to the correct location for SPSR_ELx */ 9837 if (ret & CPSR_DIT) { 9838 ret &= ~CPSR_DIT; 9839 ret |= PSTATE_DIT; 9840 } 9841 /* Merge PSTATE.SS into SPSR_ELx */ 9842 ret |= env->pstate & PSTATE_SS; 9843 9844 return ret; 9845 } 9846 9847 /* Handle exception entry to a target EL which is using AArch64 */ 9848 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9849 { 9850 ARMCPU *cpu = ARM_CPU(cs); 9851 CPUARMState *env = &cpu->env; 9852 unsigned int new_el = env->exception.target_el; 9853 target_ulong addr = env->cp15.vbar_el[new_el]; 9854 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9855 unsigned int old_mode; 9856 unsigned int cur_el = arm_current_el(env); 9857 int rt; 9858 9859 /* 9860 * Note that new_el can never be 0. If cur_el is 0, then 9861 * el0_a64 is is_a64(), else el0_a64 is ignored. 9862 */ 9863 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9864 9865 if (cur_el < new_el) { 9866 /* Entry vector offset depends on whether the implemented EL 9867 * immediately lower than the target level is using AArch32 or AArch64 9868 */ 9869 bool is_aa64; 9870 uint64_t hcr; 9871 9872 switch (new_el) { 9873 case 3: 9874 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 9875 break; 9876 case 2: 9877 hcr = arm_hcr_el2_eff(env); 9878 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 9879 is_aa64 = (hcr & HCR_RW) != 0; 9880 break; 9881 } 9882 /* fall through */ 9883 case 1: 9884 is_aa64 = is_a64(env); 9885 break; 9886 default: 9887 g_assert_not_reached(); 9888 } 9889 9890 if (is_aa64) { 9891 addr += 0x400; 9892 } else { 9893 addr += 0x600; 9894 } 9895 } else if (pstate_read(env) & PSTATE_SP) { 9896 addr += 0x200; 9897 } 9898 9899 switch (cs->exception_index) { 9900 case EXCP_PREFETCH_ABORT: 9901 case EXCP_DATA_ABORT: 9902 env->cp15.far_el[new_el] = env->exception.vaddress; 9903 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 9904 env->cp15.far_el[new_el]); 9905 /* fall through */ 9906 case EXCP_BKPT: 9907 case EXCP_UDEF: 9908 case EXCP_SWI: 9909 case EXCP_HVC: 9910 case EXCP_HYP_TRAP: 9911 case EXCP_SMC: 9912 switch (syn_get_ec(env->exception.syndrome)) { 9913 case EC_ADVSIMDFPACCESSTRAP: 9914 /* 9915 * QEMU internal FP/SIMD syndromes from AArch32 include the 9916 * TA and coproc fields which are only exposed if the exception 9917 * is taken to AArch32 Hyp mode. Mask them out to get a valid 9918 * AArch64 format syndrome. 9919 */ 9920 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 9921 break; 9922 case EC_CP14RTTRAP: 9923 case EC_CP15RTTRAP: 9924 case EC_CP14DTTRAP: 9925 /* 9926 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 9927 * the raw register field from the insn; when taking this to 9928 * AArch64 we must convert it to the AArch64 view of the register 9929 * number. Notice that we read a 4-bit AArch32 register number and 9930 * write back a 5-bit AArch64 one. 9931 */ 9932 rt = extract32(env->exception.syndrome, 5, 4); 9933 rt = aarch64_regnum(env, rt); 9934 env->exception.syndrome = deposit32(env->exception.syndrome, 9935 5, 5, rt); 9936 break; 9937 case EC_CP15RRTTRAP: 9938 case EC_CP14RRTTRAP: 9939 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 9940 rt = extract32(env->exception.syndrome, 5, 4); 9941 rt = aarch64_regnum(env, rt); 9942 env->exception.syndrome = deposit32(env->exception.syndrome, 9943 5, 5, rt); 9944 rt = extract32(env->exception.syndrome, 10, 4); 9945 rt = aarch64_regnum(env, rt); 9946 env->exception.syndrome = deposit32(env->exception.syndrome, 9947 10, 5, rt); 9948 break; 9949 } 9950 env->cp15.esr_el[new_el] = env->exception.syndrome; 9951 break; 9952 case EXCP_IRQ: 9953 case EXCP_VIRQ: 9954 addr += 0x80; 9955 break; 9956 case EXCP_FIQ: 9957 case EXCP_VFIQ: 9958 addr += 0x100; 9959 break; 9960 default: 9961 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9962 } 9963 9964 if (is_a64(env)) { 9965 old_mode = pstate_read(env); 9966 aarch64_save_sp(env, arm_current_el(env)); 9967 env->elr_el[new_el] = env->pc; 9968 } else { 9969 old_mode = cpsr_read_for_spsr_elx(env); 9970 env->elr_el[new_el] = env->regs[15]; 9971 9972 aarch64_sync_32_to_64(env); 9973 9974 env->condexec_bits = 0; 9975 } 9976 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 9977 9978 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 9979 env->elr_el[new_el]); 9980 9981 if (cpu_isar_feature(aa64_pan, cpu)) { 9982 /* The value of PSTATE.PAN is normally preserved, except when ... */ 9983 new_mode |= old_mode & PSTATE_PAN; 9984 switch (new_el) { 9985 case 2: 9986 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 9987 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 9988 != (HCR_E2H | HCR_TGE)) { 9989 break; 9990 } 9991 /* fall through */ 9992 case 1: 9993 /* ... the target is EL1 ... */ 9994 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 9995 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 9996 new_mode |= PSTATE_PAN; 9997 } 9998 break; 9999 } 10000 } 10001 if (cpu_isar_feature(aa64_mte, cpu)) { 10002 new_mode |= PSTATE_TCO; 10003 } 10004 10005 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10006 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10007 new_mode |= PSTATE_SSBS; 10008 } else { 10009 new_mode &= ~PSTATE_SSBS; 10010 } 10011 } 10012 10013 pstate_write(env, PSTATE_DAIF | new_mode); 10014 env->aarch64 = 1; 10015 aarch64_restore_sp(env, new_el); 10016 helper_rebuild_hflags_a64(env, new_el); 10017 10018 env->pc = addr; 10019 10020 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10021 new_el, env->pc, pstate_read(env)); 10022 } 10023 10024 /* 10025 * Do semihosting call and set the appropriate return value. All the 10026 * permission and validity checks have been done at translate time. 10027 * 10028 * We only see semihosting exceptions in TCG only as they are not 10029 * trapped to the hypervisor in KVM. 10030 */ 10031 #ifdef CONFIG_TCG 10032 static void handle_semihosting(CPUState *cs) 10033 { 10034 ARMCPU *cpu = ARM_CPU(cs); 10035 CPUARMState *env = &cpu->env; 10036 10037 if (is_a64(env)) { 10038 qemu_log_mask(CPU_LOG_INT, 10039 "...handling as semihosting call 0x%" PRIx64 "\n", 10040 env->xregs[0]); 10041 env->xregs[0] = do_common_semihosting(cs); 10042 env->pc += 4; 10043 } else { 10044 qemu_log_mask(CPU_LOG_INT, 10045 "...handling as semihosting call 0x%x\n", 10046 env->regs[0]); 10047 env->regs[0] = do_common_semihosting(cs); 10048 env->regs[15] += env->thumb ? 2 : 4; 10049 } 10050 } 10051 #endif 10052 10053 /* Handle a CPU exception for A and R profile CPUs. 10054 * Do any appropriate logging, handle PSCI calls, and then hand off 10055 * to the AArch64-entry or AArch32-entry function depending on the 10056 * target exception level's register width. 10057 * 10058 * Note: this is used for both TCG (as the do_interrupt tcg op), 10059 * and KVM to re-inject guest debug exceptions, and to 10060 * inject a Synchronous-External-Abort. 10061 */ 10062 void arm_cpu_do_interrupt(CPUState *cs) 10063 { 10064 ARMCPU *cpu = ARM_CPU(cs); 10065 CPUARMState *env = &cpu->env; 10066 unsigned int new_el = env->exception.target_el; 10067 10068 assert(!arm_feature(env, ARM_FEATURE_M)); 10069 10070 arm_log_exception(cs->exception_index); 10071 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10072 new_el); 10073 if (qemu_loglevel_mask(CPU_LOG_INT) 10074 && !excp_is_internal(cs->exception_index)) { 10075 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10076 syn_get_ec(env->exception.syndrome), 10077 env->exception.syndrome); 10078 } 10079 10080 if (arm_is_psci_call(cpu, cs->exception_index)) { 10081 arm_handle_psci_call(cpu); 10082 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10083 return; 10084 } 10085 10086 /* 10087 * Semihosting semantics depend on the register width of the code 10088 * that caused the exception, not the target exception level, so 10089 * must be handled here. 10090 */ 10091 #ifdef CONFIG_TCG 10092 if (cs->exception_index == EXCP_SEMIHOST) { 10093 handle_semihosting(cs); 10094 return; 10095 } 10096 #endif 10097 10098 /* Hooks may change global state so BQL should be held, also the 10099 * BQL needs to be held for any modification of 10100 * cs->interrupt_request. 10101 */ 10102 g_assert(qemu_mutex_iothread_locked()); 10103 10104 arm_call_pre_el_change_hook(cpu); 10105 10106 assert(!excp_is_internal(cs->exception_index)); 10107 if (arm_el_is_aa64(env, new_el)) { 10108 arm_cpu_do_interrupt_aarch64(cs); 10109 } else { 10110 arm_cpu_do_interrupt_aarch32(cs); 10111 } 10112 10113 arm_call_el_change_hook(cpu); 10114 10115 if (!kvm_enabled()) { 10116 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10117 } 10118 } 10119 #endif /* !CONFIG_USER_ONLY */ 10120 10121 uint64_t arm_sctlr(CPUARMState *env, int el) 10122 { 10123 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10124 if (el == 0) { 10125 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10126 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10127 ? 2 : 1; 10128 } 10129 return env->cp15.sctlr_el[el]; 10130 } 10131 10132 /* Return the SCTLR value which controls this address translation regime */ 10133 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10134 { 10135 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10136 } 10137 10138 #ifndef CONFIG_USER_ONLY 10139 10140 /* Return true if the specified stage of address translation is disabled */ 10141 static inline bool regime_translation_disabled(CPUARMState *env, 10142 ARMMMUIdx mmu_idx) 10143 { 10144 uint64_t hcr_el2; 10145 10146 if (arm_feature(env, ARM_FEATURE_M)) { 10147 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10148 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10149 case R_V7M_MPU_CTRL_ENABLE_MASK: 10150 /* Enabled, but not for HardFault and NMI */ 10151 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10152 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10153 /* Enabled for all cases */ 10154 return false; 10155 case 0: 10156 default: 10157 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10158 * we warned about that in armv7m_nvic.c when the guest set it. 10159 */ 10160 return true; 10161 } 10162 } 10163 10164 hcr_el2 = arm_hcr_el2_eff(env); 10165 10166 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10167 /* HCR.DC means HCR.VM behaves as 1 */ 10168 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10169 } 10170 10171 if (hcr_el2 & HCR_TGE) { 10172 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10173 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10174 return true; 10175 } 10176 } 10177 10178 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10179 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10180 return true; 10181 } 10182 10183 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10184 } 10185 10186 static inline bool regime_translation_big_endian(CPUARMState *env, 10187 ARMMMUIdx mmu_idx) 10188 { 10189 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10190 } 10191 10192 /* Return the TTBR associated with this translation regime */ 10193 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10194 int ttbrn) 10195 { 10196 if (mmu_idx == ARMMMUIdx_Stage2) { 10197 return env->cp15.vttbr_el2; 10198 } 10199 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10200 return env->cp15.vsttbr_el2; 10201 } 10202 if (ttbrn == 0) { 10203 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10204 } else { 10205 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10206 } 10207 } 10208 10209 #endif /* !CONFIG_USER_ONLY */ 10210 10211 /* Convert a possible stage1+2 MMU index into the appropriate 10212 * stage 1 MMU index 10213 */ 10214 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10215 { 10216 switch (mmu_idx) { 10217 case ARMMMUIdx_SE10_0: 10218 return ARMMMUIdx_Stage1_SE0; 10219 case ARMMMUIdx_SE10_1: 10220 return ARMMMUIdx_Stage1_SE1; 10221 case ARMMMUIdx_SE10_1_PAN: 10222 return ARMMMUIdx_Stage1_SE1_PAN; 10223 case ARMMMUIdx_E10_0: 10224 return ARMMMUIdx_Stage1_E0; 10225 case ARMMMUIdx_E10_1: 10226 return ARMMMUIdx_Stage1_E1; 10227 case ARMMMUIdx_E10_1_PAN: 10228 return ARMMMUIdx_Stage1_E1_PAN; 10229 default: 10230 return mmu_idx; 10231 } 10232 } 10233 10234 /* Return true if the translation regime is using LPAE format page tables */ 10235 static inline bool regime_using_lpae_format(CPUARMState *env, 10236 ARMMMUIdx mmu_idx) 10237 { 10238 int el = regime_el(env, mmu_idx); 10239 if (el == 2 || arm_el_is_aa64(env, el)) { 10240 return true; 10241 } 10242 if (arm_feature(env, ARM_FEATURE_LPAE) 10243 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10244 return true; 10245 } 10246 return false; 10247 } 10248 10249 /* Returns true if the stage 1 translation regime is using LPAE format page 10250 * tables. Used when raising alignment exceptions, whose FSR changes depending 10251 * on whether the long or short descriptor format is in use. */ 10252 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10253 { 10254 mmu_idx = stage_1_mmu_idx(mmu_idx); 10255 10256 return regime_using_lpae_format(env, mmu_idx); 10257 } 10258 10259 #ifndef CONFIG_USER_ONLY 10260 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10261 { 10262 switch (mmu_idx) { 10263 case ARMMMUIdx_SE10_0: 10264 case ARMMMUIdx_E20_0: 10265 case ARMMMUIdx_SE20_0: 10266 case ARMMMUIdx_Stage1_E0: 10267 case ARMMMUIdx_Stage1_SE0: 10268 case ARMMMUIdx_MUser: 10269 case ARMMMUIdx_MSUser: 10270 case ARMMMUIdx_MUserNegPri: 10271 case ARMMMUIdx_MSUserNegPri: 10272 return true; 10273 default: 10274 return false; 10275 case ARMMMUIdx_E10_0: 10276 case ARMMMUIdx_E10_1: 10277 case ARMMMUIdx_E10_1_PAN: 10278 g_assert_not_reached(); 10279 } 10280 } 10281 10282 /* Translate section/page access permissions to page 10283 * R/W protection flags 10284 * 10285 * @env: CPUARMState 10286 * @mmu_idx: MMU index indicating required translation regime 10287 * @ap: The 3-bit access permissions (AP[2:0]) 10288 * @domain_prot: The 2-bit domain access permissions 10289 */ 10290 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10291 int ap, int domain_prot) 10292 { 10293 bool is_user = regime_is_user(env, mmu_idx); 10294 10295 if (domain_prot == 3) { 10296 return PAGE_READ | PAGE_WRITE; 10297 } 10298 10299 switch (ap) { 10300 case 0: 10301 if (arm_feature(env, ARM_FEATURE_V7)) { 10302 return 0; 10303 } 10304 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10305 case SCTLR_S: 10306 return is_user ? 