1 #include "qemu/osdep.h" 2 #include "qemu/units.h" 3 #include "target/arm/idau.h" 4 #include "trace.h" 5 #include "cpu.h" 6 #include "internals.h" 7 #include "exec/gdbstub.h" 8 #include "exec/helper-proto.h" 9 #include "qemu/host-utils.h" 10 #include "sysemu/arch_init.h" 11 #include "sysemu/sysemu.h" 12 #include "qemu/bitops.h" 13 #include "qemu/crc32c.h" 14 #include "qemu/qemu-print.h" 15 #include "exec/exec-all.h" 16 #include "exec/cpu_ldst.h" 17 #include "arm_ldst.h" 18 #include <zlib.h> /* For crc32 */ 19 #include "hw/semihosting/semihost.h" 20 #include "sysemu/cpus.h" 21 #include "sysemu/kvm.h" 22 #include "fpu/softfloat.h" 23 #include "qemu/range.h" 24 #include "qapi/qapi-commands-target.h" 25 #include "qapi/error.h" 26 #include "qemu/guest-random.h" 27 28 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 29 30 #ifndef CONFIG_USER_ONLY 31 /* Cacheability and shareability attributes for a memory access */ 32 typedef struct ARMCacheAttrs { 33 unsigned int attrs:8; /* as in the MAIR register encoding */ 34 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 35 } ARMCacheAttrs; 36 37 static bool get_phys_addr(CPUARMState *env, target_ulong address, 38 MMUAccessType access_type, ARMMMUIdx mmu_idx, 39 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 40 target_ulong *page_size, 41 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 42 43 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 44 MMUAccessType access_type, ARMMMUIdx mmu_idx, 45 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 46 target_ulong *page_size_ptr, 47 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 48 49 /* Security attributes for an address, as returned by v8m_security_lookup. */ 50 typedef struct V8M_SAttributes { 51 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ 52 bool ns; 53 bool nsc; 54 uint8_t sregion; 55 bool srvalid; 56 uint8_t iregion; 57 bool irvalid; 58 } V8M_SAttributes; 59 60 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 61 MMUAccessType access_type, ARMMMUIdx mmu_idx, 62 V8M_SAttributes *sattrs); 63 #endif 64 65 static void switch_mode(CPUARMState *env, int mode); 66 67 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 68 { 69 int nregs; 70 71 /* VFP data registers are always little-endian. */ 72 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 73 if (reg < nregs) { 74 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 75 return 8; 76 } 77 if (arm_feature(env, ARM_FEATURE_NEON)) { 78 /* Aliases for Q regs. */ 79 nregs += 16; 80 if (reg < nregs) { 81 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 82 stq_le_p(buf, q[0]); 83 stq_le_p(buf + 8, q[1]); 84 return 16; 85 } 86 } 87 switch (reg - nregs) { 88 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 89 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4; 90 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 91 } 92 return 0; 93 } 94 95 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 96 { 97 int nregs; 98 99 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 100 if (reg < nregs) { 101 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 102 return 8; 103 } 104 if (arm_feature(env, ARM_FEATURE_NEON)) { 105 nregs += 16; 106 if (reg < nregs) { 107 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 108 q[0] = ldq_le_p(buf); 109 q[1] = ldq_le_p(buf + 8); 110 return 16; 111 } 112 } 113 switch (reg - nregs) { 114 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 115 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 116 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 117 } 118 return 0; 119 } 120 121 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 122 { 123 switch (reg) { 124 case 0 ... 31: 125 /* 128 bit FP register */ 126 { 127 uint64_t *q = aa64_vfp_qreg(env, reg); 128 stq_le_p(buf, q[0]); 129 stq_le_p(buf + 8, q[1]); 130 return 16; 131 } 132 case 32: 133 /* FPSR */ 134 stl_p(buf, vfp_get_fpsr(env)); 135 return 4; 136 case 33: 137 /* FPCR */ 138 stl_p(buf, vfp_get_fpcr(env)); 139 return 4; 140 default: 141 return 0; 142 } 143 } 144 145 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 146 { 147 switch (reg) { 148 case 0 ... 31: 149 /* 128 bit FP register */ 150 { 151 uint64_t *q = aa64_vfp_qreg(env, reg); 152 q[0] = ldq_le_p(buf); 153 q[1] = ldq_le_p(buf + 8); 154 return 16; 155 } 156 case 32: 157 /* FPSR */ 158 vfp_set_fpsr(env, ldl_p(buf)); 159 return 4; 160 case 33: 161 /* FPCR */ 162 vfp_set_fpcr(env, ldl_p(buf)); 163 return 4; 164 default: 165 return 0; 166 } 167 } 168 169 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 170 { 171 assert(ri->fieldoffset); 172 if (cpreg_field_is_64bit(ri)) { 173 return CPREG_FIELD64(env, ri); 174 } else { 175 return CPREG_FIELD32(env, ri); 176 } 177 } 178 179 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 180 uint64_t value) 181 { 182 assert(ri->fieldoffset); 183 if (cpreg_field_is_64bit(ri)) { 184 CPREG_FIELD64(env, ri) = value; 185 } else { 186 CPREG_FIELD32(env, ri) = value; 187 } 188 } 189 190 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 191 { 192 return (char *)env + ri->fieldoffset; 193 } 194 195 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 196 { 197 /* Raw read of a coprocessor register (as needed for migration, etc). */ 198 if (ri->type & ARM_CP_CONST) { 199 return ri->resetvalue; 200 } else if (ri->raw_readfn) { 201 return ri->raw_readfn(env, ri); 202 } else if (ri->readfn) { 203 return ri->readfn(env, ri); 204 } else { 205 return raw_read(env, ri); 206 } 207 } 208 209 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 210 uint64_t v) 211 { 212 /* Raw write of a coprocessor register (as needed for migration, etc). 213 * Note that constant registers are treated as write-ignored; the 214 * caller should check for success by whether a readback gives the 215 * value written. 216 */ 217 if (ri->type & ARM_CP_CONST) { 218 return; 219 } else if (ri->raw_writefn) { 220 ri->raw_writefn(env, ri, v); 221 } else if (ri->writefn) { 222 ri->writefn(env, ri, v); 223 } else { 224 raw_write(env, ri, v); 225 } 226 } 227 228 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) 229 { 230 ARMCPU *cpu = arm_env_get_cpu(env); 231 const ARMCPRegInfo *ri; 232 uint32_t key; 233 234 key = cpu->dyn_xml.cpregs_keys[reg]; 235 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 236 if (ri) { 237 if (cpreg_field_is_64bit(ri)) { 238 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 239 } else { 240 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 241 } 242 } 243 return 0; 244 } 245 246 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 247 { 248 return 0; 249 } 250 251 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 252 { 253 /* Return true if the regdef would cause an assertion if you called 254 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 255 * program bug for it not to have the NO_RAW flag). 256 * NB that returning false here doesn't necessarily mean that calling 257 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 258 * read/write access functions which are safe for raw use" from "has 259 * read/write access functions which have side effects but has forgotten 260 * to provide raw access functions". 261 * The tests here line up with the conditions in read/write_raw_cp_reg() 262 * and assertions in raw_read()/raw_write(). 263 */ 264 if ((ri->type & ARM_CP_CONST) || 265 ri->fieldoffset || 266 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 267 return false; 268 } 269 return true; 270 } 271 272 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 273 { 274 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 275 int i; 276 bool ok = true; 277 278 for (i = 0; i < cpu->cpreg_array_len; i++) { 279 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 280 const ARMCPRegInfo *ri; 281 uint64_t newval; 282 283 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 284 if (!ri) { 285 ok = false; 286 continue; 287 } 288 if (ri->type & ARM_CP_NO_RAW) { 289 continue; 290 } 291 292 newval = read_raw_cp_reg(&cpu->env, ri); 293 if (kvm_sync) { 294 /* 295 * Only sync if the previous list->cpustate sync succeeded. 296 * Rather than tracking the success/failure state for every 297 * item in the list, we just recheck "does the raw write we must 298 * have made in write_list_to_cpustate() read back OK" here. 299 */ 300 uint64_t oldval = cpu->cpreg_values[i]; 301 302 if (oldval == newval) { 303 continue; 304 } 305 306 write_raw_cp_reg(&cpu->env, ri, oldval); 307 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 308 continue; 309 } 310 311 write_raw_cp_reg(&cpu->env, ri, newval); 312 } 313 cpu->cpreg_values[i] = newval; 314 } 315 return ok; 316 } 317 318 bool write_list_to_cpustate(ARMCPU *cpu) 319 { 320 int i; 321 bool ok = true; 322 323 for (i = 0; i < cpu->cpreg_array_len; i++) { 324 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 325 uint64_t v = cpu->cpreg_values[i]; 326 const ARMCPRegInfo *ri; 327 328 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 329 if (!ri) { 330 ok = false; 331 continue; 332 } 333 if (ri->type & ARM_CP_NO_RAW) { 334 continue; 335 } 336 /* Write value and confirm it reads back as written 337 * (to catch read-only registers and partially read-only 338 * registers where the incoming migration value doesn't match) 339 */ 340 write_raw_cp_reg(&cpu->env, ri, v); 341 if (read_raw_cp_reg(&cpu->env, ri) != v) { 342 ok = false; 343 } 344 } 345 return ok; 346 } 347 348 static void add_cpreg_to_list(gpointer key, gpointer opaque) 349 { 350 ARMCPU *cpu = opaque; 351 uint64_t regidx; 352 const ARMCPRegInfo *ri; 353 354 regidx = *(uint32_t *)key; 355 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 356 357 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 358 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 359 /* The value array need not be initialized at this point */ 360 cpu->cpreg_array_len++; 361 } 362 } 363 364 static void count_cpreg(gpointer key, gpointer opaque) 365 { 366 ARMCPU *cpu = opaque; 367 uint64_t regidx; 368 const ARMCPRegInfo *ri; 369 370 regidx = *(uint32_t *)key; 371 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 372 373 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 374 cpu->cpreg_array_len++; 375 } 376 } 377 378 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 379 { 380 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 381 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 382 383 if (aidx > bidx) { 384 return 1; 385 } 386 if (aidx < bidx) { 387 return -1; 388 } 389 return 0; 390 } 391 392 void init_cpreg_list(ARMCPU *cpu) 393 { 394 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 395 * Note that we require cpreg_tuples[] to be sorted by key ID. 396 */ 397 GList *keys; 398 int arraylen; 399 400 keys = g_hash_table_get_keys(cpu->cp_regs); 401 keys = g_list_sort(keys, cpreg_key_compare); 402 403 cpu->cpreg_array_len = 0; 404 405 g_list_foreach(keys, count_cpreg, cpu); 406 407 arraylen = cpu->cpreg_array_len; 408 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 409 cpu->cpreg_values = g_new(uint64_t, arraylen); 410 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 411 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 412 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 413 cpu->cpreg_array_len = 0; 414 415 g_list_foreach(keys, add_cpreg_to_list, cpu); 416 417 assert(cpu->cpreg_array_len == arraylen); 418 419 g_list_free(keys); 420 } 421 422 /* 423 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 424 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 425 * 426 * access_el3_aa32ns: Used to check AArch32 register views. 