1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "qemu/log.h" 12 #include "target/arm/idau.h" 13 #include "trace.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/timer.h" 20 #include "qemu/bitops.h" 21 #include "qemu/crc32c.h" 22 #include "qemu/qemu-print.h" 23 #include "exec/exec-all.h" 24 #include <zlib.h> /* For crc32 */ 25 #include "hw/irq.h" 26 #include "semihosting/semihost.h" 27 #include "sysemu/cpus.h" 28 #include "sysemu/cpu-timers.h" 29 #include "sysemu/kvm.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #include "semihosting/common-semi.h" 38 #endif 39 #include "cpregs.h" 40 41 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 42 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ 43 44 #ifndef CONFIG_USER_ONLY 45 46 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 47 MMUAccessType access_type, ARMMMUIdx mmu_idx, 48 bool s1_is_el0, 49 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 50 target_ulong *page_size_ptr, 51 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 52 __attribute__((nonnull)); 53 #endif 54 55 static void switch_mode(CPUARMState *env, int mode); 56 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 57 58 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 59 { 60 assert(ri->fieldoffset); 61 if (cpreg_field_is_64bit(ri)) { 62 return CPREG_FIELD64(env, ri); 63 } else { 64 return CPREG_FIELD32(env, ri); 65 } 66 } 67 68 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 69 uint64_t value) 70 { 71 assert(ri->fieldoffset); 72 if (cpreg_field_is_64bit(ri)) { 73 CPREG_FIELD64(env, ri) = value; 74 } else { 75 CPREG_FIELD32(env, ri) = value; 76 } 77 } 78 79 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 80 { 81 return (char *)env + ri->fieldoffset; 82 } 83 84 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 85 { 86 /* Raw read of a coprocessor register (as needed for migration, etc). */ 87 if (ri->type & ARM_CP_CONST) { 88 return ri->resetvalue; 89 } else if (ri->raw_readfn) { 90 return ri->raw_readfn(env, ri); 91 } else if (ri->readfn) { 92 return ri->readfn(env, ri); 93 } else { 94 return raw_read(env, ri); 95 } 96 } 97 98 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 99 uint64_t v) 100 { 101 /* Raw write of a coprocessor register (as needed for migration, etc). 102 * Note that constant registers are treated as write-ignored; the 103 * caller should check for success by whether a readback gives the 104 * value written. 105 */ 106 if (ri->type & ARM_CP_CONST) { 107 return; 108 } else if (ri->raw_writefn) { 109 ri->raw_writefn(env, ri, v); 110 } else if (ri->writefn) { 111 ri->writefn(env, ri, v); 112 } else { 113 raw_write(env, ri, v); 114 } 115 } 116 117 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 118 { 119 /* Return true if the regdef would cause an assertion if you called 120 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 121 * program bug for it not to have the NO_RAW flag). 122 * NB that returning false here doesn't necessarily mean that calling 123 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 124 * read/write access functions which are safe for raw use" from "has 125 * read/write access functions which have side effects but has forgotten 126 * to provide raw access functions". 127 * The tests here line up with the conditions in read/write_raw_cp_reg() 128 * and assertions in raw_read()/raw_write(). 129 */ 130 if ((ri->type & ARM_CP_CONST) || 131 ri->fieldoffset || 132 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 133 return false; 134 } 135 return true; 136 } 137 138 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 139 { 140 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 141 int i; 142 bool ok = true; 143 144 for (i = 0; i < cpu->cpreg_array_len; i++) { 145 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 146 const ARMCPRegInfo *ri; 147 uint64_t newval; 148 149 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 150 if (!ri) { 151 ok = false; 152 continue; 153 } 154 if (ri->type & ARM_CP_NO_RAW) { 155 continue; 156 } 157 158 newval = read_raw_cp_reg(&cpu->env, ri); 159 if (kvm_sync) { 160 /* 161 * Only sync if the previous list->cpustate sync succeeded. 162 * Rather than tracking the success/failure state for every 163 * item in the list, we just recheck "does the raw write we must 164 * have made in write_list_to_cpustate() read back OK" here. 165 */ 166 uint64_t oldval = cpu->cpreg_values[i]; 167 168 if (oldval == newval) { 169 continue; 170 } 171 172 write_raw_cp_reg(&cpu->env, ri, oldval); 173 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 174 continue; 175 } 176 177 write_raw_cp_reg(&cpu->env, ri, newval); 178 } 179 cpu->cpreg_values[i] = newval; 180 } 181 return ok; 182 } 183 184 bool write_list_to_cpustate(ARMCPU *cpu) 185 { 186 int i; 187 bool ok = true; 188 189 for (i = 0; i < cpu->cpreg_array_len; i++) { 190 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 191 uint64_t v = cpu->cpreg_values[i]; 192 const ARMCPRegInfo *ri; 193 194 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 195 if (!ri) { 196 ok = false; 197 continue; 198 } 199 if (ri->type & ARM_CP_NO_RAW) { 200 continue; 201 } 202 /* Write value and confirm it reads back as written 203 * (to catch read-only registers and partially read-only 204 * registers where the incoming migration value doesn't match) 205 */ 206 write_raw_cp_reg(&cpu->env, ri, v); 207 if (read_raw_cp_reg(&cpu->env, ri) != v) { 208 ok = false; 209 } 210 } 211 return ok; 212 } 213 214 static void add_cpreg_to_list(gpointer key, gpointer opaque) 215 { 216 ARMCPU *cpu = opaque; 217 uint64_t regidx; 218 const ARMCPRegInfo *ri; 219 220 regidx = *(uint32_t *)key; 221 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 222 223 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 224 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 225 /* The value array need not be initialized at this point */ 226 cpu->cpreg_array_len++; 227 } 228 } 229 230 static void count_cpreg(gpointer key, gpointer opaque) 231 { 232 ARMCPU *cpu = opaque; 233 uint64_t regidx; 234 const ARMCPRegInfo *ri; 235 236 regidx = *(uint32_t *)key; 237 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 238 239 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 240 cpu->cpreg_array_len++; 241 } 242 } 243 244 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 245 { 246 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 247 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 248 249 if (aidx > bidx) { 250 return 1; 251 } 252 if (aidx < bidx) { 253 return -1; 254 } 255 return 0; 256 } 257 258 void init_cpreg_list(ARMCPU *cpu) 259 { 260 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 261 * Note that we require cpreg_tuples[] to be sorted by key ID. 262 */ 263 GList *keys; 264 int arraylen; 265 266 keys = g_hash_table_get_keys(cpu->cp_regs); 267 keys = g_list_sort(keys, cpreg_key_compare); 268 269 cpu->cpreg_array_len = 0; 270 271 g_list_foreach(keys, count_cpreg, cpu); 272 273 arraylen = cpu->cpreg_array_len; 274 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 275 cpu->cpreg_values = g_new(uint64_t, arraylen); 276 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 277 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 278 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 279 cpu->cpreg_array_len = 0; 280 281 g_list_foreach(keys, add_cpreg_to_list, cpu); 282 283 assert(cpu->cpreg_array_len == arraylen); 284 285 g_list_free(keys); 286 } 287 288 /* 289 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 290 */ 291 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 292 const ARMCPRegInfo *ri, 293 bool isread) 294 { 295 if (!is_a64(env) && arm_current_el(env) == 3 && 296 arm_is_secure_below_el3(env)) { 297 return CP_ACCESS_TRAP_UNCATEGORIZED; 298 } 299 return CP_ACCESS_OK; 300 } 301 302 /* Some secure-only AArch32 registers trap to EL3 if used from 303 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 304 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 305 * We assume that the .access field is set to PL1_RW. 306 */ 307 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 308 const ARMCPRegInfo *ri, 309 bool isread) 310 { 311 if (arm_current_el(env) == 3) { 312 return CP_ACCESS_OK; 313 } 314 if (arm_is_secure_below_el3(env)) { 315 if (env->cp15.scr_el3 & SCR_EEL2) { 316 return CP_ACCESS_TRAP_EL2; 317 } 318 return CP_ACCESS_TRAP_EL3; 319 } 320 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 321 return CP_ACCESS_TRAP_UNCATEGORIZED; 322 } 323 324 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 325 { 326 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 327 } 328 329 /* Check for traps to "powerdown debug" registers, which are controlled 330 * by MDCR.TDOSA 331 */ 332 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 333 bool isread) 334 { 335 int el = arm_current_el(env); 336 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 337 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 338 (arm_hcr_el2_eff(env) & HCR_TGE); 339 340 if (el < 2 && mdcr_el2_tdosa) { 341 return CP_ACCESS_TRAP_EL2; 342 } 343 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 344 return CP_ACCESS_TRAP_EL3; 345 } 346 return CP_ACCESS_OK; 347 } 348 349 /* Check for traps to "debug ROM" registers, which are controlled 350 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 351 */ 352 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 353 bool isread) 354 { 355 int el = arm_current_el(env); 356 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 357 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 358 (arm_hcr_el2_eff(env) & HCR_TGE); 359 360 if (el < 2 && mdcr_el2_tdra) { 361 return CP_ACCESS_TRAP_EL2; 362 } 363 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 364 return CP_ACCESS_TRAP_EL3; 365 } 366 return CP_ACCESS_OK; 367 } 368 369 /* Check for traps to general debug registers, which are controlled 370 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 371 */ 372 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 373 bool isread) 374 { 375 int el = arm_current_el(env); 376 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 377 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 378 (arm_hcr_el2_eff(env) & HCR_TGE); 379 380 if (el < 2 && mdcr_el2_tda) { 381 return CP_ACCESS_TRAP_EL2; 382 } 383 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 384 return CP_ACCESS_TRAP_EL3; 385 } 386 return CP_ACCESS_OK; 387 } 388 389 /* Check for traps to performance monitor registers, which are controlled 390 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 391 */ 392 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 393 bool isread) 394 { 395 int el = arm_current_el(env); 396 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 397 398 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 399 return CP_ACCESS_TRAP_EL2; 400 } 401 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 402 return CP_ACCESS_TRAP_EL3; 403 } 404 return CP_ACCESS_OK; 405 } 406 407 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 408 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 409 bool isread) 410 { 411 if (arm_current_el(env) == 1) { 412 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 413 if (arm_hcr_el2_eff(env) & trap) { 414 return CP_ACCESS_TRAP_EL2; 415 } 416 } 417 return CP_ACCESS_OK; 418 } 419 420 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 421 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 422 bool isread) 423 { 424 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 425 return CP_ACCESS_TRAP_EL2; 426 } 427 return CP_ACCESS_OK; 428 } 429 430 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 431 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 432 bool isread) 433 { 434 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 435 return CP_ACCESS_TRAP_EL2; 436 } 437 return CP_ACCESS_OK; 438 } 439 440 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 441 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 442 bool isread) 443 { 444 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 445 return CP_ACCESS_TRAP_EL2; 446 } 447 return CP_ACCESS_OK; 448 } 449 450 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 451 { 452 ARMCPU *cpu = env_archcpu(env); 453 454 raw_write(env, ri, value); 455 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 456 } 457 458 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 459 { 460 ARMCPU *cpu = env_archcpu(env); 461 462 if (raw_read(env, ri) != value) { 463 /* Unlike real hardware the qemu TLB uses virtual addresses, 464 * not modified virtual addresses, so this causes a TLB flush. 465 */ 466 tlb_flush(CPU(cpu)); 467 raw_write(env, ri, value); 468 } 469 } 470 471 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 472 uint64_t value) 473 { 474 ARMCPU *cpu = env_archcpu(env); 475 476 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 477 && !extended_addresses_enabled(env)) { 478 /* For VMSA (when not using the LPAE long descriptor page table 479 * format) this register includes the ASID, so do a TLB flush. 480 * For PMSA it is purely a process ID and no action is needed. 481 */ 482 tlb_flush(CPU(cpu)); 483 } 484 raw_write(env, ri, value); 485 } 486 487 /* IS variants of TLB operations must affect all cores */ 488 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 489 uint64_t value) 490 { 491 CPUState *cs = env_cpu(env); 492 493 tlb_flush_all_cpus_synced(cs); 494 } 495 496 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 497 uint64_t value) 498 { 499 CPUState *cs = env_cpu(env); 500 501 tlb_flush_all_cpus_synced(cs); 502 } 503 504 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 505 uint64_t value) 506 { 507 CPUState *cs = env_cpu(env); 508 509 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 510 } 511 512 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 CPUState *cs = env_cpu(env); 516 517 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 518 } 519 520 /* 521 * Non-IS variants of TLB operations are upgraded to 522 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 523 * force broadcast of these operations. 524 */ 525 static bool tlb_force_broadcast(CPUARMState *env) 526 { 527 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 528 } 529 530 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 531 uint64_t value) 532 { 533 /* Invalidate all (TLBIALL) */ 534 CPUState *cs = env_cpu(env); 535 536 if (tlb_force_broadcast(env)) { 537 tlb_flush_all_cpus_synced(cs); 538 } else { 539 tlb_flush(cs); 540 } 541 } 542 543 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 544 uint64_t value) 545 { 546 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 547 CPUState *cs = env_cpu(env); 548 549 value &= TARGET_PAGE_MASK; 550 if (tlb_force_broadcast(env)) { 551 tlb_flush_page_all_cpus_synced(cs, value); 552 } else { 553 tlb_flush_page(cs, value); 554 } 555 } 556 557 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 558 uint64_t value) 559 { 560 /* Invalidate by ASID (TLBIASID) */ 561 CPUState *cs = env_cpu(env); 562 563 if (tlb_force_broadcast(env)) { 564 tlb_flush_all_cpus_synced(cs); 565 } else { 566 tlb_flush(cs); 567 } 568 } 569 570 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 571 uint64_t value) 572 { 573 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 574 CPUState *cs = env_cpu(env); 575 576 value &= TARGET_PAGE_MASK; 577 if (tlb_force_broadcast(env)) { 578 tlb_flush_page_all_cpus_synced(cs, value); 579 } else { 580 tlb_flush_page(cs, value); 581 } 582 } 583 584 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 585 uint64_t value) 586 { 587 CPUState *cs = env_cpu(env); 588 589 tlb_flush_by_mmuidx(cs, 590 ARMMMUIdxBit_E10_1 | 591 ARMMMUIdxBit_E10_1_PAN | 592 ARMMMUIdxBit_E10_0); 593 } 594 595 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 596 uint64_t value) 597 { 598 CPUState *cs = env_cpu(env); 599 600 tlb_flush_by_mmuidx_all_cpus_synced(cs, 601 ARMMMUIdxBit_E10_1 | 602 ARMMMUIdxBit_E10_1_PAN | 603 ARMMMUIdxBit_E10_0); 604 } 605 606 607 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 608 uint64_t value) 609 { 610 CPUState *cs = env_cpu(env); 611 612 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 613 } 614 615 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 616 uint64_t value) 617 { 618 CPUState *cs = env_cpu(env); 619 620 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 621 } 622 623 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 624 uint64_t value) 625 { 626 CPUState *cs = env_cpu(env); 627 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 628 629 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 630 } 631 632 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 633 uint64_t value) 634 { 635 CPUState *cs = env_cpu(env); 636 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 637 638 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 639 ARMMMUIdxBit_E2); 640 } 641 642 static const ARMCPRegInfo cp_reginfo[] = { 643 /* Define the secure and non-secure FCSE identifier CP registers 644 * separately because there is no secure bank in V8 (no _EL3). This allows 645 * the secure register to be properly reset and migrated. There is also no 646 * v8 EL1 version of the register so the non-secure instance stands alone. 647 */ 648 { .name = "FCSEIDR", 649 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 650 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 651 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 652 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 653 { .name = "FCSEIDR_S", 654 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 655 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 656 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 657 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 658 /* Define the secure and non-secure context identifier CP registers 659 * separately because there is no secure bank in V8 (no _EL3). This allows 660 * the secure register to be properly reset and migrated. In the 661 * non-secure case, the 32-bit register will have reset and migration 662 * disabled during registration as it is handled by the 64-bit instance. 663 */ 664 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 665 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 666 .access = PL1_RW, .accessfn = access_tvm_trvm, 667 .secure = ARM_CP_SECSTATE_NS, 668 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 669 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 670 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 671 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 672 .access = PL1_RW, .accessfn = access_tvm_trvm, 673 .secure = ARM_CP_SECSTATE_S, 674 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 675 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 676 REGINFO_SENTINEL 677 }; 678 679 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 680 /* NB: Some of these registers exist in v8 but with more precise 681 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 682 */ 683 /* MMU Domain access control / MPU write buffer control */ 684 { .name = "DACR", 685 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 686 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 687 .writefn = dacr_write, .raw_writefn = raw_write, 688 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 689 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 690 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 691 * For v6 and v5, these mappings are overly broad. 692 */ 693 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 694 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 695 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 696 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 697 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 698 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 699 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 700 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 701 /* Cache maintenance ops; some of this space may be overridden later. */ 702 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 703 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 704 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 705 REGINFO_SENTINEL 706 }; 707 708 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 709 /* Not all pre-v6 cores implemented this WFI, so this is slightly 710 * over-broad. 711 */ 712 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 713 .access = PL1_W, .type = ARM_CP_WFI }, 714 REGINFO_SENTINEL 715 }; 716 717 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 718 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 719 * is UNPREDICTABLE; we choose to NOP as most implementations do). 720 */ 721 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 722 .access = PL1_W, .type = ARM_CP_WFI }, 723 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 724 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 725 * OMAPCP will override this space. 726 */ 727 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 728 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 729 .resetvalue = 0 }, 730 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 731 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 732 .resetvalue = 0 }, 733 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 734 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 735 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 736 .resetvalue = 0 }, 737 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 738 * implementing it as RAZ means the "debug architecture version" bits 739 * will read as a reserved value, which should cause Linux to not try 740 * to use the debug hardware. 741 */ 742 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 743 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 744 /* MMU TLB control. Note that the wildcarding means we cover not just 745 * the unified TLB ops but also the dside/iside/inner-shareable variants. 746 */ 747 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 748 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 749 .type = ARM_CP_NO_RAW }, 750 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 751 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 752 .type = ARM_CP_NO_RAW }, 753 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 754 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 755 .type = ARM_CP_NO_RAW }, 756 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 757 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 758 .type = ARM_CP_NO_RAW }, 759 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 760 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 761 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 762 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 763 REGINFO_SENTINEL 764 }; 765 766 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 767 uint64_t value) 768 { 769 uint32_t mask = 0; 770 771 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 772 if (!arm_feature(env, ARM_FEATURE_V8)) { 773 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 774 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 775 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 776 */ 777 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 778 /* VFP coprocessor: cp10 & cp11 [23:20] */ 779 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 780 781 if (!arm_feature(env, ARM_FEATURE_NEON)) { 782 /* ASEDIS [31] bit is RAO/WI */ 783 value |= (1 << 31); 784 } 785 786 /* VFPv3 and upwards with NEON implement 32 double precision 787 * registers (D0-D31). 788 */ 789 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 790 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 791 value |= (1 << 30); 792 } 793 } 794 value &= mask; 795 } 796 797 /* 798 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 799 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 800 */ 801 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 802 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 803 value &= ~(0xf << 20); 804 value |= env->cp15.cpacr_el1 & (0xf << 20); 805 } 806 807 env->cp15.cpacr_el1 = value; 808 } 809 810 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 811 { 812 /* 813 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 814 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 815 */ 816 uint64_t value = env->cp15.cpacr_el1; 817 818 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 819 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 820 value &= ~(0xf << 20); 821 } 822 return value; 823 } 824 825 826 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 827 { 828 /* Call cpacr_write() so that we reset with the correct RAO bits set 829 * for our CPU features. 830 */ 831 cpacr_write(env, ri, 0); 832 } 833 834 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 835 bool isread) 836 { 837 if (arm_feature(env, ARM_FEATURE_V8)) { 838 /* Check if CPACR accesses are to be trapped to EL2 */ 839 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 840 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 841 return CP_ACCESS_TRAP_EL2; 842 /* Check if CPACR accesses are to be trapped to EL3 */ 843 } else if (arm_current_el(env) < 3 && 844 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 845 return CP_ACCESS_TRAP_EL3; 846 } 847 } 848 849 return CP_ACCESS_OK; 850 } 851 852 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 853 bool isread) 854 { 855 /* Check if CPTR accesses are set to trap to EL3 */ 856 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 857 return CP_ACCESS_TRAP_EL3; 858 } 859 860 return CP_ACCESS_OK; 861 } 862 863 static const ARMCPRegInfo v6_cp_reginfo[] = { 864 /* prefetch by MVA in v6, NOP in v7 */ 865 { .name = "MVA_prefetch", 866 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 867 .access = PL1_W, .type = ARM_CP_NOP }, 868 /* We need to break the TB after ISB to execute self-modifying code 869 * correctly and also to take any pending interrupts immediately. 870 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 871 */ 872 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 873 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 874 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 875 .access = PL0_W, .type = ARM_CP_NOP }, 876 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 877 .access = PL0_W, .type = ARM_CP_NOP }, 878 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 879 .access = PL1_RW, .accessfn = access_tvm_trvm, 880 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 881 offsetof(CPUARMState, cp15.ifar_ns) }, 882 .resetvalue = 0, }, 883 /* Watchpoint Fault Address Register : should actually only be present 884 * for 1136, 1176, 11MPCore. 885 */ 886 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 887 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 888 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 889 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 890 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 891 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 892 REGINFO_SENTINEL 893 }; 894 895 typedef struct pm_event { 896 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 897 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 898 bool (*supported)(CPUARMState *); 899 /* 900 * Retrieve the current count of the underlying event. The programmed 901 * counters hold a difference from the return value from this function 902 */ 903 uint64_t (*get_count)(CPUARMState *); 904 /* 905 * Return how many nanoseconds it will take (at a minimum) for count events 906 * to occur. A negative value indicates the counter will never overflow, or 907 * that the counter has otherwise arranged for the overflow bit to be set 908 * and the PMU interrupt to be raised on overflow. 909 */ 910 int64_t (*ns_per_count)(uint64_t); 911 } pm_event; 912 913 static bool event_always_supported(CPUARMState *env) 914 { 915 return true; 916 } 917 918 static uint64_t swinc_get_count(CPUARMState *env) 919 { 920 /* 921 * SW_INCR events are written directly to the pmevcntr's by writes to 922 * PMSWINC, so there is no underlying count maintained by the PMU itself 923 */ 924 return 0; 925 } 926 927 static int64_t swinc_ns_per(uint64_t ignored) 928 { 929 return -1; 930 } 931 932 /* 933 * Return the underlying cycle count for the PMU cycle counters. If we're in 934 * usermode, simply return 0. 935 */ 936 static uint64_t cycles_get_count(CPUARMState *env) 937 { 938 #ifndef CONFIG_USER_ONLY 939 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 940 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 941 #else 942 return cpu_get_host_ticks(); 943 #endif 944 } 945 946 #ifndef CONFIG_USER_ONLY 947 static int64_t cycles_ns_per(uint64_t cycles) 948 { 949 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 950 } 951 952 static bool instructions_supported(CPUARMState *env) 953 { 954 return icount_enabled() == 1; /* Precise instruction counting */ 955 } 956 957 static uint64_t instructions_get_count(CPUARMState *env) 958 { 959 return (uint64_t)icount_get_raw(); 960 } 961 962 static int64_t instructions_ns_per(uint64_t icount) 963 { 964 return icount_to_ns((int64_t)icount); 965 } 966 #endif 967 968 static bool pmu_8_1_events_supported(CPUARMState *env) 969 { 970 /* For events which are supported in any v8.1 PMU */ 971 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 972 } 973 974 static bool pmu_8_4_events_supported(CPUARMState *env) 975 { 976 /* For events which are supported in any v8.1 PMU */ 977 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 978 } 979 980 static uint64_t zero_event_get_count(CPUARMState *env) 981 { 982 /* For events which on QEMU never fire, so their count is always zero */ 983 return 0; 984 } 985 986 static int64_t zero_event_ns_per(uint64_t cycles) 987 { 988 /* An event which never fires can never overflow */ 989 return -1; 990 } 991 992 static const pm_event pm_events[] = { 993 { .number = 0x000, /* SW_INCR */ 994 .supported = event_always_supported, 995 .get_count = swinc_get_count, 996 .ns_per_count = swinc_ns_per, 997 }, 998 #ifndef CONFIG_USER_ONLY 999 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1000 .supported = instructions_supported, 1001 .get_count = instructions_get_count, 1002 .ns_per_count = instructions_ns_per, 1003 }, 1004 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1005 .supported = event_always_supported, 1006 .get_count = cycles_get_count, 1007 .ns_per_count = cycles_ns_per, 1008 }, 1009 #endif 1010 { .number = 0x023, /* STALL_FRONTEND */ 1011 .supported = pmu_8_1_events_supported, 1012 .get_count = zero_event_get_count, 1013 .ns_per_count = zero_event_ns_per, 1014 }, 1015 { .number = 0x024, /* STALL_BACKEND */ 1016 .supported = pmu_8_1_events_supported, 1017 .get_count = zero_event_get_count, 1018 .ns_per_count = zero_event_ns_per, 1019 }, 1020 { .number = 0x03c, /* STALL */ 1021 .supported = pmu_8_4_events_supported, 1022 .get_count = zero_event_get_count, 1023 .ns_per_count = zero_event_ns_per, 1024 }, 1025 }; 1026 1027 /* 1028 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1029 * events (i.e. the statistical profiling extension), this implementation 1030 * should first be updated to something sparse instead of the current 1031 * supported_event_map[] array. 1032 */ 1033 #define MAX_EVENT_ID 0x3c 1034 #define UNSUPPORTED_EVENT UINT16_MAX 1035 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1036 1037 /* 1038 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1039 * of ARM event numbers to indices in our pm_events array. 1040 * 1041 * Note: Events in the 0x40XX range are not currently supported. 1042 */ 1043 void pmu_init(ARMCPU *cpu) 1044 { 1045 unsigned int i; 1046 1047 /* 1048 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1049 * events to them 1050 */ 1051 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1052 supported_event_map[i] = UNSUPPORTED_EVENT; 1053 } 1054 cpu->pmceid0 = 0; 1055 cpu->pmceid1 = 0; 1056 1057 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1058 const pm_event *cnt = &pm_events[i]; 1059 assert(cnt->number <= MAX_EVENT_ID); 1060 /* We do not currently support events in the 0x40xx range */ 1061 assert(cnt->number <= 0x3f); 1062 1063 if (cnt->supported(&cpu->env)) { 1064 supported_event_map[cnt->number] = i; 1065 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1066 if (cnt->number & 0x20) { 1067 cpu->pmceid1 |= event_mask; 1068 } else { 1069 cpu->pmceid0 |= event_mask; 1070 } 1071 } 1072 } 1073 } 1074 1075 /* 1076 * Check at runtime whether a PMU event is supported for the current machine 1077 */ 1078 static bool event_supported(uint16_t number) 1079 { 1080 if (number > MAX_EVENT_ID) { 1081 return false; 1082 } 1083 return supported_event_map[number] != UNSUPPORTED_EVENT; 1084 } 1085 1086 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1087 bool isread) 1088 { 1089 /* Performance monitor registers user accessibility is controlled 1090 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1091 * trapping to EL2 or EL3 for other accesses. 1092 */ 1093 int el = arm_current_el(env); 1094 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1095 1096 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1097 return CP_ACCESS_TRAP; 1098 } 1099 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1100 return CP_ACCESS_TRAP_EL2; 1101 } 1102 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1103 return CP_ACCESS_TRAP_EL3; 1104 } 1105 1106 return CP_ACCESS_OK; 1107 } 1108 1109 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1110 const ARMCPRegInfo *ri, 1111 bool isread) 1112 { 1113 /* ER: event counter read trap control */ 1114 if (arm_feature(env, ARM_FEATURE_V8) 1115 && arm_current_el(env) == 0 1116 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1117 && isread) { 1118 return CP_ACCESS_OK; 1119 } 1120 1121 return pmreg_access(env, ri, isread); 1122 } 1123 1124 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1125 const ARMCPRegInfo *ri, 1126 bool isread) 1127 { 1128 /* SW: software increment write trap control */ 1129 if (arm_feature(env, ARM_FEATURE_V8) 1130 && arm_current_el(env) == 0 1131 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1132 && !isread) { 1133 return CP_ACCESS_OK; 1134 } 1135 1136 return pmreg_access(env, ri, isread); 1137 } 1138 1139 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1140 const ARMCPRegInfo *ri, 1141 bool isread) 1142 { 1143 /* ER: event counter read trap control */ 1144 if (arm_feature(env, ARM_FEATURE_V8) 1145 && arm_current_el(env) == 0 1146 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1147 return CP_ACCESS_OK; 1148 } 1149 1150 return pmreg_access(env, ri, isread); 1151 } 1152 1153 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1154 const ARMCPRegInfo *ri, 1155 bool isread) 1156 { 1157 /* CR: cycle counter read trap control */ 1158 if (arm_feature(env, ARM_FEATURE_V8) 1159 && arm_current_el(env) == 0 1160 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1161 && isread) { 1162 return CP_ACCESS_OK; 1163 } 1164 1165 return pmreg_access(env, ri, isread); 1166 } 1167 1168 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1169 * the current EL, security state, and register configuration. 1170 */ 1171 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1172 { 1173 uint64_t filter; 1174 bool e, p, u, nsk, nsu, nsh, m; 1175 bool enabled, prohibited, filtered; 1176 bool secure = arm_is_secure(env); 1177 int el = arm_current_el(env); 1178 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1179 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1180 1181 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1182 return false; 1183 } 1184 1185 if (!arm_feature(env, ARM_FEATURE_EL2) || 1186 (counter < hpmn || counter == 31)) { 1187 e = env->cp15.c9_pmcr & PMCRE; 1188 } else { 1189 e = mdcr_el2 & MDCR_HPME; 1190 } 1191 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1192 1193 if (!secure) { 1194 if (el == 2 && (counter < hpmn || counter == 31)) { 1195 prohibited = mdcr_el2 & MDCR_HPMD; 1196 } else { 1197 prohibited = false; 1198 } 1199 } else { 1200 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1201 !(env->cp15.mdcr_el3 & MDCR_SPME); 1202 } 1203 1204 if (prohibited && counter == 31) { 1205 prohibited = env->cp15.c9_pmcr & PMCRDP; 1206 } 1207 1208 if (counter == 31) { 1209 filter = env->cp15.pmccfiltr_el0; 1210 } else { 1211 filter = env->cp15.c14_pmevtyper[counter]; 1212 } 1213 1214 p = filter & PMXEVTYPER_P; 1215 u = filter & PMXEVTYPER_U; 1216 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1217 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1218 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1219 m = arm_el_is_aa64(env, 1) && 1220 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1221 1222 if (el == 0) { 1223 filtered = secure ? u : u != nsu; 1224 } else if (el == 1) { 1225 filtered = secure ? p : p != nsk; 1226 } else if (el == 2) { 1227 filtered = !nsh; 1228 } else { /* EL3 */ 1229 filtered = m != p; 1230 } 1231 1232 if (counter != 31) { 1233 /* 1234 * If not checking PMCCNTR, ensure the counter is setup to an event we 1235 * support 1236 */ 1237 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1238 if (!event_supported(event)) { 1239 return false; 1240 } 1241 } 1242 1243 return enabled && !prohibited && !filtered; 1244 } 1245 1246 static void pmu_update_irq(CPUARMState *env) 1247 { 1248 ARMCPU *cpu = env_archcpu(env); 1249 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1250 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1251 } 1252 1253 /* 1254 * Ensure c15_ccnt is the guest-visible count so that operations such as 1255 * enabling/disabling the counter or filtering, modifying the count itself, 1256 * etc. can be done logically. This is essentially a no-op if the counter is 1257 * not enabled at the time of the call. 1258 */ 1259 static void pmccntr_op_start(CPUARMState *env) 1260 { 1261 uint64_t cycles = cycles_get_count(env); 1262 1263 if (pmu_counter_enabled(env, 31)) { 1264 uint64_t eff_cycles = cycles; 1265 if (env->cp15.c9_pmcr & PMCRD) { 1266 /* Increment once every 64 processor clock cycles */ 1267 eff_cycles /= 64; 1268 } 1269 1270 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1271 1272 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1273 1ull << 63 : 1ull << 31; 1274 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1275 env->cp15.c9_pmovsr |= (1 << 31); 1276 pmu_update_irq(env); 1277 } 1278 1279 env->cp15.c15_ccnt = new_pmccntr; 1280 } 1281 env->cp15.c15_ccnt_delta = cycles; 1282 } 1283 1284 /* 1285 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1286 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1287 * pmccntr_op_start. 1288 */ 1289 static void pmccntr_op_finish(CPUARMState *env) 1290 { 1291 if (pmu_counter_enabled(env, 31)) { 1292 #ifndef CONFIG_USER_ONLY 1293 /* Calculate when the counter will next overflow */ 1294 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1295 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1296 remaining_cycles = (uint32_t)remaining_cycles; 1297 } 1298 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1299 1300 if (overflow_in > 0) { 1301 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1302 overflow_in; 1303 ARMCPU *cpu = env_archcpu(env); 1304 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1305 } 1306 #endif 1307 1308 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1309 if (env->cp15.c9_pmcr & PMCRD) { 1310 /* Increment once every 64 processor clock cycles */ 1311 prev_cycles /= 64; 1312 } 1313 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1314 } 1315 } 1316 1317 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1318 { 1319 1320 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1321 uint64_t count = 0; 1322 if (event_supported(event)) { 1323 uint16_t event_idx = supported_event_map[event]; 1324 count = pm_events[event_idx].get_count(env); 1325 } 1326 1327 if (pmu_counter_enabled(env, counter)) { 1328 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1329 1330 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1331 env->cp15.c9_pmovsr |= (1 << counter); 1332 pmu_update_irq(env); 1333 } 1334 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1335 } 1336 env->cp15.c14_pmevcntr_delta[counter] = count; 1337 } 1338 1339 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1340 { 1341 if (pmu_counter_enabled(env, counter)) { 1342 #ifndef CONFIG_USER_ONLY 1343 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1344 uint16_t event_idx = supported_event_map[event]; 1345 uint64_t delta = UINT32_MAX - 1346 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1347 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1348 1349 if (overflow_in > 0) { 1350 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1351 overflow_in; 1352 ARMCPU *cpu = env_archcpu(env); 1353 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1354 } 1355 #endif 1356 1357 env->cp15.c14_pmevcntr_delta[counter] -= 1358 env->cp15.c14_pmevcntr[counter]; 1359 } 1360 } 1361 1362 void pmu_op_start(CPUARMState *env) 1363 { 1364 unsigned int i; 1365 pmccntr_op_start(env); 1366 for (i = 0; i < pmu_num_counters(env); i++) { 1367 pmevcntr_op_start(env, i); 1368 } 1369 } 1370 1371 void pmu_op_finish(CPUARMState *env) 1372 { 1373 unsigned int i; 1374 pmccntr_op_finish(env); 1375 for (i = 0; i < pmu_num_counters(env); i++) { 1376 pmevcntr_op_finish(env, i); 1377 } 1378 } 1379 1380 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1381 { 1382 pmu_op_start(&cpu->env); 1383 } 1384 1385 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1386 { 1387 pmu_op_finish(&cpu->env); 1388 } 1389 1390 void arm_pmu_timer_cb(void *opaque) 1391 { 1392 ARMCPU *cpu = opaque; 1393 1394 /* 1395 * Update all the counter values based on the current underlying counts, 1396 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1397 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1398 * counter may expire. 1399 */ 1400 pmu_op_start(&cpu->env); 1401 pmu_op_finish(&cpu->env); 1402 } 1403 1404 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1405 uint64_t value) 1406 { 1407 pmu_op_start(env); 1408 1409 if (value & PMCRC) { 1410 /* The counter has been reset */ 1411 env->cp15.c15_ccnt = 0; 1412 } 1413 1414 if (value & PMCRP) { 1415 unsigned int i; 1416 for (i = 0; i < pmu_num_counters(env); i++) { 1417 env->cp15.c14_pmevcntr[i] = 0; 1418 } 1419 } 1420 1421 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1422 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1423 1424 pmu_op_finish(env); 1425 } 1426 1427 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1428 uint64_t value) 1429 { 1430 unsigned int i; 1431 for (i = 0; i < pmu_num_counters(env); i++) { 1432 /* Increment a counter's count iff: */ 1433 if ((value & (1 << i)) && /* counter's bit is set */ 1434 /* counter is enabled and not filtered */ 1435 pmu_counter_enabled(env, i) && 1436 /* counter is SW_INCR */ 1437 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1438 pmevcntr_op_start(env, i); 1439 1440 /* 1441 * Detect if this write causes an overflow since we can't predict 1442 * PMSWINC overflows like we can for other events 1443 */ 1444 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1445 1446 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1447 env->cp15.c9_pmovsr |= (1 << i); 1448 pmu_update_irq(env); 1449 } 1450 1451 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1452 1453 pmevcntr_op_finish(env, i); 1454 } 1455 } 1456 } 1457 1458 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1459 { 1460 uint64_t ret; 1461 pmccntr_op_start(env); 1462 ret = env->cp15.c15_ccnt; 1463 pmccntr_op_finish(env); 1464 return ret; 1465 } 1466 1467 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1468 uint64_t value) 1469 { 1470 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1471 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1472 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1473 * accessed. 1474 */ 1475 env->cp15.c9_pmselr = value & 0x1f; 1476 } 1477 1478 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1479 uint64_t value) 1480 { 1481 pmccntr_op_start(env); 1482 env->cp15.c15_ccnt = value; 1483 pmccntr_op_finish(env); 1484 } 1485 1486 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1487 uint64_t value) 1488 { 1489 uint64_t cur_val = pmccntr_read(env, NULL); 1490 1491 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1492 } 1493 1494 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1495 uint64_t value) 1496 { 1497 pmccntr_op_start(env); 1498 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1499 pmccntr_op_finish(env); 1500 } 1501 1502 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1503 uint64_t value) 1504 { 1505 pmccntr_op_start(env); 1506 /* M is not accessible from AArch32 */ 1507 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1508 (value & PMCCFILTR); 1509 pmccntr_op_finish(env); 1510 } 1511 1512 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1513 { 1514 /* M is not visible in AArch32 */ 1515 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1516 } 1517 1518 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1519 uint64_t value) 1520 { 1521 value &= pmu_counter_mask(env); 1522 env->cp15.c9_pmcnten |= value; 1523 } 1524 1525 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1526 uint64_t value) 1527 { 1528 value &= pmu_counter_mask(env); 1529 env->cp15.c9_pmcnten &= ~value; 1530 } 1531 1532 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1533 uint64_t value) 1534 { 1535 value &= pmu_counter_mask(env); 1536 env->cp15.c9_pmovsr &= ~value; 1537 pmu_update_irq(env); 1538 } 1539 1540 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1541 uint64_t value) 1542 { 1543 value &= pmu_counter_mask(env); 1544 env->cp15.c9_pmovsr |= value; 1545 pmu_update_irq(env); 1546 } 1547 1548 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1549 uint64_t value, const uint8_t counter) 1550 { 1551 if (counter == 31) { 1552 pmccfiltr_write(env, ri, value); 1553 } else if (counter < pmu_num_counters(env)) { 1554 pmevcntr_op_start(env, counter); 1555 1556 /* 1557 * If this counter's event type is changing, store the current 1558 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1559 * pmevcntr_op_finish has the correct baseline when it converts back to 1560 * a delta. 1561 */ 1562 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1563 PMXEVTYPER_EVTCOUNT; 1564 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1565 if (old_event != new_event) { 1566 uint64_t count = 0; 1567 if (event_supported(new_event)) { 1568 uint16_t event_idx = supported_event_map[new_event]; 1569 count = pm_events[event_idx].get_count(env); 1570 } 1571 env->cp15.c14_pmevcntr_delta[counter] = count; 1572 } 1573 1574 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1575 pmevcntr_op_finish(env, counter); 1576 } 1577 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1578 * PMSELR value is equal to or greater than the number of implemented 1579 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1580 */ 1581 } 1582 1583 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1584 const uint8_t counter) 1585 { 1586 if (counter == 31) { 1587 return env->cp15.pmccfiltr_el0; 1588 } else if (counter < pmu_num_counters(env)) { 1589 return env->cp15.c14_pmevtyper[counter]; 1590 } else { 1591 /* 1592 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1593 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1594 */ 1595 return 0; 1596 } 1597 } 1598 1599 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1600 uint64_t value) 1601 { 1602 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1603 pmevtyper_write(env, ri, value, counter); 1604 } 1605 1606 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1607 uint64_t value) 1608 { 1609 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1610 env->cp15.c14_pmevtyper[counter] = value; 1611 1612 /* 1613 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1614 * pmu_op_finish calls when loading saved state for a migration. Because 1615 * we're potentially updating the type of event here, the value written to 1616 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1617 * different counter type. Therefore, we need to set this value to the 1618 * current count for the counter type we're writing so that pmu_op_finish 1619 * has the correct count for its calculation. 1620 */ 1621 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1622 if (event_supported(event)) { 1623 uint16_t event_idx = supported_event_map[event]; 1624 env->cp15.c14_pmevcntr_delta[counter] = 1625 pm_events[event_idx].get_count(env); 1626 } 1627 } 1628 1629 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1630 { 1631 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1632 return pmevtyper_read(env, ri, counter); 1633 } 1634 1635 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1636 uint64_t value) 1637 { 1638 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1639 } 1640 1641 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1642 { 1643 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1644 } 1645 1646 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1647 uint64_t value, uint8_t counter) 1648 { 1649 if (counter < pmu_num_counters(env)) { 1650 pmevcntr_op_start(env, counter); 1651 env->cp15.c14_pmevcntr[counter] = value; 1652 pmevcntr_op_finish(env, counter); 1653 } 1654 /* 1655 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1656 * are CONSTRAINED UNPREDICTABLE. 1657 */ 1658 } 1659 1660 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1661 uint8_t counter) 1662 { 1663 if (counter < pmu_num_counters(env)) { 1664 uint64_t ret; 1665 pmevcntr_op_start(env, counter); 1666 ret = env->cp15.c14_pmevcntr[counter]; 1667 pmevcntr_op_finish(env, counter); 1668 return ret; 1669 } else { 1670 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1671 * are CONSTRAINED UNPREDICTABLE. */ 1672 return 0; 1673 } 1674 } 1675 1676 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1677 uint64_t value) 1678 { 1679 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1680 pmevcntr_write(env, ri, value, counter); 1681 } 1682 1683 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1684 { 1685 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1686 return pmevcntr_read(env, ri, counter); 1687 } 1688 1689 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1690 uint64_t value) 1691 { 1692 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1693 assert(counter < pmu_num_counters(env)); 1694 env->cp15.c14_pmevcntr[counter] = value; 1695 pmevcntr_write(env, ri, value, counter); 1696 } 1697 1698 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1699 { 1700 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1701 assert(counter < pmu_num_counters(env)); 1702 return env->cp15.c14_pmevcntr[counter]; 1703 } 1704 1705 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1706 uint64_t value) 1707 { 1708 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1709 } 1710 1711 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1712 { 1713 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1714 } 1715 1716 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1717 uint64_t value) 1718 { 1719 if (arm_feature(env, ARM_FEATURE_V8)) { 1720 env->cp15.c9_pmuserenr = value & 0xf; 1721 } else { 1722 env->cp15.c9_pmuserenr = value & 1; 1723 } 1724 } 1725 1726 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1727 uint64_t value) 1728 { 1729 /* We have no event counters so only the C bit can be changed */ 1730 value &= pmu_counter_mask(env); 1731 env->cp15.c9_pminten |= value; 1732 pmu_update_irq(env); 1733 } 1734 1735 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1736 uint64_t value) 1737 { 1738 value &= pmu_counter_mask(env); 1739 env->cp15.c9_pminten &= ~value; 1740 pmu_update_irq(env); 1741 } 1742 1743 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1744 uint64_t value) 1745 { 1746 /* Note that even though the AArch64 view of this register has bits 1747 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1748 * architectural requirements for bits which are RES0 only in some 1749 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1750 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1751 */ 1752 raw_write(env, ri, value & ~0x1FULL); 1753 } 1754 1755 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1756 { 1757 /* Begin with base v8.0 state. */ 1758 uint32_t valid_mask = 0x3fff; 1759 ARMCPU *cpu = env_archcpu(env); 1760 1761 if (ri->state == ARM_CP_STATE_AA64) { 1762 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1763 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 1764 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1765 } 1766 valid_mask &= ~SCR_NET; 1767 1768 if (cpu_isar_feature(aa64_lor, cpu)) { 1769 valid_mask |= SCR_TLOR; 1770 } 1771 if (cpu_isar_feature(aa64_pauth, cpu)) { 1772 valid_mask |= SCR_API | SCR_APK; 1773 } 1774 if (cpu_isar_feature(aa64_sel2, cpu)) { 1775 valid_mask |= SCR_EEL2; 1776 } 1777 if (cpu_isar_feature(aa64_mte, cpu)) { 1778 valid_mask |= SCR_ATA; 1779 } 1780 } else { 1781 valid_mask &= ~(SCR_RW | SCR_ST); 1782 } 1783 1784 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1785 valid_mask &= ~SCR_HCE; 1786 1787 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1788 * supported if EL2 exists. The bit is UNK/SBZP when 1789 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1790 * when EL2 is unavailable. 1791 * On ARMv8, this bit is always available. 1792 */ 1793 if (arm_feature(env, ARM_FEATURE_V7) && 1794 !arm_feature(env, ARM_FEATURE_V8)) { 1795 valid_mask &= ~SCR_SMD; 1796 } 1797 } 1798 1799 /* Clear all-context RES0 bits. */ 1800 value &= valid_mask; 1801 raw_write(env, ri, value); 1802 } 1803 1804 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1805 { 1806 /* 1807 * scr_write will set the RES1 bits on an AArch64-only CPU. 1808 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1809 */ 1810 scr_write(env, ri, 0); 1811 } 1812 1813 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1814 const ARMCPRegInfo *ri, 1815 bool isread) 1816 { 1817 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1818 return CP_ACCESS_TRAP_EL2; 1819 } 1820 1821 return CP_ACCESS_OK; 1822 } 1823 1824 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1825 { 1826 ARMCPU *cpu = env_archcpu(env); 1827 1828 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1829 * bank 1830 */ 1831 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1832 ri->secure & ARM_CP_SECSTATE_S); 1833 1834 return cpu->ccsidr[index]; 1835 } 1836 1837 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1838 uint64_t value) 1839 { 1840 raw_write(env, ri, value & 0xf); 1841 } 1842 1843 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1844 { 1845 CPUState *cs = env_cpu(env); 1846 bool el1 = arm_current_el(env) == 1; 1847 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1848 uint64_t ret = 0; 1849 1850 if (hcr_el2 & HCR_IMO) { 1851 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1852 ret |= CPSR_I; 1853 } 1854 } else { 1855 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1856 ret |= CPSR_I; 1857 } 1858 } 1859 1860 if (hcr_el2 & HCR_FMO) { 1861 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1862 ret |= CPSR_F; 1863 } 1864 } else { 1865 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1866 ret |= CPSR_F; 1867 } 1868 } 1869 1870 /* External aborts are not possible in QEMU so A bit is always clear */ 1871 return ret; 1872 } 1873 1874 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1875 bool isread) 1876 { 1877 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1878 return CP_ACCESS_TRAP_EL2; 1879 } 1880 1881 return CP_ACCESS_OK; 1882 } 1883 1884 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1885 bool isread) 1886 { 1887 if (arm_feature(env, ARM_FEATURE_V8)) { 1888 return access_aa64_tid1(env, ri, isread); 1889 } 1890 1891 return CP_ACCESS_OK; 1892 } 1893 1894 static const ARMCPRegInfo v7_cp_reginfo[] = { 1895 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1896 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1897 .access = PL1_W, .type = ARM_CP_NOP }, 1898 /* Performance monitors are implementation defined in v7, 1899 * but with an ARM recommended set of registers, which we 1900 * follow. 