0 : PAGE_READ; 10307 case SCTLR_R: 10308 return PAGE_READ; 10309 default: 10310 return 0; 10311 } 10312 case 1: 10313 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10314 case 2: 10315 if (is_user) { 10316 return PAGE_READ; 10317 } else { 10318 return PAGE_READ | PAGE_WRITE; 10319 } 10320 case 3: 10321 return PAGE_READ | PAGE_WRITE; 10322 case 4: /* Reserved. */ 10323 return 0; 10324 case 5: 10325 return is_user ? 0 : PAGE_READ; 10326 case 6: 10327 return PAGE_READ; 10328 case 7: 10329 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10330 return 0; 10331 } 10332 return PAGE_READ; 10333 default: 10334 g_assert_not_reached(); 10335 } 10336 } 10337 10338 /* Translate section/page access permissions to page 10339 * R/W protection flags. 10340 * 10341 * @ap: The 2-bit simple AP (AP[2:1]) 10342 * @is_user: TRUE if accessing from PL0 10343 */ 10344 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10345 { 10346 switch (ap) { 10347 case 0: 10348 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10349 case 1: 10350 return PAGE_READ | PAGE_WRITE; 10351 case 2: 10352 return is_user ? 0 : PAGE_READ; 10353 case 3: 10354 return PAGE_READ; 10355 default: 10356 g_assert_not_reached(); 10357 } 10358 } 10359 10360 static inline int 10361 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10362 { 10363 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10364 } 10365 10366 /* Translate S2 section/page access permissions to protection flags 10367 * 10368 * @env: CPUARMState 10369 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10370 * @xn: XN (execute-never) bits 10371 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10372 */ 10373 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10374 { 10375 int prot = 0; 10376 10377 if (s2ap & 1) { 10378 prot |= PAGE_READ; 10379 } 10380 if (s2ap & 2) { 10381 prot |= PAGE_WRITE; 10382 } 10383 10384 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10385 switch (xn) { 10386 case 0: 10387 prot |= PAGE_EXEC; 10388 break; 10389 case 1: 10390 if (s1_is_el0) { 10391 prot |= PAGE_EXEC; 10392 } 10393 break; 10394 case 2: 10395 break; 10396 case 3: 10397 if (!s1_is_el0) { 10398 prot |= PAGE_EXEC; 10399 } 10400 break; 10401 default: 10402 g_assert_not_reached(); 10403 } 10404 } else { 10405 if (!extract32(xn, 1, 1)) { 10406 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10407 prot |= PAGE_EXEC; 10408 } 10409 } 10410 } 10411 return prot; 10412 } 10413 10414 /* Translate section/page access permissions to protection flags 10415 * 10416 * @env: CPUARMState 10417 * @mmu_idx: MMU index indicating required translation regime 10418 * @is_aa64: TRUE if AArch64 10419 * @ap: The 2-bit simple AP (AP[2:1]) 10420 * @ns: NS (non-secure) bit 10421 * @xn: XN (execute-never) bit 10422 * @pxn: PXN (privileged execute-never) bit 10423 */ 10424 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10425 int ap, int ns, int xn, int pxn) 10426 { 10427 bool is_user = regime_is_user(env, mmu_idx); 10428 int prot_rw, user_rw; 10429 bool have_wxn; 10430 int wxn = 0; 10431 10432 assert(mmu_idx != ARMMMUIdx_Stage2); 10433 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10434 10435 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10436 if (is_user) { 10437 prot_rw = user_rw; 10438 } else { 10439 if (user_rw && regime_is_pan(env, mmu_idx)) { 10440 /* PAN forbids data accesses but doesn't affect insn fetch */ 10441 prot_rw = 0; 10442 } else { 10443 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10444 } 10445 } 10446 10447 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10448 return prot_rw; 10449 } 10450 10451 /* TODO have_wxn should be replaced with 10452 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10453 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10454 * compatible processors have EL2, which is required for [U]WXN. 10455 */ 10456 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10457 10458 if (have_wxn) { 10459 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10460 } 10461 10462 if (is_aa64) { 10463 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10464 xn = pxn || (user_rw & PAGE_WRITE); 10465 } 10466 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10467 switch (regime_el(env, mmu_idx)) { 10468 case 1: 10469 case 3: 10470 if (is_user) { 10471 xn = xn || !(user_rw & PAGE_READ); 10472 } else { 10473 int uwxn = 0; 10474 if (have_wxn) { 10475 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10476 } 10477 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10478 (uwxn && (user_rw & PAGE_WRITE)); 10479 } 10480 break; 10481 case 2: 10482 break; 10483 } 10484 } else { 10485 xn = wxn = 0; 10486 } 10487 10488 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10489 return prot_rw; 10490 } 10491 return prot_rw | PAGE_EXEC; 10492 } 10493 10494 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10495 uint32_t *table, uint32_t address) 10496 { 10497 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10498 TCR *tcr = regime_tcr(env, mmu_idx); 10499 10500 if (address & tcr->mask) { 10501 if (tcr->raw_tcr & TTBCR_PD1) { 10502 /* Translation table walk disabled for TTBR1 */ 10503 return false; 10504 } 10505 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10506 } else { 10507 if (tcr->raw_tcr & TTBCR_PD0) { 10508 /* Translation table walk disabled for TTBR0 */ 10509 return false; 10510 } 10511 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10512 } 10513 *table |= (address >> 18) & 0x3ffc; 10514 return true; 10515 } 10516 10517 /* Translate a S1 pagetable walk through S2 if needed. */ 10518 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10519 hwaddr addr, bool *is_secure, 10520 ARMMMUFaultInfo *fi) 10521 { 10522 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10523 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10524 target_ulong s2size; 10525 hwaddr s2pa; 10526 int s2prot; 10527 int ret; 10528 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10529 : ARMMMUIdx_Stage2; 10530 ARMCacheAttrs cacheattrs = {}; 10531 MemTxAttrs txattrs = {}; 10532 10533 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10534 &s2pa, &txattrs, &s2prot, &s2size, fi, 10535 &cacheattrs); 10536 if (ret) { 10537 assert(fi->type != ARMFault_None); 10538 fi->s2addr = addr; 10539 fi->stage2 = true; 10540 fi->s1ptw = true; 10541 fi->s1ns = !*is_secure; 10542 return ~0; 10543 } 10544 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10545 (cacheattrs.attrs & 0xf0) == 0) { 10546 /* 10547 * PTW set and S1 walk touched S2 Device memory: 10548 * generate Permission fault. 10549 */ 10550 fi->type = ARMFault_Permission; 10551 fi->s2addr = addr; 10552 fi->stage2 = true; 10553 fi->s1ptw = true; 10554 fi->s1ns = !*is_secure; 10555 return ~0; 10556 } 10557 10558 if (arm_is_secure_below_el3(env)) { 10559 /* Check if page table walk is to secure or non-secure PA space. */ 10560 if (*is_secure) { 10561 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10562 } else { 10563 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10564 } 10565 } else { 10566 assert(!*is_secure); 10567 } 10568 10569 addr = s2pa; 10570 } 10571 return addr; 10572 } 10573 10574 /* All loads done in the course of a page table walk go through here. */ 10575 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10576 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10577 { 10578 ARMCPU *cpu = ARM_CPU(cs); 10579 CPUARMState *env = &cpu->env; 10580 MemTxAttrs attrs = {}; 10581 MemTxResult result = MEMTX_OK; 10582 AddressSpace *as; 10583 uint32_t data; 10584 10585 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10586 attrs.secure = is_secure; 10587 as = arm_addressspace(cs, attrs); 10588 if (fi->s1ptw) { 10589 return 0; 10590 } 10591 if (regime_translation_big_endian(env, mmu_idx)) { 10592 data = address_space_ldl_be(as, addr, attrs, &result); 10593 } else { 10594 data = address_space_ldl_le(as, addr, attrs, &result); 10595 } 10596 if (result == MEMTX_OK) { 10597 return data; 10598 } 10599 fi->type = ARMFault_SyncExternalOnWalk; 10600 fi->ea = arm_extabort_type(result); 10601 return 0; 10602 } 10603 10604 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10605 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10606 { 10607 ARMCPU *cpu = ARM_CPU(cs); 10608 CPUARMState *env = &cpu->env; 10609 MemTxAttrs attrs = {}; 10610 MemTxResult result = MEMTX_OK; 10611 AddressSpace *as; 10612 uint64_t data; 10613 10614 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10615 attrs.secure = is_secure; 10616 as = arm_addressspace(cs, attrs); 10617 if (fi->s1ptw) { 10618 return 0; 10619 } 10620 if (regime_translation_big_endian(env, mmu_idx)) { 10621 data = address_space_ldq_be(as, addr, attrs, &result); 10622 } else { 10623 data = address_space_ldq_le(as, addr, attrs, &result); 10624 } 10625 if (result == MEMTX_OK) { 10626 return data; 10627 } 10628 fi->type = ARMFault_SyncExternalOnWalk; 10629 fi->ea = arm_extabort_type(result); 10630 return 0; 10631 } 10632 10633 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10634 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10635 hwaddr *phys_ptr, int *prot, 10636 target_ulong *page_size, 10637 ARMMMUFaultInfo *fi) 10638 { 10639 CPUState *cs = env_cpu(env); 10640 int level = 1; 10641 uint32_t table; 10642 uint32_t desc; 10643 int type; 10644 int ap; 10645 int domain = 0; 10646 int domain_prot; 10647 hwaddr phys_addr; 10648 uint32_t dacr; 10649 10650 /* Pagetable walk. */ 10651 /* Lookup l1 descriptor. */ 10652 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10653 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10654 fi->type = ARMFault_Translation; 10655 goto do_fault; 10656 } 10657 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10658 mmu_idx, fi); 10659 if (fi->type != ARMFault_None) { 10660 goto do_fault; 10661 } 10662 type = (desc & 3); 10663 domain = (desc >> 5) & 0x0f; 10664 if (regime_el(env, mmu_idx) == 1) { 10665 dacr = env->cp15.dacr_ns; 10666 } else { 10667 dacr = env->cp15.dacr_s; 10668 } 10669 domain_prot = (dacr >> (domain * 2)) & 3; 10670 if (type == 0) { 10671 /* Section translation fault. */ 10672 fi->type = ARMFault_Translation; 10673 goto do_fault; 10674 } 10675 if (type != 2) { 10676 level = 2; 10677 } 10678 if (domain_prot == 0 || domain_prot == 2) { 10679 fi->type = ARMFault_Domain; 10680 goto do_fault; 10681 } 10682 if (type == 2) { 10683 /* 1Mb section. */ 10684 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10685 ap = (desc >> 10) & 3; 10686 *page_size = 1024 * 1024; 10687 } else { 10688 /* Lookup l2 entry. */ 10689 if (type == 1) { 10690 /* Coarse pagetable. */ 10691 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10692 } else { 10693 /* Fine pagetable. */ 10694 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10695 } 10696 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10697 mmu_idx, fi); 10698 if (fi->type != ARMFault_None) { 10699 goto do_fault; 10700 } 10701 switch (desc & 3) { 10702 case 0: /* Page translation fault. */ 10703 fi->type = ARMFault_Translation; 10704 goto do_fault; 10705 case 1: /* 64k page. */ 10706 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10707 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10708 *page_size = 0x10000; 10709 break; 10710 case 2: /* 4k page. */ 10711 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10712 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10713 *page_size = 0x1000; 10714 break; 10715 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10716 if (type == 1) { 10717 /* ARMv6/XScale extended small page format */ 10718 if (arm_feature(env, ARM_FEATURE_XSCALE) 10719 || arm_feature(env, ARM_FEATURE_V6)) { 10720 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10721 *page_size = 0x1000; 10722 } else { 10723 /* UNPREDICTABLE in ARMv5; we choose to take a 10724 * page translation fault. 10725 */ 10726 fi->type = ARMFault_Translation; 10727 goto do_fault; 10728 } 10729 } else { 10730 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10731 *page_size = 0x400; 10732 } 10733 ap = (desc >> 4) & 3; 10734 break; 10735 default: 10736 /* Never happens, but compiler isn't smart enough to tell. */ 10737 abort(); 10738 } 10739 } 10740 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10741 *prot |= *prot ? PAGE_EXEC : 0; 10742 if (!(*prot & (1 << access_type))) { 10743 /* Access permission fault. */ 10744 fi->type = ARMFault_Permission; 10745 goto do_fault; 10746 } 10747 *phys_ptr = phys_addr; 10748 return false; 10749 do_fault: 10750 fi->domain = domain; 10751 fi->level = level; 10752 return true; 10753 } 10754 10755 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10756 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10757 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10758 target_ulong *page_size, ARMMMUFaultInfo *fi) 10759 { 10760 CPUState *cs = env_cpu(env); 10761 ARMCPU *cpu = env_archcpu(env); 10762 int level = 1; 10763 uint32_t table; 10764 uint32_t desc; 10765 uint32_t xn; 10766 uint32_t pxn = 0; 10767 int type; 10768 int ap; 10769 int domain = 0; 10770 int domain_prot; 10771 hwaddr phys_addr; 10772 uint32_t dacr; 10773 bool ns; 10774 10775 /* Pagetable walk. */ 10776 /* Lookup l1 descriptor. */ 10777 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10778 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10779 fi->type = ARMFault_Translation; 10780 goto do_fault; 10781 } 10782 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10783 mmu_idx, fi); 10784 if (fi->type != ARMFault_None) { 10785 goto do_fault; 10786 } 10787 type = (desc & 3); 10788 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 10789 /* Section translation fault, or attempt to use the encoding 10790 * which is Reserved on implementations without PXN. 10791 */ 10792 fi->type = ARMFault_Translation; 10793 goto do_fault; 10794 } 10795 if ((type == 1) || !