427 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 428 */ 429 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 430 const ARMCPRegInfo *ri, 431 bool isread) 432 { 433 bool secure = arm_is_secure_below_el3(env); 434 435 assert(!arm_el_is_aa64(env, 3)); 436 if (secure) { 437 return CP_ACCESS_TRAP_UNCATEGORIZED; 438 } 439 return CP_ACCESS_OK; 440 } 441 442 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 443 const ARMCPRegInfo *ri, 444 bool isread) 445 { 446 if (!arm_el_is_aa64(env, 3)) { 447 return access_el3_aa32ns(env, ri, isread); 448 } 449 return CP_ACCESS_OK; 450 } 451 452 /* Some secure-only AArch32 registers trap to EL3 if used from 453 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 454 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 455 * We assume that the .access field is set to PL1_RW. 456 */ 457 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 458 const ARMCPRegInfo *ri, 459 bool isread) 460 { 461 if (arm_current_el(env) == 3) { 462 return CP_ACCESS_OK; 463 } 464 if (arm_is_secure_below_el3(env)) { 465 return CP_ACCESS_TRAP_EL3; 466 } 467 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 468 return CP_ACCESS_TRAP_UNCATEGORIZED; 469 } 470 471 /* Check for traps to "powerdown debug" registers, which are controlled 472 * by MDCR.TDOSA 473 */ 474 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 475 bool isread) 476 { 477 int el = arm_current_el(env); 478 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 479 (env->cp15.mdcr_el2 & MDCR_TDE) || 480 (arm_hcr_el2_eff(env) & HCR_TGE); 481 482 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 483 return CP_ACCESS_TRAP_EL2; 484 } 485 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 486 return CP_ACCESS_TRAP_EL3; 487 } 488 return CP_ACCESS_OK; 489 } 490 491 /* Check for traps to "debug ROM" registers, which are controlled 492 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 493 */ 494 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 495 bool isread) 496 { 497 int el = arm_current_el(env); 498 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 499 (env->cp15.mdcr_el2 & MDCR_TDE) || 500 (arm_hcr_el2_eff(env) & HCR_TGE); 501 502 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 503 return CP_ACCESS_TRAP_EL2; 504 } 505 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 506 return CP_ACCESS_TRAP_EL3; 507 } 508 return CP_ACCESS_OK; 509 } 510 511 /* Check for traps to general debug registers, which are controlled 512 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 513 */ 514 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 515 bool isread) 516 { 517 int el = arm_current_el(env); 518 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 519 (env->cp15.mdcr_el2 & MDCR_TDE) || 520 (arm_hcr_el2_eff(env) & HCR_TGE); 521 522 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 523 return CP_ACCESS_TRAP_EL2; 524 } 525 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 526 return CP_ACCESS_TRAP_EL3; 527 } 528 return CP_ACCESS_OK; 529 } 530 531 /* Check for traps to performance monitor registers, which are controlled 532 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 533 */ 534 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 535 bool isread) 536 { 537 int el = arm_current_el(env); 538 539 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 540 && !arm_is_secure_below_el3(env)) { 541 return CP_ACCESS_TRAP_EL2; 542 } 543 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 544 return CP_ACCESS_TRAP_EL3; 545 } 546 return CP_ACCESS_OK; 547 } 548 549 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 550 { 551 ARMCPU *cpu = arm_env_get_cpu(env); 552 553 raw_write(env, ri, value); 554 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 555 } 556 557 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 558 { 559 ARMCPU *cpu = arm_env_get_cpu(env); 560 561 if (raw_read(env, ri) != value) { 562 /* Unlike real hardware the qemu TLB uses virtual addresses, 563 * not modified virtual addresses, so this causes a TLB flush. 564 */ 565 tlb_flush(CPU(cpu)); 566 raw_write(env, ri, value); 567 } 568 } 569 570 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 571 uint64_t value) 572 { 573 ARMCPU *cpu = arm_env_get_cpu(env); 574 575 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 576 && !extended_addresses_enabled(env)) { 577 /* For VMSA (when not using the LPAE long descriptor page table 578 * format) this register includes the ASID, so do a TLB flush. 579 * For PMSA it is purely a process ID and no action is needed. 580 */ 581 tlb_flush(CPU(cpu)); 582 } 583 raw_write(env, ri, value); 584 } 585 586 /* IS variants of TLB operations must affect all cores */ 587 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 588 uint64_t value) 589 { 590 CPUState *cs = ENV_GET_CPU(env); 591 592 tlb_flush_all_cpus_synced(cs); 593 } 594 595 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 596 uint64_t value) 597 { 598 CPUState *cs = ENV_GET_CPU(env); 599 600 tlb_flush_all_cpus_synced(cs); 601 } 602 603 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 604 uint64_t value) 605 { 606 CPUState *cs = ENV_GET_CPU(env); 607 608 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 609 } 610 611 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 612 uint64_t value) 613 { 614 CPUState *cs = ENV_GET_CPU(env); 615 616 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 617 } 618 619 /* 620 * Non-IS variants of TLB operations are upgraded to 621 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to 622 * force broadcast of these operations. 623 */ 624 static bool tlb_force_broadcast(CPUARMState *env) 625 { 626 return (env->cp15.hcr_el2 & HCR_FB) && 627 arm_current_el(env) == 1 && arm_is_secure_below_el3(env); 628 } 629 630 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 631 uint64_t value) 632 { 633 /* Invalidate all (TLBIALL) */ 634 ARMCPU *cpu = arm_env_get_cpu(env); 635 636 if (tlb_force_broadcast(env)) { 637 tlbiall_is_write(env, NULL, value); 638 return; 639 } 640 641 tlb_flush(CPU(cpu)); 642 } 643 644 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 645 uint64_t value) 646 { 647 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 648 ARMCPU *cpu = arm_env_get_cpu(env); 649 650 if (tlb_force_broadcast(env)) { 651 tlbimva_is_write(env, NULL, value); 652 return; 653 } 654 655 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 656 } 657 658 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 659 uint64_t value) 660 { 661 /* Invalidate by ASID (TLBIASID) */ 662 ARMCPU *cpu = arm_env_get_cpu(env); 663 664 if (tlb_force_broadcast(env)) { 665 tlbiasid_is_write(env, NULL, value); 666 return; 667 } 668 669 tlb_flush(CPU(cpu)); 670 } 671 672 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 673 uint64_t value) 674 { 675 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 676 ARMCPU *cpu = arm_env_get_cpu(env); 677 678 if (tlb_force_broadcast(env)) { 679 tlbimvaa_is_write(env, NULL, value); 680 return; 681 } 682 683 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 684 } 685 686 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 687 uint64_t value) 688 { 689 CPUState *cs = ENV_GET_CPU(env); 690 691 tlb_flush_by_mmuidx(cs, 692 ARMMMUIdxBit_S12NSE1 | 693 ARMMMUIdxBit_S12NSE0 | 694 ARMMMUIdxBit_S2NS); 695 } 696 697 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 698 uint64_t value) 699 { 700 CPUState *cs = ENV_GET_CPU(env); 701 702 tlb_flush_by_mmuidx_all_cpus_synced(cs, 703 ARMMMUIdxBit_S12NSE1 | 704 ARMMMUIdxBit_S12NSE0 | 705 ARMMMUIdxBit_S2NS); 706 } 707 708 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 709 uint64_t value) 710 { 711 /* Invalidate by IPA. This has to invalidate any structures that 712 * contain only stage 2 translation information, but does not need 713 * to apply to structures that contain combined stage 1 and stage 2 714 * translation information. 715 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 716 */ 717 CPUState *cs = ENV_GET_CPU(env); 718 uint64_t pageaddr; 719 720 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 721 return; 722 } 723 724 pageaddr = sextract64(value << 12, 0, 40); 725 726 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 727 } 728 729 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 730 uint64_t value) 731 { 732 CPUState *cs = ENV_GET_CPU(env); 733 uint64_t pageaddr; 734 735 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 736 return; 737 } 738 739 pageaddr = sextract64(value << 12, 0, 40); 740 741 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 742 ARMMMUIdxBit_S2NS); 743 } 744 745 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 746 uint64_t value) 747 { 748 CPUState *cs = ENV_GET_CPU(env); 749 750 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 751 } 752 753 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 754 uint64_t value) 755 { 756 CPUState *cs = ENV_GET_CPU(env); 757 758 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 759 } 760 761 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 762 uint64_t value) 763 { 764 CPUState *cs = ENV_GET_CPU(env); 765 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 766 767 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 768 } 769 770 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 771 uint64_t value) 772 { 773 CPUState *cs = ENV_GET_CPU(env); 774 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 775 776 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 777 ARMMMUIdxBit_S1E2); 778 } 779 780 static const ARMCPRegInfo cp_reginfo[] = { 781 /* Define the secure and non-secure FCSE identifier CP registers 782 * separately because there is no secure bank in V8 (no _EL3). This allows 783 * the secure register to be properly reset and migrated. There is also no 784 * v8 EL1 version of the register so the non-secure instance stands alone. 785 */ 786 { .name = "FCSEIDR", 787 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 788 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 789 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 790 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 791 { .name = "FCSEIDR_S", 792 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 793 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 794 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 795 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 796 /* Define the secure and non-secure context identifier CP registers 797 * separately because there is no secure bank in V8 (no _EL3). This allows 798 * the secure register to be properly reset and migrated. In the 799 * non-secure case, the 32-bit register will have reset and migration 800 * disabled during registration as it is handled by the 64-bit instance. 801 */ 802 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 803 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 804 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 805 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 806 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 807 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 808 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 809 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 810 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 811 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 812 REGINFO_SENTINEL 813 }; 814 815 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 816 /* NB: Some of these registers exist in v8 but with more precise 817 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 818 */ 819 /* MMU Domain access control / MPU write buffer control */ 820 { .name = "DACR", 821 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 822 .access = PL1_RW, .resetvalue = 0, 823 .writefn = dacr_write, .raw_writefn = raw_write, 824 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 825 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 826 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 827 * For v6 and v5, these mappings are overly broad. 828 */ 829 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 830 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 831 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 832 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 833 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 834 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 835 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 836 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 837 /* Cache maintenance ops; some of this space may be overridden later. */ 838 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 839 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 840 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 841 REGINFO_SENTINEL 842 }; 843 844 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 845 /* Not all pre-v6 cores implemented this WFI, so this is slightly 846 * over-broad. 