xref: /openbmc/qemu/target/arm/helper.c (revision cf7c6d1004eaaae85fd6156556e2f38ff493ef48)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "qemu/log.h"
12 #include "target/arm/idau.h"
13 #include "trace.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/timer.h"
20 #include "qemu/bitops.h"
21 #include "qemu/crc32c.h"
22 #include "qemu/qemu-print.h"
23 #include "exec/exec-all.h"
24 #include <zlib.h> /* For crc32 */
25 #include "hw/irq.h"
26 #include "semihosting/semihost.h"
27 #include "sysemu/cpus.h"
28 #include "sysemu/cpu-timers.h"
29 #include "sysemu/kvm.h"
30 #include "qemu/range.h"
31 #include "qapi/qapi-commands-machine-target.h"
32 #include "qapi/error.h"
33 #include "qemu/guest-random.h"
34 #ifdef CONFIG_TCG
35 #include "arm_ldst.h"
36 #include "exec/cpu_ldst.h"
37 #include "semihosting/common-semi.h"
38 #endif
39 #include "cpregs.h"
40 
41 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
42 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */
43 
44 #ifndef CONFIG_USER_ONLY
45 
46 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
47                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
48                                bool s1_is_el0,
49                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
50                                target_ulong *page_size_ptr,
51                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
52     __attribute__((nonnull));
53 #endif
54 
55 static void switch_mode(CPUARMState *env, int mode);
56 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
57 
58 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
59 {
60     assert(ri->fieldoffset);
61     if (cpreg_field_is_64bit(ri)) {
62         return CPREG_FIELD64(env, ri);
63     } else {
64         return CPREG_FIELD32(env, ri);
65     }
66 }
67 
68 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
69                       uint64_t value)
70 {
71     assert(ri->fieldoffset);
72     if (cpreg_field_is_64bit(ri)) {
73         CPREG_FIELD64(env, ri) = value;
74     } else {
75         CPREG_FIELD32(env, ri) = value;
76     }
77 }
78 
79 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
80 {
81     return (char *)env + ri->fieldoffset;
82 }
83 
84 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
85 {
86     /* Raw read of a coprocessor register (as needed for migration, etc). */
87     if (ri->type & ARM_CP_CONST) {
88         return ri->resetvalue;
89     } else if (ri->raw_readfn) {
90         return ri->raw_readfn(env, ri);
91     } else if (ri->readfn) {
92         return ri->readfn(env, ri);
93     } else {
94         return raw_read(env, ri);
95     }
96 }
97 
98 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
99                              uint64_t v)
100 {
101     /* Raw write of a coprocessor register (as needed for migration, etc).
102      * Note that constant registers are treated as write-ignored; the
103      * caller should check for success by whether a readback gives the
104      * value written.
105      */
106     if (ri->type & ARM_CP_CONST) {
107         return;
108     } else if (ri->raw_writefn) {
109         ri->raw_writefn(env, ri, v);
110     } else if (ri->writefn) {
111         ri->writefn(env, ri, v);
112     } else {
113         raw_write(env, ri, v);
114     }
115 }
116 
117 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
118 {
119    /* Return true if the regdef would cause an assertion if you called
120     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
121     * program bug for it not to have the NO_RAW flag).
122     * NB that returning false here doesn't necessarily mean that calling
123     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
124     * read/write access functions which are safe for raw use" from "has
125     * read/write access functions which have side effects but has forgotten
126     * to provide raw access functions".
127     * The tests here line up with the conditions in read/write_raw_cp_reg()
128     * and assertions in raw_read()/raw_write().
129     */
130     if ((ri->type & ARM_CP_CONST) ||
131         ri->fieldoffset ||
132         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
133         return false;
134     }
135     return true;
136 }
137 
138 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
139 {
140     /* Write the coprocessor state from cpu->env to the (index,value) list. */
141     int i;
142     bool ok = true;
143 
144     for (i = 0; i < cpu->cpreg_array_len; i++) {
145         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
146         const ARMCPRegInfo *ri;
147         uint64_t newval;
148 
149         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
150         if (!ri) {
151             ok = false;
152             continue;
153         }
154         if (ri->type & ARM_CP_NO_RAW) {
155             continue;
156         }
157 
158         newval = read_raw_cp_reg(&cpu->env, ri);
159         if (kvm_sync) {
160             /*
161              * Only sync if the previous list->cpustate sync succeeded.
162              * Rather than tracking the success/failure state for every
163              * item in the list, we just recheck "does the raw write we must
164              * have made in write_list_to_cpustate() read back OK" here.
165              */
166             uint64_t oldval = cpu->cpreg_values[i];
167 
168             if (oldval == newval) {
169                 continue;
170             }
171 
172             write_raw_cp_reg(&cpu->env, ri, oldval);
173             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
174                 continue;
175             }
176 
177             write_raw_cp_reg(&cpu->env, ri, newval);
178         }
179         cpu->cpreg_values[i] = newval;
180     }
181     return ok;
182 }
183 
184 bool write_list_to_cpustate(ARMCPU *cpu)
185 {
186     int i;
187     bool ok = true;
188 
189     for (i = 0; i < cpu->cpreg_array_len; i++) {
190         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
191         uint64_t v = cpu->cpreg_values[i];
192         const ARMCPRegInfo *ri;
193 
194         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
195         if (!ri) {
196             ok = false;
197             continue;
198         }
199         if (ri->type & ARM_CP_NO_RAW) {
200             continue;
201         }
202         /* Write value and confirm it reads back as written
203          * (to catch read-only registers and partially read-only
204          * registers where the incoming migration value doesn't match)
205          */
206         write_raw_cp_reg(&cpu->env, ri, v);
207         if (read_raw_cp_reg(&cpu->env, ri) != v) {
208             ok = false;
209         }
210     }
211     return ok;
212 }
213 
214 static void add_cpreg_to_list(gpointer key, gpointer opaque)
215 {
216     ARMCPU *cpu = opaque;
217     uint64_t regidx;
218     const ARMCPRegInfo *ri;
219 
220     regidx = *(uint32_t *)key;
221     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
222 
223     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
224         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
225         /* The value array need not be initialized at this point */
226         cpu->cpreg_array_len++;
227     }
228 }
229 
230 static void count_cpreg(gpointer key, gpointer opaque)
231 {
232     ARMCPU *cpu = opaque;
233     uint64_t regidx;
234     const ARMCPRegInfo *ri;
235 
236     regidx = *(uint32_t *)key;
237     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
238 
239     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
240         cpu->cpreg_array_len++;
241     }
242 }
243 
244 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
245 {
246     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
247     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
248 
249     if (aidx > bidx) {
250         return 1;
251     }
252     if (aidx < bidx) {
253         return -1;
254     }
255     return 0;
256 }
257 
258 void init_cpreg_list(ARMCPU *cpu)
259 {
260     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
261      * Note that we require cpreg_tuples[] to be sorted by key ID.
262      */
263     GList *keys;
264     int arraylen;
265 
266     keys = g_hash_table_get_keys(cpu->cp_regs);
267     keys = g_list_sort(keys, cpreg_key_compare);
268 
269     cpu->cpreg_array_len = 0;
270 
271     g_list_foreach(keys, count_cpreg, cpu);
272 
273     arraylen = cpu->cpreg_array_len;
274     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
275     cpu->cpreg_values = g_new(uint64_t, arraylen);
276     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
277     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
278     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
279     cpu->cpreg_array_len = 0;
280 
281     g_list_foreach(keys, add_cpreg_to_list, cpu);
282 
283     assert(cpu->cpreg_array_len == arraylen);
284 
285     g_list_free(keys);
286 }
287 
288 /*
289  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
290  */
291 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
292                                         const ARMCPRegInfo *ri,
293                                         bool isread)
294 {
295     if (!is_a64(env) && arm_current_el(env) == 3 &&
296         arm_is_secure_below_el3(env)) {
297         return CP_ACCESS_TRAP_UNCATEGORIZED;
298     }
299     return CP_ACCESS_OK;
300 }
301 
302 /* Some secure-only AArch32 registers trap to EL3 if used from
303  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
304  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
305  * We assume that the .access field is set to PL1_RW.
306  */
307 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
308                                             const ARMCPRegInfo *ri,
309                                             bool isread)
310 {
311     if (arm_current_el(env) == 3) {
312         return CP_ACCESS_OK;
313     }
314     if (arm_is_secure_below_el3(env)) {
315         if (env->cp15.scr_el3 & SCR_EEL2) {
316             return CP_ACCESS_TRAP_EL2;
317         }
318         return CP_ACCESS_TRAP_EL3;
319     }
320     /* This will be EL1 NS and EL2 NS, which just UNDEF */
321     return CP_ACCESS_TRAP_UNCATEGORIZED;
322 }
323 
324 static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
325 {
326     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
327 }
328 
329 /* Check for traps to "powerdown debug" registers, which are controlled
330  * by MDCR.TDOSA
331  */
332 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
333                                    bool isread)
334 {
335     int el = arm_current_el(env);
336     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
337     bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
338         (arm_hcr_el2_eff(env) & HCR_TGE);
339 
340     if (el < 2 && mdcr_el2_tdosa) {
341         return CP_ACCESS_TRAP_EL2;
342     }
343     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
344         return CP_ACCESS_TRAP_EL3;
345     }
346     return CP_ACCESS_OK;
347 }
348 
349 /* Check for traps to "debug ROM" registers, which are controlled
350  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
351  */
352 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
353                                   bool isread)
354 {
355     int el = arm_current_el(env);
356     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
357     bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
358         (arm_hcr_el2_eff(env) & HCR_TGE);
359 
360     if (el < 2 && mdcr_el2_tdra) {
361         return CP_ACCESS_TRAP_EL2;
362     }
363     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
364         return CP_ACCESS_TRAP_EL3;
365     }
366     return CP_ACCESS_OK;
367 }
368 
369 /* Check for traps to general debug registers, which are controlled
370  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
371  */
372 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
373                                   bool isread)
374 {
375     int el = arm_current_el(env);
376     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
377     bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
378         (arm_hcr_el2_eff(env) & HCR_TGE);
379 
380     if (el < 2 && mdcr_el2_tda) {
381         return CP_ACCESS_TRAP_EL2;
382     }
383     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
384         return CP_ACCESS_TRAP_EL3;
385     }
386     return CP_ACCESS_OK;
387 }
388 
389 /* Check for traps to performance monitor registers, which are controlled
390  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
391  */
392 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
393                                  bool isread)
394 {
395     int el = arm_current_el(env);
396     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
397 
398     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
399         return CP_ACCESS_TRAP_EL2;
400     }
401     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
402         return CP_ACCESS_TRAP_EL3;
403     }
404     return CP_ACCESS_OK;
405 }
406 
407 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
408 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
409                                       bool isread)
410 {
411     if (arm_current_el(env) == 1) {
412         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
413         if (arm_hcr_el2_eff(env) & trap) {
414             return CP_ACCESS_TRAP_EL2;
415         }
416     }
417     return CP_ACCESS_OK;
418 }
419 
420 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
421 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
422                                  bool isread)
423 {
424     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
425         return CP_ACCESS_TRAP_EL2;
426     }
427     return CP_ACCESS_OK;
428 }
429 
430 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
431 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
432                                   bool isread)
433 {
434     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
435         return CP_ACCESS_TRAP_EL2;
436     }
437     return CP_ACCESS_OK;
438 }
439 
440 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
441 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
442                                   bool isread)
443 {
444     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
445         return CP_ACCESS_TRAP_EL2;
446     }
447     return CP_ACCESS_OK;
448 }
449 
450 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
451 {
452     ARMCPU *cpu = env_archcpu(env);
453 
454     raw_write(env, ri, value);
455     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
456 }
457 
458 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
459 {
460     ARMCPU *cpu = env_archcpu(env);
461 
462     if (raw_read(env, ri) != value) {
463         /* Unlike real hardware the qemu TLB uses virtual addresses,
464          * not modified virtual addresses, so this causes a TLB flush.
465          */
466         tlb_flush(CPU(cpu));
467         raw_write(env, ri, value);
468     }
469 }
470 
471 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
472                              uint64_t value)
473 {
474     ARMCPU *cpu = env_archcpu(env);
475 
476     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
477         && !extended_addresses_enabled(env)) {
478         /* For VMSA (when not using the LPAE long descriptor page table
479          * format) this register includes the ASID, so do a TLB flush.
480          * For PMSA it is purely a process ID and no action is needed.
481          */
482         tlb_flush(CPU(cpu));
483     }
484     raw_write(env, ri, value);
485 }
486 
487 /* IS variants of TLB operations must affect all cores */
488 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
489                              uint64_t value)
490 {
491     CPUState *cs = env_cpu(env);
492 
493     tlb_flush_all_cpus_synced(cs);
494 }
495 
496 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
497                              uint64_t value)
498 {
499     CPUState *cs = env_cpu(env);
500 
501     tlb_flush_all_cpus_synced(cs);
502 }
503 
504 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
505                              uint64_t value)
506 {
507     CPUState *cs = env_cpu(env);
508 
509     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
510 }
511 
512 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
513                              uint64_t value)
514 {
515     CPUState *cs = env_cpu(env);
516 
517     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
518 }
519 
520 /*
521  * Non-IS variants of TLB operations are upgraded to
522  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
523  * force broadcast of these operations.
524  */
525 static bool tlb_force_broadcast(CPUARMState *env)
526 {
527     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
528 }
529 
530 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
531                           uint64_t value)
532 {
533     /* Invalidate all (TLBIALL) */
534     CPUState *cs = env_cpu(env);
535 
536     if (tlb_force_broadcast(env)) {
537         tlb_flush_all_cpus_synced(cs);
538     } else {
539         tlb_flush(cs);
540     }
541 }
542 
543 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
544                           uint64_t value)
545 {
546     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
547     CPUState *cs = env_cpu(env);
548 
549     value &= TARGET_PAGE_MASK;
550     if (tlb_force_broadcast(env)) {
551         tlb_flush_page_all_cpus_synced(cs, value);
552     } else {
553         tlb_flush_page(cs, value);
554     }
555 }
556 
557 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
558                            uint64_t value)
559 {
560     /* Invalidate by ASID (TLBIASID) */
561     CPUState *cs = env_cpu(env);
562 
563     if (tlb_force_broadcast(env)) {
564         tlb_flush_all_cpus_synced(cs);
565     } else {
566         tlb_flush(cs);
567     }
568 }
569 
570 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
571                            uint64_t value)
572 {
573     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
574     CPUState *cs = env_cpu(env);
575 
576     value &= TARGET_PAGE_MASK;
577     if (tlb_force_broadcast(env)) {
578         tlb_flush_page_all_cpus_synced(cs, value);
579     } else {
580         tlb_flush_page(cs, value);
581     }
582 }
583 
584 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
585                                uint64_t value)
586 {
587     CPUState *cs = env_cpu(env);
588 
589     tlb_flush_by_mmuidx(cs,
590                         ARMMMUIdxBit_E10_1 |
591                         ARMMMUIdxBit_E10_1_PAN |
592                         ARMMMUIdxBit_E10_0);
593 }
594 
595 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
596                                   uint64_t value)
597 {
598     CPUState *cs = env_cpu(env);
599 
600     tlb_flush_by_mmuidx_all_cpus_synced(cs,
601                                         ARMMMUIdxBit_E10_1 |
602                                         ARMMMUIdxBit_E10_1_PAN |
603                                         ARMMMUIdxBit_E10_0);
604 }
605 
606 
607 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
608                               uint64_t value)
609 {
610     CPUState *cs = env_cpu(env);
611 
612     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
613 }
614 
615 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
616                                  uint64_t value)
617 {
618     CPUState *cs = env_cpu(env);
619 
620     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
621 }
622 
623 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
624                               uint64_t value)
625 {
626     CPUState *cs = env_cpu(env);
627     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
628 
629     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
630 }
631 
632 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
633                                  uint64_t value)
634 {
635     CPUState *cs = env_cpu(env);
636     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
637 
638     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
639                                              ARMMMUIdxBit_E2);
640 }
641 
642 static const ARMCPRegInfo cp_reginfo[] = {
643     /* Define the secure and non-secure FCSE identifier CP registers
644      * separately because there is no secure bank in V8 (no _EL3).  This allows
645      * the secure register to be properly reset and migrated. There is also no
646      * v8 EL1 version of the register so the non-secure instance stands alone.
647      */
648     { .name = "FCSEIDR",
649       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
650       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
651       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
652       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
653     { .name = "FCSEIDR_S",
654       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
655       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
656       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
657       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
658     /* Define the secure and non-secure context identifier CP registers
659      * separately because there is no secure bank in V8 (no _EL3).  This allows
660      * the secure register to be properly reset and migrated.  In the
661      * non-secure case, the 32-bit register will have reset and migration
662      * disabled during registration as it is handled by the 64-bit instance.
663      */
664     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
665       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
666       .access = PL1_RW, .accessfn = access_tvm_trvm,
667       .secure = ARM_CP_SECSTATE_NS,
668       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
669       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
670     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
671       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
672       .access = PL1_RW, .accessfn = access_tvm_trvm,
673       .secure = ARM_CP_SECSTATE_S,
674       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
675       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
676     REGINFO_SENTINEL
677 };
678 
679 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
680     /* NB: Some of these registers exist in v8 but with more precise
681      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
682      */
683     /* MMU Domain access control / MPU write buffer control */
684     { .name = "DACR",
685       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
686       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
687       .writefn = dacr_write, .raw_writefn = raw_write,
688       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
689                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
690     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
691      * For v6 and v5, these mappings are overly broad.
692      */
693     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
694       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
695     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
696       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
697     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
698       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
699     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
700       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
701     /* Cache maintenance ops; some of this space may be overridden later. */
702     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
703       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
704       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
705     REGINFO_SENTINEL
706 };
707 
708 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
709     /* Not all pre-v6 cores implemented this WFI, so this is slightly
710      * over-broad.
711      */
712     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
713       .access = PL1_W, .type = ARM_CP_WFI },
714     REGINFO_SENTINEL
715 };
716 
717 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
718     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
719      * is UNPREDICTABLE; we choose to NOP as most implementations do).
720      */
721     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
722       .access = PL1_W, .type = ARM_CP_WFI },
723     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
724      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
725      * OMAPCP will override this space.
726      */
727     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
728       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
729       .resetvalue = 0 },
730     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
731       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
732       .resetvalue = 0 },
733     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
734     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
735       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
736       .resetvalue = 0 },
737     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
738      * implementing it as RAZ means the "debug architecture version" bits
739      * will read as a reserved value, which should cause Linux to not try
740      * to use the debug hardware.
741      */
742     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
743       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
744     /* MMU TLB control. Note that the wildcarding means we cover not just
745      * the unified TLB ops but also the dside/iside/inner-shareable variants.
746      */
747     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
748       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
749       .type = ARM_CP_NO_RAW },
750     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
751       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
752       .type = ARM_CP_NO_RAW },
753     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
754       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
755       .type = ARM_CP_NO_RAW },
756     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
757       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
758       .type = ARM_CP_NO_RAW },
759     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
760       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
761     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
762       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
763     REGINFO_SENTINEL
764 };
765 
766 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
767                         uint64_t value)
768 {
769     uint32_t mask = 0;
770 
771     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
772     if (!arm_feature(env, ARM_FEATURE_V8)) {
773         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
774          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
775          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
776          */
777         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
778             /* VFP coprocessor: cp10 & cp11 [23:20] */
779             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
780 
781             if (!arm_feature(env, ARM_FEATURE_NEON)) {
782                 /* ASEDIS [31] bit is RAO/WI */
783                 value |= (1 << 31);
784             }
785 
786             /* VFPv3 and upwards with NEON implement 32 double precision
787              * registers (D0-D31).
788              */
789             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
790                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
791                 value |= (1 << 30);
792             }
793         }
794         value &= mask;
795     }
796 
797     /*
798      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
799      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
800      */
801     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
802         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
803         value &= ~(0xf << 20);
804         value |= env->cp15.cpacr_el1 & (0xf << 20);
805     }
806 
807     env->cp15.cpacr_el1 = value;
808 }
809 
810 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
811 {
812     /*
813      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
814      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
815      */
816     uint64_t value = env->cp15.cpacr_el1;
817 
818     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
819         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
820         value &= ~(0xf << 20);
821     }
822     return value;
823 }
824 
825 
826 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
827 {
828     /* Call cpacr_write() so that we reset with the correct RAO bits set
829      * for our CPU features.
830      */
831     cpacr_write(env, ri, 0);
832 }
833 
834 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
835                                    bool isread)
836 {
837     if (arm_feature(env, ARM_FEATURE_V8)) {
838         /* Check if CPACR accesses are to be trapped to EL2 */
839         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
840             (env->cp15.cptr_el[2] & CPTR_TCPAC)) {
841             return CP_ACCESS_TRAP_EL2;
842         /* Check if CPACR accesses are to be trapped to EL3 */
843         } else if (arm_current_el(env) < 3 &&
844                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
845             return CP_ACCESS_TRAP_EL3;
846         }
847     }
848 
849     return CP_ACCESS_OK;
850 }
851 
852 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
853                                   bool isread)
854 {
855     /* Check if CPTR accesses are set to trap to EL3 */
856     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
857         return CP_ACCESS_TRAP_EL3;
858     }
859 
860     return CP_ACCESS_OK;
861 }
862 
863 static const ARMCPRegInfo v6_cp_reginfo[] = {
864     /* prefetch by MVA in v6, NOP in v7 */
865     { .name = "MVA_prefetch",
866       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
867       .access = PL1_W, .type = ARM_CP_NOP },
868     /* We need to break the TB after ISB to execute self-modifying code
869      * correctly and also to take any pending interrupts immediately.
870      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
871      */
872     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
873       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
874     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
875       .access = PL0_W, .type = ARM_CP_NOP },
876     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
877       .access = PL0_W, .type = ARM_CP_NOP },
878     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
879       .access = PL1_RW, .accessfn = access_tvm_trvm,
880       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
881                              offsetof(CPUARMState, cp15.ifar_ns) },
882       .resetvalue = 0, },
883     /* Watchpoint Fault Address Register : should actually only be present
884      * for 1136, 1176, 11MPCore.
885      */
886     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
887       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
888     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
889       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
890       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
891       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
892     REGINFO_SENTINEL
893 };
894 
895 typedef struct pm_event {
896     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
897     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
898     bool (*supported)(CPUARMState *);
899     /*
900      * Retrieve the current count of the underlying event. The programmed
901      * counters hold a difference from the return value from this function
902      */
903     uint64_t (*get_count)(CPUARMState *);
904     /*
905      * Return how many nanoseconds it will take (at a minimum) for count events
906      * to occur. A negative value indicates the counter will never overflow, or
907      * that the counter has otherwise arranged for the overflow bit to be set
908      * and the PMU interrupt to be raised on overflow.
909      */
910     int64_t (*ns_per_count)(uint64_t);
911 } pm_event;
912 
913 static bool event_always_supported(CPUARMState *env)
914 {
915     return true;
916 }
917 
918 static uint64_t swinc_get_count(CPUARMState *env)
919 {
920     /*
921      * SW_INCR events are written directly to the pmevcntr's by writes to
922      * PMSWINC, so there is no underlying count maintained by the PMU itself
923      */
924     return 0;
925 }
926 
927 static int64_t swinc_ns_per(uint64_t ignored)
928 {
929     return -1;
930 }
931 
932 /*
933  * Return the underlying cycle count for the PMU cycle counters. If we're in
934  * usermode, simply return 0.
935  */
936 static uint64_t cycles_get_count(CPUARMState *env)
937 {
938 #ifndef CONFIG_USER_ONLY
939     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
940                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
941 #else
942     return cpu_get_host_ticks();
943 #endif
944 }
945 
946 #ifndef CONFIG_USER_ONLY
947 static int64_t cycles_ns_per(uint64_t cycles)
948 {
949     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
950 }
951 
952 static bool instructions_supported(CPUARMState *env)
953 {
954     return icount_enabled() == 1; /* Precise instruction counting */
955 }
956 
957 static uint64_t instructions_get_count(CPUARMState *env)
958 {
959     return (uint64_t)icount_get_raw();
960 }
961 
962 static int64_t instructions_ns_per(uint64_t icount)
963 {
964     return icount_to_ns((int64_t)icount);
965 }
966 #endif
967 
968 static bool pmu_8_1_events_supported(CPUARMState *env)
969 {
970     /* For events which are supported in any v8.1 PMU */
971     return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
972 }
973 
974 static bool pmu_8_4_events_supported(CPUARMState *env)
975 {
976     /* For events which are supported in any v8.1 PMU */
977     return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
978 }
979 
980 static uint64_t zero_event_get_count(CPUARMState *env)
981 {
982     /* For events which on QEMU never fire, so their count is always zero */
983     return 0;
984 }
985 
986 static int64_t zero_event_ns_per(uint64_t cycles)
987 {
988     /* An event which never fires can never overflow */
989     return -1;
990 }
991 
992 static const pm_event pm_events[] = {
993     { .number = 0x000, /* SW_INCR */
994       .supported = event_always_supported,
995       .get_count = swinc_get_count,
996       .ns_per_count = swinc_ns_per,
997     },
998 #ifndef CONFIG_USER_ONLY
999     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1000       .supported = instructions_supported,
1001       .get_count = instructions_get_count,
1002       .ns_per_count = instructions_ns_per,
1003     },
1004     { .number = 0x011, /* CPU_CYCLES, Cycle */
1005       .supported = event_always_supported,
1006       .get_count = cycles_get_count,
1007       .ns_per_count = cycles_ns_per,
1008     },
1009 #endif
1010     { .number = 0x023, /* STALL_FRONTEND */
1011       .supported = pmu_8_1_events_supported,
1012       .get_count = zero_event_get_count,
1013       .ns_per_count = zero_event_ns_per,
1014     },
1015     { .number = 0x024, /* STALL_BACKEND */
1016       .supported = pmu_8_1_events_supported,
1017       .get_count = zero_event_get_count,
1018       .ns_per_count = zero_event_ns_per,
1019     },
1020     { .number = 0x03c, /* STALL */
1021       .supported = pmu_8_4_events_supported,
1022       .get_count = zero_event_get_count,
1023       .ns_per_count = zero_event_ns_per,
1024     },
1025 };
1026 
1027 /*
1028  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1029  * events (i.e. the statistical profiling extension), this implementation
1030  * should first be updated to something sparse instead of the current
1031  * supported_event_map[] array.
1032  */
1033 #define MAX_EVENT_ID 0x3c
1034 #define UNSUPPORTED_EVENT UINT16_MAX
1035 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1036 
1037 /*
1038  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1039  * of ARM event numbers to indices in our pm_events array.
1040  *
1041  * Note: Events in the 0x40XX range are not currently supported.
1042  */
1043 void pmu_init(ARMCPU *cpu)
1044 {
1045     unsigned int i;
1046 
1047     /*
1048      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1049      * events to them
1050      */
1051     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1052         supported_event_map[i] = UNSUPPORTED_EVENT;
1053     }
1054     cpu->pmceid0 = 0;
1055     cpu->pmceid1 = 0;
1056 
1057     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1058         const pm_event *cnt = &pm_events[i];
1059         assert(cnt->number <= MAX_EVENT_ID);
1060         /* We do not currently support events in the 0x40xx range */
1061         assert(cnt->number <= 0x3f);
1062 
1063         if (cnt->supported(&cpu->env)) {
1064             supported_event_map[cnt->number] = i;
1065             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1066             if (cnt->number & 0x20) {
1067                 cpu->pmceid1 |= event_mask;
1068             } else {
1069                 cpu->pmceid0 |= event_mask;
1070             }
1071         }
1072     }
1073 }
1074 
1075 /*
1076  * Check at runtime whether a PMU event is supported for the current machine
1077  */
1078 static bool event_supported(uint16_t number)
1079 {
1080     if (number > MAX_EVENT_ID) {
1081         return false;
1082     }
1083     return supported_event_map[number] != UNSUPPORTED_EVENT;
1084 }
1085 
1086 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1087                                    bool isread)
1088 {
1089     /* Performance monitor registers user accessibility is controlled
1090      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1091      * trapping to EL2 or EL3 for other accesses.
1092      */
1093     int el = arm_current_el(env);
1094     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1095 
1096     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1097         return CP_ACCESS_TRAP;
1098     }
1099     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1100         return CP_ACCESS_TRAP_EL2;
1101     }
1102     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1103         return CP_ACCESS_TRAP_EL3;
1104     }
1105 
1106     return CP_ACCESS_OK;
1107 }
1108 
1109 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1110                                            const ARMCPRegInfo *ri,
1111                                            bool isread)
1112 {
1113     /* ER: event counter read trap control */
1114     if (arm_feature(env, ARM_FEATURE_V8)
1115         && arm_current_el(env) == 0
1116         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1117         && isread) {
1118         return CP_ACCESS_OK;
1119     }
1120 
1121     return pmreg_access(env, ri, isread);
1122 }
1123 
1124 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1125                                          const ARMCPRegInfo *ri,
1126                                          bool isread)
1127 {
1128     /* SW: software increment write trap control */
1129     if (arm_feature(env, ARM_FEATURE_V8)
1130         && arm_current_el(env) == 0
1131         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1132         && !isread) {
1133         return CP_ACCESS_OK;
1134     }
1135 
1136     return pmreg_access(env, ri, isread);
1137 }
1138 
1139 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1140                                         const ARMCPRegInfo *ri,
1141                                         bool isread)
1142 {
1143     /* ER: event counter read trap control */
1144     if (arm_feature(env, ARM_FEATURE_V8)
1145         && arm_current_el(env) == 0
1146         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1147         return CP_ACCESS_OK;
1148     }
1149 
1150     return pmreg_access(env, ri, isread);
1151 }
1152 
1153 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1154                                          const ARMCPRegInfo *ri,
1155                                          bool isread)
1156 {
1157     /* CR: cycle counter read trap control */
1158     if (arm_feature(env, ARM_FEATURE_V8)
1159         && arm_current_el(env) == 0
1160         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1161         && isread) {
1162         return CP_ACCESS_OK;
1163     }
1164 
1165     return pmreg_access(env, ri, isread);
1166 }
1167 
1168 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1169  * the current EL, security state, and register configuration.
1170  */
1171 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1172 {
1173     uint64_t filter;
1174     bool e, p, u, nsk, nsu, nsh, m;
1175     bool enabled, prohibited, filtered;
1176     bool secure = arm_is_secure(env);
1177     int el = arm_current_el(env);
1178     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1179     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1180 
1181     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1182         return false;
1183     }
1184 
1185     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1186             (counter < hpmn || counter == 31)) {
1187         e = env->cp15.c9_pmcr & PMCRE;
1188     } else {
1189         e = mdcr_el2 & MDCR_HPME;
1190     }
1191     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1192 
1193     if (!secure) {
1194         if (el == 2 && (counter < hpmn || counter == 31)) {
1195             prohibited = mdcr_el2 & MDCR_HPMD;
1196         } else {
1197             prohibited = false;
1198         }
1199     } else {
1200         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1201            !(env->cp15.mdcr_el3 & MDCR_SPME);
1202     }
1203 
1204     if (prohibited && counter == 31) {
1205         prohibited = env->cp15.c9_pmcr & PMCRDP;
1206     }
1207 
1208     if (counter == 31) {
1209         filter = env->cp15.pmccfiltr_el0;
1210     } else {
1211         filter = env->cp15.c14_pmevtyper[counter];
1212     }
1213 
1214     p   = filter & PMXEVTYPER_P;
1215     u   = filter & PMXEVTYPER_U;
1216     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1217     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1218     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1219     m   = arm_el_is_aa64(env, 1) &&
1220               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1221 
1222     if (el == 0) {
1223         filtered = secure ? u : u != nsu;
1224     } else if (el == 1) {
1225         filtered = secure ? p : p != nsk;
1226     } else if (el == 2) {
1227         filtered = !nsh;
1228     } else { /* EL3 */
1229         filtered = m != p;
1230     }
1231 
1232     if (counter != 31) {
1233         /*
1234          * If not checking PMCCNTR, ensure the counter is setup to an event we
1235          * support
1236          */
1237         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1238         if (!event_supported(event)) {
1239             return false;
1240         }
1241     }
1242 
1243     return enabled && !prohibited && !filtered;
1244 }
1245 
1246 static void pmu_update_irq(CPUARMState *env)
1247 {
1248     ARMCPU *cpu = env_archcpu(env);
1249     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1250             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1251 }
1252 
1253 /*
1254  * Ensure c15_ccnt is the guest-visible count so that operations such as
1255  * enabling/disabling the counter or filtering, modifying the count itself,
1256  * etc. can be done logically. This is essentially a no-op if the counter is
1257  * not enabled at the time of the call.
1258  */
1259 static void pmccntr_op_start(CPUARMState *env)
1260 {
1261     uint64_t cycles = cycles_get_count(env);
1262 
1263     if (pmu_counter_enabled(env, 31)) {
1264         uint64_t eff_cycles = cycles;
1265         if (env->cp15.c9_pmcr & PMCRD) {
1266             /* Increment once every 64 processor clock cycles */
1267             eff_cycles /= 64;
1268         }
1269 
1270         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1271 
1272         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1273                                  1ull << 63 : 1ull << 31;
1274         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1275             env->cp15.c9_pmovsr |= (1 << 31);
1276             pmu_update_irq(env);
1277         }
1278 
1279         env->cp15.c15_ccnt = new_pmccntr;
1280     }
1281     env->cp15.c15_ccnt_delta = cycles;
1282 }
1283 
1284 /*
1285  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1286  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1287  * pmccntr_op_start.
1288  */
1289 static void pmccntr_op_finish(CPUARMState *env)
1290 {
1291     if (pmu_counter_enabled(env, 31)) {
1292 #ifndef CONFIG_USER_ONLY
1293         /* Calculate when the counter will next overflow */
1294         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1295         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1296             remaining_cycles = (uint32_t)remaining_cycles;
1297         }
1298         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1299 
1300         if (overflow_in > 0) {
1301             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1302                 overflow_in;
1303             ARMCPU *cpu = env_archcpu(env);
1304             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1305         }
1306 #endif
1307 
1308         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1309         if (env->cp15.c9_pmcr & PMCRD) {
1310             /* Increment once every 64 processor clock cycles */
1311             prev_cycles /= 64;
1312         }
1313         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1314     }
1315 }
1316 
1317 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1318 {
1319 
1320     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1321     uint64_t count = 0;
1322     if (event_supported(event)) {
1323         uint16_t event_idx = supported_event_map[event];
1324         count = pm_events[event_idx].get_count(env);
1325     }
1326 
1327     if (pmu_counter_enabled(env, counter)) {
1328         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1329 
1330         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1331             env->cp15.c9_pmovsr |= (1 << counter);
1332             pmu_update_irq(env);
1333         }
1334         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1335     }
1336     env->cp15.c14_pmevcntr_delta[counter] = count;
1337 }
1338 
1339 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1340 {
1341     if (pmu_counter_enabled(env, counter)) {
1342 #ifndef CONFIG_USER_ONLY
1343         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1344         uint16_t event_idx = supported_event_map[event];
1345         uint64_t delta = UINT32_MAX -
1346             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1347         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1348 
1349         if (overflow_in > 0) {
1350             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1351                 overflow_in;
1352             ARMCPU *cpu = env_archcpu(env);
1353             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1354         }
1355 #endif
1356 
1357         env->cp15.c14_pmevcntr_delta[counter] -=
1358             env->cp15.c14_pmevcntr[counter];
1359     }
1360 }
1361 
1362 void pmu_op_start(CPUARMState *env)
1363 {
1364     unsigned int i;
1365     pmccntr_op_start(env);
1366     for (i = 0; i < pmu_num_counters(env); i++) {
1367         pmevcntr_op_start(env, i);
1368     }
1369 }
1370 
1371 void pmu_op_finish(CPUARMState *env)
1372 {
1373     unsigned int i;
1374     pmccntr_op_finish(env);
1375     for (i = 0; i < pmu_num_counters(env); i++) {
1376         pmevcntr_op_finish(env, i);
1377     }
1378 }
1379 
1380 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1381 {
1382     pmu_op_start(&cpu->env);
1383 }
1384 
1385 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1386 {
1387     pmu_op_finish(&cpu->env);
1388 }
1389 
1390 void arm_pmu_timer_cb(void *opaque)
1391 {
1392     ARMCPU *cpu = opaque;
1393 
1394     /*
1395      * Update all the counter values based on the current underlying counts,
1396      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1397      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1398      * counter may expire.
1399      */
1400     pmu_op_start(&cpu->env);
1401     pmu_op_finish(&cpu->env);
1402 }
1403 
1404 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1405                        uint64_t value)
1406 {
1407     pmu_op_start(env);
1408 
1409     if (value & PMCRC) {
1410         /* The counter has been reset */
1411         env->cp15.c15_ccnt = 0;
1412     }
1413 
1414     if (value & PMCRP) {
1415         unsigned int i;
1416         for (i = 0; i < pmu_num_counters(env); i++) {
1417             env->cp15.c14_pmevcntr[i] = 0;
1418         }
1419     }
1420 
1421     env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1422     env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1423 
1424     pmu_op_finish(env);
1425 }
1426 
1427 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1428                           uint64_t value)
1429 {
1430     unsigned int i;
1431     for (i = 0; i < pmu_num_counters(env); i++) {
1432         /* Increment a counter's count iff: */
1433         if ((value & (1 << i)) && /* counter's bit is set */
1434                 /* counter is enabled and not filtered */
1435                 pmu_counter_enabled(env, i) &&
1436                 /* counter is SW_INCR */
1437                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1438             pmevcntr_op_start(env, i);
1439 
1440             /*
1441              * Detect if this write causes an overflow since we can't predict
1442              * PMSWINC overflows like we can for other events
1443              */
1444             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1445 
1446             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1447                 env->cp15.c9_pmovsr |= (1 << i);
1448                 pmu_update_irq(env);
1449             }
1450 
1451             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1452 
1453             pmevcntr_op_finish(env, i);
1454         }
1455     }
1456 }
1457 
1458 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1459 {
1460     uint64_t ret;
1461     pmccntr_op_start(env);
1462     ret = env->cp15.c15_ccnt;
1463     pmccntr_op_finish(env);
1464     return ret;
1465 }
1466 
1467 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1468                          uint64_t value)
1469 {
1470     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1471      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1472      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1473      * accessed.
1474      */
1475     env->cp15.c9_pmselr = value & 0x1f;
1476 }
1477 
1478 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1479                         uint64_t value)
1480 {
1481     pmccntr_op_start(env);
1482     env->cp15.c15_ccnt = value;
1483     pmccntr_op_finish(env);
1484 }
1485 
1486 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1487                             uint64_t value)
1488 {
1489     uint64_t cur_val = pmccntr_read(env, NULL);
1490 
1491     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1492 }
1493 
1494 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1495                             uint64_t value)
1496 {
1497     pmccntr_op_start(env);
1498     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1499     pmccntr_op_finish(env);
1500 }
1501 
1502 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1503                             uint64_t value)
1504 {
1505     pmccntr_op_start(env);
1506     /* M is not accessible from AArch32 */
1507     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1508         (value & PMCCFILTR);
1509     pmccntr_op_finish(env);
1510 }
1511 
1512 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1513 {
1514     /* M is not visible in AArch32 */
1515     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1516 }
1517 
1518 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1519                             uint64_t value)
1520 {
1521     value &= pmu_counter_mask(env);
1522     env->cp15.c9_pmcnten |= value;
1523 }
1524 
1525 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1526                              uint64_t value)
1527 {
1528     value &= pmu_counter_mask(env);
1529     env->cp15.c9_pmcnten &= ~value;
1530 }
1531 
1532 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1533                          uint64_t value)
1534 {
1535     value &= pmu_counter_mask(env);
1536     env->cp15.c9_pmovsr &= ~value;
1537     pmu_update_irq(env);
1538 }
1539 
1540 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1541                          uint64_t value)
1542 {
1543     value &= pmu_counter_mask(env);
1544     env->cp15.c9_pmovsr |= value;
1545     pmu_update_irq(env);
1546 }
1547 
1548 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1549                              uint64_t value, const uint8_t counter)
1550 {
1551     if (counter == 31) {
1552         pmccfiltr_write(env, ri, value);
1553     } else if (counter < pmu_num_counters(env)) {
1554         pmevcntr_op_start(env, counter);
1555 
1556         /*
1557          * If this counter's event type is changing, store the current
1558          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1559          * pmevcntr_op_finish has the correct baseline when it converts back to
1560          * a delta.
1561          */
1562         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1563             PMXEVTYPER_EVTCOUNT;
1564         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1565         if (old_event != new_event) {
1566             uint64_t count = 0;
1567             if (event_supported(new_event)) {
1568                 uint16_t event_idx = supported_event_map[new_event];
1569                 count = pm_events[event_idx].get_count(env);
1570             }
1571             env->cp15.c14_pmevcntr_delta[counter] = count;
1572         }
1573 
1574         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1575         pmevcntr_op_finish(env, counter);
1576     }
1577     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1578      * PMSELR value is equal to or greater than the number of implemented
1579      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1580      */
1581 }
1582 
1583 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1584                                const uint8_t counter)
1585 {
1586     if (counter == 31) {
1587         return env->cp15.pmccfiltr_el0;
1588     } else if (counter < pmu_num_counters(env)) {
1589         return env->cp15.c14_pmevtyper[counter];
1590     } else {
1591       /*
1592        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1593        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1594        */
1595         return 0;
1596     }
1597 }
1598 
1599 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1600                               uint64_t value)
1601 {
1602     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1603     pmevtyper_write(env, ri, value, counter);
1604 }
1605 
1606 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1607                                uint64_t value)
1608 {
1609     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1610     env->cp15.c14_pmevtyper[counter] = value;
1611 
1612     /*
1613      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1614      * pmu_op_finish calls when loading saved state for a migration. Because
1615      * we're potentially updating the type of event here, the value written to
1616      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1617      * different counter type. Therefore, we need to set this value to the
1618      * current count for the counter type we're writing so that pmu_op_finish
1619      * has the correct count for its calculation.
1620      */
1621     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1622     if (event_supported(event)) {
1623         uint16_t event_idx = supported_event_map[event];
1624         env->cp15.c14_pmevcntr_delta[counter] =
1625             pm_events[event_idx].get_count(env);
1626     }
1627 }
1628 
1629 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1630 {
1631     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1632     return pmevtyper_read(env, ri, counter);
1633 }
1634 
1635 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1636                              uint64_t value)
1637 {
1638     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1639 }
1640 
1641 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1642 {
1643     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1644 }
1645 
1646 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1647                              uint64_t value, uint8_t counter)
1648 {
1649     if (counter < pmu_num_counters(env)) {
1650         pmevcntr_op_start(env, counter);
1651         env->cp15.c14_pmevcntr[counter] = value;
1652         pmevcntr_op_finish(env, counter);
1653     }
1654     /*
1655      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1656      * are CONSTRAINED UNPREDICTABLE.
1657      */
1658 }
1659 
1660 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1661                               uint8_t counter)
1662 {
1663     if (counter < pmu_num_counters(env)) {
1664         uint64_t ret;
1665         pmevcntr_op_start(env, counter);
1666         ret = env->cp15.c14_pmevcntr[counter];
1667         pmevcntr_op_finish(env, counter);
1668         return ret;
1669     } else {
1670       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1671        * are CONSTRAINED UNPREDICTABLE. */
1672         return 0;
1673     }
1674 }
1675 
1676 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1677                              uint64_t value)
1678 {
1679     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1680     pmevcntr_write(env, ri, value, counter);
1681 }
1682 
1683 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1684 {
1685     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1686     return pmevcntr_read(env, ri, counter);
1687 }
1688 
1689 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1690                              uint64_t value)
1691 {
1692     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1693     assert(counter < pmu_num_counters(env));
1694     env->cp15.c14_pmevcntr[counter] = value;
1695     pmevcntr_write(env, ri, value, counter);
1696 }
1697 
1698 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1699 {
1700     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1701     assert(counter < pmu_num_counters(env));
1702     return env->cp15.c14_pmevcntr[counter];
1703 }
1704 
1705 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1706                              uint64_t value)
1707 {
1708     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1709 }
1710 
1711 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1712 {
1713     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1714 }
1715 
1716 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1717                             uint64_t value)
1718 {
1719     if (arm_feature(env, ARM_FEATURE_V8)) {
1720         env->cp15.c9_pmuserenr = value & 0xf;
1721     } else {
1722         env->cp15.c9_pmuserenr = value & 1;
1723     }
1724 }
1725 
1726 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1727                              uint64_t value)
1728 {
1729     /* We have no event counters so only the C bit can be changed */
1730     value &= pmu_counter_mask(env);
1731     env->cp15.c9_pminten |= value;
1732     pmu_update_irq(env);
1733 }
1734 
1735 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1736                              uint64_t value)
1737 {
1738     value &= pmu_counter_mask(env);
1739     env->cp15.c9_pminten &= ~value;
1740     pmu_update_irq(env);
1741 }
1742 
1743 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1744                        uint64_t value)
1745 {
1746     /* Note that even though the AArch64 view of this register has bits
1747      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1748      * architectural requirements for bits which are RES0 only in some
1749      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1750      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1751      */
1752     raw_write(env, ri, value & ~0x1FULL);
1753 }
1754 
1755 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1756 {
1757     /* Begin with base v8.0 state.  */
1758     uint32_t valid_mask = 0x3fff;
1759     ARMCPU *cpu = env_archcpu(env);
1760 
1761     if (ri->state == ARM_CP_STATE_AA64) {
1762         if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1763             !cpu_isar_feature(aa64_aa32_el1, cpu)) {
1764                 value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
1765         }
1766         valid_mask &= ~SCR_NET;
1767 
1768         if (cpu_isar_feature(aa64_lor, cpu)) {
1769             valid_mask |= SCR_TLOR;
1770         }
1771         if (cpu_isar_feature(aa64_pauth, cpu)) {
1772             valid_mask |= SCR_API | SCR_APK;
1773         }
1774         if (cpu_isar_feature(aa64_sel2, cpu)) {
1775             valid_mask |= SCR_EEL2;
1776         }
1777         if (cpu_isar_feature(aa64_mte, cpu)) {
1778             valid_mask |= SCR_ATA;
1779         }
1780     } else {
1781         valid_mask &= ~(SCR_RW | SCR_ST);
1782     }
1783 
1784     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1785         valid_mask &= ~SCR_HCE;
1786 
1787         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1788          * supported if EL2 exists. The bit is UNK/SBZP when
1789          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1790          * when EL2 is unavailable.
1791          * On ARMv8, this bit is always available.
1792          */
1793         if (arm_feature(env, ARM_FEATURE_V7) &&
1794             !arm_feature(env, ARM_FEATURE_V8)) {
1795             valid_mask &= ~SCR_SMD;
1796         }
1797     }
1798 
1799     /* Clear all-context RES0 bits.  */
1800     value &= valid_mask;
1801     raw_write(env, ri, value);
1802 }
1803 
1804 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1805 {
1806     /*
1807      * scr_write will set the RES1 bits on an AArch64-only CPU.
1808      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1809      */
1810     scr_write(env, ri, 0);
1811 }
1812 
1813 static CPAccessResult access_aa64_tid2(CPUARMState *env,
1814                                        const ARMCPRegInfo *ri,
1815                                        bool isread)
1816 {
1817     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
1818         return CP_ACCESS_TRAP_EL2;
1819     }
1820 
1821     return CP_ACCESS_OK;
1822 }
1823 
1824 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1825 {
1826     ARMCPU *cpu = env_archcpu(env);
1827 
1828     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1829      * bank
1830      */
1831     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1832                                         ri->secure & ARM_CP_SECSTATE_S);
1833 
1834     return cpu->ccsidr[index];
1835 }
1836 
1837 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1838                          uint64_t value)
1839 {
1840     raw_write(env, ri, value & 0xf);
1841 }
1842 
1843 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1844 {
1845     CPUState *cs = env_cpu(env);
1846     bool el1 = arm_current_el(env) == 1;
1847     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1848     uint64_t ret = 0;
1849 
1850     if (hcr_el2 & HCR_IMO) {
1851         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1852             ret |= CPSR_I;
1853         }
1854     } else {
1855         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1856             ret |= CPSR_I;
1857         }
1858     }
1859 
1860     if (hcr_el2 & HCR_FMO) {
1861         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1862             ret |= CPSR_F;
1863         }
1864     } else {
1865         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1866             ret |= CPSR_F;
1867         }
1868     }
1869 
1870     /* External aborts are not possible in QEMU so A bit is always clear */
1871     return ret;
1872 }
1873 
1874 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1875                                        bool isread)
1876 {
1877     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
1878         return CP_ACCESS_TRAP_EL2;
1879     }
1880 
1881     return CP_ACCESS_OK;
1882 }
1883 
1884 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1885                                        bool isread)
1886 {
1887     if (arm_feature(env, ARM_FEATURE_V8)) {
1888         return access_aa64_tid1(env, ri, isread);
1889     }
1890 
1891     return CP_ACCESS_OK;
1892 }
1893 
1894 static const ARMCPRegInfo v7_cp_reginfo[] = {
1895     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1896     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1897       .access = PL1_W, .type = ARM_CP_NOP },
1898     /* Performance monitors are implementation defined in v7,
1899      * but with an ARM recommended set of registers, which we
1900      * follow.