1901 * 1902 * Performance registers fall into three categories: 1903 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1904 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1905 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1906 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1907 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1908 */ 1909 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1910 .access = PL0_RW, .type = ARM_CP_ALIAS, 1911 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1912 .writefn = pmcntenset_write, 1913 .accessfn = pmreg_access, 1914 .raw_writefn = raw_write }, 1915 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1916 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1917 .access = PL0_RW, .accessfn = pmreg_access, 1918 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1919 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1920 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1921 .access = PL0_RW, 1922 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1923 .accessfn = pmreg_access, 1924 .writefn = pmcntenclr_write, 1925 .type = ARM_CP_ALIAS }, 1926 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1927 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1928 .access = PL0_RW, .accessfn = pmreg_access, 1929 .type = ARM_CP_ALIAS, 1930 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1931 .writefn = pmcntenclr_write }, 1932 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1933 .access = PL0_RW, .type = ARM_CP_IO, 1934 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1935 .accessfn = pmreg_access, 1936 .writefn = pmovsr_write, 1937 .raw_writefn = raw_write }, 1938 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1939 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1940 .access = PL0_RW, .accessfn = pmreg_access, 1941 .type = ARM_CP_ALIAS | ARM_CP_IO, 1942 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1943 .writefn = pmovsr_write, 1944 .raw_writefn = raw_write }, 1945 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1946 .access = PL0_W, .accessfn = pmreg_access_swinc, 1947 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1948 .writefn = pmswinc_write }, 1949 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1950 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1951 .access = PL0_W, .accessfn = pmreg_access_swinc, 1952 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1953 .writefn = pmswinc_write }, 1954 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1955 .access = PL0_RW, .type = ARM_CP_ALIAS, 1956 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1957 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1958 .raw_writefn = raw_write}, 1959 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1960 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1961 .access = PL0_RW, .accessfn = pmreg_access_selr, 1962 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1963 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1964 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1965 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1966 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1967 .accessfn = pmreg_access_ccntr }, 1968 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1969 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1970 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1971 .type = ARM_CP_IO, 1972 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1973 .readfn = pmccntr_read, .writefn = pmccntr_write, 1974 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1975 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1976 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1977 .access = PL0_RW, .accessfn = pmreg_access, 1978 .type = ARM_CP_ALIAS | ARM_CP_IO, 1979 .resetvalue = 0, }, 1980 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1981 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1982 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1983 .access = PL0_RW, .accessfn = pmreg_access, 1984 .type = ARM_CP_IO, 1985 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1986 .resetvalue = 0, }, 1987 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1988 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1989 .accessfn = pmreg_access, 1990 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1991 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1992 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1993 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1994 .accessfn = pmreg_access, 1995 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1996 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1997 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1998 .accessfn = pmreg_access_xevcntr, 1999 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2000 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2001 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2002 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2003 .accessfn = pmreg_access_xevcntr, 2004 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2005 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2006 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2007 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2008 .resetvalue = 0, 2009 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2010 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2011 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2012 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2013 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2014 .resetvalue = 0, 2015 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2016 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2017 .access = PL1_RW, .accessfn = access_tpm, 2018 .type = ARM_CP_ALIAS | ARM_CP_IO, 2019 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2020 .resetvalue = 0, 2021 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2022 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2023 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2024 .access = PL1_RW, .accessfn = access_tpm, 2025 .type = ARM_CP_IO, 2026 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2027 .writefn = pmintenset_write, .raw_writefn = raw_write, 2028 .resetvalue = 0x0 }, 2029 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2030 .access = PL1_RW, .accessfn = access_tpm, 2031 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2032 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2033 .writefn = pmintenclr_write, }, 2034 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2035 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2036 .access = PL1_RW, .accessfn = access_tpm, 2037 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2038 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2039 .writefn = pmintenclr_write }, 2040 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2041 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2042 .access = PL1_R, 2043 .accessfn = access_aa64_tid2, 2044 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2045 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2046 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2047 .access = PL1_RW, 2048 .accessfn = access_aa64_tid2, 2049 .writefn = csselr_write, .resetvalue = 0, 2050 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2051 offsetof(CPUARMState, cp15.csselr_ns) } }, 2052 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2053 * just RAZ for all cores: 2054 */ 2055 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2056 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2057 .access = PL1_R, .type = ARM_CP_CONST, 2058 .accessfn = access_aa64_tid1, 2059 .resetvalue = 0 }, 2060 /* Auxiliary fault status registers: these also are IMPDEF, and we 2061 * choose to RAZ/WI for all cores. 2062 */ 2063 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2064 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2065 .access = PL1_RW, .accessfn = access_tvm_trvm, 2066 .type = ARM_CP_CONST, .resetvalue = 0 }, 2067 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2068 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2069 .access = PL1_RW, .accessfn = access_tvm_trvm, 2070 .type = ARM_CP_CONST, .resetvalue = 0 }, 2071 /* MAIR can just read-as-written because we don't implement caches 2072 * and so don't need to care about memory attributes. 2073 */ 2074 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2075 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2076 .access = PL1_RW, .accessfn = access_tvm_trvm, 2077 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2078 .resetvalue = 0 }, 2079 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2080 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2081 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2082 .resetvalue = 0 }, 2083 /* For non-long-descriptor page tables these are PRRR and NMRR; 2084 * regardless they still act as reads-as-written for QEMU. 2085 */ 2086 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2087 * allows them to assign the correct fieldoffset based on the endianness 2088 * handled in the field definitions. 2089 */ 2090 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2091 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2092 .access = PL1_RW, .accessfn = access_tvm_trvm, 2093 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2094 offsetof(CPUARMState, cp15.mair0_ns) }, 2095 .resetfn = arm_cp_reset_ignore }, 2096 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2097 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2098 .access = PL1_RW, .accessfn = access_tvm_trvm, 2099 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2100 offsetof(CPUARMState, cp15.mair1_ns) }, 2101 .resetfn = arm_cp_reset_ignore }, 2102 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2103 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2104 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2105 /* 32 bit ITLB invalidates */ 2106 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2107 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2108 .writefn = tlbiall_write }, 2109 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2110 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2111 .writefn = tlbimva_write }, 2112 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2113 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2114 .writefn = tlbiasid_write }, 2115 /* 32 bit DTLB invalidates */ 2116 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2117 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2118 .writefn = tlbiall_write }, 2119 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2120 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2121 .writefn = tlbimva_write }, 2122 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2123 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2124 .writefn = tlbiasid_write }, 2125 /* 32 bit TLB invalidates */ 2126 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2127 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2128 .writefn = tlbiall_write }, 2129 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2130 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2131 .writefn = tlbimva_write }, 2132 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2133 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2134 .writefn = tlbiasid_write }, 2135 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2136 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2137 .writefn = tlbimvaa_write }, 2138 REGINFO_SENTINEL 2139 }; 2140 2141 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2142 /* 32 bit TLB invalidates, Inner Shareable */ 2143 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2144 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2145 .writefn = tlbiall_is_write }, 2146 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2147 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2148 .writefn = tlbimva_is_write }, 2149 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2150 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2151 .writefn = tlbiasid_is_write }, 2152 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2153 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2154 .writefn = tlbimvaa_is_write }, 2155 REGINFO_SENTINEL 2156 }; 2157 2158 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2159 /* PMOVSSET is not implemented in v7 before v7ve */ 2160 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2161 .access = PL0_RW, .accessfn = pmreg_access, 2162 .type = ARM_CP_ALIAS | ARM_CP_IO, 2163 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2164 .writefn = pmovsset_write, 2165 .raw_writefn = raw_write }, 2166 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2167 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2168 .access = PL0_RW, .accessfn = pmreg_access, 2169 .type = ARM_CP_ALIAS | ARM_CP_IO, 2170 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2171 .writefn = pmovsset_write, 2172 .raw_writefn = raw_write }, 2173 REGINFO_SENTINEL 2174 }; 2175 2176 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2177 uint64_t value) 2178 { 2179 value &= 1; 2180 env->teecr = value; 2181 } 2182 2183 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2184 bool isread) 2185 { 2186 /* 2187 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2188 * at all, so we don't need to check whether we're v8A. 2189 */ 2190 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2191 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2192 return CP_ACCESS_TRAP_EL2; 2193 } 2194 return CP_ACCESS_OK; 2195 } 2196 2197 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2198 bool isread) 2199 { 2200 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2201 return CP_ACCESS_TRAP; 2202 } 2203 return teecr_access(env, ri, isread); 2204 } 2205 2206 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2207 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2208 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2209 .resetvalue = 0, 2210 .writefn = teecr_write, .accessfn = teecr_access }, 2211 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2212 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2213 .accessfn = teehbr_access, .resetvalue = 0 }, 2214 REGINFO_SENTINEL 2215 }; 2216 2217 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2218 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2219 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2220 .access = PL0_RW, 2221 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2222 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2223 .access = PL0_RW, 2224 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2225 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2226 .resetfn = arm_cp_reset_ignore }, 2227 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2228 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2229 .access = PL0_R|PL1_W, 2230 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2231 .resetvalue = 0}, 2232 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2233 .access = PL0_R|PL1_W, 2234 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2235 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2236 .resetfn = arm_cp_reset_ignore }, 2237 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2238 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2239 .access = PL1_RW, 2240 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2241 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2242 .access = PL1_RW, 2243 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2244 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2245 .resetvalue = 0 }, 2246 REGINFO_SENTINEL 2247 }; 2248 2249 #ifndef CONFIG_USER_ONLY 2250 2251 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2252 bool isread) 2253 { 2254 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2255 * Writable only at the highest implemented exception level. 2256 */ 2257 int el = arm_current_el(env); 2258 uint64_t hcr; 2259 uint32_t cntkctl; 2260 2261 switch (el) { 2262 case 0: 2263 hcr = arm_hcr_el2_eff(env); 2264 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2265 cntkctl = env->cp15.cnthctl_el2; 2266 } else { 2267 cntkctl = env->cp15.c14_cntkctl; 2268 } 2269 if (!extract32(cntkctl, 0, 2)) { 2270 return CP_ACCESS_TRAP; 2271 } 2272 break; 2273 case 1: 2274 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2275 arm_is_secure_below_el3(env)) { 2276 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2277 return CP_ACCESS_TRAP_UNCATEGORIZED; 2278 } 2279 break; 2280 case 2: 2281 case 3: 2282 break; 2283 } 2284 2285 if (!isread && el < arm_highest_el(env)) { 2286 return CP_ACCESS_TRAP_UNCATEGORIZED; 2287 } 2288 2289 return CP_ACCESS_OK; 2290 } 2291 2292 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2293 bool isread) 2294 { 2295 unsigned int cur_el = arm_current_el(env); 2296 bool has_el2 = arm_is_el2_enabled(env); 2297 uint64_t hcr = arm_hcr_el2_eff(env); 2298 2299 switch (cur_el) { 2300 case 0: 2301 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2302 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2303 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2304 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2305 } 2306 2307 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2308 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2309 return CP_ACCESS_TRAP; 2310 } 2311 2312 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2313 if (hcr & HCR_E2H) { 2314 if (timeridx == GTIMER_PHYS && 2315 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2316 return CP_ACCESS_TRAP_EL2; 2317 } 2318 } else { 2319 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2320 if (has_el2 && timeridx == GTIMER_PHYS && 2321 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2322 return CP_ACCESS_TRAP_EL2; 2323 } 2324 } 2325 break; 2326 2327 case 1: 2328 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2329 if (has_el2 && timeridx == GTIMER_PHYS && 2330 (hcr & HCR_E2H 2331 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2332 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2333 return CP_ACCESS_TRAP_EL2; 2334 } 2335 break; 2336 } 2337 return CP_ACCESS_OK; 2338 } 2339 2340 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2341 bool isread) 2342 { 2343 unsigned int cur_el = arm_current_el(env); 2344 bool has_el2 = arm_is_el2_enabled(env); 2345 uint64_t hcr = arm_hcr_el2_eff(env); 2346 2347 switch (cur_el) { 2348 case 0: 2349 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2350 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2351 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2352 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2353 } 2354 2355 /* 2356 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2357 * EL0 if EL0[PV]TEN is zero. 2358 */ 2359 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2360 return CP_ACCESS_TRAP; 2361 } 2362 /* fall through */ 2363 2364 case 1: 2365 if (has_el2 && timeridx == GTIMER_PHYS) { 2366 if (hcr & HCR_E2H) { 2367 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2368 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2369 return CP_ACCESS_TRAP_EL2; 2370 } 2371 } else { 2372 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2373 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2374 return CP_ACCESS_TRAP_EL2; 2375 } 2376 } 2377 } 2378 break; 2379 } 2380 return CP_ACCESS_OK; 2381 } 2382 2383 static CPAccessResult gt_pct_access(CPUARMState *env, 2384 const ARMCPRegInfo *ri, 2385 bool isread) 2386 { 2387 return gt_counter_access(env, GTIMER_PHYS, isread); 2388 } 2389 2390 static CPAccessResult gt_vct_access(CPUARMState *env, 2391 const ARMCPRegInfo *ri, 2392 bool isread) 2393 { 2394 return gt_counter_access(env, GTIMER_VIRT, isread); 2395 } 2396 2397 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2398 bool isread) 2399 { 2400 return gt_timer_access(env, GTIMER_PHYS, isread); 2401 } 2402 2403 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2404 bool isread) 2405 { 2406 return gt_timer_access(env, GTIMER_VIRT, isread); 2407 } 2408 2409 static CPAccessResult gt_stimer_access(CPUARMState *env, 2410 const ARMCPRegInfo *ri, 2411 bool isread) 2412 { 2413 /* The AArch64 register view of the secure physical timer is 2414 * always accessible from EL3, and configurably accessible from 2415 * Secure EL1. 2416 */ 2417 switch (arm_current_el(env)) { 2418 case 1: 2419 if (!arm_is_secure(env)) { 2420 return CP_ACCESS_TRAP; 2421 } 2422 if (!(env->cp15.scr_el3 & SCR_ST)) { 2423 return CP_ACCESS_TRAP_EL3; 2424 } 2425 return CP_ACCESS_OK; 2426 case 0: 2427 case 2: 2428 return CP_ACCESS_TRAP; 2429 case 3: 2430 return CP_ACCESS_OK; 2431 default: 2432 g_assert_not_reached(); 2433 } 2434 } 2435 2436 static uint64_t gt_get_countervalue(CPUARMState *env) 2437 { 2438 ARMCPU *cpu = env_archcpu(env); 2439 2440 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2441 } 2442 2443 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2444 { 2445 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2446 2447 if (gt->ctl & 1) { 2448 /* Timer enabled: calculate and set current ISTATUS, irq, and 2449 * reset timer to when ISTATUS next has to change 2450 */ 2451 uint64_t offset = timeridx == GTIMER_VIRT ? 2452 cpu->env.cp15.cntvoff_el2 : 0; 2453 uint64_t count = gt_get_countervalue(&cpu->env); 2454 /* Note that this must be unsigned 64 bit arithmetic: */ 2455 int istatus = count - offset >= gt->cval; 2456 uint64_t nexttick; 2457 int irqstate; 2458 2459 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2460 2461 irqstate = (istatus && !(gt->ctl & 2)); 2462 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2463 2464 if (istatus) { 2465 /* Next transition is when count rolls back over to zero */ 2466 nexttick = UINT64_MAX; 2467 } else { 2468 /* Next transition is when we hit cval */ 2469 nexttick = gt->cval + offset; 2470 } 2471 /* Note that the desired next expiry time might be beyond the 2472 * signed-64-bit range of a QEMUTimer -- in this case we just 2473 * set the timer for as far in the future as possible. When the 2474 * timer expires we will reset the timer for any remaining period. 2475 */ 2476 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2477 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2478 } else { 2479 timer_mod(cpu->gt_timer[timeridx], nexttick); 2480 } 2481 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2482 } else { 2483 /* Timer disabled: ISTATUS and timer output always clear */ 2484 gt->ctl &= ~4; 2485 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2486 timer_del(cpu->gt_timer[timeridx]); 2487 trace_arm_gt_recalc_disabled(timeridx); 2488 } 2489 } 2490 2491 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2492 int timeridx) 2493 { 2494 ARMCPU *cpu = env_archcpu(env); 2495 2496 timer_del(cpu->gt_timer[timeridx]); 2497 } 2498 2499 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2500 { 2501 return gt_get_countervalue(env); 2502 } 2503 2504 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2505 { 2506 uint64_t hcr; 2507 2508 switch (arm_current_el(env)) { 2509 case 2: 2510 hcr = arm_hcr_el2_eff(env); 2511 if (hcr & HCR_E2H) { 2512 return 0; 2513 } 2514 break; 2515 case 0: 2516 hcr = arm_hcr_el2_eff(env); 2517 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2518 return 0; 2519 } 2520 break; 2521 } 2522 2523 return env->cp15.cntvoff_el2; 2524 } 2525 2526 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2527 { 2528 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2529 } 2530 2531 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2532 int timeridx, 2533 uint64_t value) 2534 { 2535 trace_arm_gt_cval_write(timeridx, value); 2536 env->cp15.c14_timer[timeridx].cval = value; 2537 gt_recalc_timer(env_archcpu(env), timeridx); 2538 } 2539 2540 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2541 int timeridx) 2542 { 2543 uint64_t offset = 0; 2544 2545 switch (timeridx) { 2546 case GTIMER_VIRT: 2547 case GTIMER_HYPVIRT: 2548 offset = gt_virt_cnt_offset(env); 2549 break; 2550 } 2551 2552 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2553 (gt_get_countervalue(env) - offset)); 2554 } 2555 2556 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2557 int timeridx, 2558 uint64_t value) 2559 { 2560 uint64_t offset = 0; 2561 2562 switch (timeridx) { 2563 case GTIMER_VIRT: 2564 case GTIMER_HYPVIRT: 2565 offset = gt_virt_cnt_offset(env); 2566 break; 2567 } 2568 2569 trace_arm_gt_tval_write(timeridx, value); 2570 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2571 sextract64(value, 0, 32); 2572 gt_recalc_timer(env_archcpu(env), timeridx); 2573 } 2574 2575 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2576 int timeridx, 2577 uint64_t value) 2578 { 2579 ARMCPU *cpu = env_archcpu(env); 2580 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2581 2582 trace_arm_gt_ctl_write(timeridx, value); 2583 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2584 if ((oldval ^ value) & 1) { 2585 /* Enable toggled */ 2586 gt_recalc_timer(cpu, timeridx); 2587 } else if ((oldval ^ value) & 2) { 2588 /* IMASK toggled: don't need to recalculate, 2589 * just set the interrupt line based on ISTATUS 2590 */ 2591 int irqstate = (oldval & 4) && !(value & 2); 2592 2593 trace_arm_gt_imask_toggle(timeridx, irqstate); 2594 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2595 } 2596 } 2597 2598 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2599 { 2600 gt_timer_reset(env, ri, GTIMER_PHYS); 2601 } 2602 2603 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2604 uint64_t value) 2605 { 2606 gt_cval_write(env, ri, GTIMER_PHYS, value); 2607 } 2608 2609 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2610 { 2611 return gt_tval_read(env, ri, GTIMER_PHYS); 2612 } 2613 2614 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2615 uint64_t value) 2616 { 2617 gt_tval_write(env, ri, GTIMER_PHYS, value); 2618 } 2619 2620 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2621 uint64_t value) 2622 { 2623 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2624 } 2625 2626 static int gt_phys_redir_timeridx(CPUARMState *env) 2627 { 2628 switch (arm_mmu_idx(env)) { 2629 case ARMMMUIdx_E20_0: 2630 case ARMMMUIdx_E20_2: 2631 case ARMMMUIdx_E20_2_PAN: 2632 case ARMMMUIdx_SE20_0: 2633 case ARMMMUIdx_SE20_2: 2634 case ARMMMUIdx_SE20_2_PAN: 2635 return GTIMER_HYP; 2636 default: 2637 return GTIMER_PHYS; 2638 } 2639 } 2640 2641 static int gt_virt_redir_timeridx(CPUARMState *env) 2642 { 2643 switch (arm_mmu_idx(env)) { 2644 case ARMMMUIdx_E20_0: 2645 case ARMMMUIdx_E20_2: 2646 case ARMMMUIdx_E20_2_PAN: 2647 case ARMMMUIdx_SE20_0: 2648 case ARMMMUIdx_SE20_2: 2649 case ARMMMUIdx_SE20_2_PAN: 2650 return GTIMER_HYPVIRT; 2651 default: 2652 return GTIMER_VIRT; 2653 } 2654 } 2655 2656 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2657 const ARMCPRegInfo *ri) 2658 { 2659 int timeridx = gt_phys_redir_timeridx(env); 2660 return env->cp15.c14_timer[timeridx].cval; 2661 } 2662 2663 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2664 uint64_t value) 2665 { 2666 int timeridx = gt_phys_redir_timeridx(env); 2667 gt_cval_write(env, ri, timeridx, value); 2668 } 2669 2670 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2671 const ARMCPRegInfo *ri) 2672 { 2673 int timeridx = gt_phys_redir_timeridx(env); 2674 return gt_tval_read(env, ri, timeridx); 2675 } 2676 2677 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2678 uint64_t value) 2679 { 2680 int timeridx = gt_phys_redir_timeridx(env); 2681 gt_tval_write(env, ri, timeridx, value); 2682 } 2683 2684 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2685 const ARMCPRegInfo *ri) 2686 { 2687 int timeridx = gt_phys_redir_timeridx(env); 2688 return env->cp15.c14_timer[timeridx].ctl; 2689 } 2690 2691 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2692 uint64_t value) 2693 { 2694 int timeridx = gt_phys_redir_timeridx(env); 2695 gt_ctl_write(env, ri, timeridx, value); 2696 } 2697 2698 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2699 { 2700 gt_timer_reset(env, ri, GTIMER_VIRT); 2701 } 2702 2703 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2704 uint64_t value) 2705 { 2706 gt_cval_write(env, ri, GTIMER_VIRT, value); 2707 } 2708 2709 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2710 { 2711 return gt_tval_read(env, ri, GTIMER_VIRT); 2712 } 2713 2714 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2715 uint64_t value) 2716 { 2717 gt_tval_write(env, ri, GTIMER_VIRT, value); 2718 } 2719 2720 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2721 uint64_t value) 2722 { 2723 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2724 } 2725 2726 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2727 uint64_t value) 2728 { 2729 ARMCPU *cpu = env_archcpu(env); 2730 2731 trace_arm_gt_cntvoff_write(value); 2732 raw_write(env, ri, value); 2733 gt_recalc_timer(cpu, GTIMER_VIRT); 2734 } 2735 2736 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2737 const ARMCPRegInfo *ri) 2738 { 2739 int timeridx = gt_virt_redir_timeridx(env); 2740 return env->cp15.c14_timer[timeridx].cval; 2741 } 2742 2743 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2744 uint64_t value) 2745 { 2746 int timeridx = gt_virt_redir_timeridx(env); 2747 gt_cval_write(env, ri, timeridx, value); 2748 } 2749 2750 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2751 const ARMCPRegInfo *ri) 2752 { 2753 int timeridx = gt_virt_redir_timeridx(env); 2754 return gt_tval_read(env, ri, timeridx); 2755 } 2756 2757 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2758 uint64_t value) 2759 { 2760 int timeridx = gt_virt_redir_timeridx(env); 2761 gt_tval_write(env, ri, timeridx, value); 2762 } 2763 2764 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2765 const ARMCPRegInfo *ri) 2766 { 2767 int timeridx = gt_virt_redir_timeridx(env); 2768 return env->cp15.c14_timer[timeridx].ctl; 2769 } 2770 2771 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2772 uint64_t value) 2773 { 2774 int timeridx = gt_virt_redir_timeridx(env); 2775 gt_ctl_write(env, ri, timeridx, value); 2776 } 2777 2778 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2779 { 2780 gt_timer_reset(env, ri, GTIMER_HYP); 2781 } 2782 2783 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2784 uint64_t value) 2785 { 2786 gt_cval_write(env, ri, GTIMER_HYP, value); 2787 } 2788 2789 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2790 { 2791 return gt_tval_read(env, ri, GTIMER_HYP); 2792 } 2793 2794 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2795 uint64_t value) 2796 { 2797 gt_tval_write(env, ri, GTIMER_HYP, value); 2798 } 2799 2800 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2801 uint64_t value) 2802 { 2803 gt_ctl_write(env, ri, GTIMER_HYP, value); 2804 } 2805 2806 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2807 { 2808 gt_timer_reset(env, ri, GTIMER_SEC); 2809 } 2810 2811 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2812 uint64_t value) 2813 { 2814 gt_cval_write(env, ri, GTIMER_SEC, value); 2815 } 2816 2817 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2818 { 2819 return gt_tval_read(env, ri, GTIMER_SEC); 2820 } 2821 2822 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2823 uint64_t value) 2824 { 2825 gt_tval_write(env, ri, GTIMER_SEC, value); 2826 } 2827 2828 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2829 uint64_t value) 2830 { 2831 gt_ctl_write(env, ri, GTIMER_SEC, value); 2832 } 2833 2834 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2835 { 2836 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2837 } 2838 2839 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2840 uint64_t value) 2841 { 2842 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2843 } 2844 2845 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2846 { 2847 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2848 } 2849 2850 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2851 uint64_t value) 2852 { 2853 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2854 } 2855 2856 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2857 uint64_t value) 2858 { 2859 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2860 } 2861 2862 void arm_gt_ptimer_cb(void *opaque) 2863 { 2864 ARMCPU *cpu = opaque; 2865 2866 gt_recalc_timer(cpu, GTIMER_PHYS); 2867 } 2868 2869 void arm_gt_vtimer_cb(void *opaque) 2870 { 2871 ARMCPU *cpu = opaque; 2872 2873 gt_recalc_timer(cpu, GTIMER_VIRT); 2874 } 2875 2876 void arm_gt_htimer_cb(void *opaque) 2877 { 2878 ARMCPU *cpu = opaque; 2879 2880 gt_recalc_timer(cpu, GTIMER_HYP); 2881 } 2882 2883 void arm_gt_stimer_cb(void *opaque) 2884 { 2885 ARMCPU *cpu = opaque; 2886 2887 gt_recalc_timer(cpu, GTIMER_SEC); 2888 } 2889 2890 void arm_gt_hvtimer_cb(void *opaque) 2891 { 2892 ARMCPU *cpu = opaque; 2893 2894 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2895 } 2896 2897 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2898 { 2899 ARMCPU *cpu = env_archcpu(env); 2900 2901 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2902 } 2903 2904 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2905 /* Note that CNTFRQ is purely reads-as-written for the benefit 2906 * of software; writing it doesn't actually change the timer frequency. 2907 * Our reset value matches the fixed frequency we implement the timer at. 2908 */ 2909 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2910 .type = ARM_CP_ALIAS, 2911 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2912 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2913 }, 2914 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2915 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2916 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2917 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2918 .resetfn = arm_gt_cntfrq_reset, 2919 }, 2920 /* overall control: mostly access permissions */ 2921 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2922 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2923 .access = PL1_RW, 2924 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2925 .resetvalue = 0, 2926 }, 2927 /* per-timer control */ 2928 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2929 .secure = ARM_CP_SECSTATE_NS, 2930 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2931 .accessfn = gt_ptimer_access, 2932 .fieldoffset = offsetoflow32(CPUARMState, 2933 cp15.c14_timer[GTIMER_PHYS].ctl), 2934 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2935 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2936 }, 2937 { .name = "CNTP_CTL_S", 2938 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2939 .secure = ARM_CP_SECSTATE_S, 2940 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2941 .accessfn = gt_ptimer_access, 2942 .fieldoffset = offsetoflow32(CPUARMState, 2943 cp15.c14_timer[GTIMER_SEC].ctl), 2944 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2945 }, 2946 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2947 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2948 .type = ARM_CP_IO, .access = PL0_RW, 2949 .accessfn = gt_ptimer_access, 2950 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2951 .resetvalue = 0, 2952 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2953 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2954 }, 2955 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2956 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2957 .accessfn = gt_vtimer_access, 2958 .fieldoffset = offsetoflow32(CPUARMState, 2959 cp15.c14_timer[GTIMER_VIRT].ctl), 2960 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2961 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2962 }, 2963 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2964 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2965 .type = ARM_CP_IO, .access = PL0_RW, 2966 .accessfn = gt_vtimer_access, 2967 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2968 .resetvalue = 0, 2969 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2970 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2971 }, 2972 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2973 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2974 .secure = ARM_CP_SECSTATE_NS, 2975 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2976 .accessfn = gt_ptimer_access, 2977 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2978 }, 2979 { .name = "CNTP_TVAL_S", 2980 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2981 .secure = ARM_CP_SECSTATE_S, 2982 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2983 .accessfn = gt_ptimer_access, 2984 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2985 }, 2986 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2987 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2988 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2989 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2990 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2991 }, 2992 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2993 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2994 .accessfn = gt_vtimer_access, 2995 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2996 }, 2997 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2998 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2999 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3000 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3001 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3002 }, 3003 /* The counter itself */ 3004 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3005 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3006 .accessfn = gt_pct_access, 3007 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3008 }, 3009 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3010 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3011 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3012 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3013 }, 3014 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3015 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3016 .accessfn = gt_vct_access, 3017 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3018 }, 3019 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3020 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3021 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3022 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3023 }, 3024 /* Comparison value, indicating when the timer goes off */ 3025 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3026 .secure = ARM_CP_SECSTATE_NS, 3027 .access = PL0_RW, 3028 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3029 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3030 .accessfn = gt_ptimer_access, 3031 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3032 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3033 }, 3034 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3035 .secure = ARM_CP_SECSTATE_S, 3036 .access = PL0_RW, 3037 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3038 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3039 .accessfn = gt_ptimer_access, 3040 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3041 }, 3042 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3043 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3044 .access = PL0_RW, 3045 .type = ARM_CP_IO, 3046 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3047 .resetvalue = 0, .accessfn = gt_ptimer_access, 3048 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3049 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3050 }, 3051 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3052 .access = PL0_RW, 3053 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3054 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3055 .accessfn = gt_vtimer_access, 3056 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3057 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3058 }, 3059 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3060 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3061 .access = PL0_RW, 3062 .type = ARM_CP_IO, 3063 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3064 .resetvalue = 0, .accessfn = gt_vtimer_access, 3065 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3066 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3067 }, 3068 /* Secure timer -- this is actually restricted to only EL3 3069 * and configurably Secure-EL1 via the accessfn. 3070 */ 3071 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3072 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3073 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3074 .accessfn = gt_stimer_access, 3075 .readfn = gt_sec_tval_read, 3076 .writefn = gt_sec_tval_write, 3077 .resetfn = gt_sec_timer_reset, 3078 }, 3079 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3080 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3081 .type = ARM_CP_IO, .access = PL1_RW, 3082 .accessfn = gt_stimer_access, 3083 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3084 .resetvalue = 0, 3085 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3086 }, 3087 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3088 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3089 .type = ARM_CP_IO, .access = PL1_RW, 3090 .accessfn = gt_stimer_access, 3091 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3092 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3093 }, 3094 REGINFO_SENTINEL 3095 }; 3096 3097 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3098 bool isread) 3099 { 3100 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3101 return CP_ACCESS_TRAP; 3102 } 3103 return CP_ACCESS_OK; 3104 } 3105 3106 #else 3107 3108 /* In user-mode most of the generic timer registers are inaccessible 3109 * however modern kernels (4.12+) allow access to cntvct_el0 3110 */ 3111 3112 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3113 { 3114 ARMCPU *cpu = env_archcpu(env); 3115 3116 /* Currently we have no support for QEMUTimer in linux-user so we 3117 * can't call gt_get_countervalue(env), instead we directly 3118 * call the lower level functions. 3119 */ 3120 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3121 } 3122 3123 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3124 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3125 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3126 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3127 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3128 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3129 }, 3130 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3131 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3132 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3133 .readfn = gt_virt_cnt_read, 3134 }, 3135 REGINFO_SENTINEL 3136 }; 3137 3138 #endif 3139 3140 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3141 { 3142 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3143 raw_write(env, ri, value); 3144 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3145 raw_write(env, ri, value & 0xfffff6ff); 3146 } else { 3147 raw_write(env, ri, value & 0xfffff1ff); 3148 } 3149 } 3150 3151 #ifndef CONFIG_USER_ONLY 3152 /* get_phys_addr() isn't present for user-mode-only targets */ 3153 3154 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3155 bool isread) 3156 { 3157 if (ri->opc2 & 4) { 3158 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3159 * Secure EL1 (which can only happen if EL3 is AArch64). 3160 * They are simply UNDEF if executed from NS EL1. 3161 * They function normally from EL2 or EL3. 3162 */ 3163 if (arm_current_el(env) == 1) { 3164 if (arm_is_secure_below_el3(env)) { 3165 if (env->cp15.scr_el3 & SCR_EEL2) { 3166 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3167 } 3168 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3169 } 3170 return CP_ACCESS_TRAP_UNCATEGORIZED; 3171 } 3172 } 3173 return CP_ACCESS_OK; 3174 } 3175 3176 #ifdef CONFIG_TCG 3177 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3178 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3179 { 3180 hwaddr phys_addr; 3181 target_ulong page_size; 3182 int prot; 3183 bool ret; 3184 uint64_t par64; 3185 bool format64 = false; 3186 MemTxAttrs attrs = {}; 3187 ARMMMUFaultInfo fi = {}; 3188 ARMCacheAttrs cacheattrs = {}; 3189 3190 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3191 &prot, &page_size, &fi, &cacheattrs); 3192 3193 if (ret) { 3194 /* 3195 * Some kinds of translation fault must cause exceptions rather 3196 * than being reported in the PAR. 3197 */ 3198 int current_el = arm_current_el(env); 3199 int target_el; 3200 uint32_t syn, fsr, fsc; 3201 bool take_exc = false; 3202 3203 if (fi.s1ptw && current_el == 1 3204 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3205 /* 3206 * Synchronous stage 2 fault on an access made as part of the 3207 * translation table walk for AT S1E0* or AT S1E1* insn 3208 * executed from NS EL1. If this is a synchronous external abort 3209 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3210 * to EL3. Otherwise the fault is taken as an exception to EL2, 3211 * and HPFAR_EL2 holds the faulting IPA. 3212 */ 3213 if (fi.type == ARMFault_SyncExternalOnWalk && 3214 (env->cp15.scr_el3 & SCR_EA)) { 3215 target_el = 3; 3216 } else { 3217 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3218 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3219 env->cp15.hpfar_el2 |= HPFAR_NS; 3220 } 3221 target_el = 2; 3222 } 3223 take_exc = true; 3224 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3225 /* 3226 * Synchronous external aborts during a translation table walk 3227 * are taken as Data Abort exceptions. 3228 */ 3229 if (fi.stage2) { 3230 if (current_el == 3) { 3231 target_el = 3; 3232 } else { 3233 target_el = 2; 3234 } 3235 } else { 3236 target_el = exception_target_el(env); 3237 } 3238 take_exc = true; 3239 } 3240 3241 if (take_exc) { 3242 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3243 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3244 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3245 fsr = arm_fi_to_lfsc(&fi); 3246 fsc = extract32(fsr, 0, 6); 3247 } else { 3248 fsr = arm_fi_to_sfsc(&fi); 3249 fsc = 0x3f; 3250 } 3251 /* 3252 * Report exception with ESR indicating a fault due to a 3253 * translation table walk for a cache maintenance instruction. 3254 */ 3255 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3256 fi.ea, 1, fi.s1ptw, 1, fsc); 3257 env->exception.vaddress = value; 3258 env->exception.fsr = fsr; 3259 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3260 } 3261 } 3262 3263 if (is_a64(env)) { 3264 format64 = true; 3265 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3266 /* 3267 * ATS1Cxx: 3268 * * TTBCR.EAE determines whether the result is returned using the 3269 * 32-bit or the 64-bit PAR format 3270 * * Instructions executed in Hyp mode always use the 64bit format 3271 * 3272 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3273 * * The Non-secure TTBCR.EAE bit is set to 1 3274 * * The implementation includes EL2, and the value of HCR.VM is 1 3275 * 3276 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3277 * 3278 * ATS1Hx always uses the 64bit format. 3279 */ 3280 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3281 3282 if (arm_feature(env, ARM_FEATURE_EL2)) { 3283 if (mmu_idx == ARMMMUIdx_E10_0 || 3284 mmu_idx == ARMMMUIdx_E10_1 || 3285 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3286 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3287 } else { 3288 format64 |= arm_current_el(env) == 2; 3289 } 3290 } 3291 } 3292 3293 if (format64) { 3294 /* Create a 64-bit PAR */ 3295 par64 = (1 << 11); /* LPAE bit always set */ 3296 if (!ret) { 3297 par64 |= phys_addr & ~0xfffULL; 3298 if (!attrs.secure) { 3299 par64 |= (1 << 9); /* NS */ 3300 } 3301 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3302 par64 |= cacheattrs.shareability << 7; /* SH */ 3303 } else { 3304 uint32_t fsr = arm_fi_to_lfsc(&fi); 3305 3306 par64 |= 1; /* F */ 3307 par64 |= (fsr & 0x3f) << 1; /* FS */ 3308 if (fi.stage2) { 3309 par64 |= (1 << 9); /* S */ 3310 } 3311 if (fi.s1ptw) { 3312 par64 |= (1 << 8); /* PTW */ 3313 } 3314 } 3315 } else { 3316 /* fsr is a DFSR/IFSR value for the short descriptor 3317 * translation table format (with WnR always clear). 3318 * Convert it to a 32-bit PAR. 3319 */ 3320 if (!ret) { 3321 /* We do not set any attribute bits in the PAR */ 3322 if (page_size == (1 << 24) 3323 && arm_feature(env, ARM_FEATURE_V7)) { 3324 par64 = (phys_addr & 0xff000000) | (1 << 1); 3325 } else { 3326 par64 = phys_addr & 0xfffff000; 3327 } 3328 if (!attrs.secure) { 3329 par64 |= (1 << 9); /* NS */ 3330 } 3331 } else { 3332 uint32_t fsr = arm_fi_to_sfsc(&fi); 3333 3334 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3335 ((fsr & 0xf) << 1) | 1; 3336 } 3337 } 3338 return par64; 3339 } 3340 #endif /* CONFIG_TCG */ 3341 3342 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3343 { 3344 #ifdef CONFIG_TCG 3345 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3346 uint64_t par64; 3347 ARMMMUIdx mmu_idx; 3348 int el = arm_current_el(env); 3349 bool secure = arm_is_secure_below_el3(env); 3350 3351 switch (ri->opc2 & 6) { 3352 case 0: 3353 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3354 switch (el) { 3355 case 3: 3356 mmu_idx = ARMMMUIdx_SE3; 3357 break; 3358 case 2: 3359 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3360 /* fall through */ 3361 case 1: 3362 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3363 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3364 : ARMMMUIdx_Stage1_E1_PAN); 3365 } else { 3366 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3367 } 3368 break; 3369 default: 3370 g_assert_not_reached(); 3371 } 3372 break; 3373 case 2: 3374 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3375 switch (el) { 3376 case 3: 3377 mmu_idx = ARMMMUIdx_SE10_0; 3378 break; 3379 case 2: 3380 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3381 mmu_idx = ARMMMUIdx_Stage1_E0; 3382 break; 3383 case 1: 3384 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3385 break; 3386 default: 3387 g_assert_not_reached(); 3388 } 3389 break; 3390 case 4: 3391 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3392 mmu_idx = ARMMMUIdx_E10_1; 3393 break; 3394 case 6: 3395 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3396 mmu_idx = ARMMMUIdx_E10_0; 3397 break; 3398 default: 3399 g_assert_not_reached(); 3400 } 3401 3402 par64 = do_ats_write(env, value, access_type, mmu_idx); 3403 3404 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3405 #else 3406 /* Handled by hardware accelerator. */ 3407 g_assert_not_reached(); 3408 #endif /* CONFIG_TCG */ 3409 } 3410 3411 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3412 uint64_t value) 3413 { 3414 #ifdef CONFIG_TCG 3415 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3416 uint64_t par64; 3417 3418 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3419 3420 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3421 #else 3422 /* Handled by hardware accelerator. */ 3423 g_assert_not_reached(); 3424 #endif /* CONFIG_TCG */ 3425 } 3426 3427 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3428 bool isread) 3429 { 3430 if (arm_current_el(env) == 3 && 3431 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3432 return CP_ACCESS_TRAP; 3433 } 3434 return CP_ACCESS_OK; 3435 } 3436 3437 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3438 uint64_t value) 3439 { 3440 #ifdef CONFIG_TCG 3441 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3442 ARMMMUIdx mmu_idx; 3443 int secure = arm_is_secure_below_el3(env); 3444 3445 switch (ri->opc2 & 6) { 3446 case 0: 3447 switch (ri->opc1) { 3448 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3449 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3450 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3451 : ARMMMUIdx_Stage1_E1_PAN); 3452 } else { 3453 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3454 } 3455 break; 3456 case 4: /* AT S1E2R, AT S1E2W */ 3457 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3458 break; 3459 case 6: /* AT S1E3R, AT S1E3W */ 3460 mmu_idx = ARMMMUIdx_SE3; 3461 break; 3462 default: 3463 g_assert_not_reached(); 3464 } 3465 break; 3466 case 2: /* AT S1E0R, AT S1E0W */ 3467 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3468 break; 3469 case 4: /* AT S12E1R, AT S12E1W */ 3470 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3471 break; 3472 case 6: /* AT S12E0R, AT S12E0W */ 3473 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3474 break; 3475 default: 3476 g_assert_not_reached(); 3477 } 3478 3479 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3480 #else 3481 /* Handled by hardware accelerator. */ 3482 g_assert_not_reached(); 3483 #endif /* CONFIG_TCG */ 3484 } 3485 #endif 3486 3487 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3488 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3489 .access = PL1_RW, .resetvalue = 0, 3490 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3491 offsetoflow32(CPUARMState, cp15.par_ns) }, 3492 .writefn = par_write }, 3493 #ifndef CONFIG_USER_ONLY 3494 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3495 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3496 .access = PL1_W, .accessfn = ats_access, 3497 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3498 #endif 3499 REGINFO_SENTINEL 3500 }; 3501 3502 /* Return basic MPU access permission bits. */ 3503 static uint32_t simple_mpu_ap_bits(uint32_t val) 3504 { 3505 uint32_t ret; 3506 uint32_t mask; 3507 int i; 3508 ret = 0; 3509 mask = 3; 3510 for (i = 0; i < 16; i += 2) { 3511 ret |= (val >> i) & mask; 3512 mask <<= 2; 3513 } 3514 return ret; 3515 } 3516 3517 /* Pad basic MPU access permission bits to extended format. */ 3518 static uint32_t extended_mpu_ap_bits(uint32_t val) 3519 { 3520 uint32_t ret; 3521 uint32_t mask; 3522 int i; 3523 ret = 0; 3524 mask = 3; 3525 for (i = 0; i < 16; i += 2) { 3526 ret |= (val & mask) << i; 3527 mask <<= 2; 3528 } 3529 return ret; 3530 } 3531 3532 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3533 uint64_t value) 3534 { 3535 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3536 } 3537 3538 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3539 { 3540 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3541 } 3542 3543 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3544 uint64_t value) 3545 { 3546 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3547 } 3548 3549 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3550 { 3551 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3552 } 3553 3554 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3555 { 3556 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3557 3558 if (!u32p) { 3559 return 0; 3560 } 3561 3562 u32p += env->pmsav7.rnr[M_REG_NS]; 3563 return *u32p; 3564 } 3565 3566 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3567 uint64_t value) 3568 { 3569 ARMCPU *cpu = env_archcpu(env); 3570 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3571 3572 if (!u32p) { 3573 return; 3574 } 3575 3576 u32p += env->pmsav7.rnr[M_REG_NS]; 3577 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3578 *u32p = value; 3579 } 3580 3581 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3582 uint64_t value) 3583 { 3584 ARMCPU *cpu = env_archcpu(env); 3585 uint32_t nrgs = cpu->pmsav7_dregion; 3586 3587 if (value >= nrgs) { 3588 qemu_log_mask(LOG_GUEST_ERROR, 3589 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3590 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3591 return; 3592 } 3593 3594 raw_write(env, ri, value); 3595 } 3596 3597 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3598 /* Reset for all these registers is handled in arm_cpu_reset(), 3599 * because the PMSAv7 is also used by M-profile CPUs, which do 3600 * not register cpregs but still need the state to be reset. 3601 */ 3602 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3603 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3604 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3605 .readfn = pmsav7_read, .writefn = pmsav7_write, 3606 .resetfn = arm_cp_reset_ignore }, 3607 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3608 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3609 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3610 .readfn = pmsav7_read, .writefn = pmsav7_write, 3611 .resetfn = arm_cp_reset_ignore }, 3612 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3613 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3614 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3615 .readfn = pmsav7_read, .writefn = pmsav7_write, 3616 .resetfn = arm_cp_reset_ignore }, 3617 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3618 .access = PL1_RW, 3619 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3620 .writefn = pmsav7_rgnr_write, 3621 .resetfn = arm_cp_reset_ignore }, 3622 REGINFO_SENTINEL 3623 }; 3624 3625 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3626 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3627 .access = PL1_RW, .type = ARM_CP_ALIAS, 3628 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3629 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3630 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3631 .access = PL1_RW, .type = ARM_CP_ALIAS, 3632 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3633 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3634 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3635 .access = PL1_RW, 3636 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3637 .resetvalue = 0, }, 3638 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3639 .access = PL1_RW, 3640 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3641 .resetvalue = 0, }, 3642 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3643 .access = PL1_RW, 3644 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3645 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3646 .access = PL1_RW, 3647 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3648 /* Protection region base and size registers */ 3649 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3650 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3651 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3652 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3653 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3654 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3655 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3656 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3657 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3658 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3659 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3660 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3661 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3662 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3663 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3664 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3665 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3666 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3667 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3668 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3669 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3670 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3671 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3672 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3673 REGINFO_SENTINEL 3674 }; 3675 3676 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3677 uint64_t value) 3678 { 3679 TCR *tcr = raw_ptr(env, ri); 3680 int maskshift = extract32(value, 0, 3); 3681 3682 if (!arm_feature(env, ARM_FEATURE_V8)) { 3683 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3684 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3685 * using Long-desciptor translation table format */ 3686 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3687 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3688 /* In an implementation that includes the Security Extensions 3689 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3690 * Short-descriptor translation table format. 3691 */ 3692 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3693 } else { 3694 value &= TTBCR_N; 3695 } 3696 } 3697 3698 /* Update the masks corresponding to the TCR bank being written 3699 * Note that we always calculate mask and base_mask, but 3700 * they are only used for short-descriptor tables (ie if EAE is 0); 3701 * for long-descriptor tables the TCR fields are used differently 3702 * and the mask and base_mask values are meaningless. 