847 */ 848 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 849 .access = PL1_W, .type = ARM_CP_WFI }, 850 REGINFO_SENTINEL 851 }; 852 853 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 854 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 855 * is UNPREDICTABLE; we choose to NOP as most implementations do). 856 */ 857 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 858 .access = PL1_W, .type = ARM_CP_WFI }, 859 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 860 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 861 * OMAPCP will override this space. 862 */ 863 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 864 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 865 .resetvalue = 0 }, 866 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 867 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 868 .resetvalue = 0 }, 869 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 870 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 871 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 872 .resetvalue = 0 }, 873 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 874 * implementing it as RAZ means the "debug architecture version" bits 875 * will read as a reserved value, which should cause Linux to not try 876 * to use the debug hardware. 877 */ 878 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 879 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 880 /* MMU TLB control. Note that the wildcarding means we cover not just 881 * the unified TLB ops but also the dside/iside/inner-shareable variants. 882 */ 883 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 884 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 885 .type = ARM_CP_NO_RAW }, 886 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 887 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 888 .type = ARM_CP_NO_RAW }, 889 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 890 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 891 .type = ARM_CP_NO_RAW }, 892 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 893 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 894 .type = ARM_CP_NO_RAW }, 895 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 896 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 897 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 898 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 899 REGINFO_SENTINEL 900 }; 901 902 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 903 uint64_t value) 904 { 905 uint32_t mask = 0; 906 907 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 908 if (!arm_feature(env, ARM_FEATURE_V8)) { 909 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 910 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 911 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 912 */ 913 if (arm_feature(env, ARM_FEATURE_VFP)) { 914 /* VFP coprocessor: cp10 & cp11 [23:20] */ 915 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 916 917 if (!arm_feature(env, ARM_FEATURE_NEON)) { 918 /* ASEDIS [31] bit is RAO/WI */ 919 value |= (1 << 31); 920 } 921 922 /* VFPv3 and upwards with NEON implement 32 double precision 923 * registers (D0-D31). 924 */ 925 if (!arm_feature(env, ARM_FEATURE_NEON) || 926 !arm_feature(env, ARM_FEATURE_VFP3)) { 927 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 928 value |= (1 << 30); 929 } 930 } 931 value &= mask; 932 } 933 env->cp15.cpacr_el1 = value; 934 } 935 936 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 937 { 938 /* Call cpacr_write() so that we reset with the correct RAO bits set 939 * for our CPU features. 940 */ 941 cpacr_write(env, ri, 0); 942 } 943 944 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 945 bool isread) 946 { 947 if (arm_feature(env, ARM_FEATURE_V8)) { 948 /* Check if CPACR accesses are to be trapped to EL2 */ 949 if (arm_current_el(env) == 1 && 950 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 951 return CP_ACCESS_TRAP_EL2; 952 /* Check if CPACR accesses are to be trapped to EL3 */ 953 } else if (arm_current_el(env) < 3 && 954 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 955 return CP_ACCESS_TRAP_EL3; 956 } 957 } 958 959 return CP_ACCESS_OK; 960 } 961 962 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 963 bool isread) 964 { 965 /* Check if CPTR accesses are set to trap to EL3 */ 966 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 967 return CP_ACCESS_TRAP_EL3; 968 } 969 970 return CP_ACCESS_OK; 971 } 972 973 static const ARMCPRegInfo v6_cp_reginfo[] = { 974 /* prefetch by MVA in v6, NOP in v7 */ 975 { .name = "MVA_prefetch", 976 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 977 .access = PL1_W, .type = ARM_CP_NOP }, 978 /* We need to break the TB after ISB to execute self-modifying code 979 * correctly and also to take any pending interrupts immediately. 980 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 981 */ 982 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 983 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 984 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 985 .access = PL0_W, .type = ARM_CP_NOP }, 986 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 987 .access = PL0_W, .type = ARM_CP_NOP }, 988 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 989 .access = PL1_RW, 990 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 991 offsetof(CPUARMState, cp15.ifar_ns) }, 992 .resetvalue = 0, }, 993 /* Watchpoint Fault Address Register : should actually only be present 994 * for 1136, 1176, 11MPCore. 995 */ 996 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 997 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 998 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 999 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1000 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1001 .resetfn = cpacr_reset, .writefn = cpacr_write }, 1002 REGINFO_SENTINEL 1003 }; 1004 1005 /* Definitions for the PMU registers */ 1006 #define PMCRN_MASK 0xf800 1007 #define PMCRN_SHIFT 11 1008 #define PMCRLC 0x40 1009 #define PMCRDP 0x10 1010 #define PMCRD 0x8 1011 #define PMCRC 0x4 1012 #define PMCRP 0x2 1013 #define PMCRE 0x1 1014 1015 #define PMXEVTYPER_P 0x80000000 1016 #define PMXEVTYPER_U 0x40000000 1017 #define PMXEVTYPER_NSK 0x20000000 1018 #define PMXEVTYPER_NSU 0x10000000 1019 #define PMXEVTYPER_NSH 0x08000000 1020 #define PMXEVTYPER_M 0x04000000 1021 #define PMXEVTYPER_MT 0x02000000 1022 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1023 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1024 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1025 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1026 PMXEVTYPER_EVTCOUNT) 1027 1028 #define PMCCFILTR 0xf8000000 1029 #define PMCCFILTR_M PMXEVTYPER_M 1030 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1031 1032 static inline uint32_t pmu_num_counters(CPUARMState *env) 1033 { 1034 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1035 } 1036 1037 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1038 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1039 { 1040 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1041 } 1042 1043 typedef struct pm_event { 1044 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1045 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1046 bool (*supported)(CPUARMState *); 1047 /* 1048 * Retrieve the current count of the underlying event. The programmed 1049 * counters hold a difference from the return value from this function 1050 */ 1051 uint64_t (*get_count)(CPUARMState *); 1052 /* 1053 * Return how many nanoseconds it will take (at a minimum) for count events 1054 * to occur. A negative value indicates the counter will never overflow, or 1055 * that the counter has otherwise arranged for the overflow bit to be set 1056 * and the PMU interrupt to be raised on overflow. 1057 */ 1058 int64_t (*ns_per_count)(uint64_t); 1059 } pm_event; 1060 1061 static bool event_always_supported(CPUARMState *env) 1062 { 1063 return true; 1064 } 1065 1066 static uint64_t swinc_get_count(CPUARMState *env) 1067 { 1068 /* 1069 * SW_INCR events are written directly to the pmevcntr's by writes to 1070 * PMSWINC, so there is no underlying count maintained by the PMU itself 1071 */ 1072 return 0; 1073 } 1074 1075 static int64_t swinc_ns_per(uint64_t ignored) 1076 { 1077 return -1; 1078 } 1079 1080 /* 1081 * Return the underlying cycle count for the PMU cycle counters. If we're in 1082 * usermode, simply return 0. 1083 */ 1084 static uint64_t cycles_get_count(CPUARMState *env) 1085 { 1086 #ifndef CONFIG_USER_ONLY 1087 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1088 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1089 #else 1090 return cpu_get_host_ticks(); 1091 #endif 1092 } 1093 1094 #ifndef CONFIG_USER_ONLY 1095 static int64_t cycles_ns_per(uint64_t cycles) 1096 { 1097 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1098 } 1099 1100 static bool instructions_supported(CPUARMState *env) 1101 { 1102 return use_icount == 1 /* Precise instruction counting */; 1103 } 1104 1105 static uint64_t instructions_get_count(CPUARMState *env) 1106 { 1107 return (uint64_t)cpu_get_icount_raw(); 1108 } 1109 1110 static int64_t instructions_ns_per(uint64_t icount) 1111 { 1112 return cpu_icount_to_ns((int64_t)icount); 1113 } 1114 #endif 1115 1116 static const pm_event pm_events[] = { 1117 { .number = 0x000, /* SW_INCR */ 1118 .supported = event_always_supported, 1119 .get_count = swinc_get_count, 1120 .ns_per_count = swinc_ns_per, 1121 }, 1122 #ifndef CONFIG_USER_ONLY 1123 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1124 .supported = instructions_supported, 1125 .get_count = instructions_get_count, 1126 .ns_per_count = instructions_ns_per, 1127 }, 1128 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1129 .supported = event_always_supported, 1130 .get_count = cycles_get_count, 1131 .ns_per_count = cycles_ns_per, 1132 } 1133 #endif 1134 }; 1135 1136 /* 1137 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1138 * events (i.e. the statistical profiling extension), this implementation 1139 * should first be updated to something sparse instead of the current 1140 * supported_event_map[] array. 1141 */ 1142 #define MAX_EVENT_ID 0x11 1143 #define UNSUPPORTED_EVENT UINT16_MAX 1144 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1145 1146 /* 1147 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1148 * of ARM event numbers to indices in our pm_events array. 1149 * 1150 * Note: Events in the 0x40XX range are not currently supported. 1151 */ 1152 void pmu_init(ARMCPU *cpu) 1153 { 1154 unsigned int i; 1155 1156 /* 1157 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1158 * events to them 1159 */ 1160 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1161 supported_event_map[i] = UNSUPPORTED_EVENT; 1162 } 1163 cpu->pmceid0 = 0; 1164 cpu->pmceid1 = 0; 1165 1166 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1167 const pm_event *cnt = &pm_events[i]; 1168 assert(cnt->number <= MAX_EVENT_ID); 1169 /* We do not currently support events in the 0x40xx range */ 1170 assert(cnt->number <= 0x3f); 1171 1172 if (cnt->supported(&cpu->env)) { 1173 supported_event_map[cnt->number] = i; 1174 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1175 if (cnt->number & 0x20) { 1176 cpu->pmceid1 |= event_mask; 1177 } else { 1178 cpu->pmceid0 |= event_mask; 1179 } 1180 } 1181 } 1182 } 1183 1184 /* 1185 * Check at runtime whether a PMU event is supported for the current machine 1186 */ 1187 static bool event_supported(uint16_t number) 1188 { 1189 if (number > MAX_EVENT_ID) { 1190 return false; 1191 } 1192 return supported_event_map[number] != UNSUPPORTED_EVENT; 1193 } 1194 1195 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1196 bool isread) 1197 { 1198 /* Performance monitor registers user accessibility is controlled 1199 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1200 * trapping to EL2 or EL3 for other accesses. 