1901      *
1902      * Performance registers fall into three categories:
1903      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1904      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1905      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1906      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1907      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1908      */
1909     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1910       .access = PL0_RW, .type = ARM_CP_ALIAS,
1911       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1912       .writefn = pmcntenset_write,
1913       .accessfn = pmreg_access,
1914       .raw_writefn = raw_write },
1915     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1916       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1917       .access = PL0_RW, .accessfn = pmreg_access,
1918       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1919       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1920     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1921       .access = PL0_RW,
1922       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1923       .accessfn = pmreg_access,
1924       .writefn = pmcntenclr_write,
1925       .type = ARM_CP_ALIAS },
1926     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1927       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1928       .access = PL0_RW, .accessfn = pmreg_access,
1929       .type = ARM_CP_ALIAS,
1930       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1931       .writefn = pmcntenclr_write },
1932     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1933       .access = PL0_RW, .type = ARM_CP_IO,
1934       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1935       .accessfn = pmreg_access,
1936       .writefn = pmovsr_write,
1937       .raw_writefn = raw_write },
1938     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1939       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1940       .access = PL0_RW, .accessfn = pmreg_access,
1941       .type = ARM_CP_ALIAS | ARM_CP_IO,
1942       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1943       .writefn = pmovsr_write,
1944       .raw_writefn = raw_write },
1945     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1946       .access = PL0_W, .accessfn = pmreg_access_swinc,
1947       .type = ARM_CP_NO_RAW | ARM_CP_IO,
1948       .writefn = pmswinc_write },
1949     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1950       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1951       .access = PL0_W, .accessfn = pmreg_access_swinc,
1952       .type = ARM_CP_NO_RAW | ARM_CP_IO,
1953       .writefn = pmswinc_write },
1954     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1955       .access = PL0_RW, .type = ARM_CP_ALIAS,
1956       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1957       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1958       .raw_writefn = raw_write},
1959     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1960       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1961       .access = PL0_RW, .accessfn = pmreg_access_selr,
1962       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1963       .writefn = pmselr_write, .raw_writefn = raw_write, },
1964     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1965       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1966       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1967       .accessfn = pmreg_access_ccntr },
1968     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1969       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1970       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1971       .type = ARM_CP_IO,
1972       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
1973       .readfn = pmccntr_read, .writefn = pmccntr_write,
1974       .raw_readfn = raw_read, .raw_writefn = raw_write, },
1975     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
1976       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
1977       .access = PL0_RW, .accessfn = pmreg_access,
1978       .type = ARM_CP_ALIAS | ARM_CP_IO,
1979       .resetvalue = 0, },
1980     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1981       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1982       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
1983       .access = PL0_RW, .accessfn = pmreg_access,
1984       .type = ARM_CP_IO,
1985       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1986       .resetvalue = 0, },
1987     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1988       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1989       .accessfn = pmreg_access,
1990       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1991     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1992       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1993       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1994       .accessfn = pmreg_access,
1995       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1996     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1997       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1998       .accessfn = pmreg_access_xevcntr,
1999       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2000     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2001       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2002       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2003       .accessfn = pmreg_access_xevcntr,
2004       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2005     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2006       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2007       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2008       .resetvalue = 0,
2009       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2010     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2011       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2012       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2013       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2014       .resetvalue = 0,
2015       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2016     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2017       .access = PL1_RW, .accessfn = access_tpm,
2018       .type = ARM_CP_ALIAS | ARM_CP_IO,
2019       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2020       .resetvalue = 0,
2021       .writefn = pmintenset_write, .raw_writefn = raw_write },
2022     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2023       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2024       .access = PL1_RW, .accessfn = access_tpm,
2025       .type = ARM_CP_IO,
2026       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2027       .writefn = pmintenset_write, .raw_writefn = raw_write,
2028       .resetvalue = 0x0 },
2029     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2030       .access = PL1_RW, .accessfn = access_tpm,
2031       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2032       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2033       .writefn = pmintenclr_write, },
2034     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2035       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2036       .access = PL1_RW, .accessfn = access_tpm,
2037       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2038       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2039       .writefn = pmintenclr_write },
2040     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2041       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2042       .access = PL1_R,
2043       .accessfn = access_aa64_tid2,
2044       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2045     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2046       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2047       .access = PL1_RW,
2048       .accessfn = access_aa64_tid2,
2049       .writefn = csselr_write, .resetvalue = 0,
2050       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2051                              offsetof(CPUARMState, cp15.csselr_ns) } },
2052     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2053      * just RAZ for all cores:
2054      */
2055     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2056       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2057       .access = PL1_R, .type = ARM_CP_CONST,
2058       .accessfn = access_aa64_tid1,
2059       .resetvalue = 0 },
2060     /* Auxiliary fault status registers: these also are IMPDEF, and we
2061      * choose to RAZ/WI for all cores.
2062      */
2063     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2064       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2065       .access = PL1_RW, .accessfn = access_tvm_trvm,
2066       .type = ARM_CP_CONST, .resetvalue = 0 },
2067     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2068       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2069       .access = PL1_RW, .accessfn = access_tvm_trvm,
2070       .type = ARM_CP_CONST, .resetvalue = 0 },
2071     /* MAIR can just read-as-written because we don't implement caches
2072      * and so don't need to care about memory attributes.
2073      */
2074     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2075       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2076       .access = PL1_RW, .accessfn = access_tvm_trvm,
2077       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2078       .resetvalue = 0 },
2079     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2080       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2081       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2082       .resetvalue = 0 },
2083     /* For non-long-descriptor page tables these are PRRR and NMRR;
2084      * regardless they still act as reads-as-written for QEMU.
2085      */
2086      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2087       * allows them to assign the correct fieldoffset based on the endianness
2088       * handled in the field definitions.
2089       */
2090     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2091       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2092       .access = PL1_RW, .accessfn = access_tvm_trvm,
2093       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2094                              offsetof(CPUARMState, cp15.mair0_ns) },
2095       .resetfn = arm_cp_reset_ignore },
2096     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2097       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2098       .access = PL1_RW, .accessfn = access_tvm_trvm,
2099       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2100                              offsetof(CPUARMState, cp15.mair1_ns) },
2101       .resetfn = arm_cp_reset_ignore },
2102     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2103       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2104       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2105     /* 32 bit ITLB invalidates */
2106     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2107       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2108       .writefn = tlbiall_write },
2109     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2110       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2111       .writefn = tlbimva_write },
2112     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2113       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2114       .writefn = tlbiasid_write },
2115     /* 32 bit DTLB invalidates */
2116     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2117       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2118       .writefn = tlbiall_write },
2119     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2120       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2121       .writefn = tlbimva_write },
2122     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2123       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2124       .writefn = tlbiasid_write },
2125     /* 32 bit TLB invalidates */
2126     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2127       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2128       .writefn = tlbiall_write },
2129     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2130       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2131       .writefn = tlbimva_write },
2132     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2133       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2134       .writefn = tlbiasid_write },
2135     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2136       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2137       .writefn = tlbimvaa_write },
2138     REGINFO_SENTINEL
2139 };
2140 
2141 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2142     /* 32 bit TLB invalidates, Inner Shareable */
2143     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2144       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2145       .writefn = tlbiall_is_write },
2146     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2147       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2148       .writefn = tlbimva_is_write },
2149     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2150       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2151       .writefn = tlbiasid_is_write },
2152     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2153       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2154       .writefn = tlbimvaa_is_write },
2155     REGINFO_SENTINEL
2156 };
2157 
2158 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2159     /* PMOVSSET is not implemented in v7 before v7ve */
2160     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2161       .access = PL0_RW, .accessfn = pmreg_access,
2162       .type = ARM_CP_ALIAS | ARM_CP_IO,
2163       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2164       .writefn = pmovsset_write,
2165       .raw_writefn = raw_write },
2166     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2167       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2168       .access = PL0_RW, .accessfn = pmreg_access,
2169       .type = ARM_CP_ALIAS | ARM_CP_IO,
2170       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2171       .writefn = pmovsset_write,
2172       .raw_writefn = raw_write },
2173     REGINFO_SENTINEL
2174 };
2175 
2176 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2177                         uint64_t value)
2178 {
2179     value &= 1;
2180     env->teecr = value;
2181 }
2182 
2183 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2184                                    bool isread)
2185 {
2186     /*
2187      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2188      * at all, so we don't need to check whether we're v8A.
2189      */
2190     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2191         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2192         return CP_ACCESS_TRAP_EL2;
2193     }
2194     return CP_ACCESS_OK;
2195 }
2196 
2197 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2198                                     bool isread)
2199 {
2200     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2201         return CP_ACCESS_TRAP;
2202     }
2203     return teecr_access(env, ri, isread);
2204 }
2205 
2206 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2207     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2208       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2209       .resetvalue = 0,
2210       .writefn = teecr_write, .accessfn = teecr_access },
2211     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2212       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2213       .accessfn = teehbr_access, .resetvalue = 0 },
2214     REGINFO_SENTINEL
2215 };
2216 
2217 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2218     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2219       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2220       .access = PL0_RW,
2221       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2222     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2223       .access = PL0_RW,
2224       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2225                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2226       .resetfn = arm_cp_reset_ignore },
2227     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2228       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2229       .access = PL0_R|PL1_W,
2230       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2231       .resetvalue = 0},
2232     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2233       .access = PL0_R|PL1_W,
2234       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2235                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2236       .resetfn = arm_cp_reset_ignore },
2237     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2238       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2239       .access = PL1_RW,
2240       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2241     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2242       .access = PL1_RW,
2243       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2244                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2245       .resetvalue = 0 },
2246     REGINFO_SENTINEL
2247 };
2248 
2249 #ifndef CONFIG_USER_ONLY
2250 
2251 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2252                                        bool isread)
2253 {
2254     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2255      * Writable only at the highest implemented exception level.
2256      */
2257     int el = arm_current_el(env);
2258     uint64_t hcr;
2259     uint32_t cntkctl;
2260 
2261     switch (el) {
2262     case 0:
2263         hcr = arm_hcr_el2_eff(env);
2264         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2265             cntkctl = env->cp15.cnthctl_el2;
2266         } else {
2267             cntkctl = env->cp15.c14_cntkctl;
2268         }
2269         if (!extract32(cntkctl, 0, 2)) {
2270             return CP_ACCESS_TRAP;
2271         }
2272         break;
2273     case 1:
2274         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2275             arm_is_secure_below_el3(env)) {
2276             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2277             return CP_ACCESS_TRAP_UNCATEGORIZED;
2278         }
2279         break;
2280     case 2:
2281     case 3:
2282         break;
2283     }
2284 
2285     if (!isread && el < arm_highest_el(env)) {
2286         return CP_ACCESS_TRAP_UNCATEGORIZED;
2287     }
2288 
2289     return CP_ACCESS_OK;
2290 }
2291 
2292 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2293                                         bool isread)
2294 {
2295     unsigned int cur_el = arm_current_el(env);
2296     bool has_el2 = arm_is_el2_enabled(env);
2297     uint64_t hcr = arm_hcr_el2_eff(env);
2298 
2299     switch (cur_el) {
2300     case 0:
2301         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2302         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2303             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2304                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2305         }
2306 
2307         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2308         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2309             return CP_ACCESS_TRAP;
2310         }
2311 
2312         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2313         if (hcr & HCR_E2H) {
2314             if (timeridx == GTIMER_PHYS &&
2315                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2316                 return CP_ACCESS_TRAP_EL2;
2317             }
2318         } else {
2319             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2320             if (has_el2 && timeridx == GTIMER_PHYS &&
2321                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2322                 return CP_ACCESS_TRAP_EL2;
2323             }
2324         }
2325         break;
2326 
2327     case 1:
2328         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2329         if (has_el2 && timeridx == GTIMER_PHYS &&
2330             (hcr & HCR_E2H
2331              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2332              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2333             return CP_ACCESS_TRAP_EL2;
2334         }
2335         break;
2336     }
2337     return CP_ACCESS_OK;
2338 }
2339 
2340 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2341                                       bool isread)
2342 {
2343     unsigned int cur_el = arm_current_el(env);
2344     bool has_el2 = arm_is_el2_enabled(env);
2345     uint64_t hcr = arm_hcr_el2_eff(env);
2346 
2347     switch (cur_el) {
2348     case 0:
2349         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2350             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2351             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2352                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2353         }
2354 
2355         /*
2356          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2357          * EL0 if EL0[PV]TEN is zero.
2358          */
2359         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2360             return CP_ACCESS_TRAP;
2361         }
2362         /* fall through */
2363 
2364     case 1:
2365         if (has_el2 && timeridx == GTIMER_PHYS) {
2366             if (hcr & HCR_E2H) {
2367                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2368                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2369                     return CP_ACCESS_TRAP_EL2;
2370                 }
2371             } else {
2372                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2373                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2374                     return CP_ACCESS_TRAP_EL2;
2375                 }
2376             }
2377         }
2378         break;
2379     }
2380     return CP_ACCESS_OK;
2381 }
2382 
2383 static CPAccessResult gt_pct_access(CPUARMState *env,
2384                                     const ARMCPRegInfo *ri,
2385                                     bool isread)
2386 {
2387     return gt_counter_access(env, GTIMER_PHYS, isread);
2388 }
2389 
2390 static CPAccessResult gt_vct_access(CPUARMState *env,
2391                                     const ARMCPRegInfo *ri,
2392                                     bool isread)
2393 {
2394     return gt_counter_access(env, GTIMER_VIRT, isread);
2395 }
2396 
2397 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2398                                        bool isread)
2399 {
2400     return gt_timer_access(env, GTIMER_PHYS, isread);
2401 }
2402 
2403 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2404                                        bool isread)
2405 {
2406     return gt_timer_access(env, GTIMER_VIRT, isread);
2407 }
2408 
2409 static CPAccessResult gt_stimer_access(CPUARMState *env,
2410                                        const ARMCPRegInfo *ri,
2411                                        bool isread)
2412 {
2413     /* The AArch64 register view of the secure physical timer is
2414      * always accessible from EL3, and configurably accessible from
2415      * Secure EL1.
2416      */
2417     switch (arm_current_el(env)) {
2418     case 1:
2419         if (!arm_is_secure(env)) {
2420             return CP_ACCESS_TRAP;
2421         }
2422         if (!(env->cp15.scr_el3 & SCR_ST)) {
2423             return CP_ACCESS_TRAP_EL3;
2424         }
2425         return CP_ACCESS_OK;
2426     case 0:
2427     case 2:
2428         return CP_ACCESS_TRAP;
2429     case 3:
2430         return CP_ACCESS_OK;
2431     default:
2432         g_assert_not_reached();
2433     }
2434 }
2435 
2436 static uint64_t gt_get_countervalue(CPUARMState *env)
2437 {
2438     ARMCPU *cpu = env_archcpu(env);
2439 
2440     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2441 }
2442 
2443 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2444 {
2445     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2446 
2447     if (gt->ctl & 1) {
2448         /* Timer enabled: calculate and set current ISTATUS, irq, and
2449          * reset timer to when ISTATUS next has to change
2450          */
2451         uint64_t offset = timeridx == GTIMER_VIRT ?
2452                                       cpu->env.cp15.cntvoff_el2 : 0;
2453         uint64_t count = gt_get_countervalue(&cpu->env);
2454         /* Note that this must be unsigned 64 bit arithmetic: */
2455         int istatus = count - offset >= gt->cval;
2456         uint64_t nexttick;
2457         int irqstate;
2458 
2459         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2460 
2461         irqstate = (istatus && !(gt->ctl & 2));
2462         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2463 
2464         if (istatus) {
2465             /* Next transition is when count rolls back over to zero */
2466             nexttick = UINT64_MAX;
2467         } else {
2468             /* Next transition is when we hit cval */
2469             nexttick = gt->cval + offset;
2470         }
2471         /* Note that the desired next expiry time might be beyond the
2472          * signed-64-bit range of a QEMUTimer -- in this case we just
2473          * set the timer for as far in the future as possible. When the
2474          * timer expires we will reset the timer for any remaining period.
2475          */
2476         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2477             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2478         } else {
2479             timer_mod(cpu->gt_timer[timeridx], nexttick);
2480         }
2481         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2482     } else {
2483         /* Timer disabled: ISTATUS and timer output always clear */
2484         gt->ctl &= ~4;
2485         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2486         timer_del(cpu->gt_timer[timeridx]);
2487         trace_arm_gt_recalc_disabled(timeridx);
2488     }
2489 }
2490 
2491 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2492                            int timeridx)
2493 {
2494     ARMCPU *cpu = env_archcpu(env);
2495 
2496     timer_del(cpu->gt_timer[timeridx]);
2497 }
2498 
2499 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2500 {
2501     return gt_get_countervalue(env);
2502 }
2503 
2504 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2505 {
2506     uint64_t hcr;
2507 
2508     switch (arm_current_el(env)) {
2509     case 2:
2510         hcr = arm_hcr_el2_eff(env);
2511         if (hcr & HCR_E2H) {
2512             return 0;
2513         }
2514         break;
2515     case 0:
2516         hcr = arm_hcr_el2_eff(env);
2517         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2518             return 0;
2519         }
2520         break;
2521     }
2522 
2523     return env->cp15.cntvoff_el2;
2524 }
2525 
2526 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2527 {
2528     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2529 }
2530 
2531 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2532                           int timeridx,
2533                           uint64_t value)
2534 {
2535     trace_arm_gt_cval_write(timeridx, value);
2536     env->cp15.c14_timer[timeridx].cval = value;
2537     gt_recalc_timer(env_archcpu(env), timeridx);
2538 }
2539 
2540 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2541                              int timeridx)
2542 {
2543     uint64_t offset = 0;
2544 
2545     switch (timeridx) {
2546     case GTIMER_VIRT:
2547     case GTIMER_HYPVIRT:
2548         offset = gt_virt_cnt_offset(env);
2549         break;
2550     }
2551 
2552     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2553                       (gt_get_countervalue(env) - offset));
2554 }
2555 
2556 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2557                           int timeridx,
2558                           uint64_t value)
2559 {
2560     uint64_t offset = 0;
2561 
2562     switch (timeridx) {
2563     case GTIMER_VIRT:
2564     case GTIMER_HYPVIRT:
2565         offset = gt_virt_cnt_offset(env);
2566         break;
2567     }
2568 
2569     trace_arm_gt_tval_write(timeridx, value);
2570     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2571                                          sextract64(value, 0, 32);
2572     gt_recalc_timer(env_archcpu(env), timeridx);
2573 }
2574 
2575 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2576                          int timeridx,
2577                          uint64_t value)
2578 {
2579     ARMCPU *cpu = env_archcpu(env);
2580     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2581 
2582     trace_arm_gt_ctl_write(timeridx, value);
2583     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2584     if ((oldval ^ value) & 1) {
2585         /* Enable toggled */
2586         gt_recalc_timer(cpu, timeridx);
2587     } else if ((oldval ^ value) & 2) {
2588         /* IMASK toggled: don't need to recalculate,
2589          * just set the interrupt line based on ISTATUS
2590          */
2591         int irqstate = (oldval & 4) && !(value & 2);
2592 
2593         trace_arm_gt_imask_toggle(timeridx, irqstate);
2594         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2595     }
2596 }
2597 
2598 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2599 {
2600     gt_timer_reset(env, ri, GTIMER_PHYS);
2601 }
2602 
2603 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2604                                uint64_t value)
2605 {
2606     gt_cval_write(env, ri, GTIMER_PHYS, value);
2607 }
2608 
2609 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2610 {
2611     return gt_tval_read(env, ri, GTIMER_PHYS);
2612 }
2613 
2614 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2615                                uint64_t value)
2616 {
2617     gt_tval_write(env, ri, GTIMER_PHYS, value);
2618 }
2619 
2620 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2621                               uint64_t value)
2622 {
2623     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2624 }
2625 
2626 static int gt_phys_redir_timeridx(CPUARMState *env)
2627 {
2628     switch (arm_mmu_idx(env)) {
2629     case ARMMMUIdx_E20_0:
2630     case ARMMMUIdx_E20_2:
2631     case ARMMMUIdx_E20_2_PAN:
2632     case ARMMMUIdx_SE20_0:
2633     case ARMMMUIdx_SE20_2:
2634     case ARMMMUIdx_SE20_2_PAN:
2635         return GTIMER_HYP;
2636     default:
2637         return GTIMER_PHYS;
2638     }
2639 }
2640 
2641 static int gt_virt_redir_timeridx(CPUARMState *env)
2642 {
2643     switch (arm_mmu_idx(env)) {
2644     case ARMMMUIdx_E20_0:
2645     case ARMMMUIdx_E20_2:
2646     case ARMMMUIdx_E20_2_PAN:
2647     case ARMMMUIdx_SE20_0:
2648     case ARMMMUIdx_SE20_2:
2649     case ARMMMUIdx_SE20_2_PAN:
2650         return GTIMER_HYPVIRT;
2651     default:
2652         return GTIMER_VIRT;
2653     }
2654 }
2655 
2656 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2657                                         const ARMCPRegInfo *ri)
2658 {
2659     int timeridx = gt_phys_redir_timeridx(env);
2660     return env->cp15.c14_timer[timeridx].cval;
2661 }
2662 
2663 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2664                                      uint64_t value)
2665 {
2666     int timeridx = gt_phys_redir_timeridx(env);
2667     gt_cval_write(env, ri, timeridx, value);
2668 }
2669 
2670 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2671                                         const ARMCPRegInfo *ri)
2672 {
2673     int timeridx = gt_phys_redir_timeridx(env);
2674     return gt_tval_read(env, ri, timeridx);
2675 }
2676 
2677 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2678                                      uint64_t value)
2679 {
2680     int timeridx = gt_phys_redir_timeridx(env);
2681     gt_tval_write(env, ri, timeridx, value);
2682 }
2683 
2684 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2685                                        const ARMCPRegInfo *ri)
2686 {
2687     int timeridx = gt_phys_redir_timeridx(env);
2688     return env->cp15.c14_timer[timeridx].ctl;
2689 }
2690 
2691 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2692                                     uint64_t value)
2693 {
2694     int timeridx = gt_phys_redir_timeridx(env);
2695     gt_ctl_write(env, ri, timeridx, value);
2696 }
2697 
2698 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2699 {
2700     gt_timer_reset(env, ri, GTIMER_VIRT);
2701 }
2702 
2703 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2704                                uint64_t value)
2705 {
2706     gt_cval_write(env, ri, GTIMER_VIRT, value);
2707 }
2708 
2709 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2710 {
2711     return gt_tval_read(env, ri, GTIMER_VIRT);
2712 }
2713 
2714 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2715                                uint64_t value)
2716 {
2717     gt_tval_write(env, ri, GTIMER_VIRT, value);
2718 }
2719 
2720 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2721                               uint64_t value)
2722 {
2723     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2724 }
2725 
2726 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2727                               uint64_t value)
2728 {
2729     ARMCPU *cpu = env_archcpu(env);
2730 
2731     trace_arm_gt_cntvoff_write(value);
2732     raw_write(env, ri, value);
2733     gt_recalc_timer(cpu, GTIMER_VIRT);
2734 }
2735 
2736 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2737                                         const ARMCPRegInfo *ri)
2738 {
2739     int timeridx = gt_virt_redir_timeridx(env);
2740     return env->cp15.c14_timer[timeridx].cval;
2741 }
2742 
2743 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2744                                      uint64_t value)
2745 {
2746     int timeridx = gt_virt_redir_timeridx(env);
2747     gt_cval_write(env, ri, timeridx, value);
2748 }
2749 
2750 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2751                                         const ARMCPRegInfo *ri)
2752 {
2753     int timeridx = gt_virt_redir_timeridx(env);
2754     return gt_tval_read(env, ri, timeridx);
2755 }
2756 
2757 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2758                                      uint64_t value)
2759 {
2760     int timeridx = gt_virt_redir_timeridx(env);
2761     gt_tval_write(env, ri, timeridx, value);
2762 }
2763 
2764 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2765                                        const ARMCPRegInfo *ri)
2766 {
2767     int timeridx = gt_virt_redir_timeridx(env);
2768     return env->cp15.c14_timer[timeridx].ctl;
2769 }
2770 
2771 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2772                                     uint64_t value)
2773 {
2774     int timeridx = gt_virt_redir_timeridx(env);
2775     gt_ctl_write(env, ri, timeridx, value);
2776 }
2777 
2778 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2779 {
2780     gt_timer_reset(env, ri, GTIMER_HYP);
2781 }
2782 
2783 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2784                               uint64_t value)
2785 {
2786     gt_cval_write(env, ri, GTIMER_HYP, value);
2787 }
2788 
2789 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2790 {
2791     return gt_tval_read(env, ri, GTIMER_HYP);
2792 }
2793 
2794 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2795                               uint64_t value)
2796 {
2797     gt_tval_write(env, ri, GTIMER_HYP, value);
2798 }
2799 
2800 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2801                               uint64_t value)
2802 {
2803     gt_ctl_write(env, ri, GTIMER_HYP, value);
2804 }
2805 
2806 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2807 {
2808     gt_timer_reset(env, ri, GTIMER_SEC);
2809 }
2810 
2811 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2812                               uint64_t value)
2813 {
2814     gt_cval_write(env, ri, GTIMER_SEC, value);
2815 }
2816 
2817 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2818 {
2819     return gt_tval_read(env, ri, GTIMER_SEC);
2820 }
2821 
2822 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2823                               uint64_t value)
2824 {
2825     gt_tval_write(env, ri, GTIMER_SEC, value);
2826 }
2827 
2828 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2829                               uint64_t value)
2830 {
2831     gt_ctl_write(env, ri, GTIMER_SEC, value);
2832 }
2833 
2834 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2835 {
2836     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2837 }
2838 
2839 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2840                              uint64_t value)
2841 {
2842     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
2843 }
2844 
2845 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2846 {
2847     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
2848 }
2849 
2850 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2851                              uint64_t value)
2852 {
2853     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
2854 }
2855 
2856 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2857                             uint64_t value)
2858 {
2859     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
2860 }
2861 
2862 void arm_gt_ptimer_cb(void *opaque)
2863 {
2864     ARMCPU *cpu = opaque;
2865 
2866     gt_recalc_timer(cpu, GTIMER_PHYS);
2867 }
2868 
2869 void arm_gt_vtimer_cb(void *opaque)
2870 {
2871     ARMCPU *cpu = opaque;
2872 
2873     gt_recalc_timer(cpu, GTIMER_VIRT);
2874 }
2875 
2876 void arm_gt_htimer_cb(void *opaque)
2877 {
2878     ARMCPU *cpu = opaque;
2879 
2880     gt_recalc_timer(cpu, GTIMER_HYP);
2881 }
2882 
2883 void arm_gt_stimer_cb(void *opaque)
2884 {
2885     ARMCPU *cpu = opaque;
2886 
2887     gt_recalc_timer(cpu, GTIMER_SEC);
2888 }
2889 
2890 void arm_gt_hvtimer_cb(void *opaque)
2891 {
2892     ARMCPU *cpu = opaque;
2893 
2894     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
2895 }
2896 
2897 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2898 {
2899     ARMCPU *cpu = env_archcpu(env);
2900 
2901     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2902 }
2903 
2904 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2905     /* Note that CNTFRQ is purely reads-as-written for the benefit
2906      * of software; writing it doesn't actually change the timer frequency.
2907      * Our reset value matches the fixed frequency we implement the timer at.
2908      */
2909     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2910       .type = ARM_CP_ALIAS,
2911       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2912       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2913     },
2914     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2915       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2916       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2917       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2918       .resetfn = arm_gt_cntfrq_reset,
2919     },
2920     /* overall control: mostly access permissions */
2921     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2922       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2923       .access = PL1_RW,
2924       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2925       .resetvalue = 0,
2926     },
2927     /* per-timer control */
2928     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2929       .secure = ARM_CP_SECSTATE_NS,
2930       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2931       .accessfn = gt_ptimer_access,
2932       .fieldoffset = offsetoflow32(CPUARMState,
2933                                    cp15.c14_timer[GTIMER_PHYS].ctl),
2934       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2935       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2936     },
2937     { .name = "CNTP_CTL_S",
2938       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2939       .secure = ARM_CP_SECSTATE_S,
2940       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2941       .accessfn = gt_ptimer_access,
2942       .fieldoffset = offsetoflow32(CPUARMState,
2943                                    cp15.c14_timer[GTIMER_SEC].ctl),
2944       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2945     },
2946     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2947       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2948       .type = ARM_CP_IO, .access = PL0_RW,
2949       .accessfn = gt_ptimer_access,
2950       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2951       .resetvalue = 0,
2952       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2953       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2954     },
2955     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2956       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2957       .accessfn = gt_vtimer_access,
2958       .fieldoffset = offsetoflow32(CPUARMState,
2959                                    cp15.c14_timer[GTIMER_VIRT].ctl),
2960       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2961       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2962     },
2963     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2964       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2965       .type = ARM_CP_IO, .access = PL0_RW,
2966       .accessfn = gt_vtimer_access,
2967       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2968       .resetvalue = 0,
2969       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2970       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2971     },
2972     /* TimerValue views: a 32 bit downcounting view of the underlying state */
2973     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2974       .secure = ARM_CP_SECSTATE_NS,
2975       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2976       .accessfn = gt_ptimer_access,
2977       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2978     },
2979     { .name = "CNTP_TVAL_S",
2980       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2981       .secure = ARM_CP_SECSTATE_S,
2982       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2983       .accessfn = gt_ptimer_access,
2984       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2985     },
2986     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2987       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2988       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2989       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2990       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2991     },
2992     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2993       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2994       .accessfn = gt_vtimer_access,
2995       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
2996     },
2997     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2998       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2999       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3000       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3001       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3002     },
3003     /* The counter itself */
3004     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3005       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3006       .accessfn = gt_pct_access,
3007       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3008     },
3009     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3010       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3011       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3012       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3013     },
3014     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3015       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3016       .accessfn = gt_vct_access,
3017       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3018     },
3019     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3020       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3021       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3022       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3023     },
3024     /* Comparison value, indicating when the timer goes off */
3025     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3026       .secure = ARM_CP_SECSTATE_NS,
3027       .access = PL0_RW,
3028       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3029       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3030       .accessfn = gt_ptimer_access,
3031       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3032       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3033     },
3034     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3035       .secure = ARM_CP_SECSTATE_S,
3036       .access = PL0_RW,
3037       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3038       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3039       .accessfn = gt_ptimer_access,
3040       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3041     },
3042     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3043       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3044       .access = PL0_RW,
3045       .type = ARM_CP_IO,
3046       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3047       .resetvalue = 0, .accessfn = gt_ptimer_access,
3048       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3049       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3050     },
3051     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3052       .access = PL0_RW,
3053       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3054       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3055       .accessfn = gt_vtimer_access,
3056       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3057       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3058     },
3059     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3060       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3061       .access = PL0_RW,
3062       .type = ARM_CP_IO,
3063       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3064       .resetvalue = 0, .accessfn = gt_vtimer_access,
3065       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3066       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3067     },
3068     /* Secure timer -- this is actually restricted to only EL3
3069      * and configurably Secure-EL1 via the accessfn.
3070      */
3071     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3072       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3073       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3074       .accessfn = gt_stimer_access,
3075       .readfn = gt_sec_tval_read,
3076       .writefn = gt_sec_tval_write,
3077       .resetfn = gt_sec_timer_reset,
3078     },
3079     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3080       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3081       .type = ARM_CP_IO, .access = PL1_RW,
3082       .accessfn = gt_stimer_access,
3083       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3084       .resetvalue = 0,
3085       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3086     },
3087     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3088       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3089       .type = ARM_CP_IO, .access = PL1_RW,
3090       .accessfn = gt_stimer_access,
3091       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3092       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3093     },
3094     REGINFO_SENTINEL
3095 };
3096 
3097 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3098                                  bool isread)
3099 {
3100     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3101         return CP_ACCESS_TRAP;
3102     }
3103     return CP_ACCESS_OK;
3104 }
3105 
3106 #else
3107 
3108 /* In user-mode most of the generic timer registers are inaccessible
3109  * however modern kernels (4.12+) allow access to cntvct_el0
3110  */
3111 
3112 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3113 {
3114     ARMCPU *cpu = env_archcpu(env);
3115 
3116     /* Currently we have no support for QEMUTimer in linux-user so we
3117      * can't call gt_get_countervalue(env), instead we directly
3118      * call the lower level functions.
3119      */
3120     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3121 }
3122 
3123 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3124     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3125       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3126       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3127       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3128       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3129     },
3130     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3131       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3132       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3133       .readfn = gt_virt_cnt_read,
3134     },
3135     REGINFO_SENTINEL
3136 };
3137 
3138 #endif
3139 
3140 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3141 {
3142     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3143         raw_write(env, ri, value);
3144     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3145         raw_write(env, ri, value & 0xfffff6ff);
3146     } else {
3147         raw_write(env, ri, value & 0xfffff1ff);
3148     }
3149 }
3150 
3151 #ifndef CONFIG_USER_ONLY
3152 /* get_phys_addr() isn't present for user-mode-only targets */
3153 
3154 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3155                                  bool isread)
3156 {
3157     if (ri->opc2 & 4) {
3158         /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3159          * Secure EL1 (which can only happen if EL3 is AArch64).
3160          * They are simply UNDEF if executed from NS EL1.
3161          * They function normally from EL2 or EL3.
3162          */
3163         if (arm_current_el(env) == 1) {
3164             if (arm_is_secure_below_el3(env)) {
3165                 if (env->cp15.scr_el3 & SCR_EEL2) {
3166                     return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3167                 }
3168                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3169             }
3170             return CP_ACCESS_TRAP_UNCATEGORIZED;
3171         }
3172     }
3173     return CP_ACCESS_OK;
3174 }
3175 
3176 #ifdef CONFIG_TCG
3177 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3178                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
3179 {
3180     hwaddr phys_addr;
3181     target_ulong page_size;
3182     int prot;
3183     bool ret;
3184     uint64_t par64;
3185     bool format64 = false;
3186     MemTxAttrs attrs = {};
3187     ARMMMUFaultInfo fi = {};
3188     ARMCacheAttrs cacheattrs = {};
3189 
3190     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3191                         &prot, &page_size, &fi, &cacheattrs);
3192 
3193     if (ret) {
3194         /*
3195          * Some kinds of translation fault must cause exceptions rather
3196          * than being reported in the PAR.
3197          */
3198         int current_el = arm_current_el(env);
3199         int target_el;
3200         uint32_t syn, fsr, fsc;
3201         bool take_exc = false;
3202 
3203         if (fi.s1ptw && current_el == 1
3204             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3205             /*
3206              * Synchronous stage 2 fault on an access made as part of the
3207              * translation table walk for AT S1E0* or AT S1E1* insn
3208              * executed from NS EL1. If this is a synchronous external abort
3209              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3210              * to EL3. Otherwise the fault is taken as an exception to EL2,
3211              * and HPFAR_EL2 holds the faulting IPA.
3212              */
3213             if (fi.type == ARMFault_SyncExternalOnWalk &&
3214                 (env->cp15.scr_el3 & SCR_EA)) {
3215                 target_el = 3;
3216             } else {
3217                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3218                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3219                     env->cp15.hpfar_el2 |= HPFAR_NS;
3220                 }
3221                 target_el = 2;
3222             }
3223             take_exc = true;
3224         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3225             /*
3226              * Synchronous external aborts during a translation table walk
3227              * are taken as Data Abort exceptions.
3228              */
3229             if (fi.stage2) {
3230                 if (current_el == 3) {
3231                     target_el = 3;
3232                 } else {
3233                     target_el = 2;
3234                 }
3235             } else {
3236                 target_el = exception_target_el(env);
3237             }
3238             take_exc = true;
3239         }
3240 
3241         if (take_exc) {
3242             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3243             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3244                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3245                 fsr = arm_fi_to_lfsc(&fi);
3246                 fsc = extract32(fsr, 0, 6);
3247             } else {
3248                 fsr = arm_fi_to_sfsc(&fi);
3249                 fsc = 0x3f;
3250             }
3251             /*
3252              * Report exception with ESR indicating a fault due to a
3253              * translation table walk for a cache maintenance instruction.
3254              */
3255             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3256                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3257             env->exception.vaddress = value;
3258             env->exception.fsr = fsr;
3259             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3260         }
3261     }
3262 
3263     if (is_a64(env)) {
3264         format64 = true;
3265     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3266         /*
3267          * ATS1Cxx:
3268          * * TTBCR.EAE determines whether the result is returned using the
3269          *   32-bit or the 64-bit PAR format
3270          * * Instructions executed in Hyp mode always use the 64bit format
3271          *
3272          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3273          * * The Non-secure TTBCR.EAE bit is set to 1
3274          * * The implementation includes EL2, and the value of HCR.VM is 1
3275          *
3276          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3277          *
3278          * ATS1Hx always uses the 64bit format.
3279          */
3280         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3281 
3282         if (arm_feature(env, ARM_FEATURE_EL2)) {
3283             if (mmu_idx == ARMMMUIdx_E10_0 ||
3284                 mmu_idx == ARMMMUIdx_E10_1 ||
3285                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3286                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3287             } else {
3288                 format64 |= arm_current_el(env) == 2;
3289             }
3290         }
3291     }
3292 
3293     if (format64) {
3294         /* Create a 64-bit PAR */
3295         par64 = (1 << 11); /* LPAE bit always set */
3296         if (!ret) {
3297             par64 |= phys_addr & ~0xfffULL;
3298             if (!attrs.secure) {
3299                 par64 |= (1 << 9); /* NS */
3300             }
3301             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3302             par64 |= cacheattrs.shareability << 7; /* SH */
3303         } else {
3304             uint32_t fsr = arm_fi_to_lfsc(&fi);
3305 
3306             par64 |= 1; /* F */
3307             par64 |= (fsr & 0x3f) << 1; /* FS */
3308             if (fi.stage2) {
3309                 par64 |= (1 << 9); /* S */
3310             }
3311             if (fi.s1ptw) {
3312                 par64 |= (1 << 8); /* PTW */
3313             }
3314         }
3315     } else {
3316         /* fsr is a DFSR/IFSR value for the short descriptor
3317          * translation table format (with WnR always clear).
3318          * Convert it to a 32-bit PAR.
3319          */
3320         if (!ret) {
3321             /* We do not set any attribute bits in the PAR */
3322             if (page_size == (1 << 24)
3323                 && arm_feature(env, ARM_FEATURE_V7)) {
3324                 par64 = (phys_addr & 0xff000000) | (1 << 1);
3325             } else {
3326                 par64 = phys_addr & 0xfffff000;
3327             }
3328             if (!attrs.secure) {
3329                 par64 |= (1 << 9); /* NS */
3330             }
3331         } else {
3332             uint32_t fsr = arm_fi_to_sfsc(&fi);
3333 
3334             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3335                     ((fsr & 0xf) << 1) | 1;
3336         }
3337     }
3338     return par64;
3339 }
3340 #endif /* CONFIG_TCG */
3341 
3342 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3343 {
3344 #ifdef CONFIG_TCG
3345     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3346     uint64_t par64;
3347     ARMMMUIdx mmu_idx;
3348     int el = arm_current_el(env);
3349     bool secure = arm_is_secure_below_el3(env);
3350 
3351     switch (ri->opc2 & 6) {
3352     case 0:
3353         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3354         switch (el) {
3355         case 3:
3356             mmu_idx = ARMMMUIdx_SE3;
3357             break;
3358         case 2:
3359             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3360             /* fall through */
3361         case 1:
3362             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3363                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3364                            : ARMMMUIdx_Stage1_E1_PAN);
3365             } else {
3366                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3367             }
3368             break;
3369         default:
3370             g_assert_not_reached();
3371         }
3372         break;
3373     case 2:
3374         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3375         switch (el) {
3376         case 3:
3377             mmu_idx = ARMMMUIdx_SE10_0;
3378             break;
3379         case 2:
3380             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3381             mmu_idx = ARMMMUIdx_Stage1_E0;
3382             break;
3383         case 1:
3384             mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3385             break;
3386         default:
3387             g_assert_not_reached();
3388         }
3389         break;
3390     case 4:
3391         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3392         mmu_idx = ARMMMUIdx_E10_1;
3393         break;
3394     case 6:
3395         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3396         mmu_idx = ARMMMUIdx_E10_0;
3397         break;
3398     default:
3399         g_assert_not_reached();
3400     }
3401 
3402     par64 = do_ats_write(env, value, access_type, mmu_idx);
3403 
3404     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3405 #else
3406     /* Handled by hardware accelerator. */
3407     g_assert_not_reached();
3408 #endif /* CONFIG_TCG */
3409 }
3410 
3411 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3412                         uint64_t value)
3413 {
3414 #ifdef CONFIG_TCG
3415     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3416     uint64_t par64;
3417 
3418     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3419 
3420     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3421 #else
3422     /* Handled by hardware accelerator. */
3423     g_assert_not_reached();
3424 #endif /* CONFIG_TCG */
3425 }
3426 
3427 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3428                                      bool isread)
3429 {
3430     if (arm_current_el(env) == 3 &&
3431         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3432         return CP_ACCESS_TRAP;
3433     }
3434     return CP_ACCESS_OK;
3435 }
3436 
3437 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3438                         uint64_t value)
3439 {
3440 #ifdef CONFIG_TCG
3441     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3442     ARMMMUIdx mmu_idx;
3443     int secure = arm_is_secure_below_el3(env);
3444 
3445     switch (ri->opc2 & 6) {
3446     case 0:
3447         switch (ri->opc1) {
3448         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3449             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3450                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3451                            : ARMMMUIdx_Stage1_E1_PAN);
3452             } else {
3453                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3454             }
3455             break;
3456         case 4: /* AT S1E2R, AT S1E2W */
3457             mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3458             break;
3459         case 6: /* AT S1E3R, AT S1E3W */
3460             mmu_idx = ARMMMUIdx_SE3;
3461             break;
3462         default:
3463             g_assert_not_reached();
3464         }
3465         break;
3466     case 2: /* AT S1E0R, AT S1E0W */
3467         mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3468         break;
3469     case 4: /* AT S12E1R, AT S12E1W */
3470         mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3471         break;
3472     case 6: /* AT S12E0R, AT S12E0W */
3473         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3474         break;
3475     default:
3476         g_assert_not_reached();
3477     }
3478 
3479     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3480 #else
3481     /* Handled by hardware accelerator. */
3482     g_assert_not_reached();
3483 #endif /* CONFIG_TCG */
3484 }
3485 #endif
3486 
3487 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3488     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3489       .access = PL1_RW, .resetvalue = 0,
3490       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3491                              offsetoflow32(CPUARMState, cp15.par_ns) },
3492       .writefn = par_write },
3493 #ifndef CONFIG_USER_ONLY
3494     /* This underdecoding is safe because the reginfo is NO_RAW. */
3495     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3496       .access = PL1_W, .accessfn = ats_access,
3497       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3498 #endif
3499     REGINFO_SENTINEL
3500 };
3501 
3502 /* Return basic MPU access permission bits.  */
3503 static uint32_t simple_mpu_ap_bits(uint32_t val)
3504 {
3505     uint32_t ret;
3506     uint32_t mask;
3507     int i;
3508     ret = 0;
3509     mask = 3;
3510     for (i = 0; i < 16; i += 2) {
3511         ret |= (val >> i) & mask;
3512         mask <<= 2;
3513     }
3514     return ret;
3515 }
3516 
3517 /* Pad basic MPU access permission bits to extended format.  */
3518 static uint32_t extended_mpu_ap_bits(uint32_t val)
3519 {
3520     uint32_t ret;
3521     uint32_t mask;
3522     int i;
3523     ret = 0;
3524     mask = 3;
3525     for (i = 0; i < 16; i += 2) {
3526         ret |= (val & mask) << i;
3527         mask <<= 2;
3528     }
3529     return ret;
3530 }
3531 
3532 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3533                                  uint64_t value)
3534 {
3535     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3536 }
3537 
3538 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3539 {
3540     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3541 }
3542 
3543 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3544                                  uint64_t value)
3545 {
3546     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3547 }
3548 
3549 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3550 {
3551     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3552 }
3553 
3554 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3555 {
3556     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3557 
3558     if (!u32p) {
3559         return 0;
3560     }
3561 
3562     u32p += env->pmsav7.rnr[M_REG_NS];
3563     return *u32p;
3564 }
3565 
3566 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3567                          uint64_t value)
3568 {
3569     ARMCPU *cpu = env_archcpu(env);
3570     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3571 
3572     if (!u32p) {
3573         return;
3574     }
3575 
3576     u32p += env->pmsav7.rnr[M_REG_NS];
3577     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3578     *u32p = value;
3579 }
3580 
3581 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3582                               uint64_t value)
3583 {
3584     ARMCPU *cpu = env_archcpu(env);
3585     uint32_t nrgs = cpu->pmsav7_dregion;
3586 
3587     if (value >= nrgs) {
3588         qemu_log_mask(LOG_GUEST_ERROR,
3589                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3590                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3591         return;
3592     }
3593 
3594     raw_write(env, ri, value);
3595 }
3596 
3597 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3598     /* Reset for all these registers is handled in arm_cpu_reset(),
3599      * because the PMSAv7 is also used by M-profile CPUs, which do
3600      * not register cpregs but still need the state to be reset.
3601      */
3602     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3603       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3604       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3605       .readfn = pmsav7_read, .writefn = pmsav7_write,
3606       .resetfn = arm_cp_reset_ignore },
3607     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3608       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3609       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3610       .readfn = pmsav7_read, .writefn = pmsav7_write,
3611       .resetfn = arm_cp_reset_ignore },
3612     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3613       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3614       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3615       .readfn = pmsav7_read, .writefn = pmsav7_write,
3616       .resetfn = arm_cp_reset_ignore },
3617     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3618       .access = PL1_RW,
3619       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3620       .writefn = pmsav7_rgnr_write,
3621       .resetfn = arm_cp_reset_ignore },
3622     REGINFO_SENTINEL
3623 };
3624 
3625 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3626     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3627       .access = PL1_RW, .type = ARM_CP_ALIAS,
3628       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3629       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3630     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3631       .access = PL1_RW, .type = ARM_CP_ALIAS,
3632       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3633       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3634     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3635       .access = PL1_RW,
3636       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3637       .resetvalue = 0, },
3638     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3639       .access = PL1_RW,
3640       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3641       .resetvalue = 0, },
3642     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3643       .access = PL1_RW,
3644       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3645     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3646       .access = PL1_RW,
3647       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3648     /* Protection region base and size registers */
3649     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3650       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3651       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3652     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3653       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3654       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3655     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3656       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3657       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3658     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3659       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3660       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3661     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3662       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3663       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3664     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3665       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3666       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3667     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3668       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3669       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3670     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3671       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3672       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3673     REGINFO_SENTINEL
3674 };
3675 
3676 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3677                                  uint64_t value)
3678 {
3679     TCR *tcr = raw_ptr(env, ri);
3680     int maskshift = extract32(value, 0, 3);
3681 
3682     if (!arm_feature(env, ARM_FEATURE_V8)) {
3683         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3684             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3685              * using Long-desciptor translation table format */
3686             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3687         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3688             /* In an implementation that includes the Security Extensions
3689              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3690              * Short-descriptor translation table format.
3691              */
3692             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3693         } else {
3694             value &= TTBCR_N;
3695         }
3696     }
3697 
3698     /* Update the masks corresponding to the TCR bank being written
3699      * Note that we always calculate mask and base_mask, but
3700      * they are only used for short-descriptor tables (ie if EAE is 0);
3701      * for long-descriptor tables the TCR fields are used differently
3702      * and the mask and base_mask values are meaningless.
3703      */
3704     tcr->raw_tcr = value;
3705     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3706     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3707 }
3708 
3709 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3710                              uint64_t value)
3711 {
3712     ARMCPU *cpu = env_archcpu(env);
3713     TCR *tcr = raw_ptr(env, ri);
3714 
3715     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3716         /* With LPAE the TTBCR could result in a change of ASID
3717          * via the TTBCR.A1 bit, so do a TLB flush.
3718          */
3719         tlb_flush(CPU(cpu));
3720     }
3721     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3722     value = deposit64(tcr->raw_tcr, 0, 32, value);
3723     vmsa_ttbcr_raw_write(env, ri, value);
3724 }
3725 
3726 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3727 {
3728     TCR *tcr = raw_ptr(env, ri);
3729 
3730     /* Reset both the TCR as well as the masks corresponding to the bank of
3731      * the TCR being reset.
3732      */
3733     tcr->raw_tcr = 0;
3734     tcr->mask = 0;
3735     tcr->base_mask = 0xffffc000u;
3736 }
3737 
3738 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3739                                uint64_t value)
3740 {
3741     ARMCPU *cpu = env_archcpu(env);
3742     TCR *tcr = raw_ptr(env, ri);
3743 
3744     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3745     tlb_flush(CPU(cpu));
3746     tcr->raw_tcr = value;
3747 }
3748 
3749 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3750                             uint64_t value)
3751 {
3752     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3753     if (cpreg_field_is_64bit(ri) &&
3754         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3755         ARMCPU *cpu = env_archcpu(env);
3756         tlb_flush(CPU(cpu));
3757     }
3758     raw_write(env, ri, value);
3759 }
3760 
3761 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3762                                     uint64_t value)
3763 {
3764     /*
3765      * If we are running with E2&0 regime, then an ASID is active.
3766      * Flush if that might be changing.  Note we're not checking
3767      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3768      * holds the active ASID, only checking the field that might.