3703 */ 3704 tcr->raw_tcr = value; 3705 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3706 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3707 } 3708 3709 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3710 uint64_t value) 3711 { 3712 ARMCPU *cpu = env_archcpu(env); 3713 TCR *tcr = raw_ptr(env, ri); 3714 3715 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3716 /* With LPAE the TTBCR could result in a change of ASID 3717 * via the TTBCR.A1 bit, so do a TLB flush. 3718 */ 3719 tlb_flush(CPU(cpu)); 3720 } 3721 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3722 value = deposit64(tcr->raw_tcr, 0, 32, value); 3723 vmsa_ttbcr_raw_write(env, ri, value); 3724 } 3725 3726 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3727 { 3728 TCR *tcr = raw_ptr(env, ri); 3729 3730 /* Reset both the TCR as well as the masks corresponding to the bank of 3731 * the TCR being reset. 3732 */ 3733 tcr->raw_tcr = 0; 3734 tcr->mask = 0; 3735 tcr->base_mask = 0xffffc000u; 3736 } 3737 3738 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3739 uint64_t value) 3740 { 3741 ARMCPU *cpu = env_archcpu(env); 3742 TCR *tcr = raw_ptr(env, ri); 3743 3744 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3745 tlb_flush(CPU(cpu)); 3746 tcr->raw_tcr = value; 3747 } 3748 3749 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3750 uint64_t value) 3751 { 3752 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3753 if (cpreg_field_is_64bit(ri) && 3754 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3755 ARMCPU *cpu = env_archcpu(env); 3756 tlb_flush(CPU(cpu)); 3757 } 3758 raw_write(env, ri, value); 3759 } 3760 3761 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3762 uint64_t value) 3763 { 3764 /* 3765 * If we are running with E2&0 regime, then an ASID is active. 3766 * Flush if that might be changing. Note we're not checking 3767 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3768 * holds the active ASID, only checking the field that might. 3769 */ 3770 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3771 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3772 uint16_t mask = ARMMMUIdxBit_E20_2 | 3773 ARMMMUIdxBit_E20_2_PAN | 3774 ARMMMUIdxBit_E20_0; 3775 3776 if (arm_is_secure_below_el3(env)) { 3777 mask >>= ARM_MMU_IDX_A_NS; 3778 } 3779 3780 tlb_flush_by_mmuidx(env_cpu(env), mask); 3781 } 3782 raw_write(env, ri, value); 3783 } 3784 3785 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3786 uint64_t value) 3787 { 3788 ARMCPU *cpu = env_archcpu(env); 3789 CPUState *cs = CPU(cpu); 3790 3791 /* 3792 * A change in VMID to the stage2 page table (Stage2) invalidates 3793 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3794 */ 3795 if (raw_read(env, ri) != value) { 3796 uint16_t mask = ARMMMUIdxBit_E10_1 | 3797 ARMMMUIdxBit_E10_1_PAN | 3798 ARMMMUIdxBit_E10_0; 3799 3800 if (arm_is_secure_below_el3(env)) { 3801 mask >>= ARM_MMU_IDX_A_NS; 3802 } 3803 3804 tlb_flush_by_mmuidx(cs, mask); 3805 raw_write(env, ri, value); 3806 } 3807 } 3808 3809 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3810 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3811 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3812 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3813 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3814 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3815 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3816 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3817 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3818 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3819 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3820 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3821 offsetof(CPUARMState, cp15.dfar_ns) } }, 3822 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3823 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3824 .access = PL1_RW, .accessfn = access_tvm_trvm, 3825 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3826 .resetvalue = 0, }, 3827 REGINFO_SENTINEL 3828 }; 3829 3830 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3831 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3832 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3833 .access = PL1_RW, .accessfn = access_tvm_trvm, 3834 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3835 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3836 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3837 .access = PL1_RW, .accessfn = access_tvm_trvm, 3838 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3839 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3840 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3841 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3842 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3843 .access = PL1_RW, .accessfn = access_tvm_trvm, 3844 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3845 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3846 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3847 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3848 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3849 .access = PL1_RW, .accessfn = access_tvm_trvm, 3850 .writefn = vmsa_tcr_el12_write, 3851 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3852 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3853 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3854 .access = PL1_RW, .accessfn = access_tvm_trvm, 3855 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3856 .raw_writefn = vmsa_ttbcr_raw_write, 3857 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ 3858 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), 3859 offsetof(CPUARMState, cp15.tcr_el[1])} }, 3860 REGINFO_SENTINEL 3861 }; 3862 3863 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3864 * qemu tlbs nor adjusting cached masks. 3865 */ 3866 static const ARMCPRegInfo ttbcr2_reginfo = { 3867 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3868 .access = PL1_RW, .accessfn = access_tvm_trvm, 3869 .type = ARM_CP_ALIAS, 3870 .bank_fieldoffsets = { 3871 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), 3872 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), 3873 }, 3874 }; 3875 3876 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3877 uint64_t value) 3878 { 3879 env->cp15.c15_ticonfig = value & 0xe7; 3880 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3881 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3882 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3883 } 3884 3885 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3886 uint64_t value) 3887 { 3888 env->cp15.c15_threadid = value & 0xffff; 3889 } 3890 3891 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3892 uint64_t value) 3893 { 3894 /* Wait-for-interrupt (deprecated) */ 3895 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3896 } 3897 3898 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3899 uint64_t value) 3900 { 3901 /* On OMAP there are registers indicating the max/min index of dcache lines 3902 * containing a dirty line; cache flush operations have to reset these. 3903 */ 3904 env->cp15.c15_i_max = 0x000; 3905 env->cp15.c15_i_min = 0xff0; 3906 } 3907 3908 static const ARMCPRegInfo omap_cp_reginfo[] = { 3909 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3910 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3911 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3912 .resetvalue = 0, }, 3913 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3914 .access = PL1_RW, .type = ARM_CP_NOP }, 3915 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3916 .access = PL1_RW, 3917 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3918 .writefn = omap_ticonfig_write }, 3919 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3920 .access = PL1_RW, 3921 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3922 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3923 .access = PL1_RW, .resetvalue = 0xff0, 3924 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3925 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3926 .access = PL1_RW, 3927 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3928 .writefn = omap_threadid_write }, 3929 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3930 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3931 .type = ARM_CP_NO_RAW, 3932 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3933 /* TODO: Peripheral port remap register: 3934 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3935 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3936 * when MMU is off. 3937 */ 3938 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3939 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3940 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3941 .writefn = omap_cachemaint_write }, 3942 { .name = "C9", .cp = 15, .crn = 9, 3943 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3944 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3945 REGINFO_SENTINEL 3946 }; 3947 3948 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3949 uint64_t value) 3950 { 3951 env->cp15.c15_cpar = value & 0x3fff; 3952 } 3953 3954 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3955 { .name = "XSCALE_CPAR", 3956 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3957 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3958 .writefn = xscale_cpar_write, }, 3959 { .name = "XSCALE_AUXCR", 3960 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3961 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3962 .resetvalue = 0, }, 3963 /* XScale specific cache-lockdown: since we have no cache we NOP these 3964 * and hope the guest does not really rely on cache behaviour. 3965 */ 3966 { .name = "XSCALE_LOCK_ICACHE_LINE", 3967 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3968 .access = PL1_W, .type = ARM_CP_NOP }, 3969 { .name = "XSCALE_UNLOCK_ICACHE", 3970 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3971 .access = PL1_W, .type = ARM_CP_NOP }, 3972 { .name = "XSCALE_DCACHE_LOCK", 3973 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3974 .access = PL1_RW, .type = ARM_CP_NOP }, 3975 { .name = "XSCALE_UNLOCK_DCACHE", 3976 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3977 .access = PL1_W, .type = ARM_CP_NOP }, 3978 REGINFO_SENTINEL 3979 }; 3980 3981 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3982 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3983 * implementation of this implementation-defined space. 3984 * Ideally this should eventually disappear in favour of actually 3985 * implementing the correct behaviour for all cores. 3986 */ 3987 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3988 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3989 .access = PL1_RW, 3990 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3991 .resetvalue = 0 }, 3992 REGINFO_SENTINEL 3993 }; 3994 3995 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3996 /* Cache status: RAZ because we have no cache so it's always clean */ 3997 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3998 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3999 .resetvalue = 0 }, 4000 REGINFO_SENTINEL 4001 }; 4002 4003 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4004 /* We never have a a block transfer operation in progress */ 4005 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4006 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4007 .resetvalue = 0 }, 4008 /* The cache ops themselves: these all NOP for QEMU */ 4009 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4010 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4011 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4012 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4013 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4014 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4015 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4016 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4017 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4018 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4019 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4020 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4021 REGINFO_SENTINEL 4022 }; 4023 4024 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4025 /* The cache test-and-clean instructions always return (1 << 30) 4026 * to indicate that there are no dirty cache lines. 4027 */ 4028 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4029 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4030 .resetvalue = (1 << 30) }, 4031 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4032 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4033 .resetvalue = (1 << 30) }, 4034 REGINFO_SENTINEL 4035 }; 4036 4037 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4038 /* Ignore ReadBuffer accesses */ 4039 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4040 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4041 .access = PL1_RW, .resetvalue = 0, 4042 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4043 REGINFO_SENTINEL 4044 }; 4045 4046 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4047 { 4048 unsigned int cur_el = arm_current_el(env); 4049 4050 if (arm_is_el2_enabled(env) && cur_el == 1) { 4051 return env->cp15.vpidr_el2; 4052 } 4053 return raw_read(env, ri); 4054 } 4055 4056 static uint64_t mpidr_read_val(CPUARMState *env) 4057 { 4058 ARMCPU *cpu = env_archcpu(env); 4059 uint64_t mpidr = cpu->mp_affinity; 4060 4061 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4062 mpidr |= (1U << 31); 4063 /* Cores which are uniprocessor (non-coherent) 4064 * but still implement the MP extensions set 4065 * bit 30. (For instance, Cortex-R5). 4066 */ 4067 if (cpu->mp_is_up) { 4068 mpidr |= (1u << 30); 4069 } 4070 } 4071 return mpidr; 4072 } 4073 4074 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4075 { 4076 unsigned int cur_el = arm_current_el(env); 4077 4078 if (arm_is_el2_enabled(env) && cur_el == 1) { 4079 return env->cp15.vmpidr_el2; 4080 } 4081 return mpidr_read_val(env); 4082 } 4083 4084 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4085 /* NOP AMAIR0/1 */ 4086 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4087 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4088 .access = PL1_RW, .accessfn = access_tvm_trvm, 4089 .type = ARM_CP_CONST, .resetvalue = 0 }, 4090 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4091 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4092 .access = PL1_RW, .accessfn = access_tvm_trvm, 4093 .type = ARM_CP_CONST, .resetvalue = 0 }, 4094 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4095 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4096 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4097 offsetof(CPUARMState, cp15.par_ns)} }, 4098 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4099 .access = PL1_RW, .accessfn = access_tvm_trvm, 4100 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4101 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4102 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4103 .writefn = vmsa_ttbr_write, }, 4104 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4105 .access = PL1_RW, .accessfn = access_tvm_trvm, 4106 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4107 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4108 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4109 .writefn = vmsa_ttbr_write, }, 4110 REGINFO_SENTINEL 4111 }; 4112 4113 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4114 { 4115 return vfp_get_fpcr(env); 4116 } 4117 4118 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4119 uint64_t value) 4120 { 4121 vfp_set_fpcr(env, value); 4122 } 4123 4124 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4125 { 4126 return vfp_get_fpsr(env); 4127 } 4128 4129 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4130 uint64_t value) 4131 { 4132 vfp_set_fpsr(env, value); 4133 } 4134 4135 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4136 bool isread) 4137 { 4138 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4139 return CP_ACCESS_TRAP; 4140 } 4141 return CP_ACCESS_OK; 4142 } 4143 4144 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4145 uint64_t value) 4146 { 4147 env->daif = value & PSTATE_DAIF; 4148 } 4149 4150 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4151 { 4152 return env->pstate & PSTATE_PAN; 4153 } 4154 4155 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4156 uint64_t value) 4157 { 4158 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4159 } 4160 4161 static const ARMCPRegInfo pan_reginfo = { 4162 .name = "PAN", .state = ARM_CP_STATE_AA64, 4163 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4164 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4165 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4166 }; 4167 4168 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4169 { 4170 return env->pstate & PSTATE_UAO; 4171 } 4172 4173 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4174 uint64_t value) 4175 { 4176 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4177 } 4178 4179 static const ARMCPRegInfo uao_reginfo = { 4180 .name = "UAO", .state = ARM_CP_STATE_AA64, 4181 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4182 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4183 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4184 }; 4185 4186 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4187 { 4188 return env->pstate & PSTATE_DIT; 4189 } 4190 4191 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4192 uint64_t value) 4193 { 4194 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4195 } 4196 4197 static const ARMCPRegInfo dit_reginfo = { 4198 .name = "DIT", .state = ARM_CP_STATE_AA64, 4199 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4200 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4201 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4202 }; 4203 4204 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4205 { 4206 return env->pstate & PSTATE_SSBS; 4207 } 4208 4209 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4210 uint64_t value) 4211 { 4212 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4213 } 4214 4215 static const ARMCPRegInfo ssbs_reginfo = { 4216 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4217 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4218 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4219 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4220 }; 4221 4222 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4223 const ARMCPRegInfo *ri, 4224 bool isread) 4225 { 4226 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4227 switch (arm_current_el(env)) { 4228 case 0: 4229 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4230 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4231 return CP_ACCESS_TRAP; 4232 } 4233 /* fall through */ 4234 case 1: 4235 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4236 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4237 return CP_ACCESS_TRAP_EL2; 4238 } 4239 break; 4240 } 4241 return CP_ACCESS_OK; 4242 } 4243 4244 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4245 const ARMCPRegInfo *ri, 4246 bool isread) 4247 { 4248 /* Cache invalidate/clean to Point of Unification... */ 4249 switch (arm_current_el(env)) { 4250 case 0: 4251 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4252 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4253 return CP_ACCESS_TRAP; 4254 } 4255 /* fall through */ 4256 case 1: 4257 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4258 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4259 return CP_ACCESS_TRAP_EL2; 4260 } 4261 break; 4262 } 4263 return CP_ACCESS_OK; 4264 } 4265 4266 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4267 * Page D4-1736 (DDI0487A.b) 4268 */ 4269 4270 static int vae1_tlbmask(CPUARMState *env) 4271 { 4272 uint64_t hcr = arm_hcr_el2_eff(env); 4273 uint16_t mask; 4274 4275 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4276 mask = ARMMMUIdxBit_E20_2 | 4277 ARMMMUIdxBit_E20_2_PAN | 4278 ARMMMUIdxBit_E20_0; 4279 } else { 4280 mask = ARMMMUIdxBit_E10_1 | 4281 ARMMMUIdxBit_E10_1_PAN | 4282 ARMMMUIdxBit_E10_0; 4283 } 4284 4285 if (arm_is_secure_below_el3(env)) { 4286 mask >>= ARM_MMU_IDX_A_NS; 4287 } 4288 4289 return mask; 4290 } 4291 4292 /* Return 56 if TBI is enabled, 64 otherwise. */ 4293 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4294 uint64_t addr) 4295 { 4296 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4297 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4298 int select = extract64(addr, 55, 1); 4299 4300 return (tbi >> select) & 1 ? 56 : 64; 4301 } 4302 4303 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4304 { 4305 uint64_t hcr = arm_hcr_el2_eff(env); 4306 ARMMMUIdx mmu_idx; 4307 4308 /* Only the regime of the mmu_idx below is significant. */ 4309 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4310 mmu_idx = ARMMMUIdx_E20_0; 4311 } else { 4312 mmu_idx = ARMMMUIdx_E10_0; 4313 } 4314 4315 if (arm_is_secure_below_el3(env)) { 4316 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4317 } 4318 4319 return tlbbits_for_regime(env, mmu_idx, addr); 4320 } 4321 4322 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4323 uint64_t value) 4324 { 4325 CPUState *cs = env_cpu(env); 4326 int mask = vae1_tlbmask(env); 4327 4328 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4329 } 4330 4331 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4332 uint64_t value) 4333 { 4334 CPUState *cs = env_cpu(env); 4335 int mask = vae1_tlbmask(env); 4336 4337 if (tlb_force_broadcast(env)) { 4338 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4339 } else { 4340 tlb_flush_by_mmuidx(cs, mask); 4341 } 4342 } 4343 4344 static int alle1_tlbmask(CPUARMState *env) 4345 { 4346 /* 4347 * Note that the 'ALL' scope must invalidate both stage 1 and 4348 * stage 2 translations, whereas most other scopes only invalidate 4349 * stage 1 translations. 4350 */ 4351 if (arm_is_secure_below_el3(env)) { 4352 return ARMMMUIdxBit_SE10_1 | 4353 ARMMMUIdxBit_SE10_1_PAN | 4354 ARMMMUIdxBit_SE10_0; 4355 } else { 4356 return ARMMMUIdxBit_E10_1 | 4357 ARMMMUIdxBit_E10_1_PAN | 4358 ARMMMUIdxBit_E10_0; 4359 } 4360 } 4361 4362 static int e2_tlbmask(CPUARMState *env) 4363 { 4364 if (arm_is_secure_below_el3(env)) { 4365 return ARMMMUIdxBit_SE20_0 | 4366 ARMMMUIdxBit_SE20_2 | 4367 ARMMMUIdxBit_SE20_2_PAN | 4368 ARMMMUIdxBit_SE2; 4369 } else { 4370 return ARMMMUIdxBit_E20_0 | 4371 ARMMMUIdxBit_E20_2 | 4372 ARMMMUIdxBit_E20_2_PAN | 4373 ARMMMUIdxBit_E2; 4374 } 4375 } 4376 4377 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4378 uint64_t value) 4379 { 4380 CPUState *cs = env_cpu(env); 4381 int mask = alle1_tlbmask(env); 4382 4383 tlb_flush_by_mmuidx(cs, mask); 4384 } 4385 4386 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4387 uint64_t value) 4388 { 4389 CPUState *cs = env_cpu(env); 4390 int mask = e2_tlbmask(env); 4391 4392 tlb_flush_by_mmuidx(cs, mask); 4393 } 4394 4395 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4396 uint64_t value) 4397 { 4398 ARMCPU *cpu = env_archcpu(env); 4399 CPUState *cs = CPU(cpu); 4400 4401 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4402 } 4403 4404 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4405 uint64_t value) 4406 { 4407 CPUState *cs = env_cpu(env); 4408 int mask = alle1_tlbmask(env); 4409 4410 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4411 } 4412 4413 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4414 uint64_t value) 4415 { 4416 CPUState *cs = env_cpu(env); 4417 int mask = e2_tlbmask(env); 4418 4419 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4420 } 4421 4422 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4423 uint64_t value) 4424 { 4425 CPUState *cs = env_cpu(env); 4426 4427 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4428 } 4429 4430 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4431 uint64_t value) 4432 { 4433 /* Invalidate by VA, EL2 4434 * Currently handles both VAE2 and VALE2, since we don't support 4435 * flush-last-level-only. 4436 */ 4437 CPUState *cs = env_cpu(env); 4438 int mask = e2_tlbmask(env); 4439 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4440 4441 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4442 } 4443 4444 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4445 uint64_t value) 4446 { 4447 /* Invalidate by VA, EL3 4448 * Currently handles both VAE3 and VALE3, since we don't support 4449 * flush-last-level-only. 4450 */ 4451 ARMCPU *cpu = env_archcpu(env); 4452 CPUState *cs = CPU(cpu); 4453 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4454 4455 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4456 } 4457 4458 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4459 uint64_t value) 4460 { 4461 CPUState *cs = env_cpu(env); 4462 int mask = vae1_tlbmask(env); 4463 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4464 int bits = vae1_tlbbits(env, pageaddr); 4465 4466 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4467 } 4468 4469 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4470 uint64_t value) 4471 { 4472 /* Invalidate by VA, EL1&0 (AArch64 version). 4473 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4474 * since we don't support flush-for-specific-ASID-only or 4475 * flush-last-level-only. 4476 */ 4477 CPUState *cs = env_cpu(env); 4478 int mask = vae1_tlbmask(env); 4479 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4480 int bits = vae1_tlbbits(env, pageaddr); 4481 4482 if (tlb_force_broadcast(env)) { 4483 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4484 } else { 4485 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4486 } 4487 } 4488 4489 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4490 uint64_t value) 4491 { 4492 CPUState *cs = env_cpu(env); 4493 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4494 bool secure = arm_is_secure_below_el3(env); 4495 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4496 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4497 pageaddr); 4498 4499 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4500 } 4501 4502 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4503 uint64_t value) 4504 { 4505 CPUState *cs = env_cpu(env); 4506 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4507 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4508 4509 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4510 ARMMMUIdxBit_SE3, bits); 4511 } 4512 4513 #ifdef TARGET_AARCH64 4514 typedef struct { 4515 uint64_t base; 4516 uint64_t length; 4517 } TLBIRange; 4518 4519 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4520 uint64_t value) 4521 { 4522 unsigned int page_size_granule, page_shift, num, scale, exponent; 4523 /* Extract one bit to represent the va selector in use. */ 4524 uint64_t select = sextract64(value, 36, 1); 4525 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4526 TLBIRange ret = { }; 4527 4528 page_size_granule = extract64(value, 46, 2); 4529 4530 /* The granule encoded in value must match the granule in use. */ 4531 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) { 4532 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4533 page_size_granule); 4534 return ret; 4535 } 4536 4537 page_shift = (page_size_granule - 1) * 2 + 12; 4538 num = extract64(value, 39, 5); 4539 scale = extract64(value, 44, 2); 4540 exponent = (5 * scale) + 1; 4541 4542 ret.length = (num + 1) << (exponent + page_shift); 4543 4544 if (param.select) { 4545 ret.base = sextract64(value, 0, 37); 4546 } else { 4547 ret.base = extract64(value, 0, 37); 4548 } 4549 if (param.ds) { 4550 /* 4551 * With DS=1, BaseADDR is always shifted 16 so that it is able 4552 * to address all 52 va bits. The input address is perforce 4553 * aligned on a 64k boundary regardless of translation granule. 4554 */ 4555 page_shift = 16; 4556 } 4557 ret.base <<= page_shift; 4558 4559 return ret; 4560 } 4561 4562 static void do_rvae_write(CPUARMState *env, uint64_t value, 4563 int idxmap, bool synced) 4564 { 4565 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4566 TLBIRange range; 4567 int bits; 4568 4569 range = tlbi_aa64_get_range(env, one_idx, value); 4570 bits = tlbbits_for_regime(env, one_idx, range.base); 4571 4572 if (synced) { 4573 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4574 range.base, 4575 range.length, 4576 idxmap, 4577 bits); 4578 } else { 4579 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4580 range.length, idxmap, bits); 4581 } 4582 } 4583 4584 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4585 const ARMCPRegInfo *ri, 4586 uint64_t value) 4587 { 4588 /* 4589 * Invalidate by VA range, EL1&0. 4590 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4591 * since we don't support flush-for-specific-ASID-only or 4592 * flush-last-level-only. 4593 */ 4594 4595 do_rvae_write(env, value, vae1_tlbmask(env), 4596 tlb_force_broadcast(env)); 4597 } 4598 4599 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4600 const ARMCPRegInfo *ri, 4601 uint64_t value) 4602 { 4603 /* 4604 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4605 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4606 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4607 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4608 * shareable specific flushes. 4609 */ 4610 4611 do_rvae_write(env, value, vae1_tlbmask(env), true); 4612 } 4613 4614 static int vae2_tlbmask(CPUARMState *env) 4615 { 4616 return (arm_is_secure_below_el3(env) 4617 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4618 } 4619 4620 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4621 const ARMCPRegInfo *ri, 4622 uint64_t value) 4623 { 4624 /* 4625 * Invalidate by VA range, EL2. 4626 * Currently handles all of RVAE2 and RVALE2, 4627 * since we don't support flush-for-specific-ASID-only or 4628 * flush-last-level-only. 4629 */ 4630 4631 do_rvae_write(env, value, vae2_tlbmask(env), 4632 tlb_force_broadcast(env)); 4633 4634 4635 } 4636 4637 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4638 const ARMCPRegInfo *ri, 4639 uint64_t value) 4640 { 4641 /* 4642 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4643 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4644 * since we don't support flush-for-specific-ASID-only, 4645 * flush-last-level-only or inner/outer shareable specific flushes. 4646 */ 4647 4648 do_rvae_write(env, value, vae2_tlbmask(env), true); 4649 4650 } 4651 4652 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4653 const ARMCPRegInfo *ri, 4654 uint64_t value) 4655 { 4656 /* 4657 * Invalidate by VA range, EL3. 4658 * Currently handles all of RVAE3 and RVALE3, 4659 * since we don't support flush-for-specific-ASID-only or 4660 * flush-last-level-only. 4661 */ 4662 4663 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4664 tlb_force_broadcast(env)); 4665 } 4666 4667 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4668 const ARMCPRegInfo *ri, 4669 uint64_t value) 4670 { 4671 /* 4672 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4673 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4674 * since we don't support flush-for-specific-ASID-only, 4675 * flush-last-level-only or inner/outer specific flushes. 4676 */ 4677 4678 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4679 } 4680 #endif 4681 4682 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4683 bool isread) 4684 { 4685 int cur_el = arm_current_el(env); 4686 4687 if (cur_el < 2) { 4688 uint64_t hcr = arm_hcr_el2_eff(env); 4689 4690 if (cur_el == 0) { 4691 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4692 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4693 return CP_ACCESS_TRAP_EL2; 4694 } 4695 } else { 4696 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4697 return CP_ACCESS_TRAP; 4698 } 4699 if (hcr & HCR_TDZ) { 4700 return CP_ACCESS_TRAP_EL2; 4701 } 4702 } 4703 } else if (hcr & HCR_TDZ) { 4704 return CP_ACCESS_TRAP_EL2; 4705 } 4706 } 4707 return CP_ACCESS_OK; 4708 } 4709 4710 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4711 { 4712 ARMCPU *cpu = env_archcpu(env); 4713 int dzp_bit = 1 << 4; 4714 4715 /* DZP indicates whether DC ZVA access is allowed */ 4716 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4717 dzp_bit = 0; 4718 } 4719 return cpu->dcz_blocksize | dzp_bit; 4720 } 4721 4722 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4723 bool isread) 4724 { 4725 if (!(env->pstate & PSTATE_SP)) { 4726 /* Access to SP_EL0 is undefined if it's being used as 4727 * the stack pointer. 4728 */ 4729 return CP_ACCESS_TRAP_UNCATEGORIZED; 4730 } 4731 return CP_ACCESS_OK; 4732 } 4733 4734 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4735 { 4736 return env->pstate & PSTATE_SP; 4737 } 4738 4739 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4740 { 4741 update_spsel(env, val); 4742 } 4743 4744 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4745 uint64_t value) 4746 { 4747 ARMCPU *cpu = env_archcpu(env); 4748 4749 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4750 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4751 value &= ~SCTLR_M; 4752 } 4753 4754 /* ??? Lots of these bits are not implemented. */ 4755 4756 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4757 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4758 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4759 } else { 4760 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4761 SCTLR_ATA0 | SCTLR_ATA); 4762 } 4763 } 4764 4765 if (raw_read(env, ri) == value) { 4766 /* Skip the TLB flush if nothing actually changed; Linux likes 4767 * to do a lot of pointless SCTLR writes. 4768 */ 4769 return; 4770 } 4771 4772 raw_write(env, ri, value); 4773 4774 /* This may enable/disable the MMU, so do a TLB flush. */ 4775 tlb_flush(CPU(cpu)); 4776 4777 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4778 /* 4779 * Normally we would always end the TB on an SCTLR write; see the 4780 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4781 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4782 * of hflags from the translator, so do it here. 4783 */ 4784 arm_rebuild_hflags(env); 4785 } 4786 } 4787 4788 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4789 uint64_t value) 4790 { 4791 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4792 } 4793 4794 static const ARMCPRegInfo v8_cp_reginfo[] = { 4795 /* Minimal set of EL0-visible registers. This will need to be expanded 4796 * significantly for system emulation of AArch64 CPUs. 4797 */ 4798 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4799 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4800 .access = PL0_RW, .type = ARM_CP_NZCV }, 4801 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4802 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4803 .type = ARM_CP_NO_RAW, 4804 .access = PL0_RW, .accessfn = aa64_daif_access, 4805 .fieldoffset = offsetof(CPUARMState, daif), 4806 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4807 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4808 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4809 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4810 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4811 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4812 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4813 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4814 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4815 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4816 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4817 .access = PL0_R, .type = ARM_CP_NO_RAW, 4818 .readfn = aa64_dczid_read }, 4819 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4820 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4821 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4822 #ifndef CONFIG_USER_ONLY 4823 /* Avoid overhead of an access check that always passes in user-mode */ 4824 .accessfn = aa64_zva_access, 4825 #endif 4826 }, 4827 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4828 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4829 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4830 /* Cache ops: all NOPs since we don't emulate caches */ 4831 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4832 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4833 .access = PL1_W, .type = ARM_CP_NOP, 4834 .accessfn = aa64_cacheop_pou_access }, 4835 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4836 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4837 .access = PL1_W, .type = ARM_CP_NOP, 4838 .accessfn = aa64_cacheop_pou_access }, 4839 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4840 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4841 .access = PL0_W, .type = ARM_CP_NOP, 4842 .accessfn = aa64_cacheop_pou_access }, 4843 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4844 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4845 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4846 .type = ARM_CP_NOP }, 4847 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4848 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4849 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4850 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4851 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4852 .access = PL0_W, .type = ARM_CP_NOP, 4853 .accessfn = aa64_cacheop_poc_access }, 4854 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4855 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4856 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4857 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4858 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4859 .access = PL0_W, .type = ARM_CP_NOP, 4860 .accessfn = aa64_cacheop_pou_access }, 4861 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4862 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4863 .access = PL0_W, .type = ARM_CP_NOP, 4864 .accessfn = aa64_cacheop_poc_access }, 4865 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4866 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4867 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4868 /* TLBI operations */ 4869 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4870 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4871 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4872 .writefn = tlbi_aa64_vmalle1is_write }, 4873 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4874 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4875 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4876 .writefn = tlbi_aa64_vae1is_write }, 4877 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4878 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4879 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4880 .writefn = tlbi_aa64_vmalle1is_write }, 4881 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4882 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4883 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4884 .writefn = tlbi_aa64_vae1is_write }, 4885 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4886 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4887 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4888 .writefn = tlbi_aa64_vae1is_write }, 4889 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4890 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4891 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4892 .writefn = tlbi_aa64_vae1is_write }, 4893 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4894 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4895 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4896 .writefn = tlbi_aa64_vmalle1_write }, 4897 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4898 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4899 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4900 .writefn = tlbi_aa64_vae1_write }, 4901 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4902 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4903 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4904 .writefn = tlbi_aa64_vmalle1_write }, 4905 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4906 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4907 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4908 .writefn = tlbi_aa64_vae1_write }, 4909 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4910 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4911 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4912 .writefn = tlbi_aa64_vae1_write }, 4913 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4914 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4915 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4916 .writefn = tlbi_aa64_vae1_write }, 4917 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4918 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4919 .access = PL2_W, .type = ARM_CP_NOP }, 4920 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4921 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4922 .access = PL2_W, .type = ARM_CP_NOP }, 4923 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4924 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4925 .access = PL2_W, .type = ARM_CP_NO_RAW, 4926 .writefn = tlbi_aa64_alle1is_write }, 4927 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4928 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4929 .access = PL2_W, .type = ARM_CP_NO_RAW, 4930 .writefn = tlbi_aa64_alle1is_write }, 4931 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4932 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4933 .access = PL2_W, .type = ARM_CP_NOP }, 4934 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4935 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4936 .access = PL2_W, .type = ARM_CP_NOP }, 4937 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4938 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4939 .access = PL2_W, .type = ARM_CP_NO_RAW, 4940 .writefn = tlbi_aa64_alle1_write }, 4941 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4942 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4943 .access = PL2_W, .type = ARM_CP_NO_RAW, 4944 .writefn = tlbi_aa64_alle1is_write }, 4945 #ifndef CONFIG_USER_ONLY 4946 /* 64 bit address translation operations */ 4947 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4948 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4949 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4950 .writefn = ats_write64 }, 4951 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4952 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4953 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4954 .writefn = ats_write64 }, 4955 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4956 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4957 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4958 .writefn = ats_write64 }, 4959 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4960 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4961 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4962 .writefn = ats_write64 }, 4963 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4964 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4965 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4966 .writefn = ats_write64 }, 4967 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4968 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4969 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4970 .writefn = ats_write64 }, 4971 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4972 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4973 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4974 .writefn = ats_write64 }, 4975 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4976 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4977 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4978 .writefn = ats_write64 }, 4979 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4980 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4981 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4982 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4983 .writefn = ats_write64 }, 4984 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4985 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4986 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4987 .writefn = ats_write64 }, 4988 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4989 .type = ARM_CP_ALIAS, 4990 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4991 .access = PL1_RW, .resetvalue = 0, 4992 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4993 .writefn = par_write }, 4994 #endif 4995 /* TLB invalidate last level of translation table walk */ 4996 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4997 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4998 .writefn = tlbimva_is_write }, 4999 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5000 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5001 .writefn = tlbimvaa_is_write }, 5002 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5003 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5004 .writefn = tlbimva_write }, 5005 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5006 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5007 .writefn = tlbimvaa_write }, 5008 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5009 .type = ARM_CP_NO_RAW, .access = PL2_W, 5010 .writefn = tlbimva_hyp_write }, 5011 { .name = "TLBIMVALHIS", 5012 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5013 .type = ARM_CP_NO_RAW, .access = PL2_W, 5014 .writefn = tlbimva_hyp_is_write }, 5015 { .name = "TLBIIPAS2", 5016 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5017 .type = ARM_CP_NOP, .access = PL2_W }, 5018 { .name = "TLBIIPAS2IS", 5019 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5020 .type = ARM_CP_NOP, .access = PL2_W }, 5021 { .name = "TLBIIPAS2L", 5022 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5023 .type = ARM_CP_NOP, .access = PL2_W }, 5024 { .name = "TLBIIPAS2LIS", 5025 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5026 .type = ARM_CP_NOP, .access = PL2_W }, 5027 /* 32 bit cache operations */ 5028 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5029 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5030 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5031 .type = ARM_CP_NOP, .access = PL1_W }, 5032 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5033 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5034 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5035 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5036 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5037 .type = ARM_CP_NOP, .access = PL1_W }, 5038 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5039 .type = ARM_CP_NOP, .access = PL1_W }, 5040 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5041 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5042 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5043 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5044 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5045 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5046 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5047 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5048 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5049 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5050 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5051 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5052 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5053 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5054 /* MMU Domain access control / MPU write buffer control */ 5055 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5056 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5057 .writefn = dacr_write, .raw_writefn = raw_write, 5058 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5059 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5060 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5061 .type = ARM_CP_ALIAS, 5062 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5063 .access = PL1_RW, 5064 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5065 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5066 .type = ARM_CP_ALIAS, 5067 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5068 .access = PL1_RW, 5069 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5070 /* We rely on the access checks not allowing the guest to write to the 5071 * state field when SPSel indicates that it's being used as the stack 5072 * pointer. 5073 */ 5074 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5075 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5076 .access = PL1_RW, .accessfn = sp_el0_access, 5077 .type = ARM_CP_ALIAS, 5078 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5079 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5080 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5081 .access = PL2_RW, .type = ARM_CP_ALIAS, 5082 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5083 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5084 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5085 .type = ARM_CP_NO_RAW, 5086 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5087 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5088 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5089 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_FPU, 5090 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5091 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5092 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5093 .access = PL2_RW, .resetvalue = 0, 5094 .writefn = dacr_write, .raw_writefn = raw_write, 5095 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5096 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5097 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5098 .access = PL2_RW, .resetvalue = 0, 5099 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5100 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5101 .type = ARM_CP_ALIAS, 5102 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5103 .access = PL2_RW, 5104 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5105 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5106 .type = ARM_CP_ALIAS, 5107 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5108 .access = PL2_RW, 5109 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5110 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5111 .type = ARM_CP_ALIAS, 5112 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5113 .access = PL2_RW, 5114 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5115 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5116 .type = ARM_CP_ALIAS, 5117 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5118 .access = PL2_RW, 5119 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5120 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5121 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5122 .resetvalue = 0, 5123 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5124 { .name = "SDCR", .type = ARM_CP_ALIAS, 5125 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5126 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5127 .writefn = sdcr_write, 5128 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5129 REGINFO_SENTINEL 5130 }; 5131 5132 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5133 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5134 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5135 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5136 .access = PL2_RW, 5137 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5138 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5139 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5140 .access = PL2_RW, 5141 .type = ARM_CP_CONST, .resetvalue = 0 }, 5142 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5143 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5144 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5145 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5146 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5147 .access = PL2_RW, 5148 .type = ARM_CP_CONST, .resetvalue = 0 }, 5149 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5150 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5151 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5152 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5153 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5154 .access = PL2_RW, .type = ARM_CP_CONST, 5155 .resetvalue = 0 }, 5156 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5157 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5158 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5159 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5160 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5161 .access = PL2_RW, .type = ARM_CP_CONST, 5162 .resetvalue = 0 }, 5163 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5164 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5165 .access = PL2_RW, .type = ARM_CP_CONST, 5166 .resetvalue = 0 }, 5167 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5168 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5169 .access = PL2_RW, .type = ARM_CP_CONST, 5170 .resetvalue = 0 }, 5171 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5172 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5173 .access = PL2_RW, .type = ARM_CP_CONST, 5174 .resetvalue = 0 }, 5175 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5176 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5177 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5178 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5179 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5180 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5181 .type = ARM_CP_CONST, .resetvalue = 0 }, 5182 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5183 .cp = 15, .opc1 = 6, .crm = 2, 5184 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5185 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5186 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5187 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5188 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5189 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5190 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5191 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5192 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5193 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5194 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5195 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5196 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5197 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5198 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5199 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5200 .resetvalue = 0 }, 5201 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5202 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5203 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5204 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5205 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5206 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5207 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5208 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5209 .resetvalue = 0 }, 5210 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5211 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5212 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5213 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5214 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5215 .resetvalue = 0 }, 5216 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5217 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5218 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5219 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5220 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5221 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5222 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5223 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5224 .access = PL2_RW, .accessfn = access_tda, 5225 .type = ARM_CP_CONST, .resetvalue = 0 }, 5226 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5227 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5228 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5229 .type = ARM_CP_CONST, .resetvalue = 0 }, 5230 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5231 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5232 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5233 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5234 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5235 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5236 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5237 .type = ARM_CP_CONST, 5238 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5239 .access = PL2_RW, .resetvalue = 0 }, 5240 REGINFO_SENTINEL 5241 }; 5242 5243 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5244 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5245 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5246 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5247 .access = PL2_RW, 5248 .type = ARM_CP_CONST, .resetvalue = 0 }, 5249 REGINFO_SENTINEL 5250 }; 5251 5252 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5253 { 5254 ARMCPU *cpu = env_archcpu(env); 5255 5256 if (arm_feature(env, ARM_FEATURE_V8)) { 5257 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5258 } else { 5259 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5260 } 5261 5262 if (arm_feature(env, ARM_FEATURE_EL3)) { 5263 valid_mask &= ~HCR_HCD; 5264 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5265 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5266 * However, if we're using the SMC PSCI conduit then QEMU is 5267 * effectively acting like EL3 firmware and so the guest at 5268 * EL2 should retain the ability to prevent EL1 from being 5269 * able to make SMC calls into the ersatz firmware, so in 5270 * that case HCR.TSC should be read/write. 