1201 */ 1202 int el = arm_current_el(env); 1203 1204 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1205 return CP_ACCESS_TRAP; 1206 } 1207 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1208 && !arm_is_secure_below_el3(env)) { 1209 return CP_ACCESS_TRAP_EL2; 1210 } 1211 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1212 return CP_ACCESS_TRAP_EL3; 1213 } 1214 1215 return CP_ACCESS_OK; 1216 } 1217 1218 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1219 const ARMCPRegInfo *ri, 1220 bool isread) 1221 { 1222 /* ER: event counter read trap control */ 1223 if (arm_feature(env, ARM_FEATURE_V8) 1224 && arm_current_el(env) == 0 1225 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1226 && isread) { 1227 return CP_ACCESS_OK; 1228 } 1229 1230 return pmreg_access(env, ri, isread); 1231 } 1232 1233 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1234 const ARMCPRegInfo *ri, 1235 bool isread) 1236 { 1237 /* SW: software increment write trap control */ 1238 if (arm_feature(env, ARM_FEATURE_V8) 1239 && arm_current_el(env) == 0 1240 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1241 && !isread) { 1242 return CP_ACCESS_OK; 1243 } 1244 1245 return pmreg_access(env, ri, isread); 1246 } 1247 1248 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1249 const ARMCPRegInfo *ri, 1250 bool isread) 1251 { 1252 /* ER: event counter read trap control */ 1253 if (arm_feature(env, ARM_FEATURE_V8) 1254 && arm_current_el(env) == 0 1255 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1256 return CP_ACCESS_OK; 1257 } 1258 1259 return pmreg_access(env, ri, isread); 1260 } 1261 1262 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1263 const ARMCPRegInfo *ri, 1264 bool isread) 1265 { 1266 /* CR: cycle counter read trap control */ 1267 if (arm_feature(env, ARM_FEATURE_V8) 1268 && arm_current_el(env) == 0 1269 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1270 && isread) { 1271 return CP_ACCESS_OK; 1272 } 1273 1274 return pmreg_access(env, ri, isread); 1275 } 1276 1277 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1278 * the current EL, security state, and register configuration. 1279 */ 1280 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1281 { 1282 uint64_t filter; 1283 bool e, p, u, nsk, nsu, nsh, m; 1284 bool enabled, prohibited, filtered; 1285 bool secure = arm_is_secure(env); 1286 int el = arm_current_el(env); 1287 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1288 1289 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1290 return false; 1291 } 1292 1293 if (!arm_feature(env, ARM_FEATURE_EL2) || 1294 (counter < hpmn || counter == 31)) { 1295 e = env->cp15.c9_pmcr & PMCRE; 1296 } else { 1297 e = env->cp15.mdcr_el2 & MDCR_HPME; 1298 } 1299 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1300 1301 if (!secure) { 1302 if (el == 2 && (counter < hpmn || counter == 31)) { 1303 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; 1304 } else { 1305 prohibited = false; 1306 } 1307 } else { 1308 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1309 (env->cp15.mdcr_el3 & MDCR_SPME); 1310 } 1311 1312 if (prohibited && counter == 31) { 1313 prohibited = env->cp15.c9_pmcr & PMCRDP; 1314 } 1315 1316 if (counter == 31) { 1317 filter = env->cp15.pmccfiltr_el0; 1318 } else { 1319 filter = env->cp15.c14_pmevtyper[counter]; 1320 } 1321 1322 p = filter & PMXEVTYPER_P; 1323 u = filter & PMXEVTYPER_U; 1324 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1325 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1326 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1327 m = arm_el_is_aa64(env, 1) && 1328 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1329 1330 if (el == 0) { 1331 filtered = secure ? u : u != nsu; 1332 } else if (el == 1) { 1333 filtered = secure ? p : p != nsk; 1334 } else if (el == 2) { 1335 filtered = !nsh; 1336 } else { /* EL3 */ 1337 filtered = m != p; 1338 } 1339 1340 if (counter != 31) { 1341 /* 1342 * If not checking PMCCNTR, ensure the counter is setup to an event we 1343 * support 1344 */ 1345 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1346 if (!event_supported(event)) { 1347 return false; 1348 } 1349 } 1350 1351 return enabled && !prohibited && !filtered; 1352 } 1353 1354 static void pmu_update_irq(CPUARMState *env) 1355 { 1356 ARMCPU *cpu = arm_env_get_cpu(env); 1357 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1358 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1359 } 1360 1361 /* 1362 * Ensure c15_ccnt is the guest-visible count so that operations such as 1363 * enabling/disabling the counter or filtering, modifying the count itself, 1364 * etc. can be done logically. This is essentially a no-op if the counter is 1365 * not enabled at the time of the call. 1366 */ 1367 static void pmccntr_op_start(CPUARMState *env) 1368 { 1369 uint64_t cycles = cycles_get_count(env); 1370 1371 if (pmu_counter_enabled(env, 31)) { 1372 uint64_t eff_cycles = cycles; 1373 if (env->cp15.c9_pmcr & PMCRD) { 1374 /* Increment once every 64 processor clock cycles */ 1375 eff_cycles /= 64; 1376 } 1377 1378 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1379 1380 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1381 1ull << 63 : 1ull << 31; 1382 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1383 env->cp15.c9_pmovsr |= (1 << 31); 1384 pmu_update_irq(env); 1385 } 1386 1387 env->cp15.c15_ccnt = new_pmccntr; 1388 } 1389 env->cp15.c15_ccnt_delta = cycles; 1390 } 1391 1392 /* 1393 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1394 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1395 * pmccntr_op_start. 1396 */ 1397 static void pmccntr_op_finish(CPUARMState *env) 1398 { 1399 if (pmu_counter_enabled(env, 31)) { 1400 #ifndef CONFIG_USER_ONLY 1401 /* Calculate when the counter will next overflow */ 1402 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1403 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1404 remaining_cycles = (uint32_t)remaining_cycles; 1405 } 1406 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1407 1408 if (overflow_in > 0) { 1409 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1410 overflow_in; 1411 ARMCPU *cpu = arm_env_get_cpu(env); 1412 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1413 } 1414 #endif 1415 1416 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1417 if (env->cp15.c9_pmcr & PMCRD) { 1418 /* Increment once every 64 processor clock cycles */ 1419 prev_cycles /= 64; 1420 } 1421 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1422 } 1423 } 1424 1425 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1426 { 1427 1428 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1429 uint64_t count = 0; 1430 if (event_supported(event)) { 1431 uint16_t event_idx = supported_event_map[event]; 1432 count = pm_events[event_idx].get_count(env); 1433 } 1434 1435 if (pmu_counter_enabled(env, counter)) { 1436 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1437 1438 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1439 env->cp15.c9_pmovsr |= (1 << counter); 1440 pmu_update_irq(env); 1441 } 1442 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1443 } 1444 env->cp15.c14_pmevcntr_delta[counter] = count; 1445 } 1446 1447 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1448 { 1449 if (pmu_counter_enabled(env, counter)) { 1450 #ifndef CONFIG_USER_ONLY 1451 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1452 uint16_t event_idx = supported_event_map[event]; 1453 uint64_t delta = UINT32_MAX - 1454 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1455 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1456 1457 if (overflow_in > 0) { 1458 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1459 overflow_in; 1460 ARMCPU *cpu = arm_env_get_cpu(env); 1461 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1462 } 1463 #endif 1464 1465 env->cp15.c14_pmevcntr_delta[counter] -= 1466 env->cp15.c14_pmevcntr[counter]; 1467 } 1468 } 1469 1470 void pmu_op_start(CPUARMState *env) 1471 { 1472 unsigned int i; 1473 pmccntr_op_start(env); 1474 for (i = 0; i < pmu_num_counters(env); i++) { 1475 pmevcntr_op_start(env, i); 1476 } 1477 } 1478 1479 void pmu_op_finish(CPUARMState *env) 1480 { 1481 unsigned int i; 1482 pmccntr_op_finish(env); 1483 for (i = 0; i < pmu_num_counters(env); i++) { 1484 pmevcntr_op_finish(env, i); 1485 } 1486 } 1487 1488 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1489 { 1490 pmu_op_start(&cpu->env); 1491 } 1492 1493 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1494 { 1495 pmu_op_finish(&cpu->env); 1496 } 1497 1498 void arm_pmu_timer_cb(void *opaque) 1499 { 1500 ARMCPU *cpu = opaque; 1501 1502 /* 1503 * Update all the counter values based on the current underlying counts, 1504 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1505 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1506 * counter may expire. 1507 */ 1508 pmu_op_start(&cpu->env); 1509 pmu_op_finish(&cpu->env); 1510 } 1511 1512 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1513 uint64_t value) 1514 { 1515 pmu_op_start(env); 1516 1517 if (value & PMCRC) { 1518 /* The counter has been reset */ 1519 env->cp15.c15_ccnt = 0; 1520 } 1521 1522 if (value & PMCRP) { 1523 unsigned int i; 1524 for (i = 0; i < pmu_num_counters(env); i++) { 1525 env->cp15.c14_pmevcntr[i] = 0; 1526 } 1527 } 1528 1529 /* only the DP, X, D and E bits are writable */ 1530 env->cp15.c9_pmcr &= ~0x39; 1531 env->cp15.c9_pmcr |= (value & 0x39); 1532 1533 pmu_op_finish(env); 1534 } 1535 1536 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1537 uint64_t value) 1538 { 1539 unsigned int i; 1540 for (i = 0; i < pmu_num_counters(env); i++) { 1541 /* Increment a counter's count iff: */ 1542 if ((value & (1 << i)) && /* counter's bit is set */ 1543 /* counter is enabled and not filtered */ 1544 pmu_counter_enabled(env, i) && 1545 /* counter is SW_INCR */ 1546 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1547 pmevcntr_op_start(env, i); 1548 1549 /* 1550 * Detect if this write causes an overflow since we can't predict 1551 * PMSWINC overflows like we can for other events 1552 */ 1553 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1554 1555 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1556 env->cp15.c9_pmovsr |= (1 << i); 1557 pmu_update_irq(env); 1558 } 1559 1560 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1561 1562 pmevcntr_op_finish(env, i); 1563 } 1564 } 1565 } 1566 1567 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1568 { 1569 uint64_t ret; 1570 pmccntr_op_start(env); 1571 ret = env->cp15.c15_ccnt; 1572 pmccntr_op_finish(env); 1573 return ret; 1574 } 1575 1576 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1577 uint64_t value) 1578 { 1579 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1580 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1581 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1582 * accessed. 