(desc & (1 << 18))) { 10796 /* Page or Section. */ 10797 domain = (desc >> 5) & 0x0f; 10798 } 10799 if (regime_el(env, mmu_idx) == 1) { 10800 dacr = env->cp15.dacr_ns; 10801 } else { 10802 dacr = env->cp15.dacr_s; 10803 } 10804 if (type == 1) { 10805 level = 2; 10806 } 10807 domain_prot = (dacr >> (domain * 2)) & 3; 10808 if (domain_prot == 0 || domain_prot == 2) { 10809 /* Section or Page domain fault */ 10810 fi->type = ARMFault_Domain; 10811 goto do_fault; 10812 } 10813 if (type != 1) { 10814 if (desc & (1 << 18)) { 10815 /* Supersection. */ 10816 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10817 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10818 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10819 *page_size = 0x1000000; 10820 } else { 10821 /* Section. */ 10822 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10823 *page_size = 0x100000; 10824 } 10825 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10826 xn = desc & (1 << 4); 10827 pxn = desc & 1; 10828 ns = extract32(desc, 19, 1); 10829 } else { 10830 if (cpu_isar_feature(aa32_pxn, cpu)) { 10831 pxn = (desc >> 2) & 1; 10832 } 10833 ns = extract32(desc, 3, 1); 10834 /* Lookup l2 entry. */ 10835 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10836 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10837 mmu_idx, fi); 10838 if (fi->type != ARMFault_None) { 10839 goto do_fault; 10840 } 10841 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10842 switch (desc & 3) { 10843 case 0: /* Page translation fault. */ 10844 fi->type = ARMFault_Translation; 10845 goto do_fault; 10846 case 1: /* 64k page. */ 10847 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10848 xn = desc & (1 << 15); 10849 *page_size = 0x10000; 10850 break; 10851 case 2: case 3: /* 4k page. */ 10852 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10853 xn = desc & 1; 10854 *page_size = 0x1000; 10855 break; 10856 default: 10857 /* Never happens, but compiler isn't smart enough to tell. */ 10858 abort(); 10859 } 10860 } 10861 if (domain_prot == 3) { 10862 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10863 } else { 10864 if (pxn && !regime_is_user(env, mmu_idx)) { 10865 xn = 1; 10866 } 10867 if (xn && access_type == MMU_INST_FETCH) { 10868 fi->type = ARMFault_Permission; 10869 goto do_fault; 10870 } 10871 10872 if (arm_feature(env, ARM_FEATURE_V6K) && 10873 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 10874 /* The simplified model uses AP[0] as an access control bit. */ 10875 if ((ap & 1) == 0) { 10876 /* Access flag fault. */ 10877 fi->type = ARMFault_AccessFlag; 10878 goto do_fault; 10879 } 10880 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 10881 } else { 10882 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10883 } 10884 if (*prot && !xn) { 10885 *prot |= PAGE_EXEC; 10886 } 10887 if (!(*prot & (1 << access_type))) { 10888 /* Access permission fault. */ 10889 fi->type = ARMFault_Permission; 10890 goto do_fault; 10891 } 10892 } 10893 if (ns) { 10894 /* The NS bit will (as required by the architecture) have no effect if 10895 * the CPU doesn't support TZ or this is a non-secure translation 10896 * regime, because the attribute will already be non-secure. 10897 */ 10898 attrs->secure = false; 10899 } 10900 *phys_ptr = phys_addr; 10901 return false; 10902 do_fault: 10903 fi->domain = domain; 10904 fi->level = level; 10905 return true; 10906 } 10907 10908 /* 10909 * check_s2_mmu_setup 10910 * @cpu: ARMCPU 10911 * @is_aa64: True if the translation regime is in AArch64 state 10912 * @startlevel: Suggested starting level 10913 * @inputsize: Bitsize of IPAs 10914 * @stride: Page-table stride (See the ARM ARM) 10915 * 10916 * Returns true if the suggested S2 translation parameters are OK and 10917 * false otherwise. 10918 */ 10919 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 10920 int inputsize, int stride) 10921 { 10922 const int grainsize = stride + 3; 10923 int startsizecheck; 10924 10925 /* Negative levels are never allowed. */ 10926 if (level < 0) { 10927 return false; 10928 } 10929 10930 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 10931 if (startsizecheck < 1 || startsizecheck > stride + 4) { 10932 return false; 10933 } 10934 10935 if (is_aa64) { 10936 CPUARMState *env = &cpu->env; 10937 unsigned int pamax = arm_pamax(cpu); 10938 10939 switch (stride) { 10940 case 13: /* 64KB Pages. */ 10941 if (level == 0 || (level == 1 && pamax <= 42)) { 10942 return false; 10943 } 10944 break; 10945 case 11: /* 16KB Pages. */ 10946 if (level == 0 || (level == 1 && pamax <= 40)) { 10947 return false; 10948 } 10949 break; 10950 case 9: /* 4KB Pages. */ 10951 if (level == 0 && pamax <= 42) { 10952 return false; 10953 } 10954 break; 10955 default: 10956 g_assert_not_reached(); 10957 } 10958 10959 /* Inputsize checks. */ 10960 if (inputsize > pamax && 10961 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 10962 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 10963 return false; 10964 } 10965 } else { 10966 /* AArch32 only supports 4KB pages. Assert on that. */ 10967 assert(stride == 9); 10968 10969 if (level == 0) { 10970 return false; 10971 } 10972 } 10973 return true; 10974 } 10975 10976 /* Translate from the 4-bit stage 2 representation of 10977 * memory attributes (without cache-allocation hints) to 10978 * the 8-bit representation of the stage 1 MAIR registers 10979 * (which includes allocation hints). 10980 * 10981 * ref: shared/translation/attrs/S2AttrDecode() 10982 * .../S2ConvertAttrsHints() 10983 */ 10984 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 10985 { 10986 uint8_t hiattr = extract32(s2attrs, 2, 2); 10987 uint8_t loattr = extract32(s2attrs, 0, 2); 10988 uint8_t hihint = 0, lohint = 0; 10989 10990 if (hiattr != 0) { /* normal memory */ 10991 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 10992 hiattr = loattr = 1; /* non-cacheable */ 10993 } else { 10994 if (hiattr != 1) { /* Write-through or write-back */ 10995 hihint = 3; /* RW allocate */ 10996 } 10997 if (loattr != 1) { /* Write-through or write-back */ 10998 lohint = 3; /* RW allocate */ 10999 } 11000 } 11001 } 11002 11003 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11004 } 11005 #endif /* !CONFIG_USER_ONLY */ 11006 11007 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11008 { 11009 if (regime_has_2_ranges(mmu_idx)) { 11010 return extract64(tcr, 37, 2); 11011 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11012 return 0; /* VTCR_EL2 */ 11013 } else { 11014 /* Replicate the single TBI bit so we always have 2 bits. */ 11015 return extract32(tcr, 20, 1) * 3; 11016 } 11017 } 11018 11019 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11020 { 11021 if (regime_has_2_ranges(mmu_idx)) { 11022 return extract64(tcr, 51, 2); 11023 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11024 return 0; /* VTCR_EL2 */ 11025 } else { 11026 /* Replicate the single TBID bit so we always have 2 bits. */ 11027 return extract32(tcr, 29, 1) * 3; 11028 } 11029 } 11030 11031 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11032 { 11033 if (regime_has_2_ranges(mmu_idx)) { 11034 return extract64(tcr, 57, 2); 11035 } else { 11036 /* Replicate the single TCMA bit so we always have 2 bits. */ 11037 return extract32(tcr, 30, 1) * 3; 11038 } 11039 } 11040 11041 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11042 ARMMMUIdx mmu_idx, bool data) 11043 { 11044 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11045 bool epd, hpd, using16k, using64k; 11046 int select, tsz, tbi, max_tsz; 11047 11048 if (!regime_has_2_ranges(mmu_idx)) { 11049 select = 0; 11050 tsz = extract32(tcr, 0, 6); 11051 using64k = extract32(tcr, 14, 1); 11052 using16k = extract32(tcr, 15, 1); 11053 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11054 /* VTCR_EL2 */ 11055 hpd = false; 11056 } else { 11057 hpd = extract32(tcr, 24, 1); 11058 } 11059 epd = false; 11060 } else { 11061 /* 11062 * Bit 55 is always between the two regions, and is canonical for 11063 * determining if address tagging is enabled. 11064 */ 11065 select = extract64(va, 55, 1); 11066 if (!select) { 11067 tsz = extract32(tcr, 0, 6); 11068 epd = extract32(tcr, 7, 1); 11069 using64k = extract32(tcr, 14, 1); 11070 using16k = extract32(tcr, 15, 1); 11071 hpd = extract64(tcr, 41, 1); 11072 } else { 11073 int tg = extract32(tcr, 30, 2); 11074 using16k = tg == 1; 11075 using64k = tg == 3; 11076 tsz = extract32(tcr, 16, 6); 11077 epd = extract32(tcr, 23, 1); 11078 hpd = extract64(tcr, 42, 1); 11079 } 11080 } 11081 11082 if (cpu_isar_feature(aa64_st, env_archcpu(env))) { 11083 max_tsz = 48 - using64k; 11084 } else { 11085 max_tsz = 39; 11086 } 11087 11088 tsz = MIN(tsz, max_tsz); 11089 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 11090 11091 /* Present TBI as a composite with TBID. */ 11092 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11093 if (!data) { 11094 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11095 } 11096 tbi = (tbi >> select) & 1; 11097 11098 return (ARMVAParameters) { 11099 .tsz = tsz, 11100 .select = select, 11101 .tbi = tbi, 11102 .epd = epd, 11103 .hpd = hpd, 11104 .using16k = using16k, 11105 .using64k = using64k, 11106 }; 11107 } 11108 11109 #ifndef CONFIG_USER_ONLY 11110 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11111 ARMMMUIdx mmu_idx) 11112 { 11113 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11114 uint32_t el = regime_el(env, mmu_idx); 11115 int select, tsz; 11116 bool epd, hpd; 11117 11118 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11119 11120 if (mmu_idx == ARMMMUIdx_Stage2) { 11121 /* VTCR */ 11122 bool sext = extract32(tcr, 4, 1); 11123 bool sign = extract32(tcr, 3, 1); 11124 11125 /* 11126 * If the sign-extend bit is not the same as t0sz[3], the result 11127 * is unpredictable. Flag this as a guest error. 11128 */ 11129 if (sign != sext) { 11130 qemu_log_mask(LOG_GUEST_ERROR, 11131 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11132 } 11133 tsz = sextract32(tcr, 0, 4) + 8; 11134 select = 0; 11135 hpd = false; 11136 epd = false; 11137 } else if (el == 2) { 11138 /* HTCR */ 11139 tsz = extract32(tcr, 0, 3); 11140 select = 0; 11141 hpd = extract64(tcr, 24, 1); 11142 epd = false; 11143 } else { 11144 int t0sz = extract32(tcr, 0, 3); 11145 int t1sz = extract32(tcr, 16, 3); 11146 11147 if (t1sz == 0) { 11148 select = va > (0xffffffffu >> t0sz); 11149 } else { 11150 /* Note that we will detect errors later. */ 11151 select = va >= ~(0xffffffffu >> t1sz); 11152 } 11153 if (!select) { 11154 tsz = t0sz; 11155 epd = extract32(tcr, 7, 1); 11156 hpd = extract64(tcr, 41, 1); 11157 } else { 11158 tsz = t1sz; 11159 epd = extract32(tcr, 23, 1); 11160 hpd = extract64(tcr, 42, 1); 11161 } 11162 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11163 hpd &= extract32(tcr, 6, 1); 11164 } 11165 11166 return (ARMVAParameters) { 11167 .tsz = tsz, 11168 .select = select, 11169 .epd = epd, 11170 .hpd = hpd, 11171 }; 11172 } 11173 11174 /** 11175 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11176 * 11177 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11178 * prot and page_size may not be filled in, and the populated fsr value provides 11179 * information on why the translation aborted, in the format of a long-format 11180 * DFSR/IFSR fault register, with the following caveats: 11181 * * the WnR bit is never set (the caller must do this). 11182 * 11183 * @env: CPUARMState 11184 * @address: virtual address to get physical address for 11185 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11186 * @mmu_idx: MMU index indicating required translation regime 11187 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11188 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11189 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11190 * @phys_ptr: set to the physical address corresponding to the virtual address 11191 * @attrs: set to the memory transaction attributes to use 11192 * @prot: set to the permissions for the page containing phys_ptr 11193 * @page_size_ptr: set to the size of the page containing phys_ptr 11194 * @fi: set to fault info if the translation fails 11195 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11196 */ 11197 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11198 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11199 bool s1_is_el0, 11200 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11201 target_ulong *page_size_ptr, 11202 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11203 { 11204 ARMCPU *cpu = env_archcpu(env); 11205 CPUState *cs = CPU(cpu); 11206 /* Read an LPAE long-descriptor translation table. */ 11207 ARMFaultType fault_type = ARMFault_Translation; 11208 uint32_t level; 11209 ARMVAParameters param; 11210 uint64_t ttbr; 11211 hwaddr descaddr, indexmask, indexmask_grainsize; 11212 uint32_t tableattrs; 11213 target_ulong page_size; 11214 uint32_t attrs; 11215 int32_t stride; 11216 int addrsize, inputsize; 11217 TCR *tcr = regime_tcr(env, mmu_idx); 11218 int ap, ns, xn, pxn; 11219 uint32_t el = regime_el(env, mmu_idx); 11220 uint64_t descaddrmask; 11221 bool aarch64 = arm_el_is_aa64(env, el); 11222 bool guarded = false; 11223 11224 /* TODO: This code does not support shareability levels. */ 11225 if (aarch64) { 11226 param = aa64_va_parameters(env, address, mmu_idx, 11227 access_type != MMU_INST_FETCH); 11228 level = 0; 11229 addrsize = 64 - 8 * param.tbi; 11230 inputsize = 64 - param.tsz; 11231 } else { 11232 param = aa32_va_parameters(env, address, mmu_idx); 11233 level = 1; 11234 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11235 inputsize = addrsize - param.tsz; 11236 } 11237 11238 /* 11239 * We determined the region when collecting the parameters, but we 11240 * have not yet validated that the address is valid for the region. 