5271 */ 5272 valid_mask &= ~HCR_TSC; 5273 } 5274 5275 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5276 if (cpu_isar_feature(aa64_vh, cpu)) { 5277 valid_mask |= HCR_E2H; 5278 } 5279 if (cpu_isar_feature(aa64_lor, cpu)) { 5280 valid_mask |= HCR_TLOR; 5281 } 5282 if (cpu_isar_feature(aa64_pauth, cpu)) { 5283 valid_mask |= HCR_API | HCR_APK; 5284 } 5285 if (cpu_isar_feature(aa64_mte, cpu)) { 5286 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5287 } 5288 } 5289 5290 /* Clear RES0 bits. */ 5291 value &= valid_mask; 5292 5293 /* 5294 * These bits change the MMU setup: 5295 * HCR_VM enables stage 2 translation 5296 * HCR_PTW forbids certain page-table setups 5297 * HCR_DC disables stage1 and enables stage2 translation 5298 * HCR_DCT enables tagging on (disabled) stage1 translation 5299 */ 5300 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5301 tlb_flush(CPU(cpu)); 5302 } 5303 env->cp15.hcr_el2 = value; 5304 5305 /* 5306 * Updates to VI and VF require us to update the status of 5307 * virtual interrupts, which are the logical OR of these bits 5308 * and the state of the input lines from the GIC. (This requires 5309 * that we have the iothread lock, which is done by marking the 5310 * reginfo structs as ARM_CP_IO.) 5311 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5312 * possible for it to be taken immediately, because VIRQ and 5313 * VFIQ are masked unless running at EL0 or EL1, and HCR 5314 * can only be written at EL2. 5315 */ 5316 g_assert(qemu_mutex_iothread_locked()); 5317 arm_cpu_update_virq(cpu); 5318 arm_cpu_update_vfiq(cpu); 5319 } 5320 5321 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5322 { 5323 do_hcr_write(env, value, 0); 5324 } 5325 5326 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5327 uint64_t value) 5328 { 5329 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5330 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5331 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5332 } 5333 5334 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5335 uint64_t value) 5336 { 5337 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5338 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5339 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5340 } 5341 5342 /* 5343 * Return the effective value of HCR_EL2. 5344 * Bits that are not included here: 5345 * RW (read from SCR_EL3.RW as needed) 5346 */ 5347 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5348 { 5349 uint64_t ret = env->cp15.hcr_el2; 5350 5351 if (!arm_is_el2_enabled(env)) { 5352 /* 5353 * "This register has no effect if EL2 is not enabled in the 5354 * current Security state". This is ARMv8.4-SecEL2 speak for 5355 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5356 * 5357 * Prior to that, the language was "In an implementation that 5358 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5359 * as if this field is 0 for all purposes other than a direct 5360 * read or write access of HCR_EL2". With lots of enumeration 5361 * on a per-field basis. In current QEMU, this is condition 5362 * is arm_is_secure_below_el3. 5363 * 5364 * Since the v8.4 language applies to the entire register, and 5365 * appears to be backward compatible, use that. 5366 */ 5367 return 0; 5368 } 5369 5370 /* 5371 * For a cpu that supports both aarch64 and aarch32, we can set bits 5372 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5373 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5374 */ 5375 if (!arm_el_is_aa64(env, 2)) { 5376 uint64_t aa32_valid; 5377 5378 /* 5379 * These bits are up-to-date as of ARMv8.6. 5380 * For HCR, it's easiest to list just the 2 bits that are invalid. 5381 * For HCR2, list those that are valid. 5382 */ 5383 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5384 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5385 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5386 ret &= aa32_valid; 5387 } 5388 5389 if (ret & HCR_TGE) { 5390 /* These bits are up-to-date as of ARMv8.6. */ 5391 if (ret & HCR_E2H) { 5392 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5393 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5394 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5395 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5396 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5397 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5398 } else { 5399 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5400 } 5401 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5402 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5403 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5404 HCR_TLOR); 5405 } 5406 5407 return ret; 5408 } 5409 5410 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5411 uint64_t value) 5412 { 5413 /* 5414 * For A-profile AArch32 EL3, if NSACR.CP10 5415 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5416 */ 5417 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5418 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5419 value &= ~(0x3 << 10); 5420 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5421 } 5422 env->cp15.cptr_el[2] = value; 5423 } 5424 5425 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5426 { 5427 /* 5428 * For A-profile AArch32 EL3, if NSACR.CP10 5429 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5430 */ 5431 uint64_t value = env->cp15.cptr_el[2]; 5432 5433 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5434 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5435 value |= 0x3 << 10; 5436 } 5437 return value; 5438 } 5439 5440 static const ARMCPRegInfo el2_cp_reginfo[] = { 5441 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5442 .type = ARM_CP_IO, 5443 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5444 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5445 .writefn = hcr_write }, 5446 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5447 .type = ARM_CP_ALIAS | ARM_CP_IO, 5448 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5449 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5450 .writefn = hcr_writelow }, 5451 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5452 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5453 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5454 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5455 .type = ARM_CP_ALIAS, 5456 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5457 .access = PL2_RW, 5458 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5459 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5460 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5461 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5462 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5463 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5464 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5465 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5466 .type = ARM_CP_ALIAS, 5467 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5468 .access = PL2_RW, 5469 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5470 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5471 .type = ARM_CP_ALIAS, 5472 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5473 .access = PL2_RW, 5474 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5475 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5476 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5477 .access = PL2_RW, .writefn = vbar_write, 5478 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5479 .resetvalue = 0 }, 5480 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5481 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5482 .access = PL3_RW, .type = ARM_CP_ALIAS, 5483 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5484 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5485 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5486 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5487 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5488 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5489 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5490 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5491 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5492 .resetvalue = 0 }, 5493 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5494 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5495 .access = PL2_RW, .type = ARM_CP_ALIAS, 5496 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5497 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5498 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5499 .access = PL2_RW, .type = ARM_CP_CONST, 5500 .resetvalue = 0 }, 5501 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5502 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5503 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5504 .access = PL2_RW, .type = ARM_CP_CONST, 5505 .resetvalue = 0 }, 5506 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5507 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5508 .access = PL2_RW, .type = ARM_CP_CONST, 5509 .resetvalue = 0 }, 5510 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5511 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5512 .access = PL2_RW, .type = ARM_CP_CONST, 5513 .resetvalue = 0 }, 5514 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5515 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5516 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5517 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5518 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5519 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5520 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5521 .type = ARM_CP_ALIAS, 5522 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5523 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5524 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5525 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5526 .access = PL2_RW, 5527 /* no .writefn needed as this can't cause an ASID change; 5528 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5529 */ 5530 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5531 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5532 .cp = 15, .opc1 = 6, .crm = 2, 5533 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5534 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5535 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5536 .writefn = vttbr_write }, 5537 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5538 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5539 .access = PL2_RW, .writefn = vttbr_write, 5540 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5541 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5542 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5543 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5544 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5545 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5546 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5547 .access = PL2_RW, .resetvalue = 0, 5548 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5549 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5550 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5551 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5552 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5553 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5554 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5555 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5556 { .name = "TLBIALLNSNH", 5557 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5558 .type = ARM_CP_NO_RAW, .access = PL2_W, 5559 .writefn = tlbiall_nsnh_write }, 5560 { .name = "TLBIALLNSNHIS", 5561 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5562 .type = ARM_CP_NO_RAW, .access = PL2_W, 5563 .writefn = tlbiall_nsnh_is_write }, 5564 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5565 .type = ARM_CP_NO_RAW, .access = PL2_W, 5566 .writefn = tlbiall_hyp_write }, 5567 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5568 .type = ARM_CP_NO_RAW, .access = PL2_W, 5569 .writefn = tlbiall_hyp_is_write }, 5570 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5571 .type = ARM_CP_NO_RAW, .access = PL2_W, 5572 .writefn = tlbimva_hyp_write }, 5573 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5574 .type = ARM_CP_NO_RAW, .access = PL2_W, 5575 .writefn = tlbimva_hyp_is_write }, 5576 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5577 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5578 .type = ARM_CP_NO_RAW, .access = PL2_W, 5579 .writefn = tlbi_aa64_alle2_write }, 5580 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5581 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5582 .type = ARM_CP_NO_RAW, .access = PL2_W, 5583 .writefn = tlbi_aa64_vae2_write }, 5584 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5585 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5586 .access = PL2_W, .type = ARM_CP_NO_RAW, 5587 .writefn = tlbi_aa64_vae2_write }, 5588 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5589 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5590 .access = PL2_W, .type = ARM_CP_NO_RAW, 5591 .writefn = tlbi_aa64_alle2is_write }, 5592 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5593 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5594 .type = ARM_CP_NO_RAW, .access = PL2_W, 5595 .writefn = tlbi_aa64_vae2is_write }, 5596 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5597 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5598 .access = PL2_W, .type = ARM_CP_NO_RAW, 5599 .writefn = tlbi_aa64_vae2is_write }, 5600 #ifndef CONFIG_USER_ONLY 5601 /* Unlike the other EL2-related AT operations, these must 5602 * UNDEF from EL3 if EL2 is not implemented, which is why we 5603 * define them here rather than with the rest of the AT ops. 5604 */ 5605 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5606 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5607 .access = PL2_W, .accessfn = at_s1e2_access, 5608 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5609 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5610 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5611 .access = PL2_W, .accessfn = at_s1e2_access, 5612 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5613 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5614 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5615 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5616 * to behave as if SCR.NS was 1. 5617 */ 5618 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5619 .access = PL2_W, 5620 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5621 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5622 .access = PL2_W, 5623 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5624 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5625 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5626 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5627 * reset values as IMPDEF. We choose to reset to 3 to comply with 5628 * both ARMv7 and ARMv8. 5629 */ 5630 .access = PL2_RW, .resetvalue = 3, 5631 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5632 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5633 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5634 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5635 .writefn = gt_cntvoff_write, 5636 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5637 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5638 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5639 .writefn = gt_cntvoff_write, 5640 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5641 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5642 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5643 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5644 .type = ARM_CP_IO, .access = PL2_RW, 5645 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5646 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5647 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5648 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5649 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5650 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5651 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5652 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5653 .resetfn = gt_hyp_timer_reset, 5654 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5655 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5656 .type = ARM_CP_IO, 5657 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5658 .access = PL2_RW, 5659 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5660 .resetvalue = 0, 5661 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5662 #endif 5663 /* The only field of MDCR_EL2 that has a defined architectural reset value 5664 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 5665 */ 5666 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5667 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5668 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, 5669 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5670 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5671 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5672 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5673 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5674 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5675 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5676 .access = PL2_RW, 5677 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5678 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5679 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5680 .access = PL2_RW, 5681 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5682 REGINFO_SENTINEL 5683 }; 5684 5685 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5686 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5687 .type = ARM_CP_ALIAS | ARM_CP_IO, 5688 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5689 .access = PL2_RW, 5690 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5691 .writefn = hcr_writehigh }, 5692 REGINFO_SENTINEL 5693 }; 5694 5695 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5696 bool isread) 5697 { 5698 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5699 return CP_ACCESS_OK; 5700 } 5701 return CP_ACCESS_TRAP_UNCATEGORIZED; 5702 } 5703 5704 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5705 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5706 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5707 .access = PL2_RW, .accessfn = sel2_access, 5708 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5709 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5710 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5711 .access = PL2_RW, .accessfn = sel2_access, 5712 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5713 REGINFO_SENTINEL 5714 }; 5715 5716 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5717 bool isread) 5718 { 5719 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5720 * At Secure EL1 it traps to EL3 or EL2. 5721 */ 5722 if (arm_current_el(env) == 3) { 5723 return CP_ACCESS_OK; 5724 } 5725 if (arm_is_secure_below_el3(env)) { 5726 if (env->cp15.scr_el3 & SCR_EEL2) { 5727 return CP_ACCESS_TRAP_EL2; 5728 } 5729 return CP_ACCESS_TRAP_EL3; 5730 } 5731 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5732 if (isread) { 5733 return CP_ACCESS_OK; 5734 } 5735 return CP_ACCESS_TRAP_UNCATEGORIZED; 5736 } 5737 5738 static const ARMCPRegInfo el3_cp_reginfo[] = { 5739 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5740 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5741 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5742 .resetfn = scr_reset, .writefn = scr_write }, 5743 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5744 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5745 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5746 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5747 .writefn = scr_write }, 5748 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5749 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5750 .access = PL3_RW, .resetvalue = 0, 5751 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5752 { .name = "SDER", 5753 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5754 .access = PL3_RW, .resetvalue = 0, 5755 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5756 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5757 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5758 .writefn = vbar_write, .resetvalue = 0, 5759 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5760 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5761 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5762 .access = PL3_RW, .resetvalue = 0, 5763 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5764 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5765 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5766 .access = PL3_RW, 5767 /* no .writefn needed as this can't cause an ASID change; 5768 * we must provide a .raw_writefn and .resetfn because we handle 5769 * reset and migration for the AArch32 TTBCR(S), which might be 5770 * using mask and base_mask. 5771 */ 5772 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5773 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5774 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5775 .type = ARM_CP_ALIAS, 5776 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5777 .access = PL3_RW, 5778 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5779 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5780 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5781 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5782 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5783 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5784 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5785 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5786 .type = ARM_CP_ALIAS, 5787 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5788 .access = PL3_RW, 5789 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5790 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5791 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5792 .access = PL3_RW, .writefn = vbar_write, 5793 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5794 .resetvalue = 0 }, 5795 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5796 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5797 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5798 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5799 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5800 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5801 .access = PL3_RW, .resetvalue = 0, 5802 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5803 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5804 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5805 .access = PL3_RW, .type = ARM_CP_CONST, 5806 .resetvalue = 0 }, 5807 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5808 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5809 .access = PL3_RW, .type = ARM_CP_CONST, 5810 .resetvalue = 0 }, 5811 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5812 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5813 .access = PL3_RW, .type = ARM_CP_CONST, 5814 .resetvalue = 0 }, 5815 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5816 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5817 .access = PL3_W, .type = ARM_CP_NO_RAW, 5818 .writefn = tlbi_aa64_alle3is_write }, 5819 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5820 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5821 .access = PL3_W, .type = ARM_CP_NO_RAW, 5822 .writefn = tlbi_aa64_vae3is_write }, 5823 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5824 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5825 .access = PL3_W, .type = ARM_CP_NO_RAW, 5826 .writefn = tlbi_aa64_vae3is_write }, 5827 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5828 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5829 .access = PL3_W, .type = ARM_CP_NO_RAW, 5830 .writefn = tlbi_aa64_alle3_write }, 5831 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5832 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5833 .access = PL3_W, .type = ARM_CP_NO_RAW, 5834 .writefn = tlbi_aa64_vae3_write }, 5835 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5836 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5837 .access = PL3_W, .type = ARM_CP_NO_RAW, 5838 .writefn = tlbi_aa64_vae3_write }, 5839 REGINFO_SENTINEL 5840 }; 5841 5842 #ifndef CONFIG_USER_ONLY 5843 /* Test if system register redirection is to occur in the current state. */ 5844 static bool redirect_for_e2h(CPUARMState *env) 5845 { 5846 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5847 } 5848 5849 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5850 { 5851 CPReadFn *readfn; 5852 5853 if (redirect_for_e2h(env)) { 5854 /* Switch to the saved EL2 version of the register. */ 5855 ri = ri->opaque; 5856 readfn = ri->readfn; 5857 } else { 5858 readfn = ri->orig_readfn; 5859 } 5860 if (readfn == NULL) { 5861 readfn = raw_read; 5862 } 5863 return readfn(env, ri); 5864 } 5865 5866 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5867 uint64_t value) 5868 { 5869 CPWriteFn *writefn; 5870 5871 if (redirect_for_e2h(env)) { 5872 /* Switch to the saved EL2 version of the register. */ 5873 ri = ri->opaque; 5874 writefn = ri->writefn; 5875 } else { 5876 writefn = ri->orig_writefn; 5877 } 5878 if (writefn == NULL) { 5879 writefn = raw_write; 5880 } 5881 writefn(env, ri, value); 5882 } 5883 5884 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5885 { 5886 struct E2HAlias { 5887 uint32_t src_key, dst_key, new_key; 5888 const char *src_name, *dst_name, *new_name; 5889 bool (*feature)(const ARMISARegisters *id); 5890 }; 5891 5892 #define K(op0, op1, crn, crm, op2) \ 5893 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5894 5895 static const struct E2HAlias aliases[] = { 5896 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5897 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5898 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5899 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5900 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5901 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5902 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5903 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5904 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5905 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5906 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5907 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5908 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5909 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5910 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5911 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5912 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5913 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5914 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5915 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5916 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5917 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5918 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5919 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5920 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5921 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5922 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5923 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5924 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5925 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5926 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5927 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5928 5929 /* 5930 * Note that redirection of ZCR is mentioned in the description 5931 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5932 * not in the summary table. 5933 */ 5934 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5935 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5936 5937 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5938 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5939 5940 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5941 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5942 }; 5943 #undef K 5944 5945 size_t i; 5946 5947 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5948 const struct E2HAlias *a = &aliases[i]; 5949 ARMCPRegInfo *src_reg, *dst_reg; 5950 5951 if (a->feature && !a->feature(&cpu->isar)) { 5952 continue; 5953 } 5954 5955 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 5956 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 5957 g_assert(src_reg != NULL); 5958 g_assert(dst_reg != NULL); 5959 5960 /* Cross-compare names to detect typos in the keys. */ 5961 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5962 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5963 5964 /* None of the core system registers use opaque; we will. */ 5965 g_assert(src_reg->opaque == NULL); 5966 5967 /* Create alias before redirection so we dup the right data. */ 5968 if (a->new_key) { 5969 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5970 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 5971 bool ok; 5972 5973 new_reg->name = a->new_name; 5974 new_reg->type |= ARM_CP_ALIAS; 5975 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5976 new_reg->access &= PL2_RW | PL3_RW; 5977 5978 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 5979 g_assert(ok); 5980 } 5981 5982 src_reg->opaque = dst_reg; 5983 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5984 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5985 if (!src_reg->raw_readfn) { 5986 src_reg->raw_readfn = raw_read; 5987 } 5988 if (!src_reg->raw_writefn) { 5989 src_reg->raw_writefn = raw_write; 5990 } 5991 src_reg->readfn = el2_e2h_read; 5992 src_reg->writefn = el2_e2h_write; 5993 } 5994 } 5995 #endif 5996 5997 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5998 bool isread) 5999 { 6000 int cur_el = arm_current_el(env); 6001 6002 if (cur_el < 2) { 6003 uint64_t hcr = arm_hcr_el2_eff(env); 6004 6005 if (cur_el == 0) { 6006 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6007 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6008 return CP_ACCESS_TRAP_EL2; 6009 } 6010 } else { 6011 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6012 return CP_ACCESS_TRAP; 6013 } 6014 if (hcr & HCR_TID2) { 6015 return CP_ACCESS_TRAP_EL2; 6016 } 6017 } 6018 } else if (hcr & HCR_TID2) { 6019 return CP_ACCESS_TRAP_EL2; 6020 } 6021 } 6022 6023 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6024 return CP_ACCESS_TRAP_EL2; 6025 } 6026 6027 return CP_ACCESS_OK; 6028 } 6029 6030 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6031 uint64_t value) 6032 { 6033 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6034 * read via a bit in OSLSR_EL1. 6035 */ 6036 int oslock; 6037 6038 if (ri->state == ARM_CP_STATE_AA32) { 6039 oslock = (value == 0xC5ACCE55); 6040 } else { 6041 oslock = value & 1; 6042 } 6043 6044 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6045 } 6046 6047 static const ARMCPRegInfo debug_cp_reginfo[] = { 6048 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6049 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6050 * unlike DBGDRAR it is never accessible from EL0. 6051 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6052 * accessor. 6053 */ 6054 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6055 .access = PL0_R, .accessfn = access_tdra, 6056 .type = ARM_CP_CONST, .resetvalue = 0 }, 6057 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6058 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6059 .access = PL1_R, .accessfn = access_tdra, 6060 .type = ARM_CP_CONST, .resetvalue = 0 }, 6061 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6062 .access = PL0_R, .accessfn = access_tdra, 6063 .type = ARM_CP_CONST, .resetvalue = 0 }, 6064 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6065 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6066 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6067 .access = PL1_RW, .accessfn = access_tda, 6068 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6069 .resetvalue = 0 }, 6070 /* 6071 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external 6072 * Debug Communication Channel is not implemented. 6073 */ 6074 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, 6075 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, 6076 .access = PL0_R, .accessfn = access_tda, 6077 .type = ARM_CP_CONST, .resetvalue = 0 }, 6078 /* 6079 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as 6080 * it is unlikely a guest will care. 6081 * We don't implement the configurable EL0 access. 6082 */ 6083 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, 6084 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6085 .type = ARM_CP_ALIAS, 6086 .access = PL1_R, .accessfn = access_tda, 6087 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6088 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6089 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6090 .access = PL1_W, .type = ARM_CP_NO_RAW, 6091 .accessfn = access_tdosa, 6092 .writefn = oslar_write }, 6093 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6094 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6095 .access = PL1_R, .resetvalue = 10, 6096 .accessfn = access_tdosa, 6097 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6098 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6099 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6100 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6101 .access = PL1_RW, .accessfn = access_tdosa, 6102 .type = ARM_CP_NOP }, 6103 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6104 * implement vector catch debug events yet. 6105 */ 6106 { .name = "DBGVCR", 6107 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6108 .access = PL1_RW, .accessfn = access_tda, 6109 .type = ARM_CP_NOP }, 6110 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6111 * to save and restore a 32-bit guest's DBGVCR) 6112 */ 6113 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6114 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6115 .access = PL2_RW, .accessfn = access_tda, 6116 .type = ARM_CP_NOP }, 6117 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6118 * Channel but Linux may try to access this register. The 32-bit 6119 * alias is DBGDCCINT. 6120 */ 6121 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6122 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6123 .access = PL1_RW, .accessfn = access_tda, 6124 .type = ARM_CP_NOP }, 6125 REGINFO_SENTINEL 6126 }; 6127 6128 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6129 /* 64 bit access versions of the (dummy) debug registers */ 6130 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6131 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6132 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6133 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6134 REGINFO_SENTINEL 6135 }; 6136 6137 /* Return the exception level to which exceptions should be taken 6138 * via SVEAccessTrap. If an exception should be routed through 6139 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6140 * take care of raising that exception. 6141 * C.f. the ARM pseudocode function CheckSVEEnabled. 6142 */ 6143 int sve_exception_el(CPUARMState *env, int el) 6144 { 6145 #ifndef CONFIG_USER_ONLY 6146 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6147 6148 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6149 /* Check CPACR.ZEN. */ 6150 switch (extract32(env->cp15.cpacr_el1, 16, 2)) { 6151 case 1: 6152 if (el != 0) { 6153 break; 6154 } 6155 /* fall through */ 6156 case 0: 6157 case 2: 6158 /* route_to_el2 */ 6159 return hcr_el2 & HCR_TGE ? 2 : 1; 6160 } 6161 6162 /* Check CPACR.FPEN. */ 6163 switch (extract32(env->cp15.cpacr_el1, 20, 2)) { 6164 case 1: 6165 if (el != 0) { 6166 break; 6167 } 6168 /* fall through */ 6169 case 0: 6170 case 2: 6171 return 0; 6172 } 6173 } 6174 6175 /* 6176 * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). 6177 */ 6178 if (el <= 2) { 6179 if (hcr_el2 & HCR_E2H) { 6180 /* Check CPTR_EL2.ZEN. */ 6181 switch (extract32(env->cp15.cptr_el[2], 16, 2)) { 6182 case 1: 6183 if (el != 0 || !(hcr_el2 & HCR_TGE)) { 6184 break; 6185 } 6186 /* fall through */ 6187 case 0: 6188 case 2: 6189 return 2; 6190 } 6191 6192 /* Check CPTR_EL2.FPEN. */ 6193 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 6194 case 1: 6195 if (el == 2 || !(hcr_el2 & HCR_TGE)) { 6196 break; 6197 } 6198 /* fall through */ 6199 case 0: 6200 case 2: 6201 return 0; 6202 } 6203 } else if (arm_is_el2_enabled(env)) { 6204 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6205 return 2; 6206 } 6207 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6208 return 0; 6209 } 6210 } 6211 } 6212 6213 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6214 if (arm_feature(env, ARM_FEATURE_EL3) 6215 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6216 return 3; 6217 } 6218 #endif 6219 return 0; 6220 } 6221 6222 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6223 { 6224 uint32_t end_len; 6225 6226 start_len = MIN(start_len, ARM_MAX_VQ - 1); 6227 end_len = start_len; 6228 6229 if (!test_bit(start_len, cpu->sve_vq_map)) { 6230 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6231 assert(end_len < start_len); 6232 } 6233 return end_len; 6234 } 6235 6236 /* 6237 * Given that SVE is enabled, return the vector length for EL. 6238 */ 6239 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6240 { 6241 ARMCPU *cpu = env_archcpu(env); 6242 uint32_t zcr_len = cpu->sve_max_vq - 1; 6243 6244 if (el <= 1 && 6245 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6246 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6247 } 6248 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6249 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6250 } 6251 if (arm_feature(env, ARM_FEATURE_EL3)) { 6252 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6253 } 6254 6255 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len); 6256 } 6257 6258 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6259 uint64_t value) 6260 { 6261 int cur_el = arm_current_el(env); 6262 int old_len = sve_zcr_len_for_el(env, cur_el); 6263 int new_len; 6264 6265 /* Bits other than [3:0] are RAZ/WI. */ 6266 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6267 raw_write(env, ri, value & 0xf); 6268 6269 /* 6270 * Because we arrived here, we know both FP and SVE are enabled; 6271 * otherwise we would have trapped access to the ZCR_ELn register. 6272 */ 6273 new_len = sve_zcr_len_for_el(env, cur_el); 6274 if (new_len < old_len) { 6275 aarch64_sve_narrow_vq(env, new_len + 1); 6276 } 6277 } 6278 6279 static const ARMCPRegInfo zcr_el1_reginfo = { 6280 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6281 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6282 .access = PL1_RW, .type = ARM_CP_SVE, 6283 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6284 .writefn = zcr_write, .raw_writefn = raw_write 6285 }; 6286 6287 static const ARMCPRegInfo zcr_el2_reginfo = { 6288 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6289 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6290 .access = PL2_RW, .type = ARM_CP_SVE, 6291 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6292 .writefn = zcr_write, .raw_writefn = raw_write 6293 }; 6294 6295 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6296 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6297 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6298 .access = PL2_RW, .type = ARM_CP_SVE, 6299 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6300 }; 6301 6302 static const ARMCPRegInfo zcr_el3_reginfo = { 6303 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6304 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6305 .access = PL3_RW, .type = ARM_CP_SVE, 6306 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6307 .writefn = zcr_write, .raw_writefn = raw_write 6308 }; 6309 6310 void hw_watchpoint_update(ARMCPU *cpu, int n) 6311 { 6312 CPUARMState *env = &cpu->env; 6313 vaddr len = 0; 6314 vaddr wvr = env->cp15.dbgwvr[n]; 6315 uint64_t wcr = env->cp15.dbgwcr[n]; 6316 int mask; 6317 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6318 6319 if (env->cpu_watchpoint[n]) { 6320 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6321 env->cpu_watchpoint[n] = NULL; 6322 } 6323 6324 if (!FIELD_EX64(wcr, DBGWCR, E)) { 6325 /* E bit clear : watchpoint disabled */ 6326 return; 6327 } 6328 6329 switch (FIELD_EX64(wcr, DBGWCR, LSC)) { 6330 case 0: 6331 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6332 return; 6333 case 1: 6334 flags |= BP_MEM_READ; 6335 break; 6336 case 2: 6337 flags |= BP_MEM_WRITE; 6338 break; 6339 case 3: 6340 flags |= BP_MEM_ACCESS; 6341 break; 6342 } 6343 6344 /* Attempts to use both MASK and BAS fields simultaneously are 6345 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6346 * thus generating a watchpoint for every byte in the masked region. 6347 */ 6348 mask = FIELD_EX64(wcr, DBGWCR, MASK); 6349 if (mask == 1 || mask == 2) { 6350 /* Reserved values of MASK; we must act as if the mask value was 6351 * some non-reserved value, or as if the watchpoint were disabled. 6352 * We choose the latter. 6353 */ 6354 return; 6355 } else if (mask) { 6356 /* Watchpoint covers an aligned area up to 2GB in size */ 6357 len = 1ULL << mask; 6358 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6359 * whether the watchpoint fires when the unmasked bits match; we opt 6360 * to generate the exceptions. 6361 */ 6362 wvr &= ~(len - 1); 6363 } else { 6364 /* Watchpoint covers bytes defined by the byte address select bits */ 6365 int bas = FIELD_EX64(wcr, DBGWCR, BAS); 6366 int basstart; 6367 6368 if (extract64(wvr, 2, 1)) { 6369 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6370 * ignored, and BAS[3:0] define which bytes to watch. 6371 */ 6372 bas &= 0xf; 6373 } 6374 6375 if (bas == 0) { 6376 /* This must act as if the watchpoint is disabled */ 6377 return; 6378 } 6379 6380 /* The BAS bits are supposed to be programmed to indicate a contiguous 6381 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6382 * we fire for each byte in the word/doubleword addressed by the WVR. 6383 * We choose to ignore any non-zero bits after the first range of 1s. 6384 */ 6385 basstart = ctz32(bas); 6386 len = cto32(bas >> basstart); 6387 wvr += basstart; 6388 } 6389 6390 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6391 &env->cpu_watchpoint[n]); 6392 } 6393 6394 void hw_watchpoint_update_all(ARMCPU *cpu) 6395 { 6396 int i; 6397 CPUARMState *env = &cpu->env; 6398 6399 /* Completely clear out existing QEMU watchpoints and our array, to 6400 * avoid possible stale entries following migration load. 6401 */ 6402 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6403 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6404 6405 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6406 hw_watchpoint_update(cpu, i); 6407 } 6408 } 6409 6410 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6411 uint64_t value) 6412 { 6413 ARMCPU *cpu = env_archcpu(env); 6414 int i = ri->crm; 6415 6416 /* 6417 * Bits [1:0] are RES0. 6418 * 6419 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA) 6420 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if 6421 * they contain the value written. It is CONSTRAINED UNPREDICTABLE 6422 * whether the RESS bits are ignored when comparing an address. 6423 * 6424 * Therefore we are allowed to compare the entire register, which lets 6425 * us avoid considering whether or not FEAT_LVA is actually enabled. 6426 */ 6427 value &= ~3ULL; 6428 6429 raw_write(env, ri, value); 6430 hw_watchpoint_update(cpu, i); 6431 } 6432 6433 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6434 uint64_t value) 6435 { 6436 ARMCPU *cpu = env_archcpu(env); 6437 int i = ri->crm; 6438 6439 raw_write(env, ri, value); 6440 hw_watchpoint_update(cpu, i); 6441 } 6442 6443 void hw_breakpoint_update(ARMCPU *cpu, int n) 6444 { 6445 CPUARMState *env = &cpu->env; 6446 uint64_t bvr = env->cp15.dbgbvr[n]; 6447 uint64_t bcr = env->cp15.dbgbcr[n]; 6448 vaddr addr; 6449 int bt; 6450 int flags = BP_CPU; 6451 6452 if (env->cpu_breakpoint[n]) { 6453 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6454 env->cpu_breakpoint[n] = NULL; 6455 } 6456 6457 if (!extract64(bcr, 0, 1)) { 6458 /* E bit clear : watchpoint disabled */ 6459 return; 6460 } 6461 6462 bt = extract64(bcr, 20, 4); 6463 6464 switch (bt) { 6465 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6466 case 5: /* linked address mismatch (reserved if AArch64) */ 6467 qemu_log_mask(LOG_UNIMP, 6468 "arm: address mismatch breakpoint types not implemented\n"); 6469 return; 6470 case 0: /* unlinked address match */ 6471 case 1: /* linked address match */ 6472 { 6473 /* 6474 * Bits [1:0] are RES0. 6475 * 6476 * It is IMPLEMENTATION DEFINED whether bits [63:49] 6477 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit 6478 * of the VA field ([48] or [52] for FEAT_LVA), or whether the 6479 * value is read as written. It is CONSTRAINED UNPREDICTABLE 6480 * whether the RESS bits are ignored when comparing an address. 6481 * Therefore we are allowed to compare the entire register, which 6482 * lets us avoid considering whether FEAT_LVA is actually enabled. 6483 * 6484 * The BAS field is used to allow setting breakpoints on 16-bit 6485 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6486 * a bp will fire if the addresses covered by the bp and the addresses 6487 * covered by the insn overlap but the insn doesn't start at the 6488 * start of the bp address range. We choose to require the insn and 6489 * the bp to have the same address. The constraints on writing to 6490 * BAS enforced in dbgbcr_write mean we have only four cases: 6491 * 0b0000 => no breakpoint 6492 * 0b0011 => breakpoint on addr 6493 * 0b1100 => breakpoint on addr + 2 6494 * 0b1111 => breakpoint on addr 6495 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6496 */ 6497 int bas = extract64(bcr, 5, 4); 6498 addr = bvr & ~3ULL; 6499 if (bas == 0) { 6500 return; 6501 } 6502 if (bas == 0xc) { 6503 addr += 2; 6504 } 6505 break; 6506 } 6507 case 2: /* unlinked context ID match */ 6508 case 8: /* unlinked VMID match (reserved if no EL2) */ 6509 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6510 qemu_log_mask(LOG_UNIMP, 6511 "arm: unlinked context breakpoint types not implemented\n"); 6512 return; 6513 case 9: /* linked VMID match (reserved if no EL2) */ 6514 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6515 case 3: /* linked context ID match */ 6516 default: 6517 /* We must generate no events for Linked context matches (unless 6518 * they are linked to by some other bp/wp, which is handled in 6519 * updates for the linking bp/wp). We choose to also generate no events 6520 * for reserved values. 6521 */ 6522 return; 6523 } 6524 6525 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6526 } 6527 6528 void hw_breakpoint_update_all(ARMCPU *cpu) 6529 { 6530 int i; 6531 CPUARMState *env = &cpu->env; 6532 6533 /* Completely clear out existing QEMU breakpoints and our array, to 6534 * avoid possible stale entries following migration load. 6535 */ 6536 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6537 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6538 6539 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6540 hw_breakpoint_update(cpu, i); 6541 } 6542 } 6543 6544 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6545 uint64_t value) 6546 { 6547 ARMCPU *cpu = env_archcpu(env); 6548 int i = ri->crm; 6549 6550 raw_write(env, ri, value); 6551 hw_breakpoint_update(cpu, i); 6552 } 6553 6554 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6555 uint64_t value) 6556 { 6557 ARMCPU *cpu = env_archcpu(env); 6558 int i = ri->crm; 6559 6560 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6561 * copy of BAS[0]. 6562 */ 6563 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6564 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6565 6566 raw_write(env, ri, value); 6567 hw_breakpoint_update(cpu, i); 6568 } 6569 6570 static void define_debug_regs(ARMCPU *cpu) 6571 { 6572 /* Define v7 and v8 architectural debug registers. 6573 * These are just dummy implementations for now. 6574 */ 6575 int i; 6576 int wrps, brps, ctx_cmps; 6577 6578 /* 6579 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6580 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6581 * the register must not exist for this cpu. 6582 */ 6583 if (cpu->isar.dbgdidr != 0) { 6584 ARMCPRegInfo dbgdidr = { 6585 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6586 .opc1 = 0, .opc2 = 0, 6587 .access = PL0_R, .accessfn = access_tda, 6588 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6589 }; 6590 define_one_arm_cp_reg(cpu, &dbgdidr); 6591 } 6592 6593 /* Note that all these register fields hold "number of Xs minus 1". */ 6594 brps = arm_num_brps(cpu); 6595 wrps = arm_num_wrps(cpu); 6596 ctx_cmps = arm_num_ctx_cmps(cpu); 6597 6598 assert(ctx_cmps <= brps); 6599 6600 define_arm_cp_regs(cpu, debug_cp_reginfo); 6601 6602 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6603 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6604 } 6605 6606 for (i = 0; i < brps; i++) { 6607 ARMCPRegInfo dbgregs[] = { 6608 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6609 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6610 .access = PL1_RW, .accessfn = access_tda, 6611 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6612 .writefn = dbgbvr_write, .raw_writefn = raw_write 6613 }, 6614 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6615 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6616 .access = PL1_RW, .accessfn = access_tda, 6617 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6618 .writefn = dbgbcr_write, .raw_writefn = raw_write 6619 }, 6620 REGINFO_SENTINEL 6621 }; 6622 define_arm_cp_regs(cpu, dbgregs); 6623 } 6624 6625 for (i = 0; i < wrps; i++) { 6626 ARMCPRegInfo dbgregs[] = { 6627 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6628 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6629 .access = PL1_RW, .accessfn = access_tda, 6630 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6631 .writefn = dbgwvr_write, .raw_writefn = raw_write 6632 }, 6633 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6634 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6635 .access = PL1_RW, .accessfn = access_tda, 6636 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6637 .writefn = dbgwcr_write, .raw_writefn = raw_write 6638 }, 6639 REGINFO_SENTINEL 6640 }; 6641 define_arm_cp_regs(cpu, dbgregs); 6642 } 6643 } 6644 6645 static void define_pmu_regs(ARMCPU *cpu) 6646 { 6647 /* 6648 * v7 performance monitor control register: same implementor 6649 * field as main ID register, and we implement four counters in 6650 * addition to the cycle count register. 6651 */ 6652 unsigned int i, pmcrn = PMCR_NUM_COUNTERS; 6653 ARMCPRegInfo pmcr = { 6654 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6655 .access = PL0_RW, 6656 .type = ARM_CP_IO | ARM_CP_ALIAS, 6657 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6658 .accessfn = pmreg_access, .writefn = pmcr_write, 6659 .raw_writefn = raw_write, 6660 }; 6661 ARMCPRegInfo pmcr64 = { 6662 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6663 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6664 .access = PL0_RW, .accessfn = pmreg_access, 6665 .type = ARM_CP_IO, 6666 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6667 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6668 PMCRLC, 6669 .writefn = pmcr_write, .raw_writefn = raw_write, 6670 }; 6671 define_one_arm_cp_reg(cpu, &pmcr); 6672 define_one_arm_cp_reg(cpu, &pmcr64); 6673 for (i = 0; i < pmcrn; i++) { 6674 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6675 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6676 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6677 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6678 ARMCPRegInfo pmev_regs[] = { 6679 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6680 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6681 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6682 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6683 .accessfn = pmreg_access }, 6684 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6685 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6686 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6687 .type = ARM_CP_IO, 6688 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6689 .raw_readfn = pmevcntr_rawread, 6690 .raw_writefn = pmevcntr_rawwrite }, 6691 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6692 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6693 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6694 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6695 .accessfn = pmreg_access }, 6696 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6697 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6698 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6699 .type = ARM_CP_IO, 6700 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6701 .raw_writefn = pmevtyper_rawwrite }, 6702 REGINFO_SENTINEL 6703 }; 6704 define_arm_cp_regs(cpu, pmev_regs); 6705 g_free(pmevcntr_name); 6706 g_free(pmevcntr_el0_name); 6707 g_free(pmevtyper_name); 6708 g_free(pmevtyper_el0_name); 6709 } 6710 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6711 ARMCPRegInfo v81_pmu_regs[] = { 6712 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6713 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6714 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6715 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6716 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6717 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6718 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6719 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6720 REGINFO_SENTINEL 6721 }; 6722 define_arm_cp_regs(cpu, v81_pmu_regs); 6723 } 6724 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6725 static const ARMCPRegInfo v84_pmmir = { 6726 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6727 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6728 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6729 .resetvalue = 0 6730 }; 6731 define_one_arm_cp_reg(cpu, &v84_pmmir); 6732 } 6733 } 6734 6735 /* We don't know until after realize whether there's a GICv3 6736 * attached, and that is what registers the gicv3 sysregs. 6737 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6738 * at runtime. 6739 */ 6740 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6741 { 6742 ARMCPU *cpu = env_archcpu(env); 6743 uint64_t pfr1 = cpu->isar.id_pfr1; 6744 6745 if (env->gicv3state) { 6746 pfr1 |= 1 << 28; 6747 } 6748 return pfr1; 6749 } 6750 6751 #ifndef CONFIG_USER_ONLY 6752 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6753 { 6754 ARMCPU *cpu = env_archcpu(env); 6755 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6756 6757 if (env->gicv3state) { 6758 pfr0 |= 1 << 24; 6759 } 6760 return pfr0; 6761 } 6762 #endif 6763 6764 /* Shared logic between LORID and the rest of the LOR* registers. 6765 * Secure state exclusion has already been dealt with. 6766 */ 6767 static CPAccessResult access_lor_ns(CPUARMState *env, 6768 const ARMCPRegInfo *ri, bool isread) 6769 { 6770 int el = arm_current_el(env); 6771 6772 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6773 return CP_ACCESS_TRAP_EL2; 6774 } 6775 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6776 return CP_ACCESS_TRAP_EL3; 6777 } 6778 return CP_ACCESS_OK; 6779 } 6780 6781 static CPAccessResult access_lor_other(CPUARMState *env, 6782 const ARMCPRegInfo *ri, bool isread) 6783 { 6784 if (arm_is_secure_below_el3(env)) { 6785 /* Access denied in secure mode. */ 6786 return CP_ACCESS_TRAP; 6787 } 6788 return access_lor_ns(env, ri, isread); 6789 } 6790 6791 /* 6792 * A trivial implementation of ARMv8.1-LOR leaves all of these 6793 * registers fixed at 0, which indicates that there are zero 6794 * supported Limited Ordering regions. 6795 */ 6796 static const ARMCPRegInfo lor_reginfo[] = { 6797 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6798 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6799 .access = PL1_RW, .accessfn = access_lor_other, 6800 .type = ARM_CP_CONST, .resetvalue = 0 }, 6801 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6802 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6803 .access = PL1_RW, .accessfn = access_lor_other, 6804 .type = ARM_CP_CONST, .resetvalue = 0 }, 6805 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6806 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6807 .access = PL1_RW, .accessfn = access_lor_other, 6808 .type = ARM_CP_CONST, .resetvalue = 0 }, 6809 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6810 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6811 .access = PL1_RW, .accessfn = access_lor_other, 6812 .type = ARM_CP_CONST, .resetvalue = 0 }, 6813 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6814 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6815 .access = PL1_R, .accessfn = access_lor_ns, 6816 .type = ARM_CP_CONST, .resetvalue = 0 }, 6817 REGINFO_SENTINEL 6818 }; 6819 6820 #ifdef TARGET_AARCH64 6821 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6822 bool isread) 6823 { 6824 int el = arm_current_el(env); 6825 6826 if (el < 2 && 6827 arm_feature(env, ARM_FEATURE_EL2) && 6828 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6829 return CP_ACCESS_TRAP_EL2; 6830 } 6831 if (el < 3 && 6832 arm_feature(env, ARM_FEATURE_EL3) && 6833 !