1583 */ 1584 env->cp15.c9_pmselr = value & 0x1f; 1585 } 1586 1587 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1588 uint64_t value) 1589 { 1590 pmccntr_op_start(env); 1591 env->cp15.c15_ccnt = value; 1592 pmccntr_op_finish(env); 1593 } 1594 1595 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1596 uint64_t value) 1597 { 1598 uint64_t cur_val = pmccntr_read(env, NULL); 1599 1600 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1601 } 1602 1603 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1604 uint64_t value) 1605 { 1606 pmccntr_op_start(env); 1607 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1608 pmccntr_op_finish(env); 1609 } 1610 1611 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1612 uint64_t value) 1613 { 1614 pmccntr_op_start(env); 1615 /* M is not accessible from AArch32 */ 1616 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1617 (value & PMCCFILTR); 1618 pmccntr_op_finish(env); 1619 } 1620 1621 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1622 { 1623 /* M is not visible in AArch32 */ 1624 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1625 } 1626 1627 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1628 uint64_t value) 1629 { 1630 value &= pmu_counter_mask(env); 1631 env->cp15.c9_pmcnten |= value; 1632 } 1633 1634 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1635 uint64_t value) 1636 { 1637 value &= pmu_counter_mask(env); 1638 env->cp15.c9_pmcnten &= ~value; 1639 } 1640 1641 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1642 uint64_t value) 1643 { 1644 value &= pmu_counter_mask(env); 1645 env->cp15.c9_pmovsr &= ~value; 1646 pmu_update_irq(env); 1647 } 1648 1649 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1650 uint64_t value) 1651 { 1652 value &= pmu_counter_mask(env); 1653 env->cp15.c9_pmovsr |= value; 1654 pmu_update_irq(env); 1655 } 1656 1657 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1658 uint64_t value, const uint8_t counter) 1659 { 1660 if (counter == 31) { 1661 pmccfiltr_write(env, ri, value); 1662 } else if (counter < pmu_num_counters(env)) { 1663 pmevcntr_op_start(env, counter); 1664 1665 /* 1666 * If this counter's event type is changing, store the current 1667 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1668 * pmevcntr_op_finish has the correct baseline when it converts back to 1669 * a delta. 1670 */ 1671 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1672 PMXEVTYPER_EVTCOUNT; 1673 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1674 if (old_event != new_event) { 1675 uint64_t count = 0; 1676 if (event_supported(new_event)) { 1677 uint16_t event_idx = supported_event_map[new_event]; 1678 count = pm_events[event_idx].get_count(env); 1679 } 1680 env->cp15.c14_pmevcntr_delta[counter] = count; 1681 } 1682 1683 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1684 pmevcntr_op_finish(env, counter); 1685 } 1686 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1687 * PMSELR value is equal to or greater than the number of implemented 1688 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1689 */ 1690 } 1691 1692 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1693 const uint8_t counter) 1694 { 1695 if (counter == 31) { 1696 return env->cp15.pmccfiltr_el0; 1697 } else if (counter < pmu_num_counters(env)) { 1698 return env->cp15.c14_pmevtyper[counter]; 1699 } else { 1700 /* 1701 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1702 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1703 */ 1704 return 0; 1705 } 1706 } 1707 1708 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1709 uint64_t value) 1710 { 1711 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1712 pmevtyper_write(env, ri, value, counter); 1713 } 1714 1715 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1716 uint64_t value) 1717 { 1718 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1719 env->cp15.c14_pmevtyper[counter] = value; 1720 1721 /* 1722 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1723 * pmu_op_finish calls when loading saved state for a migration. Because 1724 * we're potentially updating the type of event here, the value written to 1725 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1726 * different counter type. Therefore, we need to set this value to the 1727 * current count for the counter type we're writing so that pmu_op_finish 1728 * has the correct count for its calculation. 1729 */ 1730 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1731 if (event_supported(event)) { 1732 uint16_t event_idx = supported_event_map[event]; 1733 env->cp15.c14_pmevcntr_delta[counter] = 1734 pm_events[event_idx].get_count(env); 1735 } 1736 } 1737 1738 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1739 { 1740 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1741 return pmevtyper_read(env, ri, counter); 1742 } 1743 1744 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1745 uint64_t value) 1746 { 1747 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1748 } 1749 1750 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1751 { 1752 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1753 } 1754 1755 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1756 uint64_t value, uint8_t counter) 1757 { 1758 if (counter < pmu_num_counters(env)) { 1759 pmevcntr_op_start(env, counter); 1760 env->cp15.c14_pmevcntr[counter] = value; 1761 pmevcntr_op_finish(env, counter); 1762 } 1763 /* 1764 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1765 * are CONSTRAINED UNPREDICTABLE. 1766 */ 1767 } 1768 1769 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1770 uint8_t counter) 1771 { 1772 if (counter < pmu_num_counters(env)) { 1773 uint64_t ret; 1774 pmevcntr_op_start(env, counter); 1775 ret = env->cp15.c14_pmevcntr[counter]; 1776 pmevcntr_op_finish(env, counter); 1777 return ret; 1778 } else { 1779 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1780 * are CONSTRAINED UNPREDICTABLE. */ 1781 return 0; 1782 } 1783 } 1784 1785 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1786 uint64_t value) 1787 { 1788 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1789 pmevcntr_write(env, ri, value, counter); 1790 } 1791 1792 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1793 { 1794 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1795 return pmevcntr_read(env, ri, counter); 1796 } 1797 1798 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1799 uint64_t value) 1800 { 1801 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1802 assert(counter < pmu_num_counters(env)); 1803 env->cp15.c14_pmevcntr[counter] = value; 1804 pmevcntr_write(env, ri, value, counter); 1805 } 1806 1807 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1808 { 1809 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1810 assert(counter < pmu_num_counters(env)); 1811 return env->cp15.c14_pmevcntr[counter]; 1812 } 1813 1814 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1815 uint64_t value) 1816 { 1817 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1818 } 1819 1820 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1821 { 1822 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1823 } 1824 1825 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1826 uint64_t value) 1827 { 1828 if (arm_feature(env, ARM_FEATURE_V8)) { 1829 env->cp15.c9_pmuserenr = value & 0xf; 1830 } else { 1831 env->cp15.c9_pmuserenr = value & 1; 1832 } 1833 } 1834 1835 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1836 uint64_t value) 1837 { 1838 /* We have no event counters so only the C bit can be changed */ 1839 value &= pmu_counter_mask(env); 1840 env->cp15.c9_pminten |= value; 1841 pmu_update_irq(env); 1842 } 1843 1844 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1845 uint64_t value) 1846 { 1847 value &= pmu_counter_mask(env); 1848 env->cp15.c9_pminten &= ~value; 1849 pmu_update_irq(env); 1850 } 1851 1852 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1853 uint64_t value) 1854 { 1855 /* Note that even though the AArch64 view of this register has bits 1856 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1857 * architectural requirements for bits which are RES0 only in some 1858 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1859 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1860 */ 1861 raw_write(env, ri, value & ~0x1FULL); 1862 } 1863 1864 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1865 { 1866 /* Begin with base v8.0 state. */ 1867 uint32_t valid_mask = 0x3fff; 1868 ARMCPU *cpu = arm_env_get_cpu(env); 1869 1870 if (arm_el_is_aa64(env, 3)) { 1871 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1872 valid_mask &= ~SCR_NET; 1873 } else { 1874 valid_mask &= ~(SCR_RW | SCR_ST); 1875 } 1876 1877 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1878 valid_mask &= ~SCR_HCE; 1879 1880 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1881 * supported if EL2 exists. The bit is UNK/SBZP when 1882 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1883 * when EL2 is unavailable. 1884 * On ARMv8, this bit is always available. 1885 */ 1886 if (arm_feature(env, ARM_FEATURE_V7) && 1887 !arm_feature(env, ARM_FEATURE_V8)) { 1888 valid_mask &= ~SCR_SMD; 1889 } 1890 } 1891 if (cpu_isar_feature(aa64_lor, cpu)) { 1892 valid_mask |= SCR_TLOR; 1893 } 1894 if (cpu_isar_feature(aa64_pauth, cpu)) { 1895 valid_mask |= SCR_API | SCR_APK; 1896 } 1897 1898 /* Clear all-context RES0 bits. */ 1899 value &= valid_mask; 1900 raw_write(env, ri, value); 1901 } 1902 1903 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1904 { 1905 ARMCPU *cpu = arm_env_get_cpu(env); 1906 1907 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1908 * bank 1909 */ 1910 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1911 ri->secure & ARM_CP_SECSTATE_S); 1912 1913 return cpu->ccsidr[index]; 1914 } 1915 1916 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1917 uint64_t value) 1918 { 1919 raw_write(env, ri, value & 0xf); 1920 } 1921 1922 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1923 { 1924 CPUState *cs = ENV_GET_CPU(env); 1925 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1926 uint64_t ret = 0; 1927 1928 if (hcr_el2 & HCR_IMO) { 1929 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1930 ret |= CPSR_I; 1931 } 1932 } else { 1933 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1934 ret |= CPSR_I; 1935 } 1936 } 1937 1938 if (hcr_el2 & HCR_FMO) { 1939 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1940 ret |= CPSR_F; 1941 } 1942 } else { 1943 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1944 ret |= CPSR_F; 1945 } 1946 } 1947 1948 /* External aborts are not possible in QEMU so A bit is always clear */ 1949 return ret; 1950 } 1951 1952 static const ARMCPRegInfo v7_cp_reginfo[] = { 1953 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1954 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1955 .access = PL1_W, .type = ARM_CP_NOP }, 1956 /* Performance monitors are implementation defined in v7, 1957 * but with an ARM recommended set of registers, which we 1958 * follow. 