11241 * Extract the top bits and verify that they all match select. 11242 * 11243 * For aa32, if inputsize == addrsize, then we have selected the 11244 * region by exclusion in aa32_va_parameters and there is no more 11245 * validation to do here. 11246 */ 11247 if (inputsize < addrsize) { 11248 target_ulong top_bits = sextract64(address, inputsize, 11249 addrsize - inputsize); 11250 if (-top_bits != param.select) { 11251 /* The gap between the two regions is a Translation fault */ 11252 fault_type = ARMFault_Translation; 11253 goto do_fault; 11254 } 11255 } 11256 11257 if (param.using64k) { 11258 stride = 13; 11259 } else if (param.using16k) { 11260 stride = 11; 11261 } else { 11262 stride = 9; 11263 } 11264 11265 /* Note that QEMU ignores shareability and cacheability attributes, 11266 * so we don't need to do anything with the SH, ORGN, IRGN fields 11267 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11268 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11269 * implement any ASID-like capability so we can ignore it (instead 11270 * we will always flush the TLB any time the ASID is changed). 11271 */ 11272 ttbr = regime_ttbr(env, mmu_idx, param.select); 11273 11274 /* Here we should have set up all the parameters for the translation: 11275 * inputsize, ttbr, epd, stride, tbi 11276 */ 11277 11278 if (param.epd) { 11279 /* Translation table walk disabled => Translation fault on TLB miss 11280 * Note: This is always 0 on 64-bit EL2 and EL3. 11281 */ 11282 goto do_fault; 11283 } 11284 11285 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11286 /* The starting level depends on the virtual address size (which can 11287 * be up to 48 bits) and the translation granule size. It indicates 11288 * the number of strides (stride bits at a time) needed to 11289 * consume the bits of the input address. In the pseudocode this is: 11290 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11291 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11292 * our 'stride + 3' and 'stride' is our 'stride'. 11293 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11294 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11295 * = 4 - (inputsize - 4) / stride; 11296 */ 11297 level = 4 - (inputsize - 4) / stride; 11298 } else { 11299 /* For stage 2 translations the starting level is specified by the 11300 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11301 */ 11302 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11303 uint32_t startlevel; 11304 bool ok; 11305 11306 if (!aarch64 || stride == 9) { 11307 /* AArch32 or 4KB pages */ 11308 startlevel = 2 - sl0; 11309 11310 if (cpu_isar_feature(aa64_st, cpu)) { 11311 startlevel &= 3; 11312 } 11313 } else { 11314 /* 16KB or 64KB pages */ 11315 startlevel = 3 - sl0; 11316 } 11317 11318 /* Check that the starting level is valid. */ 11319 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11320 inputsize, stride); 11321 if (!ok) { 11322 fault_type = ARMFault_Translation; 11323 goto do_fault; 11324 } 11325 level = startlevel; 11326 } 11327 11328 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 11329 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 11330 11331 /* Now we can extract the actual base address from the TTBR */ 11332 descaddr = extract64(ttbr, 0, 48); 11333 /* 11334 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11335 * and also to mask out CnP (bit 0) which could validly be non-zero. 11336 */ 11337 descaddr &= ~indexmask; 11338 11339 /* The address field in the descriptor goes up to bit 39 for ARMv7 11340 * but up to bit 47 for ARMv8, but we use the descaddrmask 11341 * up to bit 39 for AArch32, because we don't need other bits in that case 11342 * to construct next descriptor address (anyway they should be all zeroes). 11343 */ 11344 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 11345 ~indexmask_grainsize; 11346 11347 /* Secure accesses start with the page table in secure memory and 11348 * can be downgraded to non-secure at any step. Non-secure accesses 11349 * remain non-secure. We implement this by just ORing in the NSTable/NS 11350 * bits at each step. 11351 */ 11352 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11353 for (;;) { 11354 uint64_t descriptor; 11355 bool nstable; 11356 11357 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11358 descaddr &= ~7ULL; 11359 nstable = extract32(tableattrs, 4, 1); 11360 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11361 if (fi->type != ARMFault_None) { 11362 goto do_fault; 11363 } 11364 11365 if (!(descriptor & 1) || 11366 (!(descriptor & 2) && (level == 3))) { 11367 /* Invalid, or the Reserved level 3 encoding */ 11368 goto do_fault; 11369 } 11370 descaddr = descriptor & descaddrmask; 11371 11372 if ((descriptor & 2) && (level < 3)) { 11373 /* Table entry. The top five bits are attributes which may 11374 * propagate down through lower levels of the table (and 11375 * which are all arranged so that 0 means "no effect", so 11376 * we can gather them up by ORing in the bits at each level). 11377 */ 11378 tableattrs |= extract64(descriptor, 59, 5); 11379 level++; 11380 indexmask = indexmask_grainsize; 11381 continue; 11382 } 11383 /* Block entry at level 1 or 2, or page entry at level 3. 11384 * These are basically the same thing, although the number 11385 * of bits we pull in from the vaddr varies. 11386 */ 11387 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11388 descaddr |= (address & (page_size - 1)); 11389 /* Extract attributes from the descriptor */ 11390 attrs = extract64(descriptor, 2, 10) 11391 | (extract64(descriptor, 52, 12) << 10); 11392 11393 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11394 /* Stage 2 table descriptors do not include any attribute fields */ 11395 break; 11396 } 11397 /* Merge in attributes from table descriptors */ 11398 attrs |= nstable << 3; /* NS */ 11399 guarded = extract64(descriptor, 50, 1); /* GP */ 11400 if (param.hpd) { 11401 /* HPD disables all the table attributes except NSTable. */ 11402 break; 11403 } 11404 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11405 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11406 * means "force PL1 access only", which means forcing AP[1] to 0. 11407 */ 11408 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11409 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11410 break; 11411 } 11412 /* Here descaddr is the final physical address, and attributes 11413 * are all in attrs. 11414 */ 11415 fault_type = ARMFault_AccessFlag; 11416 if ((attrs & (1 << 8)) == 0) { 11417 /* Access flag */ 11418 goto do_fault; 11419 } 11420 11421 ap = extract32(attrs, 4, 2); 11422 11423 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11424 ns = mmu_idx == ARMMMUIdx_Stage2; 11425 xn = extract32(attrs, 11, 2); 11426 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11427 } else { 11428 ns = extract32(attrs, 3, 1); 11429 xn = extract32(attrs, 12, 1); 11430 pxn = extract32(attrs, 11, 1); 11431 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11432 } 11433 11434 fault_type = ARMFault_Permission; 11435 if (!(*prot & (1 << access_type))) { 11436 goto do_fault; 11437 } 11438 11439 if (ns) { 11440 /* The NS bit will (as required by the architecture) have no effect if 11441 * the CPU doesn't support TZ or this is a non-secure translation 11442 * regime, because the attribute will already be non-secure. 11443 */ 11444 txattrs->secure = false; 11445 } 11446 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11447 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11448 arm_tlb_bti_gp(txattrs) = true; 11449 } 11450 11451 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11452 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11453 } else { 11454 /* Index into MAIR registers for cache attributes */ 11455 uint8_t attrindx = extract32(attrs, 0, 3); 11456 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11457 assert(attrindx <= 7); 11458 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11459 } 11460 cacheattrs->shareability = extract32(attrs, 6, 2); 11461 11462 *phys_ptr = descaddr; 11463 *page_size_ptr = page_size; 11464 return false; 11465 11466 do_fault: 11467 fi->type = fault_type; 11468 fi->level = level; 11469 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11470 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11471 mmu_idx == ARMMMUIdx_Stage2_S); 11472 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11473 return true; 11474 } 11475 11476 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11477 ARMMMUIdx mmu_idx, 11478 int32_t address, int *prot) 11479 { 11480 if (!arm_feature(env, ARM_FEATURE_M)) { 11481 *prot = PAGE_READ | PAGE_WRITE; 11482 switch (address) { 11483 case 0xF0000000 ... 0xFFFFFFFF: 11484 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11485 /* hivecs execing is ok */ 11486 *prot |= PAGE_EXEC; 11487 } 11488 break; 11489 case 0x00000000 ... 0x7FFFFFFF: 11490 *prot |= PAGE_EXEC; 11491 break; 11492 } 11493 } else { 11494 /* Default system address map for M profile cores. 11495 * The architecture specifies which regions are execute-never; 11496 * at the MPU level no other checks are defined. 11497 */ 11498 switch (address) { 11499 case 0x00000000 ... 0x1fffffff: /* ROM */ 11500 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11501 case 0x60000000 ... 0x7fffffff: /* RAM */ 11502 case 0x80000000 ... 0x9fffffff: /* RAM */ 11503 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11504 break; 11505 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11506 case 0xa0000000 ... 0xbfffffff: /* Device */ 11507 case 0xc0000000 ... 0xdfffffff: /* Device */ 11508 case 0xe0000000 ... 0xffffffff: /* System */ 11509 *prot = PAGE_READ | PAGE_WRITE; 11510 break; 11511 default: 11512 g_assert_not_reached(); 11513 } 11514 } 11515 } 11516 11517 static bool pmsav7_use_background_region(ARMCPU *cpu, 11518 ARMMMUIdx mmu_idx, bool is_user) 11519 { 11520 /* Return true if we should use the default memory map as a 11521 * "background" region if there are no hits against any MPU regions. 11522 */ 11523 CPUARMState *env = &cpu->env; 11524 11525 if (is_user) { 11526 return false; 11527 } 11528 11529 if (arm_feature(env, ARM_FEATURE_M)) { 11530 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11531 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11532 } else { 11533 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11534 } 11535 } 11536 11537 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11538 { 11539 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11540 return arm_feature(env, ARM_FEATURE_M) && 11541 extract32(address, 20, 12) == 0xe00; 11542 } 11543 11544 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11545 { 11546 /* True if address is in the M profile system region 11547 * 0xe0000000 - 0xffffffff 11548 */ 11549 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11550 } 11551 11552 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11553 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11554 hwaddr *phys_ptr, int *prot, 11555 target_ulong *page_size, 11556 ARMMMUFaultInfo *fi) 11557 { 11558 ARMCPU *cpu = env_archcpu(env); 11559 int n; 11560 bool is_user = regime_is_user(env, mmu_idx); 11561 11562 *phys_ptr = address; 11563 *page_size = TARGET_PAGE_SIZE; 11564 *prot = 0; 11565 11566 if (regime_translation_disabled(env, mmu_idx) || 11567 m_is_ppb_region(env, address)) { 11568 /* MPU disabled or M profile PPB access: use default memory map. 11569 * The other case which uses the default memory map in the 11570 * v7M ARM ARM pseudocode is exception vector reads from the vector 11571 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11572 * which always does a direct read using address_space_ldl(), rather 11573 * than going via this function, so we don't need to check that here. 11574 */ 11575 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11576 } else { /* MPU enabled */ 11577 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11578 /* region search */ 11579 uint32_t base = env->pmsav7.drbar[n]; 11580 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11581 uint32_t rmask; 11582 bool srdis = false; 11583 11584 if (!(env->pmsav7.drsr[n] & 0x1)) { 11585 continue; 11586 } 11587 11588 if (!rsize) { 11589 qemu_log_mask(LOG_GUEST_ERROR, 11590 "DRSR[%d]: Rsize field cannot be 0\n", n); 11591 continue; 11592 } 11593 rsize++; 11594 rmask = (1ull << rsize) - 1; 11595 11596 if (base & rmask) { 11597 qemu_log_mask(LOG_GUEST_ERROR, 11598 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11599 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11600 n, base, rmask); 11601 continue; 11602 } 11603 11604 if (address < base || address > base + rmask) { 11605 /* 11606 * Address not in this region. We must check whether the 11607 * region covers addresses in the same page as our address. 11608 * In that case we must not report a size that covers the 11609 * whole page for a subsequent hit against a different MPU 11610 * region or the background region, because it would result in 11611 * incorrect TLB hits for subsequent accesses to addresses that 11612 * are in this MPU region. 11613 */ 11614 if (ranges_overlap(base, rmask, 11615 address & TARGET_PAGE_MASK, 11616 TARGET_PAGE_SIZE)) { 11617 *page_size = 1; 11618 } 11619 continue; 11620 } 11621 11622 /* Region matched */ 11623 11624 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11625 int i, snd; 11626 uint32_t srdis_mask; 11627 11628 rsize -= 3; /* sub region size (power of 2) */ 11629 snd = ((address - base) >> rsize) & 0x7; 11630 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11631 11632 srdis_mask = srdis ? 