(env->cp15.scr_el3 & SCR_APK)) { 6834 return CP_ACCESS_TRAP_EL3; 6835 } 6836 return CP_ACCESS_OK; 6837 } 6838 6839 static const ARMCPRegInfo pauth_reginfo[] = { 6840 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6841 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6842 .access = PL1_RW, .accessfn = access_pauth, 6843 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6844 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6845 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6846 .access = PL1_RW, .accessfn = access_pauth, 6847 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6848 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6849 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6850 .access = PL1_RW, .accessfn = access_pauth, 6851 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6852 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6853 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6854 .access = PL1_RW, .accessfn = access_pauth, 6855 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6856 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6857 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6858 .access = PL1_RW, .accessfn = access_pauth, 6859 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6860 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6861 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6862 .access = PL1_RW, .accessfn = access_pauth, 6863 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6864 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6865 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6866 .access = PL1_RW, .accessfn = access_pauth, 6867 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6868 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6869 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6870 .access = PL1_RW, .accessfn = access_pauth, 6871 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6872 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6873 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6874 .access = PL1_RW, .accessfn = access_pauth, 6875 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6876 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6877 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6878 .access = PL1_RW, .accessfn = access_pauth, 6879 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6880 REGINFO_SENTINEL 6881 }; 6882 6883 static const ARMCPRegInfo tlbirange_reginfo[] = { 6884 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6885 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6886 .access = PL1_W, .type = ARM_CP_NO_RAW, 6887 .writefn = tlbi_aa64_rvae1is_write }, 6888 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6889 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6890 .access = PL1_W, .type = ARM_CP_NO_RAW, 6891 .writefn = tlbi_aa64_rvae1is_write }, 6892 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6893 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6894 .access = PL1_W, .type = ARM_CP_NO_RAW, 6895 .writefn = tlbi_aa64_rvae1is_write }, 6896 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6897 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6898 .access = PL1_W, .type = ARM_CP_NO_RAW, 6899 .writefn = tlbi_aa64_rvae1is_write }, 6900 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6901 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6902 .access = PL1_W, .type = ARM_CP_NO_RAW, 6903 .writefn = tlbi_aa64_rvae1is_write }, 6904 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6905 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6906 .access = PL1_W, .type = ARM_CP_NO_RAW, 6907 .writefn = tlbi_aa64_rvae1is_write }, 6908 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6909 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6910 .access = PL1_W, .type = ARM_CP_NO_RAW, 6911 .writefn = tlbi_aa64_rvae1is_write }, 6912 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6913 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6914 .access = PL1_W, .type = ARM_CP_NO_RAW, 6915 .writefn = tlbi_aa64_rvae1is_write }, 6916 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6917 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6918 .access = PL1_W, .type = ARM_CP_NO_RAW, 6919 .writefn = tlbi_aa64_rvae1_write }, 6920 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6921 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6922 .access = PL1_W, .type = ARM_CP_NO_RAW, 6923 .writefn = tlbi_aa64_rvae1_write }, 6924 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6925 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6926 .access = PL1_W, .type = ARM_CP_NO_RAW, 6927 .writefn = tlbi_aa64_rvae1_write }, 6928 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6929 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6930 .access = PL1_W, .type = ARM_CP_NO_RAW, 6931 .writefn = tlbi_aa64_rvae1_write }, 6932 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6933 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6934 .access = PL2_W, .type = ARM_CP_NOP }, 6935 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6936 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6937 .access = PL2_W, .type = ARM_CP_NOP }, 6938 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6939 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6940 .access = PL2_W, .type = ARM_CP_NO_RAW, 6941 .writefn = tlbi_aa64_rvae2is_write }, 6942 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6943 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6944 .access = PL2_W, .type = ARM_CP_NO_RAW, 6945 .writefn = tlbi_aa64_rvae2is_write }, 6946 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6947 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6948 .access = PL2_W, .type = ARM_CP_NOP }, 6949 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6950 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6951 .access = PL2_W, .type = ARM_CP_NOP }, 6952 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6953 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6954 .access = PL2_W, .type = ARM_CP_NO_RAW, 6955 .writefn = tlbi_aa64_rvae2is_write }, 6956 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6957 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6958 .access = PL2_W, .type = ARM_CP_NO_RAW, 6959 .writefn = tlbi_aa64_rvae2is_write }, 6960 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6961 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6962 .access = PL2_W, .type = ARM_CP_NO_RAW, 6963 .writefn = tlbi_aa64_rvae2_write }, 6964 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6965 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6966 .access = PL2_W, .type = ARM_CP_NO_RAW, 6967 .writefn = tlbi_aa64_rvae2_write }, 6968 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6969 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6970 .access = PL3_W, .type = ARM_CP_NO_RAW, 6971 .writefn = tlbi_aa64_rvae3is_write }, 6972 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6973 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6974 .access = PL3_W, .type = ARM_CP_NO_RAW, 6975 .writefn = tlbi_aa64_rvae3is_write }, 6976 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6977 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6978 .access = PL3_W, .type = ARM_CP_NO_RAW, 6979 .writefn = tlbi_aa64_rvae3is_write }, 6980 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6981 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6982 .access = PL3_W, .type = ARM_CP_NO_RAW, 6983 .writefn = tlbi_aa64_rvae3is_write }, 6984 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6985 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6986 .access = PL3_W, .type = ARM_CP_NO_RAW, 6987 .writefn = tlbi_aa64_rvae3_write }, 6988 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 6989 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 6990 .access = PL3_W, .type = ARM_CP_NO_RAW, 6991 .writefn = tlbi_aa64_rvae3_write }, 6992 REGINFO_SENTINEL 6993 }; 6994 6995 static const ARMCPRegInfo tlbios_reginfo[] = { 6996 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 6997 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 6998 .access = PL1_W, .type = ARM_CP_NO_RAW, 6999 .writefn = tlbi_aa64_vmalle1is_write }, 7000 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7001 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7002 .access = PL1_W, .type = ARM_CP_NO_RAW, 7003 .writefn = tlbi_aa64_vae1is_write }, 7004 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7005 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7006 .access = PL1_W, .type = ARM_CP_NO_RAW, 7007 .writefn = tlbi_aa64_vmalle1is_write }, 7008 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7009 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7010 .access = PL1_W, .type = ARM_CP_NO_RAW, 7011 .writefn = tlbi_aa64_vae1is_write }, 7012 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7013 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7014 .access = PL1_W, .type = ARM_CP_NO_RAW, 7015 .writefn = tlbi_aa64_vae1is_write }, 7016 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7017 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7018 .access = PL1_W, .type = ARM_CP_NO_RAW, 7019 .writefn = tlbi_aa64_vae1is_write }, 7020 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7021 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7022 .access = PL2_W, .type = ARM_CP_NO_RAW, 7023 .writefn = tlbi_aa64_alle2is_write }, 7024 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7025 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7026 .access = PL2_W, .type = ARM_CP_NO_RAW, 7027 .writefn = tlbi_aa64_vae2is_write }, 7028 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7029 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7030 .access = PL2_W, .type = ARM_CP_NO_RAW, 7031 .writefn = tlbi_aa64_alle1is_write }, 7032 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7033 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7034 .access = PL2_W, .type = ARM_CP_NO_RAW, 7035 .writefn = tlbi_aa64_vae2is_write }, 7036 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7037 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7038 .access = PL2_W, .type = ARM_CP_NO_RAW, 7039 .writefn = tlbi_aa64_alle1is_write }, 7040 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7041 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7042 .access = PL2_W, .type = ARM_CP_NOP }, 7043 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7044 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7045 .access = PL2_W, .type = ARM_CP_NOP }, 7046 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7047 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7048 .access = PL2_W, .type = ARM_CP_NOP }, 7049 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7050 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7051 .access = PL2_W, .type = ARM_CP_NOP }, 7052 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7053 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7054 .access = PL3_W, .type = ARM_CP_NO_RAW, 7055 .writefn = tlbi_aa64_alle3is_write }, 7056 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7057 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7058 .access = PL3_W, .type = ARM_CP_NO_RAW, 7059 .writefn = tlbi_aa64_vae3is_write }, 7060 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7061 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7062 .access = PL3_W, .type = ARM_CP_NO_RAW, 7063 .writefn = tlbi_aa64_vae3is_write }, 7064 REGINFO_SENTINEL 7065 }; 7066 7067 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7068 { 7069 Error *err = NULL; 7070 uint64_t ret; 7071 7072 /* Success sets NZCV = 0000. */ 7073 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7074 7075 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7076 /* 7077 * ??? Failed, for unknown reasons in the crypto subsystem. 7078 * The best we can do is log the reason and return the 7079 * timed-out indication to the guest. There is no reason 7080 * we know to expect this failure to be transitory, so the 7081 * guest may well hang retrying the operation. 7082 */ 7083 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7084 ri->name, error_get_pretty(err)); 7085 error_free(err); 7086 7087 env->ZF = 0; /* NZCF = 0100 */ 7088 return 0; 7089 } 7090 return ret; 7091 } 7092 7093 /* We do not support re-seeding, so the two registers operate the same. */ 7094 static const ARMCPRegInfo rndr_reginfo[] = { 7095 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7096 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7097 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7098 .access = PL0_R, .readfn = rndr_readfn }, 7099 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7100 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7101 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7102 .access = PL0_R, .readfn = rndr_readfn }, 7103 REGINFO_SENTINEL 7104 }; 7105 7106 #ifndef CONFIG_USER_ONLY 7107 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7108 uint64_t value) 7109 { 7110 ARMCPU *cpu = env_archcpu(env); 7111 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7112 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7113 uint64_t vaddr_in = (uint64_t) value; 7114 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7115 void *haddr; 7116 int mem_idx = cpu_mmu_index(env, false); 7117 7118 /* This won't be crossing page boundaries */ 7119 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7120 if (haddr) { 7121 7122 ram_addr_t offset; 7123 MemoryRegion *mr; 7124 7125 /* RCU lock is already being held */ 7126 mr = memory_region_from_host(haddr, &offset); 7127 7128 if (mr) { 7129 memory_region_writeback(mr, offset, dline_size); 7130 } 7131 } 7132 } 7133 7134 static const ARMCPRegInfo dcpop_reg[] = { 7135 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7136 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7137 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7138 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7139 REGINFO_SENTINEL 7140 }; 7141 7142 static const ARMCPRegInfo dcpodp_reg[] = { 7143 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7144 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7145 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7146 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7147 REGINFO_SENTINEL 7148 }; 7149 #endif /*CONFIG_USER_ONLY*/ 7150 7151 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7152 bool isread) 7153 { 7154 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7155 return CP_ACCESS_TRAP_EL2; 7156 } 7157 7158 return CP_ACCESS_OK; 7159 } 7160 7161 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7162 bool isread) 7163 { 7164 int el = arm_current_el(env); 7165 7166 if (el < 2 && arm_is_el2_enabled(env)) { 7167 uint64_t hcr = arm_hcr_el2_eff(env); 7168 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7169 return CP_ACCESS_TRAP_EL2; 7170 } 7171 } 7172 if (el < 3 && 7173 arm_feature(env, ARM_FEATURE_EL3) && 7174 !(env->cp15.scr_el3 & SCR_ATA)) { 7175 return CP_ACCESS_TRAP_EL3; 7176 } 7177 return CP_ACCESS_OK; 7178 } 7179 7180 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7181 { 7182 return env->pstate & PSTATE_TCO; 7183 } 7184 7185 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7186 { 7187 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7188 } 7189 7190 static const ARMCPRegInfo mte_reginfo[] = { 7191 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7192 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7193 .access = PL1_RW, .accessfn = access_mte, 7194 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7195 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7196 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7197 .access = PL1_RW, .accessfn = access_mte, 7198 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7199 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7200 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7201 .access = PL2_RW, .accessfn = access_mte, 7202 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7203 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7204 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7205 .access = PL3_RW, 7206 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7207 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7208 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7209 .access = PL1_RW, .accessfn = access_mte, 7210 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7211 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7212 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7213 .access = PL1_RW, .accessfn = access_mte, 7214 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7215 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7216 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7217 .access = PL1_R, .accessfn = access_aa64_tid5, 7218 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7219 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7220 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7221 .type = ARM_CP_NO_RAW, 7222 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7223 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7224 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7225 .type = ARM_CP_NOP, .access = PL1_W, 7226 .accessfn = aa64_cacheop_poc_access }, 7227 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7228 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7229 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7230 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7231 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7232 .type = ARM_CP_NOP, .access = PL1_W, 7233 .accessfn = aa64_cacheop_poc_access }, 7234 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7235 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7236 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7237 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7238 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7239 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7240 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7241 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7242 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7243 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7244 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7245 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7246 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7247 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7248 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7249 REGINFO_SENTINEL 7250 }; 7251 7252 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7253 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7254 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7255 .type = ARM_CP_CONST, .access = PL0_RW, }, 7256 REGINFO_SENTINEL 7257 }; 7258 7259 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7260 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7261 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7262 .type = ARM_CP_NOP, .access = PL0_W, 7263 .accessfn = aa64_cacheop_poc_access }, 7264 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7265 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7266 .type = ARM_CP_NOP, .access = PL0_W, 7267 .accessfn = aa64_cacheop_poc_access }, 7268 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7269 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7270 .type = ARM_CP_NOP, .access = PL0_W, 7271 .accessfn = aa64_cacheop_poc_access }, 7272 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7273 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7274 .type = ARM_CP_NOP, .access = PL0_W, 7275 .accessfn = aa64_cacheop_poc_access }, 7276 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7277 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7278 .type = ARM_CP_NOP, .access = PL0_W, 7279 .accessfn = aa64_cacheop_poc_access }, 7280 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7281 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7282 .type = ARM_CP_NOP, .access = PL0_W, 7283 .accessfn = aa64_cacheop_poc_access }, 7284 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7285 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7286 .type = ARM_CP_NOP, .access = PL0_W, 7287 .accessfn = aa64_cacheop_poc_access }, 7288 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7289 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7290 .type = ARM_CP_NOP, .access = PL0_W, 7291 .accessfn = aa64_cacheop_poc_access }, 7292 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7293 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7294 .access = PL0_W, .type = ARM_CP_DC_GVA, 7295 #ifndef CONFIG_USER_ONLY 7296 /* Avoid overhead of an access check that always passes in user-mode */ 7297 .accessfn = aa64_zva_access, 7298 #endif 7299 }, 7300 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7301 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7302 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7303 #ifndef CONFIG_USER_ONLY 7304 /* Avoid overhead of an access check that always passes in user-mode */ 7305 .accessfn = aa64_zva_access, 7306 #endif 7307 }, 7308 REGINFO_SENTINEL 7309 }; 7310 7311 #endif 7312 7313 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7314 bool isread) 7315 { 7316 int el = arm_current_el(env); 7317 7318 if (el == 0) { 7319 uint64_t sctlr = arm_sctlr(env, el); 7320 if (!(sctlr & SCTLR_EnRCTX)) { 7321 return CP_ACCESS_TRAP; 7322 } 7323 } else if (el == 1) { 7324 uint64_t hcr = arm_hcr_el2_eff(env); 7325 if (hcr & HCR_NV) { 7326 return CP_ACCESS_TRAP_EL2; 7327 } 7328 } 7329 return CP_ACCESS_OK; 7330 } 7331 7332 static const ARMCPRegInfo predinv_reginfo[] = { 7333 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7334 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7335 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7336 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7337 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7338 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7339 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7340 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7341 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7342 /* 7343 * Note the AArch32 opcodes have a different OPC1. 7344 */ 7345 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7346 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7347 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7348 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7349 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7350 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7351 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7352 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7353 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7354 REGINFO_SENTINEL 7355 }; 7356 7357 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7358 { 7359 /* Read the high 32 bits of the current CCSIDR */ 7360 return extract64(ccsidr_read(env, ri), 32, 32); 7361 } 7362 7363 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7364 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7365 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7366 .access = PL1_R, 7367 .accessfn = access_aa64_tid2, 7368 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7369 REGINFO_SENTINEL 7370 }; 7371 7372 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7373 bool isread) 7374 { 7375 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7376 return CP_ACCESS_TRAP_EL2; 7377 } 7378 7379 return CP_ACCESS_OK; 7380 } 7381 7382 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7383 bool isread) 7384 { 7385 if (arm_feature(env, ARM_FEATURE_V8)) { 7386 return access_aa64_tid3(env, ri, isread); 7387 } 7388 7389 return CP_ACCESS_OK; 7390 } 7391 7392 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7393 bool isread) 7394 { 7395 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7396 return CP_ACCESS_TRAP_EL2; 7397 } 7398 7399 return CP_ACCESS_OK; 7400 } 7401 7402 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7403 const ARMCPRegInfo *ri, bool isread) 7404 { 7405 /* 7406 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7407 * in v7A, not in v8A. 7408 */ 7409 if (!arm_feature(env, ARM_FEATURE_V8) && 7410 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7411 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7412 return CP_ACCESS_TRAP_EL2; 7413 } 7414 return CP_ACCESS_OK; 7415 } 7416 7417 static const ARMCPRegInfo jazelle_regs[] = { 7418 { .name = "JIDR", 7419 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7420 .access = PL1_R, .accessfn = access_jazelle, 7421 .type = ARM_CP_CONST, .resetvalue = 0 }, 7422 { .name = "JOSCR", 7423 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7424 .accessfn = access_joscr_jmcr, 7425 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7426 { .name = "JMCR", 7427 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7428 .accessfn = access_joscr_jmcr, 7429 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7430 REGINFO_SENTINEL 7431 }; 7432 7433 static const ARMCPRegInfo vhe_reginfo[] = { 7434 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7435 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7436 .access = PL2_RW, 7437 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7438 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7439 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7440 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7441 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7442 #ifndef CONFIG_USER_ONLY 7443 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7444 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7445 .fieldoffset = 7446 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7447 .type = ARM_CP_IO, .access = PL2_RW, 7448 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7449 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7450 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7451 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7452 .resetfn = gt_hv_timer_reset, 7453 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7454 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7455 .type = ARM_CP_IO, 7456 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7457 .access = PL2_RW, 7458 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7459 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7460 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7461 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7462 .type = ARM_CP_IO | ARM_CP_ALIAS, 7463 .access = PL2_RW, .accessfn = e2h_access, 7464 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7465 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7466 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7467 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7468 .type = ARM_CP_IO | ARM_CP_ALIAS, 7469 .access = PL2_RW, .accessfn = e2h_access, 7470 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7471 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7472 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7473 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7474 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7475 .access = PL2_RW, .accessfn = e2h_access, 7476 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7477 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7478 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7479 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7480 .access = PL2_RW, .accessfn = e2h_access, 7481 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7482 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7483 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7484 .type = ARM_CP_IO | ARM_CP_ALIAS, 7485 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7486 .access = PL2_RW, .accessfn = e2h_access, 7487 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7488 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7489 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7490 .type = ARM_CP_IO | ARM_CP_ALIAS, 7491 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7492 .access = PL2_RW, .accessfn = e2h_access, 7493 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7494 #endif 7495 REGINFO_SENTINEL 7496 }; 7497 7498 #ifndef CONFIG_USER_ONLY 7499 static const ARMCPRegInfo ats1e1_reginfo[] = { 7500 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7501 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7502 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7503 .writefn = ats_write64 }, 7504 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7505 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7506 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7507 .writefn = ats_write64 }, 7508 REGINFO_SENTINEL 7509 }; 7510 7511 static const ARMCPRegInfo ats1cp_reginfo[] = { 7512 { .name = "ATS1CPRP", 7513 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7514 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7515 .writefn = ats_write }, 7516 { .name = "ATS1CPWP", 7517 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7518 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7519 .writefn = ats_write }, 7520 REGINFO_SENTINEL 7521 }; 7522 #endif 7523 7524 /* 7525 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7526 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7527 * is non-zero, which is never for ARMv7, optionally in ARMv8 7528 * and mandatorily for ARMv8.2 and up. 7529 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7530 * implementation is RAZ/WI we can ignore this detail, as we 7531 * do for ACTLR. 7532 */ 7533 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7534 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7535 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7536 .access = PL1_RW, .accessfn = access_tacr, 7537 .type = ARM_CP_CONST, .resetvalue = 0 }, 7538 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7539 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7540 .access = PL2_RW, .type = ARM_CP_CONST, 7541 .resetvalue = 0 }, 7542 REGINFO_SENTINEL 7543 }; 7544 7545 void register_cp_regs_for_features(ARMCPU *cpu) 7546 { 7547 /* Register all the coprocessor registers based on feature bits */ 7548 CPUARMState *env = &cpu->env; 7549 if (arm_feature(env, ARM_FEATURE_M)) { 7550 /* M profile has no coprocessor registers */ 7551 return; 7552 } 7553 7554 define_arm_cp_regs(cpu, cp_reginfo); 7555 if (!arm_feature(env, ARM_FEATURE_V8)) { 7556 /* Must go early as it is full of wildcards that may be 7557 * overridden by later definitions. 7558 */ 7559 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7560 } 7561 7562 if (arm_feature(env, ARM_FEATURE_V6)) { 7563 /* The ID registers all have impdef reset values */ 7564 ARMCPRegInfo v6_idregs[] = { 7565 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7566 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7567 .access = PL1_R, .type = ARM_CP_CONST, 7568 .accessfn = access_aa32_tid3, 7569 .resetvalue = cpu->isar.id_pfr0 }, 7570 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7571 * the value of the GIC field until after we define these regs. 7572 */ 7573 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7574 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7575 .access = PL1_R, .type = ARM_CP_NO_RAW, 7576 .accessfn = access_aa32_tid3, 7577 .readfn = id_pfr1_read, 7578 .writefn = arm_cp_write_ignore }, 7579 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7580 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7581 .access = PL1_R, .type = ARM_CP_CONST, 7582 .accessfn = access_aa32_tid3, 7583 .resetvalue = cpu->isar.id_dfr0 }, 7584 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7585 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7586 .access = PL1_R, .type = ARM_CP_CONST, 7587 .accessfn = access_aa32_tid3, 7588 .resetvalue = cpu->id_afr0 }, 7589 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7590 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7591 .access = PL1_R, .type = ARM_CP_CONST, 7592 .accessfn = access_aa32_tid3, 7593 .resetvalue = cpu->isar.id_mmfr0 }, 7594 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7595 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7596 .access = PL1_R, .type = ARM_CP_CONST, 7597 .accessfn = access_aa32_tid3, 7598 .resetvalue = cpu->isar.id_mmfr1 }, 7599 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7600 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7601 .access = PL1_R, .type = ARM_CP_CONST, 7602 .accessfn = access_aa32_tid3, 7603 .resetvalue = cpu->isar.id_mmfr2 }, 7604 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7605 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7606 .access = PL1_R, .type = ARM_CP_CONST, 7607 .accessfn = access_aa32_tid3, 7608 .resetvalue = cpu->isar.id_mmfr3 }, 7609 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7610 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7611 .access = PL1_R, .type = ARM_CP_CONST, 7612 .accessfn = access_aa32_tid3, 7613 .resetvalue = cpu->isar.id_isar0 }, 7614 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7615 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7616 .access = PL1_R, .type = ARM_CP_CONST, 7617 .accessfn = access_aa32_tid3, 7618 .resetvalue = cpu->isar.id_isar1 }, 7619 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7620 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7621 .access = PL1_R, .type = ARM_CP_CONST, 7622 .accessfn = access_aa32_tid3, 7623 .resetvalue = cpu->isar.id_isar2 }, 7624 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7625 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7626 .access = PL1_R, .type = ARM_CP_CONST, 7627 .accessfn = access_aa32_tid3, 7628 .resetvalue = cpu->isar.id_isar3 }, 7629 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7630 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7631 .access = PL1_R, .type = ARM_CP_CONST, 7632 .accessfn = access_aa32_tid3, 7633 .resetvalue = cpu->isar.id_isar4 }, 7634 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7635 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7636 .access = PL1_R, .type = ARM_CP_CONST, 7637 .accessfn = access_aa32_tid3, 7638 .resetvalue = cpu->isar.id_isar5 }, 7639 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7640 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7641 .access = PL1_R, .type = ARM_CP_CONST, 7642 .accessfn = access_aa32_tid3, 7643 .resetvalue = cpu->isar.id_mmfr4 }, 7644 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7645 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7646 .access = PL1_R, .type = ARM_CP_CONST, 7647 .accessfn = access_aa32_tid3, 7648 .resetvalue = cpu->isar.id_isar6 }, 7649 REGINFO_SENTINEL 7650 }; 7651 define_arm_cp_regs(cpu, v6_idregs); 7652 define_arm_cp_regs(cpu, v6_cp_reginfo); 7653 } else { 7654 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7655 } 7656 if (arm_feature(env, ARM_FEATURE_V6K)) { 7657 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7658 } 7659 if (arm_feature(env, ARM_FEATURE_V7MP) && 7660 !arm_feature(env, ARM_FEATURE_PMSA)) { 7661 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7662 } 7663 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7664 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7665 } 7666 if (arm_feature(env, ARM_FEATURE_V7)) { 7667 ARMCPRegInfo clidr = { 7668 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7669 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7670 .access = PL1_R, .type = ARM_CP_CONST, 7671 .accessfn = access_aa64_tid2, 7672 .resetvalue = cpu->clidr 7673 }; 7674 define_one_arm_cp_reg(cpu, &clidr); 7675 define_arm_cp_regs(cpu, v7_cp_reginfo); 7676 define_debug_regs(cpu); 7677 define_pmu_regs(cpu); 7678 } else { 7679 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7680 } 7681 if (arm_feature(env, ARM_FEATURE_V8)) { 7682 /* AArch64 ID registers, which all have impdef reset values. 7683 * Note that within the ID register ranges the unused slots 7684 * must all RAZ, not UNDEF; future architecture versions may 7685 * define new registers here. 7686 */ 7687 ARMCPRegInfo v8_idregs[] = { 7688 /* 7689 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7690 * emulation because we don't know the right value for the 7691 * GIC field until after we define these regs. 7692 */ 7693 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7694 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7695 .access = PL1_R, 7696 #ifdef CONFIG_USER_ONLY 7697 .type = ARM_CP_CONST, 7698 .resetvalue = cpu->isar.id_aa64pfr0 7699 #else 7700 .type = ARM_CP_NO_RAW, 7701 .accessfn = access_aa64_tid3, 7702 .readfn = id_aa64pfr0_read, 7703 .writefn = arm_cp_write_ignore 7704 #endif 7705 }, 7706 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7707 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7708 .access = PL1_R, .type = ARM_CP_CONST, 7709 .accessfn = access_aa64_tid3, 7710 .resetvalue = cpu->isar.id_aa64pfr1}, 7711 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7712 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7713 .access = PL1_R, .type = ARM_CP_CONST, 7714 .accessfn = access_aa64_tid3, 7715 .resetvalue = 0 }, 7716 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7717 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7718 .access = PL1_R, .type = ARM_CP_CONST, 7719 .accessfn = access_aa64_tid3, 7720 .resetvalue = 0 }, 7721 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7722 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7723 .access = PL1_R, .type = ARM_CP_CONST, 7724 .accessfn = access_aa64_tid3, 7725 .resetvalue = cpu->isar.id_aa64zfr0 }, 7726 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7727 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7728 .access = PL1_R, .type = ARM_CP_CONST, 7729 .accessfn = access_aa64_tid3, 7730 .resetvalue = 0 }, 7731 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7732 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7733 .access = PL1_R, .type = ARM_CP_CONST, 7734 .accessfn = access_aa64_tid3, 7735 .resetvalue = 0 }, 7736 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7737 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7738 .access = PL1_R, .type = ARM_CP_CONST, 7739 .accessfn = access_aa64_tid3, 7740 .resetvalue = 0 }, 7741 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7742 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7743 .access = PL1_R, .type = ARM_CP_CONST, 7744 .accessfn = access_aa64_tid3, 7745 .resetvalue = cpu->isar.id_aa64dfr0 }, 7746 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7747 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7748 .access = PL1_R, .type = ARM_CP_CONST, 7749 .accessfn = access_aa64_tid3, 7750 .resetvalue = cpu->isar.id_aa64dfr1 }, 7751 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7752 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7753 .access = PL1_R, .type = ARM_CP_CONST, 7754 .accessfn = access_aa64_tid3, 7755 .resetvalue = 0 }, 7756 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7757 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7758 .access = PL1_R, .type = ARM_CP_CONST, 7759 .accessfn = access_aa64_tid3, 7760 .resetvalue = 0 }, 7761 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7762 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7763 .access = PL1_R, .type = ARM_CP_CONST, 7764 .accessfn = access_aa64_tid3, 7765 .resetvalue = cpu->id_aa64afr0 }, 7766 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7767 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7768 .access = PL1_R, .type = ARM_CP_CONST, 7769 .accessfn = access_aa64_tid3, 7770 .resetvalue = cpu->id_aa64afr1 }, 7771 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7773 .access = PL1_R, .type = ARM_CP_CONST, 7774 .accessfn = access_aa64_tid3, 7775 .resetvalue = 0 }, 7776 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7777 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7778 .access = PL1_R, .type = ARM_CP_CONST, 7779 .accessfn = access_aa64_tid3, 7780 .resetvalue = 0 }, 7781 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7783 .access = PL1_R, .type = ARM_CP_CONST, 7784 .accessfn = access_aa64_tid3, 7785 .resetvalue = cpu->isar.id_aa64isar0 }, 7786 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7788 .access = PL1_R, .type = ARM_CP_CONST, 7789 .accessfn = access_aa64_tid3, 7790 .resetvalue = cpu->isar.id_aa64isar1 }, 7791 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7793 .access = PL1_R, .type = ARM_CP_CONST, 7794 .accessfn = access_aa64_tid3, 7795 .resetvalue = 0 }, 7796 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7797 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7798 .access = PL1_R, .type = ARM_CP_CONST, 7799 .accessfn = access_aa64_tid3, 7800 .resetvalue = 0 }, 7801 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7803 .access = PL1_R, .type = ARM_CP_CONST, 7804 .accessfn = access_aa64_tid3, 7805 .resetvalue = 0 }, 7806 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7808 .access = PL1_R, .type = ARM_CP_CONST, 7809 .accessfn = access_aa64_tid3, 7810 .resetvalue = 0 }, 7811 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7813 .access = PL1_R, .type = ARM_CP_CONST, 7814 .accessfn = access_aa64_tid3, 7815 .resetvalue = 0 }, 7816 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7817 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7818 .access = PL1_R, .type = ARM_CP_CONST, 7819 .accessfn = access_aa64_tid3, 7820 .resetvalue = 0 }, 7821 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7822 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7823 .access = PL1_R, .type = ARM_CP_CONST, 7824 .accessfn = access_aa64_tid3, 7825 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7826 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7827 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7828 .access = PL1_R, .type = ARM_CP_CONST, 7829 .accessfn = access_aa64_tid3, 7830 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7831 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7833 .access = PL1_R, .type = ARM_CP_CONST, 7834 .accessfn = access_aa64_tid3, 7835 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7836 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7837 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7838 .access = PL1_R, .type = ARM_CP_CONST, 7839 .accessfn = access_aa64_tid3, 7840 .resetvalue = 0 }, 7841 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7842 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7843 .access = PL1_R, .type = ARM_CP_CONST, 7844 .accessfn = access_aa64_tid3, 7845 .resetvalue = 0 }, 7846 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7847 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7848 .access = PL1_R, .type = ARM_CP_CONST, 7849 .accessfn = access_aa64_tid3, 7850 .resetvalue = 0 }, 7851 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7853 .access = PL1_R, .type = ARM_CP_CONST, 7854 .accessfn = access_aa64_tid3, 7855 .resetvalue = 0 }, 7856 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7857 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7858 .access = PL1_R, .type = ARM_CP_CONST, 7859 .accessfn = access_aa64_tid3, 7860 .resetvalue = 0 }, 7861 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7862 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7863 .access = PL1_R, .type = ARM_CP_CONST, 7864 .accessfn = access_aa64_tid3, 7865 .resetvalue = cpu->isar.mvfr0 }, 7866 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7867 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7868 .access = PL1_R, .type = ARM_CP_CONST, 7869 .accessfn = access_aa64_tid3, 7870 .resetvalue = cpu->isar.mvfr1 }, 7871 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7872 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7873 .access = PL1_R, .type = ARM_CP_CONST, 7874 .accessfn = access_aa64_tid3, 7875 .resetvalue = cpu->isar.mvfr2 }, 7876 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7877 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7878 .access = PL1_R, .type = ARM_CP_CONST, 7879 .accessfn = access_aa64_tid3, 7880 .resetvalue = 0 }, 7881 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7882 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7883 .access = PL1_R, .type = ARM_CP_CONST, 7884 .accessfn = access_aa64_tid3, 7885 .resetvalue = cpu->isar.id_pfr2 }, 7886 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7887 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7888 .access = PL1_R, .type = ARM_CP_CONST, 7889 .accessfn = access_aa64_tid3, 7890 .resetvalue = 0 }, 7891 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7892 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7893 .access = PL1_R, .type = ARM_CP_CONST, 7894 .accessfn = access_aa64_tid3, 7895 .resetvalue = 0 }, 7896 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7897 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7898 .access = PL1_R, .type = ARM_CP_CONST, 7899 .accessfn = access_aa64_tid3, 7900 .resetvalue = 0 }, 7901 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7902 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7903 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7904 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7905 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7906 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7907 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7908 .resetvalue = cpu->pmceid0 }, 7909 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7910 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7911 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7912 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7913 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7914 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7915 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7916 .resetvalue = cpu->pmceid1 }, 7917 REGINFO_SENTINEL 7918 }; 7919 #ifdef CONFIG_USER_ONLY 7920 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7921 { .name = "ID_AA64PFR0_EL1", 7922 .exported_bits = 0x000f000f00ff0000, 7923 .fixed_bits = 0x0000000000000011 }, 7924 { .name = "ID_AA64PFR1_EL1", 7925 .exported_bits = 0x00000000000000f0 }, 7926 { .name = "ID_AA64PFR*_EL1_RESERVED", 7927 .is_glob = true }, 7928 { .name = "ID_AA64ZFR0_EL1" }, 7929 { .name = "ID_AA64MMFR0_EL1", 7930 .fixed_bits = 0x00000000ff000000 }, 7931 { .name = "ID_AA64MMFR1_EL1" }, 7932 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7933 .is_glob = true }, 7934 { .name = "ID_AA64DFR0_EL1", 7935 .fixed_bits = 0x0000000000000006 }, 7936 { .name = "ID_AA64DFR1_EL1" }, 7937 { .name = "ID_AA64DFR*_EL1_RESERVED", 7938 .is_glob = true }, 7939 { .name = "ID_AA64AFR*", 7940 .is_glob = true }, 7941 { .name = "ID_AA64ISAR0_EL1", 7942 .exported_bits = 0x00fffffff0fffff0 }, 7943 { .name = "ID_AA64ISAR1_EL1", 7944 .exported_bits = 0x000000f0ffffffff }, 7945 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7946 .is_glob = true }, 7947 REGUSERINFO_SENTINEL 7948 }; 7949 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7950 #endif 7951 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7952 if (!arm_feature(env, ARM_FEATURE_EL3) && 7953 !arm_feature(env, ARM_FEATURE_EL2)) { 7954 ARMCPRegInfo rvbar = { 7955 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7956 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7957 .access = PL1_R, 7958 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7959 }; 7960 define_one_arm_cp_reg(cpu, &rvbar); 7961 } 7962 define_arm_cp_regs(cpu, v8_idregs); 7963 define_arm_cp_regs(cpu, v8_cp_reginfo); 7964 } 7965 if (arm_feature(env, ARM_FEATURE_EL2)) { 7966 uint64_t vmpidr_def = mpidr_read_val(env); 7967 ARMCPRegInfo vpidr_regs[] = { 7968 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7969 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7970 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7971 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7972 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7973 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7974 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7975 .access = PL2_RW, .resetvalue = cpu->midr, 7976 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7977 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7978 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7979 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7980 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7981 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7982 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7983 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7984 .access = PL2_RW, 7985 .resetvalue = vmpidr_def, 7986 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7987 REGINFO_SENTINEL 7988 }; 7989 define_arm_cp_regs(cpu, vpidr_regs); 7990 define_arm_cp_regs(cpu, el2_cp_reginfo); 7991 if (arm_feature(env, ARM_FEATURE_V8)) { 7992 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7993 } 7994 if (cpu_isar_feature(aa64_sel2, cpu)) { 7995 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7996 } 7997 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7998 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7999 ARMCPRegInfo rvbar = { 8000 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8001 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8002 .access = PL2_R, 8003 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8004 }; 8005 define_one_arm_cp_reg(cpu, &rvbar); 8006 } 8007 } else { 8008 /* If EL2 is missing but higher ELs are enabled, we need to 8009 * register the no_el2 reginfos. 8010 */ 8011 if (arm_feature(env, ARM_FEATURE_EL3)) { 8012 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 8013 * of MIDR_EL1 and MPIDR_EL1. 8014 */ 8015 ARMCPRegInfo vpidr_regs[] = { 8016 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8017 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8018 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8019 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 8020 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8021 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8022 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8023 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8024 .type = ARM_CP_NO_RAW, 8025 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 8026 REGINFO_SENTINEL 8027 }; 8028 define_arm_cp_regs(cpu, vpidr_regs); 8029 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 8030 if (arm_feature(env, ARM_FEATURE_V8)) { 8031 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 8032 } 8033 } 8034 } 8035 if (arm_feature(env, ARM_FEATURE_EL3)) { 8036 define_arm_cp_regs(cpu, el3_cp_reginfo); 8037 ARMCPRegInfo el3_regs[] = { 8038 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8039 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8040 .access = PL3_R, 8041 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8042 }, 8043 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8044 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8045 .access = PL3_RW, 8046 .raw_writefn = raw_write, .writefn = sctlr_write, 8047 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8048 .resetvalue = cpu->reset_sctlr }, 8049 REGINFO_SENTINEL 8050 }; 8051 8052 define_arm_cp_regs(cpu, el3_regs); 8053 } 8054 /* The behaviour of NSACR is sufficiently various that we don't 8055 * try to describe it in a single reginfo: 8056 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8057 * reads as constant 0xc00 from NS EL1 and NS EL2 8058 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8059 * if v7 without EL3, register doesn't exist 8060 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8061 */ 8062 if (arm_feature(env, ARM_FEATURE_EL3)) { 8063 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8064 ARMCPRegInfo nsacr = { 8065 .name = "NSACR", .type = ARM_CP_CONST, 8066 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8067 .access = PL1_RW, .accessfn = nsacr_access, 8068 .resetvalue = 0xc00 8069 }; 8070 define_one_arm_cp_reg(cpu, &nsacr); 8071 } else { 8072 ARMCPRegInfo nsacr = { 8073 .name = "NSACR", 8074 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8075 .access = PL3_RW | PL1_R, 8076 .resetvalue = 0, 8077 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8078 }; 8079 define_one_arm_cp_reg(cpu, &nsacr); 8080 } 8081 } else { 8082 if (arm_feature(env, ARM_FEATURE_V8)) { 8083 ARMCPRegInfo nsacr = { 8084 .name = "NSACR", .type = ARM_CP_CONST, 8085 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8086 .access = PL1_R, 8087 .resetvalue = 0xc00 8088 }; 8089 define_one_arm_cp_reg(cpu, &nsacr); 8090 } 8091 } 8092 8093 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8094 if (arm_feature(env, ARM_FEATURE_V6)) { 8095 /* PMSAv6 not implemented */ 8096 assert(arm_feature(env, ARM_FEATURE_V7)); 8097 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8098 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8099 } else { 8100 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8101 } 8102 } else { 8103 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8104 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8105 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8106 if (cpu_isar_feature(aa32_hpd, cpu)) { 8107 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8108 } 8109 } 8110 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8111 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8112 } 8113 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8114 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8115 } 8116 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8117 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8118 } 8119 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8120 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8121 } 8122 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8123 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8124 } 8125 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8126 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8127 } 8128 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8129 define_arm_cp_regs(cpu, omap_cp_reginfo); 8130 } 8131 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8132 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8133 } 8134 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8135 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8136 } 8137 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8138 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8139 } 8140 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8141 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8142 } 8143 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8144 define_arm_cp_regs(cpu, jazelle_regs); 8145 } 8146 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8147 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8148 * be read-only (ie write causes UNDEF exception). 8149 */ 8150 { 8151 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8152 /* Pre-v8 MIDR space. 8153 * Note that the MIDR isn't a simple constant register because 8154 * of the TI925 behaviour where writes to another register can 8155 * cause the MIDR value to change. 8156 * 8157 * Unimplemented registers in the c15 0 0 0 space default to 8158 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8159 * and friends override accordingly. 8160 */ 8161 { .name = "MIDR", 8162 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8163 .access = PL1_R, .resetvalue = cpu->midr, 8164 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8165 .readfn = midr_read, 8166 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8167 .type = ARM_CP_OVERRIDE }, 8168 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8169 { .name = "DUMMY", 8170 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8171 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8172 { .name = "DUMMY", 8173 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8174 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8175 { .name = "DUMMY", 8176 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8177 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8178 { .name = "DUMMY", 8179 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8180 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8181 { .name = "DUMMY", 8182 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8183 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8184 REGINFO_SENTINEL 8185 }; 8186 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8187 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8188 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8189 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8190 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8191 .readfn = midr_read }, 8192 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8193 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8194 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8195 .access = PL1_R, .resetvalue = cpu->midr }, 8196 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8197 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8198 .access = PL1_R, .resetvalue = cpu->midr }, 8199 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8200 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8201 .access = PL1_R, 8202 .accessfn = access_aa64_tid1, 8203 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8204 REGINFO_SENTINEL 8205 }; 8206 ARMCPRegInfo id_cp_reginfo[] = { 8207 /* These are common to v8 and pre-v8 */ 8208 { .name = "CTR", 8209 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8210 .access = PL1_R, .accessfn = ctr_el0_access, 8211 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8212 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8213 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8214 .access = PL0_R, .accessfn = ctr_el0_access, 8215 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8216 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8217 { .name = "TCMTR", 8218 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8219 .access = PL1_R, 8220 .accessfn = access_aa32_tid1, 8221 .type = ARM_CP_CONST, .resetvalue = 0 }, 8222 REGINFO_SENTINEL 8223 }; 8224 /* TLBTR is specific to VMSA */ 8225 ARMCPRegInfo id_tlbtr_reginfo = { 8226 .name = "TLBTR", 8227 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8228 .access = PL1_R, 8229 .accessfn = access_aa32_tid1, 8230 .type = ARM_CP_CONST, .resetvalue = 0, 8231 }; 8232 /* MPUIR is specific to PMSA V6+ */ 8233 ARMCPRegInfo id_mpuir_reginfo = { 8234 .name = "MPUIR", 8235 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8236 .access = PL1_R, .type = ARM_CP_CONST, 8237 .resetvalue = cpu->pmsav7_dregion << 8 8238 }; 8239 ARMCPRegInfo crn0_wi_reginfo = { 8240 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8241 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8242 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8243 }; 8244 #ifdef CONFIG_USER_ONLY 8245 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8246 { .name = "MIDR_EL1", 8247 .exported_bits = 0x00000000ffffffff }, 8248 { .name = "REVIDR_EL1" }, 8249 REGUSERINFO_SENTINEL 8250 }; 8251 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8252 #endif 8253 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8254 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8255 ARMCPRegInfo *r; 8256 /* Register the blanket "writes ignored" value first to cover the 8257 * whole space. Then update the specific ID registers to allow write 8258 * access, so that they ignore writes rather than causing them to 8259 * UNDEF. 