3769      */
3770     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3771         (arm_hcr_el2_eff(env) & HCR_E2H)) {
3772         uint16_t mask = ARMMMUIdxBit_E20_2 |
3773                         ARMMMUIdxBit_E20_2_PAN |
3774                         ARMMMUIdxBit_E20_0;
3775 
3776         if (arm_is_secure_below_el3(env)) {
3777             mask >>= ARM_MMU_IDX_A_NS;
3778         }
3779 
3780         tlb_flush_by_mmuidx(env_cpu(env), mask);
3781     }
3782     raw_write(env, ri, value);
3783 }
3784 
3785 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3786                         uint64_t value)
3787 {
3788     ARMCPU *cpu = env_archcpu(env);
3789     CPUState *cs = CPU(cpu);
3790 
3791     /*
3792      * A change in VMID to the stage2 page table (Stage2) invalidates
3793      * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
3794      */
3795     if (raw_read(env, ri) != value) {
3796         uint16_t mask = ARMMMUIdxBit_E10_1 |
3797                         ARMMMUIdxBit_E10_1_PAN |
3798                         ARMMMUIdxBit_E10_0;
3799 
3800         if (arm_is_secure_below_el3(env)) {
3801             mask >>= ARM_MMU_IDX_A_NS;
3802         }
3803 
3804         tlb_flush_by_mmuidx(cs, mask);
3805         raw_write(env, ri, value);
3806     }
3807 }
3808 
3809 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3810     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3811       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
3812       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3813                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3814     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3815       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3816       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3817                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3818     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3819       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3820       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3821                              offsetof(CPUARMState, cp15.dfar_ns) } },
3822     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3823       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3824       .access = PL1_RW, .accessfn = access_tvm_trvm,
3825       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3826       .resetvalue = 0, },
3827     REGINFO_SENTINEL
3828 };
3829 
3830 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3831     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3832       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3833       .access = PL1_RW, .accessfn = access_tvm_trvm,
3834       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3835     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3836       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3837       .access = PL1_RW, .accessfn = access_tvm_trvm,
3838       .writefn = vmsa_ttbr_write, .resetvalue = 0,
3839       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3840                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
3841     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3842       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3843       .access = PL1_RW, .accessfn = access_tvm_trvm,
3844       .writefn = vmsa_ttbr_write, .resetvalue = 0,
3845       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3846                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
3847     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3848       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3849       .access = PL1_RW, .accessfn = access_tvm_trvm,
3850       .writefn = vmsa_tcr_el12_write,
3851       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3852       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3853     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3854       .access = PL1_RW, .accessfn = access_tvm_trvm,
3855       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3856       .raw_writefn = vmsa_ttbcr_raw_write,
3857       /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */
3858       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]),
3859                              offsetof(CPUARMState, cp15.tcr_el[1])} },
3860     REGINFO_SENTINEL
3861 };
3862 
3863 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3864  * qemu tlbs nor adjusting cached masks.
3865  */
3866 static const ARMCPRegInfo ttbcr2_reginfo = {
3867     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3868     .access = PL1_RW, .accessfn = access_tvm_trvm,
3869     .type = ARM_CP_ALIAS,
3870     .bank_fieldoffsets = {
3871         offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr),
3872         offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr),
3873     },
3874 };
3875 
3876 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3877                                 uint64_t value)
3878 {
3879     env->cp15.c15_ticonfig = value & 0xe7;
3880     /* The OS_TYPE bit in this register changes the reported CPUID! */
3881     env->cp15.c0_cpuid = (value & (1 << 5)) ?
3882         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3883 }
3884 
3885 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3886                                 uint64_t value)
3887 {
3888     env->cp15.c15_threadid = value & 0xffff;
3889 }
3890 
3891 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3892                            uint64_t value)
3893 {
3894     /* Wait-for-interrupt (deprecated) */
3895     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3896 }
3897 
3898 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3899                                   uint64_t value)
3900 {
3901     /* On OMAP there are registers indicating the max/min index of dcache lines
3902      * containing a dirty line; cache flush operations have to reset these.
3903      */
3904     env->cp15.c15_i_max = 0x000;
3905     env->cp15.c15_i_min = 0xff0;
3906 }
3907 
3908 static const ARMCPRegInfo omap_cp_reginfo[] = {
3909     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3910       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3911       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3912       .resetvalue = 0, },
3913     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3914       .access = PL1_RW, .type = ARM_CP_NOP },
3915     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3916       .access = PL1_RW,
3917       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3918       .writefn = omap_ticonfig_write },
3919     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3920       .access = PL1_RW,
3921       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3922     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3923       .access = PL1_RW, .resetvalue = 0xff0,
3924       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3925     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3926       .access = PL1_RW,
3927       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3928       .writefn = omap_threadid_write },
3929     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3930       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3931       .type = ARM_CP_NO_RAW,
3932       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3933     /* TODO: Peripheral port remap register:
3934      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3935      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3936      * when MMU is off.
3937      */
3938     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3939       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3940       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3941       .writefn = omap_cachemaint_write },
3942     { .name = "C9", .cp = 15, .crn = 9,
3943       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3944       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3945     REGINFO_SENTINEL
3946 };
3947 
3948 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3949                               uint64_t value)
3950 {
3951     env->cp15.c15_cpar = value & 0x3fff;
3952 }
3953 
3954 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3955     { .name = "XSCALE_CPAR",
3956       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3957       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3958       .writefn = xscale_cpar_write, },
3959     { .name = "XSCALE_AUXCR",
3960       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3961       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3962       .resetvalue = 0, },
3963     /* XScale specific cache-lockdown: since we have no cache we NOP these
3964      * and hope the guest does not really rely on cache behaviour.
3965      */
3966     { .name = "XSCALE_LOCK_ICACHE_LINE",
3967       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3968       .access = PL1_W, .type = ARM_CP_NOP },
3969     { .name = "XSCALE_UNLOCK_ICACHE",
3970       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3971       .access = PL1_W, .type = ARM_CP_NOP },
3972     { .name = "XSCALE_DCACHE_LOCK",
3973       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3974       .access = PL1_RW, .type = ARM_CP_NOP },
3975     { .name = "XSCALE_UNLOCK_DCACHE",
3976       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3977       .access = PL1_W, .type = ARM_CP_NOP },
3978     REGINFO_SENTINEL
3979 };
3980 
3981 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3982     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3983      * implementation of this implementation-defined space.
3984      * Ideally this should eventually disappear in favour of actually
3985      * implementing the correct behaviour for all cores.
3986      */
3987     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3988       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3989       .access = PL1_RW,
3990       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3991       .resetvalue = 0 },
3992     REGINFO_SENTINEL
3993 };
3994 
3995 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3996     /* Cache status: RAZ because we have no cache so it's always clean */
3997     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3998       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3999       .resetvalue = 0 },
4000     REGINFO_SENTINEL
4001 };
4002 
4003 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4004     /* We never have a a block transfer operation in progress */
4005     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4006       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4007       .resetvalue = 0 },
4008     /* The cache ops themselves: these all NOP for QEMU */
4009     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4010       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4011     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4012       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4013     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4014       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4015     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4016       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4017     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4018       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4019     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4020       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4021     REGINFO_SENTINEL
4022 };
4023 
4024 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4025     /* The cache test-and-clean instructions always return (1 << 30)
4026      * to indicate that there are no dirty cache lines.
4027      */
4028     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4029       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4030       .resetvalue = (1 << 30) },
4031     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4032       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4033       .resetvalue = (1 << 30) },
4034     REGINFO_SENTINEL
4035 };
4036 
4037 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4038     /* Ignore ReadBuffer accesses */
4039     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4040       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4041       .access = PL1_RW, .resetvalue = 0,
4042       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4043     REGINFO_SENTINEL
4044 };
4045 
4046 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4047 {
4048     unsigned int cur_el = arm_current_el(env);
4049 
4050     if (arm_is_el2_enabled(env) && cur_el == 1) {
4051         return env->cp15.vpidr_el2;
4052     }
4053     return raw_read(env, ri);
4054 }
4055 
4056 static uint64_t mpidr_read_val(CPUARMState *env)
4057 {
4058     ARMCPU *cpu = env_archcpu(env);
4059     uint64_t mpidr = cpu->mp_affinity;
4060 
4061     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4062         mpidr |= (1U << 31);
4063         /* Cores which are uniprocessor (non-coherent)
4064          * but still implement the MP extensions set
4065          * bit 30. (For instance, Cortex-R5).
4066          */
4067         if (cpu->mp_is_up) {
4068             mpidr |= (1u << 30);
4069         }
4070     }
4071     return mpidr;
4072 }
4073 
4074 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4075 {
4076     unsigned int cur_el = arm_current_el(env);
4077 
4078     if (arm_is_el2_enabled(env) && cur_el == 1) {
4079         return env->cp15.vmpidr_el2;
4080     }
4081     return mpidr_read_val(env);
4082 }
4083 
4084 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4085     /* NOP AMAIR0/1 */
4086     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4087       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4088       .access = PL1_RW, .accessfn = access_tvm_trvm,
4089       .type = ARM_CP_CONST, .resetvalue = 0 },
4090     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4091     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4092       .access = PL1_RW, .accessfn = access_tvm_trvm,
4093       .type = ARM_CP_CONST, .resetvalue = 0 },
4094     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4095       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4096       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4097                              offsetof(CPUARMState, cp15.par_ns)} },
4098     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4099       .access = PL1_RW, .accessfn = access_tvm_trvm,
4100       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4101       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4102                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4103       .writefn = vmsa_ttbr_write, },
4104     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4105       .access = PL1_RW, .accessfn = access_tvm_trvm,
4106       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4107       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4108                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4109       .writefn = vmsa_ttbr_write, },
4110     REGINFO_SENTINEL
4111 };
4112 
4113 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4114 {
4115     return vfp_get_fpcr(env);
4116 }
4117 
4118 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4119                             uint64_t value)
4120 {
4121     vfp_set_fpcr(env, value);
4122 }
4123 
4124 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4125 {
4126     return vfp_get_fpsr(env);
4127 }
4128 
4129 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4130                             uint64_t value)
4131 {
4132     vfp_set_fpsr(env, value);
4133 }
4134 
4135 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4136                                        bool isread)
4137 {
4138     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4139         return CP_ACCESS_TRAP;
4140     }
4141     return CP_ACCESS_OK;
4142 }
4143 
4144 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4145                             uint64_t value)
4146 {
4147     env->daif = value & PSTATE_DAIF;
4148 }
4149 
4150 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4151 {
4152     return env->pstate & PSTATE_PAN;
4153 }
4154 
4155 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4156                            uint64_t value)
4157 {
4158     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4159 }
4160 
4161 static const ARMCPRegInfo pan_reginfo = {
4162     .name = "PAN", .state = ARM_CP_STATE_AA64,
4163     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4164     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4165     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4166 };
4167 
4168 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4169 {
4170     return env->pstate & PSTATE_UAO;
4171 }
4172 
4173 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4174                            uint64_t value)
4175 {
4176     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4177 }
4178 
4179 static const ARMCPRegInfo uao_reginfo = {
4180     .name = "UAO", .state = ARM_CP_STATE_AA64,
4181     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4182     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4183     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4184 };
4185 
4186 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4187 {
4188     return env->pstate & PSTATE_DIT;
4189 }
4190 
4191 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4192                            uint64_t value)
4193 {
4194     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4195 }
4196 
4197 static const ARMCPRegInfo dit_reginfo = {
4198     .name = "DIT", .state = ARM_CP_STATE_AA64,
4199     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4200     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4201     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4202 };
4203 
4204 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4205 {
4206     return env->pstate & PSTATE_SSBS;
4207 }
4208 
4209 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4210                            uint64_t value)
4211 {
4212     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4213 }
4214 
4215 static const ARMCPRegInfo ssbs_reginfo = {
4216     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4217     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4218     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4219     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4220 };
4221 
4222 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4223                                               const ARMCPRegInfo *ri,
4224                                               bool isread)
4225 {
4226     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4227     switch (arm_current_el(env)) {
4228     case 0:
4229         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4230         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4231             return CP_ACCESS_TRAP;
4232         }
4233         /* fall through */
4234     case 1:
4235         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4236         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4237             return CP_ACCESS_TRAP_EL2;
4238         }
4239         break;
4240     }
4241     return CP_ACCESS_OK;
4242 }
4243 
4244 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4245                                               const ARMCPRegInfo *ri,
4246                                               bool isread)
4247 {
4248     /* Cache invalidate/clean to Point of Unification... */
4249     switch (arm_current_el(env)) {
4250     case 0:
4251         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4252         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4253             return CP_ACCESS_TRAP;
4254         }
4255         /* fall through */
4256     case 1:
4257         /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set.  */
4258         if (arm_hcr_el2_eff(env) & HCR_TPU) {
4259             return CP_ACCESS_TRAP_EL2;
4260         }
4261         break;
4262     }
4263     return CP_ACCESS_OK;
4264 }
4265 
4266 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4267  * Page D4-1736 (DDI0487A.b)
4268  */
4269 
4270 static int vae1_tlbmask(CPUARMState *env)
4271 {
4272     uint64_t hcr = arm_hcr_el2_eff(env);
4273     uint16_t mask;
4274 
4275     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4276         mask = ARMMMUIdxBit_E20_2 |
4277                ARMMMUIdxBit_E20_2_PAN |
4278                ARMMMUIdxBit_E20_0;
4279     } else {
4280         mask = ARMMMUIdxBit_E10_1 |
4281                ARMMMUIdxBit_E10_1_PAN |
4282                ARMMMUIdxBit_E10_0;
4283     }
4284 
4285     if (arm_is_secure_below_el3(env)) {
4286         mask >>= ARM_MMU_IDX_A_NS;
4287     }
4288 
4289     return mask;
4290 }
4291 
4292 /* Return 56 if TBI is enabled, 64 otherwise. */
4293 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4294                               uint64_t addr)
4295 {
4296     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4297     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4298     int select = extract64(addr, 55, 1);
4299 
4300     return (tbi >> select) & 1 ? 56 : 64;
4301 }
4302 
4303 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4304 {
4305     uint64_t hcr = arm_hcr_el2_eff(env);
4306     ARMMMUIdx mmu_idx;
4307 
4308     /* Only the regime of the mmu_idx below is significant. */
4309     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4310         mmu_idx = ARMMMUIdx_E20_0;
4311     } else {
4312         mmu_idx = ARMMMUIdx_E10_0;
4313     }
4314 
4315     if (arm_is_secure_below_el3(env)) {
4316         mmu_idx &= ~ARM_MMU_IDX_A_NS;
4317     }
4318 
4319     return tlbbits_for_regime(env, mmu_idx, addr);
4320 }
4321 
4322 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4323                                       uint64_t value)
4324 {
4325     CPUState *cs = env_cpu(env);
4326     int mask = vae1_tlbmask(env);
4327 
4328     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4329 }
4330 
4331 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4332                                     uint64_t value)
4333 {
4334     CPUState *cs = env_cpu(env);
4335     int mask = vae1_tlbmask(env);
4336 
4337     if (tlb_force_broadcast(env)) {
4338         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4339     } else {
4340         tlb_flush_by_mmuidx(cs, mask);
4341     }
4342 }
4343 
4344 static int alle1_tlbmask(CPUARMState *env)
4345 {
4346     /*
4347      * Note that the 'ALL' scope must invalidate both stage 1 and
4348      * stage 2 translations, whereas most other scopes only invalidate
4349      * stage 1 translations.
4350      */
4351     if (arm_is_secure_below_el3(env)) {
4352         return ARMMMUIdxBit_SE10_1 |
4353                ARMMMUIdxBit_SE10_1_PAN |
4354                ARMMMUIdxBit_SE10_0;
4355     } else {
4356         return ARMMMUIdxBit_E10_1 |
4357                ARMMMUIdxBit_E10_1_PAN |
4358                ARMMMUIdxBit_E10_0;
4359     }
4360 }
4361 
4362 static int e2_tlbmask(CPUARMState *env)
4363 {
4364     if (arm_is_secure_below_el3(env)) {
4365         return ARMMMUIdxBit_SE20_0 |
4366                ARMMMUIdxBit_SE20_2 |
4367                ARMMMUIdxBit_SE20_2_PAN |
4368                ARMMMUIdxBit_SE2;
4369     } else {
4370         return ARMMMUIdxBit_E20_0 |
4371                ARMMMUIdxBit_E20_2 |
4372                ARMMMUIdxBit_E20_2_PAN |
4373                ARMMMUIdxBit_E2;
4374     }
4375 }
4376 
4377 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4378                                   uint64_t value)
4379 {
4380     CPUState *cs = env_cpu(env);
4381     int mask = alle1_tlbmask(env);
4382 
4383     tlb_flush_by_mmuidx(cs, mask);
4384 }
4385 
4386 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4387                                   uint64_t value)
4388 {
4389     CPUState *cs = env_cpu(env);
4390     int mask = e2_tlbmask(env);
4391 
4392     tlb_flush_by_mmuidx(cs, mask);
4393 }
4394 
4395 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4396                                   uint64_t value)
4397 {
4398     ARMCPU *cpu = env_archcpu(env);
4399     CPUState *cs = CPU(cpu);
4400 
4401     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4402 }
4403 
4404 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4405                                     uint64_t value)
4406 {
4407     CPUState *cs = env_cpu(env);
4408     int mask = alle1_tlbmask(env);
4409 
4410     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4411 }
4412 
4413 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4414                                     uint64_t value)
4415 {
4416     CPUState *cs = env_cpu(env);
4417     int mask = e2_tlbmask(env);
4418 
4419     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4420 }
4421 
4422 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4423                                     uint64_t value)
4424 {
4425     CPUState *cs = env_cpu(env);
4426 
4427     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4428 }
4429 
4430 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4431                                  uint64_t value)
4432 {
4433     /* Invalidate by VA, EL2
4434      * Currently handles both VAE2 and VALE2, since we don't support
4435      * flush-last-level-only.
4436      */
4437     CPUState *cs = env_cpu(env);
4438     int mask = e2_tlbmask(env);
4439     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4440 
4441     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4442 }
4443 
4444 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4445                                  uint64_t value)
4446 {
4447     /* Invalidate by VA, EL3
4448      * Currently handles both VAE3 and VALE3, since we don't support
4449      * flush-last-level-only.
4450      */
4451     ARMCPU *cpu = env_archcpu(env);
4452     CPUState *cs = CPU(cpu);
4453     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4454 
4455     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4456 }
4457 
4458 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4459                                    uint64_t value)
4460 {
4461     CPUState *cs = env_cpu(env);
4462     int mask = vae1_tlbmask(env);
4463     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4464     int bits = vae1_tlbbits(env, pageaddr);
4465 
4466     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4467 }
4468 
4469 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4470                                  uint64_t value)
4471 {
4472     /* Invalidate by VA, EL1&0 (AArch64 version).
4473      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4474      * since we don't support flush-for-specific-ASID-only or
4475      * flush-last-level-only.
4476      */
4477     CPUState *cs = env_cpu(env);
4478     int mask = vae1_tlbmask(env);
4479     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4480     int bits = vae1_tlbbits(env, pageaddr);
4481 
4482     if (tlb_force_broadcast(env)) {
4483         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4484     } else {
4485         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4486     }
4487 }
4488 
4489 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4490                                    uint64_t value)
4491 {
4492     CPUState *cs = env_cpu(env);
4493     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4494     bool secure = arm_is_secure_below_el3(env);
4495     int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4496     int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4497                                   pageaddr);
4498 
4499     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4500 }
4501 
4502 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4503                                    uint64_t value)
4504 {
4505     CPUState *cs = env_cpu(env);
4506     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4507     int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4508 
4509     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4510                                                   ARMMMUIdxBit_SE3, bits);
4511 }
4512 
4513 #ifdef TARGET_AARCH64
4514 typedef struct {
4515     uint64_t base;
4516     uint64_t length;
4517 } TLBIRange;
4518 
4519 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4520                                      uint64_t value)
4521 {
4522     unsigned int page_size_granule, page_shift, num, scale, exponent;
4523     /* Extract one bit to represent the va selector in use. */
4524     uint64_t select = sextract64(value, 36, 1);
4525     ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true);
4526     TLBIRange ret = { };
4527 
4528     page_size_granule = extract64(value, 46, 2);
4529 
4530     /* The granule encoded in value must match the granule in use. */
4531     if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) {
4532         qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4533                       page_size_granule);
4534         return ret;
4535     }
4536 
4537     page_shift = (page_size_granule - 1) * 2 + 12;
4538     num = extract64(value, 39, 5);
4539     scale = extract64(value, 44, 2);
4540     exponent = (5 * scale) + 1;
4541 
4542     ret.length = (num + 1) << (exponent + page_shift);
4543 
4544     if (param.select) {
4545         ret.base = sextract64(value, 0, 37);
4546     } else {
4547         ret.base = extract64(value, 0, 37);
4548     }
4549     if (param.ds) {
4550         /*
4551          * With DS=1, BaseADDR is always shifted 16 so that it is able
4552          * to address all 52 va bits.  The input address is perforce
4553          * aligned on a 64k boundary regardless of translation granule.
4554          */
4555         page_shift = 16;
4556     }
4557     ret.base <<= page_shift;
4558 
4559     return ret;
4560 }
4561 
4562 static void do_rvae_write(CPUARMState *env, uint64_t value,
4563                           int idxmap, bool synced)
4564 {
4565     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4566     TLBIRange range;
4567     int bits;
4568 
4569     range = tlbi_aa64_get_range(env, one_idx, value);
4570     bits = tlbbits_for_regime(env, one_idx, range.base);
4571 
4572     if (synced) {
4573         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4574                                                   range.base,
4575                                                   range.length,
4576                                                   idxmap,
4577                                                   bits);
4578     } else {
4579         tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4580                                   range.length, idxmap, bits);
4581     }
4582 }
4583 
4584 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4585                                   const ARMCPRegInfo *ri,
4586                                   uint64_t value)
4587 {
4588     /*
4589      * Invalidate by VA range, EL1&0.
4590      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4591      * since we don't support flush-for-specific-ASID-only or
4592      * flush-last-level-only.
4593      */
4594 
4595     do_rvae_write(env, value, vae1_tlbmask(env),
4596                   tlb_force_broadcast(env));
4597 }
4598 
4599 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4600                                     const ARMCPRegInfo *ri,
4601                                     uint64_t value)
4602 {
4603     /*
4604      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4605      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4606      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4607      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4608      * shareable specific flushes.
4609      */
4610 
4611     do_rvae_write(env, value, vae1_tlbmask(env), true);
4612 }
4613 
4614 static int vae2_tlbmask(CPUARMState *env)
4615 {
4616     return (arm_is_secure_below_el3(env)
4617             ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4618 }
4619 
4620 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4621                                   const ARMCPRegInfo *ri,
4622                                   uint64_t value)
4623 {
4624     /*
4625      * Invalidate by VA range, EL2.
4626      * Currently handles all of RVAE2 and RVALE2,
4627      * since we don't support flush-for-specific-ASID-only or
4628      * flush-last-level-only.
4629      */
4630 
4631     do_rvae_write(env, value, vae2_tlbmask(env),
4632                   tlb_force_broadcast(env));
4633 
4634 
4635 }
4636 
4637 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4638                                     const ARMCPRegInfo *ri,
4639                                     uint64_t value)
4640 {
4641     /*
4642      * Invalidate by VA range, Inner/Outer Shareable, EL2.
4643      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4644      * since we don't support flush-for-specific-ASID-only,
4645      * flush-last-level-only or inner/outer shareable specific flushes.
4646      */
4647 
4648     do_rvae_write(env, value, vae2_tlbmask(env), true);
4649 
4650 }
4651 
4652 static void tlbi_aa64_rvae3_write(CPUARMState *env,
4653                                   const ARMCPRegInfo *ri,
4654                                   uint64_t value)
4655 {
4656     /*
4657      * Invalidate by VA range, EL3.
4658      * Currently handles all of RVAE3 and RVALE3,
4659      * since we don't support flush-for-specific-ASID-only or
4660      * flush-last-level-only.
4661      */
4662 
4663     do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4664                   tlb_force_broadcast(env));
4665 }
4666 
4667 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4668                                     const ARMCPRegInfo *ri,
4669                                     uint64_t value)
4670 {
4671     /*
4672      * Invalidate by VA range, EL3, Inner/Outer Shareable.
4673      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4674      * since we don't support flush-for-specific-ASID-only,
4675      * flush-last-level-only or inner/outer specific flushes.
4676      */
4677 
4678     do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4679 }
4680 #endif
4681 
4682 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4683                                       bool isread)
4684 {
4685     int cur_el = arm_current_el(env);
4686 
4687     if (cur_el < 2) {
4688         uint64_t hcr = arm_hcr_el2_eff(env);
4689 
4690         if (cur_el == 0) {
4691             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4692                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4693                     return CP_ACCESS_TRAP_EL2;
4694                 }
4695             } else {
4696                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4697                     return CP_ACCESS_TRAP;
4698                 }
4699                 if (hcr & HCR_TDZ) {
4700                     return CP_ACCESS_TRAP_EL2;
4701                 }
4702             }
4703         } else if (hcr & HCR_TDZ) {
4704             return CP_ACCESS_TRAP_EL2;
4705         }
4706     }
4707     return CP_ACCESS_OK;
4708 }
4709 
4710 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4711 {
4712     ARMCPU *cpu = env_archcpu(env);
4713     int dzp_bit = 1 << 4;
4714 
4715     /* DZP indicates whether DC ZVA access is allowed */
4716     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4717         dzp_bit = 0;
4718     }
4719     return cpu->dcz_blocksize | dzp_bit;
4720 }
4721 
4722 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4723                                     bool isread)
4724 {
4725     if (!(env->pstate & PSTATE_SP)) {
4726         /* Access to SP_EL0 is undefined if it's being used as
4727          * the stack pointer.
4728          */
4729         return CP_ACCESS_TRAP_UNCATEGORIZED;
4730     }
4731     return CP_ACCESS_OK;
4732 }
4733 
4734 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4735 {
4736     return env->pstate & PSTATE_SP;
4737 }
4738 
4739 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4740 {
4741     update_spsel(env, val);
4742 }
4743 
4744 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4745                         uint64_t value)
4746 {
4747     ARMCPU *cpu = env_archcpu(env);
4748 
4749     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4750         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4751         value &= ~SCTLR_M;
4752     }
4753 
4754     /* ??? Lots of these bits are not implemented.  */
4755 
4756     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4757         if (ri->opc1 == 6) { /* SCTLR_EL3 */
4758             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4759         } else {
4760             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4761                        SCTLR_ATA0 | SCTLR_ATA);
4762         }
4763     }
4764 
4765     if (raw_read(env, ri) == value) {
4766         /* Skip the TLB flush if nothing actually changed; Linux likes
4767          * to do a lot of pointless SCTLR writes.
4768          */
4769         return;
4770     }
4771 
4772     raw_write(env, ri, value);
4773 
4774     /* This may enable/disable the MMU, so do a TLB flush.  */
4775     tlb_flush(CPU(cpu));
4776 
4777     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4778         /*
4779          * Normally we would always end the TB on an SCTLR write; see the
4780          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4781          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4782          * of hflags from the translator, so do it here.
4783          */
4784         arm_rebuild_hflags(env);
4785     }
4786 }
4787 
4788 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4789                        uint64_t value)
4790 {
4791     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4792 }
4793 
4794 static const ARMCPRegInfo v8_cp_reginfo[] = {
4795     /* Minimal set of EL0-visible registers. This will need to be expanded
4796      * significantly for system emulation of AArch64 CPUs.
4797      */
4798     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4799       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4800       .access = PL0_RW, .type = ARM_CP_NZCV },
4801     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4802       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4803       .type = ARM_CP_NO_RAW,
4804       .access = PL0_RW, .accessfn = aa64_daif_access,
4805       .fieldoffset = offsetof(CPUARMState, daif),
4806       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4807     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4808       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4809       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4810       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4811     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4812       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4813       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4814       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4815     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4816       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4817       .access = PL0_R, .type = ARM_CP_NO_RAW,
4818       .readfn = aa64_dczid_read },
4819     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4820       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4821       .access = PL0_W, .type = ARM_CP_DC_ZVA,
4822 #ifndef CONFIG_USER_ONLY
4823       /* Avoid overhead of an access check that always passes in user-mode */
4824       .accessfn = aa64_zva_access,
4825 #endif
4826     },
4827     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4828       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4829       .access = PL1_R, .type = ARM_CP_CURRENTEL },
4830     /* Cache ops: all NOPs since we don't emulate caches */
4831     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4832       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4833       .access = PL1_W, .type = ARM_CP_NOP,
4834       .accessfn = aa64_cacheop_pou_access },
4835     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4836       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4837       .access = PL1_W, .type = ARM_CP_NOP,
4838       .accessfn = aa64_cacheop_pou_access },
4839     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4840       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4841       .access = PL0_W, .type = ARM_CP_NOP,
4842       .accessfn = aa64_cacheop_pou_access },
4843     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4844       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4845       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4846       .type = ARM_CP_NOP },
4847     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4848       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4849       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4850     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4851       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4852       .access = PL0_W, .type = ARM_CP_NOP,
4853       .accessfn = aa64_cacheop_poc_access },
4854     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4855       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4856       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4857     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4858       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4859       .access = PL0_W, .type = ARM_CP_NOP,
4860       .accessfn = aa64_cacheop_pou_access },
4861     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4862       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4863       .access = PL0_W, .type = ARM_CP_NOP,
4864       .accessfn = aa64_cacheop_poc_access },
4865     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4866       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4867       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4868     /* TLBI operations */
4869     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4870       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4871       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4872       .writefn = tlbi_aa64_vmalle1is_write },
4873     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4874       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4875       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4876       .writefn = tlbi_aa64_vae1is_write },
4877     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4878       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4879       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4880       .writefn = tlbi_aa64_vmalle1is_write },
4881     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4882       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4883       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4884       .writefn = tlbi_aa64_vae1is_write },
4885     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4886       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4887       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4888       .writefn = tlbi_aa64_vae1is_write },
4889     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4890       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4891       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4892       .writefn = tlbi_aa64_vae1is_write },
4893     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4894       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4895       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4896       .writefn = tlbi_aa64_vmalle1_write },
4897     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4898       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4899       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4900       .writefn = tlbi_aa64_vae1_write },
4901     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4902       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4903       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4904       .writefn = tlbi_aa64_vmalle1_write },
4905     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4906       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4907       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4908       .writefn = tlbi_aa64_vae1_write },
4909     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4910       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4911       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4912       .writefn = tlbi_aa64_vae1_write },
4913     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4914       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4915       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4916       .writefn = tlbi_aa64_vae1_write },
4917     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4918       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4919       .access = PL2_W, .type = ARM_CP_NOP },
4920     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4921       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4922       .access = PL2_W, .type = ARM_CP_NOP },
4923     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4924       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4925       .access = PL2_W, .type = ARM_CP_NO_RAW,
4926       .writefn = tlbi_aa64_alle1is_write },
4927     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4928       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4929       .access = PL2_W, .type = ARM_CP_NO_RAW,
4930       .writefn = tlbi_aa64_alle1is_write },
4931     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4932       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4933       .access = PL2_W, .type = ARM_CP_NOP },
4934     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4935       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4936       .access = PL2_W, .type = ARM_CP_NOP },
4937     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4938       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4939       .access = PL2_W, .type = ARM_CP_NO_RAW,
4940       .writefn = tlbi_aa64_alle1_write },
4941     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4942       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4943       .access = PL2_W, .type = ARM_CP_NO_RAW,
4944       .writefn = tlbi_aa64_alle1is_write },
4945 #ifndef CONFIG_USER_ONLY
4946     /* 64 bit address translation operations */
4947     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4948       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4949       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4950       .writefn = ats_write64 },
4951     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4952       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4953       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4954       .writefn = ats_write64 },
4955     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4956       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4957       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4958       .writefn = ats_write64 },
4959     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4960       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4961       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4962       .writefn = ats_write64 },
4963     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4964       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4965       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4966       .writefn = ats_write64 },
4967     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4968       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4969       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4970       .writefn = ats_write64 },
4971     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4972       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4973       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4974       .writefn = ats_write64 },
4975     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4976       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4977       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4978       .writefn = ats_write64 },
4979     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4980     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4981       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4982       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4983       .writefn = ats_write64 },
4984     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4985       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4986       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4987       .writefn = ats_write64 },
4988     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4989       .type = ARM_CP_ALIAS,
4990       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4991       .access = PL1_RW, .resetvalue = 0,
4992       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4993       .writefn = par_write },
4994 #endif
4995     /* TLB invalidate last level of translation table walk */
4996     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4997       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4998       .writefn = tlbimva_is_write },
4999     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5000       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5001       .writefn = tlbimvaa_is_write },
5002     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5003       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5004       .writefn = tlbimva_write },
5005     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5006       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5007       .writefn = tlbimvaa_write },
5008     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5009       .type = ARM_CP_NO_RAW, .access = PL2_W,
5010       .writefn = tlbimva_hyp_write },
5011     { .name = "TLBIMVALHIS",
5012       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5013       .type = ARM_CP_NO_RAW, .access = PL2_W,
5014       .writefn = tlbimva_hyp_is_write },
5015     { .name = "TLBIIPAS2",
5016       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5017       .type = ARM_CP_NOP, .access = PL2_W },
5018     { .name = "TLBIIPAS2IS",
5019       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5020       .type = ARM_CP_NOP, .access = PL2_W },
5021     { .name = "TLBIIPAS2L",
5022       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5023       .type = ARM_CP_NOP, .access = PL2_W },
5024     { .name = "TLBIIPAS2LIS",
5025       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5026       .type = ARM_CP_NOP, .access = PL2_W },
5027     /* 32 bit cache operations */
5028     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5029       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5030     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5031       .type = ARM_CP_NOP, .access = PL1_W },
5032     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5033       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5034     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5035       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5036     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5037       .type = ARM_CP_NOP, .access = PL1_W },
5038     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5039       .type = ARM_CP_NOP, .access = PL1_W },
5040     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5041       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5042     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5043       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5044     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5045       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5046     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5047       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5048     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5049       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5050     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5051       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5052     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5053       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5054     /* MMU Domain access control / MPU write buffer control */
5055     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5056       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5057       .writefn = dacr_write, .raw_writefn = raw_write,
5058       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5059                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5060     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5061       .type = ARM_CP_ALIAS,
5062       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5063       .access = PL1_RW,
5064       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5065     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5066       .type = ARM_CP_ALIAS,
5067       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5068       .access = PL1_RW,
5069       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5070     /* We rely on the access checks not allowing the guest to write to the
5071      * state field when SPSel indicates that it's being used as the stack
5072      * pointer.
5073      */
5074     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5075       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5076       .access = PL1_RW, .accessfn = sp_el0_access,
5077       .type = ARM_CP_ALIAS,
5078       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5079     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5080       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5081       .access = PL2_RW, .type = ARM_CP_ALIAS,
5082       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5083     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5084       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5085       .type = ARM_CP_NO_RAW,
5086       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5087     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5088       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5089       .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_FPU,
5090       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5091     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5092       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5093       .access = PL2_RW, .resetvalue = 0,
5094       .writefn = dacr_write, .raw_writefn = raw_write,
5095       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5096     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5097       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5098       .access = PL2_RW, .resetvalue = 0,
5099       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5100     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5101       .type = ARM_CP_ALIAS,
5102       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5103       .access = PL2_RW,
5104       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5105     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5106       .type = ARM_CP_ALIAS,
5107       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5108       .access = PL2_RW,
5109       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5110     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5111       .type = ARM_CP_ALIAS,
5112       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5113       .access = PL2_RW,
5114       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5115     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5116       .type = ARM_CP_ALIAS,
5117       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5118       .access = PL2_RW,
5119       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5120     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5121       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5122       .resetvalue = 0,
5123       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5124     { .name = "SDCR", .type = ARM_CP_ALIAS,
5125       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5126       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5127       .writefn = sdcr_write,
5128       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5129     REGINFO_SENTINEL
5130 };
5131 
5132 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
5133 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5134     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5135       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5136       .access = PL2_RW,
5137       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5138     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5139       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5140       .access = PL2_RW,
5141       .type = ARM_CP_CONST, .resetvalue = 0 },
5142     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5143       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5144       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5145     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5146       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5147       .access = PL2_RW,
5148       .type = ARM_CP_CONST, .resetvalue = 0 },
5149     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5150       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5151       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5152     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5153       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5154       .access = PL2_RW, .type = ARM_CP_CONST,
5155       .resetvalue = 0 },
5156     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5157       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5158       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5159     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5160       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5161       .access = PL2_RW, .type = ARM_CP_CONST,
5162       .resetvalue = 0 },
5163     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5164       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5165       .access = PL2_RW, .type = ARM_CP_CONST,
5166       .resetvalue = 0 },
5167     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5168       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5169       .access = PL2_RW, .type = ARM_CP_CONST,
5170       .resetvalue = 0 },
5171     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5172       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5173       .access = PL2_RW, .type = ARM_CP_CONST,
5174       .resetvalue = 0 },
5175     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5176       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5177       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5178     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5179       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5180       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5181       .type = ARM_CP_CONST, .resetvalue = 0 },
5182     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5183       .cp = 15, .opc1 = 6, .crm = 2,
5184       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5185       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5186     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5187       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5188       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5189     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5190       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5191       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5192     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5193       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5194       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5195     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5196       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5197       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5198     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5199       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5200       .resetvalue = 0 },
5201     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5202       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5203       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5204     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5205       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5206       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5207     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5208       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5209       .resetvalue = 0 },
5210     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5211       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5212       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5213     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5214       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5215       .resetvalue = 0 },
5216     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5217       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5218       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5219     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5220       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5221       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5222     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5223       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5224       .access = PL2_RW, .accessfn = access_tda,
5225       .type = ARM_CP_CONST, .resetvalue = 0 },
5226     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5227       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5228       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5229       .type = ARM_CP_CONST, .resetvalue = 0 },
5230     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5231       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5232       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5233     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5234       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5235       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5236     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5237       .type = ARM_CP_CONST,
5238       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5239       .access = PL2_RW, .resetvalue = 0 },
5240     REGINFO_SENTINEL
5241 };
5242 
5243 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5244 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5245     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5246       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5247       .access = PL2_RW,
5248       .type = ARM_CP_CONST, .resetvalue = 0 },
5249     REGINFO_SENTINEL
5250 };
5251 
5252 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5253 {
5254     ARMCPU *cpu = env_archcpu(env);
5255 
5256     if (arm_feature(env, ARM_FEATURE_V8)) {
5257         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5258     } else {
5259         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5260     }
5261 
5262     if (arm_feature(env, ARM_FEATURE_EL3)) {
5263         valid_mask &= ~HCR_HCD;
5264     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5265         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5266          * However, if we're using the SMC PSCI conduit then QEMU is
5267          * effectively acting like EL3 firmware and so the guest at
5268          * EL2 should retain the ability to prevent EL1 from being
5269          * able to make SMC calls into the ersatz firmware, so in
5270          * that case HCR.TSC should be read/write.
5271          */
5272         valid_mask &= ~HCR_TSC;
5273     }
5274 
5275     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5276         if (cpu_isar_feature(aa64_vh, cpu)) {
5277             valid_mask |= HCR_E2H;
5278         }
5279         if (cpu_isar_feature(aa64_lor, cpu)) {
5280             valid_mask |= HCR_TLOR;
5281         }
5282         if (cpu_isar_feature(aa64_pauth, cpu)) {
5283             valid_mask |= HCR_API | HCR_APK;
5284         }
5285         if (cpu_isar_feature(aa64_mte, cpu)) {
5286             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5287         }
5288     }
5289 
5290     /* Clear RES0 bits.  */
5291     value &= valid_mask;
5292 
5293     /*
5294      * These bits change the MMU setup:
5295      * HCR_VM enables stage 2 translation
5296      * HCR_PTW forbids certain page-table setups
5297      * HCR_DC disables stage1 and enables stage2 translation
5298      * HCR_DCT enables tagging on (disabled) stage1 translation
5299      */
5300     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5301         tlb_flush(CPU(cpu));
5302     }
5303     env->cp15.hcr_el2 = value;
5304 
5305     /*
5306      * Updates to VI and VF require us to update the status of
5307      * virtual interrupts, which are the logical OR of these bits
5308      * and the state of the input lines from the GIC. (This requires
5309      * that we have the iothread lock, which is done by marking the
5310      * reginfo structs as ARM_CP_IO.)
5311      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5312      * possible for it to be taken immediately, because VIRQ and
5313      * VFIQ are masked unless running at EL0 or EL1, and HCR
5314      * can only be written at EL2.
5315      */
5316     g_assert(qemu_mutex_iothread_locked());
5317     arm_cpu_update_virq(cpu);
5318     arm_cpu_update_vfiq(cpu);
5319 }
5320 
5321 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5322 {
5323     do_hcr_write(env, value, 0);
5324 }
5325 
5326 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5327                           uint64_t value)
5328 {
5329     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5330     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5331     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5332 }
5333 
5334 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5335                          uint64_t value)
5336 {
5337     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5338     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5339     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5340 }
5341 
5342 /*
5343  * Return the effective value of HCR_EL2.
5344  * Bits that are not included here:
5345  * RW       (read from SCR_EL3.RW as needed)
5346  */
5347 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5348 {
5349     uint64_t ret = env->cp15.hcr_el2;
5350 
5351     if (!arm_is_el2_enabled(env)) {
5352         /*
5353          * "This register has no effect if EL2 is not enabled in the
5354          * current Security state".  This is ARMv8.4-SecEL2 speak for
5355          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5356          *
5357          * Prior to that, the language was "In an implementation that
5358          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5359          * as if this field is 0 for all purposes other than a direct
5360          * read or write access of HCR_EL2".  With lots of enumeration
5361          * on a per-field basis.  In current QEMU, this is condition
5362          * is arm_is_secure_below_el3.
5363          *
5364          * Since the v8.4 language applies to the entire register, and
5365          * appears to be backward compatible, use that.
5366          */
5367         return 0;
5368     }
5369 
5370     /*
5371      * For a cpu that supports both aarch64 and aarch32, we can set bits
5372      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5373      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5374      */
5375     if (!arm_el_is_aa64(env, 2)) {
5376         uint64_t aa32_valid;
5377 
5378         /*
5379          * These bits are up-to-date as of ARMv8.6.
5380          * For HCR, it's easiest to list just the 2 bits that are invalid.
5381          * For HCR2, list those that are valid.
5382          */
5383         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5384         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5385                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5386         ret &= aa32_valid;
5387     }
5388 
5389     if (ret & HCR_TGE) {
5390         /* These bits are up-to-date as of ARMv8.6.  */
5391         if (ret & HCR_E2H) {
5392             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5393                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5394                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5395                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5396                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5397                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5398         } else {
5399             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5400         }
5401         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5402                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5403                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5404                  HCR_TLOR);
5405     }
5406 
5407     return ret;
5408 }
5409 
5410 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5411                            uint64_t value)
5412 {
5413     /*
5414      * For A-profile AArch32 EL3, if NSACR.CP10
5415      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5416      */
5417     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5418         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5419         value &= ~(0x3 << 10);
5420         value |= env->cp15.cptr_el[2] & (0x3 << 10);
5421     }
5422     env->cp15.cptr_el[2] = value;
5423 }
5424 
5425 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5426 {
5427     /*
5428      * For A-profile AArch32 EL3, if NSACR.CP10
5429      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5430      */
5431     uint64_t value = env->cp15.cptr_el[2];
5432 
5433     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5434         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5435         value |= 0x3 << 10;
5436     }
5437     return value;
5438 }
5439 
5440 static const ARMCPRegInfo el2_cp_reginfo[] = {
5441     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5442       .type = ARM_CP_IO,
5443       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5444       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5445       .writefn = hcr_write },
5446     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5447       .type = ARM_CP_ALIAS | ARM_CP_IO,
5448       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5449       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5450       .writefn = hcr_writelow },
5451     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5452       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5453       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5454     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5455       .type = ARM_CP_ALIAS,
5456       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5457       .access = PL2_RW,
5458       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5459     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5460       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5461       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5462     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5463       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5464       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5465     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5466       .type = ARM_CP_ALIAS,
5467       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5468       .access = PL2_RW,
5469       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5470     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5471       .type = ARM_CP_ALIAS,
5472       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5473       .access = PL2_RW,
5474       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5475     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5476       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5477       .access = PL2_RW, .writefn = vbar_write,
5478       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5479       .resetvalue = 0 },
5480     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5481       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5482       .access = PL3_RW, .type = ARM_CP_ALIAS,
5483       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5484     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5485       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5486       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5487       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5488       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5489     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5490       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5491       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5492       .resetvalue = 0 },
5493     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5494       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5495       .access = PL2_RW, .type = ARM_CP_ALIAS,
5496       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5497     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5498       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5499       .access = PL2_RW, .type = ARM_CP_CONST,
5500       .resetvalue = 0 },
5501     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5502     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5503       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5504       .access = PL2_RW, .type = ARM_CP_CONST,
5505       .resetvalue = 0 },
5506     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5507       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5508       .access = PL2_RW, .type = ARM_CP_CONST,
5509       .resetvalue = 0 },
5510     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5511       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5512       .access = PL2_RW, .type = ARM_CP_CONST,
5513       .resetvalue = 0 },
5514     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5515       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5516       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5517       /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5518       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5519     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5520       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5521       .type = ARM_CP_ALIAS,
5522       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5523       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5524     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5525       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5526       .access = PL2_RW,
5527       /* no .writefn needed as this can't cause an ASID change;
5528        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5529        */
5530       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5531     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5532       .cp = 15, .opc1 = 6, .crm = 2,
5533       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5534       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5535       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5536       .writefn = vttbr_write },
5537     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5538       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5539       .access = PL2_RW, .writefn = vttbr_write,
5540       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5541     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5542       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5543       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5544       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5545     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5546       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5547       .access = PL2_RW, .resetvalue = 0,
5548       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5549     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5550       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5551       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5552       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5553     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5554       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5555       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5556     { .name = "TLBIALLNSNH",
5557       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5558       .type = ARM_CP_NO_RAW, .access = PL2_W,
5559       .writefn = tlbiall_nsnh_write },
5560     { .name = "TLBIALLNSNHIS",
5561       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5562       .type = ARM_CP_NO_RAW, .access = PL2_W,
5563       .writefn = tlbiall_nsnh_is_write },
5564     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5565       .type = ARM_CP_NO_RAW, .access = PL2_W,
5566       .writefn = tlbiall_hyp_write },
5567     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5568       .type = ARM_CP_NO_RAW, .access = PL2_W,
5569       .writefn = tlbiall_hyp_is_write },
5570     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5571       .type = ARM_CP_NO_RAW, .access = PL2_W,
5572       .writefn = tlbimva_hyp_write },
5573     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5574       .type = ARM_CP_NO_RAW, .access = PL2_W,
5575       .writefn = tlbimva_hyp_is_write },
5576     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5577       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5578       .type = ARM_CP_NO_RAW, .access = PL2_W,
5579       .writefn = tlbi_aa64_alle2_write },
5580     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5581       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5582       .type = ARM_CP_NO_RAW, .access = PL2_W,
5583       .writefn = tlbi_aa64_vae2_write },
5584     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5585       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5586       .access = PL2_W, .type = ARM_CP_NO_RAW,
5587       .writefn = tlbi_aa64_vae2_write },
5588     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5589       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5590       .access = PL2_W, .type = ARM_CP_NO_RAW,
5591       .writefn = tlbi_aa64_alle2is_write },
5592     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5593       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5594       .type = ARM_CP_NO_RAW, .access = PL2_W,
5595       .writefn = tlbi_aa64_vae2is_write },
5596     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5597       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5598       .access = PL2_W, .type = ARM_CP_NO_RAW,
5599       .writefn = tlbi_aa64_vae2is_write },
5600 #ifndef CONFIG_USER_ONLY
5601     /* Unlike the other EL2-related AT operations, these must
5602      * UNDEF from EL3 if EL2 is not implemented, which is why we
5603      * define them here rather than with the rest of the AT ops.
5604      */
5605     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5606       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5607       .access = PL2_W, .accessfn = at_s1e2_access,
5608       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5609     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5610       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5611       .access = PL2_W, .accessfn = at_s1e2_access,
5612       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5613     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5614      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5615      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5616      * to behave as if SCR.NS was 1.
5617      */
5618     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5619       .access = PL2_W,
5620       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5621     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5622       .access = PL2_W,
5623       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5624     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5625       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5626       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5627        * reset values as IMPDEF. We choose to reset to 3 to comply with
5628        * both ARMv7 and ARMv8.
5629        */
5630       .access = PL2_RW, .resetvalue = 3,
5631       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5632     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5633       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5634       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5635       .writefn = gt_cntvoff_write,
5636       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5637     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5638       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5639       .writefn = gt_cntvoff_write,
5640       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5641     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5642       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5643       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5644       .type = ARM_CP_IO, .access = PL2_RW,
5645       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5646     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5647       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5648       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5649       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5650     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5651       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5652       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5653       .resetfn = gt_hyp_timer_reset,
5654       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5655     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5656       .type = ARM_CP_IO,
5657       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5658       .access = PL2_RW,
5659       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5660       .resetvalue = 0,
5661       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5662 #endif
5663     /* The only field of MDCR_EL2 that has a defined architectural reset value
5664      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
5665      */
5666     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5667       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5668       .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS,
5669       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5670     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5671       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5672       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5673       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5674     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5675       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5676       .access = PL2_RW,
5677       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5678     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5679       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5680       .access = PL2_RW,
5681       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5682     REGINFO_SENTINEL
5683 };
5684 
5685 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5686     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5687       .type = ARM_CP_ALIAS | ARM_CP_IO,
5688       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5689       .access = PL2_RW,
5690       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5691       .writefn = hcr_writehigh },
5692     REGINFO_SENTINEL
5693 };
5694 
5695 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5696                                   bool isread)
5697 {
5698     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5699         return CP_ACCESS_OK;
5700     }
5701     return CP_ACCESS_TRAP_UNCATEGORIZED;
5702 }
5703 
5704 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5705     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5706       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5707       .access = PL2_RW, .accessfn = sel2_access,
5708       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5709     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5710       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5711       .access = PL2_RW, .accessfn = sel2_access,
5712       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5713     REGINFO_SENTINEL
5714 };
5715 
5716 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5717                                    bool isread)
5718 {
5719     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5720      * At Secure EL1 it traps to EL3 or EL2.
5721      */
5722     if (arm_current_el(env) == 3) {
5723         return CP_ACCESS_OK;
5724     }
5725     if (arm_is_secure_below_el3(env)) {
5726         if (env->cp15.scr_el3 & SCR_EEL2) {
5727             return CP_ACCESS_TRAP_EL2;
5728         }
5729         return CP_ACCESS_TRAP_EL3;
5730     }
5731     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5732     if (isread) {
5733         return CP_ACCESS_OK;
5734     }
5735     return CP_ACCESS_TRAP_UNCATEGORIZED;
5736 }
5737 
5738 static const ARMCPRegInfo el3_cp_reginfo[] = {
5739     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5740       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5741       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5742       .resetfn = scr_reset, .writefn = scr_write },
5743     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5744       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5745       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5746       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5747       .writefn = scr_write },
5748     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5749       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5750       .access = PL3_RW, .resetvalue = 0,
5751       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5752     { .name = "SDER",
5753       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5754       .access = PL3_RW, .resetvalue = 0,
5755       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5756     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5757       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5758       .writefn = vbar_write, .resetvalue = 0,
5759       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5760     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5761       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5762       .access = PL3_RW, .resetvalue = 0,
5763       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5764     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5765       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5766       .access = PL3_RW,
5767       /* no .writefn needed as this can't cause an ASID change;
5768        * we must provide a .raw_writefn and .resetfn because we handle
5769        * reset and migration for the AArch32 TTBCR(S), which might be
5770        * using mask and base_mask.