0x3 : 0x0; 11633 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11634 /* This will check in groups of 2, 4 and then 8, whether 11635 * the subregion bits are consistent. rsize is incremented 11636 * back up to give the region size, considering consistent 11637 * adjacent subregions as one region. Stop testing if rsize 11638 * is already big enough for an entire QEMU page. 11639 */ 11640 int snd_rounded = snd & ~(i - 1); 11641 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11642 snd_rounded + 8, i); 11643 if (srdis_mask ^ srdis_multi) { 11644 break; 11645 } 11646 srdis_mask = (srdis_mask << i) | srdis_mask; 11647 rsize++; 11648 } 11649 } 11650 if (srdis) { 11651 continue; 11652 } 11653 if (rsize < TARGET_PAGE_BITS) { 11654 *page_size = 1 << rsize; 11655 } 11656 break; 11657 } 11658 11659 if (n == -1) { /* no hits */ 11660 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11661 /* background fault */ 11662 fi->type = ARMFault_Background; 11663 return true; 11664 } 11665 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11666 } else { /* a MPU hit! */ 11667 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11668 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11669 11670 if (m_is_system_region(env, address)) { 11671 /* System space is always execute never */ 11672 xn = 1; 11673 } 11674 11675 if (is_user) { /* User mode AP bit decoding */ 11676 switch (ap) { 11677 case 0: 11678 case 1: 11679 case 5: 11680 break; /* no access */ 11681 case 3: 11682 *prot |= PAGE_WRITE; 11683 /* fall through */ 11684 case 2: 11685 case 6: 11686 *prot |= PAGE_READ | PAGE_EXEC; 11687 break; 11688 case 7: 11689 /* for v7M, same as 6; for R profile a reserved value */ 11690 if (arm_feature(env, ARM_FEATURE_M)) { 11691 *prot |= PAGE_READ | PAGE_EXEC; 11692 break; 11693 } 11694 /* fall through */ 11695 default: 11696 qemu_log_mask(LOG_GUEST_ERROR, 11697 "DRACR[%d]: Bad value for AP bits: 0x%" 11698 PRIx32 "\n", n, ap); 11699 } 11700 } else { /* Priv. mode AP bits decoding */ 11701 switch (ap) { 11702 case 0: 11703 break; /* no access */ 11704 case 1: 11705 case 2: 11706 case 3: 11707 *prot |= PAGE_WRITE; 11708 /* fall through */ 11709 case 5: 11710 case 6: 11711 *prot |= PAGE_READ | PAGE_EXEC; 11712 break; 11713 case 7: 11714 /* for v7M, same as 6; for R profile a reserved value */ 11715 if (arm_feature(env, ARM_FEATURE_M)) { 11716 *prot |= PAGE_READ | PAGE_EXEC; 11717 break; 11718 } 11719 /* fall through */ 11720 default: 11721 qemu_log_mask(LOG_GUEST_ERROR, 11722 "DRACR[%d]: Bad value for AP bits: 0x%" 11723 PRIx32 "\n", n, ap); 11724 } 11725 } 11726 11727 /* execute never */ 11728 if (xn) { 11729 *prot &= ~PAGE_EXEC; 11730 } 11731 } 11732 } 11733 11734 fi->type = ARMFault_Permission; 11735 fi->level = 1; 11736 return !(*prot & (1 << access_type)); 11737 } 11738 11739 static bool v8m_is_sau_exempt(CPUARMState *env, 11740 uint32_t address, MMUAccessType access_type) 11741 { 11742 /* The architecture specifies that certain address ranges are 11743 * exempt from v8M SAU/IDAU checks. 11744 */ 11745 return 11746 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 11747 (address >= 0xe0000000 && address <= 0xe0002fff) || 11748 (address >= 0xe000e000 && address <= 0xe000efff) || 11749 (address >= 0xe002e000 && address <= 0xe002efff) || 11750 (address >= 0xe0040000 && address <= 0xe0041fff) || 11751 (address >= 0xe00ff000 && address <= 0xe00fffff); 11752 } 11753 11754 void v8m_security_lookup(CPUARMState *env, uint32_t address, 11755 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11756 V8M_SAttributes *sattrs) 11757 { 11758 /* Look up the security attributes for this address. Compare the 11759 * pseudocode SecurityCheck() function. 11760 * We assume the caller has zero-initialized *sattrs. 11761 */ 11762 ARMCPU *cpu = env_archcpu(env); 11763 int r; 11764 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 11765 int idau_region = IREGION_NOTVALID; 11766 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11767 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11768 11769 if (cpu->idau) { 11770 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 11771 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 11772 11773 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 11774 &idau_nsc); 11775 } 11776 11777 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 11778 /* 0xf0000000..0xffffffff is always S for insn fetches */ 11779 return; 11780 } 11781 11782 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 11783 sattrs->ns = !regime_is_secure(env, mmu_idx); 11784 return; 11785 } 11786 11787 if (idau_region != IREGION_NOTVALID) { 11788 sattrs->irvalid = true; 11789 sattrs->iregion = idau_region; 11790 } 11791 11792 switch (env->sau.ctrl & 3) { 11793 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 11794 break; 11795 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 11796 sattrs->ns = true; 11797 break; 11798 default: /* SAU.ENABLE == 1 */ 11799 for (r = 0; r < cpu->sau_sregion; r++) { 11800 if (env->sau.rlar[r] & 1) { 11801 uint32_t base = env->sau.rbar[r] & ~0x1f; 11802 uint32_t limit = env->sau.rlar[r] | 0x1f; 11803 11804 if (base <= address && limit >= address) { 11805 if (base > addr_page_base || limit < addr_page_limit) { 11806 sattrs->subpage = true; 11807 } 11808 if (sattrs->srvalid) { 11809 /* If we hit in more than one region then we must report 11810 * as Secure, not NS-Callable, with no valid region 11811 * number info. 11812 */ 11813 sattrs->ns = false; 11814 sattrs->nsc = false; 11815 sattrs->sregion = 0; 11816 sattrs->srvalid = false; 11817 break; 11818 } else { 11819 if (env->sau.rlar[r] & 2) { 11820 sattrs->nsc = true; 11821 } else { 11822 sattrs->ns = true; 11823 } 11824 sattrs->srvalid = true; 11825 sattrs->sregion = r; 11826 } 11827 } else { 11828 /* 11829 * Address not in this region. We must check whether the 11830 * region covers addresses in the same page as our address. 11831 * In that case we must not report a size that covers the 11832 * whole page for a subsequent hit against a different MPU 11833 * region or the background region, because it would result 11834 * in incorrect TLB hits for subsequent accesses to 11835 * addresses that are in this MPU region. 11836 */ 11837 if (limit >= base && 11838 ranges_overlap(base, limit - base + 1, 11839 addr_page_base, 11840 TARGET_PAGE_SIZE)) { 11841 sattrs->subpage = true; 11842 } 11843 } 11844 } 11845 } 11846 break; 11847 } 11848 11849 /* 11850 * The IDAU will override the SAU lookup results if it specifies 11851 * higher security than the SAU does. 11852 */ 11853 if (!idau_ns) { 11854 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 11855 sattrs->ns = false; 11856 sattrs->nsc = idau_nsc; 11857 } 11858 } 11859 } 11860 11861 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 11862 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11863 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11864 int *prot, bool *is_subpage, 11865 ARMMMUFaultInfo *fi, uint32_t *mregion) 11866 { 11867 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 11868 * that a full phys-to-virt translation does). 11869 * mregion is (if not NULL) set to the region number which matched, 11870 * or -1 if no region number is returned (MPU off, address did not 11871 * hit a region, address hit in multiple regions). 11872 * We set is_subpage to true if the region hit doesn't cover the 11873 * entire TARGET_PAGE the address is within. 11874 */ 11875 ARMCPU *cpu = env_archcpu(env); 11876 bool is_user = regime_is_user(env, mmu_idx); 11877 uint32_t secure = regime_is_secure(env, mmu_idx); 11878 int n; 11879 int matchregion = -1; 11880 bool hit = false; 11881 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11882 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11883 11884 *is_subpage = false; 11885 *phys_ptr = address; 11886 *prot = 0; 11887 if (mregion) { 11888 *mregion = -1; 11889 } 11890 11891 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 11892 * was an exception vector read from the vector table (which is always 11893 * done using the default system address map), because those accesses 11894 * are done in arm_v7m_load_vector(), which always does a direct 11895 * read using address_space_ldl(), rather than going via this function. 11896 */ 11897 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 11898 hit = true; 11899 } else if (m_is_ppb_region(env, address)) { 11900 hit = true; 11901 } else { 11902 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11903 hit = true; 11904 } 11905 11906 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11907 /* region search */ 11908 /* Note that the base address is bits [31:5] from the register 11909 * with bits [4:0] all zeroes, but the limit address is bits 11910 * [31:5] from the register with bits [4:0] all ones. 11911 */ 11912 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 11913 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 11914 11915 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 11916 /* Region disabled */ 11917 continue; 11918 } 11919 11920 if (address < base || address > limit) { 11921 /* 11922 * Address not in this region. We must check whether the 11923 * region covers addresses in the same page as our address. 11924 * In that case we must not report a size that covers the 11925 * whole page for a subsequent hit against a different MPU 11926 * region or the background region, because it would result in 11927 * incorrect TLB hits for subsequent accesses to addresses that 11928 * are in this MPU region. 11929 */ 11930 if (limit >= base && 11931 ranges_overlap(base, limit - base + 1, 11932 addr_page_base, 11933 TARGET_PAGE_SIZE)) { 11934 *is_subpage = true; 11935 } 11936 continue; 11937 } 11938 11939 if (base > addr_page_base || limit < addr_page_limit) { 11940 *is_subpage = true; 11941 } 11942 11943 if (matchregion != -1) { 11944 /* Multiple regions match -- always a failure (unlike 11945 * PMSAv7 where highest-numbered-region wins) 11946 */ 11947 fi->type = ARMFault_Permission; 11948 fi->level = 1; 11949 return true; 11950 } 11951 11952 matchregion = n; 11953 hit = true; 11954 } 11955 } 11956 11957 if (!hit) { 11958 /* background fault */ 11959 fi->type = ARMFault_Background; 11960 return true; 11961 } 11962 11963 if (matchregion == -1) { 11964 /* hit using the background region */ 11965 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11966 } else { 11967 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 11968 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 11969 bool pxn = false; 11970 11971 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 11972 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 11973 } 11974 11975 if (m_is_system_region(env, address)) { 11976 /* System space is always execute never */ 11977 xn = 1; 11978 } 11979 11980 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 11981 if (*prot && !xn && !(pxn && !is_user)) { 11982 *prot |= PAGE_EXEC; 11983 } 11984 /* We don't need to look the attribute up in the MAIR0/MAIR1 11985 * registers because that only tells us about cacheability. 11986 */ 11987 if (mregion) { 11988 *mregion = matchregion; 11989 } 11990 } 11991 11992 fi->type = ARMFault_Permission; 11993 fi->level = 1; 11994 return !(*prot & (1 << access_type)); 11995 } 11996 11997 11998 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 11999 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12000 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12001 int *prot, target_ulong *page_size, 12002 ARMMMUFaultInfo *fi) 12003 { 12004 uint32_t secure = regime_is_secure(env, mmu_idx); 12005 V8M_SAttributes sattrs = {}; 12006 bool ret; 12007 bool mpu_is_subpage; 12008 12009 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12010 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12011 if (access_type == MMU_INST_FETCH) { 12012 /* Instruction fetches always use the MMU bank and the 12013 * transaction attribute determined by the fetch address, 12014 * regardless of CPU state. This is painful for QEMU 12015 * to handle, because it would mean we need to encode 12016 * into the mmu_idx not just the (user, negpri) information 12017 * for the current security state but also that for the 12018 * other security state, which would balloon the number 12019 * of mmu_idx values needed alarmingly. 12020 * Fortunately we can avoid this because it's not actually 12021 * possible to arbitrarily execute code from memory with 12022 * the wrong security attribute: it will always generate 12023 * an exception of some kind or another, apart from the 12024 * special case of an NS CPU executing an SG instruction 12025 * in S&NSC memory. So we always just fail the translation 12026 * here and sort things out in the exception handler 12027 * (including possibly emulating an SG instruction). 12028 */ 12029 if (sattrs.ns != !secure) { 12030 if (sattrs.nsc) { 12031 fi->type = ARMFault_QEMU_NSCExec; 12032 } else { 12033 fi->type = ARMFault_QEMU_SFault; 12034 } 12035 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12036 *phys_ptr = address; 12037 *prot = 0; 12038 return true; 12039 } 12040 } else { 12041 /* For data accesses we always use the MMU bank indicated 12042 * by the current CPU state, but the security attributes 12043 * might downgrade a secure access to nonsecure. 12044 */ 12045 if (sattrs.ns) { 12046 txattrs->secure = false; 12047 } else if (!secure) { 12048 /* NS access to S memory must fault. 12049 * Architecturally we should first check whether the 12050 * MPU information for this address indicates that we 12051 * are doing an unaligned access to Device memory, which 12052 * should generate a UsageFault instead. QEMU does not 12053 * currently check for that kind of unaligned access though. 