8260 */ 8261 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8262 for (r = id_pre_v8_midr_cp_reginfo; 8263 r->type != ARM_CP_SENTINEL; r++) { 8264 r->access = PL1_RW; 8265 } 8266 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 8267 r->access = PL1_RW; 8268 } 8269 id_mpuir_reginfo.access = PL1_RW; 8270 id_tlbtr_reginfo.access = PL1_RW; 8271 } 8272 if (arm_feature(env, ARM_FEATURE_V8)) { 8273 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8274 } else { 8275 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8276 } 8277 define_arm_cp_regs(cpu, id_cp_reginfo); 8278 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8279 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8280 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8281 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8282 } 8283 } 8284 8285 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8286 ARMCPRegInfo mpidr_cp_reginfo[] = { 8287 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8288 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8289 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8290 REGINFO_SENTINEL 8291 }; 8292 #ifdef CONFIG_USER_ONLY 8293 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8294 { .name = "MPIDR_EL1", 8295 .fixed_bits = 0x0000000080000000 }, 8296 REGUSERINFO_SENTINEL 8297 }; 8298 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8299 #endif 8300 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8301 } 8302 8303 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8304 ARMCPRegInfo auxcr_reginfo[] = { 8305 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8306 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8307 .access = PL1_RW, .accessfn = access_tacr, 8308 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8309 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8310 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8311 .access = PL2_RW, .type = ARM_CP_CONST, 8312 .resetvalue = 0 }, 8313 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8314 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8315 .access = PL3_RW, .type = ARM_CP_CONST, 8316 .resetvalue = 0 }, 8317 REGINFO_SENTINEL 8318 }; 8319 define_arm_cp_regs(cpu, auxcr_reginfo); 8320 if (cpu_isar_feature(aa32_ac2, cpu)) { 8321 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8322 } 8323 } 8324 8325 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8326 /* 8327 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8328 * There are two flavours: 8329 * (1) older 32-bit only cores have a simple 32-bit CBAR 8330 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8331 * 32-bit register visible to AArch32 at a different encoding 8332 * to the "flavour 1" register and with the bits rearranged to 8333 * be able to squash a 64-bit address into the 32-bit view. 8334 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8335 * in future if we support AArch32-only configs of some of the 8336 * AArch64 cores we might need to add a specific feature flag 8337 * to indicate cores with "flavour 2" CBAR. 8338 */ 8339 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8340 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8341 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8342 | extract64(cpu->reset_cbar, 32, 12); 8343 ARMCPRegInfo cbar_reginfo[] = { 8344 { .name = "CBAR", 8345 .type = ARM_CP_CONST, 8346 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8347 .access = PL1_R, .resetvalue = cbar32 }, 8348 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8349 .type = ARM_CP_CONST, 8350 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8351 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8352 REGINFO_SENTINEL 8353 }; 8354 /* We don't implement a r/w 64 bit CBAR currently */ 8355 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8356 define_arm_cp_regs(cpu, cbar_reginfo); 8357 } else { 8358 ARMCPRegInfo cbar = { 8359 .name = "CBAR", 8360 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8361 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8362 .fieldoffset = offsetof(CPUARMState, 8363 cp15.c15_config_base_address) 8364 }; 8365 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8366 cbar.access = PL1_R; 8367 cbar.fieldoffset = 0; 8368 cbar.type = ARM_CP_CONST; 8369 } 8370 define_one_arm_cp_reg(cpu, &cbar); 8371 } 8372 } 8373 8374 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8375 ARMCPRegInfo vbar_cp_reginfo[] = { 8376 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8377 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8378 .access = PL1_RW, .writefn = vbar_write, 8379 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8380 offsetof(CPUARMState, cp15.vbar_ns) }, 8381 .resetvalue = 0 }, 8382 REGINFO_SENTINEL 8383 }; 8384 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8385 } 8386 8387 /* Generic registers whose values depend on the implementation */ 8388 { 8389 ARMCPRegInfo sctlr = { 8390 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8391 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8392 .access = PL1_RW, .accessfn = access_tvm_trvm, 8393 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8394 offsetof(CPUARMState, cp15.sctlr_ns) }, 8395 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8396 .raw_writefn = raw_write, 8397 }; 8398 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8399 /* Normally we would always end the TB on an SCTLR write, but Linux 8400 * arch/arm/mach-pxa/sleep.S expects two instructions following 8401 * an MMU enable to execute from cache. Imitate this behaviour. 8402 */ 8403 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8404 } 8405 define_one_arm_cp_reg(cpu, &sctlr); 8406 } 8407 8408 if (cpu_isar_feature(aa64_lor, cpu)) { 8409 define_arm_cp_regs(cpu, lor_reginfo); 8410 } 8411 if (cpu_isar_feature(aa64_pan, cpu)) { 8412 define_one_arm_cp_reg(cpu, &pan_reginfo); 8413 } 8414 #ifndef CONFIG_USER_ONLY 8415 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8416 define_arm_cp_regs(cpu, ats1e1_reginfo); 8417 } 8418 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8419 define_arm_cp_regs(cpu, ats1cp_reginfo); 8420 } 8421 #endif 8422 if (cpu_isar_feature(aa64_uao, cpu)) { 8423 define_one_arm_cp_reg(cpu, &uao_reginfo); 8424 } 8425 8426 if (cpu_isar_feature(aa64_dit, cpu)) { 8427 define_one_arm_cp_reg(cpu, &dit_reginfo); 8428 } 8429 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8430 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8431 } 8432 8433 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8434 define_arm_cp_regs(cpu, vhe_reginfo); 8435 } 8436 8437 if (cpu_isar_feature(aa64_sve, cpu)) { 8438 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8439 if (arm_feature(env, ARM_FEATURE_EL2)) { 8440 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8441 } else { 8442 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8443 } 8444 if (arm_feature(env, ARM_FEATURE_EL3)) { 8445 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8446 } 8447 } 8448 8449 #ifdef TARGET_AARCH64 8450 if (cpu_isar_feature(aa64_pauth, cpu)) { 8451 define_arm_cp_regs(cpu, pauth_reginfo); 8452 } 8453 if (cpu_isar_feature(aa64_rndr, cpu)) { 8454 define_arm_cp_regs(cpu, rndr_reginfo); 8455 } 8456 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8457 define_arm_cp_regs(cpu, tlbirange_reginfo); 8458 } 8459 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8460 define_arm_cp_regs(cpu, tlbios_reginfo); 8461 } 8462 #ifndef CONFIG_USER_ONLY 8463 /* Data Cache clean instructions up to PoP */ 8464 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8465 define_one_arm_cp_reg(cpu, dcpop_reg); 8466 8467 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8468 define_one_arm_cp_reg(cpu, dcpodp_reg); 8469 } 8470 } 8471 #endif /*CONFIG_USER_ONLY*/ 8472 8473 /* 8474 * If full MTE is enabled, add all of the system registers. 8475 * If only "instructions available at EL0" are enabled, 8476 * then define only a RAZ/WI version of PSTATE.TCO. 8477 */ 8478 if (cpu_isar_feature(aa64_mte, cpu)) { 8479 define_arm_cp_regs(cpu, mte_reginfo); 8480 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8481 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8482 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8483 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8484 } 8485 #endif 8486 8487 if (cpu_isar_feature(any_predinv, cpu)) { 8488 define_arm_cp_regs(cpu, predinv_reginfo); 8489 } 8490 8491 if (cpu_isar_feature(any_ccidx, cpu)) { 8492 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8493 } 8494 8495 #ifndef CONFIG_USER_ONLY 8496 /* 8497 * Register redirections and aliases must be done last, 8498 * after the registers from the other extensions have been defined. 8499 */ 8500 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8501 define_arm_vh_e2h_redirects_aliases(cpu); 8502 } 8503 #endif 8504 } 8505 8506 /* Sort alphabetically by type name, except for "any". */ 8507 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8508 { 8509 ObjectClass *class_a = (ObjectClass *)a; 8510 ObjectClass *class_b = (ObjectClass *)b; 8511 const char *name_a, *name_b; 8512 8513 name_a = object_class_get_name(class_a); 8514 name_b = object_class_get_name(class_b); 8515 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8516 return 1; 8517 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8518 return -1; 8519 } else { 8520 return strcmp(name_a, name_b); 8521 } 8522 } 8523 8524 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8525 { 8526 ObjectClass *oc = data; 8527 const char *typename; 8528 char *name; 8529 8530 typename = object_class_get_name(oc); 8531 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8532 qemu_printf(" %s\n", name); 8533 g_free(name); 8534 } 8535 8536 void arm_cpu_list(void) 8537 { 8538 GSList *list; 8539 8540 list = object_class_get_list(TYPE_ARM_CPU, false); 8541 list = g_slist_sort(list, arm_cpu_list_compare); 8542 qemu_printf("Available CPUs:\n"); 8543 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8544 g_slist_free(list); 8545 } 8546 8547 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8548 { 8549 ObjectClass *oc = data; 8550 CpuDefinitionInfoList **cpu_list = user_data; 8551 CpuDefinitionInfo *info; 8552 const char *typename; 8553 8554 typename = object_class_get_name(oc); 8555 info = g_malloc0(sizeof(*info)); 8556 info->name = g_strndup(typename, 8557 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8558 info->q_typename = g_strdup(typename); 8559 8560 QAPI_LIST_PREPEND(*cpu_list, info); 8561 } 8562 8563 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8564 { 8565 CpuDefinitionInfoList *cpu_list = NULL; 8566 GSList *list; 8567 8568 list = object_class_get_list(TYPE_ARM_CPU, false); 8569 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8570 g_slist_free(list); 8571 8572 return cpu_list; 8573 } 8574 8575 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8576 void *opaque, int state, int secstate, 8577 int crm, int opc1, int opc2, 8578 const char *name) 8579 { 8580 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8581 * add a single reginfo struct to the hash table. 8582 */ 8583 uint32_t *key = g_new(uint32_t, 1); 8584 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8585 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8586 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8587 8588 r2->name = g_strdup(name); 8589 /* Reset the secure state to the specific incoming state. This is 8590 * necessary as the register may have been defined with both states. 8591 */ 8592 r2->secure = secstate; 8593 8594 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8595 /* Register is banked (using both entries in array). 8596 * Overwriting fieldoffset as the array is only used to define 8597 * banked registers but later only fieldoffset is used. 8598 */ 8599 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8600 } 8601 8602 if (state == ARM_CP_STATE_AA32) { 8603 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8604 /* If the register is banked then we don't need to migrate or 8605 * reset the 32-bit instance in certain cases: 8606 * 8607 * 1) If the register has both 32-bit and 64-bit instances then we 8608 * can count on the 64-bit instance taking care of the 8609 * non-secure bank. 8610 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8611 * taking care of the secure bank. This requires that separate 8612 * 32 and 64-bit definitions are provided. 8613 */ 8614 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8615 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8616 r2->type |= ARM_CP_ALIAS; 8617 } 8618 } else if ((secstate != r->secure) && !ns) { 8619 /* The register is not banked so we only want to allow migration of 8620 * the non-secure instance. 8621 */ 8622 r2->type |= ARM_CP_ALIAS; 8623 } 8624 8625 if (r->state == ARM_CP_STATE_BOTH) { 8626 /* We assume it is a cp15 register if the .cp field is left unset. 8627 */ 8628 if (r2->cp == 0) { 8629 r2->cp = 15; 8630 } 8631 8632 #if HOST_BIG_ENDIAN 8633 if (r2->fieldoffset) { 8634 r2->fieldoffset += sizeof(uint32_t); 8635 } 8636 #endif 8637 } 8638 } 8639 if (state == ARM_CP_STATE_AA64) { 8640 /* To allow abbreviation of ARMCPRegInfo 8641 * definitions, we treat cp == 0 as equivalent to 8642 * the value for "standard guest-visible sysreg". 8643 * STATE_BOTH definitions are also always "standard 8644 * sysreg" in their AArch64 view (the .cp value may 8645 * be non-zero for the benefit of the AArch32 view). 8646 */ 8647 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8648 r2->cp = CP_REG_ARM64_SYSREG_CP; 8649 } 8650 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8651 r2->opc0, opc1, opc2); 8652 } else { 8653 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8654 } 8655 if (opaque) { 8656 r2->opaque = opaque; 8657 } 8658 /* reginfo passed to helpers is correct for the actual access, 8659 * and is never ARM_CP_STATE_BOTH: 8660 */ 8661 r2->state = state; 8662 /* Make sure reginfo passed to helpers for wildcarded regs 8663 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8664 */ 8665 r2->crm = crm; 8666 r2->opc1 = opc1; 8667 r2->opc2 = opc2; 8668 /* By convention, for wildcarded registers only the first 8669 * entry is used for migration; the others are marked as 8670 * ALIAS so we don't try to transfer the register 8671 * multiple times. Special registers (ie NOP/WFI) are 8672 * never migratable and not even raw-accessible. 8673 */ 8674 if ((r->type & ARM_CP_SPECIAL)) { 8675 r2->type |= ARM_CP_NO_RAW; 8676 } 8677 if (((r->crm == CP_ANY) && crm != 0) || 8678 ((r->opc1 == CP_ANY) && opc1 != 0) || 8679 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8680 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8681 } 8682 8683 /* Check that raw accesses are either forbidden or handled. Note that 8684 * we can't assert this earlier because the setup of fieldoffset for 8685 * banked registers has to be done first. 8686 */ 8687 if (!(r2->type & ARM_CP_NO_RAW)) { 8688 assert(!raw_accessors_invalid(r2)); 8689 } 8690 8691 /* Overriding of an existing definition must be explicitly 8692 * requested. 8693 */ 8694 if (!(r->type & ARM_CP_OVERRIDE)) { 8695 ARMCPRegInfo *oldreg; 8696 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8697 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8698 fprintf(stderr, "Register redefined: cp=%d %d bit " 8699 "crn=%d crm=%d opc1=%d opc2=%d, " 8700 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8701 r2->crn, r2->crm, r2->opc1, r2->opc2, 8702 oldreg->name, r2->name); 8703 g_assert_not_reached(); 8704 } 8705 } 8706 g_hash_table_insert(cpu->cp_regs, key, r2); 8707 } 8708 8709 8710 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8711 const ARMCPRegInfo *r, void *opaque) 8712 { 8713 /* Define implementations of coprocessor registers. 8714 * We store these in a hashtable because typically 8715 * there are less than 150 registers in a space which 8716 * is 16*16*16*8*8 = 262144 in size. 8717 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8718 * If a register is defined twice then the second definition is 8719 * used, so this can be used to define some generic registers and 8720 * then override them with implementation specific variations. 8721 * At least one of the original and the second definition should 8722 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8723 * against accidental use. 8724 * 8725 * The state field defines whether the register is to be 8726 * visible in the AArch32 or AArch64 execution state. If the 8727 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8728 * reginfo structure for the AArch32 view, which sees the lower 8729 * 32 bits of the 64 bit register. 8730 * 8731 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8732 * be wildcarded. AArch64 registers are always considered to be 64 8733 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8734 * the register, if any. 8735 */ 8736 int crm, opc1, opc2, state; 8737 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8738 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8739 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8740 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8741 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8742 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8743 /* 64 bit registers have only CRm and Opc1 fields */ 8744 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8745 /* op0 only exists in the AArch64 encodings */ 8746 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8747 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8748 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8749 /* 8750 * This API is only for Arm's system coprocessors (14 and 15) or 8751 * (M-profile or v7A-and-earlier only) for implementation defined 8752 * coprocessors in the range 0..7. Our decode assumes this, since 8753 * 8..13 can be used for other insns including VFP and Neon. See 8754 * valid_cp() in translate.c. Assert here that we haven't tried 8755 * to use an invalid coprocessor number. 8756 */ 8757 switch (r->state) { 8758 case ARM_CP_STATE_BOTH: 8759 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8760 if (r->cp == 0) { 8761 break; 8762 } 8763 /* fall through */ 8764 case ARM_CP_STATE_AA32: 8765 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8766 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8767 assert(r->cp >= 14 && r->cp <= 15); 8768 } else { 8769 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8770 } 8771 break; 8772 case ARM_CP_STATE_AA64: 8773 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8774 break; 8775 default: 8776 g_assert_not_reached(); 8777 } 8778 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8779 * encodes a minimum access level for the register. We roll this 8780 * runtime check into our general permission check code, so check 8781 * here that the reginfo's specified permissions are strict enough 8782 * to encompass the generic architectural permission check. 8783 */ 8784 if (r->state != ARM_CP_STATE_AA32) { 8785 int mask = 0; 8786 switch (r->opc1) { 8787 case 0: 8788 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8789 mask = PL0U_R | PL1_RW; 8790 break; 8791 case 1: case 2: 8792 /* min_EL EL1 */ 8793 mask = PL1_RW; 8794 break; 8795 case 3: 8796 /* min_EL EL0 */ 8797 mask = PL0_RW; 8798 break; 8799 case 4: 8800 case 5: 8801 /* min_EL EL2 */ 8802 mask = PL2_RW; 8803 break; 8804 case 6: 8805 /* min_EL EL3 */ 8806 mask = PL3_RW; 8807 break; 8808 case 7: 8809 /* min_EL EL1, secure mode only (we don't check the latter) */ 8810 mask = PL1_RW; 8811 break; 8812 default: 8813 /* broken reginfo with out-of-range opc1 */ 8814 assert(false); 8815 break; 8816 } 8817 /* assert our permissions are not too lax (stricter is fine) */ 8818 assert((r->access & ~mask) == 0); 8819 } 8820 8821 /* Check that the register definition has enough info to handle 8822 * reads and writes if they are permitted. 8823 */ 8824 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8825 if (r->access & PL3_R) { 8826 assert((r->fieldoffset || 8827 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8828 r->readfn); 8829 } 8830 if (r->access & PL3_W) { 8831 assert((r->fieldoffset || 8832 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8833 r->writefn); 8834 } 8835 } 8836 /* Bad type field probably means missing sentinel at end of reg list */ 8837 assert(cptype_valid(r->type)); 8838 for (crm = crmmin; crm <= crmmax; crm++) { 8839 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8840 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8841 for (state = ARM_CP_STATE_AA32; 8842 state <= ARM_CP_STATE_AA64; state++) { 8843 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8844 continue; 8845 } 8846 if (state == ARM_CP_STATE_AA32) { 8847 /* Under AArch32 CP registers can be common 8848 * (same for secure and non-secure world) or banked. 8849 */ 8850 char *name; 8851 8852 switch (r->secure) { 8853 case ARM_CP_SECSTATE_S: 8854 case ARM_CP_SECSTATE_NS: 8855 add_cpreg_to_hashtable(cpu, r, opaque, state, 8856 r->secure, crm, opc1, opc2, 8857 r->name); 8858 break; 8859 default: 8860 name = g_strdup_printf("%s_S", r->name); 8861 add_cpreg_to_hashtable(cpu, r, opaque, state, 8862 ARM_CP_SECSTATE_S, 8863 crm, opc1, opc2, name); 8864 g_free(name); 8865 add_cpreg_to_hashtable(cpu, r, opaque, state, 8866 ARM_CP_SECSTATE_NS, 8867 crm, opc1, opc2, r->name); 8868 break; 8869 } 8870 } else { 8871 /* AArch64 registers get mapped to non-secure instance 8872 * of AArch32 */ 8873 add_cpreg_to_hashtable(cpu, r, opaque, state, 8874 ARM_CP_SECSTATE_NS, 8875 crm, opc1, opc2, r->name); 8876 } 8877 } 8878 } 8879 } 8880 } 8881 } 8882 8883 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8884 const ARMCPRegInfo *regs, void *opaque) 8885 { 8886 /* Define a whole list of registers */ 8887 const ARMCPRegInfo *r; 8888 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8889 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8890 } 8891 } 8892 8893 /* 8894 * Modify ARMCPRegInfo for access from userspace. 8895 * 8896 * This is a data driven modification directed by 8897 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8898 * user-space cannot alter any values and dynamic values pertaining to 8899 * execution state are hidden from user space view anyway. 8900 */ 8901 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8902 { 8903 const ARMCPRegUserSpaceInfo *m; 8904 ARMCPRegInfo *r; 8905 8906 for (m = mods; m->name; m++) { 8907 GPatternSpec *pat = NULL; 8908 if (m->is_glob) { 8909 pat = g_pattern_spec_new(m->name); 8910 } 8911 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8912 if (pat && g_pattern_match_string(pat, r->name)) { 8913 r->type = ARM_CP_CONST; 8914 r->access = PL0U_R; 8915 r->resetvalue = 0; 8916 /* continue */ 8917 } else if (strcmp(r->name, m->name) == 0) { 8918 r->type = ARM_CP_CONST; 8919 r->access = PL0U_R; 8920 r->resetvalue &= m->exported_bits; 8921 r->resetvalue |= m->fixed_bits; 8922 break; 8923 } 8924 } 8925 if (pat) { 8926 g_pattern_spec_free(pat); 8927 } 8928 } 8929 } 8930 8931 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8932 { 8933 return g_hash_table_lookup(cpregs, &encoded_cp); 8934 } 8935 8936 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8937 uint64_t value) 8938 { 8939 /* Helper coprocessor write function for write-ignore registers */ 8940 } 8941 8942 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8943 { 8944 /* Helper coprocessor write function for read-as-zero registers */ 8945 return 0; 8946 } 8947 8948 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8949 { 8950 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8951 } 8952 8953 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8954 { 8955 /* Return true if it is not valid for us to switch to 8956 * this CPU mode (ie all the UNPREDICTABLE cases in 8957 * the ARM ARM CPSRWriteByInstr pseudocode). 8958 */ 8959 8960 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8961 if (write_type == CPSRWriteByInstr && 8962 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8963 mode == ARM_CPU_MODE_HYP)) { 8964 return 1; 8965 } 8966 8967 switch (mode) { 8968 case ARM_CPU_MODE_USR: 8969 return 0; 8970 case ARM_CPU_MODE_SYS: 8971 case ARM_CPU_MODE_SVC: 8972 case ARM_CPU_MODE_ABT: 8973 case ARM_CPU_MODE_UND: 8974 case ARM_CPU_MODE_IRQ: 8975 case ARM_CPU_MODE_FIQ: 8976 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8977 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8978 */ 8979 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8980 * and CPS are treated as illegal mode changes. 8981 */ 8982 if (write_type == CPSRWriteByInstr && 8983 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8984 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8985 return 1; 8986 } 8987 return 0; 8988 case ARM_CPU_MODE_HYP: 8989 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 8990 case ARM_CPU_MODE_MON: 8991 return arm_current_el(env) < 3; 8992 default: 8993 return 1; 8994 } 8995 } 8996 8997 uint32_t cpsr_read(CPUARMState *env) 8998 { 8999 int ZF; 9000 ZF = (env->ZF == 0); 9001 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9002 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9003 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9004 | ((env->condexec_bits & 0xfc) << 8) 9005 | (env->GE << 16) | (env->daif & CPSR_AIF); 9006 } 9007 9008 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9009 CPSRWriteType write_type) 9010 { 9011 uint32_t changed_daif; 9012 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9013 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9014 9015 if (mask & CPSR_NZCV) { 9016 env->ZF = (~val) & CPSR_Z; 9017 env->NF = val; 9018 env->CF = (val >> 29) & 1; 9019 env->VF = (val << 3) & 0x80000000; 9020 } 9021 if (mask & CPSR_Q) 9022 env->QF = ((val & CPSR_Q) != 0); 9023 if (mask & CPSR_T) 9024 env->thumb = ((val & CPSR_T) != 0); 9025 if (mask & CPSR_IT_0_1) { 9026 env->condexec_bits &= ~3; 9027 env->condexec_bits |= (val >> 25) & 3; 9028 } 9029 if (mask & CPSR_IT_2_7) { 9030 env->condexec_bits &= 3; 9031 env->condexec_bits |= (val >> 8) & 0xfc; 9032 } 9033 if (mask & CPSR_GE) { 9034 env->GE = (val >> 16) & 0xf; 9035 } 9036 9037 /* In a V7 implementation that includes the security extensions but does 9038 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9039 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9040 * bits respectively. 9041 * 9042 * In a V8 implementation, it is permitted for privileged software to 9043 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9044 */ 9045 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9046 arm_feature(env, ARM_FEATURE_EL3) && 9047 !arm_feature(env, ARM_FEATURE_EL2) && 9048 !arm_is_secure(env)) { 9049 9050 changed_daif = (env->daif ^ val) & mask; 9051 9052 if (changed_daif & CPSR_A) { 9053 /* Check to see if we are allowed to change the masking of async 9054 * abort exceptions from a non-secure state. 9055 */ 9056 if (!(env->cp15.scr_el3 & SCR_AW)) { 9057 qemu_log_mask(LOG_GUEST_ERROR, 9058 "Ignoring attempt to switch CPSR_A flag from " 9059 "non-secure world with SCR.AW bit clear\n"); 9060 mask &= ~CPSR_A; 9061 } 9062 } 9063 9064 if (changed_daif & CPSR_F) { 9065 /* Check to see if we are allowed to change the masking of FIQ 9066 * exceptions from a non-secure state. 9067 */ 9068 if (!(env->cp15.scr_el3 & SCR_FW)) { 9069 qemu_log_mask(LOG_GUEST_ERROR, 9070 "Ignoring attempt to switch CPSR_F flag from " 9071 "non-secure world with SCR.FW bit clear\n"); 9072 mask &= ~CPSR_F; 9073 } 9074 9075 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9076 * If this bit is set software is not allowed to mask 9077 * FIQs, but is allowed to set CPSR_F to 0. 9078 */ 9079 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9080 (val & CPSR_F)) { 9081 qemu_log_mask(LOG_GUEST_ERROR, 9082 "Ignoring attempt to enable CPSR_F flag " 9083 "(non-maskable FIQ [NMFI] support enabled)\n"); 9084 mask &= ~CPSR_F; 9085 } 9086 } 9087 } 9088 9089 env->daif &= ~(CPSR_AIF & mask); 9090 env->daif |= val & CPSR_AIF & mask; 9091 9092 if (write_type != CPSRWriteRaw && 9093 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9094 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9095 /* Note that we can only get here in USR mode if this is a 9096 * gdb stub write; for this case we follow the architectural 9097 * behaviour for guest writes in USR mode of ignoring an attempt 9098 * to switch mode. (Those are caught by translate.c for writes 9099 * triggered by guest instructions.) 9100 */ 9101 mask &= ~CPSR_M; 9102 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9103 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9104 * v7, and has defined behaviour in v8: 9105 * + leave CPSR.M untouched 9106 * + allow changes to the other CPSR fields 9107 * + set PSTATE.IL 9108 * For user changes via the GDB stub, we don't set PSTATE.IL, 9109 * as this would be unnecessarily harsh for a user error. 9110 */ 9111 mask &= ~CPSR_M; 9112 if (write_type != CPSRWriteByGDBStub && 9113 arm_feature(env, ARM_FEATURE_V8)) { 9114 mask |= CPSR_IL; 9115 val |= CPSR_IL; 9116 } 9117 qemu_log_mask(LOG_GUEST_ERROR, 9118 "Illegal AArch32 mode switch attempt from %s to %s\n", 9119 aarch32_mode_name(env->uncached_cpsr), 9120 aarch32_mode_name(val)); 9121 } else { 9122 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9123 write_type == CPSRWriteExceptionReturn ? 9124 "Exception return from AArch32" : 9125 "AArch32 mode switch from", 9126 aarch32_mode_name(env->uncached_cpsr), 9127 aarch32_mode_name(val), env->regs[15]); 9128 switch_mode(env, val & CPSR_M); 9129 } 9130 } 9131 mask &= ~CACHED_CPSR_BITS; 9132 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9133 if (rebuild_hflags) { 9134 arm_rebuild_hflags(env); 9135 } 9136 } 9137 9138 /* Sign/zero extend */ 9139 uint32_t HELPER(sxtb16)(uint32_t x) 9140 { 9141 uint32_t res; 9142 res = (uint16_t)(int8_t)x; 9143 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9144 return res; 9145 } 9146 9147 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9148 { 9149 /* 9150 * Take a division-by-zero exception if necessary; otherwise return 9151 * to get the usual non-trapping division behaviour (result of 0) 9152 */ 9153 if (arm_feature(env, ARM_FEATURE_M) 9154 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9155 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9156 } 9157 } 9158 9159 uint32_t HELPER(uxtb16)(uint32_t x) 9160 { 9161 uint32_t res; 9162 res = (uint16_t)(uint8_t)x; 9163 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9164 return res; 9165 } 9166 9167 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9168 { 9169 if (den == 0) { 9170 handle_possible_div0_trap(env, GETPC()); 9171 return 0; 9172 } 9173 if (num == INT_MIN && den == -1) { 9174 return INT_MIN; 9175 } 9176 return num / den; 9177 } 9178 9179 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9180 { 9181 if (den == 0) { 9182 handle_possible_div0_trap(env, GETPC()); 9183 return 0; 9184 } 9185 return num / den; 9186 } 9187 9188 uint32_t HELPER(rbit)(uint32_t x) 9189 { 9190 return revbit32(x); 9191 } 9192 9193 #ifdef CONFIG_USER_ONLY 9194 9195 static void switch_mode(CPUARMState *env, int mode) 9196 { 9197 ARMCPU *cpu = env_archcpu(env); 9198 9199 if (mode != ARM_CPU_MODE_USR) { 9200 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9201 } 9202 } 9203 9204 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9205 uint32_t cur_el, bool secure) 9206 { 9207 return 1; 9208 } 9209 9210 void aarch64_sync_64_to_32(CPUARMState *env) 9211 { 9212 g_assert_not_reached(); 9213 } 9214 9215 #else 9216 9217 static void switch_mode(CPUARMState *env, int mode) 9218 { 9219 int old_mode; 9220 int i; 9221 9222 old_mode = env->uncached_cpsr & CPSR_M; 9223 if (mode == old_mode) 9224 return; 9225 9226 if (old_mode == ARM_CPU_MODE_FIQ) { 9227 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9228 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9229 } else if (mode == ARM_CPU_MODE_FIQ) { 9230 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9231 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9232 } 9233 9234 i = bank_number(old_mode); 9235 env->banked_r13[i] = env->regs[13]; 9236 env->banked_spsr[i] = env->spsr; 9237 9238 i = bank_number(mode); 9239 env->regs[13] = env->banked_r13[i]; 9240 env->spsr = env->banked_spsr[i]; 9241 9242 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9243 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9244 } 9245 9246 /* Physical Interrupt Target EL Lookup Table 9247 * 9248 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9249 * 9250 * The below multi-dimensional table is used for looking up the target 9251 * exception level given numerous condition criteria. Specifically, the 9252 * target EL is based on SCR and HCR routing controls as well as the 9253 * currently executing EL and secure state. 9254 * 9255 * Dimensions: 9256 * target_el_table[2][2][2][2][2][4] 9257 * | | | | | +--- Current EL 9258 * | | | | +------ Non-secure(0)/Secure(1) 9259 * | | | +--------- HCR mask override 9260 * | | +------------ SCR exec state control 9261 * | +--------------- SCR mask override 9262 * +------------------ 32-bit(0)/64-bit(1) EL3 9263 * 9264 * The table values are as such: 9265 * 0-3 = EL0-EL3 9266 * -1 = Cannot occur 9267 * 9268 * The ARM ARM target EL table includes entries indicating that an "exception 9269 * is not taken". The two cases where this is applicable are: 9270 * 1) An exception is taken from EL3 but the SCR does not have the exception 9271 * routed to EL3. 9272 * 2) An exception is taken from EL2 but the HCR does not have the exception 9273 * routed to EL2. 9274 * In these two cases, the below table contain a target of EL1. This value is 9275 * returned as it is expected that the consumer of the table data will check 9276 * for "target EL >= current EL" to ensure the exception is not taken. 9277 * 9278 * SCR HCR 9279 * 64 EA AMO From 9280 * BIT IRQ IMO Non-secure Secure 9281 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9282 */ 9283 static const int8_t target_el_table[2][2][2][2][2][4] = { 9284 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9285 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9286 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9287 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9288 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9289 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9290 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9291 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9292 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9293 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9294 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9295 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9296 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9297 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9298 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9299 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9300 }; 9301 9302 /* 9303 * Determine the target EL for physical exceptions 9304 */ 9305 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9306 uint32_t cur_el, bool secure) 9307 { 9308 CPUARMState *env = cs->env_ptr; 9309 bool rw; 9310 bool scr; 9311 bool hcr; 9312 int target_el; 9313 /* Is the highest EL AArch64? */ 9314 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9315 uint64_t hcr_el2; 9316 9317 if (arm_feature(env, ARM_FEATURE_EL3)) { 9318 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9319 } else { 9320 /* Either EL2 is the highest EL (and so the EL2 register width 9321 * is given by is64); or there is no EL2 or EL3, in which case 9322 * the value of 'rw' does not affect the table lookup anyway. 9323 */ 9324 rw = is64; 9325 } 9326 9327 hcr_el2 = arm_hcr_el2_eff(env); 9328 switch (excp_idx) { 9329 case EXCP_IRQ: 9330 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9331 hcr = hcr_el2 & HCR_IMO; 9332 break; 9333 case EXCP_FIQ: 9334 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9335 hcr = hcr_el2 & HCR_FMO; 9336 break; 9337 default: 9338 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9339 hcr = hcr_el2 & HCR_AMO; 9340 break; 9341 }; 9342 9343 /* 9344 * For these purposes, TGE and AMO/IMO/FMO both force the 9345 * interrupt to EL2. Fold TGE into the bit extracted above. 9346 */ 9347 hcr |= (hcr_el2 & HCR_TGE) != 0; 9348 9349 /* Perform a table-lookup for the target EL given the current state */ 9350 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9351 9352 assert(target_el > 0); 9353 9354 return target_el; 9355 } 9356 9357 void arm_log_exception(CPUState *cs) 9358 { 9359 int idx = cs->exception_index; 9360 9361 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9362 const char *exc = NULL; 9363 static const char * const excnames[] = { 9364 [EXCP_UDEF] = "Undefined Instruction", 9365 [EXCP_SWI] = "SVC", 9366 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9367 [EXCP_DATA_ABORT] = "Data Abort", 9368 [EXCP_IRQ] = "IRQ", 9369 [EXCP_FIQ] = "FIQ", 9370 [EXCP_BKPT] = "Breakpoint", 9371 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9372 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9373 [EXCP_HVC] = "Hypervisor Call", 9374 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9375 [EXCP_SMC] = "Secure Monitor Call", 9376 [EXCP_VIRQ] = "Virtual IRQ", 9377 [EXCP_VFIQ] = "Virtual FIQ", 9378 [EXCP_SEMIHOST] = "Semihosting call", 9379 [EXCP_NOCP] = "v7M NOCP UsageFault", 9380 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9381 [EXCP_STKOF] = "v8M STKOF UsageFault", 9382 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9383 [EXCP_LSERR] = "v8M LSERR UsageFault", 9384 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9385 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9386 }; 9387 9388 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9389 exc = excnames[idx]; 9390 } 9391 if (!exc) { 9392 exc = "unknown"; 9393 } 9394 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9395 idx, exc, cs->cpu_index); 9396 } 9397 } 9398 9399 /* 9400 * Function used to synchronize QEMU's AArch64 register set with AArch32 9401 * register set. This is necessary when switching between AArch32 and AArch64 9402 * execution state. 9403 */ 9404 void aarch64_sync_32_to_64(CPUARMState *env) 9405 { 9406 int i; 9407 uint32_t mode = env->uncached_cpsr & CPSR_M; 9408 9409 /* We can blanket copy R[0:7] to X[0:7] */ 9410 for (i = 0; i < 8; i++) { 9411 env->xregs[i] = env->regs[i]; 9412 } 9413 9414 /* 9415 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9416 * Otherwise, they come from the banked user regs. 9417 */ 9418 if (mode == ARM_CPU_MODE_FIQ) { 9419 for (i = 8; i < 13; i++) { 9420 env->xregs[i] = env->usr_regs[i - 8]; 9421 } 9422 } else { 9423 for (i = 8; i < 13; i++) { 9424 env->xregs[i] = env->regs[i]; 9425 } 9426 } 9427 9428 /* 9429 * Registers x13-x23 are the various mode SP and FP registers. Registers 9430 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9431 * from the mode banked register. 9432 */ 9433 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9434 env->xregs[13] = env->regs[13]; 9435 env->xregs[14] = env->regs[14]; 9436 } else { 9437 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9438 /* HYP is an exception in that it is copied from r14 */ 9439 if (mode == ARM_CPU_MODE_HYP) { 9440 env->xregs[14] = env->regs[14]; 9441 } else { 9442 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9443 } 9444 } 9445 9446 if (mode == ARM_CPU_MODE_HYP) { 9447 env->xregs[15] = env->regs[13]; 9448 } else { 9449 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9450 } 9451 9452 if (mode == ARM_CPU_MODE_IRQ) { 9453 env->xregs[16] = env->regs[14]; 9454 env->xregs[17] = env->regs[13]; 9455 } else { 9456 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9457 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9458 } 9459 9460 if (mode == ARM_CPU_MODE_SVC) { 9461 env->xregs[18] = env->regs[14]; 9462 env->xregs[19] = env->regs[13]; 9463 } else { 9464 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9465 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9466 } 9467 9468 if (mode == ARM_CPU_MODE_ABT) { 9469 env->xregs[20] = env->regs[14]; 9470 env->xregs[21] = env->regs[13]; 9471 } else { 9472 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9473 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9474 } 9475 9476 if (mode == ARM_CPU_MODE_UND) { 9477 env->xregs[22] = env->regs[14]; 9478 env->xregs[23] = env->regs[13]; 9479 } else { 9480 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9481 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9482 } 9483 9484 /* 9485 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9486 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9487 * FIQ bank for r8-r14. 9488 */ 9489 if (mode == ARM_CPU_MODE_FIQ) { 9490 for (i = 24; i < 31; i++) { 9491 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9492 } 9493 } else { 9494 for (i = 24; i < 29; i++) { 9495 env->xregs[i] = env->fiq_regs[i - 24]; 9496 } 9497 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9498 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9499 } 9500 9501 env->pc = env->regs[15]; 9502 } 9503 9504 /* 9505 * Function used to synchronize QEMU's AArch32 register set with AArch64 9506 * register set. This is necessary when switching between AArch32 and AArch64 9507 * execution state. 9508 */ 9509 void aarch64_sync_64_to_32(CPUARMState *env) 9510 { 9511 int i; 9512 uint32_t mode = env->uncached_cpsr & CPSR_M; 9513 9514 /* We can blanket copy X[0:7] to R[0:7] */ 9515 for (i = 0; i < 8; i++) { 9516 env->regs[i] = env->xregs[i]; 9517 } 9518 9519 /* 9520 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9521 * Otherwise, we copy x8-x12 into the banked user regs. 9522 */ 9523 if (mode == ARM_CPU_MODE_FIQ) { 9524 for (i = 8; i < 13; i++) { 9525 env->usr_regs[i - 8] = env->xregs[i]; 9526 } 9527 } else { 9528 for (i = 8; i < 13; i++) { 9529 env->regs[i] = env->xregs[i]; 9530 } 9531 } 9532 9533 /* 9534 * Registers r13 & r14 depend on the current mode. 9535 * If we are in a given mode, we copy the corresponding x registers to r13 9536 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9537 * for the mode. 9538 */ 9539 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9540 env->regs[13] = env->xregs[13]; 9541 env->regs[14] = env->xregs[14]; 9542 } else { 9543 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9544 9545 /* 9546 * HYP is an exception in that it does not have its own banked r14 but 9547 * shares the USR r14 9548 */ 9549 if (mode == ARM_CPU_MODE_HYP) { 9550 env->regs[14] = env->xregs[14]; 9551 } else { 9552 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9553 } 9554 } 9555 9556 if (mode == ARM_CPU_MODE_HYP) { 9557 env->regs[13] = env->xregs[15]; 9558 } else { 9559 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9560 } 9561 9562 if (mode == ARM_CPU_MODE_IRQ) { 9563 env->regs[14] = env->xregs[16]; 9564 env->regs[13] = env->xregs[17]; 9565 } else { 9566 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9567 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9568 } 9569 9570 if (mode == ARM_CPU_MODE_SVC) { 9571 env->regs[14] = env->xregs[18]; 9572 env->regs[13] = env->xregs[19]; 9573 } else { 9574 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9575 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9576 } 9577 9578 if (mode == ARM_CPU_MODE_ABT) { 9579 env->regs[14] = env->xregs[20]; 9580 env->regs[13] = env->xregs[21]; 9581 } else { 9582 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9583 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9584 } 9585 9586 if (mode == ARM_CPU_MODE_UND) { 9587 env->regs[14] = env->xregs[22]; 9588 env->regs[13] = env->xregs[23]; 9589 } else { 9590 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9591 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9592 } 9593 9594 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9595 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9596 * FIQ bank for r8-r14. 9597 */ 9598 if (mode == ARM_CPU_MODE_FIQ) { 9599 for (i = 24; i < 31; i++) { 9600 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9601 } 9602 } else { 9603 for (i = 24; i < 29; i++) { 9604 env->fiq_regs[i - 24] = env->xregs[i]; 9605 } 9606 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9607 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9608 } 9609 9610 env->regs[15] = env->pc; 9611 } 9612 9613 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9614 uint32_t mask, uint32_t offset, 9615 uint32_t newpc) 9616 { 9617 int new_el; 9618 9619 /* Change the CPU state so as to actually take the exception. */ 9620 switch_mode(env, new_mode); 9621 9622 /* 9623 * For exceptions taken to AArch32 we must clear the SS bit in both 9624 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9625 */ 9626 env->pstate &= ~PSTATE_SS; 9627 env->spsr = cpsr_read(env); 9628 /* Clear IT bits. */ 9629 env->condexec_bits = 0; 9630 /* Switch to the new mode, and to the correct instruction set. */ 9631 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9632 9633 /* This must be after mode switching. */ 9634 new_el = arm_current_el(env); 9635 9636 /* Set new mode endianness */ 9637 env->uncached_cpsr &= ~CPSR_E; 9638 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9639 env->uncached_cpsr |= CPSR_E; 9640 } 9641 /* J and IL must always be cleared for exception entry */ 9642 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9643 env->daif |= mask; 9644 9645 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9646 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9647 env->uncached_cpsr |= CPSR_SSBS; 9648 } else { 9649 env->uncached_cpsr &= ~CPSR_SSBS; 9650 } 9651 } 9652 9653 if (new_mode == ARM_CPU_MODE_HYP) { 9654 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9655 env->elr_el[2] = env->regs[15]; 9656 } else { 9657 /* CPSR.PAN is normally preserved preserved unless... */ 9658 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9659 switch (new_el) { 9660 case 3: 9661 if (!arm_is_secure_below_el3(env)) { 9662 /* ... the target is EL3, from non-secure state. */ 9663 env->uncached_cpsr &= ~CPSR_PAN; 9664 break; 9665 } 9666 /* ... the target is EL3, from secure state ... */ 9667 /* fall through */ 9668 case 1: 9669 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9670 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9671 env->uncached_cpsr |= CPSR_PAN; 9672 } 9673 break; 9674 } 9675 } 9676 /* 9677 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9678 * and we should just guard the thumb mode on V4 9679 */ 9680 if (arm_feature(env, ARM_FEATURE_V4T)) { 9681 env->thumb = 9682 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9683 } 9684 env->regs[14] = env->regs[15] + offset; 9685 } 9686 env->regs[15] = newpc; 9687 arm_rebuild_hflags(env); 9688 } 9689 9690 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9691 { 9692 /* 9693 * Handle exception entry to Hyp mode; this is sufficiently 9694 * different to entry to other AArch32 modes that we handle it 9695 * separately here. 9696 * 9697 * The vector table entry used is always the 0x14 Hyp mode entry point, 9698 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9699 * The offset applied to the preferred return address is always zero 9700 * (see DDI0487C.a section G1.12.3). 9701 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9702 */ 9703 uint32_t addr, mask; 9704 ARMCPU *cpu = ARM_CPU(cs); 9705 CPUARMState *env = &cpu->env; 9706 9707 switch (cs->exception_index) { 9708 case EXCP_UDEF: 9709 addr = 0x04; 9710 break; 9711 case EXCP_SWI: 9712 addr = 0x08; 9713 break; 9714 case EXCP_BKPT: 9715 /* Fall through to prefetch abort. */ 9716 case EXCP_PREFETCH_ABORT: 9717 env->cp15.ifar_s = env->exception.vaddress; 9718 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9719 (uint32_t)env->exception.vaddress); 9720 addr = 0x0c; 9721 break; 9722 case EXCP_DATA_ABORT: 9723 env->cp15.dfar_s = env->exception.vaddress; 9724 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9725 (uint32_t)env->exception.vaddress); 9726 addr = 0x10; 9727 break; 9728 case EXCP_IRQ: 9729 addr = 0x18; 9730 break; 9731 case EXCP_FIQ: 9732 addr = 0x1c; 9733 break; 9734 case EXCP_HVC: 9735 addr = 0x08; 9736 break; 9737 case EXCP_HYP_TRAP: 9738 addr = 0x14; 9739 break; 9740 default: 9741 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9742 } 9743 9744 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9745 if (!arm_feature(env, ARM_FEATURE_V8)) { 9746 /* 9747 * QEMU syndrome values are v8-style. v7 has the IL bit 9748 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9749 * If this is a v7 CPU, squash the IL bit in those cases. 9750 */ 9751 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9752 (cs->exception_index == EXCP_DATA_ABORT && 9753 !(env->exception.syndrome & ARM_EL_ISV)) || 9754 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9755 env->exception.syndrome &= ~ARM_EL_IL; 9756 } 9757 } 9758 env->cp15.esr_el[2] = env->exception.syndrome; 9759 } 9760 9761 if (arm_current_el(env) != 2 && addr < 0x14) { 9762 addr = 0x14; 9763 } 9764 9765 mask = 0; 9766 if (!(env->cp15.scr_el3 & SCR_EA)) { 9767 mask |= CPSR_A; 9768 } 9769 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9770 mask |= CPSR_I; 9771 } 9772 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9773 mask |= CPSR_F; 9774 } 9775 9776 addr += env->cp15.hvbar; 9777 9778 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9779 } 9780 9781 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9782 { 9783 ARMCPU *cpu = ARM_CPU(cs); 9784 CPUARMState *env = &cpu->env; 9785 uint32_t addr; 9786 uint32_t mask; 9787 int new_mode; 9788 uint32_t offset; 9789 uint32_t moe; 9790 9791 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9792 switch (syn_get_ec(env->exception.syndrome)) { 9793 case EC_BREAKPOINT: 9794 case EC_BREAKPOINT_SAME_EL: 9795 moe = 1; 9796 break; 9797 case EC_WATCHPOINT: 9798 case EC_WATCHPOINT_SAME_EL: 9799 moe = 10; 9800 break; 9801 case EC_AA32_BKPT: 9802 moe = 3; 9803 break; 9804 case EC_VECTORCATCH: 9805 moe = 5; 9806 break; 9807 default: 9808 moe = 0; 9809 break; 9810 } 9811 9812 if (moe) { 9813 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9814 } 9815 9816 if (env->exception.target_el == 2) { 9817 arm_cpu_do_interrupt_aarch32_hyp(cs); 9818 return; 9819 } 9820 9821 switch (cs->exception_index) { 9822 case EXCP_UDEF: 9823 new_mode = ARM_CPU_MODE_UND; 9824 addr = 0x04; 9825 mask = CPSR_I; 9826 if (env->thumb) 9827 offset = 2; 9828 else 9829 offset = 4; 9830 break; 9831 case EXCP_SWI: 9832 new_mode = ARM_CPU_MODE_SVC; 9833 addr = 0x08; 9834 mask = CPSR_I; 9835 /* The PC already points to the next instruction. */ 9836 offset = 0; 9837 break; 9838 case EXCP_BKPT: 9839 /* Fall through to prefetch abort. */ 9840 case EXCP_PREFETCH_ABORT: 9841 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9842 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9843 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9844 env->exception.fsr, (uint32_t)env->exception.vaddress); 9845 new_mode = ARM_CPU_MODE_ABT; 9846 addr = 0x0c; 9847 mask = CPSR_A | CPSR_I; 9848 offset = 4; 9849 break; 9850 case EXCP_DATA_ABORT: 9851 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9852 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9853 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9854 env->exception.fsr, 9855 (uint32_t)env->exception.vaddress); 9856 new_mode = ARM_CPU_MODE_ABT; 9857 addr = 0x10; 9858 mask = CPSR_A | CPSR_I; 9859 offset = 8; 9860 break; 9861 case EXCP_IRQ: 9862 new_mode = ARM_CPU_MODE_IRQ; 9863 addr = 0x18; 9864 /* Disable IRQ and imprecise data aborts. */ 9865 mask = CPSR_A | CPSR_I; 9866 offset = 4; 9867 if (env->cp15.scr_el3 & SCR_IRQ) { 9868 /* IRQ routed to monitor mode */ 9869 new_mode = ARM_CPU_MODE_MON; 9870 mask |= CPSR_F; 9871 } 9872 break; 9873 case EXCP_FIQ: 9874 new_mode = ARM_CPU_MODE_FIQ; 9875 addr = 0x1c; 9876 /* Disable FIQ, IRQ and imprecise data aborts. */ 9877 mask = CPSR_A | CPSR_I | CPSR_F; 9878 if (env->cp15.scr_el3 & SCR_FIQ) { 9879 /* FIQ routed to monitor mode */ 9880 new_mode = ARM_CPU_MODE_MON; 9881 } 9882 offset = 4; 9883 break; 9884 case EXCP_VIRQ: 9885 new_mode = ARM_CPU_MODE_IRQ; 9886 addr = 0x18; 9887 /* Disable IRQ and imprecise data aborts. */ 9888 mask = CPSR_A | CPSR_I; 9889 offset = 4; 9890 break; 9891 case EXCP_VFIQ: 9892 new_mode = ARM_CPU_MODE_FIQ; 9893 addr = 0x1c; 9894 /* Disable FIQ, IRQ and imprecise data aborts. */ 9895 mask = CPSR_A | CPSR_I | CPSR_F; 9896 offset = 4; 9897 break; 9898 case EXCP_SMC: 9899 new_mode = ARM_CPU_MODE_MON; 9900 addr = 0x08; 9901 mask = CPSR_A | CPSR_I | CPSR_F; 9902 offset = 0; 9903 break; 9904 default: 9905 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9906 return; /* Never happens. Keep compiler happy. */ 9907 } 9908 9909 if (new_mode == ARM_CPU_MODE_MON) { 9910 addr += env->cp15.mvbar; 9911 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9912 /* High vectors. When enabled, base address cannot be remapped. */ 9913 addr += 0xffff0000; 9914 } else { 9915 /* ARM v7 architectures provide a vector base address register to remap 9916 * the interrupt vector table. 9917 * This register is only followed in non-monitor mode, and is banked. 9918 * Note: only bits 31:5 are valid. 9919 */ 9920 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9921 } 9922 9923 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9924 env->cp15.scr_el3 &= ~SCR_NS; 9925 } 9926 9927 take_aarch32_exception(env, new_mode, mask, offset, addr); 9928 } 9929 9930 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9931 { 9932 /* 9933 * Return the register number of the AArch64 view of the AArch32 9934 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9935 * be that of the AArch32 mode the exception came from. 9936 */ 9937 int mode = env->uncached_cpsr & CPSR_M; 9938 9939 switch (aarch32_reg) { 9940 case 0 ... 7: 9941 return aarch32_reg; 9942 case 8 ... 12: 9943 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9944 case 13: 9945 switch (mode) { 9946 case ARM_CPU_MODE_USR: 9947 case ARM_CPU_MODE_SYS: 9948 return 13; 9949 case ARM_CPU_MODE_HYP: 9950 return 15; 9951 case ARM_CPU_MODE_IRQ: 9952 return 17; 9953 case ARM_CPU_MODE_SVC: 9954 return 19; 9955 case ARM_CPU_MODE_ABT: 9956 return 21; 9957 case ARM_CPU_MODE_UND: 9958 return 23; 9959 case ARM_CPU_MODE_FIQ: 9960 return 29; 9961 default: 9962 g_assert_not_reached(); 9963 } 9964 case 14: 9965 switch (mode) { 9966 case ARM_CPU_MODE_USR: 9967 case ARM_CPU_MODE_SYS: 9968 case ARM_CPU_MODE_HYP: 9969 return 14; 9970 case ARM_CPU_MODE_IRQ: 9971 return 16; 9972 case ARM_CPU_MODE_SVC: 9973 return 18; 9974 case ARM_CPU_MODE_ABT: 9975 return 20; 9976 case ARM_CPU_MODE_UND: 9977 return 22; 9978 case ARM_CPU_MODE_FIQ: 9979 return 30; 9980 default: 9981 g_assert_not_reached(); 9982 } 9983 case 15: 9984 return 31; 9985 default: 9986 g_assert_not_reached(); 9987 } 9988 } 9989 9990 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 9991 { 9992 uint32_t ret = cpsr_read(env); 9993 9994 /* Move DIT to the correct location for SPSR_ELx */ 9995 if (ret & CPSR_DIT) { 9996 ret &= ~CPSR_DIT; 9997 ret |= PSTATE_DIT; 9998 } 9999 /* Merge PSTATE.SS into SPSR_ELx */ 10000 ret |= env->pstate & PSTATE_SS; 10001 10002 return ret; 10003 } 10004 10005 /* Handle exception entry to a target EL which is using AArch64 */ 10006 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10007 { 10008 ARMCPU *cpu = ARM_CPU(cs); 10009 CPUARMState *env = &cpu->env; 10010 unsigned int new_el = env->exception.target_el; 10011 target_ulong addr = env->cp15.vbar_el[new_el]; 10012 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10013 unsigned int old_mode; 10014 unsigned int cur_el = arm_current_el(env); 10015 int rt; 10016 10017 /* 10018 * Note that new_el can never be 0. If cur_el is 0, then 10019 * el0_a64 is is_a64(), else el0_a64 is ignored. 10020 */ 10021 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10022 10023 if (cur_el < new_el) { 10024 /* Entry vector offset depends on whether the implemented EL 10025 * immediately lower than the target level is using AArch32 or AArch64 10026 */ 10027 bool is_aa64; 10028 uint64_t hcr; 10029 10030 switch (new_el) { 10031 case 3: 10032 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10033 break; 10034 case 2: 10035 hcr = arm_hcr_el2_eff(env); 10036 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10037 is_aa64 = (hcr & HCR_RW) != 0; 10038 break; 10039 } 10040 /* fall through */ 10041 case 1: 10042 is_aa64 = is_a64(env); 10043 break; 10044 default: 10045 g_assert_not_reached(); 10046 } 10047 10048 if (is_aa64) { 10049 addr += 0x400; 10050 } else { 10051 addr += 0x600; 10052 } 10053 } else if (pstate_read(env) & PSTATE_SP) { 10054 addr += 0x200; 10055 } 10056 10057 switch (cs->exception_index) { 10058 case EXCP_PREFETCH_ABORT: 10059 case EXCP_DATA_ABORT: 10060 env->cp15.far_el[new_el] = env->exception.vaddress; 10061 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10062 env->cp15.far_el[new_el]); 10063 /* fall through */ 10064 case EXCP_BKPT: 10065 case EXCP_UDEF: 10066 case EXCP_SWI: 10067 case EXCP_HVC: 10068 case EXCP_HYP_TRAP: 10069 case EXCP_SMC: 10070 switch (syn_get_ec(env->exception.syndrome)) { 10071 case EC_ADVSIMDFPACCESSTRAP: 10072 /* 10073 * QEMU internal FP/SIMD syndromes from AArch32 include the 10074 * TA and coproc fields which are only exposed if the exception 10075 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10076 * AArch64 format syndrome. 