5771        */
5772       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5773       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5774     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5775       .type = ARM_CP_ALIAS,
5776       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5777       .access = PL3_RW,
5778       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5779     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5780       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5781       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5782     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5783       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5784       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5785     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5786       .type = ARM_CP_ALIAS,
5787       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5788       .access = PL3_RW,
5789       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5790     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5791       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5792       .access = PL3_RW, .writefn = vbar_write,
5793       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5794       .resetvalue = 0 },
5795     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5796       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5797       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5798       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5799     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5800       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5801       .access = PL3_RW, .resetvalue = 0,
5802       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5803     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5804       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5805       .access = PL3_RW, .type = ARM_CP_CONST,
5806       .resetvalue = 0 },
5807     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5808       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5809       .access = PL3_RW, .type = ARM_CP_CONST,
5810       .resetvalue = 0 },
5811     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5812       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5813       .access = PL3_RW, .type = ARM_CP_CONST,
5814       .resetvalue = 0 },
5815     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5816       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5817       .access = PL3_W, .type = ARM_CP_NO_RAW,
5818       .writefn = tlbi_aa64_alle3is_write },
5819     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5820       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5821       .access = PL3_W, .type = ARM_CP_NO_RAW,
5822       .writefn = tlbi_aa64_vae3is_write },
5823     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5824       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5825       .access = PL3_W, .type = ARM_CP_NO_RAW,
5826       .writefn = tlbi_aa64_vae3is_write },
5827     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5828       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5829       .access = PL3_W, .type = ARM_CP_NO_RAW,
5830       .writefn = tlbi_aa64_alle3_write },
5831     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5832       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5833       .access = PL3_W, .type = ARM_CP_NO_RAW,
5834       .writefn = tlbi_aa64_vae3_write },
5835     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5836       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5837       .access = PL3_W, .type = ARM_CP_NO_RAW,
5838       .writefn = tlbi_aa64_vae3_write },
5839     REGINFO_SENTINEL
5840 };
5841 
5842 #ifndef CONFIG_USER_ONLY
5843 /* Test if system register redirection is to occur in the current state.  */
5844 static bool redirect_for_e2h(CPUARMState *env)
5845 {
5846     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5847 }
5848 
5849 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5850 {
5851     CPReadFn *readfn;
5852 
5853     if (redirect_for_e2h(env)) {
5854         /* Switch to the saved EL2 version of the register.  */
5855         ri = ri->opaque;
5856         readfn = ri->readfn;
5857     } else {
5858         readfn = ri->orig_readfn;
5859     }
5860     if (readfn == NULL) {
5861         readfn = raw_read;
5862     }
5863     return readfn(env, ri);
5864 }
5865 
5866 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5867                           uint64_t value)
5868 {
5869     CPWriteFn *writefn;
5870 
5871     if (redirect_for_e2h(env)) {
5872         /* Switch to the saved EL2 version of the register.  */
5873         ri = ri->opaque;
5874         writefn = ri->writefn;
5875     } else {
5876         writefn = ri->orig_writefn;
5877     }
5878     if (writefn == NULL) {
5879         writefn = raw_write;
5880     }
5881     writefn(env, ri, value);
5882 }
5883 
5884 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5885 {
5886     struct E2HAlias {
5887         uint32_t src_key, dst_key, new_key;
5888         const char *src_name, *dst_name, *new_name;
5889         bool (*feature)(const ARMISARegisters *id);
5890     };
5891 
5892 #define K(op0, op1, crn, crm, op2) \
5893     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5894 
5895     static const struct E2HAlias aliases[] = {
5896         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
5897           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5898         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
5899           "CPACR", "CPTR_EL2", "CPACR_EL12" },
5900         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
5901           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5902         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
5903           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5904         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
5905           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5906         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
5907           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5908         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
5909           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5910         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
5911           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5912         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
5913           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5914         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
5915           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5916         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
5917           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5918         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5919           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5920         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5921           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5922         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5923           "VBAR", "VBAR_EL2", "VBAR_EL12" },
5924         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5925           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5926         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5927           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5928 
5929         /*
5930          * Note that redirection of ZCR is mentioned in the description
5931          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5932          * not in the summary table.
5933          */
5934         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
5935           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5936 
5937         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
5938           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
5939 
5940         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5941         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5942     };
5943 #undef K
5944 
5945     size_t i;
5946 
5947     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5948         const struct E2HAlias *a = &aliases[i];
5949         ARMCPRegInfo *src_reg, *dst_reg;
5950 
5951         if (a->feature && !a->feature(&cpu->isar)) {
5952             continue;
5953         }
5954 
5955         src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
5956         dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
5957         g_assert(src_reg != NULL);
5958         g_assert(dst_reg != NULL);
5959 
5960         /* Cross-compare names to detect typos in the keys.  */
5961         g_assert(strcmp(src_reg->name, a->src_name) == 0);
5962         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5963 
5964         /* None of the core system registers use opaque; we will.  */
5965         g_assert(src_reg->opaque == NULL);
5966 
5967         /* Create alias before redirection so we dup the right data. */
5968         if (a->new_key) {
5969             ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5970             uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
5971             bool ok;
5972 
5973             new_reg->name = a->new_name;
5974             new_reg->type |= ARM_CP_ALIAS;
5975             /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
5976             new_reg->access &= PL2_RW | PL3_RW;
5977 
5978             ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
5979             g_assert(ok);
5980         }
5981 
5982         src_reg->opaque = dst_reg;
5983         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5984         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5985         if (!src_reg->raw_readfn) {
5986             src_reg->raw_readfn = raw_read;
5987         }
5988         if (!src_reg->raw_writefn) {
5989             src_reg->raw_writefn = raw_write;
5990         }
5991         src_reg->readfn = el2_e2h_read;
5992         src_reg->writefn = el2_e2h_write;
5993     }
5994 }
5995 #endif
5996 
5997 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5998                                      bool isread)
5999 {
6000     int cur_el = arm_current_el(env);
6001 
6002     if (cur_el < 2) {
6003         uint64_t hcr = arm_hcr_el2_eff(env);
6004 
6005         if (cur_el == 0) {
6006             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6007                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6008                     return CP_ACCESS_TRAP_EL2;
6009                 }
6010             } else {
6011                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6012                     return CP_ACCESS_TRAP;
6013                 }
6014                 if (hcr & HCR_TID2) {
6015                     return CP_ACCESS_TRAP_EL2;
6016                 }
6017             }
6018         } else if (hcr & HCR_TID2) {
6019             return CP_ACCESS_TRAP_EL2;
6020         }
6021     }
6022 
6023     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6024         return CP_ACCESS_TRAP_EL2;
6025     }
6026 
6027     return CP_ACCESS_OK;
6028 }
6029 
6030 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6031                         uint64_t value)
6032 {
6033     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6034      * read via a bit in OSLSR_EL1.
6035      */
6036     int oslock;
6037 
6038     if (ri->state == ARM_CP_STATE_AA32) {
6039         oslock = (value == 0xC5ACCE55);
6040     } else {
6041         oslock = value & 1;
6042     }
6043 
6044     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6045 }
6046 
6047 static const ARMCPRegInfo debug_cp_reginfo[] = {
6048     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6049      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6050      * unlike DBGDRAR it is never accessible from EL0.
6051      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6052      * accessor.
6053      */
6054     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6055       .access = PL0_R, .accessfn = access_tdra,
6056       .type = ARM_CP_CONST, .resetvalue = 0 },
6057     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6058       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6059       .access = PL1_R, .accessfn = access_tdra,
6060       .type = ARM_CP_CONST, .resetvalue = 0 },
6061     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6062       .access = PL0_R, .accessfn = access_tdra,
6063       .type = ARM_CP_CONST, .resetvalue = 0 },
6064     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6065     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6066       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6067       .access = PL1_RW, .accessfn = access_tda,
6068       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6069       .resetvalue = 0 },
6070     /*
6071      * MDCCSR_EL0[30:29] map to EDSCR[30:29].  Simply RAZ as the external
6072      * Debug Communication Channel is not implemented.
6073      */
6074     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
6075       .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
6076       .access = PL0_R, .accessfn = access_tda,
6077       .type = ARM_CP_CONST, .resetvalue = 0 },
6078     /*
6079      * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2].  Map all bits as
6080      * it is unlikely a guest will care.
6081      * We don't implement the configurable EL0 access.
6082      */
6083     { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
6084       .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6085       .type = ARM_CP_ALIAS,
6086       .access = PL1_R, .accessfn = access_tda,
6087       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6088     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6089       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6090       .access = PL1_W, .type = ARM_CP_NO_RAW,
6091       .accessfn = access_tdosa,
6092       .writefn = oslar_write },
6093     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6094       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6095       .access = PL1_R, .resetvalue = 10,
6096       .accessfn = access_tdosa,
6097       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6098     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6099     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6100       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6101       .access = PL1_RW, .accessfn = access_tdosa,
6102       .type = ARM_CP_NOP },
6103     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6104      * implement vector catch debug events yet.
6105      */
6106     { .name = "DBGVCR",
6107       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6108       .access = PL1_RW, .accessfn = access_tda,
6109       .type = ARM_CP_NOP },
6110     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6111      * to save and restore a 32-bit guest's DBGVCR)
6112      */
6113     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6114       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6115       .access = PL2_RW, .accessfn = access_tda,
6116       .type = ARM_CP_NOP },
6117     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6118      * Channel but Linux may try to access this register. The 32-bit
6119      * alias is DBGDCCINT.
6120      */
6121     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6122       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6123       .access = PL1_RW, .accessfn = access_tda,
6124       .type = ARM_CP_NOP },
6125     REGINFO_SENTINEL
6126 };
6127 
6128 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6129     /* 64 bit access versions of the (dummy) debug registers */
6130     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6131       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6132     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6133       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6134     REGINFO_SENTINEL
6135 };
6136 
6137 /* Return the exception level to which exceptions should be taken
6138  * via SVEAccessTrap.  If an exception should be routed through
6139  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6140  * take care of raising that exception.
6141  * C.f. the ARM pseudocode function CheckSVEEnabled.
6142  */
6143 int sve_exception_el(CPUARMState *env, int el)
6144 {
6145 #ifndef CONFIG_USER_ONLY
6146     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6147 
6148     if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6149         /* Check CPACR.ZEN.  */
6150         switch (extract32(env->cp15.cpacr_el1, 16, 2)) {
6151         case 1:
6152             if (el != 0) {
6153                 break;
6154             }
6155             /* fall through */
6156         case 0:
6157         case 2:
6158             /* route_to_el2 */
6159             return hcr_el2 & HCR_TGE ? 2 : 1;
6160         }
6161 
6162         /* Check CPACR.FPEN.  */
6163         switch (extract32(env->cp15.cpacr_el1, 20, 2)) {
6164         case 1:
6165             if (el != 0) {
6166                 break;
6167             }
6168             /* fall through */
6169         case 0:
6170         case 2:
6171             return 0;
6172         }
6173     }
6174 
6175     /*
6176      * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE).
6177      */
6178     if (el <= 2) {
6179         if (hcr_el2 & HCR_E2H) {
6180             /* Check CPTR_EL2.ZEN.  */
6181             switch (extract32(env->cp15.cptr_el[2], 16, 2)) {
6182             case 1:
6183                 if (el != 0 || !(hcr_el2 & HCR_TGE)) {
6184                     break;
6185                 }
6186                 /* fall through */
6187             case 0:
6188             case 2:
6189                 return 2;
6190             }
6191 
6192             /* Check CPTR_EL2.FPEN.  */
6193             switch (extract32(env->cp15.cptr_el[2], 20, 2)) {
6194             case 1:
6195                 if (el == 2 || !(hcr_el2 & HCR_TGE)) {
6196                     break;
6197                 }
6198                 /* fall through */
6199             case 0:
6200             case 2:
6201                 return 0;
6202             }
6203         } else if (arm_is_el2_enabled(env)) {
6204             if (env->cp15.cptr_el[2] & CPTR_TZ) {
6205                 return 2;
6206             }
6207             if (env->cp15.cptr_el[2] & CPTR_TFP) {
6208                 return 0;
6209             }
6210         }
6211     }
6212 
6213     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6214     if (arm_feature(env, ARM_FEATURE_EL3)
6215         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6216         return 3;
6217     }
6218 #endif
6219     return 0;
6220 }
6221 
6222 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6223 {
6224     uint32_t end_len;
6225 
6226     start_len = MIN(start_len, ARM_MAX_VQ - 1);
6227     end_len = start_len;
6228 
6229     if (!test_bit(start_len, cpu->sve_vq_map)) {
6230         end_len = find_last_bit(cpu->sve_vq_map, start_len);
6231         assert(end_len < start_len);
6232     }
6233     return end_len;
6234 }
6235 
6236 /*
6237  * Given that SVE is enabled, return the vector length for EL.
6238  */
6239 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6240 {
6241     ARMCPU *cpu = env_archcpu(env);
6242     uint32_t zcr_len = cpu->sve_max_vq - 1;
6243 
6244     if (el <= 1 &&
6245         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6246         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6247     }
6248     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6249         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6250     }
6251     if (arm_feature(env, ARM_FEATURE_EL3)) {
6252         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6253     }
6254 
6255     return aarch64_sve_zcr_get_valid_len(cpu, zcr_len);
6256 }
6257 
6258 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6259                       uint64_t value)
6260 {
6261     int cur_el = arm_current_el(env);
6262     int old_len = sve_zcr_len_for_el(env, cur_el);
6263     int new_len;
6264 
6265     /* Bits other than [3:0] are RAZ/WI.  */
6266     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6267     raw_write(env, ri, value & 0xf);
6268 
6269     /*
6270      * Because we arrived here, we know both FP and SVE are enabled;
6271      * otherwise we would have trapped access to the ZCR_ELn register.
6272      */
6273     new_len = sve_zcr_len_for_el(env, cur_el);
6274     if (new_len < old_len) {
6275         aarch64_sve_narrow_vq(env, new_len + 1);
6276     }
6277 }
6278 
6279 static const ARMCPRegInfo zcr_el1_reginfo = {
6280     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6281     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6282     .access = PL1_RW, .type = ARM_CP_SVE,
6283     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6284     .writefn = zcr_write, .raw_writefn = raw_write
6285 };
6286 
6287 static const ARMCPRegInfo zcr_el2_reginfo = {
6288     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6289     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6290     .access = PL2_RW, .type = ARM_CP_SVE,
6291     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6292     .writefn = zcr_write, .raw_writefn = raw_write
6293 };
6294 
6295 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6296     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6297     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6298     .access = PL2_RW, .type = ARM_CP_SVE,
6299     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6300 };
6301 
6302 static const ARMCPRegInfo zcr_el3_reginfo = {
6303     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6304     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6305     .access = PL3_RW, .type = ARM_CP_SVE,
6306     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6307     .writefn = zcr_write, .raw_writefn = raw_write
6308 };
6309 
6310 void hw_watchpoint_update(ARMCPU *cpu, int n)
6311 {
6312     CPUARMState *env = &cpu->env;
6313     vaddr len = 0;
6314     vaddr wvr = env->cp15.dbgwvr[n];
6315     uint64_t wcr = env->cp15.dbgwcr[n];
6316     int mask;
6317     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6318 
6319     if (env->cpu_watchpoint[n]) {
6320         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6321         env->cpu_watchpoint[n] = NULL;
6322     }
6323 
6324     if (!FIELD_EX64(wcr, DBGWCR, E)) {
6325         /* E bit clear : watchpoint disabled */
6326         return;
6327     }
6328 
6329     switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
6330     case 0:
6331         /* LSC 00 is reserved and must behave as if the wp is disabled */
6332         return;
6333     case 1:
6334         flags |= BP_MEM_READ;
6335         break;
6336     case 2:
6337         flags |= BP_MEM_WRITE;
6338         break;
6339     case 3:
6340         flags |= BP_MEM_ACCESS;
6341         break;
6342     }
6343 
6344     /* Attempts to use both MASK and BAS fields simultaneously are
6345      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6346      * thus generating a watchpoint for every byte in the masked region.
6347      */
6348     mask = FIELD_EX64(wcr, DBGWCR, MASK);
6349     if (mask == 1 || mask == 2) {
6350         /* Reserved values of MASK; we must act as if the mask value was
6351          * some non-reserved value, or as if the watchpoint were disabled.
6352          * We choose the latter.
6353          */
6354         return;
6355     } else if (mask) {
6356         /* Watchpoint covers an aligned area up to 2GB in size */
6357         len = 1ULL << mask;
6358         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6359          * whether the watchpoint fires when the unmasked bits match; we opt
6360          * to generate the exceptions.
6361          */
6362         wvr &= ~(len - 1);
6363     } else {
6364         /* Watchpoint covers bytes defined by the byte address select bits */
6365         int bas = FIELD_EX64(wcr, DBGWCR, BAS);
6366         int basstart;
6367 
6368         if (extract64(wvr, 2, 1)) {
6369             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6370              * ignored, and BAS[3:0] define which bytes to watch.
6371              */
6372             bas &= 0xf;
6373         }
6374 
6375         if (bas == 0) {
6376             /* This must act as if the watchpoint is disabled */
6377             return;
6378         }
6379 
6380         /* The BAS bits are supposed to be programmed to indicate a contiguous
6381          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6382          * we fire for each byte in the word/doubleword addressed by the WVR.
6383          * We choose to ignore any non-zero bits after the first range of 1s.
6384          */
6385         basstart = ctz32(bas);
6386         len = cto32(bas >> basstart);
6387         wvr += basstart;
6388     }
6389 
6390     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6391                           &env->cpu_watchpoint[n]);
6392 }
6393 
6394 void hw_watchpoint_update_all(ARMCPU *cpu)
6395 {
6396     int i;
6397     CPUARMState *env = &cpu->env;
6398 
6399     /* Completely clear out existing QEMU watchpoints and our array, to
6400      * avoid possible stale entries following migration load.
6401      */
6402     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6403     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6404 
6405     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6406         hw_watchpoint_update(cpu, i);
6407     }
6408 }
6409 
6410 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6411                          uint64_t value)
6412 {
6413     ARMCPU *cpu = env_archcpu(env);
6414     int i = ri->crm;
6415 
6416     /*
6417      * Bits [1:0] are RES0.
6418      *
6419      * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA)
6420      * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if
6421      * they contain the value written.  It is CONSTRAINED UNPREDICTABLE
6422      * whether the RESS bits are ignored when comparing an address.
6423      *
6424      * Therefore we are allowed to compare the entire register, which lets
6425      * us avoid considering whether or not FEAT_LVA is actually enabled.
6426      */
6427     value &= ~3ULL;
6428 
6429     raw_write(env, ri, value);
6430     hw_watchpoint_update(cpu, i);
6431 }
6432 
6433 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6434                          uint64_t value)
6435 {
6436     ARMCPU *cpu = env_archcpu(env);
6437     int i = ri->crm;
6438 
6439     raw_write(env, ri, value);
6440     hw_watchpoint_update(cpu, i);
6441 }
6442 
6443 void hw_breakpoint_update(ARMCPU *cpu, int n)
6444 {
6445     CPUARMState *env = &cpu->env;
6446     uint64_t bvr = env->cp15.dbgbvr[n];
6447     uint64_t bcr = env->cp15.dbgbcr[n];
6448     vaddr addr;
6449     int bt;
6450     int flags = BP_CPU;
6451 
6452     if (env->cpu_breakpoint[n]) {
6453         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6454         env->cpu_breakpoint[n] = NULL;
6455     }
6456 
6457     if (!extract64(bcr, 0, 1)) {
6458         /* E bit clear : watchpoint disabled */
6459         return;
6460     }
6461 
6462     bt = extract64(bcr, 20, 4);
6463 
6464     switch (bt) {
6465     case 4: /* unlinked address mismatch (reserved if AArch64) */
6466     case 5: /* linked address mismatch (reserved if AArch64) */
6467         qemu_log_mask(LOG_UNIMP,
6468                       "arm: address mismatch breakpoint types not implemented\n");
6469         return;
6470     case 0: /* unlinked address match */
6471     case 1: /* linked address match */
6472     {
6473         /*
6474          * Bits [1:0] are RES0.
6475          *
6476          * It is IMPLEMENTATION DEFINED whether bits [63:49]
6477          * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
6478          * of the VA field ([48] or [52] for FEAT_LVA), or whether the
6479          * value is read as written.  It is CONSTRAINED UNPREDICTABLE
6480          * whether the RESS bits are ignored when comparing an address.
6481          * Therefore we are allowed to compare the entire register, which
6482          * lets us avoid considering whether FEAT_LVA is actually enabled.
6483          *
6484          * The BAS field is used to allow setting breakpoints on 16-bit
6485          * wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6486          * a bp will fire if the addresses covered by the bp and the addresses
6487          * covered by the insn overlap but the insn doesn't start at the
6488          * start of the bp address range. We choose to require the insn and
6489          * the bp to have the same address. The constraints on writing to
6490          * BAS enforced in dbgbcr_write mean we have only four cases:
6491          *  0b0000  => no breakpoint
6492          *  0b0011  => breakpoint on addr
6493          *  0b1100  => breakpoint on addr + 2
6494          *  0b1111  => breakpoint on addr
6495          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6496          */
6497         int bas = extract64(bcr, 5, 4);
6498         addr = bvr & ~3ULL;
6499         if (bas == 0) {
6500             return;
6501         }
6502         if (bas == 0xc) {
6503             addr += 2;
6504         }
6505         break;
6506     }
6507     case 2: /* unlinked context ID match */
6508     case 8: /* unlinked VMID match (reserved if no EL2) */
6509     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6510         qemu_log_mask(LOG_UNIMP,
6511                       "arm: unlinked context breakpoint types not implemented\n");
6512         return;
6513     case 9: /* linked VMID match (reserved if no EL2) */
6514     case 11: /* linked context ID and VMID match (reserved if no EL2) */
6515     case 3: /* linked context ID match */
6516     default:
6517         /* We must generate no events for Linked context matches (unless
6518          * they are linked to by some other bp/wp, which is handled in
6519          * updates for the linking bp/wp). We choose to also generate no events
6520          * for reserved values.
6521          */
6522         return;
6523     }
6524 
6525     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6526 }
6527 
6528 void hw_breakpoint_update_all(ARMCPU *cpu)
6529 {
6530     int i;
6531     CPUARMState *env = &cpu->env;
6532 
6533     /* Completely clear out existing QEMU breakpoints and our array, to
6534      * avoid possible stale entries following migration load.
6535      */
6536     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6537     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6538 
6539     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6540         hw_breakpoint_update(cpu, i);
6541     }
6542 }
6543 
6544 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6545                          uint64_t value)
6546 {
6547     ARMCPU *cpu = env_archcpu(env);
6548     int i = ri->crm;
6549 
6550     raw_write(env, ri, value);
6551     hw_breakpoint_update(cpu, i);
6552 }
6553 
6554 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6555                          uint64_t value)
6556 {
6557     ARMCPU *cpu = env_archcpu(env);
6558     int i = ri->crm;
6559 
6560     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6561      * copy of BAS[0].
6562      */
6563     value = deposit64(value, 6, 1, extract64(value, 5, 1));
6564     value = deposit64(value, 8, 1, extract64(value, 7, 1));
6565 
6566     raw_write(env, ri, value);
6567     hw_breakpoint_update(cpu, i);
6568 }
6569 
6570 static void define_debug_regs(ARMCPU *cpu)
6571 {
6572     /* Define v7 and v8 architectural debug registers.
6573      * These are just dummy implementations for now.
6574      */
6575     int i;
6576     int wrps, brps, ctx_cmps;
6577 
6578     /*
6579      * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
6580      * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
6581      * the register must not exist for this cpu.
6582      */
6583     if (cpu->isar.dbgdidr != 0) {
6584         ARMCPRegInfo dbgdidr = {
6585             .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
6586             .opc1 = 0, .opc2 = 0,
6587             .access = PL0_R, .accessfn = access_tda,
6588             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6589         };
6590         define_one_arm_cp_reg(cpu, &dbgdidr);
6591     }
6592 
6593     /* Note that all these register fields hold "number of Xs minus 1". */
6594     brps = arm_num_brps(cpu);
6595     wrps = arm_num_wrps(cpu);
6596     ctx_cmps = arm_num_ctx_cmps(cpu);
6597 
6598     assert(ctx_cmps <= brps);
6599 
6600     define_arm_cp_regs(cpu, debug_cp_reginfo);
6601 
6602     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6603         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6604     }
6605 
6606     for (i = 0; i < brps; i++) {
6607         ARMCPRegInfo dbgregs[] = {
6608             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6609               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6610               .access = PL1_RW, .accessfn = access_tda,
6611               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6612               .writefn = dbgbvr_write, .raw_writefn = raw_write
6613             },
6614             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6615               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6616               .access = PL1_RW, .accessfn = access_tda,
6617               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6618               .writefn = dbgbcr_write, .raw_writefn = raw_write
6619             },
6620             REGINFO_SENTINEL
6621         };
6622         define_arm_cp_regs(cpu, dbgregs);
6623     }
6624 
6625     for (i = 0; i < wrps; i++) {
6626         ARMCPRegInfo dbgregs[] = {
6627             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6628               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6629               .access = PL1_RW, .accessfn = access_tda,
6630               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6631               .writefn = dbgwvr_write, .raw_writefn = raw_write
6632             },
6633             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6634               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6635               .access = PL1_RW, .accessfn = access_tda,
6636               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6637               .writefn = dbgwcr_write, .raw_writefn = raw_write
6638             },
6639             REGINFO_SENTINEL
6640         };
6641         define_arm_cp_regs(cpu, dbgregs);
6642     }
6643 }
6644 
6645 static void define_pmu_regs(ARMCPU *cpu)
6646 {
6647     /*
6648      * v7 performance monitor control register: same implementor
6649      * field as main ID register, and we implement four counters in
6650      * addition to the cycle count register.
6651      */
6652     unsigned int i, pmcrn = PMCR_NUM_COUNTERS;
6653     ARMCPRegInfo pmcr = {
6654         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6655         .access = PL0_RW,
6656         .type = ARM_CP_IO | ARM_CP_ALIAS,
6657         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6658         .accessfn = pmreg_access, .writefn = pmcr_write,
6659         .raw_writefn = raw_write,
6660     };
6661     ARMCPRegInfo pmcr64 = {
6662         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6663         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6664         .access = PL0_RW, .accessfn = pmreg_access,
6665         .type = ARM_CP_IO,
6666         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6667         .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6668                       PMCRLC,
6669         .writefn = pmcr_write, .raw_writefn = raw_write,
6670     };
6671     define_one_arm_cp_reg(cpu, &pmcr);
6672     define_one_arm_cp_reg(cpu, &pmcr64);
6673     for (i = 0; i < pmcrn; i++) {
6674         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6675         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6676         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6677         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6678         ARMCPRegInfo pmev_regs[] = {
6679             { .name = pmevcntr_name, .cp = 15, .crn = 14,
6680               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6681               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6682               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6683               .accessfn = pmreg_access },
6684             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6685               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6686               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6687               .type = ARM_CP_IO,
6688               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6689               .raw_readfn = pmevcntr_rawread,
6690               .raw_writefn = pmevcntr_rawwrite },
6691             { .name = pmevtyper_name, .cp = 15, .crn = 14,
6692               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6693               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6694               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6695               .accessfn = pmreg_access },
6696             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6697               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6698               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6699               .type = ARM_CP_IO,
6700               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6701               .raw_writefn = pmevtyper_rawwrite },
6702             REGINFO_SENTINEL
6703         };
6704         define_arm_cp_regs(cpu, pmev_regs);
6705         g_free(pmevcntr_name);
6706         g_free(pmevcntr_el0_name);
6707         g_free(pmevtyper_name);
6708         g_free(pmevtyper_el0_name);
6709     }
6710     if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6711         ARMCPRegInfo v81_pmu_regs[] = {
6712             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6713               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6714               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6715               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6716             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6717               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6718               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6719               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6720             REGINFO_SENTINEL
6721         };
6722         define_arm_cp_regs(cpu, v81_pmu_regs);
6723     }
6724     if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6725         static const ARMCPRegInfo v84_pmmir = {
6726             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6727             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6728             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6729             .resetvalue = 0
6730         };
6731         define_one_arm_cp_reg(cpu, &v84_pmmir);
6732     }
6733 }
6734 
6735 /* We don't know until after realize whether there's a GICv3
6736  * attached, and that is what registers the gicv3 sysregs.
6737  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6738  * at runtime.
6739  */
6740 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6741 {
6742     ARMCPU *cpu = env_archcpu(env);
6743     uint64_t pfr1 = cpu->isar.id_pfr1;
6744 
6745     if (env->gicv3state) {
6746         pfr1 |= 1 << 28;
6747     }
6748     return pfr1;
6749 }
6750 
6751 #ifndef CONFIG_USER_ONLY
6752 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6753 {
6754     ARMCPU *cpu = env_archcpu(env);
6755     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6756 
6757     if (env->gicv3state) {
6758         pfr0 |= 1 << 24;
6759     }
6760     return pfr0;
6761 }
6762 #endif
6763 
6764 /* Shared logic between LORID and the rest of the LOR* registers.
6765  * Secure state exclusion has already been dealt with.
6766  */
6767 static CPAccessResult access_lor_ns(CPUARMState *env,
6768                                     const ARMCPRegInfo *ri, bool isread)
6769 {
6770     int el = arm_current_el(env);
6771 
6772     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6773         return CP_ACCESS_TRAP_EL2;
6774     }
6775     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6776         return CP_ACCESS_TRAP_EL3;
6777     }
6778     return CP_ACCESS_OK;
6779 }
6780 
6781 static CPAccessResult access_lor_other(CPUARMState *env,
6782                                        const ARMCPRegInfo *ri, bool isread)
6783 {
6784     if (arm_is_secure_below_el3(env)) {
6785         /* Access denied in secure mode.  */
6786         return CP_ACCESS_TRAP;
6787     }
6788     return access_lor_ns(env, ri, isread);
6789 }
6790 
6791 /*
6792  * A trivial implementation of ARMv8.1-LOR leaves all of these
6793  * registers fixed at 0, which indicates that there are zero
6794  * supported Limited Ordering regions.
6795  */
6796 static const ARMCPRegInfo lor_reginfo[] = {
6797     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6798       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6799       .access = PL1_RW, .accessfn = access_lor_other,
6800       .type = ARM_CP_CONST, .resetvalue = 0 },
6801     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6802       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6803       .access = PL1_RW, .accessfn = access_lor_other,
6804       .type = ARM_CP_CONST, .resetvalue = 0 },
6805     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6806       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6807       .access = PL1_RW, .accessfn = access_lor_other,
6808       .type = ARM_CP_CONST, .resetvalue = 0 },
6809     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6810       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6811       .access = PL1_RW, .accessfn = access_lor_other,
6812       .type = ARM_CP_CONST, .resetvalue = 0 },
6813     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6814       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6815       .access = PL1_R, .accessfn = access_lor_ns,
6816       .type = ARM_CP_CONST, .resetvalue = 0 },
6817     REGINFO_SENTINEL
6818 };
6819 
6820 #ifdef TARGET_AARCH64
6821 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6822                                    bool isread)
6823 {
6824     int el = arm_current_el(env);
6825 
6826     if (el < 2 &&
6827         arm_feature(env, ARM_FEATURE_EL2) &&
6828         !(arm_hcr_el2_eff(env) & HCR_APK)) {
6829         return CP_ACCESS_TRAP_EL2;
6830     }
6831     if (el < 3 &&
6832         arm_feature(env, ARM_FEATURE_EL3) &&
6833         !(env->cp15.scr_el3 & SCR_APK)) {
6834         return CP_ACCESS_TRAP_EL3;
6835     }
6836     return CP_ACCESS_OK;
6837 }
6838 
6839 static const ARMCPRegInfo pauth_reginfo[] = {
6840     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6841       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6842       .access = PL1_RW, .accessfn = access_pauth,
6843       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6844     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6845       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6846       .access = PL1_RW, .accessfn = access_pauth,
6847       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6848     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6849       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6850       .access = PL1_RW, .accessfn = access_pauth,
6851       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6852     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6853       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6854       .access = PL1_RW, .accessfn = access_pauth,
6855       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6856     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6857       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6858       .access = PL1_RW, .accessfn = access_pauth,
6859       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6860     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6861       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6862       .access = PL1_RW, .accessfn = access_pauth,
6863       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6864     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6865       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6866       .access = PL1_RW, .accessfn = access_pauth,
6867       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6868     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6869       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6870       .access = PL1_RW, .accessfn = access_pauth,
6871       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6872     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6873       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6874       .access = PL1_RW, .accessfn = access_pauth,
6875       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6876     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6877       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6878       .access = PL1_RW, .accessfn = access_pauth,
6879       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6880     REGINFO_SENTINEL
6881 };
6882 
6883 static const ARMCPRegInfo tlbirange_reginfo[] = {
6884     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
6885       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
6886       .access = PL1_W, .type = ARM_CP_NO_RAW,
6887       .writefn = tlbi_aa64_rvae1is_write },
6888     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
6889       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
6890       .access = PL1_W, .type = ARM_CP_NO_RAW,
6891       .writefn = tlbi_aa64_rvae1is_write },
6892    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
6893       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
6894       .access = PL1_W, .type = ARM_CP_NO_RAW,
6895       .writefn = tlbi_aa64_rvae1is_write },
6896     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
6897       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
6898       .access = PL1_W, .type = ARM_CP_NO_RAW,
6899       .writefn = tlbi_aa64_rvae1is_write },
6900     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
6901       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
6902       .access = PL1_W, .type = ARM_CP_NO_RAW,
6903       .writefn = tlbi_aa64_rvae1is_write },
6904     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
6905       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
6906       .access = PL1_W, .type = ARM_CP_NO_RAW,
6907       .writefn = tlbi_aa64_rvae1is_write },
6908    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
6909       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
6910       .access = PL1_W, .type = ARM_CP_NO_RAW,
6911       .writefn = tlbi_aa64_rvae1is_write },
6912     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
6913       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
6914       .access = PL1_W, .type = ARM_CP_NO_RAW,
6915       .writefn = tlbi_aa64_rvae1is_write },
6916     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
6917       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
6918       .access = PL1_W, .type = ARM_CP_NO_RAW,
6919       .writefn = tlbi_aa64_rvae1_write },
6920     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
6921       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
6922       .access = PL1_W, .type = ARM_CP_NO_RAW,
6923       .writefn = tlbi_aa64_rvae1_write },
6924    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
6925       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
6926       .access = PL1_W, .type = ARM_CP_NO_RAW,
6927       .writefn = tlbi_aa64_rvae1_write },
6928     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
6929       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
6930       .access = PL1_W, .type = ARM_CP_NO_RAW,
6931       .writefn = tlbi_aa64_rvae1_write },
6932     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
6933       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
6934       .access = PL2_W, .type = ARM_CP_NOP },
6935     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
6936       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
6937       .access = PL2_W, .type = ARM_CP_NOP },
6938     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
6939       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
6940       .access = PL2_W, .type = ARM_CP_NO_RAW,
6941       .writefn = tlbi_aa64_rvae2is_write },
6942    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
6943       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
6944       .access = PL2_W, .type = ARM_CP_NO_RAW,
6945       .writefn = tlbi_aa64_rvae2is_write },
6946     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
6947       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
6948       .access = PL2_W, .type = ARM_CP_NOP },
6949    { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
6950       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
6951       .access = PL2_W, .type = ARM_CP_NOP },
6952    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
6953       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
6954       .access = PL2_W, .type = ARM_CP_NO_RAW,
6955       .writefn = tlbi_aa64_rvae2is_write },
6956    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
6957       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
6958       .access = PL2_W, .type = ARM_CP_NO_RAW,
6959       .writefn = tlbi_aa64_rvae2is_write },
6960     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
6961       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
6962       .access = PL2_W, .type = ARM_CP_NO_RAW,
6963       .writefn = tlbi_aa64_rvae2_write },
6964    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
6965       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
6966       .access = PL2_W, .type = ARM_CP_NO_RAW,
6967       .writefn = tlbi_aa64_rvae2_write },
6968    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
6969       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
6970       .access = PL3_W, .type = ARM_CP_NO_RAW,
6971       .writefn = tlbi_aa64_rvae3is_write },
6972    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
6973       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
6974       .access = PL3_W, .type = ARM_CP_NO_RAW,
6975       .writefn = tlbi_aa64_rvae3is_write },
6976    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
6977       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
6978       .access = PL3_W, .type = ARM_CP_NO_RAW,
6979       .writefn = tlbi_aa64_rvae3is_write },
6980    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
6981       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
6982       .access = PL3_W, .type = ARM_CP_NO_RAW,
6983       .writefn = tlbi_aa64_rvae3is_write },
6984    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
6985       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
6986       .access = PL3_W, .type = ARM_CP_NO_RAW,
6987       .writefn = tlbi_aa64_rvae3_write },
6988    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
6989       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
6990       .access = PL3_W, .type = ARM_CP_NO_RAW,
6991       .writefn = tlbi_aa64_rvae3_write },
6992     REGINFO_SENTINEL
6993 };
6994 
6995 static const ARMCPRegInfo tlbios_reginfo[] = {
6996     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
6997       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
6998       .access = PL1_W, .type = ARM_CP_NO_RAW,
6999       .writefn = tlbi_aa64_vmalle1is_write },
7000     { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7001       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7002       .access = PL1_W, .type = ARM_CP_NO_RAW,
7003       .writefn = tlbi_aa64_vae1is_write },
7004     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7005       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7006       .access = PL1_W, .type = ARM_CP_NO_RAW,
7007       .writefn = tlbi_aa64_vmalle1is_write },
7008     { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7009       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7010       .access = PL1_W, .type = ARM_CP_NO_RAW,
7011       .writefn = tlbi_aa64_vae1is_write },
7012     { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7013       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7014       .access = PL1_W, .type = ARM_CP_NO_RAW,
7015       .writefn = tlbi_aa64_vae1is_write },
7016     { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7017       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7018       .access = PL1_W, .type = ARM_CP_NO_RAW,
7019       .writefn = tlbi_aa64_vae1is_write },
7020     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7021       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7022       .access = PL2_W, .type = ARM_CP_NO_RAW,
7023       .writefn = tlbi_aa64_alle2is_write },
7024     { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7025       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7026       .access = PL2_W, .type = ARM_CP_NO_RAW,
7027       .writefn = tlbi_aa64_vae2is_write },
7028    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7029       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7030       .access = PL2_W, .type = ARM_CP_NO_RAW,
7031       .writefn = tlbi_aa64_alle1is_write },
7032     { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7033       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7034       .access = PL2_W, .type = ARM_CP_NO_RAW,
7035       .writefn = tlbi_aa64_vae2is_write },
7036     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7037       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7038       .access = PL2_W, .type = ARM_CP_NO_RAW,
7039       .writefn = tlbi_aa64_alle1is_write },
7040     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7041       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7042       .access = PL2_W, .type = ARM_CP_NOP },
7043     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7044       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7045       .access = PL2_W, .type = ARM_CP_NOP },
7046     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7047       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7048       .access = PL2_W, .type = ARM_CP_NOP },
7049     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7050       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7051       .access = PL2_W, .type = ARM_CP_NOP },
7052     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7053       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7054       .access = PL3_W, .type = ARM_CP_NO_RAW,
7055       .writefn = tlbi_aa64_alle3is_write },
7056     { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7057       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7058       .access = PL3_W, .type = ARM_CP_NO_RAW,
7059       .writefn = tlbi_aa64_vae3is_write },
7060     { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7061       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7062       .access = PL3_W, .type = ARM_CP_NO_RAW,
7063       .writefn = tlbi_aa64_vae3is_write },
7064     REGINFO_SENTINEL
7065 };
7066 
7067 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7068 {
7069     Error *err = NULL;
7070     uint64_t ret;
7071 
7072     /* Success sets NZCV = 0000.  */
7073     env->NF = env->CF = env->VF = 0, env->ZF = 1;
7074 
7075     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7076         /*
7077          * ??? Failed, for unknown reasons in the crypto subsystem.
7078          * The best we can do is log the reason and return the
7079          * timed-out indication to the guest.  There is no reason
7080          * we know to expect this failure to be transitory, so the
7081          * guest may well hang retrying the operation.
7082          */
7083         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7084                       ri->name, error_get_pretty(err));
7085         error_free(err);
7086 
7087         env->ZF = 0; /* NZCF = 0100 */
7088         return 0;
7089     }
7090     return ret;
7091 }
7092 
7093 /* We do not support re-seeding, so the two registers operate the same.  */
7094 static const ARMCPRegInfo rndr_reginfo[] = {
7095     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7096       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7097       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7098       .access = PL0_R, .readfn = rndr_readfn },
7099     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7100       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7101       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7102       .access = PL0_R, .readfn = rndr_readfn },
7103     REGINFO_SENTINEL
7104 };
7105 
7106 #ifndef CONFIG_USER_ONLY
7107 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7108                           uint64_t value)
7109 {
7110     ARMCPU *cpu = env_archcpu(env);
7111     /* CTR_EL0 System register -> DminLine, bits [19:16] */
7112     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7113     uint64_t vaddr_in = (uint64_t) value;
7114     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7115     void *haddr;
7116     int mem_idx = cpu_mmu_index(env, false);
7117 
7118     /* This won't be crossing page boundaries */
7119     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7120     if (haddr) {
7121 
7122         ram_addr_t offset;
7123         MemoryRegion *mr;
7124 
7125         /* RCU lock is already being held */
7126         mr = memory_region_from_host(haddr, &offset);
7127 
7128         if (mr) {
7129             memory_region_writeback(mr, offset, dline_size);
7130         }
7131     }
7132 }
7133 
7134 static const ARMCPRegInfo dcpop_reg[] = {
7135     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7136       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7137       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7138       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7139     REGINFO_SENTINEL
7140 };
7141 
7142 static const ARMCPRegInfo dcpodp_reg[] = {
7143     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7144       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7145       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7146       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7147     REGINFO_SENTINEL
7148 };
7149 #endif /*CONFIG_USER_ONLY*/
7150 
7151 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7152                                        bool isread)
7153 {
7154     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7155         return CP_ACCESS_TRAP_EL2;
7156     }
7157 
7158     return CP_ACCESS_OK;
7159 }
7160 
7161 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7162                                  bool isread)
7163 {
7164     int el = arm_current_el(env);
7165 
7166     if (el < 2 && arm_is_el2_enabled(env)) {
7167         uint64_t hcr = arm_hcr_el2_eff(env);
7168         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7169             return CP_ACCESS_TRAP_EL2;
7170         }
7171     }
7172     if (el < 3 &&
7173         arm_feature(env, ARM_FEATURE_EL3) &&
7174         !(env->cp15.scr_el3 & SCR_ATA)) {
7175         return CP_ACCESS_TRAP_EL3;
7176     }
7177     return CP_ACCESS_OK;
7178 }
7179 
7180 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7181 {
7182     return env->pstate & PSTATE_TCO;
7183 }
7184 
7185 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7186 {
7187     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7188 }
7189 
7190 static const ARMCPRegInfo mte_reginfo[] = {
7191     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7192       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7193       .access = PL1_RW, .accessfn = access_mte,
7194       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7195     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7196       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7197       .access = PL1_RW, .accessfn = access_mte,
7198       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7199     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7200       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7201       .access = PL2_RW, .accessfn = access_mte,
7202       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7203     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7204       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7205       .access = PL3_RW,
7206       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7207     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7208       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7209       .access = PL1_RW, .accessfn = access_mte,
7210       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7211     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7212       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7213       .access = PL1_RW, .accessfn = access_mte,
7214       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7215     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7216       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7217       .access = PL1_R, .accessfn = access_aa64_tid5,
7218       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7219     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7220       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7221       .type = ARM_CP_NO_RAW,
7222       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7223     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7224       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7225       .type = ARM_CP_NOP, .access = PL1_W,
7226       .accessfn = aa64_cacheop_poc_access },
7227     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7228       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7229       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7230     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7231       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7232       .type = ARM_CP_NOP, .access = PL1_W,
7233       .accessfn = aa64_cacheop_poc_access },
7234     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7235       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7236       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7237     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7238       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7239       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7240     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7241       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7242       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7243     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7244       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7245       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7246     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7247       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7248       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7249     REGINFO_SENTINEL
7250 };
7251 
7252 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7253     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7254       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7255       .type = ARM_CP_CONST, .access = PL0_RW, },
7256     REGINFO_SENTINEL
7257 };
7258 
7259 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7260     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7261       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7262       .type = ARM_CP_NOP, .access = PL0_W,
7263       .accessfn = aa64_cacheop_poc_access },
7264     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7265       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7266       .type = ARM_CP_NOP, .access = PL0_W,
7267       .accessfn = aa64_cacheop_poc_access },
7268     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7269       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7270       .type = ARM_CP_NOP, .access = PL0_W,
7271       .accessfn = aa64_cacheop_poc_access },
7272     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7273       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7274       .type = ARM_CP_NOP, .access = PL0_W,
7275       .accessfn = aa64_cacheop_poc_access },
7276     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7277       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7278       .type = ARM_CP_NOP, .access = PL0_W,
7279       .accessfn = aa64_cacheop_poc_access },
7280     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7281       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7282       .type = ARM_CP_NOP, .access = PL0_W,
7283       .accessfn = aa64_cacheop_poc_access },
7284     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7285       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7286       .type = ARM_CP_NOP, .access = PL0_W,
7287       .accessfn = aa64_cacheop_poc_access },
7288     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7289       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7290       .type = ARM_CP_NOP, .access = PL0_W,
7291       .accessfn = aa64_cacheop_poc_access },
7292     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7293       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7294       .access = PL0_W, .type = ARM_CP_DC_GVA,
7295 #ifndef CONFIG_USER_ONLY
7296       /* Avoid overhead of an access check that always passes in user-mode */
7297       .accessfn = aa64_zva_access,
7298 #endif
7299     },
7300     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7301       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7302       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7303 #ifndef CONFIG_USER_ONLY
7304       /* Avoid overhead of an access check that always passes in user-mode */
7305       .accessfn = aa64_zva_access,
7306 #endif
7307     },
7308     REGINFO_SENTINEL
7309 };
7310 
7311 #endif
7312 
7313 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7314                                      bool isread)
7315 {
7316     int el = arm_current_el(env);
7317 
7318     if (el == 0) {
7319         uint64_t sctlr = arm_sctlr(env, el);
7320         if (!(sctlr & SCTLR_EnRCTX)) {
7321             return CP_ACCESS_TRAP;
7322         }
7323     } else if (el == 1) {
7324         uint64_t hcr = arm_hcr_el2_eff(env);
7325         if (hcr & HCR_NV) {
7326             return CP_ACCESS_TRAP_EL2;
7327         }
7328     }
7329     return CP_ACCESS_OK;
7330 }
7331 
7332 static const ARMCPRegInfo predinv_reginfo[] = {
7333     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7334       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7335       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7336     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7337       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7338       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7339     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7340       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7341       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7342     /*
7343      * Note the AArch32 opcodes have a different OPC1.
7344      */
7345     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7346       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7347       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7348     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7349       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7350       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7351     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7352       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7353       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7354     REGINFO_SENTINEL
7355 };
7356 
7357 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7358 {
7359     /* Read the high 32 bits of the current CCSIDR */
7360     return extract64(ccsidr_read(env, ri), 32, 32);
7361 }
7362 
7363 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7364     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7365       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7366       .access = PL1_R,
7367       .accessfn = access_aa64_tid2,
7368       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7369     REGINFO_SENTINEL
7370 };
7371 
7372 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7373                                        bool isread)
7374 {
7375     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7376         return CP_ACCESS_TRAP_EL2;
7377     }
7378 
7379     return CP_ACCESS_OK;
7380 }
7381 
7382 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7383                                        bool isread)
7384 {
7385     if (arm_feature(env, ARM_FEATURE_V8)) {
7386         return access_aa64_tid3(env, ri, isread);
7387     }
7388 
7389     return CP_ACCESS_OK;
7390 }
7391 
7392 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7393                                      bool isread)
7394 {
7395     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7396         return CP_ACCESS_TRAP_EL2;
7397     }
7398 
7399     return CP_ACCESS_OK;
7400 }
7401 
7402 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7403                                         const ARMCPRegInfo *ri, bool isread)
7404 {
7405     /*
7406      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7407      * in v7A, not in v8A.