1959 * 1960 * Performance registers fall into three categories: 1961 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1962 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1963 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1964 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1965 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1966 */ 1967 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1968 .access = PL0_RW, .type = ARM_CP_ALIAS, 1969 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1970 .writefn = pmcntenset_write, 1971 .accessfn = pmreg_access, 1972 .raw_writefn = raw_write }, 1973 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1974 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1975 .access = PL0_RW, .accessfn = pmreg_access, 1976 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1977 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1978 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1979 .access = PL0_RW, 1980 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1981 .accessfn = pmreg_access, 1982 .writefn = pmcntenclr_write, 1983 .type = ARM_CP_ALIAS }, 1984 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1985 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1986 .access = PL0_RW, .accessfn = pmreg_access, 1987 .type = ARM_CP_ALIAS, 1988 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1989 .writefn = pmcntenclr_write }, 1990 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1991 .access = PL0_RW, .type = ARM_CP_IO, 1992 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1993 .accessfn = pmreg_access, 1994 .writefn = pmovsr_write, 1995 .raw_writefn = raw_write }, 1996 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1997 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1998 .access = PL0_RW, .accessfn = pmreg_access, 1999 .type = ARM_CP_ALIAS | ARM_CP_IO, 2000 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2001 .writefn = pmovsr_write, 2002 .raw_writefn = raw_write }, 2003 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2004 .access = PL0_W, .accessfn = pmreg_access_swinc, 2005 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2006 .writefn = pmswinc_write }, 2007 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2008 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2009 .access = PL0_W, .accessfn = pmreg_access_swinc, 2010 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2011 .writefn = pmswinc_write }, 2012 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2013 .access = PL0_RW, .type = ARM_CP_ALIAS, 2014 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2015 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2016 .raw_writefn = raw_write}, 2017 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2018 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2019 .access = PL0_RW, .accessfn = pmreg_access_selr, 2020 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2021 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2022 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2023 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2024 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2025 .accessfn = pmreg_access_ccntr }, 2026 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2027 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2028 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2029 .type = ARM_CP_IO, 2030 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2031 .readfn = pmccntr_read, .writefn = pmccntr_write, 2032 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2033 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2034 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2035 .access = PL0_RW, .accessfn = pmreg_access, 2036 .type = ARM_CP_ALIAS | ARM_CP_IO, 2037 .resetvalue = 0, }, 2038 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2039 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2040 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2041 .access = PL0_RW, .accessfn = pmreg_access, 2042 .type = ARM_CP_IO, 2043 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2044 .resetvalue = 0, }, 2045 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2046 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2047 .accessfn = pmreg_access, 2048 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2049 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2050 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2051 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2052 .accessfn = pmreg_access, 2053 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2054 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2055 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2056 .accessfn = pmreg_access_xevcntr, 2057 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2058 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2059 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2060 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2061 .accessfn = pmreg_access_xevcntr, 2062 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2063 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2064 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2065 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2066 .resetvalue = 0, 2067 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2068 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2069 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2070 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2071 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2072 .resetvalue = 0, 2073 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2074 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2075 .access = PL1_RW, .accessfn = access_tpm, 2076 .type = ARM_CP_ALIAS | ARM_CP_IO, 2077 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2078 .resetvalue = 0, 2079 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2080 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2081 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2082 .access = PL1_RW, .accessfn = access_tpm, 2083 .type = ARM_CP_IO, 2084 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2085 .writefn = pmintenset_write, .raw_writefn = raw_write, 2086 .resetvalue = 0x0 }, 2087 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2088 .access = PL1_RW, .accessfn = access_tpm, 2089 .type = ARM_CP_ALIAS | ARM_CP_IO, 2090 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2091 .writefn = pmintenclr_write, }, 2092 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2093 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2094 .access = PL1_RW, .accessfn = access_tpm, 2095 .type = ARM_CP_ALIAS | ARM_CP_IO, 2096 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2097 .writefn = pmintenclr_write }, 2098 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2099 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2100 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2101 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2102 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2103 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 2104 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2105 offsetof(CPUARMState, cp15.csselr_ns) } }, 2106 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2107 * just RAZ for all cores: 2108 */ 2109 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2110 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2111 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 2112 /* Auxiliary fault status registers: these also are IMPDEF, and we 2113 * choose to RAZ/WI for all cores. 2114 */ 2115 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2116 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2117 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2118 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2119 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2120 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2121 /* MAIR can just read-as-written because we don't implement caches 2122 * and so don't need to care about memory attributes. 2123 */ 2124 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2125 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2126 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2127 .resetvalue = 0 }, 2128 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2129 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2130 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2131 .resetvalue = 0 }, 2132 /* For non-long-descriptor page tables these are PRRR and NMRR; 2133 * regardless they still act as reads-as-written for QEMU. 2134 */ 2135 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2136 * allows them to assign the correct fieldoffset based on the endianness 2137 * handled in the field definitions. 2138 */ 2139 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2140 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 2141 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2142 offsetof(CPUARMState, cp15.mair0_ns) }, 2143 .resetfn = arm_cp_reset_ignore }, 2144 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2145 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 2146 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2147 offsetof(CPUARMState, cp15.mair1_ns) }, 2148 .resetfn = arm_cp_reset_ignore }, 2149 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2150 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2151 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2152 /* 32 bit ITLB invalidates */ 2153 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2154 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2155 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2156 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2157 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2158 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2159 /* 32 bit DTLB invalidates */ 2160 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2161 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2162 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2163 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2164 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2165 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2166 /* 32 bit TLB invalidates */ 2167 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2168 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2169 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2170 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2171 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2172 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2173 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2174 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 2175 REGINFO_SENTINEL 2176 }; 2177 2178 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2179 /* 32 bit TLB invalidates, Inner Shareable */ 2180 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2181 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 2182 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2183 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 2184 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2185 .type = ARM_CP_NO_RAW, .access = PL1_W, 2186 .writefn = tlbiasid_is_write }, 2187 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2188 .type = ARM_CP_NO_RAW, .access = PL1_W, 2189 .writefn = tlbimvaa_is_write }, 2190 REGINFO_SENTINEL 2191 }; 2192 2193 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2194 /* PMOVSSET is not implemented in v7 before v7ve */ 2195 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2196 .access = PL0_RW, .accessfn = pmreg_access, 2197 .type = ARM_CP_ALIAS | ARM_CP_IO, 2198 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2199 .writefn = pmovsset_write, 2200 .raw_writefn = raw_write }, 2201 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2202 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2203 .access = PL0_RW, .accessfn = pmreg_access, 2204 .type = ARM_CP_ALIAS | ARM_CP_IO, 2205 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2206 .writefn = pmovsset_write, 2207 .raw_writefn = raw_write }, 2208 REGINFO_SENTINEL 2209 }; 2210 2211 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2212 uint64_t value) 2213 { 2214 value &= 1; 2215 env->teecr = value; 2216 } 2217 2218 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2219 bool isread) 2220 { 2221 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2222 return CP_ACCESS_TRAP; 2223 } 2224 return CP_ACCESS_OK; 2225 } 2226 2227 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2228 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2229 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2230 .resetvalue = 0, 2231 .writefn = teecr_write }, 2232 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2233 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2234 .accessfn = teehbr_access, .resetvalue = 0 }, 2235 REGINFO_SENTINEL 2236 }; 2237 2238 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2239 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2240 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2241 .access = PL0_RW, 2242 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2243 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2244 .access = PL0_RW, 2245 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2246 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2247 .resetfn = arm_cp_reset_ignore }, 2248 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2249 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2250 .access = PL0_R|PL1_W, 2251 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2252 .resetvalue = 0}, 2253 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2254 .access = PL0_R|PL1_W, 2255 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2256 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2257 .resetfn = arm_cp_reset_ignore }, 2258 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2259 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2260 .access = PL1_RW, 2261 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2262 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2263 .access = PL1_RW, 2264 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2265 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2266 .resetvalue = 0 }, 2267 REGINFO_SENTINEL 2268 }; 2269 2270 #ifndef CONFIG_USER_ONLY 2271 2272 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2273 bool isread) 2274 { 2275 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2276 * Writable only at the highest implemented exception level. 