10077 */ 10078 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10079 break; 10080 case EC_CP14RTTRAP: 10081 case EC_CP15RTTRAP: 10082 case EC_CP14DTTRAP: 10083 /* 10084 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10085 * the raw register field from the insn; when taking this to 10086 * AArch64 we must convert it to the AArch64 view of the register 10087 * number. Notice that we read a 4-bit AArch32 register number and 10088 * write back a 5-bit AArch64 one. 10089 */ 10090 rt = extract32(env->exception.syndrome, 5, 4); 10091 rt = aarch64_regnum(env, rt); 10092 env->exception.syndrome = deposit32(env->exception.syndrome, 10093 5, 5, rt); 10094 break; 10095 case EC_CP15RRTTRAP: 10096 case EC_CP14RRTTRAP: 10097 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10098 rt = extract32(env->exception.syndrome, 5, 4); 10099 rt = aarch64_regnum(env, rt); 10100 env->exception.syndrome = deposit32(env->exception.syndrome, 10101 5, 5, rt); 10102 rt = extract32(env->exception.syndrome, 10, 4); 10103 rt = aarch64_regnum(env, rt); 10104 env->exception.syndrome = deposit32(env->exception.syndrome, 10105 10, 5, rt); 10106 break; 10107 } 10108 env->cp15.esr_el[new_el] = env->exception.syndrome; 10109 break; 10110 case EXCP_IRQ: 10111 case EXCP_VIRQ: 10112 addr += 0x80; 10113 break; 10114 case EXCP_FIQ: 10115 case EXCP_VFIQ: 10116 addr += 0x100; 10117 break; 10118 default: 10119 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10120 } 10121 10122 if (is_a64(env)) { 10123 old_mode = pstate_read(env); 10124 aarch64_save_sp(env, arm_current_el(env)); 10125 env->elr_el[new_el] = env->pc; 10126 } else { 10127 old_mode = cpsr_read_for_spsr_elx(env); 10128 env->elr_el[new_el] = env->regs[15]; 10129 10130 aarch64_sync_32_to_64(env); 10131 10132 env->condexec_bits = 0; 10133 } 10134 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10135 10136 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10137 env->elr_el[new_el]); 10138 10139 if (cpu_isar_feature(aa64_pan, cpu)) { 10140 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10141 new_mode |= old_mode & PSTATE_PAN; 10142 switch (new_el) { 10143 case 2: 10144 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10145 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10146 != (HCR_E2H | HCR_TGE)) { 10147 break; 10148 } 10149 /* fall through */ 10150 case 1: 10151 /* ... the target is EL1 ... */ 10152 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10153 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10154 new_mode |= PSTATE_PAN; 10155 } 10156 break; 10157 } 10158 } 10159 if (cpu_isar_feature(aa64_mte, cpu)) { 10160 new_mode |= PSTATE_TCO; 10161 } 10162 10163 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10164 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10165 new_mode |= PSTATE_SSBS; 10166 } else { 10167 new_mode &= ~PSTATE_SSBS; 10168 } 10169 } 10170 10171 pstate_write(env, PSTATE_DAIF | new_mode); 10172 env->aarch64 = true; 10173 aarch64_restore_sp(env, new_el); 10174 helper_rebuild_hflags_a64(env, new_el); 10175 10176 env->pc = addr; 10177 10178 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10179 new_el, env->pc, pstate_read(env)); 10180 } 10181 10182 /* 10183 * Do semihosting call and set the appropriate return value. All the 10184 * permission and validity checks have been done at translate time. 10185 * 10186 * We only see semihosting exceptions in TCG only as they are not 10187 * trapped to the hypervisor in KVM. 10188 */ 10189 #ifdef CONFIG_TCG 10190 static void handle_semihosting(CPUState *cs) 10191 { 10192 ARMCPU *cpu = ARM_CPU(cs); 10193 CPUARMState *env = &cpu->env; 10194 10195 if (is_a64(env)) { 10196 qemu_log_mask(CPU_LOG_INT, 10197 "...handling as semihosting call 0x%" PRIx64 "\n", 10198 env->xregs[0]); 10199 env->xregs[0] = do_common_semihosting(cs); 10200 env->pc += 4; 10201 } else { 10202 qemu_log_mask(CPU_LOG_INT, 10203 "...handling as semihosting call 0x%x\n", 10204 env->regs[0]); 10205 env->regs[0] = do_common_semihosting(cs); 10206 env->regs[15] += env->thumb ? 2 : 4; 10207 } 10208 } 10209 #endif 10210 10211 /* Handle a CPU exception for A and R profile CPUs. 10212 * Do any appropriate logging, handle PSCI calls, and then hand off 10213 * to the AArch64-entry or AArch32-entry function depending on the 10214 * target exception level's register width. 10215 * 10216 * Note: this is used for both TCG (as the do_interrupt tcg op), 10217 * and KVM to re-inject guest debug exceptions, and to 10218 * inject a Synchronous-External-Abort. 10219 */ 10220 void arm_cpu_do_interrupt(CPUState *cs) 10221 { 10222 ARMCPU *cpu = ARM_CPU(cs); 10223 CPUARMState *env = &cpu->env; 10224 unsigned int new_el = env->exception.target_el; 10225 10226 assert(!arm_feature(env, ARM_FEATURE_M)); 10227 10228 arm_log_exception(cs); 10229 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10230 new_el); 10231 if (qemu_loglevel_mask(CPU_LOG_INT) 10232 && !excp_is_internal(cs->exception_index)) { 10233 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10234 syn_get_ec(env->exception.syndrome), 10235 env->exception.syndrome); 10236 } 10237 10238 if (arm_is_psci_call(cpu, cs->exception_index)) { 10239 arm_handle_psci_call(cpu); 10240 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10241 return; 10242 } 10243 10244 /* 10245 * Semihosting semantics depend on the register width of the code 10246 * that caused the exception, not the target exception level, so 10247 * must be handled here. 10248 */ 10249 #ifdef CONFIG_TCG 10250 if (cs->exception_index == EXCP_SEMIHOST) { 10251 handle_semihosting(cs); 10252 return; 10253 } 10254 #endif 10255 10256 /* Hooks may change global state so BQL should be held, also the 10257 * BQL needs to be held for any modification of 10258 * cs->interrupt_request. 10259 */ 10260 g_assert(qemu_mutex_iothread_locked()); 10261 10262 arm_call_pre_el_change_hook(cpu); 10263 10264 assert(!excp_is_internal(cs->exception_index)); 10265 if (arm_el_is_aa64(env, new_el)) { 10266 arm_cpu_do_interrupt_aarch64(cs); 10267 } else { 10268 arm_cpu_do_interrupt_aarch32(cs); 10269 } 10270 10271 arm_call_el_change_hook(cpu); 10272 10273 if (!kvm_enabled()) { 10274 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10275 } 10276 } 10277 #endif /* !CONFIG_USER_ONLY */ 10278 10279 uint64_t arm_sctlr(CPUARMState *env, int el) 10280 { 10281 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10282 if (el == 0) { 10283 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10284 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10285 ? 2 : 1; 10286 } 10287 return env->cp15.sctlr_el[el]; 10288 } 10289 10290 /* Return the SCTLR value which controls this address translation regime */ 10291 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10292 { 10293 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10294 } 10295 10296 #ifndef CONFIG_USER_ONLY 10297 10298 /* Return true if the specified stage of address translation is disabled */ 10299 static inline bool regime_translation_disabled(CPUARMState *env, 10300 ARMMMUIdx mmu_idx) 10301 { 10302 uint64_t hcr_el2; 10303 10304 if (arm_feature(env, ARM_FEATURE_M)) { 10305 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10306 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10307 case R_V7M_MPU_CTRL_ENABLE_MASK: 10308 /* Enabled, but not for HardFault and NMI */ 10309 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10310 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10311 /* Enabled for all cases */ 10312 return false; 10313 case 0: 10314 default: 10315 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10316 * we warned about that in armv7m_nvic.c when the guest set it. 10317 */ 10318 return true; 10319 } 10320 } 10321 10322 hcr_el2 = arm_hcr_el2_eff(env); 10323 10324 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10325 /* HCR.DC means HCR.VM behaves as 1 */ 10326 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10327 } 10328 10329 if (hcr_el2 & HCR_TGE) { 10330 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10331 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10332 return true; 10333 } 10334 } 10335 10336 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10337 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10338 return true; 10339 } 10340 10341 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10342 } 10343 10344 static inline bool regime_translation_big_endian(CPUARMState *env, 10345 ARMMMUIdx mmu_idx) 10346 { 10347 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10348 } 10349 10350 /* Return the TTBR associated with this translation regime */ 10351 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10352 int ttbrn) 10353 { 10354 if (mmu_idx == ARMMMUIdx_Stage2) { 10355 return env->cp15.vttbr_el2; 10356 } 10357 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10358 return env->cp15.vsttbr_el2; 10359 } 10360 if (ttbrn == 0) { 10361 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10362 } else { 10363 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10364 } 10365 } 10366 10367 #endif /* !CONFIG_USER_ONLY */ 10368 10369 /* Convert a possible stage1+2 MMU index into the appropriate 10370 * stage 1 MMU index 10371 */ 10372 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10373 { 10374 switch (mmu_idx) { 10375 case ARMMMUIdx_SE10_0: 10376 return ARMMMUIdx_Stage1_SE0; 10377 case ARMMMUIdx_SE10_1: 10378 return ARMMMUIdx_Stage1_SE1; 10379 case ARMMMUIdx_SE10_1_PAN: 10380 return ARMMMUIdx_Stage1_SE1_PAN; 10381 case ARMMMUIdx_E10_0: 10382 return ARMMMUIdx_Stage1_E0; 10383 case ARMMMUIdx_E10_1: 10384 return ARMMMUIdx_Stage1_E1; 10385 case ARMMMUIdx_E10_1_PAN: 10386 return ARMMMUIdx_Stage1_E1_PAN; 10387 default: 10388 return mmu_idx; 10389 } 10390 } 10391 10392 /* Return true if the translation regime is using LPAE format page tables */ 10393 static inline bool regime_using_lpae_format(CPUARMState *env, 10394 ARMMMUIdx mmu_idx) 10395 { 10396 int el = regime_el(env, mmu_idx); 10397 if (el == 2 || arm_el_is_aa64(env, el)) { 10398 return true; 10399 } 10400 if (arm_feature(env, ARM_FEATURE_LPAE) 10401 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10402 return true; 10403 } 10404 return false; 10405 } 10406 10407 /* Returns true if the stage 1 translation regime is using LPAE format page 10408 * tables. Used when raising alignment exceptions, whose FSR changes depending 10409 * on whether the long or short descriptor format is in use. */ 10410 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10411 { 10412 mmu_idx = stage_1_mmu_idx(mmu_idx); 10413 10414 return regime_using_lpae_format(env, mmu_idx); 10415 } 10416 10417 #ifndef CONFIG_USER_ONLY 10418 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10419 { 10420 switch (mmu_idx) { 10421 case ARMMMUIdx_SE10_0: 10422 case ARMMMUIdx_E20_0: 10423 case ARMMMUIdx_SE20_0: 10424 case ARMMMUIdx_Stage1_E0: 10425 case ARMMMUIdx_Stage1_SE0: 10426 case ARMMMUIdx_MUser: 10427 case ARMMMUIdx_MSUser: 10428 case ARMMMUIdx_MUserNegPri: 10429 case ARMMMUIdx_MSUserNegPri: 10430 return true; 10431 default: 10432 return false; 10433 case ARMMMUIdx_E10_0: 10434 case ARMMMUIdx_E10_1: 10435 case ARMMMUIdx_E10_1_PAN: 10436 g_assert_not_reached(); 10437 } 10438 } 10439 10440 /* Translate section/page access permissions to page 10441 * R/W protection flags 10442 * 10443 * @env: CPUARMState 10444 * @mmu_idx: MMU index indicating required translation regime 10445 * @ap: The 3-bit access permissions (AP[2:0]) 10446 * @domain_prot: The 2-bit domain access permissions 10447 */ 10448 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10449 int ap, int domain_prot) 10450 { 10451 bool is_user = regime_is_user(env, mmu_idx); 10452 10453 if (domain_prot == 3) { 10454 return PAGE_READ | PAGE_WRITE; 10455 } 10456 10457 switch (ap) { 10458 case 0: 10459 if (arm_feature(env, ARM_FEATURE_V7)) { 10460 return 0; 10461 } 10462 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10463 case SCTLR_S: 10464 return is_user ? 0 : PAGE_READ; 10465 case SCTLR_R: 10466 return PAGE_READ; 10467 default: 10468 return 0; 10469 } 10470 case 1: 10471 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10472 case 2: 10473 if (is_user) { 10474 return PAGE_READ; 10475 } else { 10476 return PAGE_READ | PAGE_WRITE; 10477 } 10478 case 3: 10479 return PAGE_READ | PAGE_WRITE; 10480 case 4: /* Reserved. */ 10481 return 0; 10482 case 5: 10483 return is_user ? 0 : PAGE_READ; 10484 case 6: 10485 return PAGE_READ; 10486 case 7: 10487 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10488 return 0; 10489 } 10490 return PAGE_READ; 10491 default: 10492 g_assert_not_reached(); 10493 } 10494 } 10495 10496 /* Translate section/page access permissions to page 10497 * R/W protection flags. 10498 * 10499 * @ap: The 2-bit simple AP (AP[2:1]) 10500 * @is_user: TRUE if accessing from PL0 10501 */ 10502 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10503 { 10504 switch (ap) { 10505 case 0: 10506 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10507 case 1: 10508 return PAGE_READ | PAGE_WRITE; 10509 case 2: 10510 return is_user ? 0 : PAGE_READ; 10511 case 3: 10512 return PAGE_READ; 10513 default: 10514 g_assert_not_reached(); 10515 } 10516 } 10517 10518 static inline int 10519 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10520 { 10521 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10522 } 10523 10524 /* Translate S2 section/page access permissions to protection flags 10525 * 10526 * @env: CPUARMState 10527 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10528 * @xn: XN (execute-never) bits 10529 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10530 */ 10531 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10532 { 10533 int prot = 0; 10534 10535 if (s2ap & 1) { 10536 prot |= PAGE_READ; 10537 } 10538 if (s2ap & 2) { 10539 prot |= PAGE_WRITE; 10540 } 10541 10542 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10543 switch (xn) { 10544 case 0: 10545 prot |= PAGE_EXEC; 10546 break; 10547 case 1: 10548 if (s1_is_el0) { 10549 prot |= PAGE_EXEC; 10550 } 10551 break; 10552 case 2: 10553 break; 10554 case 3: 10555 if (!s1_is_el0) { 10556 prot |= PAGE_EXEC; 10557 } 10558 break; 10559 default: 10560 g_assert_not_reached(); 10561 } 10562 } else { 10563 if (!extract32(xn, 1, 1)) { 10564 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10565 prot |= PAGE_EXEC; 10566 } 10567 } 10568 } 10569 return prot; 10570 } 10571 10572 /* Translate section/page access permissions to protection flags 10573 * 10574 * @env: CPUARMState 10575 * @mmu_idx: MMU index indicating required translation regime 10576 * @is_aa64: TRUE if AArch64 10577 * @ap: The 2-bit simple AP (AP[2:1]) 10578 * @ns: NS (non-secure) bit 10579 * @xn: XN (execute-never) bit 10580 * @pxn: PXN (privileged execute-never) bit 10581 */ 10582 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10583 int ap, int ns, int xn, int pxn) 10584 { 10585 bool is_user = regime_is_user(env, mmu_idx); 10586 int prot_rw, user_rw; 10587 bool have_wxn; 10588 int wxn = 0; 10589 10590 assert(mmu_idx != ARMMMUIdx_Stage2); 10591 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10592 10593 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10594 if (is_user) { 10595 prot_rw = user_rw; 10596 } else { 10597 if (user_rw && regime_is_pan(env, mmu_idx)) { 10598 /* PAN forbids data accesses but doesn't affect insn fetch */ 10599 prot_rw = 0; 10600 } else { 10601 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10602 } 10603 } 10604 10605 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10606 return prot_rw; 10607 } 10608 10609 /* TODO have_wxn should be replaced with 10610 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10611 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10612 * compatible processors have EL2, which is required for [U]WXN. 10613 */ 10614 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10615 10616 if (have_wxn) { 10617 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10618 } 10619 10620 if (is_aa64) { 10621 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10622 xn = pxn || (user_rw & PAGE_WRITE); 10623 } 10624 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10625 switch (regime_el(env, mmu_idx)) { 10626 case 1: 10627 case 3: 10628 if (is_user) { 10629 xn = xn || !(user_rw & PAGE_READ); 10630 } else { 10631 int uwxn = 0; 10632 if (have_wxn) { 10633 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10634 } 10635 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10636 (uwxn && (user_rw & PAGE_WRITE)); 10637 } 10638 break; 10639 case 2: 10640 break; 10641 } 10642 } else { 10643 xn = wxn = 0; 10644 } 10645 10646 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10647 return prot_rw; 10648 } 10649 return prot_rw | PAGE_EXEC; 10650 } 10651 10652 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10653 uint32_t *table, uint32_t address) 10654 { 10655 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10656 TCR *tcr = regime_tcr(env, mmu_idx); 10657 10658 if (address & tcr->mask) { 10659 if (tcr->raw_tcr & TTBCR_PD1) { 10660 /* Translation table walk disabled for TTBR1 */ 10661 return false; 10662 } 10663 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10664 } else { 10665 if (tcr->raw_tcr & TTBCR_PD0) { 10666 /* Translation table walk disabled for TTBR0 */ 10667 return false; 10668 } 10669 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10670 } 10671 *table |= (address >> 18) & 0x3ffc; 10672 return true; 10673 } 10674 10675 /* Translate a S1 pagetable walk through S2 if needed. */ 10676 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10677 hwaddr addr, bool *is_secure, 10678 ARMMMUFaultInfo *fi) 10679 { 10680 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10681 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10682 target_ulong s2size; 10683 hwaddr s2pa; 10684 int s2prot; 10685 int ret; 10686 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10687 : ARMMMUIdx_Stage2; 10688 ARMCacheAttrs cacheattrs = {}; 10689 MemTxAttrs txattrs = {}; 10690 10691 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10692 &s2pa, &txattrs, &s2prot, &s2size, fi, 10693 &cacheattrs); 10694 if (ret) { 10695 assert(fi->type != ARMFault_None); 10696 fi->s2addr = addr; 10697 fi->stage2 = true; 10698 fi->s1ptw = true; 10699 fi->s1ns = !*is_secure; 10700 return ~0; 10701 } 10702 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10703 (cacheattrs.attrs & 0xf0) == 0) { 10704 /* 10705 * PTW set and S1 walk touched S2 Device memory: 10706 * generate Permission fault. 10707 */ 10708 fi->type = ARMFault_Permission; 10709 fi->s2addr = addr; 10710 fi->stage2 = true; 10711 fi->s1ptw = true; 10712 fi->s1ns = !*is_secure; 10713 return ~0; 10714 } 10715 10716 if (arm_is_secure_below_el3(env)) { 10717 /* Check if page table walk is to secure or non-secure PA space. */ 10718 if (*is_secure) { 10719 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10720 } else { 10721 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10722 } 10723 } else { 10724 assert(!*is_secure); 10725 } 10726 10727 addr = s2pa; 10728 } 10729 return addr; 10730 } 10731 10732 /* All loads done in the course of a page table walk go through here. */ 10733 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10734 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10735 { 10736 ARMCPU *cpu = ARM_CPU(cs); 10737 CPUARMState *env = &cpu->env; 10738 MemTxAttrs attrs = {}; 10739 MemTxResult result = MEMTX_OK; 10740 AddressSpace *as; 10741 uint32_t data; 10742 10743 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10744 attrs.secure = is_secure; 10745 as = arm_addressspace(cs, attrs); 10746 if (fi->s1ptw) { 10747 return 0; 10748 } 10749 if (regime_translation_big_endian(env, mmu_idx)) { 10750 data = address_space_ldl_be(as, addr, attrs, &result); 10751 } else { 10752 data = address_space_ldl_le(as, addr, attrs, &result); 10753 } 10754 if (result == MEMTX_OK) { 10755 return data; 10756 } 10757 fi->type = ARMFault_SyncExternalOnWalk; 10758 fi->ea = arm_extabort_type(result); 10759 return 0; 10760 } 10761 10762 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10763 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10764 { 10765 ARMCPU *cpu = ARM_CPU(cs); 10766 CPUARMState *env = &cpu->env; 10767 MemTxAttrs attrs = {}; 10768 MemTxResult result = MEMTX_OK; 10769 AddressSpace *as; 10770 uint64_t data; 10771 10772 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10773 attrs.secure = is_secure; 10774 as = arm_addressspace(cs, attrs); 10775 if (fi->s1ptw) { 10776 return 0; 10777 } 10778 if (regime_translation_big_endian(env, mmu_idx)) { 10779 data = address_space_ldq_be(as, addr, attrs, &result); 10780 } else { 10781 data = address_space_ldq_le(as, addr, attrs, &result); 10782 } 10783 if (result == MEMTX_OK) { 10784 return data; 10785 } 10786 fi->type = ARMFault_SyncExternalOnWalk; 10787 fi->ea = arm_extabort_type(result); 10788 return 0; 10789 } 10790 10791 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10792 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10793 hwaddr *phys_ptr, int *prot, 10794 target_ulong *page_size, 10795 ARMMMUFaultInfo *fi) 10796 { 10797 CPUState *cs = env_cpu(env); 10798 int level = 1; 10799 uint32_t table; 10800 uint32_t desc; 10801 int type; 10802 int ap; 10803 int domain = 0; 10804 int domain_prot; 10805 hwaddr phys_addr; 10806 uint32_t dacr; 10807 10808 /* Pagetable walk. */ 10809 /* Lookup l1 descriptor. */ 10810 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10811 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10812 fi->type = ARMFault_Translation; 10813 goto do_fault; 10814 } 10815 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10816 mmu_idx, fi); 10817 if (fi->type != ARMFault_None) { 10818 goto do_fault; 10819 } 10820 type = (desc & 3); 10821 domain = (desc >> 5) & 0x0f; 10822 if (regime_el(env, mmu_idx) == 1) { 10823 dacr = env->cp15.dacr_ns; 10824 } else { 10825 dacr = env->cp15.dacr_s; 10826 } 10827 domain_prot = (dacr >> (domain * 2)) & 3; 10828 if (type == 0) { 10829 /* Section translation fault. */ 10830 fi->type = ARMFault_Translation; 10831 goto do_fault; 10832 } 10833 if (type != 2) { 10834 level = 2; 10835 } 10836 if (domain_prot == 0 || domain_prot == 2) { 10837 fi->type = ARMFault_Domain; 10838 goto do_fault; 10839 } 10840 if (type == 2) { 10841 /* 1Mb section. */ 10842 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10843 ap = (desc >> 10) & 3; 10844 *page_size = 1024 * 1024; 10845 } else { 10846 /* Lookup l2 entry. */ 10847 if (type == 1) { 10848 /* Coarse pagetable. */ 10849 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10850 } else { 10851 /* Fine pagetable. */ 10852 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10853 } 10854 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10855 mmu_idx, fi); 10856 if (fi->type != ARMFault_None) { 10857 goto do_fault; 10858 } 10859 switch (desc & 3) { 10860 case 0: /* Page translation fault. */ 10861 fi->type = ARMFault_Translation; 10862 goto do_fault; 10863 case 1: /* 64k page. */ 10864 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10865 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10866 *page_size = 0x10000; 10867 break; 10868 case 2: /* 4k page. */ 10869 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10870 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10871 *page_size = 0x1000; 10872 break; 10873 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10874 if (type == 1) { 10875 /* ARMv6/XScale extended small page format */ 10876 if (arm_feature(env, ARM_FEATURE_XSCALE) 10877 || arm_feature(env, ARM_FEATURE_V6)) { 10878 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10879 *page_size = 0x1000; 10880 } else { 10881 /* UNPREDICTABLE in ARMv5; we choose to take a 10882 * page translation fault. 10883 */ 10884 fi->type = ARMFault_Translation; 10885 goto do_fault; 10886 } 10887 } else { 10888 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10889 *page_size = 0x400; 10890 } 10891 ap = (desc >> 4) & 3; 10892 break; 10893 default: 10894 /* Never happens, but compiler isn't smart enough to tell. */ 10895 abort(); 10896 } 10897 } 10898 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10899 *prot |= *prot ? PAGE_EXEC : 0; 10900 if (!(*prot & (1 << access_type))) { 10901 /* Access permission fault. */ 10902 fi->type = ARMFault_Permission; 10903 goto do_fault; 10904 } 10905 *phys_ptr = phys_addr; 10906 return false; 10907 do_fault: 10908 fi->domain = domain; 10909 fi->level = level; 10910 return true; 10911 } 10912 10913 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10914 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10915 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10916 target_ulong *page_size, ARMMMUFaultInfo *fi) 10917 { 10918 CPUState *cs = env_cpu(env); 10919 ARMCPU *cpu = env_archcpu(env); 10920 int level = 1; 10921 uint32_t table; 10922 uint32_t desc; 10923 uint32_t xn; 10924 uint32_t pxn = 0; 10925 int type; 10926 int ap; 10927 int domain = 0; 10928 int domain_prot; 10929 hwaddr phys_addr; 10930 uint32_t dacr; 10931 bool ns; 10932 10933 /* Pagetable walk. */ 10934 /* Lookup l1 descriptor. */ 10935 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10936 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10937 fi->type = ARMFault_Translation; 10938 goto do_fault; 10939 } 10940 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10941 mmu_idx, fi); 10942 if (fi->type != ARMFault_None) { 10943 goto do_fault; 10944 } 10945 type = (desc & 3); 10946 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 10947 /* Section translation fault, or attempt to use the encoding 10948 * which is Reserved on implementations without PXN. 10949 */ 10950 fi->type = ARMFault_Translation; 10951 goto do_fault; 10952 } 10953 if ((type == 1) || !(desc & (1 << 18))) { 10954 /* Page or Section. */ 10955 domain = (desc >> 5) & 0x0f; 10956 } 10957 if (regime_el(env, mmu_idx) == 1) { 10958 dacr = env->cp15.dacr_ns; 10959 } else { 10960 dacr = env->cp15.dacr_s; 10961 } 10962 if (type == 1) { 10963 level = 2; 10964 } 10965 domain_prot = (dacr >> (domain * 2)) & 3; 10966 if (domain_prot == 0 || domain_prot == 2) { 10967 /* Section or Page domain fault */ 10968 fi->type = ARMFault_Domain; 10969 goto do_fault; 10970 } 10971 if (type != 1) { 10972 if (desc & (1 << 18)) { 10973 /* Supersection. */ 10974 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10975 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10976 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10977 *page_size = 0x1000000; 10978 } else { 10979 /* Section. */ 10980 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10981 *page_size = 0x100000; 10982 } 10983 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10984 xn = desc & (1 << 4); 10985 pxn = desc & 1; 10986 ns = extract32(desc, 19, 1); 10987 } else { 10988 if (cpu_isar_feature(aa32_pxn, cpu)) { 10989 pxn = (desc >> 2) & 1; 10990 } 10991 ns = extract32(desc, 3, 1); 10992 /* Lookup l2 entry. */ 10993 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10994 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10995 mmu_idx, fi); 10996 if (fi->type != ARMFault_None) { 10997 goto do_fault; 10998 } 10999 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 11000 switch (desc & 3) { 11001 case 0: /* Page translation fault. */ 11002 fi->type = ARMFault_Translation; 11003 goto do_fault; 11004 case 1: /* 64k page. */ 11005 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11006 xn = desc & (1 << 15); 11007 *page_size = 0x10000; 11008 break; 11009 case 2: case 3: /* 4k page. */ 11010 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11011 xn = desc & 1; 11012 *page_size = 0x1000; 11013 break; 11014 default: 11015 /* Never happens, but compiler isn't smart enough to tell. */ 11016 abort(); 11017 } 11018 } 11019 if (domain_prot == 3) { 11020 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11021 } else { 11022 if (pxn && !regime_is_user(env, mmu_idx)) { 11023 xn = 1; 11024 } 11025 if (xn && access_type == MMU_INST_FETCH) { 11026 fi->type = ARMFault_Permission; 11027 goto do_fault; 11028 } 11029 11030 if (arm_feature(env, ARM_FEATURE_V6K) && 11031 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 11032 /* The simplified model uses AP[0] as an access control bit. */ 11033 if ((ap & 1) == 0) { 11034 /* Access flag fault. */ 11035 fi->type = ARMFault_AccessFlag; 11036 goto do_fault; 11037 } 11038 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 11039 } else { 11040 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11041 } 11042 if (*prot && !xn) { 11043 *prot |= PAGE_EXEC; 11044 } 11045 if (!(*prot & (1 << access_type))) { 11046 /* Access permission fault. */ 11047 fi->type = ARMFault_Permission; 11048 goto do_fault; 11049 } 11050 } 11051 if (ns) { 11052 /* The NS bit will (as required by the architecture) have no effect if 11053 * the CPU doesn't support TZ or this is a non-secure translation 11054 * regime, because the attribute will already be non-secure. 11055 */ 11056 attrs->secure = false; 11057 } 11058 *phys_ptr = phys_addr; 11059 return false; 11060 do_fault: 11061 fi->domain = domain; 11062 fi->level = level; 11063 return true; 11064 } 11065 11066 /* 11067 * check_s2_mmu_setup 11068 * @cpu: ARMCPU 11069 * @is_aa64: True if the translation regime is in AArch64 state 11070 * @startlevel: Suggested starting level 11071 * @inputsize: Bitsize of IPAs 11072 * @stride: Page-table stride (See the ARM ARM) 11073 * 11074 * Returns true if the suggested S2 translation parameters are OK and 11075 * false otherwise. 11076 */ 11077 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 11078 int inputsize, int stride, int outputsize) 11079 { 11080 const int grainsize = stride + 3; 11081 int startsizecheck; 11082 11083 /* 11084 * Negative levels are usually not allowed... 11085 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which 11086 * begins with level -1. Note that previous feature tests will have 11087 * eliminated this combination if it is not enabled. 11088 */ 11089 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) { 11090 return false; 11091 } 11092 11093 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 11094 if (startsizecheck < 1 || startsizecheck > stride + 4) { 11095 return false; 11096 } 11097 11098 if (is_aa64) { 11099 switch (stride) { 11100 case 13: /* 64KB Pages. */ 11101 if (level == 0 || (level == 1 && outputsize <= 42)) { 11102 return false; 11103 } 11104 break; 11105 case 11: /* 16KB Pages. */ 11106 if (level == 0 || (level == 1 && outputsize <= 40)) { 11107 return false; 11108 } 11109 break; 11110 case 9: /* 4KB Pages. */ 11111 if (level == 0 && outputsize <= 42) { 11112 return false; 11113 } 11114 break; 11115 default: 11116 g_assert_not_reached(); 11117 } 11118 11119 /* Inputsize checks. */ 11120 if (inputsize > outputsize && 11121 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) { 11122 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 11123 return false; 11124 } 11125 } else { 11126 /* AArch32 only supports 4KB pages. Assert on that. */ 11127 assert(stride == 9); 11128 11129 if (level == 0) { 11130 return false; 11131 } 11132 } 11133 return true; 11134 } 11135 11136 /* Translate from the 4-bit stage 2 representation of 11137 * memory attributes (without cache-allocation hints) to 11138 * the 8-bit representation of the stage 1 MAIR registers 11139 * (which includes allocation hints). 11140 * 11141 * ref: shared/translation/attrs/S2AttrDecode() 11142 * .../S2ConvertAttrsHints() 11143 */ 11144 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11145 { 11146 uint8_t hiattr = extract32(s2attrs, 2, 2); 11147 uint8_t loattr = extract32(s2attrs, 0, 2); 11148 uint8_t hihint = 0, lohint = 0; 11149 11150 if (hiattr != 0) { /* normal memory */ 11151 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 11152 hiattr = loattr = 1; /* non-cacheable */ 11153 } else { 11154 if (hiattr != 1) { /* Write-through or write-back */ 11155 hihint = 3; /* RW allocate */ 11156 } 11157 if (loattr != 1) { /* Write-through or write-back */ 11158 lohint = 3; /* RW allocate */ 11159 } 11160 } 11161 } 11162 11163 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11164 } 11165 #endif /* !CONFIG_USER_ONLY */ 11166 11167 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 11168 static const uint8_t pamax_map[] = { 11169 [0] = 32, 11170 [1] = 36, 11171 [2] = 40, 11172 [3] = 42, 11173 [4] = 44, 11174 [5] = 48, 11175 [6] = 52, 11176 }; 11177 11178 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 11179 unsigned int arm_pamax(ARMCPU *cpu) 11180 { 11181 unsigned int parange = 11182 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11183 11184 /* 11185 * id_aa64mmfr0 is a read-only register so values outside of the 11186 * supported mappings can be considered an implementation error. 11187 */ 11188 assert(parange < ARRAY_SIZE(pamax_map)); 11189 return pamax_map[parange]; 11190 } 11191 11192 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11193 { 11194 if (regime_has_2_ranges(mmu_idx)) { 11195 return extract64(tcr, 37, 2); 11196 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11197 return 0; /* VTCR_EL2 */ 11198 } else { 11199 /* Replicate the single TBI bit so we always have 2 bits. */ 11200 return extract32(tcr, 20, 1) * 3; 11201 } 11202 } 11203 11204 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11205 { 11206 if (regime_has_2_ranges(mmu_idx)) { 11207 return extract64(tcr, 51, 2); 11208 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11209 return 0; /* VTCR_EL2 */ 11210 } else { 11211 /* Replicate the single TBID bit so we always have 2 bits. */ 11212 return extract32(tcr, 29, 1) * 3; 11213 } 11214 } 11215 11216 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11217 { 11218 if (regime_has_2_ranges(mmu_idx)) { 11219 return extract64(tcr, 57, 2); 11220 } else { 11221 /* Replicate the single TCMA bit so we always have 2 bits. */ 11222 return extract32(tcr, 30, 1) * 3; 11223 } 11224 } 11225 11226 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11227 ARMMMUIdx mmu_idx, bool data) 11228 { 11229 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11230 bool epd, hpd, using16k, using64k, tsz_oob, ds; 11231 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11232 ARMCPU *cpu = env_archcpu(env); 11233 11234 if (!regime_has_2_ranges(mmu_idx)) { 11235 select = 0; 11236 tsz = extract32(tcr, 0, 6); 11237 using64k = extract32(tcr, 14, 1); 11238 using16k = extract32(tcr, 15, 1); 11239 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11240 /* VTCR_EL2 */ 11241 hpd = false; 11242 } else { 11243 hpd = extract32(tcr, 24, 1); 11244 } 11245 epd = false; 11246 sh = extract32(tcr, 12, 2); 11247 ps = extract32(tcr, 16, 3); 11248 ds = extract64(tcr, 32, 1); 11249 } else { 11250 /* 11251 * Bit 55 is always between the two regions, and is canonical for 11252 * determining if address tagging is enabled. 11253 */ 11254 select = extract64(va, 55, 1); 11255 if (!select) { 11256 tsz = extract32(tcr, 0, 6); 11257 epd = extract32(tcr, 7, 1); 11258 sh = extract32(tcr, 12, 2); 11259 using64k = extract32(tcr, 14, 1); 11260 using16k = extract32(tcr, 15, 1); 11261 hpd = extract64(tcr, 41, 1); 11262 } else { 11263 int tg = extract32(tcr, 30, 2); 11264 using16k = tg == 1; 11265 using64k = tg == 3; 11266 tsz = extract32(tcr, 16, 6); 11267 epd = extract32(tcr, 23, 1); 11268 sh = extract32(tcr, 28, 2); 11269 hpd = extract64(tcr, 42, 1); 11270 } 11271 ps = extract64(tcr, 32, 3); 11272 ds = extract64(tcr, 59, 1); 11273 } 11274 11275 if (cpu_isar_feature(aa64_st, cpu)) { 11276 max_tsz = 48 - using64k; 11277 } else { 11278 max_tsz = 39; 11279 } 11280 11281 /* 11282 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11283 * adjust the effective value of DS, as documented. 11284 */ 11285 min_tsz = 16; 11286 if (using64k) { 11287 if (cpu_isar_feature(aa64_lva, cpu)) { 11288 min_tsz = 12; 11289 } 11290 ds = false; 11291 } else if (ds) { 11292 switch (mmu_idx) { 11293 case ARMMMUIdx_Stage2: 11294 case ARMMMUIdx_Stage2_S: 11295 if (using16k) { 11296 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11297 } else { 11298 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11299 } 11300 break; 11301 default: 11302 if (using16k) { 11303 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11304 } else { 11305 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11306 } 11307 break; 11308 } 11309 if (ds) { 11310 min_tsz = 12; 11311 } 11312 } 11313 11314 if (tsz > max_tsz) { 11315 tsz = max_tsz; 11316 tsz_oob = true; 11317 } else if (tsz < min_tsz) { 11318 tsz = min_tsz; 11319 tsz_oob = true; 11320 } else { 11321 tsz_oob = false; 11322 } 11323 11324 /* Present TBI as a composite with TBID. */ 11325 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11326 if (!data) { 11327 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11328 } 11329 tbi = (tbi >> select) & 1; 11330 11331 return (ARMVAParameters) { 11332 .tsz = tsz, 11333 .ps = ps, 11334 .sh = sh, 11335 .select = select, 11336 .tbi = tbi, 11337 .epd = epd, 11338 .hpd = hpd, 11339 .using16k = using16k, 11340 .using64k = using64k, 11341 .tsz_oob = tsz_oob, 11342 .ds = ds, 11343 }; 11344 } 11345 11346 #ifndef CONFIG_USER_ONLY 11347 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11348 ARMMMUIdx mmu_idx) 11349 { 11350 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11351 uint32_t el = regime_el(env, mmu_idx); 11352 int select, tsz; 11353 bool epd, hpd; 11354 11355 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11356 11357 if (mmu_idx == ARMMMUIdx_Stage2) { 11358 /* VTCR */ 11359 bool sext = extract32(tcr, 4, 1); 11360 bool sign = extract32(tcr, 3, 1); 11361 11362 /* 11363 * If the sign-extend bit is not the same as t0sz[3], the result 11364 * is unpredictable. Flag this as a guest error. 11365 */ 11366 if (sign != sext) { 11367 qemu_log_mask(LOG_GUEST_ERROR, 11368 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11369 } 11370 tsz = sextract32(tcr, 0, 4) + 8; 11371 select = 0; 11372 hpd = false; 11373 epd = false; 11374 } else if (el == 2) { 11375 /* HTCR */ 11376 tsz = extract32(tcr, 0, 3); 11377 select = 0; 11378 hpd = extract64(tcr, 24, 1); 11379 epd = false; 11380 } else { 11381 int t0sz = extract32(tcr, 0, 3); 11382 int t1sz = extract32(tcr, 16, 3); 11383 11384 if (t1sz == 0) { 11385 select = va > (0xffffffffu >> t0sz); 11386 } else { 11387 /* Note that we will detect errors later. */ 11388 select = va >= ~(0xffffffffu >> t1sz); 11389 } 11390 if (!select) { 11391 tsz = t0sz; 11392 epd = extract32(tcr, 7, 1); 11393 hpd = extract64(tcr, 41, 1); 11394 } else { 11395 tsz = t1sz; 11396 epd = extract32(tcr, 23, 1); 11397 hpd = extract64(tcr, 42, 1); 11398 } 11399 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11400 hpd &= extract32(tcr, 6, 1); 11401 } 11402 11403 return (ARMVAParameters) { 11404 .tsz = tsz, 11405 .select = select, 11406 .epd = epd, 11407 .hpd = hpd, 11408 }; 11409 } 11410 11411 /** 11412 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11413 * 11414 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11415 * prot and page_size may not be filled in, and the populated fsr value provides 11416 * information on why the translation aborted, in the format of a long-format 11417 * DFSR/IFSR fault register, with the following caveats: 11418 * * the WnR bit is never set (the caller must do this). 11419 * 11420 * @env: CPUARMState 11421 * @address: virtual address to get physical address for 11422 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11423 * @mmu_idx: MMU index indicating required translation regime 11424 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11425 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11426 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11427 * @phys_ptr: set to the physical address corresponding to the virtual address 11428 * @attrs: set to the memory transaction attributes to use 11429 * @prot: set to the permissions for the page containing phys_ptr 11430 * @page_size_ptr: set to the size of the page containing phys_ptr 11431 * @fi: set to fault info if the translation fails 11432 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11433 */ 11434 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11435 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11436 bool s1_is_el0, 11437 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11438 target_ulong *page_size_ptr, 11439 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11440 { 11441 ARMCPU *cpu = env_archcpu(env); 11442 CPUState *cs = CPU(cpu); 11443 /* Read an LPAE long-descriptor translation table. */ 11444 ARMFaultType fault_type = ARMFault_Translation; 11445 uint32_t level; 11446 ARMVAParameters param; 11447 uint64_t ttbr; 11448 hwaddr descaddr, indexmask, indexmask_grainsize; 11449 uint32_t tableattrs; 11450 target_ulong page_size; 11451 uint32_t attrs; 11452 int32_t stride; 11453 int addrsize, inputsize, outputsize; 11454 TCR *tcr = regime_tcr(env, mmu_idx); 11455 int ap, ns, xn, pxn; 11456 uint32_t el = regime_el(env, mmu_idx); 11457 uint64_t descaddrmask; 11458 bool aarch64 = arm_el_is_aa64(env, el); 11459 bool guarded = false; 11460 11461 /* TODO: This code does not support shareability levels. */ 11462 if (aarch64) { 11463 int ps; 11464 11465 param = aa64_va_parameters(env, address, mmu_idx, 11466 access_type != MMU_INST_FETCH); 11467 level = 0; 11468 11469 /* 11470 * If TxSZ is programmed to a value larger than the maximum, 11471 * or smaller than the effective minimum, it is IMPLEMENTATION 11472 * DEFINED whether we behave as if the field were programmed 11473 * within bounds, or if a level 0 Translation fault is generated. 11474 * 11475 * With FEAT_LVA, fault on less than minimum becomes required, 11476 * so our choice is to always raise the fault. 11477 */ 11478 if (param.tsz_oob) { 11479 fault_type = ARMFault_Translation; 11480 goto do_fault; 11481 } 11482 11483 addrsize = 64 - 8 * param.tbi; 11484 inputsize = 64 - param.tsz; 11485 11486 /* 11487 * Bound PS by PARANGE to find the effective output address size. 11488 * ID_AA64MMFR0 is a read-only register so values outside of the 11489 * supported mappings can be considered an implementation error. 11490 */ 11491 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11492 ps = MIN(ps, param.ps); 11493 assert(ps < ARRAY_SIZE(pamax_map)); 11494 outputsize = pamax_map[ps]; 11495 } else { 11496 param = aa32_va_parameters(env, address, mmu_idx); 11497 level = 1; 11498 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11499 inputsize = addrsize - param.tsz; 11500 outputsize = 40; 11501 } 11502 11503 /* 11504 * We determined the region when collecting the parameters, but we 11505 * have not yet validated that the address is valid for the region. 11506 * Extract the top bits and verify that they all match select. 11507 * 11508 * For aa32, if inputsize == addrsize, then we have selected the 11509 * region by exclusion in aa32_va_parameters and there is no more 11510 * validation to do here. 11511 */ 11512 if (inputsize < addrsize) { 11513 target_ulong top_bits = sextract64(address, inputsize, 11514 addrsize - inputsize); 11515 if (-top_bits != param.select) { 11516 /* The gap between the two regions is a Translation fault */ 11517 fault_type = ARMFault_Translation; 11518 goto do_fault; 11519 } 11520 } 11521 11522 if (param.using64k) { 11523 stride = 13; 11524 } else if (param.using16k) { 11525 stride = 11; 11526 } else { 11527 stride = 9; 11528 } 11529 11530 /* Note that QEMU ignores shareability and cacheability attributes, 11531 * so we don't need to do anything with the SH, ORGN, IRGN fields 11532 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11533 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11534 * implement any ASID-like capability so we can ignore it (instead 11535 * we will always flush the TLB any time the ASID is changed). 11536 */ 11537 ttbr = regime_ttbr(env, mmu_idx, param.select); 11538 11539 /* Here we should have set up all the parameters for the translation: 11540 * inputsize, ttbr, epd, stride, tbi 11541 */ 11542 11543 if (param.epd) { 11544 /* Translation table walk disabled => Translation fault on TLB miss 11545 * Note: This is always 0 on 64-bit EL2 and EL3. 11546 */ 11547 goto do_fault; 11548 } 11549 11550 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11551 /* The starting level depends on the virtual address size (which can 11552 * be up to 48 bits) and the translation granule size. It indicates 11553 * the number of strides (stride bits at a time) needed to 11554 * consume the bits of the input address. In the pseudocode this is: 11555 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11556 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11557 * our 'stride + 3' and 'stride' is our 'stride'. 11558 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11559 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11560 * = 4 - (inputsize - 4) / stride; 11561 */ 11562 level = 4 - (inputsize - 4) / stride; 11563 } else { 11564 /* For stage 2 translations the starting level is specified by the 11565 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11566 */ 11567 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11568 uint32_t sl2 = extract64(tcr->raw_tcr, 33, 1); 11569 uint32_t startlevel; 11570 bool ok; 11571 11572 /* SL2 is RES0 unless DS=1 & 4kb granule. */ 11573 if (param.ds && stride == 9 && sl2) { 11574 if (sl0 != 0) { 11575 level = 0; 11576 fault_type = ARMFault_Translation; 11577 goto do_fault; 11578 } 11579 startlevel = -1; 11580 } else if (!aarch64 || stride == 9) { 11581 /* AArch32 or 4KB pages */ 11582 startlevel = 2 - sl0; 11583 11584 if (cpu_isar_feature(aa64_st, cpu)) { 11585 startlevel &= 3; 11586 } 11587 } else { 11588 /* 16KB or 64KB pages */ 11589 startlevel = 3 - sl0; 11590 } 11591 11592 /* Check that the starting level is valid. */ 11593 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11594 inputsize, stride, outputsize); 11595 if (!ok) { 11596 fault_type = ARMFault_Translation; 11597 goto do_fault; 11598 } 11599 level = startlevel; 11600 } 11601 11602 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 11603 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 11604 11605 /* Now we can extract the actual base address from the TTBR */ 11606 descaddr = extract64(ttbr, 0, 48); 11607 11608 /* 11609 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 11610 * 11611 * Otherwise, if the base address is out of range, raise AddressSizeFault. 11612 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 11613 * but we've just cleared the bits above 47, so simplify the test. 11614 */ 11615 if (outputsize > 48) { 11616 descaddr |= extract64(ttbr, 2, 4) << 48; 11617 } else if (descaddr >> outputsize) { 11618 level = 0; 11619 fault_type = ARMFault_AddressSize; 11620 goto do_fault; 11621 } 11622 11623 /* 11624 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11625 * and also to mask out CnP (bit 0) which could validly be non-zero. 11626 */ 11627 descaddr &= ~indexmask; 11628 11629 /* 11630 * For AArch32, the address field in the descriptor goes up to bit 39 11631 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 11632 * or an AddressSize fault is raised. So for v8 we extract those SBZ 11633 * bits as part of the address, which will be checked via outputsize. 11634 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 11635 * the highest bits of a 52-bit output are placed elsewhere. 11636 */ 11637 if (param.ds) { 11638 descaddrmask = MAKE_64BIT_MASK(0, 50); 11639 } else if (arm_feature(env, ARM_FEATURE_V8)) { 11640 descaddrmask = MAKE_64BIT_MASK(0, 48); 11641 } else { 11642 descaddrmask = MAKE_64BIT_MASK(0, 40); 11643 } 11644 descaddrmask &= ~indexmask_grainsize; 11645 11646 /* Secure accesses start with the page table in secure memory and 11647 * can be downgraded to non-secure at any step. Non-secure accesses 11648 * remain non-secure. We implement this by just ORing in the NSTable/NS 11649 * bits at each step. 11650 */ 11651 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11652 for (;;) { 11653 uint64_t descriptor; 11654 bool nstable; 11655 11656 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11657 descaddr &= ~7ULL; 11658 nstable = extract32(tableattrs, 4, 1); 11659 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11660 if (fi->type != ARMFault_None) { 11661 goto do_fault; 11662 } 11663 11664 if (!(descriptor & 1) || 11665 (!(descriptor & 2) && (level == 3))) { 11666 /* Invalid, or the Reserved level 3 encoding */ 11667 goto do_fault; 11668 } 11669 11670 descaddr = descriptor & descaddrmask; 11671 11672 /* 11673 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 11674 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 11675 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 11676 * raise AddressSizeFault. 11677 */ 11678 if (outputsize > 48) { 11679 if (param.ds) { 11680 descaddr |= extract64(descriptor, 8, 2) << 50; 11681 } else { 11682 descaddr |= extract64(descriptor, 12, 4) << 48; 11683 } 11684 } else if (descaddr >> outputsize) { 11685 fault_type = ARMFault_AddressSize; 11686 goto do_fault; 11687 } 11688 11689 if ((descriptor & 2) && (level < 3)) { 11690 /* Table entry. The top five bits are attributes which may 11691 * propagate down through lower levels of the table (and 11692 * which are all arranged so that 0 means "no effect", so 11693 * we can gather them up by ORing in the bits at each level). 11694 */ 11695 tableattrs |= extract64(descriptor, 59, 5); 11696 level++; 11697 indexmask = indexmask_grainsize; 11698 continue; 11699 } 11700 /* 11701 * Block entry at level 1 or 2, or page entry at level 3. 11702 * These are basically the same thing, although the number 11703 * of bits we pull in from the vaddr varies. Note that although 11704 * descaddrmask masks enough of the low bits of the descriptor 11705 * to give a correct page or table address, the address field 11706 * in a block descriptor is smaller; so we need to explicitly 11707 * clear the lower bits here before ORing in the low vaddr bits. 11708 */ 11709 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11710 descaddr &= ~(page_size - 1); 11711 descaddr |= (address & (page_size - 1)); 11712 /* Extract attributes from the descriptor */ 11713 attrs = extract64(descriptor, 2, 10) 11714 | (extract64(descriptor, 52, 12) << 10); 11715 11716 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11717 /* Stage 2 table descriptors do not include any attribute fields */ 11718 break; 11719 } 11720 /* Merge in attributes from table descriptors */ 11721 attrs |= nstable << 3; /* NS */ 11722 guarded = extract64(descriptor, 50, 1); /* GP */ 11723 if (param.hpd) { 11724 /* HPD disables all the table attributes except NSTable. */ 11725 break; 11726 } 11727 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11728 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11729 * means "force PL1 access only", which means forcing AP[1] to 0. 11730 */ 11731 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11732 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11733 break; 11734 } 11735 /* Here descaddr is the final physical address, and attributes 11736 * are all in attrs. 11737 */ 11738 fault_type = ARMFault_AccessFlag; 11739 if ((attrs & (1 << 8)) == 0) { 11740 /* Access flag */ 11741 goto do_fault; 11742 } 11743 11744 ap = extract32(attrs, 4, 2); 11745 11746 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11747 ns = mmu_idx == ARMMMUIdx_Stage2; 11748 xn = extract32(attrs, 11, 2); 11749 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11750 } else { 11751 ns = extract32(attrs, 3, 1); 11752 xn = extract32(attrs, 12, 1); 11753 pxn = extract32(attrs, 11, 1); 11754 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11755 } 11756 11757 fault_type = ARMFault_Permission; 11758 if (!(*prot & (1 << access_type))) { 11759 goto do_fault; 11760 } 11761 11762 if (ns) { 11763 /* The NS bit will (as required by the architecture) have no effect if 11764 * the CPU doesn't support TZ or this is a non-secure translation 11765 * regime, because the attribute will already be non-secure. 11766 */ 11767 txattrs->secure = false; 11768 } 11769 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11770 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11771 arm_tlb_bti_gp(txattrs) = true; 11772 } 11773 11774 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11775 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11776 } else { 11777 /* Index into MAIR registers for cache attributes */ 11778 uint8_t attrindx = extract32(attrs, 0, 3); 11779 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11780 assert(attrindx <= 7); 11781 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11782 } 11783 11784 /* 11785 * For FEAT_LPA2 and effective DS, the SH field in the attributes 11786 * was re-purposed for output address bits. The SH attribute in 11787 * that case comes from TCR_ELx, which we extracted earlier. 11788 */ 11789 if (param.ds) { 11790 cacheattrs->shareability = param.sh; 11791 } else { 11792 cacheattrs->shareability = extract32(attrs, 6, 2); 11793 } 11794 11795 *phys_ptr = descaddr; 11796 *page_size_ptr = page_size; 11797 return false; 11798 11799 do_fault: 11800 fi->type = fault_type; 11801 fi->level = level; 11802 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11803 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11804 mmu_idx == ARMMMUIdx_Stage2_S); 11805 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11806 return true; 11807 } 11808 11809 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11810 ARMMMUIdx mmu_idx, 11811 int32_t address, int *prot) 11812 { 11813 if (!arm_feature(env, ARM_FEATURE_M)) { 11814 *prot = PAGE_READ | PAGE_WRITE; 11815 switch (address) { 11816 case 0xF0000000 ... 0xFFFFFFFF: 11817 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11818 /* hivecs execing is ok */ 11819 *prot |= PAGE_EXEC; 11820 } 11821 break; 11822 case 0x00000000 ... 0x7FFFFFFF: 11823 *prot |= PAGE_EXEC; 11824 break; 11825 } 11826 } else { 11827 /* Default system address map for M profile cores. 11828 * The architecture specifies which regions are execute-never; 11829 * at the MPU level no other checks are defined. 11830 */ 11831 switch (address) { 11832 case 0x00000000 ... 0x1fffffff: /* ROM */ 11833 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11834 case 0x60000000 ... 0x7fffffff: /* RAM */ 11835 case 0x80000000 ... 0x9fffffff: /* RAM */ 11836 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11837 break; 11838 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11839 case 0xa0000000 ... 0xbfffffff: /* Device */ 11840 case 0xc0000000 ... 0xdfffffff: /* Device */ 11841 case 0xe0000000 ... 0xffffffff: /* System */ 11842 *prot = PAGE_READ | PAGE_WRITE; 11843 break; 11844 default: 11845 g_assert_not_reached(); 11846 } 11847 } 11848 } 11849 11850 static bool pmsav7_use_background_region(ARMCPU *cpu, 11851 ARMMMUIdx mmu_idx, bool is_user) 11852 { 11853 /* Return true if we should use the default memory map as a 11854 * "background" region if there are no hits against any MPU regions. 11855 */ 11856 CPUARMState *env = &cpu->env; 11857 11858 if (is_user) { 11859 return false; 11860 } 11861 11862 if (arm_feature(env, ARM_FEATURE_M)) { 11863 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11864 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11865 } else { 11866 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11867 } 11868 } 11869 11870 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11871 { 11872 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11873 return arm_feature(env, ARM_FEATURE_M) && 11874 extract32(address, 20, 12) == 0xe00; 11875 } 11876 11877 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11878 { 11879 /* True if address is in the M profile system region 11880 * 0xe0000000 - 0xffffffff 11881 */ 11882 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11883 } 11884 11885 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11886 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11887 hwaddr *phys_ptr, int *prot, 11888 target_ulong *page_size, 11889 ARMMMUFaultInfo *fi) 11890 { 11891 ARMCPU *cpu = env_archcpu(env); 11892 int n; 11893 bool is_user = regime_is_user(env, mmu_idx); 11894 11895 *phys_ptr = address; 11896 *page_size = TARGET_PAGE_SIZE; 11897 *prot = 0; 11898 11899 if (regime_translation_disabled(env, mmu_idx) || 11900 m_is_ppb_region(env, address)) { 11901 /* MPU disabled or M profile PPB access: use default memory map. 11902 * The other case which uses the default memory map in the 11903 * v7M ARM ARM pseudocode is exception vector reads from the vector 11904 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11905 * which always does a direct read using address_space_ldl(), rather 11906 * than going via this function, so we don't need to check that here. 11907 */ 11908 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11909 } else { /* MPU enabled */ 11910 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11911 /* region search */ 11912 uint32_t base = env->pmsav7.drbar[n]; 11913 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11914 uint32_t rmask; 11915 bool srdis = false; 11916 11917 if (!(env->pmsav7.drsr[n] & 0x1)) { 11918 continue; 11919 } 11920 11921 if (!rsize) { 11922 qemu_log_mask(LOG_GUEST_ERROR, 11923 "DRSR[%d]: Rsize field cannot be 0\n", n); 11924 continue; 11925 } 11926 rsize++; 11927 rmask = (1ull << rsize) - 1; 11928 11929 if (base & rmask) { 11930 qemu_log_mask(LOG_GUEST_ERROR, 11931 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11932 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11933 n, base, rmask); 11934 continue; 11935 } 11936 11937 if (address < base || address > base + rmask) { 11938 /* 11939 * Address not in this region. We must check whether the 11940 * region covers addresses in the same page as our address. 11941 * In that case we must not report a size that covers the 11942 * whole page for a subsequent hit against a different MPU 11943 * region or the background region, because it would result in 11944 * incorrect TLB hits for subsequent accesses to addresses that 11945 * are in this MPU region. 