7408      */
7409     if (!arm_feature(env, ARM_FEATURE_V8) &&
7410         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7411         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7412         return CP_ACCESS_TRAP_EL2;
7413     }
7414     return CP_ACCESS_OK;
7415 }
7416 
7417 static const ARMCPRegInfo jazelle_regs[] = {
7418     { .name = "JIDR",
7419       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7420       .access = PL1_R, .accessfn = access_jazelle,
7421       .type = ARM_CP_CONST, .resetvalue = 0 },
7422     { .name = "JOSCR",
7423       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7424       .accessfn = access_joscr_jmcr,
7425       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7426     { .name = "JMCR",
7427       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7428       .accessfn = access_joscr_jmcr,
7429       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7430     REGINFO_SENTINEL
7431 };
7432 
7433 static const ARMCPRegInfo vhe_reginfo[] = {
7434     { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7435       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7436       .access = PL2_RW,
7437       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7438     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7439       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7440       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7441       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7442 #ifndef CONFIG_USER_ONLY
7443     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7444       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7445       .fieldoffset =
7446         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7447       .type = ARM_CP_IO, .access = PL2_RW,
7448       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7449     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7450       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7451       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7452       .resetfn = gt_hv_timer_reset,
7453       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7454     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7455       .type = ARM_CP_IO,
7456       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7457       .access = PL2_RW,
7458       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7459       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7460     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7461       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7462       .type = ARM_CP_IO | ARM_CP_ALIAS,
7463       .access = PL2_RW, .accessfn = e2h_access,
7464       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7465       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7466     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7467       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7468       .type = ARM_CP_IO | ARM_CP_ALIAS,
7469       .access = PL2_RW, .accessfn = e2h_access,
7470       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7471       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7472     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7473       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7474       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7475       .access = PL2_RW, .accessfn = e2h_access,
7476       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7477     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7478       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7479       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7480       .access = PL2_RW, .accessfn = e2h_access,
7481       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7482     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7483       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7484       .type = ARM_CP_IO | ARM_CP_ALIAS,
7485       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7486       .access = PL2_RW, .accessfn = e2h_access,
7487       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7488     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7489       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7490       .type = ARM_CP_IO | ARM_CP_ALIAS,
7491       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7492       .access = PL2_RW, .accessfn = e2h_access,
7493       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7494 #endif
7495     REGINFO_SENTINEL
7496 };
7497 
7498 #ifndef CONFIG_USER_ONLY
7499 static const ARMCPRegInfo ats1e1_reginfo[] = {
7500     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7501       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7502       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7503       .writefn = ats_write64 },
7504     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7505       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7506       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7507       .writefn = ats_write64 },
7508     REGINFO_SENTINEL
7509 };
7510 
7511 static const ARMCPRegInfo ats1cp_reginfo[] = {
7512     { .name = "ATS1CPRP",
7513       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7514       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7515       .writefn = ats_write },
7516     { .name = "ATS1CPWP",
7517       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7518       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7519       .writefn = ats_write },
7520     REGINFO_SENTINEL
7521 };
7522 #endif
7523 
7524 /*
7525  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7526  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7527  * is non-zero, which is never for ARMv7, optionally in ARMv8
7528  * and mandatorily for ARMv8.2 and up.
7529  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7530  * implementation is RAZ/WI we can ignore this detail, as we
7531  * do for ACTLR.
7532  */
7533 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7534     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7535       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7536       .access = PL1_RW, .accessfn = access_tacr,
7537       .type = ARM_CP_CONST, .resetvalue = 0 },
7538     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7539       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7540       .access = PL2_RW, .type = ARM_CP_CONST,
7541       .resetvalue = 0 },
7542     REGINFO_SENTINEL
7543 };
7544 
7545 void register_cp_regs_for_features(ARMCPU *cpu)
7546 {
7547     /* Register all the coprocessor registers based on feature bits */
7548     CPUARMState *env = &cpu->env;
7549     if (arm_feature(env, ARM_FEATURE_M)) {
7550         /* M profile has no coprocessor registers */
7551         return;
7552     }
7553 
7554     define_arm_cp_regs(cpu, cp_reginfo);
7555     if (!arm_feature(env, ARM_FEATURE_V8)) {
7556         /* Must go early as it is full of wildcards that may be
7557          * overridden by later definitions.
7558          */
7559         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7560     }
7561 
7562     if (arm_feature(env, ARM_FEATURE_V6)) {
7563         /* The ID registers all have impdef reset values */
7564         ARMCPRegInfo v6_idregs[] = {
7565             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7566               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7567               .access = PL1_R, .type = ARM_CP_CONST,
7568               .accessfn = access_aa32_tid3,
7569               .resetvalue = cpu->isar.id_pfr0 },
7570             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7571              * the value of the GIC field until after we define these regs.
7572              */
7573             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7574               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7575               .access = PL1_R, .type = ARM_CP_NO_RAW,
7576               .accessfn = access_aa32_tid3,
7577               .readfn = id_pfr1_read,
7578               .writefn = arm_cp_write_ignore },
7579             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7580               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7581               .access = PL1_R, .type = ARM_CP_CONST,
7582               .accessfn = access_aa32_tid3,
7583               .resetvalue = cpu->isar.id_dfr0 },
7584             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7585               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7586               .access = PL1_R, .type = ARM_CP_CONST,
7587               .accessfn = access_aa32_tid3,
7588               .resetvalue = cpu->id_afr0 },
7589             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7590               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7591               .access = PL1_R, .type = ARM_CP_CONST,
7592               .accessfn = access_aa32_tid3,
7593               .resetvalue = cpu->isar.id_mmfr0 },
7594             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7595               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7596               .access = PL1_R, .type = ARM_CP_CONST,
7597               .accessfn = access_aa32_tid3,
7598               .resetvalue = cpu->isar.id_mmfr1 },
7599             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7600               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7601               .access = PL1_R, .type = ARM_CP_CONST,
7602               .accessfn = access_aa32_tid3,
7603               .resetvalue = cpu->isar.id_mmfr2 },
7604             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7605               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7606               .access = PL1_R, .type = ARM_CP_CONST,
7607               .accessfn = access_aa32_tid3,
7608               .resetvalue = cpu->isar.id_mmfr3 },
7609             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7610               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7611               .access = PL1_R, .type = ARM_CP_CONST,
7612               .accessfn = access_aa32_tid3,
7613               .resetvalue = cpu->isar.id_isar0 },
7614             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7615               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7616               .access = PL1_R, .type = ARM_CP_CONST,
7617               .accessfn = access_aa32_tid3,
7618               .resetvalue = cpu->isar.id_isar1 },
7619             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7620               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7621               .access = PL1_R, .type = ARM_CP_CONST,
7622               .accessfn = access_aa32_tid3,
7623               .resetvalue = cpu->isar.id_isar2 },
7624             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7625               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7626               .access = PL1_R, .type = ARM_CP_CONST,
7627               .accessfn = access_aa32_tid3,
7628               .resetvalue = cpu->isar.id_isar3 },
7629             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7630               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7631               .access = PL1_R, .type = ARM_CP_CONST,
7632               .accessfn = access_aa32_tid3,
7633               .resetvalue = cpu->isar.id_isar4 },
7634             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7635               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7636               .access = PL1_R, .type = ARM_CP_CONST,
7637               .accessfn = access_aa32_tid3,
7638               .resetvalue = cpu->isar.id_isar5 },
7639             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7640               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7641               .access = PL1_R, .type = ARM_CP_CONST,
7642               .accessfn = access_aa32_tid3,
7643               .resetvalue = cpu->isar.id_mmfr4 },
7644             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7645               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7646               .access = PL1_R, .type = ARM_CP_CONST,
7647               .accessfn = access_aa32_tid3,
7648               .resetvalue = cpu->isar.id_isar6 },
7649             REGINFO_SENTINEL
7650         };
7651         define_arm_cp_regs(cpu, v6_idregs);
7652         define_arm_cp_regs(cpu, v6_cp_reginfo);
7653     } else {
7654         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7655     }
7656     if (arm_feature(env, ARM_FEATURE_V6K)) {
7657         define_arm_cp_regs(cpu, v6k_cp_reginfo);
7658     }
7659     if (arm_feature(env, ARM_FEATURE_V7MP) &&
7660         !arm_feature(env, ARM_FEATURE_PMSA)) {
7661         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7662     }
7663     if (arm_feature(env, ARM_FEATURE_V7VE)) {
7664         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7665     }
7666     if (arm_feature(env, ARM_FEATURE_V7)) {
7667         ARMCPRegInfo clidr = {
7668             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7669             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7670             .access = PL1_R, .type = ARM_CP_CONST,
7671             .accessfn = access_aa64_tid2,
7672             .resetvalue = cpu->clidr
7673         };
7674         define_one_arm_cp_reg(cpu, &clidr);
7675         define_arm_cp_regs(cpu, v7_cp_reginfo);
7676         define_debug_regs(cpu);
7677         define_pmu_regs(cpu);
7678     } else {
7679         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7680     }
7681     if (arm_feature(env, ARM_FEATURE_V8)) {
7682         /* AArch64 ID registers, which all have impdef reset values.
7683          * Note that within the ID register ranges the unused slots
7684          * must all RAZ, not UNDEF; future architecture versions may
7685          * define new registers here.
7686          */
7687         ARMCPRegInfo v8_idregs[] = {
7688             /*
7689              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7690              * emulation because we don't know the right value for the
7691              * GIC field until after we define these regs.
7692              */
7693             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7694               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7695               .access = PL1_R,
7696 #ifdef CONFIG_USER_ONLY
7697               .type = ARM_CP_CONST,
7698               .resetvalue = cpu->isar.id_aa64pfr0
7699 #else
7700               .type = ARM_CP_NO_RAW,
7701               .accessfn = access_aa64_tid3,
7702               .readfn = id_aa64pfr0_read,
7703               .writefn = arm_cp_write_ignore
7704 #endif
7705             },
7706             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7707               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7708               .access = PL1_R, .type = ARM_CP_CONST,
7709               .accessfn = access_aa64_tid3,
7710               .resetvalue = cpu->isar.id_aa64pfr1},
7711             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7712               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7713               .access = PL1_R, .type = ARM_CP_CONST,
7714               .accessfn = access_aa64_tid3,
7715               .resetvalue = 0 },
7716             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7717               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7718               .access = PL1_R, .type = ARM_CP_CONST,
7719               .accessfn = access_aa64_tid3,
7720               .resetvalue = 0 },
7721             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7722               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7723               .access = PL1_R, .type = ARM_CP_CONST,
7724               .accessfn = access_aa64_tid3,
7725               .resetvalue = cpu->isar.id_aa64zfr0 },
7726             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7727               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7728               .access = PL1_R, .type = ARM_CP_CONST,
7729               .accessfn = access_aa64_tid3,
7730               .resetvalue = 0 },
7731             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7732               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7733               .access = PL1_R, .type = ARM_CP_CONST,
7734               .accessfn = access_aa64_tid3,
7735               .resetvalue = 0 },
7736             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7737               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7738               .access = PL1_R, .type = ARM_CP_CONST,
7739               .accessfn = access_aa64_tid3,
7740               .resetvalue = 0 },
7741             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7742               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7743               .access = PL1_R, .type = ARM_CP_CONST,
7744               .accessfn = access_aa64_tid3,
7745               .resetvalue = cpu->isar.id_aa64dfr0 },
7746             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7747               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7748               .access = PL1_R, .type = ARM_CP_CONST,
7749               .accessfn = access_aa64_tid3,
7750               .resetvalue = cpu->isar.id_aa64dfr1 },
7751             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7752               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7753               .access = PL1_R, .type = ARM_CP_CONST,
7754               .accessfn = access_aa64_tid3,
7755               .resetvalue = 0 },
7756             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7757               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7758               .access = PL1_R, .type = ARM_CP_CONST,
7759               .accessfn = access_aa64_tid3,
7760               .resetvalue = 0 },
7761             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7762               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7763               .access = PL1_R, .type = ARM_CP_CONST,
7764               .accessfn = access_aa64_tid3,
7765               .resetvalue = cpu->id_aa64afr0 },
7766             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7767               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7768               .access = PL1_R, .type = ARM_CP_CONST,
7769               .accessfn = access_aa64_tid3,
7770               .resetvalue = cpu->id_aa64afr1 },
7771             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7772               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7773               .access = PL1_R, .type = ARM_CP_CONST,
7774               .accessfn = access_aa64_tid3,
7775               .resetvalue = 0 },
7776             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7777               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7778               .access = PL1_R, .type = ARM_CP_CONST,
7779               .accessfn = access_aa64_tid3,
7780               .resetvalue = 0 },
7781             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7782               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7783               .access = PL1_R, .type = ARM_CP_CONST,
7784               .accessfn = access_aa64_tid3,
7785               .resetvalue = cpu->isar.id_aa64isar0 },
7786             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7787               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7788               .access = PL1_R, .type = ARM_CP_CONST,
7789               .accessfn = access_aa64_tid3,
7790               .resetvalue = cpu->isar.id_aa64isar1 },
7791             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7792               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7793               .access = PL1_R, .type = ARM_CP_CONST,
7794               .accessfn = access_aa64_tid3,
7795               .resetvalue = 0 },
7796             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7797               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7798               .access = PL1_R, .type = ARM_CP_CONST,
7799               .accessfn = access_aa64_tid3,
7800               .resetvalue = 0 },
7801             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7802               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7803               .access = PL1_R, .type = ARM_CP_CONST,
7804               .accessfn = access_aa64_tid3,
7805               .resetvalue = 0 },
7806             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7807               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7808               .access = PL1_R, .type = ARM_CP_CONST,
7809               .accessfn = access_aa64_tid3,
7810               .resetvalue = 0 },
7811             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7812               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7813               .access = PL1_R, .type = ARM_CP_CONST,
7814               .accessfn = access_aa64_tid3,
7815               .resetvalue = 0 },
7816             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7817               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7818               .access = PL1_R, .type = ARM_CP_CONST,
7819               .accessfn = access_aa64_tid3,
7820               .resetvalue = 0 },
7821             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7822               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7823               .access = PL1_R, .type = ARM_CP_CONST,
7824               .accessfn = access_aa64_tid3,
7825               .resetvalue = cpu->isar.id_aa64mmfr0 },
7826             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7827               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7828               .access = PL1_R, .type = ARM_CP_CONST,
7829               .accessfn = access_aa64_tid3,
7830               .resetvalue = cpu->isar.id_aa64mmfr1 },
7831             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7832               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7833               .access = PL1_R, .type = ARM_CP_CONST,
7834               .accessfn = access_aa64_tid3,
7835               .resetvalue = cpu->isar.id_aa64mmfr2 },
7836             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7837               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7838               .access = PL1_R, .type = ARM_CP_CONST,
7839               .accessfn = access_aa64_tid3,
7840               .resetvalue = 0 },
7841             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7842               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7843               .access = PL1_R, .type = ARM_CP_CONST,
7844               .accessfn = access_aa64_tid3,
7845               .resetvalue = 0 },
7846             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7847               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7848               .access = PL1_R, .type = ARM_CP_CONST,
7849               .accessfn = access_aa64_tid3,
7850               .resetvalue = 0 },
7851             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7852               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7853               .access = PL1_R, .type = ARM_CP_CONST,
7854               .accessfn = access_aa64_tid3,
7855               .resetvalue = 0 },
7856             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7857               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7858               .access = PL1_R, .type = ARM_CP_CONST,
7859               .accessfn = access_aa64_tid3,
7860               .resetvalue = 0 },
7861             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7862               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7863               .access = PL1_R, .type = ARM_CP_CONST,
7864               .accessfn = access_aa64_tid3,
7865               .resetvalue = cpu->isar.mvfr0 },
7866             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7867               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7868               .access = PL1_R, .type = ARM_CP_CONST,
7869               .accessfn = access_aa64_tid3,
7870               .resetvalue = cpu->isar.mvfr1 },
7871             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7872               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7873               .access = PL1_R, .type = ARM_CP_CONST,
7874               .accessfn = access_aa64_tid3,
7875               .resetvalue = cpu->isar.mvfr2 },
7876             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7877               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7878               .access = PL1_R, .type = ARM_CP_CONST,
7879               .accessfn = access_aa64_tid3,
7880               .resetvalue = 0 },
7881             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
7882               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7883               .access = PL1_R, .type = ARM_CP_CONST,
7884               .accessfn = access_aa64_tid3,
7885               .resetvalue = cpu->isar.id_pfr2 },
7886             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7887               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7888               .access = PL1_R, .type = ARM_CP_CONST,
7889               .accessfn = access_aa64_tid3,
7890               .resetvalue = 0 },
7891             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7892               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7893               .access = PL1_R, .type = ARM_CP_CONST,
7894               .accessfn = access_aa64_tid3,
7895               .resetvalue = 0 },
7896             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7897               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7898               .access = PL1_R, .type = ARM_CP_CONST,
7899               .accessfn = access_aa64_tid3,
7900               .resetvalue = 0 },
7901             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7902               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7903               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7904               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7905             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7906               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7907               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7908               .resetvalue = cpu->pmceid0 },
7909             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7910               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7911               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7912               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7913             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7914               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7915               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7916               .resetvalue = cpu->pmceid1 },
7917             REGINFO_SENTINEL
7918         };
7919 #ifdef CONFIG_USER_ONLY
7920         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7921             { .name = "ID_AA64PFR0_EL1",
7922               .exported_bits = 0x000f000f00ff0000,
7923               .fixed_bits    = 0x0000000000000011 },
7924             { .name = "ID_AA64PFR1_EL1",
7925               .exported_bits = 0x00000000000000f0 },
7926             { .name = "ID_AA64PFR*_EL1_RESERVED",
7927               .is_glob = true                     },
7928             { .name = "ID_AA64ZFR0_EL1"           },
7929             { .name = "ID_AA64MMFR0_EL1",
7930               .fixed_bits    = 0x00000000ff000000 },
7931             { .name = "ID_AA64MMFR1_EL1"          },
7932             { .name = "ID_AA64MMFR*_EL1_RESERVED",
7933               .is_glob = true                     },
7934             { .name = "ID_AA64DFR0_EL1",
7935               .fixed_bits    = 0x0000000000000006 },
7936             { .name = "ID_AA64DFR1_EL1"           },
7937             { .name = "ID_AA64DFR*_EL1_RESERVED",
7938               .is_glob = true                     },
7939             { .name = "ID_AA64AFR*",
7940               .is_glob = true                     },
7941             { .name = "ID_AA64ISAR0_EL1",
7942               .exported_bits = 0x00fffffff0fffff0 },
7943             { .name = "ID_AA64ISAR1_EL1",
7944               .exported_bits = 0x000000f0ffffffff },
7945             { .name = "ID_AA64ISAR*_EL1_RESERVED",
7946               .is_glob = true                     },
7947             REGUSERINFO_SENTINEL
7948         };
7949         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7950 #endif
7951         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7952         if (!arm_feature(env, ARM_FEATURE_EL3) &&
7953             !arm_feature(env, ARM_FEATURE_EL2)) {
7954             ARMCPRegInfo rvbar = {
7955                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7956                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7957                 .access = PL1_R,
7958                 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7959             };
7960             define_one_arm_cp_reg(cpu, &rvbar);
7961         }
7962         define_arm_cp_regs(cpu, v8_idregs);
7963         define_arm_cp_regs(cpu, v8_cp_reginfo);
7964     }
7965     if (arm_feature(env, ARM_FEATURE_EL2)) {
7966         uint64_t vmpidr_def = mpidr_read_val(env);
7967         ARMCPRegInfo vpidr_regs[] = {
7968             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7969               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7970               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7971               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7972               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7973             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7974               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7975               .access = PL2_RW, .resetvalue = cpu->midr,
7976               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7977             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7978               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7979               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7980               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7981               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7982             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7983               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7984               .access = PL2_RW,
7985               .resetvalue = vmpidr_def,
7986               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7987             REGINFO_SENTINEL
7988         };
7989         define_arm_cp_regs(cpu, vpidr_regs);
7990         define_arm_cp_regs(cpu, el2_cp_reginfo);
7991         if (arm_feature(env, ARM_FEATURE_V8)) {
7992             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7993         }
7994         if (cpu_isar_feature(aa64_sel2, cpu)) {
7995             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
7996         }
7997         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7998         if (!arm_feature(env, ARM_FEATURE_EL3)) {
7999             ARMCPRegInfo rvbar = {
8000                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8001                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8002                 .access = PL2_R,
8003                 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8004             };
8005             define_one_arm_cp_reg(cpu, &rvbar);
8006         }
8007     } else {
8008         /* If EL2 is missing but higher ELs are enabled, we need to
8009          * register the no_el2 reginfos.
8010          */
8011         if (arm_feature(env, ARM_FEATURE_EL3)) {
8012             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
8013              * of MIDR_EL1 and MPIDR_EL1.
8014              */
8015             ARMCPRegInfo vpidr_regs[] = {
8016                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8017                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8018                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
8019                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
8020                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8021                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8022                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8023                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
8024                   .type = ARM_CP_NO_RAW,
8025                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
8026                 REGINFO_SENTINEL
8027             };
8028             define_arm_cp_regs(cpu, vpidr_regs);
8029             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
8030             if (arm_feature(env, ARM_FEATURE_V8)) {
8031                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
8032             }
8033         }
8034     }
8035     if (arm_feature(env, ARM_FEATURE_EL3)) {
8036         define_arm_cp_regs(cpu, el3_cp_reginfo);
8037         ARMCPRegInfo el3_regs[] = {
8038             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8039               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8040               .access = PL3_R,
8041               .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8042             },
8043             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8044               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8045               .access = PL3_RW,
8046               .raw_writefn = raw_write, .writefn = sctlr_write,
8047               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8048               .resetvalue = cpu->reset_sctlr },
8049             REGINFO_SENTINEL
8050         };
8051 
8052         define_arm_cp_regs(cpu, el3_regs);
8053     }
8054     /* The behaviour of NSACR is sufficiently various that we don't
8055      * try to describe it in a single reginfo:
8056      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
8057      *     reads as constant 0xc00 from NS EL1 and NS EL2
8058      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8059      *  if v7 without EL3, register doesn't exist
8060      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8061      */
8062     if (arm_feature(env, ARM_FEATURE_EL3)) {
8063         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8064             ARMCPRegInfo nsacr = {
8065                 .name = "NSACR", .type = ARM_CP_CONST,
8066                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8067                 .access = PL1_RW, .accessfn = nsacr_access,
8068                 .resetvalue = 0xc00
8069             };
8070             define_one_arm_cp_reg(cpu, &nsacr);
8071         } else {
8072             ARMCPRegInfo nsacr = {
8073                 .name = "NSACR",
8074                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8075                 .access = PL3_RW | PL1_R,
8076                 .resetvalue = 0,
8077                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8078             };
8079             define_one_arm_cp_reg(cpu, &nsacr);
8080         }
8081     } else {
8082         if (arm_feature(env, ARM_FEATURE_V8)) {
8083             ARMCPRegInfo nsacr = {
8084                 .name = "NSACR", .type = ARM_CP_CONST,
8085                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8086                 .access = PL1_R,
8087                 .resetvalue = 0xc00
8088             };
8089             define_one_arm_cp_reg(cpu, &nsacr);
8090         }
8091     }
8092 
8093     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8094         if (arm_feature(env, ARM_FEATURE_V6)) {
8095             /* PMSAv6 not implemented */
8096             assert(arm_feature(env, ARM_FEATURE_V7));
8097             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8098             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8099         } else {
8100             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8101         }
8102     } else {
8103         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8104         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8105         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8106         if (cpu_isar_feature(aa32_hpd, cpu)) {
8107             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8108         }
8109     }
8110     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8111         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8112     }
8113     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8114         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8115     }
8116     if (arm_feature(env, ARM_FEATURE_VAPA)) {
8117         define_arm_cp_regs(cpu, vapa_cp_reginfo);
8118     }
8119     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8120         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8121     }
8122     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8123         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8124     }
8125     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8126         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8127     }
8128     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8129         define_arm_cp_regs(cpu, omap_cp_reginfo);
8130     }
8131     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8132         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8133     }
8134     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8135         define_arm_cp_regs(cpu, xscale_cp_reginfo);
8136     }
8137     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8138         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8139     }
8140     if (arm_feature(env, ARM_FEATURE_LPAE)) {
8141         define_arm_cp_regs(cpu, lpae_cp_reginfo);
8142     }
8143     if (cpu_isar_feature(aa32_jazelle, cpu)) {
8144         define_arm_cp_regs(cpu, jazelle_regs);
8145     }
8146     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
8147      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8148      * be read-only (ie write causes UNDEF exception).
8149      */
8150     {
8151         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8152             /* Pre-v8 MIDR space.
8153              * Note that the MIDR isn't a simple constant register because
8154              * of the TI925 behaviour where writes to another register can
8155              * cause the MIDR value to change.
8156              *
8157              * Unimplemented registers in the c15 0 0 0 space default to
8158              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8159              * and friends override accordingly.
8160              */
8161             { .name = "MIDR",
8162               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8163               .access = PL1_R, .resetvalue = cpu->midr,
8164               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8165               .readfn = midr_read,
8166               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8167               .type = ARM_CP_OVERRIDE },
8168             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8169             { .name = "DUMMY",
8170               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8171               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8172             { .name = "DUMMY",
8173               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8174               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8175             { .name = "DUMMY",
8176               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8177               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8178             { .name = "DUMMY",
8179               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8180               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8181             { .name = "DUMMY",
8182               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8183               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8184             REGINFO_SENTINEL
8185         };
8186         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8187             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8188               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8189               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8190               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8191               .readfn = midr_read },
8192             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8193             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8194               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8195               .access = PL1_R, .resetvalue = cpu->midr },
8196             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8197               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8198               .access = PL1_R, .resetvalue = cpu->midr },
8199             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8200               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8201               .access = PL1_R,
8202               .accessfn = access_aa64_tid1,
8203               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8204             REGINFO_SENTINEL
8205         };
8206         ARMCPRegInfo id_cp_reginfo[] = {
8207             /* These are common to v8 and pre-v8 */
8208             { .name = "CTR",
8209               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8210               .access = PL1_R, .accessfn = ctr_el0_access,
8211               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8212             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8213               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8214               .access = PL0_R, .accessfn = ctr_el0_access,
8215               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8216             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8217             { .name = "TCMTR",
8218               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8219               .access = PL1_R,
8220               .accessfn = access_aa32_tid1,
8221               .type = ARM_CP_CONST, .resetvalue = 0 },
8222             REGINFO_SENTINEL
8223         };
8224         /* TLBTR is specific to VMSA */
8225         ARMCPRegInfo id_tlbtr_reginfo = {
8226               .name = "TLBTR",
8227               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8228               .access = PL1_R,
8229               .accessfn = access_aa32_tid1,
8230               .type = ARM_CP_CONST, .resetvalue = 0,
8231         };
8232         /* MPUIR is specific to PMSA V6+ */
8233         ARMCPRegInfo id_mpuir_reginfo = {
8234               .name = "MPUIR",
8235               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8236               .access = PL1_R, .type = ARM_CP_CONST,
8237               .resetvalue = cpu->pmsav7_dregion << 8
8238         };
8239         ARMCPRegInfo crn0_wi_reginfo = {
8240             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8241             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8242             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8243         };
8244 #ifdef CONFIG_USER_ONLY
8245         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8246             { .name = "MIDR_EL1",
8247               .exported_bits = 0x00000000ffffffff },
8248             { .name = "REVIDR_EL1"                },
8249             REGUSERINFO_SENTINEL
8250         };
8251         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8252 #endif
8253         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8254             arm_feature(env, ARM_FEATURE_STRONGARM)) {
8255             ARMCPRegInfo *r;
8256             /* Register the blanket "writes ignored" value first to cover the
8257              * whole space. Then update the specific ID registers to allow write
8258              * access, so that they ignore writes rather than causing them to
8259              * UNDEF.
8260              */
8261             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8262             for (r = id_pre_v8_midr_cp_reginfo;
8263                  r->type != ARM_CP_SENTINEL; r++) {
8264                 r->access = PL1_RW;
8265             }
8266             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
8267                 r->access = PL1_RW;
8268             }
8269             id_mpuir_reginfo.access = PL1_RW;
8270             id_tlbtr_reginfo.access = PL1_RW;
8271         }
8272         if (arm_feature(env, ARM_FEATURE_V8)) {
8273             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8274         } else {
8275             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8276         }
8277         define_arm_cp_regs(cpu, id_cp_reginfo);
8278         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8279             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8280         } else if (arm_feature(env, ARM_FEATURE_V7)) {
8281             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8282         }
8283     }
8284 
8285     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8286         ARMCPRegInfo mpidr_cp_reginfo[] = {
8287             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8288               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8289               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8290             REGINFO_SENTINEL
8291         };
8292 #ifdef CONFIG_USER_ONLY
8293         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8294             { .name = "MPIDR_EL1",
8295               .fixed_bits = 0x0000000080000000 },
8296             REGUSERINFO_SENTINEL
8297         };
8298         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8299 #endif
8300         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8301     }
8302 
8303     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8304         ARMCPRegInfo auxcr_reginfo[] = {
8305             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8306               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8307               .access = PL1_RW, .accessfn = access_tacr,
8308               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8309             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8310               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8311               .access = PL2_RW, .type = ARM_CP_CONST,
8312               .resetvalue = 0 },
8313             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8314               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8315               .access = PL3_RW, .type = ARM_CP_CONST,
8316               .resetvalue = 0 },
8317             REGINFO_SENTINEL
8318         };
8319         define_arm_cp_regs(cpu, auxcr_reginfo);
8320         if (cpu_isar_feature(aa32_ac2, cpu)) {
8321             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8322         }
8323     }
8324 
8325     if (arm_feature(env, ARM_FEATURE_CBAR)) {
8326         /*
8327          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8328          * There are two flavours:
8329          *  (1) older 32-bit only cores have a simple 32-bit CBAR
8330          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8331          *      32-bit register visible to AArch32 at a different encoding
8332          *      to the "flavour 1" register and with the bits rearranged to
8333          *      be able to squash a 64-bit address into the 32-bit view.
8334          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8335          * in future if we support AArch32-only configs of some of the
8336          * AArch64 cores we might need to add a specific feature flag
8337          * to indicate cores with "flavour 2" CBAR.
8338          */
8339         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8340             /* 32 bit view is [31:18] 0...0 [43:32]. */
8341             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8342                 | extract64(cpu->reset_cbar, 32, 12);
8343             ARMCPRegInfo cbar_reginfo[] = {
8344                 { .name = "CBAR",
8345                   .type = ARM_CP_CONST,
8346                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8347                   .access = PL1_R, .resetvalue = cbar32 },
8348                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8349                   .type = ARM_CP_CONST,
8350                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8351                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
8352                 REGINFO_SENTINEL
8353             };
8354             /* We don't implement a r/w 64 bit CBAR currently */
8355             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8356             define_arm_cp_regs(cpu, cbar_reginfo);
8357         } else {
8358             ARMCPRegInfo cbar = {
8359                 .name = "CBAR",
8360                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8361                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8362                 .fieldoffset = offsetof(CPUARMState,
8363                                         cp15.c15_config_base_address)
8364             };
8365             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8366                 cbar.access = PL1_R;
8367                 cbar.fieldoffset = 0;
8368                 cbar.type = ARM_CP_CONST;
8369             }
8370             define_one_arm_cp_reg(cpu, &cbar);
8371         }
8372     }
8373 
8374     if (arm_feature(env, ARM_FEATURE_VBAR)) {
8375         ARMCPRegInfo vbar_cp_reginfo[] = {
8376             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8377               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8378               .access = PL1_RW, .writefn = vbar_write,
8379               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8380                                      offsetof(CPUARMState, cp15.vbar_ns) },
8381               .resetvalue = 0 },
8382             REGINFO_SENTINEL
8383         };
8384         define_arm_cp_regs(cpu, vbar_cp_reginfo);
8385     }
8386 
8387     /* Generic registers whose values depend on the implementation */
8388     {
8389         ARMCPRegInfo sctlr = {
8390             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8391             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8392             .access = PL1_RW, .accessfn = access_tvm_trvm,
8393             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8394                                    offsetof(CPUARMState, cp15.sctlr_ns) },
8395             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8396             .raw_writefn = raw_write,
8397         };
8398         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8399             /* Normally we would always end the TB on an SCTLR write, but Linux
8400              * arch/arm/mach-pxa/sleep.S expects two instructions following
8401              * an MMU enable to execute from cache.  Imitate this behaviour.
8402              */
8403             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8404         }
8405         define_one_arm_cp_reg(cpu, &sctlr);
8406     }
8407 
8408     if (cpu_isar_feature(aa64_lor, cpu)) {
8409         define_arm_cp_regs(cpu, lor_reginfo);
8410     }
8411     if (cpu_isar_feature(aa64_pan, cpu)) {
8412         define_one_arm_cp_reg(cpu, &pan_reginfo);
8413     }
8414 #ifndef CONFIG_USER_ONLY
8415     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8416         define_arm_cp_regs(cpu, ats1e1_reginfo);
8417     }
8418     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8419         define_arm_cp_regs(cpu, ats1cp_reginfo);
8420     }
8421 #endif
8422     if (cpu_isar_feature(aa64_uao, cpu)) {
8423         define_one_arm_cp_reg(cpu, &uao_reginfo);
8424     }
8425 
8426     if (cpu_isar_feature(aa64_dit, cpu)) {
8427         define_one_arm_cp_reg(cpu, &dit_reginfo);
8428     }
8429     if (cpu_isar_feature(aa64_ssbs, cpu)) {
8430         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8431     }
8432 
8433     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8434         define_arm_cp_regs(cpu, vhe_reginfo);
8435     }
8436 
8437     if (cpu_isar_feature(aa64_sve, cpu)) {
8438         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8439         if (arm_feature(env, ARM_FEATURE_EL2)) {
8440             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8441         } else {
8442             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8443         }
8444         if (arm_feature(env, ARM_FEATURE_EL3)) {
8445             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8446         }
8447     }
8448 
8449 #ifdef TARGET_AARCH64
8450     if (cpu_isar_feature(aa64_pauth, cpu)) {
8451         define_arm_cp_regs(cpu, pauth_reginfo);
8452     }
8453     if (cpu_isar_feature(aa64_rndr, cpu)) {
8454         define_arm_cp_regs(cpu, rndr_reginfo);
8455     }
8456     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8457         define_arm_cp_regs(cpu, tlbirange_reginfo);
8458     }
8459     if (cpu_isar_feature(aa64_tlbios, cpu)) {
8460         define_arm_cp_regs(cpu, tlbios_reginfo);
8461     }
8462 #ifndef CONFIG_USER_ONLY
8463     /* Data Cache clean instructions up to PoP */
8464     if (cpu_isar_feature(aa64_dcpop, cpu)) {
8465         define_one_arm_cp_reg(cpu, dcpop_reg);
8466 
8467         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8468             define_one_arm_cp_reg(cpu, dcpodp_reg);
8469         }
8470     }
8471 #endif /*CONFIG_USER_ONLY*/
8472 
8473     /*
8474      * If full MTE is enabled, add all of the system registers.
8475      * If only "instructions available at EL0" are enabled,
8476      * then define only a RAZ/WI version of PSTATE.TCO.
8477      */
8478     if (cpu_isar_feature(aa64_mte, cpu)) {
8479         define_arm_cp_regs(cpu, mte_reginfo);
8480         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8481     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8482         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8483         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8484     }
8485 #endif
8486 
8487     if (cpu_isar_feature(any_predinv, cpu)) {
8488         define_arm_cp_regs(cpu, predinv_reginfo);
8489     }
8490 
8491     if (cpu_isar_feature(any_ccidx, cpu)) {
8492         define_arm_cp_regs(cpu, ccsidr2_reginfo);
8493     }
8494 
8495 #ifndef CONFIG_USER_ONLY
8496     /*
8497      * Register redirections and aliases must be done last,
8498      * after the registers from the other extensions have been defined.
8499      */
8500     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8501         define_arm_vh_e2h_redirects_aliases(cpu);
8502     }
8503 #endif
8504 }
8505 
8506 /* Sort alphabetically by type name, except for "any". */
8507 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8508 {
8509     ObjectClass *class_a = (ObjectClass *)a;
8510     ObjectClass *class_b = (ObjectClass *)b;
8511     const char *name_a, *name_b;
8512 
8513     name_a = object_class_get_name(class_a);
8514     name_b = object_class_get_name(class_b);
8515     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8516         return 1;
8517     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8518         return -1;
8519     } else {
8520         return strcmp(name_a, name_b);
8521     }
8522 }
8523 
8524 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8525 {
8526     ObjectClass *oc = data;
8527     const char *typename;
8528     char *name;
8529 
8530     typename = object_class_get_name(oc);
8531     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8532     qemu_printf("  %s\n", name);
8533     g_free(name);
8534 }
8535 
8536 void arm_cpu_list(void)
8537 {
8538     GSList *list;
8539 
8540     list = object_class_get_list(TYPE_ARM_CPU, false);
8541     list = g_slist_sort(list, arm_cpu_list_compare);
8542     qemu_printf("Available CPUs:\n");
8543     g_slist_foreach(list, arm_cpu_list_entry, NULL);
8544     g_slist_free(list);
8545 }
8546 
8547 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8548 {
8549     ObjectClass *oc = data;
8550     CpuDefinitionInfoList **cpu_list = user_data;
8551     CpuDefinitionInfo *info;
8552     const char *typename;
8553 
8554     typename = object_class_get_name(oc);
8555     info = g_malloc0(sizeof(*info));
8556     info->name = g_strndup(typename,
8557                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
8558     info->q_typename = g_strdup(typename);
8559 
8560     QAPI_LIST_PREPEND(*cpu_list, info);
8561 }
8562 
8563 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8564 {
8565     CpuDefinitionInfoList *cpu_list = NULL;
8566     GSList *list;
8567 
8568     list = object_class_get_list(TYPE_ARM_CPU, false);
8569     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8570     g_slist_free(list);
8571 
8572     return cpu_list;
8573 }
8574 
8575 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8576                                    void *opaque, int state, int secstate,
8577                                    int crm, int opc1, int opc2,
8578                                    const char *name)
8579 {
8580     /* Private utility function for define_one_arm_cp_reg_with_opaque():
8581      * add a single reginfo struct to the hash table.
8582      */
8583     uint32_t *key = g_new(uint32_t, 1);
8584     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8585     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8586     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8587 
8588     r2->name = g_strdup(name);
8589     /* Reset the secure state to the specific incoming state.  This is
8590      * necessary as the register may have been defined with both states.
8591      */
8592     r2->secure = secstate;
8593 
8594     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8595         /* Register is banked (using both entries in array).
8596          * Overwriting fieldoffset as the array is only used to define
8597          * banked registers but later only fieldoffset is used.
8598          */
8599         r2->fieldoffset = r->bank_fieldoffsets[ns];
8600     }
8601 
8602     if (state == ARM_CP_STATE_AA32) {
8603         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8604             /* If the register is banked then we don't need to migrate or
8605              * reset the 32-bit instance in certain cases:
8606              *
8607              * 1) If the register has both 32-bit and 64-bit instances then we
8608              *    can count on the 64-bit instance taking care of the
8609              *    non-secure bank.
8610              * 2) If ARMv8 is enabled then we can count on a 64-bit version
8611              *    taking care of the secure bank.  This requires that separate
8612              *    32 and 64-bit definitions are provided.
8613              */
8614             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8615                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8616                 r2->type |= ARM_CP_ALIAS;
8617             }
8618         } else if ((secstate != r->secure) && !ns) {
8619             /* The register is not banked so we only want to allow migration of
8620              * the non-secure instance.
8621              */
8622             r2->type |= ARM_CP_ALIAS;
8623         }
8624 
8625         if (r->state == ARM_CP_STATE_BOTH) {
8626             /* We assume it is a cp15 register if the .cp field is left unset.
8627              */
8628             if (r2->cp == 0) {
8629                 r2->cp = 15;
8630             }
8631 
8632 #if HOST_BIG_ENDIAN
8633             if (r2->fieldoffset) {
8634                 r2->fieldoffset += sizeof(uint32_t);
8635             }
8636 #endif
8637         }
8638     }
8639     if (state == ARM_CP_STATE_AA64) {
8640         /* To allow abbreviation of ARMCPRegInfo
8641          * definitions, we treat cp == 0 as equivalent to
8642          * the value for "standard guest-visible sysreg".
8643          * STATE_BOTH definitions are also always "standard
8644          * sysreg" in their AArch64 view (the .cp value may
8645          * be non-zero for the benefit of the AArch32 view).
8646          */
8647         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8648             r2->cp = CP_REG_ARM64_SYSREG_CP;
8649         }
8650         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8651                                   r2->opc0, opc1, opc2);
8652     } else {
8653         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8654     }
8655     if (opaque) {
8656         r2->opaque = opaque;
8657     }
8658     /* reginfo passed to helpers is correct for the actual access,
8659      * and is never ARM_CP_STATE_BOTH:
8660      */
8661     r2->state = state;
8662     /* Make sure reginfo passed to helpers for wildcarded regs
8663      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8664      */
8665     r2->crm = crm;
8666     r2->opc1 = opc1;
8667     r2->opc2 = opc2;
8668     /* By convention, for wildcarded registers only the first
8669      * entry is used for migration; the others are marked as
8670      * ALIAS so we don't try to transfer the register
8671      * multiple times. Special registers (ie NOP/WFI) are
8672      * never migratable and not even raw-accessible.
8673      */
8674     if ((r->type & ARM_CP_SPECIAL)) {
8675         r2->type |= ARM_CP_NO_RAW;
8676     }
8677     if (((r->crm == CP_ANY) && crm != 0) ||
8678         ((r->opc1 == CP_ANY) && opc1 != 0) ||
8679         ((r->opc2 == CP_ANY) && opc2 != 0)) {
8680         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8681     }
8682 
8683     /* Check that raw accesses are either forbidden or handled. Note that
8684      * we can't assert this earlier because the setup of fieldoffset for
8685      * banked registers has to be done first.
8686      */
8687     if (!(r2->type & ARM_CP_NO_RAW)) {
8688         assert(!raw_accessors_invalid(r2));
8689     }
8690 
8691     /* Overriding of an existing definition must be explicitly
8692      * requested.
8693      */
8694     if (!(r->type & ARM_CP_OVERRIDE)) {
8695         ARMCPRegInfo *oldreg;
8696         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8697         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8698             fprintf(stderr, "Register redefined: cp=%d %d bit "
8699                     "crn=%d crm=%d opc1=%d opc2=%d, "
8700                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8701                     r2->crn, r2->crm, r2->opc1, r2->opc2,
8702                     oldreg->name, r2->name);
8703             g_assert_not_reached();
8704         }
8705     }
8706     g_hash_table_insert(cpu->cp_regs, key, r2);
8707 }
8708 
8709 
8710 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8711                                        const ARMCPRegInfo *r, void *opaque)
8712 {
8713     /* Define implementations of coprocessor registers.
8714      * We store these in a hashtable because typically
8715      * there are less than 150 registers in a space which
8716      * is 16*16*16*8*8 = 262144 in size.
8717      * Wildcarding is supported for the crm, opc1 and opc2 fields.
8718      * If a register is defined twice then the second definition is
8719      * used, so this can be used to define some generic registers and
8720      * then override them with implementation specific variations.
8721      * At least one of the original and the second definition should
8722      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8723      * against accidental use.
8724      *
8725      * The state field defines whether the register is to be
8726      * visible in the AArch32 or AArch64 execution state. If the
8727      * state is set to ARM_CP_STATE_BOTH then we synthesise a
8728      * reginfo structure for the AArch32 view, which sees the lower
8729      * 32 bits of the 64 bit register.
8730      *
8731      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8732      * be wildcarded. AArch64 registers are always considered to be 64
8733      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8734      * the register, if any.
8735      */
8736     int crm, opc1, opc2, state;
8737     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8738     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8739     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8740     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8741     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8742     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8743     /* 64 bit registers have only CRm and Opc1 fields */
8744     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8745     /* op0 only exists in the AArch64 encodings */
8746     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8747     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8748     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8749     /*
8750      * This API is only for Arm's system coprocessors (14 and 15) or
8751      * (M-profile or v7A-and-earlier only) for implementation defined
8752      * coprocessors in the range 0..7.  Our decode assumes this, since
8753      * 8..13 can be used for other insns including VFP and Neon. See
8754      * valid_cp() in translate.c.  Assert here that we haven't tried
8755      * to use an invalid coprocessor number.
8756      */
8757     switch (r->state) {
8758     case ARM_CP_STATE_BOTH:
8759         /* 0 has a special meaning, but otherwise the same rules as AA32. */
8760         if (r->cp == 0) {
8761             break;
8762         }
8763         /* fall through */
8764     case ARM_CP_STATE_AA32:
8765         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8766             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8767             assert(r->cp >= 14 && r->cp <= 15);
8768         } else {
8769             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8770         }
8771         break;
8772     case ARM_CP_STATE_AA64:
8773         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8774         break;
8775     default:
8776         g_assert_not_reached();
8777     }
8778     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8779      * encodes a minimum access level for the register. We roll this
8780      * runtime check into our general permission check code, so check
8781      * here that the reginfo's specified permissions are strict enough
8782      * to encompass the generic architectural permission check.
8783      */
8784     if (r->state != ARM_CP_STATE_AA32) {
8785         int mask = 0;
8786         switch (r->opc1) {
8787         case 0:
8788             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8789             mask = PL0U_R | PL1_RW;
8790             break;
8791         case 1: case 2:
8792             /* min_EL EL1 */
8793             mask = PL1_RW;
8794             break;
8795         case 3:
8796             /* min_EL EL0 */
8797             mask = PL0_RW;
8798             break;
8799         case 4:
8800         case 5:
8801             /* min_EL EL2 */
8802             mask = PL2_RW;
8803             break;
8804         case 6:
8805             /* min_EL EL3 */
8806             mask = PL3_RW;
8807             break;
8808         case 7:
8809             /* min_EL EL1, secure mode only (we don't check the latter) */
8810             mask = PL1_RW;
8811             break;
8812         default:
8813             /* broken reginfo with out-of-range opc1 */
8814             assert(false);
8815             break;
8816         }
8817         /* assert our permissions are not too lax (stricter is fine) */
8818         assert((r->access & ~mask) == 0);
8819     }
8820 
8821     /* Check that the register definition has enough info to handle
8822      * reads and writes if they are permitted.
8823      */
8824     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8825         if (r->access & PL3_R) {
8826             assert((r->fieldoffset ||
8827                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8828                    r->readfn);
8829         }
8830         if (r->access & PL3_W) {
8831             assert((r->fieldoffset ||
8832                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8833                    r->writefn);
8834         }
8835     }
8836     /* Bad type field probably means missing sentinel at end of reg list */
8837     assert(cptype_valid(r->type));
8838     for (crm = crmmin; crm <= crmmax; crm++) {
8839         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8840             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8841                 for (state = ARM_CP_STATE_AA32;
8842                      state <= ARM_CP_STATE_AA64; state++) {
8843                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8844                         continue;
8845                     }
8846                     if (state == ARM_CP_STATE_AA32) {
8847                         /* Under AArch32 CP registers can be common
8848                          * (same for secure and non-secure world) or banked.
8849                          */
8850                         char *name;
8851 
8852                         switch (r->secure) {
8853                         case ARM_CP_SECSTATE_S:
8854                         case ARM_CP_SECSTATE_NS:
8855                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8856                                                    r->secure, crm, opc1, opc2,
8857                                                    r->name);
8858                             break;
8859                         default:
8860                             name = g_strdup_printf("%s_S", r->name);
8861                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8862                                                    ARM_CP_SECSTATE_S,
8863                                                    crm, opc1, opc2, name);
8864                             g_free(name);
8865                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8866                                                    ARM_CP_SECSTATE_NS,
8867                                                    crm, opc1, opc2, r->name);
8868                             break;
8869                         }
8870                     } else {
8871                         /* AArch64 registers get mapped to non-secure instance
8872                          * of AArch32 */
8873                         add_cpreg_to_hashtable(cpu, r, opaque, state,
8874                                                ARM_CP_SECSTATE_NS,
8875                                                crm, opc1, opc2, r->name);
8876                     }
8877                 }
8878             }
8879         }
8880     }
8881 }
8882 
8883 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8884                                     const ARMCPRegInfo *regs, void *opaque)
8885 {
8886     /* Define a whole list of registers */
8887     const ARMCPRegInfo *r;
8888     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8889         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8890     }
8891 }
8892 
8893 /*
8894  * Modify ARMCPRegInfo for access from userspace.
8895  *
8896  * This is a data driven modification directed by
8897  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8898  * user-space cannot alter any values and dynamic values pertaining to
8899  * execution state are hidden from user space view anyway.
8900  */
8901 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8902 {
8903     const ARMCPRegUserSpaceInfo *m;
8904     ARMCPRegInfo *r;
8905 
8906     for (m = mods; m->name; m++) {
8907         GPatternSpec *pat = NULL;
8908         if (m->is_glob) {
8909             pat = g_pattern_spec_new(m->name);
8910         }
8911         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8912             if (pat && g_pattern_match_string(pat, r->name)) {
8913                 r->type = ARM_CP_CONST;
8914                 r->access = PL0U_R;
8915                 r->resetvalue = 0;
8916                 /* continue */
8917             } else if (strcmp(r->name, m->name) == 0) {
8918                 r->type = ARM_CP_CONST;
8919                 r->access = PL0U_R;
8920                 r->resetvalue &= m->exported_bits;
8921                 r->resetvalue |= m->fixed_bits;
8922                 break;
8923             }
8924         }
8925         if (pat) {
8926             g_pattern_spec_free(pat);
8927         }
8928     }
8929 }
8930 
8931 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8932 {
8933     return g_hash_table_lookup(cpregs, &encoded_cp);
8934 }
8935 
8936 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8937                          uint64_t value)
8938 {
8939     /* Helper coprocessor write function for write-ignore registers */
8940 }
8941 
8942 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8943 {
8944     /* Helper coprocessor write function for read-as-zero registers */
8945     return 0;
8946 }
8947 
8948 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8949 {
8950     /* Helper coprocessor reset function for do-nothing-on-reset registers */
8951 }
8952 
8953 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8954 {
8955     /* Return true if it is not valid for us to switch to
8956      * this CPU mode (ie all the UNPREDICTABLE cases in
8957      * the ARM ARM CPSRWriteByInstr pseudocode).
8958      */
8959 
8960     /* Changes to or from Hyp via MSR and CPS are illegal. */
8961     if (write_type == CPSRWriteByInstr &&
8962         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8963          mode == ARM_CPU_MODE_HYP)) {
8964         return 1;
8965     }
8966 
8967     switch (mode) {
8968     case ARM_CPU_MODE_USR:
8969         return 0;
8970     case ARM_CPU_MODE_SYS:
8971     case ARM_CPU_MODE_SVC:
8972     case ARM_CPU_MODE_ABT:
8973     case ARM_CPU_MODE_UND:
8974     case ARM_CPU_MODE_IRQ:
8975     case ARM_CPU_MODE_FIQ:
8976         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8977          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8978          */
8979         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8980          * and CPS are treated as illegal mode changes.