12054 * If we added it we would need to do so as a special case 12055 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12056 */ 12057 fi->type = ARMFault_QEMU_SFault; 12058 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12059 *phys_ptr = address; 12060 *prot = 0; 12061 return true; 12062 } 12063 } 12064 } 12065 12066 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12067 txattrs, prot, &mpu_is_subpage, fi, NULL); 12068 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12069 return ret; 12070 } 12071 12072 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12073 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12074 hwaddr *phys_ptr, int *prot, 12075 ARMMMUFaultInfo *fi) 12076 { 12077 int n; 12078 uint32_t mask; 12079 uint32_t base; 12080 bool is_user = regime_is_user(env, mmu_idx); 12081 12082 if (regime_translation_disabled(env, mmu_idx)) { 12083 /* MPU disabled. */ 12084 *phys_ptr = address; 12085 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12086 return false; 12087 } 12088 12089 *phys_ptr = address; 12090 for (n = 7; n >= 0; n--) { 12091 base = env->cp15.c6_region[n]; 12092 if ((base & 1) == 0) { 12093 continue; 12094 } 12095 mask = 1 << ((base >> 1) & 0x1f); 12096 /* Keep this shift separate from the above to avoid an 12097 (undefined) << 32. */ 12098 mask = (mask << 1) - 1; 12099 if (((base ^ address) & ~mask) == 0) { 12100 break; 12101 } 12102 } 12103 if (n < 0) { 12104 fi->type = ARMFault_Background; 12105 return true; 12106 } 12107 12108 if (access_type == MMU_INST_FETCH) { 12109 mask = env->cp15.pmsav5_insn_ap; 12110 } else { 12111 mask = env->cp15.pmsav5_data_ap; 12112 } 12113 mask = (mask >> (n * 4)) & 0xf; 12114 switch (mask) { 12115 case 0: 12116 fi->type = ARMFault_Permission; 12117 fi->level = 1; 12118 return true; 12119 case 1: 12120 if (is_user) { 12121 fi->type = ARMFault_Permission; 12122 fi->level = 1; 12123 return true; 12124 } 12125 *prot = PAGE_READ | PAGE_WRITE; 12126 break; 12127 case 2: 12128 *prot = PAGE_READ; 12129 if (!is_user) { 12130 *prot |= PAGE_WRITE; 12131 } 12132 break; 12133 case 3: 12134 *prot = PAGE_READ | PAGE_WRITE; 12135 break; 12136 case 5: 12137 if (is_user) { 12138 fi->type = ARMFault_Permission; 12139 fi->level = 1; 12140 return true; 12141 } 12142 *prot = PAGE_READ; 12143 break; 12144 case 6: 12145 *prot = PAGE_READ; 12146 break; 12147 default: 12148 /* Bad permission. */ 12149 fi->type = ARMFault_Permission; 12150 fi->level = 1; 12151 return true; 12152 } 12153 *prot |= PAGE_EXEC; 12154 return false; 12155 } 12156 12157 /* Combine either inner or outer cacheability attributes for normal 12158 * memory, according to table D4-42 and pseudocode procedure 12159 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12160 * 12161 * NB: only stage 1 includes allocation hints (RW bits), leading to 12162 * some asymmetry. 12163 */ 12164 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12165 { 12166 if (s1 == 4 || s2 == 4) { 12167 /* non-cacheable has precedence */ 12168 return 4; 12169 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12170 /* stage 1 write-through takes precedence */ 12171 return s1; 12172 } else if (extract32(s2, 2, 2) == 2) { 12173 /* stage 2 write-through takes precedence, but the allocation hint 12174 * is still taken from stage 1 12175 */ 12176 return (2 << 2) | extract32(s1, 0, 2); 12177 } else { /* write-back */ 12178 return s1; 12179 } 12180 } 12181 12182 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12183 * and CombineS1S2Desc() 12184 * 12185 * @s1: Attributes from stage 1 walk 12186 * @s2: Attributes from stage 2 walk 12187 */ 12188 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12189 { 12190 uint8_t s1lo, s2lo, s1hi, s2hi; 12191 ARMCacheAttrs ret; 12192 bool tagged = false; 12193 12194 if (s1.attrs == 0xf0) { 12195 tagged = true; 12196 s1.attrs = 0xff; 12197 } 12198 12199 s1lo = extract32(s1.attrs, 0, 4); 12200 s2lo = extract32(s2.attrs, 0, 4); 12201 s1hi = extract32(s1.attrs, 4, 4); 12202 s2hi = extract32(s2.attrs, 4, 4); 12203 12204 /* Combine shareability attributes (table D4-43) */ 12205 if (s1.shareability == 2 || s2.shareability == 2) { 12206 /* if either are outer-shareable, the result is outer-shareable */ 12207 ret.shareability = 2; 12208 } else if (s1.shareability == 3 || s2.shareability == 3) { 12209 /* if either are inner-shareable, the result is inner-shareable */ 12210 ret.shareability = 3; 12211 } else { 12212 /* both non-shareable */ 12213 ret.shareability = 0; 12214 } 12215 12216 /* Combine memory type and cacheability attributes */ 12217 if (s1hi == 0 || s2hi == 0) { 12218 /* Device has precedence over normal */ 12219 if (s1lo == 0 || s2lo == 0) { 12220 /* nGnRnE has precedence over anything */ 12221 ret.attrs = 0; 12222 } else if (s1lo == 4 || s2lo == 4) { 12223 /* non-Reordering has precedence over Reordering */ 12224 ret.attrs = 4; /* nGnRE */ 12225 } else if (s1lo == 8 || s2lo == 8) { 12226 /* non-Gathering has precedence over Gathering */ 12227 ret.attrs = 8; /* nGRE */ 12228 } else { 12229 ret.attrs = 0xc; /* GRE */ 12230 } 12231 12232 /* Any location for which the resultant memory type is any 12233 * type of Device memory is always treated as Outer Shareable. 12234 */ 12235 ret.shareability = 2; 12236 } else { /* Normal memory */ 12237 /* Outer/inner cacheability combine independently */ 12238 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12239 | combine_cacheattr_nibble(s1lo, s2lo); 12240 12241 if (ret.attrs == 0x44) { 12242 /* Any location for which the resultant memory type is Normal 12243 * Inner Non-cacheable, Outer Non-cacheable is always treated 12244 * as Outer Shareable. 12245 */ 12246 ret.shareability = 2; 12247 } 12248 } 12249 12250 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12251 if (tagged && ret.attrs == 0xff) { 12252 ret.attrs = 0xf0; 12253 } 12254 12255 return ret; 12256 } 12257 12258 12259 /* get_phys_addr - get the physical address for this virtual address 12260 * 12261 * Find the physical address corresponding to the given virtual address, 12262 * by doing a translation table walk on MMU based systems or using the 12263 * MPU state on MPU based systems. 12264 * 12265 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12266 * prot and page_size may not be filled in, and the populated fsr value provides 12267 * information on why the translation aborted, in the format of a 12268 * DFSR/IFSR fault register, with the following caveats: 12269 * * we honour the short vs long DFSR format differences. 12270 * * the WnR bit is never set (the caller must do this). 12271 * * for PSMAv5 based systems we don't bother to return a full FSR format 12272 * value. 12273 * 12274 * @env: CPUARMState 12275 * @address: virtual address to get physical address for 12276 * @access_type: 0 for read, 1 for write, 2 for execute 12277 * @mmu_idx: MMU index indicating required translation regime 12278 * @phys_ptr: set to the physical address corresponding to the virtual address 12279 * @attrs: set to the memory transaction attributes to use 12280 * @prot: set to the permissions for the page containing phys_ptr 12281 * @page_size: set to the size of the page containing phys_ptr 12282 * @fi: set to fault info if the translation fails 12283 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12284 */ 12285 bool get_phys_addr(CPUARMState *env, target_ulong address, 12286 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12287 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12288 target_ulong *page_size, 12289 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12290 { 12291 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12292 12293 if (mmu_idx != s1_mmu_idx) { 12294 /* Call ourselves recursively to do the stage 1 and then stage 2 12295 * translations if mmu_idx is a two-stage regime. 12296 */ 12297 if (arm_feature(env, ARM_FEATURE_EL2)) { 12298 hwaddr ipa; 12299 int s2_prot; 12300 int ret; 12301 ARMCacheAttrs cacheattrs2 = {}; 12302 ARMMMUIdx s2_mmu_idx; 12303 bool is_el0; 12304 12305 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12306 attrs, prot, page_size, fi, cacheattrs); 12307 12308 /* If S1 fails or S2 is disabled, return early. */ 12309 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12310 *phys_ptr = ipa; 12311 return ret; 12312 } 12313 12314 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12315 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12316 12317 /* S1 is done. Now do S2 translation. */ 12318 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12319 phys_ptr, attrs, &s2_prot, 12320 page_size, fi, &cacheattrs2); 12321 fi->s2addr = ipa; 12322 /* Combine the S1 and S2 perms. */ 12323 *prot &= s2_prot; 12324 12325 /* If S2 fails, return early. */ 12326 if (ret) { 12327 return ret; 12328 } 12329 12330 /* Combine the S1 and S2 cache attributes. */ 12331 if (arm_hcr_el2_eff(env) & HCR_DC) { 12332 /* 12333 * HCR.DC forces the first stage attributes to 12334 * Normal Non-Shareable, 12335 * Inner Write-Back Read-Allocate Write-Allocate, 12336 * Outer Write-Back Read-Allocate Write-Allocate. 12337 * Do not overwrite Tagged within attrs. 12338 */ 12339 if (cacheattrs->attrs != 0xf0) { 12340 cacheattrs->attrs = 0xff; 12341 } 12342 cacheattrs->shareability = 0; 12343 } 12344 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12345 12346 /* Check if IPA translates to secure or non-secure PA space. */ 12347 if (arm_is_secure_below_el3(env)) { 12348 if (attrs->secure) { 12349 attrs->secure = 12350 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12351 } else { 12352 attrs->secure = 12353 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12354 || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA)); 12355 } 12356 } 12357 return 0; 12358 } else { 12359 /* 12360 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12361 */ 12362 mmu_idx = stage_1_mmu_idx(mmu_idx); 12363 } 12364 } 12365 12366 /* The page table entries may downgrade secure to non-secure, but 12367 * cannot upgrade an non-secure translation regime's attributes 12368 * to secure. 12369 */ 12370 attrs->secure = regime_is_secure(env, mmu_idx); 12371 attrs->user = regime_is_user(env, mmu_idx); 12372 12373 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12374 * In v7 and earlier it affects all stage 1 translations. 12375 */ 12376 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12377 && !arm_feature(env, ARM_FEATURE_V8)) { 12378 if (regime_el(env, mmu_idx) == 3) { 12379 address += env->cp15.fcseidr_s; 12380 } else { 12381 address += env->cp15.fcseidr_ns; 12382 } 12383 } 12384 12385 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12386 bool ret; 12387 *page_size = TARGET_PAGE_SIZE; 12388 12389 if (arm_feature(env, ARM_FEATURE_V8)) { 12390 /* PMSAv8 */ 12391 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12392 phys_ptr, attrs, prot, page_size, fi); 12393 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12394 /* PMSAv7 */ 12395 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12396 phys_ptr, prot, page_size, fi); 12397 } else { 12398 /* Pre-v7 MPU */ 12399 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12400 phys_ptr, prot, fi); 12401 } 12402 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12403 " mmu_idx %u -> %s (prot %c%c%c)\n", 12404 access_type == MMU_DATA_LOAD ? "reading" : 12405 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12406 (uint32_t)address, mmu_idx, 12407 ret ? "Miss" : "Hit", 12408 *prot & PAGE_READ ? 'r' : '-', 12409 *prot & PAGE_WRITE ? 'w' : '-', 12410 *prot & PAGE_EXEC ? 'x' : '-'); 12411 12412 return ret; 12413 } 12414 12415 /* Definitely a real MMU, not an MPU */ 12416 12417 if (regime_translation_disabled(env, mmu_idx)) { 12418 uint64_t hcr; 12419 uint8_t memattr; 12420 12421 /* 12422 * MMU disabled. S1 addresses within aa64 translation regimes are 12423 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12424 */ 12425 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12426 int r_el = regime_el(env, mmu_idx); 12427 if (arm_el_is_aa64(env, r_el)) { 12428 int pamax = arm_pamax(env_archcpu(env)); 12429 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12430 int addrtop, tbi; 12431 12432 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12433 if (access_type == MMU_INST_FETCH) { 12434 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12435 } 12436 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12437 addrtop = (tbi ? 55 : 63); 12438 12439 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12440 fi->type = ARMFault_AddressSize; 12441 fi->level = 0; 12442 fi->stage2 = false; 12443 return 1; 12444 } 12445 12446 /* 12447 * When TBI is disabled, we've just validated that all of the 12448 * bits above PAMax are zero, so logically we only need to 12449 * clear the top byte for TBI. But it's clearer to follow 12450 * the pseudocode set of addrdesc.paddress. 12451 */ 12452 address = extract64(address, 0, 52); 12453 } 12454 } 12455 *phys_ptr = address; 12456 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12457 *page_size = TARGET_PAGE_SIZE; 12458 12459 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12460 hcr = arm_hcr_el2_eff(env); 12461 cacheattrs->shareability = 0; 12462 if (hcr & HCR_DC) { 12463 if (hcr & HCR_DCT) { 12464 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12465 } else { 12466 memattr = 0xff; /* Normal, WB, RWA */ 12467 } 12468 } else if (access_type == MMU_INST_FETCH) { 12469 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12470 memattr = 0xee; /* Normal, WT, RA, NT */ 12471 } else { 12472 memattr = 0x44; /* Normal, NC, No */ 12473 } 12474 cacheattrs->shareability = 2; /* outer sharable */ 12475 } else { 12476 memattr = 0x00; /* Device, nGnRnE */ 12477 } 12478 cacheattrs->attrs = memattr; 12479 return 0; 12480 } 12481 12482 if (regime_using_lpae_format(env, mmu_idx)) { 12483 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12484 phys_ptr, attrs, prot, page_size, 12485 fi, cacheattrs); 12486 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12487 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12488 phys_ptr, attrs, prot, page_size, fi); 12489 } else { 12490 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12491 phys_ptr, prot, page_size, fi); 12492 } 12493 } 12494 12495 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12496 MemTxAttrs *attrs) 12497 { 12498 ARMCPU *cpu = ARM_CPU(cs); 12499 CPUARMState *env = &cpu->env; 12500 hwaddr phys_addr; 12501 target_ulong page_size; 12502 int prot; 12503 bool ret; 12504 ARMMMUFaultInfo fi = {}; 12505 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12506 ARMCacheAttrs cacheattrs = {}; 12507 12508 *attrs = (MemTxAttrs) {}; 12509 12510 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 12511 attrs, &prot, &page_size, &fi, &cacheattrs); 12512 12513 if (ret) { 12514 return -1; 12515 } 12516 return phys_addr; 12517 } 12518 12519 #endif 12520 12521 /* Note that signed overflow is undefined in C. The following routines are 12522 careful to use unsigned types where modulo arithmetic is required. 