11946 */ 11947 if (ranges_overlap(base, rmask, 11948 address & TARGET_PAGE_MASK, 11949 TARGET_PAGE_SIZE)) { 11950 *page_size = 1; 11951 } 11952 continue; 11953 } 11954 11955 /* Region matched */ 11956 11957 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11958 int i, snd; 11959 uint32_t srdis_mask; 11960 11961 rsize -= 3; /* sub region size (power of 2) */ 11962 snd = ((address - base) >> rsize) & 0x7; 11963 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11964 11965 srdis_mask = srdis ? 0x3 : 0x0; 11966 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11967 /* This will check in groups of 2, 4 and then 8, whether 11968 * the subregion bits are consistent. rsize is incremented 11969 * back up to give the region size, considering consistent 11970 * adjacent subregions as one region. Stop testing if rsize 11971 * is already big enough for an entire QEMU page. 11972 */ 11973 int snd_rounded = snd & ~(i - 1); 11974 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11975 snd_rounded + 8, i); 11976 if (srdis_mask ^ srdis_multi) { 11977 break; 11978 } 11979 srdis_mask = (srdis_mask << i) | srdis_mask; 11980 rsize++; 11981 } 11982 } 11983 if (srdis) { 11984 continue; 11985 } 11986 if (rsize < TARGET_PAGE_BITS) { 11987 *page_size = 1 << rsize; 11988 } 11989 break; 11990 } 11991 11992 if (n == -1) { /* no hits */ 11993 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11994 /* background fault */ 11995 fi->type = ARMFault_Background; 11996 return true; 11997 } 11998 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11999 } else { /* a MPU hit! */ 12000 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 12001 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 12002 12003 if (m_is_system_region(env, address)) { 12004 /* System space is always execute never */ 12005 xn = 1; 12006 } 12007 12008 if (is_user) { /* User mode AP bit decoding */ 12009 switch (ap) { 12010 case 0: 12011 case 1: 12012 case 5: 12013 break; /* no access */ 12014 case 3: 12015 *prot |= PAGE_WRITE; 12016 /* fall through */ 12017 case 2: 12018 case 6: 12019 *prot |= PAGE_READ | PAGE_EXEC; 12020 break; 12021 case 7: 12022 /* for v7M, same as 6; for R profile a reserved value */ 12023 if (arm_feature(env, ARM_FEATURE_M)) { 12024 *prot |= PAGE_READ | PAGE_EXEC; 12025 break; 12026 } 12027 /* fall through */ 12028 default: 12029 qemu_log_mask(LOG_GUEST_ERROR, 12030 "DRACR[%d]: Bad value for AP bits: 0x%" 12031 PRIx32 "\n", n, ap); 12032 } 12033 } else { /* Priv. mode AP bits decoding */ 12034 switch (ap) { 12035 case 0: 12036 break; /* no access */ 12037 case 1: 12038 case 2: 12039 case 3: 12040 *prot |= PAGE_WRITE; 12041 /* fall through */ 12042 case 5: 12043 case 6: 12044 *prot |= PAGE_READ | PAGE_EXEC; 12045 break; 12046 case 7: 12047 /* for v7M, same as 6; for R profile a reserved value */ 12048 if (arm_feature(env, ARM_FEATURE_M)) { 12049 *prot |= PAGE_READ | PAGE_EXEC; 12050 break; 12051 } 12052 /* fall through */ 12053 default: 12054 qemu_log_mask(LOG_GUEST_ERROR, 12055 "DRACR[%d]: Bad value for AP bits: 0x%" 12056 PRIx32 "\n", n, ap); 12057 } 12058 } 12059 12060 /* execute never */ 12061 if (xn) { 12062 *prot &= ~PAGE_EXEC; 12063 } 12064 } 12065 } 12066 12067 fi->type = ARMFault_Permission; 12068 fi->level = 1; 12069 return !(*prot & (1 << access_type)); 12070 } 12071 12072 static bool v8m_is_sau_exempt(CPUARMState *env, 12073 uint32_t address, MMUAccessType access_type) 12074 { 12075 /* The architecture specifies that certain address ranges are 12076 * exempt from v8M SAU/IDAU checks. 12077 */ 12078 return 12079 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 12080 (address >= 0xe0000000 && address <= 0xe0002fff) || 12081 (address >= 0xe000e000 && address <= 0xe000efff) || 12082 (address >= 0xe002e000 && address <= 0xe002efff) || 12083 (address >= 0xe0040000 && address <= 0xe0041fff) || 12084 (address >= 0xe00ff000 && address <= 0xe00fffff); 12085 } 12086 12087 void v8m_security_lookup(CPUARMState *env, uint32_t address, 12088 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12089 V8M_SAttributes *sattrs) 12090 { 12091 /* Look up the security attributes for this address. Compare the 12092 * pseudocode SecurityCheck() function. 12093 * We assume the caller has zero-initialized *sattrs. 12094 */ 12095 ARMCPU *cpu = env_archcpu(env); 12096 int r; 12097 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 12098 int idau_region = IREGION_NOTVALID; 12099 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12100 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12101 12102 if (cpu->idau) { 12103 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 12104 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 12105 12106 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 12107 &idau_nsc); 12108 } 12109 12110 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 12111 /* 0xf0000000..0xffffffff is always S for insn fetches */ 12112 return; 12113 } 12114 12115 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 12116 sattrs->ns = !regime_is_secure(env, mmu_idx); 12117 return; 12118 } 12119 12120 if (idau_region != IREGION_NOTVALID) { 12121 sattrs->irvalid = true; 12122 sattrs->iregion = idau_region; 12123 } 12124 12125 switch (env->sau.ctrl & 3) { 12126 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 12127 break; 12128 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 12129 sattrs->ns = true; 12130 break; 12131 default: /* SAU.ENABLE == 1 */ 12132 for (r = 0; r < cpu->sau_sregion; r++) { 12133 if (env->sau.rlar[r] & 1) { 12134 uint32_t base = env->sau.rbar[r] & ~0x1f; 12135 uint32_t limit = env->sau.rlar[r] | 0x1f; 12136 12137 if (base <= address && limit >= address) { 12138 if (base > addr_page_base || limit < addr_page_limit) { 12139 sattrs->subpage = true; 12140 } 12141 if (sattrs->srvalid) { 12142 /* If we hit in more than one region then we must report 12143 * as Secure, not NS-Callable, with no valid region 12144 * number info. 12145 */ 12146 sattrs->ns = false; 12147 sattrs->nsc = false; 12148 sattrs->sregion = 0; 12149 sattrs->srvalid = false; 12150 break; 12151 } else { 12152 if (env->sau.rlar[r] & 2) { 12153 sattrs->nsc = true; 12154 } else { 12155 sattrs->ns = true; 12156 } 12157 sattrs->srvalid = true; 12158 sattrs->sregion = r; 12159 } 12160 } else { 12161 /* 12162 * Address not in this region. We must check whether the 12163 * region covers addresses in the same page as our address. 12164 * In that case we must not report a size that covers the 12165 * whole page for a subsequent hit against a different MPU 12166 * region or the background region, because it would result 12167 * in incorrect TLB hits for subsequent accesses to 12168 * addresses that are in this MPU region. 12169 */ 12170 if (limit >= base && 12171 ranges_overlap(base, limit - base + 1, 12172 addr_page_base, 12173 TARGET_PAGE_SIZE)) { 12174 sattrs->subpage = true; 12175 } 12176 } 12177 } 12178 } 12179 break; 12180 } 12181 12182 /* 12183 * The IDAU will override the SAU lookup results if it specifies 12184 * higher security than the SAU does. 12185 */ 12186 if (!idau_ns) { 12187 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 12188 sattrs->ns = false; 12189 sattrs->nsc = idau_nsc; 12190 } 12191 } 12192 } 12193 12194 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 12195 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12196 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12197 int *prot, bool *is_subpage, 12198 ARMMMUFaultInfo *fi, uint32_t *mregion) 12199 { 12200 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 12201 * that a full phys-to-virt translation does). 12202 * mregion is (if not NULL) set to the region number which matched, 12203 * or -1 if no region number is returned (MPU off, address did not 12204 * hit a region, address hit in multiple regions). 12205 * We set is_subpage to true if the region hit doesn't cover the 12206 * entire TARGET_PAGE the address is within. 12207 */ 12208 ARMCPU *cpu = env_archcpu(env); 12209 bool is_user = regime_is_user(env, mmu_idx); 12210 uint32_t secure = regime_is_secure(env, mmu_idx); 12211 int n; 12212 int matchregion = -1; 12213 bool hit = false; 12214 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12215 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12216 12217 *is_subpage = false; 12218 *phys_ptr = address; 12219 *prot = 0; 12220 if (mregion) { 12221 *mregion = -1; 12222 } 12223 12224 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 12225 * was an exception vector read from the vector table (which is always 12226 * done using the default system address map), because those accesses 12227 * are done in arm_v7m_load_vector(), which always does a direct 12228 * read using address_space_ldl(), rather than going via this function. 12229 */ 12230 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 12231 hit = true; 12232 } else if (m_is_ppb_region(env, address)) { 12233 hit = true; 12234 } else { 12235 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12236 hit = true; 12237 } 12238 12239 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12240 /* region search */ 12241 /* Note that the base address is bits [31:5] from the register 12242 * with bits [4:0] all zeroes, but the limit address is bits 12243 * [31:5] from the register with bits [4:0] all ones. 12244 */ 12245 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 12246 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12247 12248 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12249 /* Region disabled */ 12250 continue; 12251 } 12252 12253 if (address < base || address > limit) { 12254 /* 12255 * Address not in this region. We must check whether the 12256 * region covers addresses in the same page as our address. 12257 * In that case we must not report a size that covers the 12258 * whole page for a subsequent hit against a different MPU 12259 * region or the background region, because it would result in 12260 * incorrect TLB hits for subsequent accesses to addresses that 12261 * are in this MPU region. 12262 */ 12263 if (limit >= base && 12264 ranges_overlap(base, limit - base + 1, 12265 addr_page_base, 12266 TARGET_PAGE_SIZE)) { 12267 *is_subpage = true; 12268 } 12269 continue; 12270 } 12271 12272 if (base > addr_page_base || limit < addr_page_limit) { 12273 *is_subpage = true; 12274 } 12275 12276 if (matchregion != -1) { 12277 /* Multiple regions match -- always a failure (unlike 12278 * PMSAv7 where highest-numbered-region wins) 12279 */ 12280 fi->type = ARMFault_Permission; 12281 fi->level = 1; 12282 return true; 12283 } 12284 12285 matchregion = n; 12286 hit = true; 12287 } 12288 } 12289 12290 if (!hit) { 12291 /* background fault */ 12292 fi->type = ARMFault_Background; 12293 return true; 12294 } 12295 12296 if (matchregion == -1) { 12297 /* hit using the background region */ 12298 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12299 } else { 12300 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12301 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12302 bool pxn = false; 12303 12304 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 12305 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 12306 } 12307 12308 if (m_is_system_region(env, address)) { 12309 /* System space is always execute never */ 12310 xn = 1; 12311 } 12312 12313 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12314 if (*prot && !xn && !(pxn && !is_user)) { 12315 *prot |= PAGE_EXEC; 12316 } 12317 /* We don't need to look the attribute up in the MAIR0/MAIR1 12318 * registers because that only tells us about cacheability. 12319 */ 12320 if (mregion) { 12321 *mregion = matchregion; 12322 } 12323 } 12324 12325 fi->type = ARMFault_Permission; 12326 fi->level = 1; 12327 return !(*prot & (1 << access_type)); 12328 } 12329 12330 12331 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12332 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12333 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12334 int *prot, target_ulong *page_size, 12335 ARMMMUFaultInfo *fi) 12336 { 12337 uint32_t secure = regime_is_secure(env, mmu_idx); 12338 V8M_SAttributes sattrs = {}; 12339 bool ret; 12340 bool mpu_is_subpage; 12341 12342 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12343 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12344 if (access_type == MMU_INST_FETCH) { 12345 /* Instruction fetches always use the MMU bank and the 12346 * transaction attribute determined by the fetch address, 12347 * regardless of CPU state. This is painful for QEMU 12348 * to handle, because it would mean we need to encode 12349 * into the mmu_idx not just the (user, negpri) information 12350 * for the current security state but also that for the 12351 * other security state, which would balloon the number 12352 * of mmu_idx values needed alarmingly. 12353 * Fortunately we can avoid this because it's not actually 12354 * possible to arbitrarily execute code from memory with 12355 * the wrong security attribute: it will always generate 12356 * an exception of some kind or another, apart from the 12357 * special case of an NS CPU executing an SG instruction 12358 * in S&NSC memory. So we always just fail the translation 12359 * here and sort things out in the exception handler 12360 * (including possibly emulating an SG instruction). 12361 */ 12362 if (sattrs.ns != !secure) { 12363 if (sattrs.nsc) { 12364 fi->type = ARMFault_QEMU_NSCExec; 12365 } else { 12366 fi->type = ARMFault_QEMU_SFault; 12367 } 12368 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12369 *phys_ptr = address; 12370 *prot = 0; 12371 return true; 12372 } 12373 } else { 12374 /* For data accesses we always use the MMU bank indicated 12375 * by the current CPU state, but the security attributes 12376 * might downgrade a secure access to nonsecure. 12377 */ 12378 if (sattrs.ns) { 12379 txattrs->secure = false; 12380 } else if (!secure) { 12381 /* NS access to S memory must fault. 12382 * Architecturally we should first check whether the 12383 * MPU information for this address indicates that we 12384 * are doing an unaligned access to Device memory, which 12385 * should generate a UsageFault instead. QEMU does not 12386 * currently check for that kind of unaligned access though. 12387 * If we added it we would need to do so as a special case 12388 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12389 */ 12390 fi->type = ARMFault_QEMU_SFault; 12391 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12392 *phys_ptr = address; 12393 *prot = 0; 12394 return true; 12395 } 12396 } 12397 } 12398 12399 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12400 txattrs, prot, &mpu_is_subpage, fi, NULL); 12401 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12402 return ret; 12403 } 12404 12405 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12406 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12407 hwaddr *phys_ptr, int *prot, 12408 ARMMMUFaultInfo *fi) 12409 { 12410 int n; 12411 uint32_t mask; 12412 uint32_t base; 12413 bool is_user = regime_is_user(env, mmu_idx); 12414 12415 if (regime_translation_disabled(env, mmu_idx)) { 12416 /* MPU disabled. */ 12417 *phys_ptr = address; 12418 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12419 return false; 12420 } 12421 12422 *phys_ptr = address; 12423 for (n = 7; n >= 0; n--) { 12424 base = env->cp15.c6_region[n]; 12425 if ((base & 1) == 0) { 12426 continue; 12427 } 12428 mask = 1 << ((base >> 1) & 0x1f); 12429 /* Keep this shift separate from the above to avoid an 12430 (undefined) << 32. */ 12431 mask = (mask << 1) - 1; 12432 if (((base ^ address) & ~mask) == 0) { 12433 break; 12434 } 12435 } 12436 if (n < 0) { 12437 fi->type = ARMFault_Background; 12438 return true; 12439 } 12440 12441 if (access_type == MMU_INST_FETCH) { 12442 mask = env->cp15.pmsav5_insn_ap; 12443 } else { 12444 mask = env->cp15.pmsav5_data_ap; 12445 } 12446 mask = (mask >> (n * 4)) & 0xf; 12447 switch (mask) { 12448 case 0: 12449 fi->type = ARMFault_Permission; 12450 fi->level = 1; 12451 return true; 12452 case 1: 12453 if (is_user) { 12454 fi->type = ARMFault_Permission; 12455 fi->level = 1; 12456 return true; 12457 } 12458 *prot = PAGE_READ | PAGE_WRITE; 12459 break; 12460 case 2: 12461 *prot = PAGE_READ; 12462 if (!is_user) { 12463 *prot |= PAGE_WRITE; 12464 } 12465 break; 12466 case 3: 12467 *prot = PAGE_READ | PAGE_WRITE; 12468 break; 12469 case 5: 12470 if (is_user) { 12471 fi->type = ARMFault_Permission; 12472 fi->level = 1; 12473 return true; 12474 } 12475 *prot = PAGE_READ; 12476 break; 12477 case 6: 12478 *prot = PAGE_READ; 12479 break; 12480 default: 12481 /* Bad permission. */ 12482 fi->type = ARMFault_Permission; 12483 fi->level = 1; 12484 return true; 12485 } 12486 *prot |= PAGE_EXEC; 12487 return false; 12488 } 12489 12490 /* Combine either inner or outer cacheability attributes for normal 12491 * memory, according to table D4-42 and pseudocode procedure 12492 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12493 * 12494 * NB: only stage 1 includes allocation hints (RW bits), leading to 12495 * some asymmetry. 12496 */ 12497 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12498 { 12499 if (s1 == 4 || s2 == 4) { 12500 /* non-cacheable has precedence */ 12501 return 4; 12502 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12503 /* stage 1 write-through takes precedence */ 12504 return s1; 12505 } else if (extract32(s2, 2, 2) == 2) { 12506 /* stage 2 write-through takes precedence, but the allocation hint 12507 * is still taken from stage 1 12508 */ 12509 return (2 << 2) | extract32(s1, 0, 2); 12510 } else { /* write-back */ 12511 return s1; 12512 } 12513 } 12514 12515 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12516 * and CombineS1S2Desc() 12517 * 12518 * @s1: Attributes from stage 1 walk 12519 * @s2: Attributes from stage 2 walk 12520 */ 12521 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12522 { 12523 uint8_t s1lo, s2lo, s1hi, s2hi; 12524 ARMCacheAttrs ret; 12525 bool tagged = false; 12526 12527 if (s1.attrs == 0xf0) { 12528 tagged = true; 12529 s1.attrs = 0xff; 12530 } 12531 12532 s1lo = extract32(s1.attrs, 0, 4); 12533 s2lo = extract32(s2.attrs, 0, 4); 12534 s1hi = extract32(s1.attrs, 4, 4); 12535 s2hi = extract32(s2.attrs, 4, 4); 12536 12537 /* Combine shareability attributes (table D4-43) */ 12538 if (s1.shareability == 2 || s2.shareability == 2) { 12539 /* if either are outer-shareable, the result is outer-shareable */ 12540 ret.shareability = 2; 12541 } else if (s1.shareability == 3 || s2.shareability == 3) { 12542 /* if either are inner-shareable, the result is inner-shareable */ 12543 ret.shareability = 3; 12544 } else { 12545 /* both non-shareable */ 12546 ret.shareability = 0; 12547 } 12548 12549 /* Combine memory type and cacheability attributes */ 12550 if (s1hi == 0 || s2hi == 0) { 12551 /* Device has precedence over normal */ 12552 if (s1lo == 0 || s2lo == 0) { 12553 /* nGnRnE has precedence over anything */ 12554 ret.attrs = 0; 12555 } else if (s1lo == 4 || s2lo == 4) { 12556 /* non-Reordering has precedence over Reordering */ 12557 ret.attrs = 4; /* nGnRE */ 12558 } else if (s1lo == 8 || s2lo == 8) { 12559 /* non-Gathering has precedence over Gathering */ 12560 ret.attrs = 8; /* nGRE */ 12561 } else { 12562 ret.attrs = 0xc; /* GRE */ 12563 } 12564 12565 /* Any location for which the resultant memory type is any 12566 * type of Device memory is always treated as Outer Shareable. 12567 */ 12568 ret.shareability = 2; 12569 } else { /* Normal memory */ 12570 /* Outer/inner cacheability combine independently */ 12571 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12572 | combine_cacheattr_nibble(s1lo, s2lo); 12573 12574 if (ret.attrs == 0x44) { 12575 /* Any location for which the resultant memory type is Normal 12576 * Inner Non-cacheable, Outer Non-cacheable is always treated 12577 * as Outer Shareable. 12578 */ 12579 ret.shareability = 2; 12580 } 12581 } 12582 12583 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12584 if (tagged && ret.attrs == 0xff) { 12585 ret.attrs = 0xf0; 12586 } 12587 12588 return ret; 12589 } 12590 12591 12592 /* get_phys_addr - get the physical address for this virtual address 12593 * 12594 * Find the physical address corresponding to the given virtual address, 12595 * by doing a translation table walk on MMU based systems or using the 12596 * MPU state on MPU based systems. 12597 * 12598 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12599 * prot and page_size may not be filled in, and the populated fsr value provides 12600 * information on why the translation aborted, in the format of a 12601 * DFSR/IFSR fault register, with the following caveats: 12602 * * we honour the short vs long DFSR format differences. 12603 * * the WnR bit is never set (the caller must do this). 12604 * * for PSMAv5 based systems we don't bother to return a full FSR format 12605 * value. 12606 * 12607 * @env: CPUARMState 12608 * @address: virtual address to get physical address for 12609 * @access_type: 0 for read, 1 for write, 2 for execute 12610 * @mmu_idx: MMU index indicating required translation regime 12611 * @phys_ptr: set to the physical address corresponding to the virtual address 12612 * @attrs: set to the memory transaction attributes to use 12613 * @prot: set to the permissions for the page containing phys_ptr 12614 * @page_size: set to the size of the page containing phys_ptr 12615 * @fi: set to fault info if the translation fails 12616 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12617 */ 12618 bool get_phys_addr(CPUARMState *env, target_ulong address, 12619 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12620 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12621 target_ulong *page_size, 12622 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12623 { 12624 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12625 12626 if (mmu_idx != s1_mmu_idx) { 12627 /* Call ourselves recursively to do the stage 1 and then stage 2 12628 * translations if mmu_idx is a two-stage regime. 12629 */ 12630 if (arm_feature(env, ARM_FEATURE_EL2)) { 12631 hwaddr ipa; 12632 int s2_prot; 12633 int ret; 12634 bool ipa_secure; 12635 ARMCacheAttrs cacheattrs2 = {}; 12636 ARMMMUIdx s2_mmu_idx; 12637 bool is_el0; 12638 12639 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12640 attrs, prot, page_size, fi, cacheattrs); 12641 12642 /* If S1 fails or S2 is disabled, return early. */ 12643 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12644 *phys_ptr = ipa; 12645 return ret; 12646 } 12647 12648 ipa_secure = attrs->secure; 12649 if (arm_is_secure_below_el3(env)) { 12650 if (ipa_secure) { 12651 attrs->secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 12652 } else { 12653 attrs->secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 12654 } 12655 } else { 12656 assert(!ipa_secure); 12657 } 12658 12659 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12660 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12661 12662 /* S1 is done. Now do S2 translation. */ 12663 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12664 phys_ptr, attrs, &s2_prot, 12665 page_size, fi, &cacheattrs2); 12666 fi->s2addr = ipa; 12667 /* Combine the S1 and S2 perms. */ 12668 *prot &= s2_prot; 12669 12670 /* If S2 fails, return early. */ 12671 if (ret) { 12672 return ret; 12673 } 12674 12675 /* Combine the S1 and S2 cache attributes. */ 12676 if (arm_hcr_el2_eff(env) & HCR_DC) { 12677 /* 12678 * HCR.DC forces the first stage attributes to 12679 * Normal Non-Shareable, 12680 * Inner Write-Back Read-Allocate Write-Allocate, 12681 * Outer Write-Back Read-Allocate Write-Allocate. 12682 * Do not overwrite Tagged within attrs. 12683 */ 12684 if (cacheattrs->attrs != 0xf0) { 12685 cacheattrs->attrs = 0xff; 12686 } 12687 cacheattrs->shareability = 0; 12688 } 12689 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12690 12691 /* Check if IPA translates to secure or non-secure PA space. */ 12692 if (arm_is_secure_below_el3(env)) { 12693 if (ipa_secure) { 12694 attrs->secure = 12695 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12696 } else { 12697 attrs->secure = 12698 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12699 || (env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW))); 12700 } 12701 } 12702 return 0; 12703 } else { 12704 /* 12705 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12706 */ 12707 mmu_idx = stage_1_mmu_idx(mmu_idx); 12708 } 12709 } 12710 12711 /* The page table entries may downgrade secure to non-secure, but 12712 * cannot upgrade an non-secure translation regime's attributes 12713 * to secure. 12714 */ 12715 attrs->secure = regime_is_secure(env, mmu_idx); 12716 attrs->user = regime_is_user(env, mmu_idx); 12717 12718 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12719 * In v7 and earlier it affects all stage 1 translations. 12720 */ 12721 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12722 && !arm_feature(env, ARM_FEATURE_V8)) { 12723 if (regime_el(env, mmu_idx) == 3) { 12724 address += env->cp15.fcseidr_s; 12725 } else { 12726 address += env->cp15.fcseidr_ns; 12727 } 12728 } 12729 12730 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12731 bool ret; 12732 *page_size = TARGET_PAGE_SIZE; 12733 12734 if (arm_feature(env, ARM_FEATURE_V8)) { 12735 /* PMSAv8 */ 12736 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12737 phys_ptr, attrs, prot, page_size, fi); 12738 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12739 /* PMSAv7 */ 12740 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12741 phys_ptr, prot, page_size, fi); 12742 } else { 12743 /* Pre-v7 MPU */ 12744 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12745 phys_ptr, prot, fi); 12746 } 12747 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12748 " mmu_idx %u -> %s (prot %c%c%c)\n", 12749 access_type == MMU_DATA_LOAD ? "reading" : 12750 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12751 (uint32_t)address, mmu_idx, 12752 ret ? "Miss" : "Hit", 12753 *prot & PAGE_READ ? 'r' : '-', 12754 *prot & PAGE_WRITE ? 'w' : '-', 12755 *prot & PAGE_EXEC ? 'x' : '-'); 12756 12757 return ret; 12758 } 12759 12760 /* Definitely a real MMU, not an MPU */ 12761 12762 if (regime_translation_disabled(env, mmu_idx)) { 12763 uint64_t hcr; 12764 uint8_t memattr; 12765 12766 /* 12767 * MMU disabled. S1 addresses within aa64 translation regimes are 12768 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12769 */ 12770 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12771 int r_el = regime_el(env, mmu_idx); 12772 if (arm_el_is_aa64(env, r_el)) { 12773 int pamax = arm_pamax(env_archcpu(env)); 12774 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12775 int addrtop, tbi; 12776 12777 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12778 if (access_type == MMU_INST_FETCH) { 12779 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12780 } 12781 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12782 addrtop = (tbi ? 55 : 63); 12783 12784 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12785 fi->type = ARMFault_AddressSize; 12786 fi->level = 0; 12787 fi->stage2 = false; 12788 return 1; 12789 } 12790 12791 /* 12792 * When TBI is disabled, we've just validated that all of the 12793 * bits above PAMax are zero, so logically we only need to 12794 * clear the top byte for TBI. But it's clearer to follow 12795 * the pseudocode set of addrdesc.paddress. 12796 */ 12797 address = extract64(address, 0, 52); 12798 } 12799 } 12800 *phys_ptr = address; 12801 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12802 *page_size = TARGET_PAGE_SIZE; 12803 12804 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12805 hcr = arm_hcr_el2_eff(env); 12806 cacheattrs->shareability = 0; 12807 if (hcr & HCR_DC) { 12808 if (hcr & HCR_DCT) { 12809 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12810 } else { 12811 memattr = 0xff; /* Normal, WB, RWA */ 12812 } 12813 } else if (access_type == MMU_INST_FETCH) { 12814 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12815 memattr = 0xee; /* Normal, WT, RA, NT */ 12816 } else { 12817 memattr = 0x44; /* Normal, NC, No */ 12818 } 12819 cacheattrs->shareability = 2; /* outer sharable */ 12820 } else { 12821 memattr = 0x00; /* Device, nGnRnE */ 12822 } 12823 cacheattrs->attrs = memattr; 12824 return 0; 12825 } 12826 12827 if (regime_using_lpae_format(env, mmu_idx)) { 12828 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12829 phys_ptr, attrs, prot, page_size, 12830 fi, cacheattrs); 12831 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12832 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12833 phys_ptr, attrs, prot, page_size, fi); 12834 } else { 12835 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12836 phys_ptr, prot, page_size, fi); 12837 } 12838 } 12839 12840 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12841 MemTxAttrs *attrs) 12842 { 12843 ARMCPU *cpu = ARM_CPU(cs); 12844 CPUARMState *env = &cpu->env; 12845 hwaddr phys_addr; 12846 target_ulong page_size; 12847 int prot; 12848 bool ret; 12849 ARMMMUFaultInfo fi = {}; 12850 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12851 ARMCacheAttrs cacheattrs = {}; 12852 12853 *attrs = (MemTxAttrs) {}; 12854 12855 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 12856 attrs, &prot, &page_size, &fi, &cacheattrs); 12857 12858 if (ret) { 12859 return -1; 12860 } 12861 return phys_addr; 12862 } 12863 12864 #endif 12865 12866 /* Note that signed overflow is undefined in C. The following routines are 12867 careful to use unsigned types where modulo arithmetic is required. 12868 Failure to do so _will_ break on newer gcc. */ 12869 12870 /* Signed saturating arithmetic. */ 12871 12872 /* Perform 16-bit signed saturating addition. */ 12873 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12874 { 12875 uint16_t res; 12876 12877 res = a + b; 12878 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12879 if (a & 0x8000) 12880 res = 0x8000; 12881 else 12882 res = 0x7fff; 12883 } 12884 return res; 12885 } 12886 12887 /* Perform 8-bit signed saturating addition. */ 12888 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12889 { 12890 uint8_t res; 12891 12892 res = a + b; 12893 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12894 if (a & 0x80) 12895 res = 0x80; 12896 else 12897 res = 0x7f; 12898 } 12899 return res; 12900 } 12901 12902 /* Perform 16-bit signed saturating subtraction. */ 12903 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12904 { 12905 uint16_t res; 12906 12907 res = a - b; 12908 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12909 if (a & 0x8000) 12910 res = 0x8000; 12911 else 12912 res = 0x7fff; 12913 } 12914 return res; 12915 } 12916 12917 /* Perform 8-bit signed saturating subtraction. */ 12918 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12919 { 12920 uint8_t res; 12921 12922 res = a - b; 12923 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12924 if (a & 0x80) 12925 res = 0x80; 12926 else 12927 res = 0x7f; 12928 } 12929 return res; 12930 } 12931 12932 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12933 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12934 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12935 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12936 #define PFX q 12937 12938 #include "op_addsub.h" 12939 12940 /* Unsigned saturating arithmetic. */ 12941 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12942 { 12943 uint16_t res; 12944 res = a + b; 12945 if (res < a) 12946 res = 0xffff; 12947 return res; 12948 } 12949 12950 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12951 { 12952 if (a > b) 12953 return a - b; 12954 else 12955 return 0; 12956 } 12957 12958 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12959 { 12960 uint8_t res; 12961 res = a + b; 12962 if (res < a) 12963 res = 0xff; 12964 return res; 12965 } 12966 12967 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12968 { 12969 if (a > b) 12970 return a - b; 12971 else 12972 return 0; 12973 } 12974 12975 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12976 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12977 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12978 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12979 #define PFX uq 12980 12981 #include "op_addsub.h" 12982 12983 /* Signed modulo arithmetic. */ 12984 #define SARITH16(a, b, n, op) do { \ 12985 int32_t sum; \ 12986 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12987 RESULT(sum, n, 16); \ 12988 if (sum >= 0) \ 12989 ge |= 3 << (n * 2); \ 12990 } while(0) 12991 12992 #define SARITH8(a, b, n, op) do { \ 12993 int32_t sum; \ 12994 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12995 RESULT(sum, n, 8); \ 12996 if (sum >= 0) \ 12997 ge |= 1 << n; \ 12998 } while(0) 12999 13000 13001 #define ADD16(a, b, n) SARITH16(a, b, n, +) 13002 #define SUB16(a, b, n) SARITH16(a, b, n, -) 13003 #define ADD8(a, b, n) SARITH8(a, b, n, +) 13004 #define SUB8(a, b, n) SARITH8(a, b, n, -) 13005 #define PFX s 13006 #define ARITH_GE 13007 13008 #include "op_addsub.h" 13009 13010 /* Unsigned modulo arithmetic. */ 13011 #define ADD16(a, b, n) do { \ 13012 uint32_t sum; \ 13013 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 13014 RESULT(sum, n, 16); \ 13015 if ((sum >> 16) == 1) \ 13016 ge |= 3 << (n * 2); \ 13017 } while(0) 13018 13019 #define ADD8(a, b, n) do { \ 13020 uint32_t sum; \ 13021 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 13022 RESULT(sum, n, 8); \ 13023 if ((sum >> 8) == 1) \ 13024 ge |= 1 << n; \ 13025 } while(0) 13026 13027 #define SUB16(a, b, n) do { \ 13028 uint32_t sum; \ 13029 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 13030 RESULT(sum, n, 16); \ 13031 if ((sum >> 16) == 0) \ 13032 ge |= 3 << (n * 2); \ 13033 } while(0) 13034 13035 #define SUB8(a, b, n) do { \ 13036 uint32_t sum; \ 13037 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 13038 RESULT(sum, n, 8); \ 13039 if ((sum >> 8) == 0) \ 13040 ge |= 1 << n; \ 13041 } while(0) 13042 13043 #define PFX u 13044 #define ARITH_GE 13045 13046 #include "op_addsub.h" 13047 13048 /* Halved signed arithmetic. */ 13049 #define ADD16(a, b, n) \ 13050 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 13051 #define SUB16(a, b, n) \ 13052 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 13053 #define ADD8(a, b, n) \ 13054 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 13055 #define SUB8(a, b, n) \ 13056 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 13057 #define PFX sh 13058 13059 #include "op_addsub.h" 13060 13061 /* Halved unsigned arithmetic. */ 13062 #define ADD16(a, b, n) \ 13063 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13064 #define SUB16(a, b, n) \ 13065 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13066 #define ADD8(a, b, n) \ 13067 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13068 #define SUB8(a, b, n) \ 13069 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13070 #define PFX uh 13071 13072 #include "op_addsub.h" 13073 13074 static inline uint8_t do_usad(uint8_t a, uint8_t b) 13075 { 13076 if (a > b) 13077 return a - b; 13078 else 13079 return b - a; 13080 } 13081 13082 /* Unsigned sum of absolute byte differences. */ 13083 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 13084 { 13085 uint32_t sum; 13086 sum = do_usad(a, b); 13087 sum += do_usad(a >> 8, b >> 8); 13088 sum += do_usad(a >> 16, b >> 16); 13089 sum += do_usad(a >> 24, b >> 24); 13090 return sum; 13091 } 13092 13093 /* For ARMv6 SEL instruction. */ 13094 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 13095 { 13096 uint32_t mask; 13097 13098 mask = 0; 13099 if (flags & 1) 13100 mask |= 0xff; 13101 if (flags & 2) 13102 mask |= 0xff00; 13103 if (flags & 4) 13104 mask |= 0xff0000; 13105 if (flags & 8) 13106 mask |= 0xff000000; 13107 return (a & mask) | (b & ~mask); 13108 } 13109 13110 /* CRC helpers. 13111 * The upper bytes of val (above the number specified by 'bytes') must have 13112 * been zeroed out by the caller. 13113 */ 13114 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 13115 { 13116 uint8_t buf[4]; 13117 13118 stl_le_p(buf, val); 13119 13120 /* zlib crc32 converts the accumulator and output to one's complement. */ 13121 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 13122 } 13123 13124 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 13125 { 13126 uint8_t buf[4]; 13127 13128 stl_le_p(buf, val); 13129 13130 /* Linux crc32c converts the output to one's complement. */ 13131 return crc32c(acc, buf, bytes) ^ 0xffffffff; 13132 } 13133 13134 /* Return the exception level to which FP-disabled exceptions should 13135 * be taken, or 0 if FP is enabled. 13136 */ 13137 int fp_exception_el(CPUARMState *env, int cur_el) 13138 { 13139 #ifndef CONFIG_USER_ONLY 13140 uint64_t hcr_el2; 13141 13142 /* CPACR and the CPTR registers don't exist before v6, so FP is 13143 * always accessible 13144 */ 13145 if (!arm_feature(env, ARM_FEATURE_V6)) { 13146 return 0; 13147 } 13148 13149 if (arm_feature(env, ARM_FEATURE_M)) { 13150 /* CPACR can cause a NOCP UsageFault taken to current security state */ 13151 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 13152 return 1; 13153 } 13154 13155 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 13156 if (!extract32(env->v7m.nsacr, 10, 1)) { 13157 /* FP insns cause a NOCP UsageFault taken to Secure */ 13158 return 3; 13159 } 13160 } 13161 13162 return 0; 13163 } 13164 13165 hcr_el2 = arm_hcr_el2_eff(env); 13166 13167 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 13168 * 0, 2 : trap EL0 and EL1/PL1 accesses 13169 * 1 : trap only EL0 accesses 13170 * 3 : trap no accesses 13171 * This register is ignored if E2H+TGE are both set. 13172 */ 13173 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13174 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 13175 13176 switch (fpen) { 13177 case 0: 13178 case 2: 13179 if (cur_el == 0 || cur_el == 1) { 13180 /* Trap to PL1, which might be EL1 or EL3 */ 13181 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 13182 return 3; 13183 } 13184 return 1; 13185 } 13186 if (cur_el == 3 && !is_a64(env)) { 13187 /* Secure PL1 running at EL3 */ 13188 return 3; 13189 } 13190 break; 13191 case 1: 13192 if (cur_el == 0) { 13193 return 1; 13194 } 13195 break; 13196 case 3: 13197 break; 13198 } 13199 } 13200 13201 /* 13202 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 13203 * to control non-secure access to the FPU. It doesn't have any 13204 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 13205 */ 13206 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 13207 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 13208 if (!extract32(env->cp15.nsacr, 10, 1)) { 13209 /* FP insns act as UNDEF */ 13210 return cur_el == 2 ? 2 : 1; 13211 } 13212 } 13213 13214 /* 13215 * CPTR_EL2 is present in v7VE or v8, and changes format 13216 * with HCR_EL2.E2H (regardless of TGE). 13217 */ 13218 if (cur_el <= 2) { 13219 if (hcr_el2 & HCR_E2H) { 13220 /* Check CPTR_EL2.FPEN. */ 13221 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 13222 case 1: 13223 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 13224 break; 13225 } 13226 /* fall through */ 13227 case 0: 13228 case 2: 13229 return 2; 13230 } 13231 } else if (arm_is_el2_enabled(env)) { 13232 if (env->cp15.cptr_el[2] & CPTR_TFP) { 13233 return 2; 13234 } 13235 } 13236 } 13237 13238 /* CPTR_EL3 : present in v8 */ 13239 if (env->cp15.cptr_el[3] & CPTR_TFP) { 13240 /* Trap all FP ops to EL3 */ 13241 return 3; 13242 } 13243 #endif 13244 return 0; 13245 } 13246 13247 /* Return the exception level we're running at if this is our mmu_idx */ 13248 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 13249 { 13250 if (mmu_idx & ARM_MMU_IDX_M) { 13251 return mmu_idx & ARM_MMU_IDX_M_PRIV; 13252 } 13253 13254 switch (mmu_idx) { 13255 case ARMMMUIdx_E10_0: 13256 case ARMMMUIdx_E20_0: 13257 case ARMMMUIdx_SE10_0: 13258 case ARMMMUIdx_SE20_0: 13259 return 0; 13260 case ARMMMUIdx_E10_1: 13261 case ARMMMUIdx_E10_1_PAN: 13262 case ARMMMUIdx_SE10_1: 13263 case ARMMMUIdx_SE10_1_PAN: 13264 return 1; 13265 case ARMMMUIdx_E2: 13266 case ARMMMUIdx_E20_2: 13267 case ARMMMUIdx_E20_2_PAN: 13268 case ARMMMUIdx_SE2: 13269 case ARMMMUIdx_SE20_2: 13270 case ARMMMUIdx_SE20_2_PAN: 13271 return 2; 13272 case ARMMMUIdx_SE3: 13273 return 3; 13274 default: 13275 g_assert_not_reached(); 13276 } 13277 } 13278 13279 #ifndef CONFIG_TCG 13280 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13281 { 13282 g_assert_not_reached(); 13283 } 13284 #endif 13285 13286 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 13287 { 13288 ARMMMUIdx idx; 13289 uint64_t hcr; 13290 13291 if (arm_feature(env, ARM_FEATURE_M)) { 13292 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13293 } 13294 13295 /* See ARM pseudo-function ELIsInHost. */ 13296 switch (el) { 13297 case 0: 13298 hcr = arm_hcr_el2_eff(env); 13299 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 13300 idx = ARMMMUIdx_E20_0; 13301 } else { 13302 idx = ARMMMUIdx_E10_0; 13303 } 13304 break; 13305 case 1: 13306 if (env->pstate & PSTATE_PAN) { 13307 idx = ARMMMUIdx_E10_1_PAN; 13308 } else { 13309 idx = ARMMMUIdx_E10_1; 13310 } 13311 break; 13312 case 2: 13313 /* Note that TGE does not apply at EL2. */ 13314 if (arm_hcr_el2_eff(env) & HCR_E2H) { 13315 if (env->pstate & PSTATE_PAN) { 13316 idx = ARMMMUIdx_E20_2_PAN; 13317 } else { 13318 idx = ARMMMUIdx_E20_2; 13319 } 13320 } else { 13321 idx = ARMMMUIdx_E2; 13322 } 13323 break; 13324 case 3: 13325 return ARMMMUIdx_SE3; 13326 default: 13327 g_assert_not_reached(); 13328 } 13329 13330 if (arm_is_secure_below_el3(env)) { 13331 idx &= ~ARM_MMU_IDX_A_NS; 13332 } 13333 13334 return idx; 13335 } 13336 13337 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13338 { 13339 return arm_mmu_idx_el(env, arm_current_el(env)); 13340 } 13341 13342 #ifndef CONFIG_USER_ONLY 13343 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13344 { 13345 return stage_1_mmu_idx(arm_mmu_idx(env)); 13346 } 13347 #endif 13348 13349 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 13350 ARMMMUIdx mmu_idx, 13351 CPUARMTBFlags flags) 13352 { 13353 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 13354 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13355 13356 if (arm_singlestep_active(env)) { 13357 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 13358 } 13359 return flags; 13360 } 13361 13362 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13363 ARMMMUIdx mmu_idx, 13364 CPUARMTBFlags flags) 13365 { 13366 bool sctlr_b = arm_sctlr_b(env); 13367 13368 if (sctlr_b) { 13369 DP_TBFLAG_A32(flags, SCTLR__B, 1); 13370 } 13371 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13372 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13373 } 13374 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 13375 13376 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13377 } 13378 13379 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 13380 ARMMMUIdx mmu_idx) 13381 { 13382 CPUARMTBFlags flags = {}; 13383 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 13384 13385 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 13386 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 13387 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13388 } 13389 13390 if (arm_v7m_is_handler_mode(env)) { 13391 DP_TBFLAG_M32(flags, HANDLER, 1); 13392 } 13393 13394 /* 13395 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13396 * is suppressing them because the requested execution priority 13397 * is less than 0. 13398 */ 13399 if (arm_feature(env, ARM_FEATURE_V8) && 13400 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13401 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13402 DP_TBFLAG_M32(flags, STACKCHECK, 1); 13403 } 13404 13405 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13406 } 13407 13408 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) 13409 { 13410 CPUARMTBFlags flags = {}; 13411 13412 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); 13413 return flags; 13414 } 13415 13416 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 13417 ARMMMUIdx mmu_idx) 13418 { 13419 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13420 int el = arm_current_el(env); 13421 13422 if (arm_sctlr(env, el) & SCTLR_A) { 13423 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13424 } 13425 13426 if (arm_el_is_aa64(env, 1)) { 13427 DP_TBFLAG_A32(flags, VFPEN, 1); 13428 } 13429 13430 if (el < 2 && env->cp15.hstr_el2 && 13431 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13432 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 13433 } 13434 13435 if (env->uncached_cpsr & CPSR_IL) { 13436 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13437 } 13438 13439 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13440 } 13441 13442 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13443 ARMMMUIdx mmu_idx) 13444 { 13445 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13446 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13447 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13448 uint64_t sctlr; 13449 int tbii, tbid; 13450 13451 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 13452 13453 /* Get control bits for tagged addresses. */ 13454 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13455 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13456 13457 DP_TBFLAG_A64(flags, TBII, tbii); 13458 DP_TBFLAG_A64(flags, TBID, tbid); 13459 13460 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13461 int sve_el = sve_exception_el(env, el); 13462 uint32_t zcr_len; 13463 13464 /* 13465 * If SVE is disabled, but FP is enabled, 13466 * then the effective len is 0. 13467 */ 13468 if (sve_el != 0 && fp_el == 0) { 13469 zcr_len = 0; 13470 } else { 13471 zcr_len = sve_zcr_len_for_el(env, el); 13472 } 13473 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 13474 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len); 13475 } 13476 13477 sctlr = regime_sctlr(env, stage1); 13478 13479 if (sctlr & SCTLR_A) { 13480 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13481 } 13482 13483 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13484 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13485 } 13486 13487 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13488 /* 13489 * In order to save space in flags, we record only whether 13490 * pauth is "inactive", meaning all insns are implemented as 13491 * a nop, or "active" when some action must be performed. 13492 * The decision of which action to take is left to a helper. 13493 */ 13494 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13495 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 13496 } 13497 } 13498 13499 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13500 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13501 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13502 DP_TBFLAG_A64(flags, BT, 1); 13503 } 13504 } 13505 13506 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13507 if (!(env->pstate & PSTATE_UAO)) { 13508 switch (mmu_idx) { 13509 case ARMMMUIdx_E10_1: 13510 case ARMMMUIdx_E10_1_PAN: 13511 case ARMMMUIdx_SE10_1: 13512 case ARMMMUIdx_SE10_1_PAN: 13513 /* TODO: ARMv8.3-NV */ 13514 DP_TBFLAG_A64(flags, UNPRIV, 1); 13515 break; 13516 case ARMMMUIdx_E20_2: 13517 case ARMMMUIdx_E20_2_PAN: 13518 case ARMMMUIdx_SE20_2: 13519 case ARMMMUIdx_SE20_2_PAN: 13520 /* 13521 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13522 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13523 */ 13524 if (env->cp15.hcr_el2 & HCR_TGE) { 13525 DP_TBFLAG_A64(flags, UNPRIV, 1); 13526 } 13527 break; 13528 default: 13529 break; 13530 } 13531 } 13532 13533 if (env->pstate & PSTATE_IL) { 13534 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13535 } 13536 13537 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13538 /* 13539 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13540 * if all accesses must be Unchecked: 13541 * 1) If no TBI, then there are no tags in the address to check, 13542 * 2) If Tag Check Override, then all accesses are Unchecked, 13543 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13544 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13545 */ 13546 if (allocation_tag_access_enabled(env, el, sctlr)) { 13547 DP_TBFLAG_A64(flags, ATA, 1); 13548 if (tbid 13549 && !(env->pstate & PSTATE_TCO) 13550 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13551 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 13552 } 13553 } 13554 /* And again for unprivileged accesses, if required. */ 13555 if (EX_TBFLAG_A64(flags, UNPRIV) 13556 && tbid 13557 && !(env->pstate & PSTATE_TCO) 13558 && (sctlr & SCTLR_TCF0) 13559 && allocation_tag_access_enabled(env, 0, sctlr)) { 13560 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 13561 } 13562 /* Cache TCMA as well as TBI. */ 13563 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 13564 } 13565 13566 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13567 } 13568 13569 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 13570 { 13571 int el = arm_current_el(env); 13572 int fp_el = fp_exception_el(env, el); 13573 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13574 13575 if (is_a64(env)) { 13576 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13577 } else if (arm_feature(env, ARM_FEATURE_M)) { 13578 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13579 } else { 13580 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13581 } 13582 } 13583 13584 void arm_rebuild_hflags(CPUARMState *env) 13585 { 13586 env->hflags = rebuild_hflags_internal(env); 13587 } 13588 13589 /* 13590 * If we have triggered a EL state change we can't rely on the 13591 * translator having passed it to us, we need to recompute. 13592 */ 13593 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13594 { 13595 int el = arm_current_el(env); 13596 int fp_el = fp_exception_el(env, el); 13597 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13598 13599 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13600 } 13601 13602 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13603 { 13604 int fp_el = fp_exception_el(env, el); 13605 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13606 13607 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13608 } 13609 13610 /* 13611 * If we have triggered a EL state change we can't rely on the 13612 * translator having passed it to us, we need to recompute. 13613 */ 13614 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13615 { 13616 int el = arm_current_el(env); 13617 int fp_el = fp_exception_el(env, el); 13618 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13619 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13620 } 13621 13622 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13623 { 13624 int fp_el = fp_exception_el(env, el); 13625 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13626 13627 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13628 } 13629 13630 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13631 { 13632 int fp_el = fp_exception_el(env, el); 13633 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13634 13635 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13636 } 13637 13638 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13639 { 13640 #ifdef CONFIG_DEBUG_TCG 13641 CPUARMTBFlags c = env->hflags; 13642 CPUARMTBFlags r = rebuild_hflags_internal(env); 13643 13644 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 13645 fprintf(stderr, "TCG hflags mismatch " 13646 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 13647 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 13648 c.flags, c.flags2, r.flags, r.flags2); 13649 abort(); 13650 } 13651 #endif 13652 } 13653 13654 static bool mve_no_pred(CPUARMState *env) 13655 { 13656 /* 13657 * Return true if there is definitely no predication of MVE 13658 * instructions by VPR or LTPSIZE. (Returning false even if there 13659 * isn't any predication is OK; generated code will just be 13660 * a little worse.) 13661 * If the CPU does not implement MVE then this TB flag is always 0. 13662 * 13663 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 13664 * logic in gen_update_fp_context() needs to be updated to match. 13665 * 13666 * We do not include the effect of the ECI bits here -- they are 13667 * tracked in other TB flags. This simplifies the logic for 13668 * "when did we emit code that changes the MVE_NO_PRED TB flag 13669 * and thus need to end the TB?". 13670 */ 13671 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 13672 return false; 13673 } 13674 if (env->v7m.vpr) { 13675 return false; 13676 } 13677 if (env->v7m.ltpsize < 4) { 13678 return false; 13679 } 13680 return true; 13681 } 13682 13683 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13684 target_ulong *cs_base, uint32_t *pflags) 13685 { 13686 CPUARMTBFlags flags; 13687 13688 assert_hflags_rebuild_correctly(env); 13689 flags = env->hflags; 13690 13691 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 13692 *pc = env->pc; 13693 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13694 DP_TBFLAG_A64(flags, BTYPE, env->btype); 13695 } 13696 } else { 13697 *pc = env->regs[15]; 13698 13699 if (arm_feature(env, ARM_FEATURE_M)) { 13700 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13701 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13702 != env->v7m.secure) { 13703 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 13704 } 13705 13706 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13707 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13708 (env->v7m.secure && 13709 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13710 /* 13711 * ASPEN is set, but FPCA/SFPA indicate that there is no 13712 * active FP context; we must create a new FP context before 13713 * executing any FP insn. 13714 */ 13715 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 13716 } 13717 13718 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13719 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13720 DP_TBFLAG_M32(flags, LSPACT, 1); 13721 } 13722 13723 if (mve_no_pred(env)) { 13724 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 13725 } 13726 } else { 13727 /* 13728 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13729 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13730 */ 13731 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13732 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 13733 } else { 13734 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 13735 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 13736 } 13737 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13738 DP_TBFLAG_A32(flags, VFPEN, 1); 13739 } 13740 } 13741 13742 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 13743 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 13744 } 13745 13746 /* 13747 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13748 * states defined in the ARM ARM for software singlestep: 13749 * SS_ACTIVE PSTATE.SS State 13750 * 0 x Inactive (the TB flag for SS is always 0) 13751 * 1 0 Active-pending 13752 * 1 1 Active-not-pending 13753 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 13754 */ 13755 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 13756 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 13757 } 13758 13759 *pflags = flags.flags; 13760 *cs_base = flags.flags2; 13761 } 13762 13763 #ifdef TARGET_AARCH64 13764 /* 13765 * The manual says that when SVE is enabled and VQ is widened the 13766 * implementation is allowed to zero the previously inaccessible 13767 * portion of the registers. The corollary to that is that when 13768 * SVE is enabled and VQ is narrowed we are also allowed to zero 13769 * the now inaccessible portion of the registers. 13770 * 13771 * The intent of this is that no predicate bit beyond VQ is ever set. 13772 * Which means that some operations on predicate registers themselves 13773 * may operate on full uint64_t or even unrolled across the maximum 13774 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13775 * may well be cheaper than conditionals to restrict the operation 13776 * to the relevant portion of a uint16_t[16]. 13777 */ 13778 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13779 { 13780 int i, j; 13781 uint64_t pmask; 13782 13783 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13784 assert(vq <= env_archcpu(env)->sve_max_vq); 13785 13786 /* Zap the high bits of the zregs. */ 13787 for (i = 0; i < 32; i++) { 13788 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13789 } 13790 13791 /* Zap the high bits of the pregs and ffr. */ 13792 pmask = 0; 13793 if (vq & 3) { 13794 pmask = ~(-1ULL << (16 * (vq & 3))); 13795 } 13796 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13797 for (i = 0; i < 17; ++i) { 13798 env->vfp.pregs[i].p[j] &= pmask; 13799 } 13800 pmask = 0; 13801 } 13802 } 13803 13804 /* 13805 * Notice a change in SVE vector size when changing EL. 13806 */ 13807 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13808 int new_el, bool el0_a64) 13809 { 13810 ARMCPU *cpu = env_archcpu(env); 13811 int old_len, new_len; 13812 bool old_a64, new_a64; 13813 13814 /* Nothing to do if no SVE. */ 13815 if (!cpu_isar_feature(aa64_sve, cpu)) { 13816 return; 13817 } 13818 13819 /* Nothing to do if FP is disabled in either EL. */ 13820 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13821 return; 13822 } 13823 13824 /* 13825 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13826 * at ELx, or not available because the EL is in AArch32 state, then 13827 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13828 * has an effective value of 0". 13829 * 13830 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13831 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13832 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13833 * we already have the correct register contents when encountering the 13834 * vq0->vq0 transition between EL0->EL1. 13835 */ 13836 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13837 old_len = (old_a64 && !sve_exception_el(env, old_el) 13838 ? sve_zcr_len_for_el(env, old_el) : 0); 13839 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13840 new_len = (new_a64 && !sve_exception_el(env, new_el) 13841 ? sve_zcr_len_for_el(env, new_el) : 0); 13842 13843 /* When changing vector length, clear inaccessible state. */ 13844 if (new_len < old_len) { 13845 aarch64_sve_narrow_vq(env, new_len + 1); 13846 } 13847 } 13848 #endif 13849