8981          */
8982         if (write_type == CPSRWriteByInstr &&
8983             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8984             (arm_hcr_el2_eff(env) & HCR_TGE)) {
8985             return 1;
8986         }
8987         return 0;
8988     case ARM_CPU_MODE_HYP:
8989         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
8990     case ARM_CPU_MODE_MON:
8991         return arm_current_el(env) < 3;
8992     default:
8993         return 1;
8994     }
8995 }
8996 
8997 uint32_t cpsr_read(CPUARMState *env)
8998 {
8999     int ZF;
9000     ZF = (env->ZF == 0);
9001     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9002         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9003         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9004         | ((env->condexec_bits & 0xfc) << 8)
9005         | (env->GE << 16) | (env->daif & CPSR_AIF);
9006 }
9007 
9008 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9009                 CPSRWriteType write_type)
9010 {
9011     uint32_t changed_daif;
9012     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9013         (mask & (CPSR_M | CPSR_E | CPSR_IL));
9014 
9015     if (mask & CPSR_NZCV) {
9016         env->ZF = (~val) & CPSR_Z;
9017         env->NF = val;
9018         env->CF = (val >> 29) & 1;
9019         env->VF = (val << 3) & 0x80000000;
9020     }
9021     if (mask & CPSR_Q)
9022         env->QF = ((val & CPSR_Q) != 0);
9023     if (mask & CPSR_T)
9024         env->thumb = ((val & CPSR_T) != 0);
9025     if (mask & CPSR_IT_0_1) {
9026         env->condexec_bits &= ~3;
9027         env->condexec_bits |= (val >> 25) & 3;
9028     }
9029     if (mask & CPSR_IT_2_7) {
9030         env->condexec_bits &= 3;
9031         env->condexec_bits |= (val >> 8) & 0xfc;
9032     }
9033     if (mask & CPSR_GE) {
9034         env->GE = (val >> 16) & 0xf;
9035     }
9036 
9037     /* In a V7 implementation that includes the security extensions but does
9038      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9039      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9040      * bits respectively.
9041      *
9042      * In a V8 implementation, it is permitted for privileged software to
9043      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9044      */
9045     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9046         arm_feature(env, ARM_FEATURE_EL3) &&
9047         !arm_feature(env, ARM_FEATURE_EL2) &&
9048         !arm_is_secure(env)) {
9049 
9050         changed_daif = (env->daif ^ val) & mask;
9051 
9052         if (changed_daif & CPSR_A) {
9053             /* Check to see if we are allowed to change the masking of async
9054              * abort exceptions from a non-secure state.
9055              */
9056             if (!(env->cp15.scr_el3 & SCR_AW)) {
9057                 qemu_log_mask(LOG_GUEST_ERROR,
9058                               "Ignoring attempt to switch CPSR_A flag from "
9059                               "non-secure world with SCR.AW bit clear\n");
9060                 mask &= ~CPSR_A;
9061             }
9062         }
9063 
9064         if (changed_daif & CPSR_F) {
9065             /* Check to see if we are allowed to change the masking of FIQ
9066              * exceptions from a non-secure state.
9067              */
9068             if (!(env->cp15.scr_el3 & SCR_FW)) {
9069                 qemu_log_mask(LOG_GUEST_ERROR,
9070                               "Ignoring attempt to switch CPSR_F flag from "
9071                               "non-secure world with SCR.FW bit clear\n");
9072                 mask &= ~CPSR_F;
9073             }
9074 
9075             /* Check whether non-maskable FIQ (NMFI) support is enabled.
9076              * If this bit is set software is not allowed to mask
9077              * FIQs, but is allowed to set CPSR_F to 0.
9078              */
9079             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9080                 (val & CPSR_F)) {
9081                 qemu_log_mask(LOG_GUEST_ERROR,
9082                               "Ignoring attempt to enable CPSR_F flag "
9083                               "(non-maskable FIQ [NMFI] support enabled)\n");
9084                 mask &= ~CPSR_F;
9085             }
9086         }
9087     }
9088 
9089     env->daif &= ~(CPSR_AIF & mask);
9090     env->daif |= val & CPSR_AIF & mask;
9091 
9092     if (write_type != CPSRWriteRaw &&
9093         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9094         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9095             /* Note that we can only get here in USR mode if this is a
9096              * gdb stub write; for this case we follow the architectural
9097              * behaviour for guest writes in USR mode of ignoring an attempt
9098              * to switch mode. (Those are caught by translate.c for writes
9099              * triggered by guest instructions.)
9100              */
9101             mask &= ~CPSR_M;
9102         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9103             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9104              * v7, and has defined behaviour in v8:
9105              *  + leave CPSR.M untouched
9106              *  + allow changes to the other CPSR fields
9107              *  + set PSTATE.IL
9108              * For user changes via the GDB stub, we don't set PSTATE.IL,
9109              * as this would be unnecessarily harsh for a user error.
9110              */
9111             mask &= ~CPSR_M;
9112             if (write_type != CPSRWriteByGDBStub &&
9113                 arm_feature(env, ARM_FEATURE_V8)) {
9114                 mask |= CPSR_IL;
9115                 val |= CPSR_IL;
9116             }
9117             qemu_log_mask(LOG_GUEST_ERROR,
9118                           "Illegal AArch32 mode switch attempt from %s to %s\n",
9119                           aarch32_mode_name(env->uncached_cpsr),
9120                           aarch32_mode_name(val));
9121         } else {
9122             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9123                           write_type == CPSRWriteExceptionReturn ?
9124                           "Exception return from AArch32" :
9125                           "AArch32 mode switch from",
9126                           aarch32_mode_name(env->uncached_cpsr),
9127                           aarch32_mode_name(val), env->regs[15]);
9128             switch_mode(env, val & CPSR_M);
9129         }
9130     }
9131     mask &= ~CACHED_CPSR_BITS;
9132     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9133     if (rebuild_hflags) {
9134         arm_rebuild_hflags(env);
9135     }
9136 }
9137 
9138 /* Sign/zero extend */
9139 uint32_t HELPER(sxtb16)(uint32_t x)
9140 {
9141     uint32_t res;
9142     res = (uint16_t)(int8_t)x;
9143     res |= (uint32_t)(int8_t)(x >> 16) << 16;
9144     return res;
9145 }
9146 
9147 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9148 {
9149     /*
9150      * Take a division-by-zero exception if necessary; otherwise return
9151      * to get the usual non-trapping division behaviour (result of 0)
9152      */
9153     if (arm_feature(env, ARM_FEATURE_M)
9154         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9155         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9156     }
9157 }
9158 
9159 uint32_t HELPER(uxtb16)(uint32_t x)
9160 {
9161     uint32_t res;
9162     res = (uint16_t)(uint8_t)x;
9163     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9164     return res;
9165 }
9166 
9167 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9168 {
9169     if (den == 0) {
9170         handle_possible_div0_trap(env, GETPC());
9171         return 0;
9172     }
9173     if (num == INT_MIN && den == -1) {
9174         return INT_MIN;
9175     }
9176     return num / den;
9177 }
9178 
9179 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9180 {
9181     if (den == 0) {
9182         handle_possible_div0_trap(env, GETPC());
9183         return 0;
9184     }
9185     return num / den;
9186 }
9187 
9188 uint32_t HELPER(rbit)(uint32_t x)
9189 {
9190     return revbit32(x);
9191 }
9192 
9193 #ifdef CONFIG_USER_ONLY
9194 
9195 static void switch_mode(CPUARMState *env, int mode)
9196 {
9197     ARMCPU *cpu = env_archcpu(env);
9198 
9199     if (mode != ARM_CPU_MODE_USR) {
9200         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9201     }
9202 }
9203 
9204 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9205                                  uint32_t cur_el, bool secure)
9206 {
9207     return 1;
9208 }
9209 
9210 void aarch64_sync_64_to_32(CPUARMState *env)
9211 {
9212     g_assert_not_reached();
9213 }
9214 
9215 #else
9216 
9217 static void switch_mode(CPUARMState *env, int mode)
9218 {
9219     int old_mode;
9220     int i;
9221 
9222     old_mode = env->uncached_cpsr & CPSR_M;
9223     if (mode == old_mode)
9224         return;
9225 
9226     if (old_mode == ARM_CPU_MODE_FIQ) {
9227         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9228         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9229     } else if (mode == ARM_CPU_MODE_FIQ) {
9230         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9231         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9232     }
9233 
9234     i = bank_number(old_mode);
9235     env->banked_r13[i] = env->regs[13];
9236     env->banked_spsr[i] = env->spsr;
9237 
9238     i = bank_number(mode);
9239     env->regs[13] = env->banked_r13[i];
9240     env->spsr = env->banked_spsr[i];
9241 
9242     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9243     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9244 }
9245 
9246 /* Physical Interrupt Target EL Lookup Table
9247  *
9248  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9249  *
9250  * The below multi-dimensional table is used for looking up the target
9251  * exception level given numerous condition criteria.  Specifically, the
9252  * target EL is based on SCR and HCR routing controls as well as the
9253  * currently executing EL and secure state.
9254  *
9255  *    Dimensions:
9256  *    target_el_table[2][2][2][2][2][4]
9257  *                    |  |  |  |  |  +--- Current EL
9258  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
9259  *                    |  |  |  +--------- HCR mask override
9260  *                    |  |  +------------ SCR exec state control
9261  *                    |  +--------------- SCR mask override
9262  *                    +------------------ 32-bit(0)/64-bit(1) EL3
9263  *
9264  *    The table values are as such:
9265  *    0-3 = EL0-EL3
9266  *     -1 = Cannot occur
9267  *
9268  * The ARM ARM target EL table includes entries indicating that an "exception
9269  * is not taken".  The two cases where this is applicable are:
9270  *    1) An exception is taken from EL3 but the SCR does not have the exception
9271  *    routed to EL3.
9272  *    2) An exception is taken from EL2 but the HCR does not have the exception
9273  *    routed to EL2.
9274  * In these two cases, the below table contain a target of EL1.  This value is
9275  * returned as it is expected that the consumer of the table data will check
9276  * for "target EL >= current EL" to ensure the exception is not taken.
9277  *
9278  *            SCR     HCR
9279  *         64  EA     AMO                 From
9280  *        BIT IRQ     IMO      Non-secure         Secure
9281  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
9282  */
9283 static const int8_t target_el_table[2][2][2][2][2][4] = {
9284     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9285        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
9286       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9287        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
9288      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9289        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
9290       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9291        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
9292     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
9293        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
9294       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
9295        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
9296      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
9297        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
9298       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
9299        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
9300 };
9301 
9302 /*
9303  * Determine the target EL for physical exceptions
9304  */
9305 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9306                                  uint32_t cur_el, bool secure)
9307 {
9308     CPUARMState *env = cs->env_ptr;
9309     bool rw;
9310     bool scr;
9311     bool hcr;
9312     int target_el;
9313     /* Is the highest EL AArch64? */
9314     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9315     uint64_t hcr_el2;
9316 
9317     if (arm_feature(env, ARM_FEATURE_EL3)) {
9318         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9319     } else {
9320         /* Either EL2 is the highest EL (and so the EL2 register width
9321          * is given by is64); or there is no EL2 or EL3, in which case
9322          * the value of 'rw' does not affect the table lookup anyway.
9323          */
9324         rw = is64;
9325     }
9326 
9327     hcr_el2 = arm_hcr_el2_eff(env);
9328     switch (excp_idx) {
9329     case EXCP_IRQ:
9330         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9331         hcr = hcr_el2 & HCR_IMO;
9332         break;
9333     case EXCP_FIQ:
9334         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9335         hcr = hcr_el2 & HCR_FMO;
9336         break;
9337     default:
9338         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9339         hcr = hcr_el2 & HCR_AMO;
9340         break;
9341     };
9342 
9343     /*
9344      * For these purposes, TGE and AMO/IMO/FMO both force the
9345      * interrupt to EL2.  Fold TGE into the bit extracted above.
9346      */
9347     hcr |= (hcr_el2 & HCR_TGE) != 0;
9348 
9349     /* Perform a table-lookup for the target EL given the current state */
9350     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9351 
9352     assert(target_el > 0);
9353 
9354     return target_el;
9355 }
9356 
9357 void arm_log_exception(CPUState *cs)
9358 {
9359     int idx = cs->exception_index;
9360 
9361     if (qemu_loglevel_mask(CPU_LOG_INT)) {
9362         const char *exc = NULL;
9363         static const char * const excnames[] = {
9364             [EXCP_UDEF] = "Undefined Instruction",
9365             [EXCP_SWI] = "SVC",
9366             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9367             [EXCP_DATA_ABORT] = "Data Abort",
9368             [EXCP_IRQ] = "IRQ",
9369             [EXCP_FIQ] = "FIQ",
9370             [EXCP_BKPT] = "Breakpoint",
9371             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9372             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9373             [EXCP_HVC] = "Hypervisor Call",
9374             [EXCP_HYP_TRAP] = "Hypervisor Trap",
9375             [EXCP_SMC] = "Secure Monitor Call",
9376             [EXCP_VIRQ] = "Virtual IRQ",
9377             [EXCP_VFIQ] = "Virtual FIQ",
9378             [EXCP_SEMIHOST] = "Semihosting call",
9379             [EXCP_NOCP] = "v7M NOCP UsageFault",
9380             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9381             [EXCP_STKOF] = "v8M STKOF UsageFault",
9382             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9383             [EXCP_LSERR] = "v8M LSERR UsageFault",
9384             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9385             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
9386         };
9387 
9388         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9389             exc = excnames[idx];
9390         }
9391         if (!exc) {
9392             exc = "unknown";
9393         }
9394         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
9395                       idx, exc, cs->cpu_index);
9396     }
9397 }
9398 
9399 /*
9400  * Function used to synchronize QEMU's AArch64 register set with AArch32
9401  * register set.  This is necessary when switching between AArch32 and AArch64
9402  * execution state.
9403  */
9404 void aarch64_sync_32_to_64(CPUARMState *env)
9405 {
9406     int i;
9407     uint32_t mode = env->uncached_cpsr & CPSR_M;
9408 
9409     /* We can blanket copy R[0:7] to X[0:7] */
9410     for (i = 0; i < 8; i++) {
9411         env->xregs[i] = env->regs[i];
9412     }
9413 
9414     /*
9415      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9416      * Otherwise, they come from the banked user regs.
9417      */
9418     if (mode == ARM_CPU_MODE_FIQ) {
9419         for (i = 8; i < 13; i++) {
9420             env->xregs[i] = env->usr_regs[i - 8];
9421         }
9422     } else {
9423         for (i = 8; i < 13; i++) {
9424             env->xregs[i] = env->regs[i];
9425         }
9426     }
9427 
9428     /*
9429      * Registers x13-x23 are the various mode SP and FP registers. Registers
9430      * r13 and r14 are only copied if we are in that mode, otherwise we copy
9431      * from the mode banked register.
9432      */
9433     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9434         env->xregs[13] = env->regs[13];
9435         env->xregs[14] = env->regs[14];
9436     } else {
9437         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9438         /* HYP is an exception in that it is copied from r14 */
9439         if (mode == ARM_CPU_MODE_HYP) {
9440             env->xregs[14] = env->regs[14];
9441         } else {
9442             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9443         }
9444     }
9445 
9446     if (mode == ARM_CPU_MODE_HYP) {
9447         env->xregs[15] = env->regs[13];
9448     } else {
9449         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9450     }
9451 
9452     if (mode == ARM_CPU_MODE_IRQ) {
9453         env->xregs[16] = env->regs[14];
9454         env->xregs[17] = env->regs[13];
9455     } else {
9456         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9457         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9458     }
9459 
9460     if (mode == ARM_CPU_MODE_SVC) {
9461         env->xregs[18] = env->regs[14];
9462         env->xregs[19] = env->regs[13];
9463     } else {
9464         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9465         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9466     }
9467 
9468     if (mode == ARM_CPU_MODE_ABT) {
9469         env->xregs[20] = env->regs[14];
9470         env->xregs[21] = env->regs[13];
9471     } else {
9472         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9473         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9474     }
9475 
9476     if (mode == ARM_CPU_MODE_UND) {
9477         env->xregs[22] = env->regs[14];
9478         env->xregs[23] = env->regs[13];
9479     } else {
9480         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9481         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9482     }
9483 
9484     /*
9485      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9486      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9487      * FIQ bank for r8-r14.
9488      */
9489     if (mode == ARM_CPU_MODE_FIQ) {
9490         for (i = 24; i < 31; i++) {
9491             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
9492         }
9493     } else {
9494         for (i = 24; i < 29; i++) {
9495             env->xregs[i] = env->fiq_regs[i - 24];
9496         }
9497         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9498         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9499     }
9500 
9501     env->pc = env->regs[15];
9502 }
9503 
9504 /*
9505  * Function used to synchronize QEMU's AArch32 register set with AArch64
9506  * register set.  This is necessary when switching between AArch32 and AArch64
9507  * execution state.
9508  */
9509 void aarch64_sync_64_to_32(CPUARMState *env)
9510 {
9511     int i;
9512     uint32_t mode = env->uncached_cpsr & CPSR_M;
9513 
9514     /* We can blanket copy X[0:7] to R[0:7] */
9515     for (i = 0; i < 8; i++) {
9516         env->regs[i] = env->xregs[i];
9517     }
9518 
9519     /*
9520      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9521      * Otherwise, we copy x8-x12 into the banked user regs.
9522      */
9523     if (mode == ARM_CPU_MODE_FIQ) {
9524         for (i = 8; i < 13; i++) {
9525             env->usr_regs[i - 8] = env->xregs[i];
9526         }
9527     } else {
9528         for (i = 8; i < 13; i++) {
9529             env->regs[i] = env->xregs[i];
9530         }
9531     }
9532 
9533     /*
9534      * Registers r13 & r14 depend on the current mode.
9535      * If we are in a given mode, we copy the corresponding x registers to r13
9536      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9537      * for the mode.
9538      */
9539     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9540         env->regs[13] = env->xregs[13];
9541         env->regs[14] = env->xregs[14];
9542     } else {
9543         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9544 
9545         /*
9546          * HYP is an exception in that it does not have its own banked r14 but
9547          * shares the USR r14
9548          */
9549         if (mode == ARM_CPU_MODE_HYP) {
9550             env->regs[14] = env->xregs[14];
9551         } else {
9552             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9553         }
9554     }
9555 
9556     if (mode == ARM_CPU_MODE_HYP) {
9557         env->regs[13] = env->xregs[15];
9558     } else {
9559         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9560     }
9561 
9562     if (mode == ARM_CPU_MODE_IRQ) {
9563         env->regs[14] = env->xregs[16];
9564         env->regs[13] = env->xregs[17];
9565     } else {
9566         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9567         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9568     }
9569 
9570     if (mode == ARM_CPU_MODE_SVC) {
9571         env->regs[14] = env->xregs[18];
9572         env->regs[13] = env->xregs[19];
9573     } else {
9574         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9575         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9576     }
9577 
9578     if (mode == ARM_CPU_MODE_ABT) {
9579         env->regs[14] = env->xregs[20];
9580         env->regs[13] = env->xregs[21];
9581     } else {
9582         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9583         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9584     }
9585 
9586     if (mode == ARM_CPU_MODE_UND) {
9587         env->regs[14] = env->xregs[22];
9588         env->regs[13] = env->xregs[23];
9589     } else {
9590         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9591         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9592     }
9593 
9594     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9595      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9596      * FIQ bank for r8-r14.
9597      */
9598     if (mode == ARM_CPU_MODE_FIQ) {
9599         for (i = 24; i < 31; i++) {
9600             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9601         }
9602     } else {
9603         for (i = 24; i < 29; i++) {
9604             env->fiq_regs[i - 24] = env->xregs[i];
9605         }
9606         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9607         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9608     }
9609 
9610     env->regs[15] = env->pc;
9611 }
9612 
9613 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9614                                    uint32_t mask, uint32_t offset,
9615                                    uint32_t newpc)
9616 {
9617     int new_el;
9618 
9619     /* Change the CPU state so as to actually take the exception. */
9620     switch_mode(env, new_mode);
9621 
9622     /*
9623      * For exceptions taken to AArch32 we must clear the SS bit in both
9624      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9625      */
9626     env->pstate &= ~PSTATE_SS;
9627     env->spsr = cpsr_read(env);
9628     /* Clear IT bits.  */
9629     env->condexec_bits = 0;
9630     /* Switch to the new mode, and to the correct instruction set.  */
9631     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9632 
9633     /* This must be after mode switching. */
9634     new_el = arm_current_el(env);
9635 
9636     /* Set new mode endianness */
9637     env->uncached_cpsr &= ~CPSR_E;
9638     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9639         env->uncached_cpsr |= CPSR_E;
9640     }
9641     /* J and IL must always be cleared for exception entry */
9642     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9643     env->daif |= mask;
9644 
9645     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9646         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9647             env->uncached_cpsr |= CPSR_SSBS;
9648         } else {
9649             env->uncached_cpsr &= ~CPSR_SSBS;
9650         }
9651     }
9652 
9653     if (new_mode == ARM_CPU_MODE_HYP) {
9654         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9655         env->elr_el[2] = env->regs[15];
9656     } else {
9657         /* CPSR.PAN is normally preserved preserved unless...  */
9658         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9659             switch (new_el) {
9660             case 3:
9661                 if (!arm_is_secure_below_el3(env)) {
9662                     /* ... the target is EL3, from non-secure state.  */
9663                     env->uncached_cpsr &= ~CPSR_PAN;
9664                     break;
9665                 }
9666                 /* ... the target is EL3, from secure state ... */
9667                 /* fall through */
9668             case 1:
9669                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
9670                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9671                     env->uncached_cpsr |= CPSR_PAN;
9672                 }
9673                 break;
9674             }
9675         }
9676         /*
9677          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9678          * and we should just guard the thumb mode on V4
9679          */
9680         if (arm_feature(env, ARM_FEATURE_V4T)) {
9681             env->thumb =
9682                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9683         }
9684         env->regs[14] = env->regs[15] + offset;
9685     }
9686     env->regs[15] = newpc;
9687     arm_rebuild_hflags(env);
9688 }
9689 
9690 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9691 {
9692     /*
9693      * Handle exception entry to Hyp mode; this is sufficiently
9694      * different to entry to other AArch32 modes that we handle it
9695      * separately here.
9696      *
9697      * The vector table entry used is always the 0x14 Hyp mode entry point,
9698      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
9699      * The offset applied to the preferred return address is always zero
9700      * (see DDI0487C.a section G1.12.3).
9701      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9702      */
9703     uint32_t addr, mask;
9704     ARMCPU *cpu = ARM_CPU(cs);
9705     CPUARMState *env = &cpu->env;
9706 
9707     switch (cs->exception_index) {
9708     case EXCP_UDEF:
9709         addr = 0x04;
9710         break;
9711     case EXCP_SWI:
9712         addr = 0x08;
9713         break;
9714     case EXCP_BKPT:
9715         /* Fall through to prefetch abort.  */
9716     case EXCP_PREFETCH_ABORT:
9717         env->cp15.ifar_s = env->exception.vaddress;
9718         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9719                       (uint32_t)env->exception.vaddress);
9720         addr = 0x0c;
9721         break;
9722     case EXCP_DATA_ABORT:
9723         env->cp15.dfar_s = env->exception.vaddress;
9724         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9725                       (uint32_t)env->exception.vaddress);
9726         addr = 0x10;
9727         break;
9728     case EXCP_IRQ:
9729         addr = 0x18;
9730         break;
9731     case EXCP_FIQ:
9732         addr = 0x1c;
9733         break;
9734     case EXCP_HVC:
9735         addr = 0x08;
9736         break;
9737     case EXCP_HYP_TRAP:
9738         addr = 0x14;
9739         break;
9740     default:
9741         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9742     }
9743 
9744     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9745         if (!arm_feature(env, ARM_FEATURE_V8)) {
9746             /*
9747              * QEMU syndrome values are v8-style. v7 has the IL bit
9748              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9749              * If this is a v7 CPU, squash the IL bit in those cases.
9750              */
9751             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9752                 (cs->exception_index == EXCP_DATA_ABORT &&
9753                  !(env->exception.syndrome & ARM_EL_ISV)) ||
9754                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9755                 env->exception.syndrome &= ~ARM_EL_IL;
9756             }
9757         }
9758         env->cp15.esr_el[2] = env->exception.syndrome;
9759     }
9760 
9761     if (arm_current_el(env) != 2 && addr < 0x14) {
9762         addr = 0x14;
9763     }
9764 
9765     mask = 0;
9766     if (!(env->cp15.scr_el3 & SCR_EA)) {
9767         mask |= CPSR_A;
9768     }
9769     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9770         mask |= CPSR_I;
9771     }
9772     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9773         mask |= CPSR_F;
9774     }
9775 
9776     addr += env->cp15.hvbar;
9777 
9778     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9779 }
9780 
9781 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9782 {
9783     ARMCPU *cpu = ARM_CPU(cs);
9784     CPUARMState *env = &cpu->env;
9785     uint32_t addr;
9786     uint32_t mask;
9787     int new_mode;
9788     uint32_t offset;
9789     uint32_t moe;
9790 
9791     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9792     switch (syn_get_ec(env->exception.syndrome)) {
9793     case EC_BREAKPOINT:
9794     case EC_BREAKPOINT_SAME_EL:
9795         moe = 1;
9796         break;
9797     case EC_WATCHPOINT:
9798     case EC_WATCHPOINT_SAME_EL:
9799         moe = 10;
9800         break;
9801     case EC_AA32_BKPT:
9802         moe = 3;
9803         break;
9804     case EC_VECTORCATCH:
9805         moe = 5;
9806         break;
9807     default:
9808         moe = 0;
9809         break;
9810     }
9811 
9812     if (moe) {
9813         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9814     }
9815 
9816     if (env->exception.target_el == 2) {
9817         arm_cpu_do_interrupt_aarch32_hyp(cs);
9818         return;
9819     }
9820 
9821     switch (cs->exception_index) {
9822     case EXCP_UDEF:
9823         new_mode = ARM_CPU_MODE_UND;
9824         addr = 0x04;
9825         mask = CPSR_I;
9826         if (env->thumb)
9827             offset = 2;
9828         else
9829             offset = 4;
9830         break;
9831     case EXCP_SWI:
9832         new_mode = ARM_CPU_MODE_SVC;
9833         addr = 0x08;
9834         mask = CPSR_I;
9835         /* The PC already points to the next instruction.  */
9836         offset = 0;
9837         break;
9838     case EXCP_BKPT:
9839         /* Fall through to prefetch abort.  */
9840     case EXCP_PREFETCH_ABORT:
9841         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9842         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9843         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9844                       env->exception.fsr, (uint32_t)env->exception.vaddress);
9845         new_mode = ARM_CPU_MODE_ABT;
9846         addr = 0x0c;
9847         mask = CPSR_A | CPSR_I;
9848         offset = 4;
9849         break;
9850     case EXCP_DATA_ABORT:
9851         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9852         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9853         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9854                       env->exception.fsr,
9855                       (uint32_t)env->exception.vaddress);
9856         new_mode = ARM_CPU_MODE_ABT;
9857         addr = 0x10;
9858         mask = CPSR_A | CPSR_I;
9859         offset = 8;
9860         break;
9861     case EXCP_IRQ:
9862         new_mode = ARM_CPU_MODE_IRQ;
9863         addr = 0x18;
9864         /* Disable IRQ and imprecise data aborts.  */
9865         mask = CPSR_A | CPSR_I;
9866         offset = 4;
9867         if (env->cp15.scr_el3 & SCR_IRQ) {
9868             /* IRQ routed to monitor mode */
9869             new_mode = ARM_CPU_MODE_MON;
9870             mask |= CPSR_F;
9871         }
9872         break;
9873     case EXCP_FIQ:
9874         new_mode = ARM_CPU_MODE_FIQ;
9875         addr = 0x1c;
9876         /* Disable FIQ, IRQ and imprecise data aborts.  */
9877         mask = CPSR_A | CPSR_I | CPSR_F;
9878         if (env->cp15.scr_el3 & SCR_FIQ) {
9879             /* FIQ routed to monitor mode */
9880             new_mode = ARM_CPU_MODE_MON;
9881         }
9882         offset = 4;
9883         break;
9884     case EXCP_VIRQ:
9885         new_mode = ARM_CPU_MODE_IRQ;
9886         addr = 0x18;
9887         /* Disable IRQ and imprecise data aborts.  */
9888         mask = CPSR_A | CPSR_I;
9889         offset = 4;
9890         break;
9891     case EXCP_VFIQ:
9892         new_mode = ARM_CPU_MODE_FIQ;
9893         addr = 0x1c;
9894         /* Disable FIQ, IRQ and imprecise data aborts.  */
9895         mask = CPSR_A | CPSR_I | CPSR_F;
9896         offset = 4;
9897         break;
9898     case EXCP_SMC:
9899         new_mode = ARM_CPU_MODE_MON;
9900         addr = 0x08;
9901         mask = CPSR_A | CPSR_I | CPSR_F;
9902         offset = 0;
9903         break;
9904     default:
9905         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9906         return; /* Never happens.  Keep compiler happy.  */
9907     }
9908 
9909     if (new_mode == ARM_CPU_MODE_MON) {
9910         addr += env->cp15.mvbar;
9911     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9912         /* High vectors. When enabled, base address cannot be remapped. */
9913         addr += 0xffff0000;
9914     } else {
9915         /* ARM v7 architectures provide a vector base address register to remap
9916          * the interrupt vector table.
9917          * This register is only followed in non-monitor mode, and is banked.
9918          * Note: only bits 31:5 are valid.
9919          */
9920         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9921     }
9922 
9923     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9924         env->cp15.scr_el3 &= ~SCR_NS;
9925     }
9926 
9927     take_aarch32_exception(env, new_mode, mask, offset, addr);
9928 }
9929 
9930 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9931 {
9932     /*
9933      * Return the register number of the AArch64 view of the AArch32
9934      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9935      * be that of the AArch32 mode the exception came from.
9936      */
9937     int mode = env->uncached_cpsr & CPSR_M;
9938 
9939     switch (aarch32_reg) {
9940     case 0 ... 7:
9941         return aarch32_reg;
9942     case 8 ... 12:
9943         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9944     case 13:
9945         switch (mode) {
9946         case ARM_CPU_MODE_USR:
9947         case ARM_CPU_MODE_SYS:
9948             return 13;
9949         case ARM_CPU_MODE_HYP:
9950             return 15;
9951         case ARM_CPU_MODE_IRQ:
9952             return 17;
9953         case ARM_CPU_MODE_SVC:
9954             return 19;
9955         case ARM_CPU_MODE_ABT:
9956             return 21;
9957         case ARM_CPU_MODE_UND:
9958             return 23;
9959         case ARM_CPU_MODE_FIQ:
9960             return 29;
9961         default:
9962             g_assert_not_reached();
9963         }
9964     case 14:
9965         switch (mode) {
9966         case ARM_CPU_MODE_USR:
9967         case ARM_CPU_MODE_SYS:
9968         case ARM_CPU_MODE_HYP:
9969             return 14;
9970         case ARM_CPU_MODE_IRQ:
9971             return 16;
9972         case ARM_CPU_MODE_SVC:
9973             return 18;
9974         case ARM_CPU_MODE_ABT:
9975             return 20;
9976         case ARM_CPU_MODE_UND:
9977             return 22;
9978         case ARM_CPU_MODE_FIQ:
9979             return 30;
9980         default:
9981             g_assert_not_reached();
9982         }
9983     case 15:
9984         return 31;
9985     default:
9986         g_assert_not_reached();
9987     }
9988 }
9989 
9990 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
9991 {
9992     uint32_t ret = cpsr_read(env);
9993 
9994     /* Move DIT to the correct location for SPSR_ELx */
9995     if (ret & CPSR_DIT) {
9996         ret &= ~CPSR_DIT;
9997         ret |= PSTATE_DIT;
9998     }
9999     /* Merge PSTATE.SS into SPSR_ELx */
10000     ret |= env->pstate & PSTATE_SS;
10001 
10002     return ret;
10003 }
10004 
10005 /* Handle exception entry to a target EL which is using AArch64 */
10006 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10007 {
10008     ARMCPU *cpu = ARM_CPU(cs);
10009     CPUARMState *env = &cpu->env;
10010     unsigned int new_el = env->exception.target_el;
10011     target_ulong addr = env->cp15.vbar_el[new_el];
10012     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10013     unsigned int old_mode;
10014     unsigned int cur_el = arm_current_el(env);
10015     int rt;
10016 
10017     /*
10018      * Note that new_el can never be 0.  If cur_el is 0, then
10019      * el0_a64 is is_a64(), else el0_a64 is ignored.
10020      */
10021     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10022 
10023     if (cur_el < new_el) {
10024         /* Entry vector offset depends on whether the implemented EL
10025          * immediately lower than the target level is using AArch32 or AArch64
10026          */
10027         bool is_aa64;
10028         uint64_t hcr;
10029 
10030         switch (new_el) {
10031         case 3:
10032             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10033             break;
10034         case 2:
10035             hcr = arm_hcr_el2_eff(env);
10036             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10037                 is_aa64 = (hcr & HCR_RW) != 0;
10038                 break;
10039             }
10040             /* fall through */
10041         case 1:
10042             is_aa64 = is_a64(env);
10043             break;
10044         default:
10045             g_assert_not_reached();
10046         }
10047 
10048         if (is_aa64) {
10049             addr += 0x400;
10050         } else {
10051             addr += 0x600;
10052         }
10053     } else if (pstate_read(env) & PSTATE_SP) {
10054         addr += 0x200;
10055     }
10056 
10057     switch (cs->exception_index) {
10058     case EXCP_PREFETCH_ABORT:
10059     case EXCP_DATA_ABORT:
10060         env->cp15.far_el[new_el] = env->exception.vaddress;
10061         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10062                       env->cp15.far_el[new_el]);
10063         /* fall through */
10064     case EXCP_BKPT:
10065     case EXCP_UDEF:
10066     case EXCP_SWI:
10067     case EXCP_HVC:
10068     case EXCP_HYP_TRAP:
10069     case EXCP_SMC:
10070         switch (syn_get_ec(env->exception.syndrome)) {
10071         case EC_ADVSIMDFPACCESSTRAP:
10072             /*
10073              * QEMU internal FP/SIMD syndromes from AArch32 include the
10074              * TA and coproc fields which are only exposed if the exception
10075              * is taken to AArch32 Hyp mode. Mask them out to get a valid
10076              * AArch64 format syndrome.
10077              */
10078             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10079             break;
10080         case EC_CP14RTTRAP:
10081         case EC_CP15RTTRAP:
10082         case EC_CP14DTTRAP:
10083             /*
10084              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10085              * the raw register field from the insn; when taking this to
10086              * AArch64 we must convert it to the AArch64 view of the register
10087              * number. Notice that we read a 4-bit AArch32 register number and
10088              * write back a 5-bit AArch64 one.
10089              */
10090             rt = extract32(env->exception.syndrome, 5, 4);
10091             rt = aarch64_regnum(env, rt);
10092             env->exception.syndrome = deposit32(env->exception.syndrome,
10093                                                 5, 5, rt);
10094             break;
10095         case EC_CP15RRTTRAP:
10096         case EC_CP14RRTTRAP:
10097             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10098             rt = extract32(env->exception.syndrome, 5, 4);
10099             rt = aarch64_regnum(env, rt);
10100             env->exception.syndrome = deposit32(env->exception.syndrome,
10101                                                 5, 5, rt);
10102             rt = extract32(env->exception.syndrome, 10, 4);
10103             rt = aarch64_regnum(env, rt);
10104             env->exception.syndrome = deposit32(env->exception.syndrome,
10105                                                 10, 5, rt);
10106             break;
10107         }
10108         env->cp15.esr_el[new_el] = env->exception.syndrome;
10109         break;
10110     case EXCP_IRQ:
10111     case EXCP_VIRQ:
10112         addr += 0x80;
10113         break;
10114     case EXCP_FIQ:
10115     case EXCP_VFIQ:
10116         addr += 0x100;
10117         break;
10118     default:
10119         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10120     }
10121 
10122     if (is_a64(env)) {
10123         old_mode = pstate_read(env);
10124         aarch64_save_sp(env, arm_current_el(env));
10125         env->elr_el[new_el] = env->pc;
10126     } else {
10127         old_mode = cpsr_read_for_spsr_elx(env);
10128         env->elr_el[new_el] = env->regs[15];
10129 
10130         aarch64_sync_32_to_64(env);
10131 
10132         env->condexec_bits = 0;
10133     }
10134     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10135 
10136     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10137                   env->elr_el[new_el]);
10138 
10139     if (cpu_isar_feature(aa64_pan, cpu)) {
10140         /* The value of PSTATE.PAN is normally preserved, except when ... */
10141         new_mode |= old_mode & PSTATE_PAN;
10142         switch (new_el) {
10143         case 2:
10144             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
10145             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10146                 != (HCR_E2H | HCR_TGE)) {
10147                 break;
10148             }
10149             /* fall through */
10150         case 1:
10151             /* ... the target is EL1 ... */
10152             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
10153             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10154                 new_mode |= PSTATE_PAN;
10155             }
10156             break;
10157         }
10158     }
10159     if (cpu_isar_feature(aa64_mte, cpu)) {
10160         new_mode |= PSTATE_TCO;
10161     }
10162 
10163     if (cpu_isar_feature(aa64_ssbs, cpu)) {
10164         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10165             new_mode |= PSTATE_SSBS;
10166         } else {
10167             new_mode &= ~PSTATE_SSBS;
10168         }
10169     }
10170 
10171     pstate_write(env, PSTATE_DAIF | new_mode);
10172     env->aarch64 = true;
10173     aarch64_restore_sp(env, new_el);
10174     helper_rebuild_hflags_a64(env, new_el);
10175 
10176     env->pc = addr;
10177 
10178     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10179                   new_el, env->pc, pstate_read(env));
10180 }
10181 
10182 /*
10183  * Do semihosting call and set the appropriate return value. All the
10184  * permission and validity checks have been done at translate time.
10185  *
10186  * We only see semihosting exceptions in TCG only as they are not
10187  * trapped to the hypervisor in KVM.
10188  */
10189 #ifdef CONFIG_TCG
10190 static void handle_semihosting(CPUState *cs)
10191 {
10192     ARMCPU *cpu = ARM_CPU(cs);
10193     CPUARMState *env = &cpu->env;
10194 
10195     if (is_a64(env)) {
10196         qemu_log_mask(CPU_LOG_INT,
10197                       "...handling as semihosting call 0x%" PRIx64 "\n",
10198                       env->xregs[0]);
10199         env->xregs[0] = do_common_semihosting(cs);
10200         env->pc += 4;
10201     } else {
10202         qemu_log_mask(CPU_LOG_INT,
10203                       "...handling as semihosting call 0x%x\n",
10204                       env->regs[0]);
10205         env->regs[0] = do_common_semihosting(cs);
10206         env->regs[15] += env->thumb ? 2 : 4;
10207     }
10208 }
10209 #endif
10210 
10211 /* Handle a CPU exception for A and R profile CPUs.
10212  * Do any appropriate logging, handle PSCI calls, and then hand off
10213  * to the AArch64-entry or AArch32-entry function depending on the
10214  * target exception level's register width.
10215  *
10216  * Note: this is used for both TCG (as the do_interrupt tcg op),
10217  *       and KVM to re-inject guest debug exceptions, and to
10218  *       inject a Synchronous-External-Abort.
10219  */
10220 void arm_cpu_do_interrupt(CPUState *cs)
10221 {
10222     ARMCPU *cpu = ARM_CPU(cs);
10223     CPUARMState *env = &cpu->env;
10224     unsigned int new_el = env->exception.target_el;
10225 
10226     assert(!arm_feature(env, ARM_FEATURE_M));
10227 
10228     arm_log_exception(cs);
10229     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10230                   new_el);
10231     if (qemu_loglevel_mask(CPU_LOG_INT)
10232         && !excp_is_internal(cs->exception_index)) {
10233         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10234                       syn_get_ec(env->exception.syndrome),
10235                       env->exception.syndrome);
10236     }
10237 
10238     if (arm_is_psci_call(cpu, cs->exception_index)) {
10239         arm_handle_psci_call(cpu);
10240         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10241         return;
10242     }
10243 
10244     /*
10245      * Semihosting semantics depend on the register width of the code
10246      * that caused the exception, not the target exception level, so
10247      * must be handled here.
10248      */
10249 #ifdef CONFIG_TCG
10250     if (cs->exception_index == EXCP_SEMIHOST) {
10251         handle_semihosting(cs);
10252         return;
10253     }
10254 #endif
10255 
10256     /* Hooks may change global state so BQL should be held, also the
10257      * BQL needs to be held for any modification of
10258      * cs->interrupt_request.
10259      */
10260     g_assert(qemu_mutex_iothread_locked());
10261 
10262     arm_call_pre_el_change_hook(cpu);
10263 
10264     assert(!excp_is_internal(cs->exception_index));
10265     if (arm_el_is_aa64(env, new_el)) {
10266         arm_cpu_do_interrupt_aarch64(cs);
10267     } else {
10268         arm_cpu_do_interrupt_aarch32(cs);
10269     }
10270 
10271     arm_call_el_change_hook(cpu);
10272 
10273     if (!kvm_enabled()) {
10274         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10275     }
10276 }
10277 #endif /* !CONFIG_USER_ONLY */
10278 
10279 uint64_t arm_sctlr(CPUARMState *env, int el)
10280 {
10281     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10282     if (el == 0) {
10283         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10284         el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10285              ? 2 : 1;
10286     }
10287     return env->cp15.sctlr_el[el];
10288 }
10289 
10290 /* Return the SCTLR value which controls this address translation regime */
10291 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10292 {
10293     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10294 }
10295 
10296 #ifndef CONFIG_USER_ONLY
10297 
10298 /* Return true if the specified stage of address translation is disabled */
10299 static inline bool regime_translation_disabled(CPUARMState *env,
10300                                                ARMMMUIdx mmu_idx)
10301 {
10302     uint64_t hcr_el2;
10303 
10304     if (arm_feature(env, ARM_FEATURE_M)) {
10305         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10306                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10307         case R_V7M_MPU_CTRL_ENABLE_MASK:
10308             /* Enabled, but not for HardFault and NMI */
10309             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10310         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10311             /* Enabled for all cases */
10312             return false;
10313         case 0:
10314         default:
10315             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10316              * we warned about that in armv7m_nvic.c when the guest set it.
10317              */
10318             return true;
10319         }
10320     }
10321 
10322     hcr_el2 = arm_hcr_el2_eff(env);
10323 
10324     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10325         /* HCR.DC means HCR.VM behaves as 1 */
10326         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10327     }
10328 
10329     if (hcr_el2 & HCR_TGE) {
10330         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10331         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10332             return true;
10333         }
10334     }
10335 
10336     if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10337         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10338         return true;
10339     }
10340 
10341     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10342 }
10343 
10344 static inline bool regime_translation_big_endian(CPUARMState *env,
10345                                                  ARMMMUIdx mmu_idx)
10346 {
10347     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10348 }
10349 
10350 /* Return the TTBR associated with this translation regime */
10351 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10352                                    int ttbrn)
10353 {
10354     if (mmu_idx == ARMMMUIdx_Stage2) {
10355         return env->cp15.vttbr_el2;
10356     }
10357     if (mmu_idx == ARMMMUIdx_Stage2_S) {
10358         return env->cp15.vsttbr_el2;
10359     }
10360     if (ttbrn == 0) {
10361         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10362     } else {
10363         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10364     }
10365 }
10366 
10367 #endif /* !CONFIG_USER_ONLY */
10368 
10369 /* Convert a possible stage1+2 MMU index into the appropriate
10370  * stage 1 MMU index
10371  */
10372 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10373 {
10374     switch (mmu_idx) {
10375     case ARMMMUIdx_SE10_0:
10376         return ARMMMUIdx_Stage1_SE0;
10377     case ARMMMUIdx_SE10_1:
10378         return ARMMMUIdx_Stage1_SE1;
10379     case ARMMMUIdx_SE10_1_PAN:
10380         return ARMMMUIdx_Stage1_SE1_PAN;
10381     case ARMMMUIdx_E10_0:
10382         return ARMMMUIdx_Stage1_E0;
10383     case ARMMMUIdx_E10_1:
10384         return ARMMMUIdx_Stage1_E1;
10385     case ARMMMUIdx_E10_1_PAN:
10386         return ARMMMUIdx_Stage1_E1_PAN;
10387     default:
10388         return mmu_idx;
10389     }
10390 }
10391 
10392 /* Return true if the translation regime is using LPAE format page tables */
10393 static inline bool regime_using_lpae_format(CPUARMState *env,
10394                                             ARMMMUIdx mmu_idx)
10395 {
10396     int el = regime_el(env, mmu_idx);
10397     if (el == 2 || arm_el_is_aa64(env, el)) {
10398         return true;
10399     }
10400     if (arm_feature(env, ARM_FEATURE_LPAE)
10401         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10402         return true;
10403     }
10404     return false;
10405 }
10406 
10407 /* Returns true if the stage 1 translation regime is using LPAE format page
10408  * tables. Used when raising alignment exceptions, whose FSR changes depending
10409  * on whether the long or short descriptor format is in use. */
10410 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10411 {
10412     mmu_idx = stage_1_mmu_idx(mmu_idx);
10413 
10414     return regime_using_lpae_format(env, mmu_idx);
10415 }
10416 
10417 #ifndef CONFIG_USER_ONLY
10418 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10419 {
10420     switch (mmu_idx) {
10421     case ARMMMUIdx_SE10_0:
10422     case ARMMMUIdx_E20_0:
10423     case ARMMMUIdx_SE20_0:
10424     case ARMMMUIdx_Stage1_E0:
10425     case ARMMMUIdx_Stage1_SE0:
10426     case ARMMMUIdx_MUser:
10427     case ARMMMUIdx_MSUser:
10428     case ARMMMUIdx_MUserNegPri:
10429     case ARMMMUIdx_MSUserNegPri:
10430         return true;
10431     default:
10432         return false;
10433     case ARMMMUIdx_E10_0:
10434     case ARMMMUIdx_E10_1:
10435     case ARMMMUIdx_E10_1_PAN:
10436         g_assert_not_reached();
10437     }
10438 }
10439 
10440 /* Translate section/page access permissions to page
10441  * R/W protection flags
10442  *
10443  * @env:         CPUARMState
10444  * @mmu_idx:     MMU index indicating required translation regime
10445  * @ap:          The 3-bit access permissions (AP[2:0])
10446  * @domain_prot: The 2-bit domain access permissions
10447  */
10448 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10449                                 int ap, int domain_prot)
10450 {
10451     bool is_user = regime_is_user(env, mmu_idx);
10452 
10453     if (domain_prot == 3) {
10454         return PAGE_READ | PAGE_WRITE;
10455     }
10456 
10457     switch (ap) {
10458     case 0:
10459         if (arm_feature(env, ARM_FEATURE_V7)) {
10460             return 0;
10461         }
10462         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10463         case SCTLR_S:
10464             return is_user ? 0 : PAGE_READ;
10465         case SCTLR_R:
10466             return PAGE_READ;
10467         default:
10468             return 0;
10469         }
10470     case 1:
10471         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10472     case 2:
10473         if (is_user) {
10474             return PAGE_READ;
10475         } else {
10476             return PAGE_READ | PAGE_WRITE;
10477         }
10478     case 3:
10479         return PAGE_READ | PAGE_WRITE;
10480     case 4: /* Reserved.  */
10481         return 0;
10482     case 5:
10483         return is_user ? 0 : PAGE_READ;
10484     case 6:
10485         return PAGE_READ;
10486     case 7:
10487         if (!arm_feature(env, ARM_FEATURE_V6K)) {
10488             return 0;
10489         }
10490         return PAGE_READ;
10491     default:
10492         g_assert_not_reached();
10493     }
10494 }
10495 
10496 /* Translate section/page access permissions to page
10497  * R/W protection flags.
10498  *
10499  * @ap:      The 2-bit simple AP (AP[2:1])
10500  * @is_user: TRUE if accessing from PL0
10501  */
10502 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10503 {
10504     switch (ap) {
10505     case 0:
10506         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10507     case 1:
10508         return PAGE_READ | PAGE_WRITE;
10509     case 2:
10510         return is_user ? 0 : PAGE_READ;
10511     case 3:
10512         return PAGE_READ;
10513     default:
10514         g_assert_not_reached();
10515     }
10516 }
10517 
10518 static inline int
10519 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10520 {
10521     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10522 }
10523 
10524 /* Translate S2 section/page access permissions to protection flags
10525  *
10526  * @env:     CPUARMState
10527  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
10528  * @xn:      XN (execute-never) bits
10529  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10530  */
10531 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10532 {
10533     int prot = 0;
10534 
10535     if (s2ap & 1) {
10536         prot |= PAGE_READ;
10537     }
10538     if (s2ap & 2) {
10539         prot |= PAGE_WRITE;
10540     }
10541 
10542     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10543         switch (xn) {
10544         case 0:
10545             prot |= PAGE_EXEC;
10546             break;
10547         case 1:
10548             if (s1_is_el0) {
10549                 prot |= PAGE_EXEC;
10550             }
10551             break;
10552         case 2:
10553             break;
10554         case 3:
10555             if (!s1_is_el0) {
10556                 prot |= PAGE_EXEC;
10557             }
10558             break;
10559         default:
10560             g_assert_not_reached();
10561         }
10562     } else {
10563         if (!extract32(xn, 1, 1)) {
10564             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10565                 prot |= PAGE_EXEC;
10566             }
10567         }
10568     }
10569     return prot;
10570 }
10571 
10572 /* Translate section/page access permissions to protection flags
10573  *
10574  * @env:     CPUARMState
10575  * @mmu_idx: MMU index indicating required translation regime
10576  * @is_aa64: TRUE if AArch64
10577  * @ap:      The 2-bit simple AP (AP[2:1])
10578  * @ns:      NS (non-secure) bit
10579  * @xn:      XN (execute-never) bit
10580  * @pxn:     PXN (privileged execute-never) bit
10581  */
10582 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10583                       int ap, int ns, int xn, int pxn)
10584 {
10585     bool is_user = regime_is_user(env, mmu_idx);
10586     int prot_rw, user_rw;
10587     bool have_wxn;
10588     int wxn = 0;
10589 
10590     assert(mmu_idx != ARMMMUIdx_Stage2);
10591     assert(mmu_idx != ARMMMUIdx_Stage2_S);
10592 
10593     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10594     if (is_user) {
10595         prot_rw = user_rw;
10596     } else {
10597         if (user_rw && regime_is_pan(env, mmu_idx)) {
10598             /* PAN forbids data accesses but doesn't affect insn fetch */
10599             prot_rw = 0;
10600         } else {
10601             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10602         }
10603     }
10604 
10605     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10606         return prot_rw;
10607     }
10608 
10609     /* TODO have_wxn should be replaced with
10610      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10611      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10612      * compatible processors have EL2, which is required for [U]WXN.