2277 */ 2278 int el = arm_current_el(env); 2279 2280 switch (el) { 2281 case 0: 2282 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 2283 return CP_ACCESS_TRAP; 2284 } 2285 break; 2286 case 1: 2287 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2288 arm_is_secure_below_el3(env)) { 2289 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2290 return CP_ACCESS_TRAP_UNCATEGORIZED; 2291 } 2292 break; 2293 case 2: 2294 case 3: 2295 break; 2296 } 2297 2298 if (!isread && el < arm_highest_el(env)) { 2299 return CP_ACCESS_TRAP_UNCATEGORIZED; 2300 } 2301 2302 return CP_ACCESS_OK; 2303 } 2304 2305 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2306 bool isread) 2307 { 2308 unsigned int cur_el = arm_current_el(env); 2309 bool secure = arm_is_secure(env); 2310 2311 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 2312 if (cur_el == 0 && 2313 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2314 return CP_ACCESS_TRAP; 2315 } 2316 2317 if (arm_feature(env, ARM_FEATURE_EL2) && 2318 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 2319 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 2320 return CP_ACCESS_TRAP_EL2; 2321 } 2322 return CP_ACCESS_OK; 2323 } 2324 2325 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2326 bool isread) 2327 { 2328 unsigned int cur_el = arm_current_el(env); 2329 bool secure = arm_is_secure(env); 2330 2331 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 2332 * EL0[PV]TEN is zero. 2333 */ 2334 if (cur_el == 0 && 2335 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2336 return CP_ACCESS_TRAP; 2337 } 2338 2339 if (arm_feature(env, ARM_FEATURE_EL2) && 2340 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 2341 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2342 return CP_ACCESS_TRAP_EL2; 2343 } 2344 return CP_ACCESS_OK; 2345 } 2346 2347 static CPAccessResult gt_pct_access(CPUARMState *env, 2348 const ARMCPRegInfo *ri, 2349 bool isread) 2350 { 2351 return gt_counter_access(env, GTIMER_PHYS, isread); 2352 } 2353 2354 static CPAccessResult gt_vct_access(CPUARMState *env, 2355 const ARMCPRegInfo *ri, 2356 bool isread) 2357 { 2358 return gt_counter_access(env, GTIMER_VIRT, isread); 2359 } 2360 2361 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2362 bool isread) 2363 { 2364 return gt_timer_access(env, GTIMER_PHYS, isread); 2365 } 2366 2367 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2368 bool isread) 2369 { 2370 return gt_timer_access(env, GTIMER_VIRT, isread); 2371 } 2372 2373 static CPAccessResult gt_stimer_access(CPUARMState *env, 2374 const ARMCPRegInfo *ri, 2375 bool isread) 2376 { 2377 /* The AArch64 register view of the secure physical timer is 2378 * always accessible from EL3, and configurably accessible from 2379 * Secure EL1. 2380 */ 2381 switch (arm_current_el(env)) { 2382 case 1: 2383 if (!arm_is_secure(env)) { 2384 return CP_ACCESS_TRAP; 2385 } 2386 if (!(env->cp15.scr_el3 & SCR_ST)) { 2387 return CP_ACCESS_TRAP_EL3; 2388 } 2389 return CP_ACCESS_OK; 2390 case 0: 2391 case 2: 2392 return CP_ACCESS_TRAP; 2393 case 3: 2394 return CP_ACCESS_OK; 2395 default: 2396 g_assert_not_reached(); 2397 } 2398 } 2399 2400 static uint64_t gt_get_countervalue(CPUARMState *env) 2401 { 2402 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 2403 } 2404 2405 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2406 { 2407 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2408 2409 if (gt->ctl & 1) { 2410 /* Timer enabled: calculate and set current ISTATUS, irq, and 2411 * reset timer to when ISTATUS next has to change 2412 */ 2413 uint64_t offset = timeridx == GTIMER_VIRT ? 2414 cpu->env.cp15.cntvoff_el2 : 0; 2415 uint64_t count = gt_get_countervalue(&cpu->env); 2416 /* Note that this must be unsigned 64 bit arithmetic: */ 2417 int istatus = count - offset >= gt->cval; 2418 uint64_t nexttick; 2419 int irqstate; 2420 2421 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2422 2423 irqstate = (istatus && !(gt->ctl & 2)); 2424 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2425 2426 if (istatus) { 2427 /* Next transition is when count rolls back over to zero */ 2428 nexttick = UINT64_MAX; 2429 } else { 2430 /* Next transition is when we hit cval */ 2431 nexttick = gt->cval + offset; 2432 } 2433 /* Note that the desired next expiry time might be beyond the 2434 * signed-64-bit range of a QEMUTimer -- in this case we just 2435 * set the timer for as far in the future as possible. When the 2436 * timer expires we will reset the timer for any remaining period. 2437 */ 2438 if (nexttick > INT64_MAX / GTIMER_SCALE) { 2439 nexttick = INT64_MAX / GTIMER_SCALE; 2440 } 2441 timer_mod(cpu->gt_timer[timeridx], nexttick); 2442 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2443 } else { 2444 /* Timer disabled: ISTATUS and timer output always clear */ 2445 gt->ctl &= ~4; 2446 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2447 timer_del(cpu->gt_timer[timeridx]); 2448 trace_arm_gt_recalc_disabled(timeridx); 2449 } 2450 } 2451 2452 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2453 int timeridx) 2454 { 2455 ARMCPU *cpu = arm_env_get_cpu(env); 2456 2457 timer_del(cpu->gt_timer[timeridx]); 2458 } 2459 2460 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2461 { 2462 return gt_get_countervalue(env); 2463 } 2464 2465 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2466 { 2467 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 2468 } 2469 2470 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2471 int timeridx, 2472 uint64_t value) 2473 { 2474 trace_arm_gt_cval_write(timeridx, value); 2475 env->cp15.c14_timer[timeridx].cval = value; 2476 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 2477 } 2478 2479 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2480 int timeridx) 2481 { 2482 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 2483 2484 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2485 (gt_get_countervalue(env) - offset)); 2486 } 2487 2488 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2489 int timeridx, 2490 uint64_t value) 2491 { 2492 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 2493 2494 trace_arm_gt_tval_write(timeridx, value); 2495 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2496 sextract64(value, 0, 32); 2497 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 2498 } 2499 2500 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2501 int timeridx, 2502 uint64_t value) 2503 { 2504 ARMCPU *cpu = arm_env_get_cpu(env); 2505 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2506 2507 trace_arm_gt_ctl_write(timeridx, value); 2508 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2509 if ((oldval ^ value) & 1) { 2510 /* Enable toggled */ 2511 gt_recalc_timer(cpu, timeridx); 2512 } else if ((oldval ^ value) & 2) { 2513 /* IMASK toggled: don't need to recalculate, 2514 * just set the interrupt line based on ISTATUS 2515 */ 2516 int irqstate = (oldval & 4) && !(value & 2); 2517 2518 trace_arm_gt_imask_toggle(timeridx, irqstate); 2519 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2520 } 2521 } 2522 2523 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2524 { 2525 gt_timer_reset(env, ri, GTIMER_PHYS); 2526 } 2527 2528 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2529 uint64_t value) 2530 { 2531 gt_cval_write(env, ri, GTIMER_PHYS, value); 2532 } 2533 2534 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2535 { 2536 return gt_tval_read(env, ri, GTIMER_PHYS); 2537 } 2538 2539 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2540 uint64_t value) 2541 { 2542 gt_tval_write(env, ri, GTIMER_PHYS, value); 2543 } 2544 2545 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2546 uint64_t value) 2547 { 2548 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2549 } 2550 2551 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2552 { 2553 gt_timer_reset(env, ri, GTIMER_VIRT); 2554 } 2555 2556 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2557 uint64_t value) 2558 { 2559 gt_cval_write(env, ri, GTIMER_VIRT, value); 2560 } 2561 2562 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2563 { 2564 return gt_tval_read(env, ri, GTIMER_VIRT); 2565 } 2566 2567 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2568 uint64_t value) 2569 { 2570 gt_tval_write(env, ri, GTIMER_VIRT, value); 2571 } 2572 2573 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2574 uint64_t value) 2575 { 2576 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2577 } 2578 2579 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2580 uint64_t value) 2581 { 2582 ARMCPU *cpu = arm_env_get_cpu(env); 2583 2584 trace_arm_gt_cntvoff_write(value); 2585 raw_write(env, ri, value); 2586 gt_recalc_timer(cpu, GTIMER_VIRT); 2587 } 2588 2589 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2590 { 2591 gt_timer_reset(env, ri, GTIMER_HYP); 2592 } 2593 2594 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2595 uint64_t value) 2596 { 2597 gt_cval_write(env, ri, GTIMER_HYP, value); 2598 } 2599 2600 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2601 { 2602 return gt_tval_read(env, ri, GTIMER_HYP); 2603 } 2604 2605 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2606 uint64_t value) 2607 { 2608 gt_tval_write(env, ri, GTIMER_HYP, value); 2609 } 2610 2611 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2612 uint64_t value) 2613 { 2614 gt_ctl_write(env, ri, GTIMER_HYP, value); 2615 } 2616 2617 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2618 { 2619 gt_timer_reset(env, ri, GTIMER_SEC); 2620 } 2621 2622 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2623 uint64_t value) 2624 { 2625 gt_cval_write(env, ri, GTIMER_SEC, value); 2626 } 2627 2628 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2629 { 2630 return gt_tval_read(env, ri, GTIMER_SEC); 2631 } 2632 2633 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2634 uint64_t value) 2635 { 2636 gt_tval_write(env, ri, GTIMER_SEC, value); 2637 } 2638 2639 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2640 uint64_t value) 2641 { 2642 gt_ctl_write(env, ri, GTIMER_SEC, value); 2643 } 2644 2645 void arm_gt_ptimer_cb(void *opaque) 2646 { 2647 ARMCPU *cpu = opaque; 2648 2649 gt_recalc_timer(cpu, GTIMER_PHYS); 2650 } 2651 2652 void arm_gt_vtimer_cb(void *opaque) 2653 { 2654 ARMCPU *cpu = opaque; 2655 2656 gt_recalc_timer(cpu, GTIMER_VIRT); 2657 } 2658 2659 void arm_gt_htimer_cb(void *opaque) 2660 { 2661 ARMCPU *cpu = opaque; 2662 2663 gt_recalc_timer(cpu, GTIMER_HYP); 2664 } 2665 2666 void arm_gt_stimer_cb(void *opaque) 2667 { 2668 ARMCPU *cpu = opaque; 2669 2670 gt_recalc_timer(cpu, GTIMER_SEC); 2671 } 2672 2673 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2674 /* Note that CNTFRQ is purely reads-as-written for the benefit 2675 * of software; writing it doesn't actually change the timer frequency. 