12523 Failure to do so _will_ break on newer gcc. */ 12524 12525 /* Signed saturating arithmetic. */ 12526 12527 /* Perform 16-bit signed saturating addition. */ 12528 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12529 { 12530 uint16_t res; 12531 12532 res = a + b; 12533 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12534 if (a & 0x8000) 12535 res = 0x8000; 12536 else 12537 res = 0x7fff; 12538 } 12539 return res; 12540 } 12541 12542 /* Perform 8-bit signed saturating addition. */ 12543 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12544 { 12545 uint8_t res; 12546 12547 res = a + b; 12548 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12549 if (a & 0x80) 12550 res = 0x80; 12551 else 12552 res = 0x7f; 12553 } 12554 return res; 12555 } 12556 12557 /* Perform 16-bit signed saturating subtraction. */ 12558 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12559 { 12560 uint16_t res; 12561 12562 res = a - b; 12563 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12564 if (a & 0x8000) 12565 res = 0x8000; 12566 else 12567 res = 0x7fff; 12568 } 12569 return res; 12570 } 12571 12572 /* Perform 8-bit signed saturating subtraction. */ 12573 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12574 { 12575 uint8_t res; 12576 12577 res = a - b; 12578 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12579 if (a & 0x80) 12580 res = 0x80; 12581 else 12582 res = 0x7f; 12583 } 12584 return res; 12585 } 12586 12587 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12588 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12589 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12590 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12591 #define PFX q 12592 12593 #include "op_addsub.h" 12594 12595 /* Unsigned saturating arithmetic. */ 12596 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12597 { 12598 uint16_t res; 12599 res = a + b; 12600 if (res < a) 12601 res = 0xffff; 12602 return res; 12603 } 12604 12605 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12606 { 12607 if (a > b) 12608 return a - b; 12609 else 12610 return 0; 12611 } 12612 12613 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12614 { 12615 uint8_t res; 12616 res = a + b; 12617 if (res < a) 12618 res = 0xff; 12619 return res; 12620 } 12621 12622 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12623 { 12624 if (a > b) 12625 return a - b; 12626 else 12627 return 0; 12628 } 12629 12630 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12631 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12632 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12633 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12634 #define PFX uq 12635 12636 #include "op_addsub.h" 12637 12638 /* Signed modulo arithmetic. */ 12639 #define SARITH16(a, b, n, op) do { \ 12640 int32_t sum; \ 12641 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12642 RESULT(sum, n, 16); \ 12643 if (sum >= 0) \ 12644 ge |= 3 << (n * 2); \ 12645 } while(0) 12646 12647 #define SARITH8(a, b, n, op) do { \ 12648 int32_t sum; \ 12649 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12650 RESULT(sum, n, 8); \ 12651 if (sum >= 0) \ 12652 ge |= 1 << n; \ 12653 } while(0) 12654 12655 12656 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12657 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12658 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12659 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12660 #define PFX s 12661 #define ARITH_GE 12662 12663 #include "op_addsub.h" 12664 12665 /* Unsigned modulo arithmetic. */ 12666 #define ADD16(a, b, n) do { \ 12667 uint32_t sum; \ 12668 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12669 RESULT(sum, n, 16); \ 12670 if ((sum >> 16) == 1) \ 12671 ge |= 3 << (n * 2); \ 12672 } while(0) 12673 12674 #define ADD8(a, b, n) do { \ 12675 uint32_t sum; \ 12676 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12677 RESULT(sum, n, 8); \ 12678 if ((sum >> 8) == 1) \ 12679 ge |= 1 << n; \ 12680 } while(0) 12681 12682 #define SUB16(a, b, n) do { \ 12683 uint32_t sum; \ 12684 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12685 RESULT(sum, n, 16); \ 12686 if ((sum >> 16) == 0) \ 12687 ge |= 3 << (n * 2); \ 12688 } while(0) 12689 12690 #define SUB8(a, b, n) do { \ 12691 uint32_t sum; \ 12692 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12693 RESULT(sum, n, 8); \ 12694 if ((sum >> 8) == 0) \ 12695 ge |= 1 << n; \ 12696 } while(0) 12697 12698 #define PFX u 12699 #define ARITH_GE 12700 12701 #include "op_addsub.h" 12702 12703 /* Halved signed arithmetic. */ 12704 #define ADD16(a, b, n) \ 12705 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12706 #define SUB16(a, b, n) \ 12707 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12708 #define ADD8(a, b, n) \ 12709 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12710 #define SUB8(a, b, n) \ 12711 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12712 #define PFX sh 12713 12714 #include "op_addsub.h" 12715 12716 /* Halved unsigned arithmetic. */ 12717 #define ADD16(a, b, n) \ 12718 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12719 #define SUB16(a, b, n) \ 12720 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12721 #define ADD8(a, b, n) \ 12722 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12723 #define SUB8(a, b, n) \ 12724 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12725 #define PFX uh 12726 12727 #include "op_addsub.h" 12728 12729 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12730 { 12731 if (a > b) 12732 return a - b; 12733 else 12734 return b - a; 12735 } 12736 12737 /* Unsigned sum of absolute byte differences. */ 12738 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12739 { 12740 uint32_t sum; 12741 sum = do_usad(a, b); 12742 sum += do_usad(a >> 8, b >> 8); 12743 sum += do_usad(a >> 16, b >> 16); 12744 sum += do_usad(a >> 24, b >> 24); 12745 return sum; 12746 } 12747 12748 /* For ARMv6 SEL instruction. */ 12749 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12750 { 12751 uint32_t mask; 12752 12753 mask = 0; 12754 if (flags & 1) 12755 mask |= 0xff; 12756 if (flags & 2) 12757 mask |= 0xff00; 12758 if (flags & 4) 12759 mask |= 0xff0000; 12760 if (flags & 8) 12761 mask |= 0xff000000; 12762 return (a & mask) | (b & ~mask); 12763 } 12764 12765 /* CRC helpers. 12766 * The upper bytes of val (above the number specified by 'bytes') must have 12767 * been zeroed out by the caller. 12768 */ 12769 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12770 { 12771 uint8_t buf[4]; 12772 12773 stl_le_p(buf, val); 12774 12775 /* zlib crc32 converts the accumulator and output to one's complement. */ 12776 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12777 } 12778 12779 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12780 { 12781 uint8_t buf[4]; 12782 12783 stl_le_p(buf, val); 12784 12785 /* Linux crc32c converts the output to one's complement. */ 12786 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12787 } 12788 12789 /* Return the exception level to which FP-disabled exceptions should 12790 * be taken, or 0 if FP is enabled. 12791 */ 12792 int fp_exception_el(CPUARMState *env, int cur_el) 12793 { 12794 #ifndef CONFIG_USER_ONLY 12795 /* CPACR and the CPTR registers don't exist before v6, so FP is 12796 * always accessible 12797 */ 12798 if (!arm_feature(env, ARM_FEATURE_V6)) { 12799 return 0; 12800 } 12801 12802 if (arm_feature(env, ARM_FEATURE_M)) { 12803 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12804 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12805 return 1; 12806 } 12807 12808 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12809 if (!extract32(env->v7m.nsacr, 10, 1)) { 12810 /* FP insns cause a NOCP UsageFault taken to Secure */ 12811 return 3; 12812 } 12813 } 12814 12815 return 0; 12816 } 12817 12818 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12819 * 0, 2 : trap EL0 and EL1/PL1 accesses 12820 * 1 : trap only EL0 accesses 12821 * 3 : trap no accesses 12822 * This register is ignored if E2H+TGE are both set. 12823 */ 12824 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12825 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12826 12827 switch (fpen) { 12828 case 0: 12829 case 2: 12830 if (cur_el == 0 || cur_el == 1) { 12831 /* Trap to PL1, which might be EL1 or EL3 */ 12832 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12833 return 3; 12834 } 12835 return 1; 12836 } 12837 if (cur_el == 3 && !is_a64(env)) { 12838 /* Secure PL1 running at EL3 */ 12839 return 3; 12840 } 12841 break; 12842 case 1: 12843 if (cur_el == 0) { 12844 return 1; 12845 } 12846 break; 12847 case 3: 12848 break; 12849 } 12850 } 12851 12852 /* 12853 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12854 * to control non-secure access to the FPU. It doesn't have any 12855 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12856 */ 12857 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12858 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12859 if (!extract32(env->cp15.nsacr, 10, 1)) { 12860 /* FP insns act as UNDEF */ 12861 return cur_el == 2 ? 2 : 1; 12862 } 12863 } 12864 12865 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12866 * check because zero bits in the registers mean "don't trap". 12867 */ 12868 12869 /* CPTR_EL2 : present in v7VE or v8 */ 12870 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12871 && arm_is_el2_enabled(env)) { 12872 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12873 return 2; 12874 } 12875 12876 /* CPTR_EL3 : present in v8 */ 12877 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12878 /* Trap all FP ops to EL3 */ 12879 return 3; 12880 } 12881 #endif 12882 return 0; 12883 } 12884 12885 /* Return the exception level we're running at if this is our mmu_idx */ 12886 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12887 { 12888 if (mmu_idx & ARM_MMU_IDX_M) { 12889 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12890 } 12891 12892 switch (mmu_idx) { 12893 case ARMMMUIdx_E10_0: 12894 case ARMMMUIdx_E20_0: 12895 case ARMMMUIdx_SE10_0: 12896 case ARMMMUIdx_SE20_0: 12897 return 0; 12898 case ARMMMUIdx_E10_1: 12899 case ARMMMUIdx_E10_1_PAN: 12900 case ARMMMUIdx_SE10_1: 12901 case ARMMMUIdx_SE10_1_PAN: 12902 return 1; 12903 case ARMMMUIdx_E2: 12904 case ARMMMUIdx_E20_2: 12905 case ARMMMUIdx_E20_2_PAN: 12906 case ARMMMUIdx_SE2: 12907 case ARMMMUIdx_SE20_2: 12908 case ARMMMUIdx_SE20_2_PAN: 12909 return 2; 12910 case ARMMMUIdx_SE3: 12911 return 3; 12912 default: 12913 g_assert_not_reached(); 12914 } 12915 } 12916 12917 #ifndef CONFIG_TCG 12918 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12919 { 12920 g_assert_not_reached(); 12921 } 12922 #endif 12923 12924 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12925 { 12926 ARMMMUIdx idx; 12927 uint64_t hcr; 12928 12929 if (arm_feature(env, ARM_FEATURE_M)) { 12930 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12931 } 12932 12933 /* See ARM pseudo-function ELIsInHost. */ 12934 switch (el) { 12935 case 0: 12936 hcr = arm_hcr_el2_eff(env); 12937 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 12938 idx = ARMMMUIdx_E20_0; 12939 } else { 12940 idx = ARMMMUIdx_E10_0; 12941 } 12942 break; 12943 case 1: 12944 if (env->pstate & PSTATE_PAN) { 12945 idx = ARMMMUIdx_E10_1_PAN; 12946 } else { 12947 idx = ARMMMUIdx_E10_1; 12948 } 12949 break; 12950 case 2: 12951 /* Note that TGE does not apply at EL2. */ 12952 if (arm_hcr_el2_eff(env) & HCR_E2H) { 12953 if (env->pstate & PSTATE_PAN) { 12954 idx = ARMMMUIdx_E20_2_PAN; 12955 } else { 12956 idx = ARMMMUIdx_E20_2; 12957 } 12958 } else { 12959 idx = ARMMMUIdx_E2; 12960 } 12961 break; 12962 case 3: 12963 return ARMMMUIdx_SE3; 12964 default: 12965 g_assert_not_reached(); 12966 } 12967 12968 if (arm_is_secure_below_el3(env)) { 12969 idx &= ~ARM_MMU_IDX_A_NS; 12970 } 12971 12972 return idx; 12973 } 12974 12975 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12976 { 12977 return arm_mmu_idx_el(env, arm_current_el(env)); 12978 } 12979 12980 #ifndef CONFIG_USER_ONLY 12981 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 12982 { 12983 return stage_1_mmu_idx(arm_mmu_idx(env)); 12984 } 12985 #endif 12986 12987 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, 12988 ARMMMUIdx mmu_idx, uint32_t flags) 12989 { 12990 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 12991 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, 12992 arm_to_core_mmu_idx(mmu_idx)); 12993 12994 if (arm_singlestep_active(env)) { 12995 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 12996 } 12997 return flags; 12998 } 12999 13000 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13001 ARMMMUIdx mmu_idx, uint32_t flags) 13002 { 13003 bool sctlr_b = arm_sctlr_b(env); 13004 13005 if (sctlr_b) { 13006 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); 13007 } 13008 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13009 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 13010 } 13011 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 13012 13013 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13014 } 13015 13016 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, 13017 ARMMMUIdx mmu_idx) 13018 { 13019 uint32_t flags = 0; 13020 13021 if (arm_v7m_is_handler_mode(env)) { 13022 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1); 13023 } 13024 13025 /* 13026 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13027 * is suppressing them because the requested execution priority 13028 * is less than 0. 