10613      */
10614     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10615 
10616     if (have_wxn) {
10617         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10618     }
10619 
10620     if (is_aa64) {
10621         if (regime_has_2_ranges(mmu_idx) && !is_user) {
10622             xn = pxn || (user_rw & PAGE_WRITE);
10623         }
10624     } else if (arm_feature(env, ARM_FEATURE_V7)) {
10625         switch (regime_el(env, mmu_idx)) {
10626         case 1:
10627         case 3:
10628             if (is_user) {
10629                 xn = xn || !(user_rw & PAGE_READ);
10630             } else {
10631                 int uwxn = 0;
10632                 if (have_wxn) {
10633                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10634                 }
10635                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10636                      (uwxn && (user_rw & PAGE_WRITE));
10637             }
10638             break;
10639         case 2:
10640             break;
10641         }
10642     } else {
10643         xn = wxn = 0;
10644     }
10645 
10646     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10647         return prot_rw;
10648     }
10649     return prot_rw | PAGE_EXEC;
10650 }
10651 
10652 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10653                                      uint32_t *table, uint32_t address)
10654 {
10655     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10656     TCR *tcr = regime_tcr(env, mmu_idx);
10657 
10658     if (address & tcr->mask) {
10659         if (tcr->raw_tcr & TTBCR_PD1) {
10660             /* Translation table walk disabled for TTBR1 */
10661             return false;
10662         }
10663         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10664     } else {
10665         if (tcr->raw_tcr & TTBCR_PD0) {
10666             /* Translation table walk disabled for TTBR0 */
10667             return false;
10668         }
10669         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10670     }
10671     *table |= (address >> 18) & 0x3ffc;
10672     return true;
10673 }
10674 
10675 /* Translate a S1 pagetable walk through S2 if needed.  */
10676 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10677                                hwaddr addr, bool *is_secure,
10678                                ARMMMUFaultInfo *fi)
10679 {
10680     if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10681         !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10682         target_ulong s2size;
10683         hwaddr s2pa;
10684         int s2prot;
10685         int ret;
10686         ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
10687                                           : ARMMMUIdx_Stage2;
10688         ARMCacheAttrs cacheattrs = {};
10689         MemTxAttrs txattrs = {};
10690 
10691         ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
10692                                  &s2pa, &txattrs, &s2prot, &s2size, fi,
10693                                  &cacheattrs);
10694         if (ret) {
10695             assert(fi->type != ARMFault_None);
10696             fi->s2addr = addr;
10697             fi->stage2 = true;
10698             fi->s1ptw = true;
10699             fi->s1ns = !*is_secure;
10700             return ~0;
10701         }
10702         if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
10703             (cacheattrs.attrs & 0xf0) == 0) {
10704             /*
10705              * PTW set and S1 walk touched S2 Device memory:
10706              * generate Permission fault.
10707              */
10708             fi->type = ARMFault_Permission;
10709             fi->s2addr = addr;
10710             fi->stage2 = true;
10711             fi->s1ptw = true;
10712             fi->s1ns = !*is_secure;
10713             return ~0;
10714         }
10715 
10716         if (arm_is_secure_below_el3(env)) {
10717             /* Check if page table walk is to secure or non-secure PA space. */
10718             if (*is_secure) {
10719                 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
10720             } else {
10721                 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
10722             }
10723         } else {
10724             assert(!*is_secure);
10725         }
10726 
10727         addr = s2pa;
10728     }
10729     return addr;
10730 }
10731 
10732 /* All loads done in the course of a page table walk go through here. */
10733 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10734                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10735 {
10736     ARMCPU *cpu = ARM_CPU(cs);
10737     CPUARMState *env = &cpu->env;
10738     MemTxAttrs attrs = {};
10739     MemTxResult result = MEMTX_OK;
10740     AddressSpace *as;
10741     uint32_t data;
10742 
10743     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10744     attrs.secure = is_secure;
10745     as = arm_addressspace(cs, attrs);
10746     if (fi->s1ptw) {
10747         return 0;
10748     }
10749     if (regime_translation_big_endian(env, mmu_idx)) {
10750         data = address_space_ldl_be(as, addr, attrs, &result);
10751     } else {
10752         data = address_space_ldl_le(as, addr, attrs, &result);
10753     }
10754     if (result == MEMTX_OK) {
10755         return data;
10756     }
10757     fi->type = ARMFault_SyncExternalOnWalk;
10758     fi->ea = arm_extabort_type(result);
10759     return 0;
10760 }
10761 
10762 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10763                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10764 {
10765     ARMCPU *cpu = ARM_CPU(cs);
10766     CPUARMState *env = &cpu->env;
10767     MemTxAttrs attrs = {};
10768     MemTxResult result = MEMTX_OK;
10769     AddressSpace *as;
10770     uint64_t data;
10771 
10772     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10773     attrs.secure = is_secure;
10774     as = arm_addressspace(cs, attrs);
10775     if (fi->s1ptw) {
10776         return 0;
10777     }
10778     if (regime_translation_big_endian(env, mmu_idx)) {
10779         data = address_space_ldq_be(as, addr, attrs, &result);
10780     } else {
10781         data = address_space_ldq_le(as, addr, attrs, &result);
10782     }
10783     if (result == MEMTX_OK) {
10784         return data;
10785     }
10786     fi->type = ARMFault_SyncExternalOnWalk;
10787     fi->ea = arm_extabort_type(result);
10788     return 0;
10789 }
10790 
10791 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10792                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10793                              hwaddr *phys_ptr, int *prot,
10794                              target_ulong *page_size,
10795                              ARMMMUFaultInfo *fi)
10796 {
10797     CPUState *cs = env_cpu(env);
10798     int level = 1;
10799     uint32_t table;
10800     uint32_t desc;
10801     int type;
10802     int ap;
10803     int domain = 0;
10804     int domain_prot;
10805     hwaddr phys_addr;
10806     uint32_t dacr;
10807 
10808     /* Pagetable walk.  */
10809     /* Lookup l1 descriptor.  */
10810     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10811         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10812         fi->type = ARMFault_Translation;
10813         goto do_fault;
10814     }
10815     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10816                        mmu_idx, fi);
10817     if (fi->type != ARMFault_None) {
10818         goto do_fault;
10819     }
10820     type = (desc & 3);
10821     domain = (desc >> 5) & 0x0f;
10822     if (regime_el(env, mmu_idx) == 1) {
10823         dacr = env->cp15.dacr_ns;
10824     } else {
10825         dacr = env->cp15.dacr_s;
10826     }
10827     domain_prot = (dacr >> (domain * 2)) & 3;
10828     if (type == 0) {
10829         /* Section translation fault.  */
10830         fi->type = ARMFault_Translation;
10831         goto do_fault;
10832     }
10833     if (type != 2) {
10834         level = 2;
10835     }
10836     if (domain_prot == 0 || domain_prot == 2) {
10837         fi->type = ARMFault_Domain;
10838         goto do_fault;
10839     }
10840     if (type == 2) {
10841         /* 1Mb section.  */
10842         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10843         ap = (desc >> 10) & 3;
10844         *page_size = 1024 * 1024;
10845     } else {
10846         /* Lookup l2 entry.  */
10847         if (type == 1) {
10848             /* Coarse pagetable.  */
10849             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10850         } else {
10851             /* Fine pagetable.  */
10852             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10853         }
10854         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10855                            mmu_idx, fi);
10856         if (fi->type != ARMFault_None) {
10857             goto do_fault;
10858         }
10859         switch (desc & 3) {
10860         case 0: /* Page translation fault.  */
10861             fi->type = ARMFault_Translation;
10862             goto do_fault;
10863         case 1: /* 64k page.  */
10864             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10865             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10866             *page_size = 0x10000;
10867             break;
10868         case 2: /* 4k page.  */
10869             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10870             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10871             *page_size = 0x1000;
10872             break;
10873         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10874             if (type == 1) {
10875                 /* ARMv6/XScale extended small page format */
10876                 if (arm_feature(env, ARM_FEATURE_XSCALE)
10877                     || arm_feature(env, ARM_FEATURE_V6)) {
10878                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10879                     *page_size = 0x1000;
10880                 } else {
10881                     /* UNPREDICTABLE in ARMv5; we choose to take a
10882                      * page translation fault.
10883                      */
10884                     fi->type = ARMFault_Translation;
10885                     goto do_fault;
10886                 }
10887             } else {
10888                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10889                 *page_size = 0x400;
10890             }
10891             ap = (desc >> 4) & 3;
10892             break;
10893         default:
10894             /* Never happens, but compiler isn't smart enough to tell.  */
10895             abort();
10896         }
10897     }
10898     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10899     *prot |= *prot ? PAGE_EXEC : 0;
10900     if (!(*prot & (1 << access_type))) {
10901         /* Access permission fault.  */
10902         fi->type = ARMFault_Permission;
10903         goto do_fault;
10904     }
10905     *phys_ptr = phys_addr;
10906     return false;
10907 do_fault:
10908     fi->domain = domain;
10909     fi->level = level;
10910     return true;
10911 }
10912 
10913 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10914                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10915                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10916                              target_ulong *page_size, ARMMMUFaultInfo *fi)
10917 {
10918     CPUState *cs = env_cpu(env);
10919     ARMCPU *cpu = env_archcpu(env);
10920     int level = 1;
10921     uint32_t table;
10922     uint32_t desc;
10923     uint32_t xn;
10924     uint32_t pxn = 0;
10925     int type;
10926     int ap;
10927     int domain = 0;
10928     int domain_prot;
10929     hwaddr phys_addr;
10930     uint32_t dacr;
10931     bool ns;
10932 
10933     /* Pagetable walk.  */
10934     /* Lookup l1 descriptor.  */
10935     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10936         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10937         fi->type = ARMFault_Translation;
10938         goto do_fault;
10939     }
10940     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10941                        mmu_idx, fi);
10942     if (fi->type != ARMFault_None) {
10943         goto do_fault;
10944     }
10945     type = (desc & 3);
10946     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
10947         /* Section translation fault, or attempt to use the encoding
10948          * which is Reserved on implementations without PXN.
10949          */
10950         fi->type = ARMFault_Translation;
10951         goto do_fault;
10952     }
10953     if ((type == 1) || !(desc & (1 << 18))) {
10954         /* Page or Section.  */
10955         domain = (desc >> 5) & 0x0f;
10956     }
10957     if (regime_el(env, mmu_idx) == 1) {
10958         dacr = env->cp15.dacr_ns;
10959     } else {
10960         dacr = env->cp15.dacr_s;
10961     }
10962     if (type == 1) {
10963         level = 2;
10964     }
10965     domain_prot = (dacr >> (domain * 2)) & 3;
10966     if (domain_prot == 0 || domain_prot == 2) {
10967         /* Section or Page domain fault */
10968         fi->type = ARMFault_Domain;
10969         goto do_fault;
10970     }
10971     if (type != 1) {
10972         if (desc & (1 << 18)) {
10973             /* Supersection.  */
10974             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10975             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10976             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10977             *page_size = 0x1000000;
10978         } else {
10979             /* Section.  */
10980             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10981             *page_size = 0x100000;
10982         }
10983         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10984         xn = desc & (1 << 4);
10985         pxn = desc & 1;
10986         ns = extract32(desc, 19, 1);
10987     } else {
10988         if (cpu_isar_feature(aa32_pxn, cpu)) {
10989             pxn = (desc >> 2) & 1;
10990         }
10991         ns = extract32(desc, 3, 1);
10992         /* Lookup l2 entry.  */
10993         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10994         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10995                            mmu_idx, fi);
10996         if (fi->type != ARMFault_None) {
10997             goto do_fault;
10998         }
10999         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
11000         switch (desc & 3) {
11001         case 0: /* Page translation fault.  */
11002             fi->type = ARMFault_Translation;
11003             goto do_fault;
11004         case 1: /* 64k page.  */
11005             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11006             xn = desc & (1 << 15);
11007             *page_size = 0x10000;
11008             break;
11009         case 2: case 3: /* 4k page.  */
11010             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11011             xn = desc & 1;
11012             *page_size = 0x1000;
11013             break;
11014         default:
11015             /* Never happens, but compiler isn't smart enough to tell.  */
11016             abort();
11017         }
11018     }
11019     if (domain_prot == 3) {
11020         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11021     } else {
11022         if (pxn && !regime_is_user(env, mmu_idx)) {
11023             xn = 1;
11024         }
11025         if (xn && access_type == MMU_INST_FETCH) {
11026             fi->type = ARMFault_Permission;
11027             goto do_fault;
11028         }
11029 
11030         if (arm_feature(env, ARM_FEATURE_V6K) &&
11031                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
11032             /* The simplified model uses AP[0] as an access control bit.  */
11033             if ((ap & 1) == 0) {
11034                 /* Access flag fault.  */
11035                 fi->type = ARMFault_AccessFlag;
11036                 goto do_fault;
11037             }
11038             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
11039         } else {
11040             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11041         }
11042         if (*prot && !xn) {
11043             *prot |= PAGE_EXEC;
11044         }
11045         if (!(*prot & (1 << access_type))) {
11046             /* Access permission fault.  */
11047             fi->type = ARMFault_Permission;
11048             goto do_fault;
11049         }
11050     }
11051     if (ns) {
11052         /* The NS bit will (as required by the architecture) have no effect if
11053          * the CPU doesn't support TZ or this is a non-secure translation
11054          * regime, because the attribute will already be non-secure.
11055          */
11056         attrs->secure = false;
11057     }
11058     *phys_ptr = phys_addr;
11059     return false;
11060 do_fault:
11061     fi->domain = domain;
11062     fi->level = level;
11063     return true;
11064 }
11065 
11066 /*
11067  * check_s2_mmu_setup
11068  * @cpu:        ARMCPU
11069  * @is_aa64:    True if the translation regime is in AArch64 state
11070  * @startlevel: Suggested starting level
11071  * @inputsize:  Bitsize of IPAs
11072  * @stride:     Page-table stride (See the ARM ARM)
11073  *
11074  * Returns true if the suggested S2 translation parameters are OK and
11075  * false otherwise.
11076  */
11077 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
11078                                int inputsize, int stride, int outputsize)
11079 {
11080     const int grainsize = stride + 3;
11081     int startsizecheck;
11082 
11083     /*
11084      * Negative levels are usually not allowed...
11085      * Except for FEAT_LPA2, 4k page table, 52-bit address space, which
11086      * begins with level -1.  Note that previous feature tests will have
11087      * eliminated this combination if it is not enabled.
11088      */
11089     if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) {
11090         return false;
11091     }
11092 
11093     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
11094     if (startsizecheck < 1 || startsizecheck > stride + 4) {
11095         return false;
11096     }
11097 
11098     if (is_aa64) {
11099         switch (stride) {
11100         case 13: /* 64KB Pages.  */
11101             if (level == 0 || (level == 1 && outputsize <= 42)) {
11102                 return false;
11103             }
11104             break;
11105         case 11: /* 16KB Pages.  */
11106             if (level == 0 || (level == 1 && outputsize <= 40)) {
11107                 return false;
11108             }
11109             break;
11110         case 9: /* 4KB Pages.  */
11111             if (level == 0 && outputsize <= 42) {
11112                 return false;
11113             }
11114             break;
11115         default:
11116             g_assert_not_reached();
11117         }
11118 
11119         /* Inputsize checks.  */
11120         if (inputsize > outputsize &&
11121             (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) {
11122             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
11123             return false;
11124         }
11125     } else {
11126         /* AArch32 only supports 4KB pages. Assert on that.  */
11127         assert(stride == 9);
11128 
11129         if (level == 0) {
11130             return false;
11131         }
11132     }
11133     return true;
11134 }
11135 
11136 /* Translate from the 4-bit stage 2 representation of
11137  * memory attributes (without cache-allocation hints) to
11138  * the 8-bit representation of the stage 1 MAIR registers
11139  * (which includes allocation hints).
11140  *
11141  * ref: shared/translation/attrs/S2AttrDecode()
11142  *      .../S2ConvertAttrsHints()
11143  */
11144 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11145 {
11146     uint8_t hiattr = extract32(s2attrs, 2, 2);
11147     uint8_t loattr = extract32(s2attrs, 0, 2);
11148     uint8_t hihint = 0, lohint = 0;
11149 
11150     if (hiattr != 0) { /* normal memory */
11151         if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
11152             hiattr = loattr = 1; /* non-cacheable */
11153         } else {
11154             if (hiattr != 1) { /* Write-through or write-back */
11155                 hihint = 3; /* RW allocate */
11156             }
11157             if (loattr != 1) { /* Write-through or write-back */
11158                 lohint = 3; /* RW allocate */
11159             }
11160         }
11161     }
11162 
11163     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11164 }
11165 #endif /* !CONFIG_USER_ONLY */
11166 
11167 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
11168 static const uint8_t pamax_map[] = {
11169     [0] = 32,
11170     [1] = 36,
11171     [2] = 40,
11172     [3] = 42,
11173     [4] = 44,
11174     [5] = 48,
11175     [6] = 52,
11176 };
11177 
11178 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
11179 unsigned int arm_pamax(ARMCPU *cpu)
11180 {
11181     unsigned int parange =
11182         FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
11183 
11184     /*
11185      * id_aa64mmfr0 is a read-only register so values outside of the
11186      * supported mappings can be considered an implementation error.
11187      */
11188     assert(parange < ARRAY_SIZE(pamax_map));
11189     return pamax_map[parange];
11190 }
11191 
11192 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11193 {
11194     if (regime_has_2_ranges(mmu_idx)) {
11195         return extract64(tcr, 37, 2);
11196     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11197         return 0; /* VTCR_EL2 */
11198     } else {
11199         /* Replicate the single TBI bit so we always have 2 bits.  */
11200         return extract32(tcr, 20, 1) * 3;
11201     }
11202 }
11203 
11204 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11205 {
11206     if (regime_has_2_ranges(mmu_idx)) {
11207         return extract64(tcr, 51, 2);
11208     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11209         return 0; /* VTCR_EL2 */
11210     } else {
11211         /* Replicate the single TBID bit so we always have 2 bits.  */
11212         return extract32(tcr, 29, 1) * 3;
11213     }
11214 }
11215 
11216 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11217 {
11218     if (regime_has_2_ranges(mmu_idx)) {
11219         return extract64(tcr, 57, 2);
11220     } else {
11221         /* Replicate the single TCMA bit so we always have 2 bits.  */
11222         return extract32(tcr, 30, 1) * 3;
11223     }
11224 }
11225 
11226 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11227                                    ARMMMUIdx mmu_idx, bool data)
11228 {
11229     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11230     bool epd, hpd, using16k, using64k, tsz_oob, ds;
11231     int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11232     ARMCPU *cpu = env_archcpu(env);
11233 
11234     if (!regime_has_2_ranges(mmu_idx)) {
11235         select = 0;
11236         tsz = extract32(tcr, 0, 6);
11237         using64k = extract32(tcr, 14, 1);
11238         using16k = extract32(tcr, 15, 1);
11239         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11240             /* VTCR_EL2 */
11241             hpd = false;
11242         } else {
11243             hpd = extract32(tcr, 24, 1);
11244         }
11245         epd = false;
11246         sh = extract32(tcr, 12, 2);
11247         ps = extract32(tcr, 16, 3);
11248         ds = extract64(tcr, 32, 1);
11249     } else {
11250         /*
11251          * Bit 55 is always between the two regions, and is canonical for
11252          * determining if address tagging is enabled.
11253          */
11254         select = extract64(va, 55, 1);
11255         if (!select) {
11256             tsz = extract32(tcr, 0, 6);
11257             epd = extract32(tcr, 7, 1);
11258             sh = extract32(tcr, 12, 2);
11259             using64k = extract32(tcr, 14, 1);
11260             using16k = extract32(tcr, 15, 1);
11261             hpd = extract64(tcr, 41, 1);
11262         } else {
11263             int tg = extract32(tcr, 30, 2);
11264             using16k = tg == 1;
11265             using64k = tg == 3;
11266             tsz = extract32(tcr, 16, 6);
11267             epd = extract32(tcr, 23, 1);
11268             sh = extract32(tcr, 28, 2);
11269             hpd = extract64(tcr, 42, 1);
11270         }
11271         ps = extract64(tcr, 32, 3);
11272         ds = extract64(tcr, 59, 1);
11273     }
11274 
11275     if (cpu_isar_feature(aa64_st, cpu)) {
11276         max_tsz = 48 - using64k;
11277     } else {
11278         max_tsz = 39;
11279     }
11280 
11281     /*
11282      * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11283      * adjust the effective value of DS, as documented.
11284      */
11285     min_tsz = 16;
11286     if (using64k) {
11287         if (cpu_isar_feature(aa64_lva, cpu)) {
11288             min_tsz = 12;
11289         }
11290         ds = false;
11291     } else if (ds) {
11292         switch (mmu_idx) {
11293         case ARMMMUIdx_Stage2:
11294         case ARMMMUIdx_Stage2_S:
11295             if (using16k) {
11296                 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11297             } else {
11298                 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11299             }
11300             break;
11301         default:
11302             if (using16k) {
11303                 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11304             } else {
11305                 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11306             }
11307             break;
11308         }
11309         if (ds) {
11310             min_tsz = 12;
11311         }
11312     }
11313 
11314     if (tsz > max_tsz) {
11315         tsz = max_tsz;
11316         tsz_oob = true;
11317     } else if (tsz < min_tsz) {
11318         tsz = min_tsz;
11319         tsz_oob = true;
11320     } else {
11321         tsz_oob = false;
11322     }
11323 
11324     /* Present TBI as a composite with TBID.  */
11325     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11326     if (!data) {
11327         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11328     }
11329     tbi = (tbi >> select) & 1;
11330 
11331     return (ARMVAParameters) {
11332         .tsz = tsz,
11333         .ps = ps,
11334         .sh = sh,
11335         .select = select,
11336         .tbi = tbi,
11337         .epd = epd,
11338         .hpd = hpd,
11339         .using16k = using16k,
11340         .using64k = using64k,
11341         .tsz_oob = tsz_oob,
11342         .ds = ds,
11343     };
11344 }
11345 
11346 #ifndef CONFIG_USER_ONLY
11347 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11348                                           ARMMMUIdx mmu_idx)
11349 {
11350     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11351     uint32_t el = regime_el(env, mmu_idx);
11352     int select, tsz;
11353     bool epd, hpd;
11354 
11355     assert(mmu_idx != ARMMMUIdx_Stage2_S);
11356 
11357     if (mmu_idx == ARMMMUIdx_Stage2) {
11358         /* VTCR */
11359         bool sext = extract32(tcr, 4, 1);
11360         bool sign = extract32(tcr, 3, 1);
11361 
11362         /*
11363          * If the sign-extend bit is not the same as t0sz[3], the result
11364          * is unpredictable. Flag this as a guest error.
11365          */
11366         if (sign != sext) {
11367             qemu_log_mask(LOG_GUEST_ERROR,
11368                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11369         }
11370         tsz = sextract32(tcr, 0, 4) + 8;
11371         select = 0;
11372         hpd = false;
11373         epd = false;
11374     } else if (el == 2) {
11375         /* HTCR */
11376         tsz = extract32(tcr, 0, 3);
11377         select = 0;
11378         hpd = extract64(tcr, 24, 1);
11379         epd = false;
11380     } else {
11381         int t0sz = extract32(tcr, 0, 3);
11382         int t1sz = extract32(tcr, 16, 3);
11383 
11384         if (t1sz == 0) {
11385             select = va > (0xffffffffu >> t0sz);
11386         } else {
11387             /* Note that we will detect errors later.  */
11388             select = va >= ~(0xffffffffu >> t1sz);
11389         }
11390         if (!select) {
11391             tsz = t0sz;
11392             epd = extract32(tcr, 7, 1);
11393             hpd = extract64(tcr, 41, 1);
11394         } else {
11395             tsz = t1sz;
11396             epd = extract32(tcr, 23, 1);
11397             hpd = extract64(tcr, 42, 1);
11398         }
11399         /* For aarch32, hpd0 is not enabled without t2e as well.  */
11400         hpd &= extract32(tcr, 6, 1);
11401     }
11402 
11403     return (ARMVAParameters) {
11404         .tsz = tsz,
11405         .select = select,
11406         .epd = epd,
11407         .hpd = hpd,
11408     };
11409 }
11410 
11411 /**
11412  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11413  *
11414  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11415  * prot and page_size may not be filled in, and the populated fsr value provides
11416  * information on why the translation aborted, in the format of a long-format
11417  * DFSR/IFSR fault register, with the following caveats:
11418  *  * the WnR bit is never set (the caller must do this).
11419  *
11420  * @env: CPUARMState
11421  * @address: virtual address to get physical address for
11422  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11423  * @mmu_idx: MMU index indicating required translation regime
11424  * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11425  *             walk), must be true if this is stage 2 of a stage 1+2 walk for an
11426  *             EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11427  * @phys_ptr: set to the physical address corresponding to the virtual address
11428  * @attrs: set to the memory transaction attributes to use
11429  * @prot: set to the permissions for the page containing phys_ptr
11430  * @page_size_ptr: set to the size of the page containing phys_ptr
11431  * @fi: set to fault info if the translation fails
11432  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11433  */
11434 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
11435                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
11436                                bool s1_is_el0,
11437                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11438                                target_ulong *page_size_ptr,
11439                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11440 {
11441     ARMCPU *cpu = env_archcpu(env);
11442     CPUState *cs = CPU(cpu);
11443     /* Read an LPAE long-descriptor translation table. */
11444     ARMFaultType fault_type = ARMFault_Translation;
11445     uint32_t level;
11446     ARMVAParameters param;
11447     uint64_t ttbr;
11448     hwaddr descaddr, indexmask, indexmask_grainsize;
11449     uint32_t tableattrs;
11450     target_ulong page_size;
11451     uint32_t attrs;
11452     int32_t stride;
11453     int addrsize, inputsize, outputsize;
11454     TCR *tcr = regime_tcr(env, mmu_idx);
11455     int ap, ns, xn, pxn;
11456     uint32_t el = regime_el(env, mmu_idx);
11457     uint64_t descaddrmask;
11458     bool aarch64 = arm_el_is_aa64(env, el);
11459     bool guarded = false;
11460 
11461     /* TODO: This code does not support shareability levels. */
11462     if (aarch64) {
11463         int ps;
11464 
11465         param = aa64_va_parameters(env, address, mmu_idx,
11466                                    access_type != MMU_INST_FETCH);
11467         level = 0;
11468 
11469         /*
11470          * If TxSZ is programmed to a value larger than the maximum,
11471          * or smaller than the effective minimum, it is IMPLEMENTATION
11472          * DEFINED whether we behave as if the field were programmed
11473          * within bounds, or if a level 0 Translation fault is generated.
11474          *
11475          * With FEAT_LVA, fault on less than minimum becomes required,
11476          * so our choice is to always raise the fault.
11477          */
11478         if (param.tsz_oob) {
11479             fault_type = ARMFault_Translation;
11480             goto do_fault;
11481         }
11482 
11483         addrsize = 64 - 8 * param.tbi;
11484         inputsize = 64 - param.tsz;
11485 
11486         /*
11487          * Bound PS by PARANGE to find the effective output address size.
11488          * ID_AA64MMFR0 is a read-only register so values outside of the
11489          * supported mappings can be considered an implementation error.
11490          */
11491         ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
11492         ps = MIN(ps, param.ps);
11493         assert(ps < ARRAY_SIZE(pamax_map));
11494         outputsize = pamax_map[ps];
11495     } else {
11496         param = aa32_va_parameters(env, address, mmu_idx);
11497         level = 1;
11498         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11499         inputsize = addrsize - param.tsz;
11500         outputsize = 40;
11501     }
11502 
11503     /*
11504      * We determined the region when collecting the parameters, but we
11505      * have not yet validated that the address is valid for the region.
11506      * Extract the top bits and verify that they all match select.
11507      *
11508      * For aa32, if inputsize == addrsize, then we have selected the
11509      * region by exclusion in aa32_va_parameters and there is no more
11510      * validation to do here.
11511      */
11512     if (inputsize < addrsize) {
11513         target_ulong top_bits = sextract64(address, inputsize,
11514                                            addrsize - inputsize);
11515         if (-top_bits != param.select) {
11516             /* The gap between the two regions is a Translation fault */
11517             fault_type = ARMFault_Translation;
11518             goto do_fault;
11519         }
11520     }
11521 
11522     if (param.using64k) {
11523         stride = 13;
11524     } else if (param.using16k) {
11525         stride = 11;
11526     } else {
11527         stride = 9;
11528     }
11529 
11530     /* Note that QEMU ignores shareability and cacheability attributes,
11531      * so we don't need to do anything with the SH, ORGN, IRGN fields
11532      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
11533      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11534      * implement any ASID-like capability so we can ignore it (instead
11535      * we will always flush the TLB any time the ASID is changed).
11536      */
11537     ttbr = regime_ttbr(env, mmu_idx, param.select);
11538 
11539     /* Here we should have set up all the parameters for the translation:
11540      * inputsize, ttbr, epd, stride, tbi
11541      */
11542 
11543     if (param.epd) {
11544         /* Translation table walk disabled => Translation fault on TLB miss
11545          * Note: This is always 0 on 64-bit EL2 and EL3.
11546          */
11547         goto do_fault;
11548     }
11549 
11550     if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
11551         /* The starting level depends on the virtual address size (which can
11552          * be up to 48 bits) and the translation granule size. It indicates
11553          * the number of strides (stride bits at a time) needed to
11554          * consume the bits of the input address. In the pseudocode this is:
11555          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
11556          * where their 'inputsize' is our 'inputsize', 'grainsize' is
11557          * our 'stride + 3' and 'stride' is our 'stride'.
11558          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11559          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11560          * = 4 - (inputsize - 4) / stride;
11561          */
11562         level = 4 - (inputsize - 4) / stride;
11563     } else {
11564         /* For stage 2 translations the starting level is specified by the
11565          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11566          */
11567         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11568         uint32_t sl2 = extract64(tcr->raw_tcr, 33, 1);
11569         uint32_t startlevel;
11570         bool ok;
11571 
11572         /* SL2 is RES0 unless DS=1 & 4kb granule. */
11573         if (param.ds && stride == 9 && sl2) {
11574             if (sl0 != 0) {
11575                 level = 0;
11576                 fault_type = ARMFault_Translation;
11577                 goto do_fault;
11578             }
11579             startlevel = -1;
11580         } else if (!aarch64 || stride == 9) {
11581             /* AArch32 or 4KB pages */
11582             startlevel = 2 - sl0;
11583 
11584             if (cpu_isar_feature(aa64_st, cpu)) {
11585                 startlevel &= 3;
11586             }
11587         } else {
11588             /* 16KB or 64KB pages */
11589             startlevel = 3 - sl0;
11590         }
11591 
11592         /* Check that the starting level is valid. */
11593         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11594                                 inputsize, stride, outputsize);
11595         if (!ok) {
11596             fault_type = ARMFault_Translation;
11597             goto do_fault;
11598         }
11599         level = startlevel;
11600     }
11601 
11602     indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
11603     indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
11604 
11605     /* Now we can extract the actual base address from the TTBR */
11606     descaddr = extract64(ttbr, 0, 48);
11607 
11608     /*
11609      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
11610      *
11611      * Otherwise, if the base address is out of range, raise AddressSizeFault.
11612      * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
11613      * but we've just cleared the bits above 47, so simplify the test.
11614      */
11615     if (outputsize > 48) {
11616         descaddr |= extract64(ttbr, 2, 4) << 48;
11617     } else if (descaddr >> outputsize) {
11618         level = 0;
11619         fault_type = ARMFault_AddressSize;
11620         goto do_fault;
11621     }
11622 
11623     /*
11624      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11625      * and also to mask out CnP (bit 0) which could validly be non-zero.
11626      */
11627     descaddr &= ~indexmask;
11628 
11629     /*
11630      * For AArch32, the address field in the descriptor goes up to bit 39
11631      * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
11632      * or an AddressSize fault is raised.  So for v8 we extract those SBZ
11633      * bits as part of the address, which will be checked via outputsize.
11634      * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
11635      * the highest bits of a 52-bit output are placed elsewhere.
11636      */
11637     if (param.ds) {
11638         descaddrmask = MAKE_64BIT_MASK(0, 50);
11639     } else if (arm_feature(env, ARM_FEATURE_V8)) {
11640         descaddrmask = MAKE_64BIT_MASK(0, 48);
11641     } else {
11642         descaddrmask = MAKE_64BIT_MASK(0, 40);
11643     }
11644     descaddrmask &= ~indexmask_grainsize;
11645 
11646     /* Secure accesses start with the page table in secure memory and
11647      * can be downgraded to non-secure at any step. Non-secure accesses
11648      * remain non-secure. We implement this by just ORing in the NSTable/NS
11649      * bits at each step.
11650      */
11651     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11652     for (;;) {
11653         uint64_t descriptor;
11654         bool nstable;
11655 
11656         descaddr |= (address >> (stride * (4 - level))) & indexmask;
11657         descaddr &= ~7ULL;
11658         nstable = extract32(tableattrs, 4, 1);
11659         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11660         if (fi->type != ARMFault_None) {
11661             goto do_fault;
11662         }
11663 
11664         if (!(descriptor & 1) ||
11665             (!(descriptor & 2) && (level == 3))) {
11666             /* Invalid, or the Reserved level 3 encoding */
11667             goto do_fault;
11668         }
11669 
11670         descaddr = descriptor & descaddrmask;
11671 
11672         /*
11673          * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
11674          * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
11675          * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
11676          * raise AddressSizeFault.
11677          */
11678         if (outputsize > 48) {
11679             if (param.ds) {
11680                 descaddr |= extract64(descriptor, 8, 2) << 50;
11681             } else {
11682                 descaddr |= extract64(descriptor, 12, 4) << 48;
11683             }
11684         } else if (descaddr >> outputsize) {
11685             fault_type = ARMFault_AddressSize;
11686             goto do_fault;
11687         }
11688 
11689         if ((descriptor & 2) && (level < 3)) {
11690             /* Table entry. The top five bits are attributes which may
11691              * propagate down through lower levels of the table (and
11692              * which are all arranged so that 0 means "no effect", so
11693              * we can gather them up by ORing in the bits at each level).
11694              */
11695             tableattrs |= extract64(descriptor, 59, 5);
11696             level++;
11697             indexmask = indexmask_grainsize;
11698             continue;
11699         }
11700         /*
11701          * Block entry at level 1 or 2, or page entry at level 3.
11702          * These are basically the same thing, although the number
11703          * of bits we pull in from the vaddr varies. Note that although
11704          * descaddrmask masks enough of the low bits of the descriptor
11705          * to give a correct page or table address, the address field
11706          * in a block descriptor is smaller; so we need to explicitly
11707          * clear the lower bits here before ORing in the low vaddr bits.
11708          */
11709         page_size = (1ULL << ((stride * (4 - level)) + 3));
11710         descaddr &= ~(page_size - 1);
11711         descaddr |= (address & (page_size - 1));
11712         /* Extract attributes from the descriptor */
11713         attrs = extract64(descriptor, 2, 10)
11714             | (extract64(descriptor, 52, 12) << 10);
11715 
11716         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11717             /* Stage 2 table descriptors do not include any attribute fields */
11718             break;
11719         }
11720         /* Merge in attributes from table descriptors */
11721         attrs |= nstable << 3; /* NS */
11722         guarded = extract64(descriptor, 50, 1);  /* GP */
11723         if (param.hpd) {
11724             /* HPD disables all the table attributes except NSTable.  */
11725             break;
11726         }
11727         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
11728         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11729          * means "force PL1 access only", which means forcing AP[1] to 0.
11730          */
11731         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
11732         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
11733         break;
11734     }
11735     /* Here descaddr is the final physical address, and attributes
11736      * are all in attrs.
11737      */
11738     fault_type = ARMFault_AccessFlag;
11739     if ((attrs & (1 << 8)) == 0) {
11740         /* Access flag */
11741         goto do_fault;
11742     }
11743 
11744     ap = extract32(attrs, 4, 2);
11745 
11746     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11747         ns = mmu_idx == ARMMMUIdx_Stage2;
11748         xn = extract32(attrs, 11, 2);
11749         *prot = get_S2prot(env, ap, xn, s1_is_el0);
11750     } else {
11751         ns = extract32(attrs, 3, 1);
11752         xn = extract32(attrs, 12, 1);
11753         pxn = extract32(attrs, 11, 1);
11754         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11755     }
11756 
11757     fault_type = ARMFault_Permission;
11758     if (!(*prot & (1 << access_type))) {
11759         goto do_fault;
11760     }
11761 
11762     if (ns) {
11763         /* The NS bit will (as required by the architecture) have no effect if
11764          * the CPU doesn't support TZ or this is a non-secure translation
11765          * regime, because the attribute will already be non-secure.
11766          */
11767         txattrs->secure = false;
11768     }
11769     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
11770     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11771         arm_tlb_bti_gp(txattrs) = true;
11772     }
11773 
11774     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11775         cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11776     } else {
11777         /* Index into MAIR registers for cache attributes */
11778         uint8_t attrindx = extract32(attrs, 0, 3);
11779         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11780         assert(attrindx <= 7);
11781         cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11782     }
11783 
11784     /*
11785      * For FEAT_LPA2 and effective DS, the SH field in the attributes
11786      * was re-purposed for output address bits.  The SH attribute in
11787      * that case comes from TCR_ELx, which we extracted earlier.
11788      */
11789     if (param.ds) {
11790         cacheattrs->shareability = param.sh;
11791     } else {
11792         cacheattrs->shareability = extract32(attrs, 6, 2);
11793     }
11794 
11795     *phys_ptr = descaddr;
11796     *page_size_ptr = page_size;
11797     return false;
11798 
11799 do_fault:
11800     fi->type = fault_type;
11801     fi->level = level;
11802     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
11803     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
11804                                mmu_idx == ARMMMUIdx_Stage2_S);
11805     fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
11806     return true;
11807 }
11808 
11809 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11810                                                 ARMMMUIdx mmu_idx,
11811                                                 int32_t address, int *prot)
11812 {
11813     if (!arm_feature(env, ARM_FEATURE_M)) {
11814         *prot = PAGE_READ | PAGE_WRITE;
11815         switch (address) {
11816         case 0xF0000000 ... 0xFFFFFFFF:
11817             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11818                 /* hivecs execing is ok */
11819                 *prot |= PAGE_EXEC;
11820             }
11821             break;
11822         case 0x00000000 ... 0x7FFFFFFF:
11823             *prot |= PAGE_EXEC;
11824             break;
11825         }
11826     } else {
11827         /* Default system address map for M profile cores.
11828          * The architecture specifies which regions are execute-never;
11829          * at the MPU level no other checks are defined.
11830          */
11831         switch (address) {
11832         case 0x00000000 ... 0x1fffffff: /* ROM */
11833         case 0x20000000 ... 0x3fffffff: /* SRAM */
11834         case 0x60000000 ... 0x7fffffff: /* RAM */
11835         case 0x80000000 ... 0x9fffffff: /* RAM */
11836             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11837             break;
11838         case 0x40000000 ... 0x5fffffff: /* Peripheral */
11839         case 0xa0000000 ... 0xbfffffff: /* Device */
11840         case 0xc0000000 ... 0xdfffffff: /* Device */
11841         case 0xe0000000 ... 0xffffffff: /* System */
11842             *prot = PAGE_READ | PAGE_WRITE;
11843             break;
11844         default:
11845             g_assert_not_reached();
11846         }
11847     }
11848 }
11849 
11850 static bool pmsav7_use_background_region(ARMCPU *cpu,
11851                                          ARMMMUIdx mmu_idx, bool is_user)
11852 {
11853     /* Return true if we should use the default memory map as a
11854      * "background" region if there are no hits against any MPU regions.
11855      */
11856     CPUARMState *env = &cpu->env;
11857 
11858     if (is_user) {
11859         return false;
11860     }
11861 
11862     if (arm_feature(env, ARM_FEATURE_M)) {
11863         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11864             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11865     } else {
11866         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11867     }
11868 }
11869 
11870 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11871 {
11872     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11873     return arm_feature(env, ARM_FEATURE_M) &&
11874         extract32(address, 20, 12) == 0xe00;
11875 }
11876 
11877 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11878 {
11879     /* True if address is in the M profile system region
11880      * 0xe0000000 - 0xffffffff
11881      */
11882     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11883 }
11884 
11885 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11886                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11887                                  hwaddr *phys_ptr, int *prot,
11888                                  target_ulong *page_size,
11889                                  ARMMMUFaultInfo *fi)
11890 {
11891     ARMCPU *cpu = env_archcpu(env);
11892     int n;
11893     bool is_user = regime_is_user(env, mmu_idx);
11894 
11895     *phys_ptr = address;
11896     *page_size = TARGET_PAGE_SIZE;
11897     *prot = 0;
11898 
11899     if (regime_translation_disabled(env, mmu_idx) ||
11900         m_is_ppb_region(env, address)) {
11901         /* MPU disabled or M profile PPB access: use default memory map.
11902          * The other case which uses the default memory map in the
11903          * v7M ARM ARM pseudocode is exception vector reads from the vector
11904          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11905          * which always does a direct read using address_space_ldl(), rather
11906          * than going via this function, so we don't need to check that here.
11907          */
11908         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11909     } else { /* MPU enabled */
11910         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11911             /* region search */
11912             uint32_t base = env->pmsav7.drbar[n];
11913             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11914             uint32_t rmask;
11915             bool srdis = false;
11916 
11917             if (!(env->pmsav7.drsr[n] & 0x1)) {
11918                 continue;
11919             }
11920 
11921             if (!rsize) {
11922                 qemu_log_mask(LOG_GUEST_ERROR,
11923                               "DRSR[%d]: Rsize field cannot be 0\n", n);
11924                 continue;
11925             }
11926             rsize++;
11927             rmask = (1ull << rsize) - 1;
11928 
11929             if (base & rmask) {
11930                 qemu_log_mask(LOG_GUEST_ERROR,
11931                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11932                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
11933                               n, base, rmask);
11934                 continue;
11935             }
11936 
11937             if (address < base || address > base + rmask) {
11938                 /*
11939                  * Address not in this region. We must check whether the
11940                  * region covers addresses in the same page as our address.
11941                  * In that case we must not report a size that covers the
11942                  * whole page for a subsequent hit against a different MPU
11943                  * region or the background region, because it would result in
11944                  * incorrect TLB hits for subsequent accesses to addresses that
11945                  * are in this MPU region.
11946                  */
11947                 if (ranges_overlap(base, rmask,
11948                                    address & TARGET_PAGE_MASK,
11949                                    TARGET_PAGE_SIZE)) {
11950                     *page_size = 1;
11951                 }
11952                 continue;
11953             }
11954 
11955             /* Region matched */
11956 
11957             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11958                 int i, snd;
11959                 uint32_t srdis_mask;
11960 
11961                 rsize -= 3; /* sub region size (power of 2) */
11962                 snd = ((address - base) >> rsize) & 0x7;
11963                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11964 
11965                 srdis_mask = srdis ? 0x3 : 0x0;
11966                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11967                     /* This will check in groups of 2, 4 and then 8, whether
11968                      * the subregion bits are consistent. rsize is incremented
11969                      * back up to give the region size, considering consistent
11970                      * adjacent subregions as one region. Stop testing if rsize
11971                      * is already big enough for an entire QEMU page.
11972                      */
11973                     int snd_rounded = snd & ~(i - 1);
11974                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11975                                                      snd_rounded + 8, i);
11976                     if (srdis_mask ^ srdis_multi) {
11977                         break;
11978                     }
11979                     srdis_mask = (srdis_mask << i) | srdis_mask;
11980                     rsize++;
11981                 }
11982             }
11983             if (srdis) {
11984                 continue;
11985             }
11986             if (rsize < TARGET_PAGE_BITS) {
11987                 *page_size = 1 << rsize;
11988             }
11989             break;
11990         }
11991 
11992         if (n == -1) { /* no hits */
11993             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11994                 /* background fault */
11995                 fi->type = ARMFault_Background;
11996                 return true;
11997             }
11998             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11999         } else { /* a MPU hit! */
12000             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
12001             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
12002 
12003             if (m_is_system_region(env, address)) {
12004                 /* System space is always execute never */
12005                 xn = 1;
12006             }
12007 
12008             if (is_user) { /* User mode AP bit decoding */
12009                 switch (ap) {
12010                 case 0:
12011                 case 1:
12012                 case 5:
12013                     break; /* no access */
12014                 case 3:
12015                     *prot |= PAGE_WRITE;
12016                     /* fall through */
12017                 case 2:
12018                 case 6:
12019                     *prot |= PAGE_READ | PAGE_EXEC;
12020                     break;
12021                 case 7:
12022                     /* for v7M, same as 6; for R profile a reserved value */
12023                     if (arm_feature(env, ARM_FEATURE_M)) {
12024                         *prot |= PAGE_READ | PAGE_EXEC;
12025                         break;
12026                     }
12027                     /* fall through */
12028                 default:
12029                     qemu_log_mask(LOG_GUEST_ERROR,
12030                                   "DRACR[%d]: Bad value for AP bits: 0x%"
12031                                   PRIx32 "\n", n, ap);
12032                 }
12033             } else { /* Priv. mode AP bits decoding */
12034                 switch (ap) {
12035                 case 0:
12036                     break; /* no access */
12037                 case 1:
12038                 case 2:
12039                 case 3:
12040                     *prot |= PAGE_WRITE;
12041                     /* fall through */
12042                 case 5:
12043                 case 6:
12044                     *prot |= PAGE_READ | PAGE_EXEC;
12045                     break;
12046                 case 7:
12047                     /* for v7M, same as 6; for R profile a reserved value */
12048                     if (arm_feature(env, ARM_FEATURE_M)) {
12049                         *prot |= PAGE_READ | PAGE_EXEC;
12050                         break;
12051                     }
12052                     /* fall through */
12053                 default:
12054                     qemu_log_mask(LOG_GUEST_ERROR,
12055                                   "DRACR[%d]: Bad value for AP bits: 0x%"
12056                                   PRIx32 "\n", n, ap);
12057                 }
12058             }
12059 
12060             /* execute never */
12061             if (xn) {
12062                 *prot &= ~PAGE_EXEC;
12063             }
12064         }
12065     }
12066 
12067     fi->type = ARMFault_Permission;
12068     fi->level = 1;
12069     return !(*prot & (1 << access_type));
12070 }
12071 
12072 static bool v8m_is_sau_exempt(CPUARMState *env,
12073                               uint32_t address, MMUAccessType access_type)
12074 {
12075     /* The architecture specifies that certain address ranges are
12076      * exempt from v8M SAU/IDAU checks.
12077      */
12078     return
12079         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
12080         (address >= 0xe0000000 && address <= 0xe0002fff) ||
12081         (address >= 0xe000e000 && address <= 0xe000efff) ||
12082         (address >= 0xe002e000 && address <= 0xe002efff) ||
12083         (address >= 0xe0040000 && address <= 0xe0041fff) ||
12084         (address >= 0xe00ff000 && address <= 0xe00fffff);
12085 }
12086 
12087 void v8m_security_lookup(CPUARMState *env, uint32_t address,
12088                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12089                                 V8M_SAttributes *sattrs)
12090 {
12091     /* Look up the security attributes for this address. Compare the
12092      * pseudocode SecurityCheck() function.
12093      * We assume the caller has zero-initialized *sattrs.
12094      */
12095     ARMCPU *cpu = env_archcpu(env);
12096     int r;
12097     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
12098     int idau_region = IREGION_NOTVALID;
12099     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12100     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12101 
12102     if (cpu->idau) {
12103         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
12104         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
12105 
12106         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
12107                    &idau_nsc);
12108     }
12109 
12110     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
12111         /* 0xf0000000..0xffffffff is always S for insn fetches */
12112         return;
12113     }
12114 
12115     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
12116         sattrs->ns = !regime_is_secure(env, mmu_idx);
12117         return;
12118     }
12119 
12120     if (idau_region != IREGION_NOTVALID) {
12121         sattrs->irvalid = true;
12122         sattrs->iregion = idau_region;
12123     }
12124 
12125     switch (env->sau.ctrl & 3) {
12126     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
12127         break;
12128     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
12129         sattrs->ns = true;
12130         break;
12131     default: /* SAU.ENABLE == 1 */
12132         for (r = 0; r < cpu->sau_sregion; r++) {
12133             if (env->sau.rlar[r] & 1) {
12134                 uint32_t base = env->sau.rbar[r] & ~0x1f;
12135                 uint32_t limit = env->sau.rlar[r] | 0x1f;
12136 
12137                 if (base <= address && limit >= address) {
12138                     if (base > addr_page_base || limit < addr_page_limit) {
12139                         sattrs->subpage = true;
12140                     }
12141                     if (sattrs->srvalid) {
12142                         /* If we hit in more than one region then we must report
12143                          * as Secure, not NS-Callable, with no valid region
12144                          * number info.
12145                          */
12146                         sattrs->ns = false;
12147                         sattrs->nsc = false;
12148                         sattrs->sregion = 0;
12149                         sattrs->srvalid = false;
12150                         break;
12151                     } else {
12152                         if (env->sau.rlar[r] & 2) {
12153                             sattrs->nsc = true;
12154                         } else {
12155                             sattrs->ns = true;
12156                         }
12157                         sattrs->srvalid = true;
12158                         sattrs->sregion = r;
12159                     }
12160                 } else {
12161                     /*
12162                      * Address not in this region. We must check whether the
12163                      * region covers addresses in the same page as our address.
12164                      * In that case we must not report a size that covers the
12165                      * whole page for a subsequent hit against a different MPU
12166                      * region or the background region, because it would result
12167                      * in incorrect TLB hits for subsequent accesses to
12168                      * addresses that are in this MPU region.
12169                      */
12170                     if (limit >= base &&
12171                         ranges_overlap(base, limit - base + 1,
12172                                        addr_page_base,
12173                                        TARGET_PAGE_SIZE)) {
12174                         sattrs->subpage = true;
12175                     }
12176                 }
12177             }
12178         }
12179         break;
12180     }
12181 
12182     /*
12183      * The IDAU will override the SAU lookup results if it specifies
12184      * higher security than the SAU does.
12185      */
12186     if (!idau_ns) {
12187         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
12188             sattrs->ns = false;
12189             sattrs->nsc = idau_nsc;
12190         }
12191     }
12192 }
12193 
12194 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
12195                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
12196                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
12197                               int *prot, bool *is_subpage,
12198                               ARMMMUFaultInfo *fi, uint32_t *mregion)
12199 {
12200     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
12201      * that a full phys-to-virt translation does).
12202      * mregion is (if not NULL) set to the region number which matched,
12203      * or -1 if no region number is returned (MPU off, address did not
12204      * hit a region, address hit in multiple regions).
12205      * We set is_subpage to true if the region hit doesn't cover the
12206      * entire TARGET_PAGE the address is within.
12207      */
12208     ARMCPU *cpu = env_archcpu(env);
12209     bool is_user = regime_is_user(env, mmu_idx);
12210     uint32_t secure = regime_is_secure(env, mmu_idx);
12211     int n;
12212     int matchregion = -1;
12213     bool hit = false;
12214     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12215     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12216 
12217     *is_subpage = false;
12218     *phys_ptr = address;
12219     *prot = 0;
12220     if (mregion) {
12221         *mregion = -1;
12222     }
12223 
12224     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
12225      * was an exception vector read from the vector table (which is always
12226      * done using the default system address map), because those accesses
12227      * are done in arm_v7m_load_vector(), which always does a direct
12228      * read using address_space_ldl(), rather than going via this function.
12229      */
12230     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
12231         hit = true;
12232     } else if (m_is_ppb_region(env, address)) {
12233         hit = true;
12234     } else {
12235         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12236             hit = true;
12237         }
12238 
12239         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
12240             /* region search */
12241             /* Note that the base address is bits [31:5] from the register
12242              * with bits [4:0] all zeroes, but the limit address is bits
12243              * [31:5] from the register with bits [4:0] all ones.
12244              */
12245             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
12246             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
12247 
12248             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
12249                 /* Region disabled */
12250                 continue;
12251             }
12252 
12253             if (address < base || address > limit) {
12254                 /*
12255                  * Address not in this region. We must check whether the
12256                  * region covers addresses in the same page as our address.
12257                  * In that case we must not report a size that covers the
12258                  * whole page for a subsequent hit against a different MPU
12259                  * region or the background region, because it would result in
12260                  * incorrect TLB hits for subsequent accesses to addresses that
12261                  * are in this MPU region.
12262                  */
12263                 if (limit >= base &&
12264                     ranges_overlap(base, limit - base + 1,
12265                                    addr_page_base,
12266                                    TARGET_PAGE_SIZE)) {
12267                     *is_subpage = true;
12268                 }
12269                 continue;
12270             }
12271 
12272             if (base > addr_page_base || limit < addr_page_limit) {
12273                 *is_subpage = true;
12274             }
12275 
12276             if (matchregion != -1) {
12277                 /* Multiple regions match -- always a failure (unlike
12278                  * PMSAv7 where highest-numbered-region wins)
12279                  */
12280                 fi->type = ARMFault_Permission;
12281                 fi->level = 1;
12282                 return true;
12283             }
12284 
12285             matchregion = n;
12286             hit = true;
12287         }
12288     }
12289 
12290     if (!hit) {
12291         /* background fault */
12292         fi->type = ARMFault_Background;
12293         return true;
12294     }
12295 
12296     if (matchregion == -1) {
12297         /* hit using the background region */
12298         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12299     } else {
12300         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12301         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
12302         bool pxn = false;
12303 
12304         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
12305             pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
12306         }
12307 
12308         if (m_is_system_region(env, address)) {
12309             /* System space is always execute never */
12310             xn = 1;
12311         }
12312 
12313         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12314         if (*prot && !xn && !(pxn && !is_user)) {
12315             *prot |= PAGE_EXEC;
12316         }
12317         /* We don't need to look the attribute up in the MAIR0/MAIR1
12318          * registers because that only tells us about cacheability.
12319          */
12320         if (mregion) {
12321             *mregion = matchregion;
12322         }
12323     }
12324 
12325     fi->type = ARMFault_Permission;
12326     fi->level = 1;
12327     return !(*prot & (1 << access_type));
12328 }
12329 
12330 
12331 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12332                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12333                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
12334                                  int *prot, target_ulong *page_size,
12335                                  ARMMMUFaultInfo *fi)
12336 {
12337     uint32_t secure = regime_is_secure(env, mmu_idx);
12338     V8M_SAttributes sattrs = {};
12339     bool ret;
12340     bool mpu_is_subpage;
12341 
12342     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12343         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12344         if (access_type == MMU_INST_FETCH) {
12345             /* Instruction fetches always use the MMU bank and the
12346              * transaction attribute determined by the fetch address,
12347              * regardless of CPU state. This is painful for QEMU
12348              * to handle, because it would mean we need to encode
12349              * into the mmu_idx not just the (user, negpri) information
12350              * for the current security state but also that for the
12351              * other security state, which would balloon the number
12352              * of mmu_idx values needed alarmingly.
12353              * Fortunately we can avoid this because it's not actually
12354              * possible to arbitrarily execute code from memory with
12355              * the wrong security attribute: it will always generate
12356              * an exception of some kind or another, apart from the
12357              * special case of an NS CPU executing an SG instruction
12358              * in S&NSC memory. So we always just fail the translation
12359              * here and sort things out in the exception handler
12360              * (including possibly emulating an SG instruction).
12361              */
12362             if (sattrs.ns != !secure) {
12363                 if (sattrs.nsc) {
12364                     fi->type = ARMFault_QEMU_NSCExec;
12365                 } else {
12366                     fi->type = ARMFault_QEMU_SFault;
12367                 }
12368                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12369                 *phys_ptr = address;
12370                 *prot = 0;
12371                 return true;
12372             }
12373         } else {
12374             /* For data accesses we always use the MMU bank indicated
12375              * by the current CPU state, but the security attributes
12376              * might downgrade a secure access to nonsecure.
12377              */
12378             if (sattrs.ns) {
12379                 txattrs->secure = false;
12380             } else if (!secure) {
12381                 /* NS access to S memory must fault.
12382                  * Architecturally we should first check whether the
12383                  * MPU information for this address indicates that we
12384                  * are doing an unaligned access to Device memory, which
12385                  * should generate a UsageFault instead. QEMU does not
12386                  * currently check for that kind of unaligned access though.
12387                  * If we added it we would need to do so as a special case
12388                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12389                  */
12390                 fi->type = ARMFault_QEMU_SFault;
12391                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12392                 *phys_ptr = address;
12393                 *prot = 0;
12394                 return true;
12395             }
12396         }
12397     }
12398 
12399     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12400                             txattrs, prot, &mpu_is_subpage, fi, NULL);
12401     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12402     return ret;
12403 }
12404 
12405 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12406                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12407                                  hwaddr *phys_ptr, int *prot,
12408                                  ARMMMUFaultInfo *fi)
12409 {
12410     int n;
12411     uint32_t mask;
12412     uint32_t base;
12413     bool is_user = regime_is_user(env, mmu_idx);
12414 
12415     if (regime_translation_disabled(env, mmu_idx)) {
12416         /* MPU disabled.  */
12417         *phys_ptr = address;
12418         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12419         return false;
12420     }
12421 
12422     *phys_ptr = address;
12423     for (n = 7; n >= 0; n--) {
12424         base = env->cp15.c6_region[n];
12425         if ((base & 1) == 0) {
12426             continue;
12427         }
12428         mask = 1 << ((base >> 1) & 0x1f);
12429         /* Keep this shift separate from the above to avoid an
12430            (undefined) << 32.  */
12431         mask = (mask << 1) - 1;
12432         if (((base ^ address) & ~mask) == 0) {
12433             break;
12434         }
12435     }
12436     if (n < 0) {
12437         fi->type = ARMFault_Background;
12438         return true;
12439     }
12440 
12441     if (access_type == MMU_INST_FETCH) {
12442         mask = env->cp15.pmsav5_insn_ap;
12443     } else {
12444         mask = env->cp15.pmsav5_data_ap;
12445     }
12446     mask = (mask >> (n * 4)) & 0xf;
12447     switch (mask) {
12448     case 0:
12449         fi->type = ARMFault_Permission;
12450         fi->level = 1;
12451         return true;
12452     case 1:
12453         if (is_user) {
12454             fi->type = ARMFault_Permission;
12455             fi->level = 1;
12456             return true;
12457         }
12458         *prot = PAGE_READ | PAGE_WRITE;
12459         break;
12460     case 2:
12461         *prot = PAGE_READ;
12462         if (!is_user) {
12463             *prot |= PAGE_WRITE;
12464         }
12465         break;
12466     case 3:
12467         *prot = PAGE_READ | PAGE_WRITE;
12468         break;
12469     case 5:
12470         if (is_user) {
12471             fi->type = ARMFault_Permission;
12472             fi->level = 1;
12473             return true;
12474         }
12475         *prot = PAGE_READ;
12476         break;
12477     case 6:
12478         *prot = PAGE_READ;
12479         break;
12480     default:
12481         /* Bad permission.  */
12482         fi->type = ARMFault_Permission;
12483         fi->level = 1;
12484         return true;
12485     }
12486     *prot |= PAGE_EXEC;
12487     return false;
12488 }
12489 
12490 /* Combine either inner or outer cacheability attributes for normal
12491  * memory, according to table D4-42 and pseudocode procedure
12492  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12493  *
12494  * NB: only stage 1 includes allocation hints (RW bits), leading to
12495  * some asymmetry.
12496  */
12497 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12498 {
12499     if (s1 == 4 || s2 == 4) {
12500         /* non-cacheable has precedence */
12501         return 4;
12502     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12503         /* stage 1 write-through takes precedence */
12504         return s1;
12505     } else if (extract32(s2, 2, 2) == 2) {
12506         /* stage 2 write-through takes precedence, but the allocation hint
12507          * is still taken from stage 1
12508          */
12509         return (2 << 2) | extract32(s1, 0, 2);
12510     } else { /* write-back */
12511         return s1;
12512     }
12513 }
12514 
12515 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12516  * and CombineS1S2Desc()
12517  *
12518  * @s1:      Attributes from stage 1 walk
12519  * @s2:      Attributes from stage 2 walk
12520  */
12521 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12522 {
12523     uint8_t s1lo, s2lo, s1hi, s2hi;
12524     ARMCacheAttrs ret;
12525     bool tagged = false;
12526 
12527     if (s1.attrs == 0xf0) {
12528         tagged = true;
12529         s1.attrs = 0xff;
12530     }
12531 
12532     s1lo = extract32(s1.attrs, 0, 4);
12533     s2lo = extract32(s2.attrs, 0, 4);
12534     s1hi = extract32(s1.attrs, 4, 4);
12535     s2hi = extract32(s2.attrs, 4, 4);
12536 
12537     /* Combine shareability attributes (table D4-43) */
12538     if (s1.shareability == 2 || s2.shareability == 2) {
12539         /* if either are outer-shareable, the result is outer-shareable */
12540         ret.shareability = 2;
12541     } else if (s1.shareability == 3 || s2.shareability == 3) {
12542         /* if either are inner-shareable, the result is inner-shareable */
12543         ret.shareability = 3;
12544     } else {
12545         /* both non-shareable */
12546         ret.shareability = 0;
12547     }
12548 
12549     /* Combine memory type and cacheability attributes */
12550     if (s1hi == 0 || s2hi == 0) {
12551         /* Device has precedence over normal */
12552         if (s1lo == 0 || s2lo == 0) {
12553             /* nGnRnE has precedence over anything */
12554             ret.attrs = 0;
12555         } else if (s1lo == 4 || s2lo == 4) {
12556             /* non-Reordering has precedence over Reordering */
12557             ret.attrs = 4;  /* nGnRE */
12558         } else if (s1lo == 8 || s2lo == 8) {
12559             /* non-Gathering has precedence over Gathering */
12560             ret.attrs = 8;  /* nGRE */
12561         } else {
12562             ret.attrs = 0xc; /* GRE */
12563         }
12564 
12565         /* Any location for which the resultant memory type is any
12566          * type of Device memory is always treated as Outer Shareable.
12567          */
12568         ret.shareability = 2;
12569     } else { /* Normal memory */
12570         /* Outer/inner cacheability combine independently */
12571         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12572                   | combine_cacheattr_nibble(s1lo, s2lo);
12573 
12574         if (ret.attrs == 0x44) {
12575             /* Any location for which the resultant memory type is Normal
12576              * Inner Non-cacheable, Outer Non-cacheable is always treated
12577              * as Outer Shareable.
12578              */
12579             ret.shareability = 2;
12580         }
12581     }
12582 
12583     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12584     if (tagged && ret.attrs == 0xff) {
12585         ret.attrs = 0xf0;
12586     }
12587 
12588     return ret;
12589 }
12590 
12591 
12592 /* get_phys_addr - get the physical address for this virtual address
12593  *
12594  * Find the physical address corresponding to the given virtual address,
12595  * by doing a translation table walk on MMU based systems or using the
12596  * MPU state on MPU based systems.
12597  *
12598  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12599  * prot and page_size may not be filled in, and the populated fsr value provides
12600  * information on why the translation aborted, in the format of a
12601  * DFSR/IFSR fault register, with the following caveats:
12602  *  * we honour the short vs long DFSR format differences.
12603  *  * the WnR bit is never set (the caller must do this).
12604  *  * for PSMAv5 based systems we don't bother to return a full FSR format
12605  *    value.
12606  *
12607  * @env: CPUARMState
12608  * @address: virtual address to get physical address for
12609  * @access_type: 0 for read, 1 for write, 2 for execute
12610  * @mmu_idx: MMU index indicating required translation regime
12611  * @phys_ptr: set to the physical address corresponding to the virtual address
12612  * @attrs: set to the memory transaction attributes to use
12613  * @prot: set to the permissions for the page containing phys_ptr
12614  * @page_size: set to the size of the page containing phys_ptr
12615  * @fi: set to fault info if the translation fails
12616  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12617  */
12618 bool get_phys_addr(CPUARMState *env, target_ulong address,
12619                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
12620                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12621                    target_ulong *page_size,
12622                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12623 {
12624     ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
12625 
12626     if (mmu_idx != s1_mmu_idx) {
12627         /* Call ourselves recursively to do the stage 1 and then stage 2
12628          * translations if mmu_idx is a two-stage regime.
12629          */
12630         if (arm_feature(env, ARM_FEATURE_EL2)) {
12631             hwaddr ipa;
12632             int s2_prot;
12633             int ret;
12634             bool ipa_secure;
12635             ARMCacheAttrs cacheattrs2 = {};
12636             ARMMMUIdx s2_mmu_idx;
12637             bool is_el0;
12638 
12639             ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
12640                                 attrs, prot, page_size, fi, cacheattrs);
12641 
12642             /* If S1 fails or S2 is disabled, return early.  */
12643             if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12644                 *phys_ptr = ipa;
12645                 return ret;
12646             }
12647 
12648             ipa_secure = attrs->secure;
12649             if (arm_is_secure_below_el3(env)) {
12650                 if (ipa_secure) {
12651                     attrs->secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
12652                 } else {
12653                     attrs->secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
12654                 }
12655             } else {
12656                 assert(!ipa_secure);
12657             }
12658 
12659             s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
12660             is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
12661 
12662             /* S1 is done. Now do S2 translation.  */
12663             ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
12664                                      phys_ptr, attrs, &s2_prot,
12665                                      page_size, fi, &cacheattrs2);
12666             fi->s2addr = ipa;
12667             /* Combine the S1 and S2 perms.  */
12668             *prot &= s2_prot;
12669 
12670             /* If S2 fails, return early.  */
12671             if (ret) {
12672                 return ret;
12673             }
12674 
12675             /* Combine the S1 and S2 cache attributes. */
12676             if (arm_hcr_el2_eff(env) & HCR_DC) {
12677                 /*
12678                  * HCR.DC forces the first stage attributes to
12679                  *  Normal Non-Shareable,
12680                  *  Inner Write-Back Read-Allocate Write-Allocate,
12681                  *  Outer Write-Back Read-Allocate Write-Allocate.
12682                  * Do not overwrite Tagged within attrs.
12683                  */
12684                 if (cacheattrs->attrs != 0xf0) {
12685                     cacheattrs->attrs = 0xff;
12686                 }
12687                 cacheattrs->shareability = 0;
12688             }
12689             *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12690 
12691             /* Check if IPA translates to secure or non-secure PA space. */
12692             if (arm_is_secure_below_el3(env)) {
12693                 if (ipa_secure) {
12694                     attrs->secure =
12695                         !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
12696                 } else {
12697                     attrs->secure =
12698                         !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
12699                         || (env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)));
12700                 }
12701             }
12702             return 0;
12703         } else {
12704             /*
12705              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12706              */
12707             mmu_idx = stage_1_mmu_idx(mmu_idx);
12708         }
12709     }
12710 
12711     /* The page table entries may downgrade secure to non-secure, but
12712      * cannot upgrade an non-secure translation regime's attributes
12713      * to secure.
12714      */
12715     attrs->secure = regime_is_secure(env, mmu_idx);
12716     attrs->user = regime_is_user(env, mmu_idx);
12717 
12718     /* Fast Context Switch Extension. This doesn't exist at all in v8.
12719      * In v7 and earlier it affects all stage 1 translations.
12720      */
12721     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12722         && !arm_feature(env, ARM_FEATURE_V8)) {
12723         if (regime_el(env, mmu_idx) == 3) {
12724             address += env->cp15.fcseidr_s;
12725         } else {
12726             address += env->cp15.fcseidr_ns;
12727         }
12728     }
12729 
12730     if (arm_feature(env, ARM_FEATURE_PMSA)) {
12731         bool ret;
12732         *page_size = TARGET_PAGE_SIZE;
12733 
12734         if (arm_feature(env, ARM_FEATURE_V8)) {
12735             /* PMSAv8 */
12736             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12737                                        phys_ptr, attrs, prot, page_size, fi);
12738         } else if (arm_feature(env, ARM_FEATURE_V7)) {
12739             /* PMSAv7 */
12740             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12741                                        phys_ptr, prot, page_size, fi);
12742         } else {
12743             /* Pre-v7 MPU */
12744             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12745                                        phys_ptr, prot, fi);
12746         }
12747         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12748                       " mmu_idx %u -> %s (prot %c%c%c)\n",
12749                       access_type == MMU_DATA_LOAD ? "reading" :
12750                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12751                       (uint32_t)address, mmu_idx,
12752                       ret ? "Miss" : "Hit",
12753                       *prot & PAGE_READ ? 'r' : '-',
12754                       *prot & PAGE_WRITE ? 'w' : '-',
12755                       *prot & PAGE_EXEC ? 'x' : '-');
12756 
12757         return ret;
12758     }
12759 
12760     /* Definitely a real MMU, not an MPU */
12761 
12762     if (regime_translation_disabled(env, mmu_idx)) {
12763         uint64_t hcr;
12764         uint8_t memattr;
12765 
12766         /*
12767          * MMU disabled.  S1 addresses within aa64 translation regimes are
12768          * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12769          */
12770         if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
12771             int r_el = regime_el(env, mmu_idx);
12772             if (arm_el_is_aa64(env, r_el)) {
12773                 int pamax = arm_pamax(env_archcpu(env));
12774                 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12775                 int addrtop, tbi;
12776 
12777                 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12778                 if (access_type == MMU_INST_FETCH) {
12779                     tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12780                 }
12781                 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12782                 addrtop = (tbi ? 55 : 63);
12783 
12784                 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12785                     fi->type = ARMFault_AddressSize;
12786                     fi->level = 0;
12787                     fi->stage2 = false;
12788                     return 1;
12789                 }
12790 
12791                 /*
12792                  * When TBI is disabled, we've just validated that all of the
12793                  * bits above PAMax are zero, so logically we only need to
12794                  * clear the top byte for TBI.  But it's clearer to follow
12795                  * the pseudocode set of addrdesc.paddress.
12796                  */
12797                 address = extract64(address, 0, 52);
12798             }
12799         }
12800         *phys_ptr = address;
12801         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12802         *page_size = TARGET_PAGE_SIZE;
12803 
12804         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12805         hcr = arm_hcr_el2_eff(env);
12806         cacheattrs->shareability = 0;
12807         if (hcr & HCR_DC) {
12808             if (hcr & HCR_DCT) {
12809                 memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
12810             } else {
12811                 memattr = 0xff;  /* Normal, WB, RWA */
12812             }
12813         } else if (access_type == MMU_INST_FETCH) {
12814             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12815                 memattr = 0xee;  /* Normal, WT, RA, NT */
12816             } else {
12817                 memattr = 0x44;  /* Normal, NC, No */
12818             }
12819             cacheattrs->shareability = 2; /* outer sharable */
12820         } else {
12821             memattr = 0x00;      /* Device, nGnRnE */
12822         }
12823         cacheattrs->attrs = memattr;
12824         return 0;
12825     }
12826 
12827     if (regime_using_lpae_format(env, mmu_idx)) {
12828         return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12829                                   phys_ptr, attrs, prot, page_size,
12830                                   fi, cacheattrs);
12831     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12832         return get_phys_addr_v6(env, address, access_type, mmu_idx,
12833                                 phys_ptr, attrs, prot, page_size, fi);
12834     } else {
12835         return get_phys_addr_v5(env, address, access_type, mmu_idx,
12836                                     phys_ptr, prot, page_size, fi);
12837     }
12838 }
12839 
12840 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12841                                          MemTxAttrs *attrs)
12842 {
12843     ARMCPU *cpu = ARM_CPU(cs);
12844     CPUARMState *env = &cpu->env;
12845     hwaddr phys_addr;
12846     target_ulong page_size;
12847     int prot;
12848     bool ret;
12849     ARMMMUFaultInfo fi = {};
12850     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12851     ARMCacheAttrs cacheattrs = {};
12852 
12853     *attrs = (MemTxAttrs) {};
12854 
12855     ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
12856                         attrs, &prot, &page_size, &fi, &cacheattrs);
12857 
12858     if (ret) {
12859         return -1;
12860     }
12861     return phys_addr;
12862 }
12863 
12864 #endif
12865 
12866 /* Note that signed overflow is undefined in C.  The following routines are
12867    careful to use unsigned types where modulo arithmetic is required.
12868    Failure to do so _will_ break on newer gcc.  */
12869 
12870 /* Signed saturating arithmetic.  */
12871 
12872 /* Perform 16-bit signed saturating addition.  */
12873 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12874 {
12875     uint16_t res;
12876 
12877     res = a + b;
12878     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12879         if (a & 0x8000)
12880             res = 0x8000;
12881         else
12882             res = 0x7fff;
12883     }
12884     return res;
12885 }
12886 
12887 /* Perform 8-bit signed saturating addition.  */
12888 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12889 {
12890     uint8_t res;
12891 
12892     res = a + b;
12893     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12894         if (a & 0x80)
12895             res = 0x80;
12896         else
12897             res = 0x7f;
12898     }
12899     return res;
12900 }
12901 
12902 /* Perform 16-bit signed saturating subtraction.  */
12903 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12904 {
12905     uint16_t res;
12906 
12907     res = a - b;
12908     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12909         if (a & 0x8000)
12910             res = 0x8000;
12911         else
12912             res = 0x7fff;
12913     }
12914     return res;
12915 }
12916 
12917 /* Perform 8-bit signed saturating subtraction.  */
12918 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12919 {
12920     uint8_t res;
12921 
12922     res = a - b;
12923     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12924         if (a & 0x80)
12925             res = 0x80;
12926         else
12927             res = 0x7f;
12928     }
12929     return res;
12930 }
12931 
12932 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12933 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12934 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12935 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12936 #define PFX q
12937 
12938 #include "op_addsub.h"
12939 
12940 /* Unsigned saturating arithmetic.  */
12941 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12942 {
12943     uint16_t res;
12944     res = a + b;
12945     if (res < a)
12946         res = 0xffff;
12947     return res;
12948 }
12949 
12950 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12951 {
12952     if (a > b)
12953         return a - b;
12954     else
12955         return 0;
12956 }
12957 
12958 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12959 {
12960     uint8_t res;
12961     res = a + b;
12962     if (res < a)
12963         res = 0xff;
12964     return res;
12965 }
12966 
12967 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12968 {
12969     if (a > b)
12970         return a - b;
12971     else
12972         return 0;
12973 }
12974 
12975 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12976 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12977 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12978 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12979 #define PFX uq
12980 
12981 #include "op_addsub.h"
12982 
12983 /* Signed modulo arithmetic.  */
12984 #define SARITH16(a, b, n, op) do { \
12985     int32_t sum; \
12986     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12987     RESULT(sum, n, 16); \
12988     if (sum >= 0) \
12989         ge |= 3 << (n * 2); \
12990     } while(0)
12991 
12992 #define SARITH8(a, b, n, op) do { \
12993     int32_t sum; \
12994     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12995     RESULT(sum, n, 8); \
12996     if (sum >= 0) \
12997         ge |= 1 << n; \
12998     } while(0)
12999 
13000 
13001 #define ADD16(a, b, n) SARITH16(a, b, n, +)
13002 #define SUB16(a, b, n) SARITH16(a, b, n, -)
13003 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
13004 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
13005 #define PFX s
13006 #define ARITH_GE
13007 
13008 #include "op_addsub.h"
13009 
13010 /* Unsigned modulo arithmetic.  */
13011 #define ADD16(a, b, n) do { \
13012     uint32_t sum; \
13013     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
13014     RESULT(sum, n, 16); \
13015     if ((sum >> 16) == 1) \
13016         ge |= 3 << (n * 2); \
13017     } while(0)
13018 
13019 #define ADD8(a, b, n) do { \
13020     uint32_t sum; \
13021     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
13022     RESULT(sum, n, 8); \
13023     if ((sum >> 8) == 1) \
13024         ge |= 1 << n; \
13025     } while(0)
13026 
13027 #define SUB16(a, b, n) do { \
13028     uint32_t sum; \
13029     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
13030     RESULT(sum, n, 16); \
13031     if ((sum >> 16) == 0) \
13032         ge |= 3 << (n * 2); \
13033     } while(0)
13034 
13035 #define SUB8(a, b, n) do { \
13036     uint32_t sum; \
13037     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
13038     RESULT(sum, n, 8); \
13039     if ((sum >> 8) == 0) \
13040         ge |= 1 << n; \
13041     } while(0)
13042 
13043 #define PFX u
13044 #define ARITH_GE
13045 
13046 #include "op_addsub.h"
13047 
13048 /* Halved signed arithmetic.  */
13049 #define ADD16(a, b, n) \
13050   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
13051 #define SUB16(a, b, n) \
13052   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
13053 #define ADD8(a, b, n) \
13054   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
13055 #define SUB8(a, b, n) \
13056   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
13057 #define PFX sh
13058 
13059 #include "op_addsub.h"
13060 
13061 /* Halved unsigned arithmetic.  */
13062 #define ADD16(a, b, n) \
13063   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13064 #define SUB16(a, b, n) \
13065   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13066 #define ADD8(a, b, n) \
13067   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13068 #define SUB8(a, b, n) \
13069   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13070 #define PFX uh
13071 
13072 #include "op_addsub.h"
13073 
13074 static inline uint8_t do_usad(uint8_t a, uint8_t b)
13075 {
13076     if (a > b)
13077         return a - b;
13078     else
13079         return b - a;
13080 }
13081 
13082 /* Unsigned sum of absolute byte differences.  */
13083 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
13084 {
13085     uint32_t sum;
13086     sum = do_usad(a, b);
13087     sum += do_usad(a >> 8, b >> 8);
13088     sum += do_usad(a >> 16, b >> 16);
13089     sum += do_usad(a >> 24, b >> 24);
13090     return sum;
13091 }
13092 
13093 /* For ARMv6 SEL instruction.  */
13094 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
13095 {
13096     uint32_t mask;
13097 
13098     mask = 0;
13099     if (flags & 1)
13100         mask |= 0xff;
13101     if (flags & 2)
13102         mask |= 0xff00;
13103     if (flags & 4)
13104         mask |= 0xff0000;
13105     if (flags & 8)
13106         mask |= 0xff000000;
13107     return (a & mask) | (b & ~mask);
13108 }
13109 
13110 /* CRC helpers.
13111  * The upper bytes of val (above the number specified by 'bytes') must have
13112  * been zeroed out by the caller.
13113  */
13114 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13115 {
13116     uint8_t buf[4];
13117 
13118     stl_le_p(buf, val);
13119 
13120     /* zlib crc32 converts the accumulator and output to one's complement.  */
13121     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13122 }
13123 
13124 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13125 {
13126     uint8_t buf[4];
13127 
13128     stl_le_p(buf, val);
13129 
13130     /* Linux crc32c converts the output to one's complement.  */
13131     return crc32c(acc, buf, bytes) ^ 0xffffffff;
13132 }
13133 
13134 /* Return the exception level to which FP-disabled exceptions should
13135  * be taken, or 0 if FP is enabled.
13136  */
13137 int fp_exception_el(CPUARMState *env, int cur_el)
13138 {
13139 #ifndef CONFIG_USER_ONLY
13140     uint64_t hcr_el2;
13141 
13142     /* CPACR and the CPTR registers don't exist before v6, so FP is
13143      * always accessible
13144      */
13145     if (!arm_feature(env, ARM_FEATURE_V6)) {
13146         return 0;
13147     }
13148 
13149     if (arm_feature(env, ARM_FEATURE_M)) {
13150         /* CPACR can cause a NOCP UsageFault taken to current security state */
13151         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
13152             return 1;
13153         }
13154 
13155         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
13156             if (!extract32(env->v7m.nsacr, 10, 1)) {
13157                 /* FP insns cause a NOCP UsageFault taken to Secure */
13158                 return 3;
13159             }
13160         }
13161 
13162         return 0;
13163     }
13164 
13165     hcr_el2 = arm_hcr_el2_eff(env);
13166 
13167     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13168      * 0, 2 : trap EL0 and EL1/PL1 accesses
13169      * 1    : trap only EL0 accesses
13170      * 3    : trap no accesses
13171      * This register is ignored if E2H+TGE are both set.
13172      */
13173     if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13174         int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13175 
13176         switch (fpen) {
13177         case 0:
13178         case 2:
13179             if (cur_el == 0 || cur_el == 1) {
13180                 /* Trap to PL1, which might be EL1 or EL3 */
13181                 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13182                     return 3;
13183                 }
13184                 return 1;
13185             }
13186             if (cur_el == 3 && !is_a64(env)) {
13187                 /* Secure PL1 running at EL3 */
13188                 return 3;
13189             }
13190             break;
13191         case 1:
13192             if (cur_el == 0) {
13193                 return 1;
13194             }
13195             break;
13196         case 3:
13197             break;
13198         }
13199     }
13200 
13201     /*
13202      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
13203      * to control non-secure access to the FPU. It doesn't have any
13204      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
13205      */
13206     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
13207          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
13208         if (!extract32(env->cp15.nsacr, 10, 1)) {
13209             /* FP insns act as UNDEF */
13210             return cur_el == 2 ? 2 : 1;
13211         }
13212     }
13213 
13214     /*
13215      * CPTR_EL2 is present in v7VE or v8, and changes format
13216      * with HCR_EL2.E2H (regardless of TGE).
13217      */
13218     if (cur_el <= 2) {
13219         if (hcr_el2 & HCR_E2H) {
13220             /* Check CPTR_EL2.FPEN.  */
13221             switch (extract32(env->cp15.cptr_el[2], 20, 2)) {
13222             case 1:
13223                 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
13224                     break;
13225                 }
13226                 /* fall through */
13227             case 0:
13228             case 2:
13229                 return 2;
13230             }
13231         } else if (arm_is_el2_enabled(env)) {
13232             if (env->cp15.cptr_el[2] & CPTR_TFP) {
13233                 return 2;
13234             }
13235         }
13236     }
13237 
13238     /* CPTR_EL3 : present in v8 */
13239     if (env->cp15.cptr_el[3] & CPTR_TFP) {
13240         /* Trap all FP ops to EL3 */
13241         return 3;
13242     }
13243 #endif
13244     return 0;
13245 }
13246 
13247 /* Return the exception level we're running at if this is our mmu_idx */
13248 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
13249 {
13250     if (mmu_idx & ARM_MMU_IDX_M) {
13251         return mmu_idx & ARM_MMU_IDX_M_PRIV;
13252     }
13253 
13254     switch (mmu_idx) {
13255     case ARMMMUIdx_E10_0:
13256     case ARMMMUIdx_E20_0:
13257     case ARMMMUIdx_SE10_0:
13258     case ARMMMUIdx_SE20_0:
13259         return 0;
13260     case ARMMMUIdx_E10_1:
13261     case ARMMMUIdx_E10_1_PAN:
13262     case ARMMMUIdx_SE10_1:
13263     case ARMMMUIdx_SE10_1_PAN:
13264         return 1;
13265     case ARMMMUIdx_E2:
13266     case ARMMMUIdx_E20_2:
13267     case ARMMMUIdx_E20_2_PAN:
13268     case ARMMMUIdx_SE2:
13269     case ARMMMUIdx_SE20_2:
13270     case ARMMMUIdx_SE20_2_PAN:
13271         return 2;
13272     case ARMMMUIdx_SE3:
13273         return 3;
13274     default:
13275         g_assert_not_reached();
13276     }
13277 }
13278 
13279 #ifndef CONFIG_TCG
13280 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13281 {
13282     g_assert_not_reached();
13283 }
13284 #endif
13285 
13286 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
13287 {
13288     ARMMMUIdx idx;
13289     uint64_t hcr;
13290 
13291     if (arm_feature(env, ARM_FEATURE_M)) {
13292         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13293     }
13294 
13295     /* See ARM pseudo-function ELIsInHost.  */
13296     switch (el) {
13297     case 0:
13298         hcr = arm_hcr_el2_eff(env);
13299         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
13300             idx = ARMMMUIdx_E20_0;
13301         } else {
13302             idx = ARMMMUIdx_E10_0;
13303         }
13304         break;
13305     case 1:
13306         if (env->pstate & PSTATE_PAN) {
13307             idx = ARMMMUIdx_E10_1_PAN;
13308         } else {
13309             idx = ARMMMUIdx_E10_1;
13310         }
13311         break;
13312     case 2:
13313         /* Note that TGE does not apply at EL2.  */
13314         if (arm_hcr_el2_eff(env) & HCR_E2H) {
13315             if (env->pstate & PSTATE_PAN) {
13316                 idx = ARMMMUIdx_E20_2_PAN;
13317             } else {
13318                 idx = ARMMMUIdx_E20_2;
13319             }
13320         } else {
13321             idx = ARMMMUIdx_E2;
13322         }
13323         break;
13324     case 3:
13325         return ARMMMUIdx_SE3;
13326     default:
13327         g_assert_not_reached();
13328     }
13329 
13330     if (arm_is_secure_below_el3(env)) {
13331         idx &= ~ARM_MMU_IDX_A_NS;
13332     }
13333 
13334     return idx;
13335 }
13336 
13337 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13338 {
13339     return arm_mmu_idx_el(env, arm_current_el(env));
13340 }
13341 
13342 #ifndef CONFIG_USER_ONLY
13343 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13344 {
13345     return stage_1_mmu_idx(arm_mmu_idx(env));
13346 }
13347 #endif
13348 
13349 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
13350                                            ARMMMUIdx mmu_idx,
13351                                            CPUARMTBFlags flags)
13352 {
13353     DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
13354     DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13355 
13356     if (arm_singlestep_active(env)) {
13357         DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
13358     }
13359     return flags;
13360 }
13361 
13362 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
13363                                               ARMMMUIdx mmu_idx,
13364                                               CPUARMTBFlags flags)
13365 {
13366     bool sctlr_b = arm_sctlr_b(env);
13367 
13368     if (sctlr_b) {
13369         DP_TBFLAG_A32(flags, SCTLR__B, 1);
13370     }
13371     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
13372         DP_TBFLAG_ANY(flags, BE_DATA, 1);
13373     }
13374     DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
13375 
13376     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13377 }
13378 
13379 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
13380                                         ARMMMUIdx mmu_idx)
13381 {
13382     CPUARMTBFlags flags = {};
13383     uint32_t ccr = env->v7m.ccr[env->v7m.secure];
13384 
13385     /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
13386     if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
13387         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13388     }
13389 
13390     if (arm_v7m_is_handler_mode(env)) {
13391         DP_TBFLAG_M32(flags, HANDLER, 1);
13392     }
13393 
13394     /*
13395      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
13396      * is suppressing them because the requested execution priority
13397      * is less than 0.
13398      */
13399     if (arm_feature(env, ARM_FEATURE_V8) &&
13400         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13401           (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13402         DP_TBFLAG_M32(flags, STACKCHECK, 1);
13403     }
13404 
13405     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13406 }
13407 
13408 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env)
13409 {
13410     CPUARMTBFlags flags = {};
13411 
13412     DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env));
13413     return flags;
13414 }
13415 
13416 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
13417                                         ARMMMUIdx mmu_idx)
13418 {
13419     CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13420     int el = arm_current_el(env);
13421 
13422     if (arm_sctlr(env, el) & SCTLR_A) {
13423         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13424     }
13425 
13426     if (arm_el_is_aa64(env, 1)) {
13427         DP_TBFLAG_A32(flags, VFPEN, 1);
13428     }
13429 
13430     if (el < 2 && env->cp15.hstr_el2 &&
13431         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13432         DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
13433     }
13434 
13435     if (env->uncached_cpsr & CPSR_IL) {
13436         DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
13437     }
13438 
13439     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13440 }
13441 
13442 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
13443                                         ARMMMUIdx mmu_idx)
13444 {
13445     CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13446     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13447     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
13448     uint64_t sctlr;
13449     int tbii, tbid;
13450 
13451     DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
13452 
13453     /* Get control bits for tagged addresses.  */
13454     tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
13455     tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
13456 
13457     DP_TBFLAG_A64(flags, TBII, tbii);
13458     DP_TBFLAG_A64(flags, TBID, tbid);
13459 
13460     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
13461         int sve_el = sve_exception_el(env, el);
13462         uint32_t zcr_len;
13463 
13464         /*
13465          * If SVE is disabled, but FP is enabled,
13466          * then the effective len is 0.
13467          */
13468         if (sve_el != 0 && fp_el == 0) {
13469             zcr_len = 0;
13470         } else {
13471             zcr_len = sve_zcr_len_for_el(env, el);
13472         }
13473         DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
13474         DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len);
13475     }
13476 
13477     sctlr = regime_sctlr(env, stage1);
13478 
13479     if (sctlr & SCTLR_A) {
13480         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13481     }
13482 
13483     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
13484         DP_TBFLAG_ANY(flags, BE_DATA, 1);
13485     }
13486 
13487     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
13488         /*
13489          * In order to save space in flags, we record only whether
13490          * pauth is "inactive", meaning all insns are implemented as
13491          * a nop, or "active" when some action must be performed.
13492          * The decision of which action to take is left to a helper.
13493          */
13494         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13495             DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
13496         }
13497     }
13498 
13499     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13500         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
13501         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13502             DP_TBFLAG_A64(flags, BT, 1);
13503         }
13504     }
13505 
13506     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13507     if (!(env->pstate & PSTATE_UAO)) {
13508         switch (mmu_idx) {
13509         case ARMMMUIdx_E10_1:
13510         case ARMMMUIdx_E10_1_PAN:
13511         case ARMMMUIdx_SE10_1:
13512         case ARMMMUIdx_SE10_1_PAN:
13513             /* TODO: ARMv8.3-NV */
13514             DP_TBFLAG_A64(flags, UNPRIV, 1);
13515             break;
13516         case ARMMMUIdx_E20_2:
13517         case ARMMMUIdx_E20_2_PAN:
13518         case ARMMMUIdx_SE20_2:
13519         case ARMMMUIdx_SE20_2_PAN:
13520             /*
13521              * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13522              * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13523              */
13524             if (env->cp15.hcr_el2 & HCR_TGE) {
13525                 DP_TBFLAG_A64(flags, UNPRIV, 1);
13526             }
13527             break;
13528         default:
13529             break;
13530         }
13531     }
13532 
13533     if (env->pstate & PSTATE_IL) {
13534         DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
13535     }
13536 
13537     if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
13538         /*
13539          * Set MTE_ACTIVE if any access may be Checked, and leave clear
13540          * if all accesses must be Unchecked:
13541          * 1) If no TBI, then there are no tags in the address to check,
13542          * 2) If Tag Check Override, then all accesses are Unchecked,
13543          * 3) If Tag Check Fail == 0, then Checked access have no effect,
13544          * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13545          */
13546         if (allocation_tag_access_enabled(env, el, sctlr)) {
13547             DP_TBFLAG_A64(flags, ATA, 1);
13548             if (tbid
13549                 && !(env->pstate & PSTATE_TCO)
13550                 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
13551                 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
13552             }
13553         }
13554         /* And again for unprivileged accesses, if required.  */
13555         if (EX_TBFLAG_A64(flags, UNPRIV)
13556             && tbid
13557             && !(env->pstate & PSTATE_TCO)
13558             && (sctlr & SCTLR_TCF0)
13559             && allocation_tag_access_enabled(env, 0, sctlr)) {
13560             DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
13561         }
13562         /* Cache TCMA as well as TBI. */
13563         DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
13564     }
13565 
13566     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13567 }
13568 
13569 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
13570 {
13571     int el = arm_current_el(env);
13572     int fp_el = fp_exception_el(env, el);
13573     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13574 
13575     if (is_a64(env)) {
13576         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13577     } else if (arm_feature(env, ARM_FEATURE_M)) {
13578         return rebuild_hflags_m32(env, fp_el, mmu_idx);
13579     } else {
13580         return rebuild_hflags_a32(env, fp_el, mmu_idx);
13581     }
13582 }
13583 
13584 void arm_rebuild_hflags(CPUARMState *env)
13585 {
13586     env->hflags = rebuild_hflags_internal(env);
13587 }
13588 
13589 /*
13590  * If we have triggered a EL state change we can't rely on the
13591  * translator having passed it to us, we need to recompute.
13592  */
13593 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
13594 {
13595     int el = arm_current_el(env);
13596     int fp_el = fp_exception_el(env, el);
13597     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13598 
13599     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13600 }
13601 
13602 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
13603 {
13604     int fp_el = fp_exception_el(env, el);
13605     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13606 
13607     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13608 }
13609 
13610 /*
13611  * If we have triggered a EL state change we can't rely on the
13612  * translator having passed it to us, we need to recompute.
13613  */
13614 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13615 {
13616     int el = arm_current_el(env);
13617     int fp_el = fp_exception_el(env, el);
13618     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13619     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13620 }
13621 
13622 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13623 {
13624     int fp_el = fp_exception_el(env, el);
13625     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13626 
13627     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13628 }
13629 
13630 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13631 {
13632     int fp_el = fp_exception_el(env, el);
13633     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13634 
13635     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13636 }
13637 
13638 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13639 {
13640 #ifdef CONFIG_DEBUG_TCG
13641     CPUARMTBFlags c = env->hflags;
13642     CPUARMTBFlags r = rebuild_hflags_internal(env);
13643 
13644     if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
13645         fprintf(stderr, "TCG hflags mismatch "
13646                         "(current:(0x%08x,0x" TARGET_FMT_lx ")"
13647                         " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
13648                 c.flags, c.flags2, r.flags, r.flags2);
13649         abort();
13650     }
13651 #endif
13652 }
13653 
13654 static bool mve_no_pred(CPUARMState *env)
13655 {
13656     /*
13657      * Return true if there is definitely no predication of MVE
13658      * instructions by VPR or LTPSIZE. (Returning false even if there
13659      * isn't any predication is OK; generated code will just be
13660      * a little worse.)
13661      * If the CPU does not implement MVE then this TB flag is always 0.
13662      *
13663      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
13664      * logic in gen_update_fp_context() needs to be updated to match.
13665      *
13666      * We do not include the effect of the ECI bits here -- they are
13667      * tracked in other TB flags. This simplifies the logic for
13668      * "when did we emit code that changes the MVE_NO_PRED TB flag
13669      * and thus need to end the TB?".
13670      */
13671     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
13672         return false;
13673     }
13674     if (env->v7m.vpr) {
13675         return false;
13676     }
13677     if (env->v7m.ltpsize < 4) {
13678         return false;
13679     }
13680     return true;
13681 }
13682 
13683 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13684                           target_ulong *cs_base, uint32_t *pflags)
13685 {
13686     CPUARMTBFlags flags;
13687 
13688     assert_hflags_rebuild_correctly(env);
13689     flags = env->hflags;
13690 
13691     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
13692         *pc = env->pc;
13693         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13694             DP_TBFLAG_A64(flags, BTYPE, env->btype);
13695         }
13696     } else {
13697         *pc = env->regs[15];
13698 
13699         if (arm_feature(env, ARM_FEATURE_M)) {
13700             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13701                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13702                 != env->v7m.secure) {
13703                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
13704             }
13705 
13706             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13707                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13708                  (env->v7m.secure &&
13709                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13710                 /*
13711                  * ASPEN is set, but FPCA/SFPA indicate that there is no
13712                  * active FP context; we must create a new FP context before
13713                  * executing any FP insn.
13714                  */
13715                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
13716             }
13717 
13718             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13719             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13720                 DP_TBFLAG_M32(flags, LSPACT, 1);
13721             }
13722 
13723             if (mve_no_pred(env)) {
13724                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
13725             }
13726         } else {
13727             /*
13728              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13729              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13730              */
13731             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13732                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
13733             } else {
13734                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
13735                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
13736             }
13737             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13738                 DP_TBFLAG_A32(flags, VFPEN, 1);
13739             }
13740         }
13741 
13742         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
13743         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
13744     }
13745 
13746     /*
13747      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13748      * states defined in the ARM ARM for software singlestep:
13749      *  SS_ACTIVE   PSTATE.SS   State
13750      *     0            x       Inactive (the TB flag for SS is always 0)
13751      *     1            0       Active-pending
13752      *     1            1       Active-not-pending
13753      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
13754      */
13755     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
13756         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
13757     }
13758 
13759     *pflags = flags.flags;
13760     *cs_base = flags.flags2;
13761 }
13762 
13763 #ifdef TARGET_AARCH64
13764 /*
13765  * The manual says that when SVE is enabled and VQ is widened the
13766  * implementation is allowed to zero the previously inaccessible
13767  * portion of the registers.  The corollary to that is that when
13768  * SVE is enabled and VQ is narrowed we are also allowed to zero
13769  * the now inaccessible portion of the registers.
13770  *
13771  * The intent of this is that no predicate bit beyond VQ is ever set.
13772  * Which means that some operations on predicate registers themselves
13773  * may operate on full uint64_t or even unrolled across the maximum
13774  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
13775  * may well be cheaper than conditionals to restrict the operation
13776  * to the relevant portion of a uint16_t[16].
13777  */
13778 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13779 {
13780     int i, j;
13781     uint64_t pmask;
13782 
13783     assert(vq >= 1 && vq <= ARM_MAX_VQ);
13784     assert(vq <= env_archcpu(env)->sve_max_vq);
13785 
13786     /* Zap the high bits of the zregs.  */
13787     for (i = 0; i < 32; i++) {
13788         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13789     }
13790 
13791     /* Zap the high bits of the pregs and ffr.  */
13792     pmask = 0;
13793     if (vq & 3) {
13794         pmask = ~(-1ULL << (16 * (vq & 3)));
13795     }
13796     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13797         for (i = 0; i < 17; ++i) {
13798             env->vfp.pregs[i].p[j] &= pmask;
13799         }
13800         pmask = 0;
13801     }
13802 }
13803 
13804 /*
13805  * Notice a change in SVE vector size when changing EL.
13806  */
13807 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13808                            int new_el, bool el0_a64)
13809 {
13810     ARMCPU *cpu = env_archcpu(env);
13811     int old_len, new_len;
13812     bool old_a64, new_a64;
13813 
13814     /* Nothing to do if no SVE.  */
13815     if (!cpu_isar_feature(aa64_sve, cpu)) {
13816         return;
13817     }
13818 
13819     /* Nothing to do if FP is disabled in either EL.  */
13820     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13821         return;
13822     }
13823 
13824     /*
13825      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13826      * at ELx, or not available because the EL is in AArch32 state, then
13827      * for all purposes other than a direct read, the ZCR_ELx.LEN field
13828      * has an effective value of 0".
13829      *
13830      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13831      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13832      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
13833      * we already have the correct register contents when encountering the
13834      * vq0->vq0 transition between EL0->EL1.
13835      */
13836     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13837     old_len = (old_a64 && !sve_exception_el(env, old_el)
13838                ? sve_zcr_len_for_el(env, old_el) : 0);
13839     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13840     new_len = (new_a64 && !sve_exception_el(env, new_el)
13841                ? sve_zcr_len_for_el(env, new_el) : 0);
13842 
13843     /* When changing vector length, clear inaccessible state.  */
13844     if (new_len < old_len) {
13845         aarch64_sve_narrow_vq(env, new_len + 1);
13846     }
13847 }
13848 #endif
13849