13029 */ 13030 if (arm_feature(env, ARM_FEATURE_V8) && 13031 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13032 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13033 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1); 13034 } 13035 13036 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13037 } 13038 13039 static uint32_t rebuild_hflags_aprofile(CPUARMState *env) 13040 { 13041 int flags = 0; 13042 13043 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, 13044 arm_debug_target_el(env)); 13045 return flags; 13046 } 13047 13048 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, 13049 ARMMMUIdx mmu_idx) 13050 { 13051 uint32_t flags = rebuild_hflags_aprofile(env); 13052 13053 if (arm_el_is_aa64(env, 1)) { 13054 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 13055 } 13056 13057 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 && 13058 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13059 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1); 13060 } 13061 13062 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13063 } 13064 13065 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13066 ARMMMUIdx mmu_idx) 13067 { 13068 uint32_t flags = rebuild_hflags_aprofile(env); 13069 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13070 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13071 uint64_t sctlr; 13072 int tbii, tbid; 13073 13074 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 13075 13076 /* Get control bits for tagged addresses. */ 13077 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13078 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13079 13080 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 13081 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 13082 13083 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13084 int sve_el = sve_exception_el(env, el); 13085 uint32_t zcr_len; 13086 13087 /* 13088 * If SVE is disabled, but FP is enabled, 13089 * then the effective len is 0. 13090 */ 13091 if (sve_el != 0 && fp_el == 0) { 13092 zcr_len = 0; 13093 } else { 13094 zcr_len = sve_zcr_len_for_el(env, el); 13095 } 13096 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 13097 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 13098 } 13099 13100 sctlr = regime_sctlr(env, stage1); 13101 13102 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13103 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 13104 } 13105 13106 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13107 /* 13108 * In order to save space in flags, we record only whether 13109 * pauth is "inactive", meaning all insns are implemented as 13110 * a nop, or "active" when some action must be performed. 13111 * The decision of which action to take is left to a helper. 13112 */ 13113 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13114 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 13115 } 13116 } 13117 13118 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13119 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13120 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13121 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 13122 } 13123 } 13124 13125 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13126 if (!(env->pstate & PSTATE_UAO)) { 13127 switch (mmu_idx) { 13128 case ARMMMUIdx_E10_1: 13129 case ARMMMUIdx_E10_1_PAN: 13130 case ARMMMUIdx_SE10_1: 13131 case ARMMMUIdx_SE10_1_PAN: 13132 /* TODO: ARMv8.3-NV */ 13133 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 13134 break; 13135 case ARMMMUIdx_E20_2: 13136 case ARMMMUIdx_E20_2_PAN: 13137 case ARMMMUIdx_SE20_2: 13138 case ARMMMUIdx_SE20_2_PAN: 13139 /* 13140 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13141 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13142 */ 13143 if (env->cp15.hcr_el2 & HCR_TGE) { 13144 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 13145 } 13146 break; 13147 default: 13148 break; 13149 } 13150 } 13151 13152 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13153 /* 13154 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13155 * if all accesses must be Unchecked: 13156 * 1) If no TBI, then there are no tags in the address to check, 13157 * 2) If Tag Check Override, then all accesses are Unchecked, 13158 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13159 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13160 */ 13161 if (allocation_tag_access_enabled(env, el, sctlr)) { 13162 flags = FIELD_DP32(flags, TBFLAG_A64, ATA, 1); 13163 if (tbid 13164 && !(env->pstate & PSTATE_TCO) 13165 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13166 flags = FIELD_DP32(flags, TBFLAG_A64, MTE_ACTIVE, 1); 13167 } 13168 } 13169 /* And again for unprivileged accesses, if required. */ 13170 if (FIELD_EX32(flags, TBFLAG_A64, UNPRIV) 13171 && tbid 13172 && !(env->pstate & PSTATE_TCO) 13173 && (sctlr & SCTLR_TCF0) 13174 && allocation_tag_access_enabled(env, 0, sctlr)) { 13175 flags = FIELD_DP32(flags, TBFLAG_A64, MTE0_ACTIVE, 1); 13176 } 13177 /* Cache TCMA as well as TBI. */ 13178 flags = FIELD_DP32(flags, TBFLAG_A64, TCMA, 13179 aa64_va_parameter_tcma(tcr, mmu_idx)); 13180 } 13181 13182 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13183 } 13184 13185 static uint32_t rebuild_hflags_internal(CPUARMState *env) 13186 { 13187 int el = arm_current_el(env); 13188 int fp_el = fp_exception_el(env, el); 13189 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13190 13191 if (is_a64(env)) { 13192 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13193 } else if (arm_feature(env, ARM_FEATURE_M)) { 13194 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13195 } else { 13196 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13197 } 13198 } 13199 13200 void arm_rebuild_hflags(CPUARMState *env) 13201 { 13202 env->hflags = rebuild_hflags_internal(env); 13203 } 13204 13205 /* 13206 * If we have triggered a EL state change we can't rely on the 13207 * translator having passed it to us, we need to recompute. 13208 */ 13209 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13210 { 13211 int el = arm_current_el(env); 13212 int fp_el = fp_exception_el(env, el); 13213 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13214 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13215 } 13216 13217 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13218 { 13219 int fp_el = fp_exception_el(env, el); 13220 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13221 13222 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13223 } 13224 13225 /* 13226 * If we have triggered a EL state change we can't rely on the 13227 * translator having passed it to us, we need to recompute. 13228 */ 13229 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13230 { 13231 int el = arm_current_el(env); 13232 int fp_el = fp_exception_el(env, el); 13233 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13234 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13235 } 13236 13237 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13238 { 13239 int fp_el = fp_exception_el(env, el); 13240 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13241 13242 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13243 } 13244 13245 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13246 { 13247 int fp_el = fp_exception_el(env, el); 13248 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13249 13250 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13251 } 13252 13253 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13254 { 13255 #ifdef CONFIG_DEBUG_TCG 13256 uint32_t env_flags_current = env->hflags; 13257 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env); 13258 13259 if (unlikely(env_flags_current != env_flags_rebuilt)) { 13260 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n", 13261 env_flags_current, env_flags_rebuilt); 13262 abort(); 13263 } 13264 #endif 13265 } 13266 13267 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13268 target_ulong *cs_base, uint32_t *pflags) 13269 { 13270 uint32_t flags = env->hflags; 13271 13272 *cs_base = 0; 13273 assert_hflags_rebuild_correctly(env); 13274 13275 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { 13276 *pc = env->pc; 13277 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13278 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 13279 } 13280 } else { 13281 *pc = env->regs[15]; 13282 13283 if (arm_feature(env, ARM_FEATURE_M)) { 13284 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13285 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13286 != env->v7m.secure) { 13287 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1); 13288 } 13289 13290 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13291 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13292 (env->v7m.secure && 13293 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13294 /* 13295 * ASPEN is set, but FPCA/SFPA indicate that there is no 13296 * active FP context; we must create a new FP context before 13297 * executing any FP insn. 13298 */ 13299 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1); 13300 } 13301 13302 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13303 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13304 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1); 13305 } 13306 } else { 13307 /* 13308 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13309 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13310 */ 13311 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13312 flags = FIELD_DP32(flags, TBFLAG_A32, 13313 XSCALE_CPAR, env->cp15.c15_cpar); 13314 } else { 13315 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, 13316 env->vfp.vec_len); 13317 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, 13318 env->vfp.vec_stride); 13319 } 13320 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13321 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 13322 } 13323 } 13324 13325 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb); 13326 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits); 13327 } 13328 13329 /* 13330 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13331 * states defined in the ARM ARM for software singlestep: 13332 * SS_ACTIVE PSTATE.SS State 13333 * 0 x Inactive (the TB flag for SS is always 0) 13334 * 1 0 Active-pending 13335 * 1 1 Active-not-pending 13336 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. 13337 */ 13338 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && 13339 (env->pstate & PSTATE_SS)) { 13340 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 13341 } 13342 13343 *pflags = flags; 13344 } 13345 13346 #ifdef TARGET_AARCH64 13347 /* 13348 * The manual says that when SVE is enabled and VQ is widened the 13349 * implementation is allowed to zero the previously inaccessible 13350 * portion of the registers. The corollary to that is that when 13351 * SVE is enabled and VQ is narrowed we are also allowed to zero 13352 * the now inaccessible portion of the registers. 13353 * 13354 * The intent of this is that no predicate bit beyond VQ is ever set. 13355 * Which means that some operations on predicate registers themselves 13356 * may operate on full uint64_t or even unrolled across the maximum 13357 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13358 * may well be cheaper than conditionals to restrict the operation 13359 * to the relevant portion of a uint16_t[16]. 13360 */ 13361 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13362 { 13363 int i, j; 13364 uint64_t pmask; 13365 13366 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13367 assert(vq <= env_archcpu(env)->sve_max_vq); 13368 13369 /* Zap the high bits of the zregs. */ 13370 for (i = 0; i < 32; i++) { 13371 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13372 } 13373 13374 /* Zap the high bits of the pregs and ffr. */ 13375 pmask = 0; 13376 if (vq & 3) { 13377 pmask = ~(-1ULL << (16 * (vq & 3))); 13378 } 13379 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13380 for (i = 0; i < 17; ++i) { 13381 env->vfp.pregs[i].p[j] &= pmask; 13382 } 13383 pmask = 0; 13384 } 13385 } 13386 13387 /* 13388 * Notice a change in SVE vector size when changing EL. 13389 */ 13390 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13391 int new_el, bool el0_a64) 13392 { 13393 ARMCPU *cpu = env_archcpu(env); 13394 int old_len, new_len; 13395 bool old_a64, new_a64; 13396 13397 /* Nothing to do if no SVE. */ 13398 if (!cpu_isar_feature(aa64_sve, cpu)) { 13399 return; 13400 } 13401 13402 /* Nothing to do if FP is disabled in either EL. */ 13403 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13404 return; 13405 } 13406 13407 /* 13408 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13409 * at ELx, or not available because the EL is in AArch32 state, then 13410 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13411 * has an effective value of 0". 13412 * 13413 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13414 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13415 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13416 * we already have the correct register contents when encountering the 13417 * vq0->vq0 transition between EL0->EL1. 13418 */ 13419 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13420 old_len = (old_a64 && !sve_exception_el(env, old_el) 13421 ? sve_zcr_len_for_el(env, old_el) : 0); 13422 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13423 new_len = (new_a64 && !sve_exception_el(env, new_el) 13424 ? sve_zcr_len_for_el(env, new_el) : 0); 13425 13426 /* When changing vector length, clear inaccessible state. */ 13427 if (new_len < old_len) { 13428 aarch64_sve_narrow_vq(env, new_len + 1); 13429 } 13430 } 13431 #endif 13432