2676 * Our reset value matches the fixed frequency we implement the timer at. 2677 */ 2678 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2679 .type = ARM_CP_ALIAS, 2680 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2681 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2682 }, 2683 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2684 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2685 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2686 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2687 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 2688 }, 2689 /* overall control: mostly access permissions */ 2690 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2691 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2692 .access = PL1_RW, 2693 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2694 .resetvalue = 0, 2695 }, 2696 /* per-timer control */ 2697 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2698 .secure = ARM_CP_SECSTATE_NS, 2699 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2700 .accessfn = gt_ptimer_access, 2701 .fieldoffset = offsetoflow32(CPUARMState, 2702 cp15.c14_timer[GTIMER_PHYS].ctl), 2703 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2704 }, 2705 { .name = "CNTP_CTL_S", 2706 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2707 .secure = ARM_CP_SECSTATE_S, 2708 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2709 .accessfn = gt_ptimer_access, 2710 .fieldoffset = offsetoflow32(CPUARMState, 2711 cp15.c14_timer[GTIMER_SEC].ctl), 2712 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2713 }, 2714 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2715 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2716 .type = ARM_CP_IO, .access = PL0_RW, 2717 .accessfn = gt_ptimer_access, 2718 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2719 .resetvalue = 0, 2720 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2721 }, 2722 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2723 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2724 .accessfn = gt_vtimer_access, 2725 .fieldoffset = offsetoflow32(CPUARMState, 2726 cp15.c14_timer[GTIMER_VIRT].ctl), 2727 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2728 }, 2729 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2730 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2731 .type = ARM_CP_IO, .access = PL0_RW, 2732 .accessfn = gt_vtimer_access, 2733 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2734 .resetvalue = 0, 2735 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2736 }, 2737 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2738 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2739 .secure = ARM_CP_SECSTATE_NS, 2740 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2741 .accessfn = gt_ptimer_access, 2742 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2743 }, 2744 { .name = "CNTP_TVAL_S", 2745 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2746 .secure = ARM_CP_SECSTATE_S, 2747 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2748 .accessfn = gt_ptimer_access, 2749 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2750 }, 2751 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2752 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2753 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2754 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2755 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2756 }, 2757 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2758 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2759 .accessfn = gt_vtimer_access, 2760 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2761 }, 2762 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2763 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2764 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2765 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2766 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2767 }, 2768 /* The counter itself */ 2769 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2770 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2771 .accessfn = gt_pct_access, 2772 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2773 }, 2774 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2775 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2776 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2777 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2778 }, 2779 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2780 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2781 .accessfn = gt_vct_access, 2782 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2783 }, 2784 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2785 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2786 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2787 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2788 }, 2789 /* Comparison value, indicating when the timer goes off */ 2790 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2791 .secure = ARM_CP_SECSTATE_NS, 2792 .access = PL0_RW, 2793 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2794 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2795 .accessfn = gt_ptimer_access, 2796 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2797 }, 2798 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 2799 .secure = ARM_CP_SECSTATE_S, 2800 .access = PL0_RW, 2801 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2802 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2803 .accessfn = gt_ptimer_access, 2804 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2805 }, 2806 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2807 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2808 .access = PL0_RW, 2809 .type = ARM_CP_IO, 2810 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2811 .resetvalue = 0, .accessfn = gt_ptimer_access, 2812 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2813 }, 2814 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2815 .access = PL0_RW, 2816 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2817 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2818 .accessfn = gt_vtimer_access, 2819 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2820 }, 2821 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2822 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2823 .access = PL0_RW, 2824 .type = ARM_CP_IO, 2825 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2826 .resetvalue = 0, .accessfn = gt_vtimer_access, 2827 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2828 }, 2829 /* Secure timer -- this is actually restricted to only EL3 2830 * and configurably Secure-EL1 via the accessfn. 2831 */ 2832 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2833 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2834 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2835 .accessfn = gt_stimer_access, 2836 .readfn = gt_sec_tval_read, 2837 .writefn = gt_sec_tval_write, 2838 .resetfn = gt_sec_timer_reset, 2839 }, 2840 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2841 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2842 .type = ARM_CP_IO, .access = PL1_RW, 2843 .accessfn = gt_stimer_access, 2844 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2845 .resetvalue = 0, 2846 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2847 }, 2848 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2849 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2850 .type = ARM_CP_IO, .access = PL1_RW, 2851 .accessfn = gt_stimer_access, 2852 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2853 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2854 }, 2855 REGINFO_SENTINEL 2856 }; 2857 2858 #else 2859 2860 /* In user-mode most of the generic timer registers are inaccessible 2861 * however modern kernels (4.12+) allow access to cntvct_el0 2862 */ 2863 2864 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2865 { 2866 /* Currently we have no support for QEMUTimer in linux-user so we 2867 * can't call gt_get_countervalue(env), instead we directly 2868 * call the lower level functions. 2869 */ 2870 return cpu_get_clock() / GTIMER_SCALE; 2871 } 2872 2873 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2874 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2875 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2876 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 2877 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2878 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 2879 }, 2880 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2881 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2882 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2883 .readfn = gt_virt_cnt_read, 2884 }, 2885 REGINFO_SENTINEL 2886 }; 2887 2888 #endif 2889 2890 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2891 { 2892 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2893 raw_write(env, ri, value); 2894 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2895 raw_write(env, ri, value & 0xfffff6ff); 2896 } else { 2897 raw_write(env, ri, value & 0xfffff1ff); 2898 } 2899 } 2900 2901 #ifndef CONFIG_USER_ONLY 2902 /* get_phys_addr() isn't present for user-mode-only targets */ 2903 2904 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2905 bool isread) 2906 { 2907 if (ri->opc2 & 4) { 2908 /* The ATS12NSO* operations must trap to EL3 if executed in 2909 * Secure EL1 (which can only happen if EL3 is AArch64). 2910 * They are simply UNDEF if executed from NS EL1. 2911 * They function normally from EL2 or EL3. 2912 */ 2913 if (arm_current_el(env) == 1) { 2914 if (arm_is_secure_below_el3(env)) { 2915 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2916 } 2917 return CP_ACCESS_TRAP_UNCATEGORIZED; 2918 } 2919 } 2920 return CP_ACCESS_OK; 2921 } 2922 2923 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2924 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2925 { 2926 hwaddr phys_addr; 2927 target_ulong page_size; 2928 int prot; 2929 bool ret; 2930 uint64_t par64; 2931 bool format64 = false; 2932 MemTxAttrs attrs = {}; 2933 ARMMMUFaultInfo fi = {}; 2934 ARMCacheAttrs cacheattrs = {}; 2935 2936 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2937 &prot, &page_size, &fi, &cacheattrs); 2938 2939 if (is_a64(env)) { 2940 format64 = true; 2941 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 2942 /* 2943 * ATS1Cxx: 2944 * * TTBCR.EAE determines whether the result is returned using the 2945 * 32-bit or the 64-bit PAR format 2946 * * Instructions executed in Hyp mode always use the 64bit format 2947 * 2948 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 2949 * * The Non-secure TTBCR.EAE bit is set to 1 2950 * * The implementation includes EL2, and the value of HCR.VM is 1 2951 * 2952 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 2953 * 2954 * ATS1Hx always uses the 64bit format. 2955 */ 2956 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 2957 2958 if (arm_feature(env, ARM_FEATURE_EL2)) { 2959 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 2960 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 2961 } else { 2962 format64 |= arm_current_el(env) == 2; 2963 } 2964 } 2965 } 2966 2967 if (format64) { 2968 /* Create a 64-bit PAR */ 2969 par64 = (1 << 11); /* LPAE bit always set */ 2970 if (!ret) { 2971 par64 |= phys_addr & ~0xfffULL; 2972 if (!attrs.secure) { 2973 par64 |= (1 << 9); /* NS */ 2974 } 2975 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 2976 par64 |= cacheattrs.shareability << 7; /* SH */ 2977 } else { 2978 uint32_t fsr = arm_fi_to_lfsc(&fi); 2979 2980 par64 |= 1; /* F */ 2981 par64 |= (fsr & 0x3f) << 1; /* FS */ 2982 if (fi.stage2) { 2983 par64 |= (1 << 9); /* S */ 2984 } 2985 if (fi.s1ptw) { 2986 par64 |= (1 << 8); /* PTW */ 2987 } 2988 } 2989 } else { 2990 /* fsr is a DFSR/IFSR value for the short descriptor 2991 * translation table format (with WnR always clear). 2992 * Convert it to a 32-bit PAR. 2993 */ 2994 if (!ret) { 2995 /* We do not set any attribute bits in the PAR */ 2996 if (page_size == (1 << 24) 2997 && arm_feature(env, ARM_FEATURE_V7)) { 2998 par64 = (phys_addr & 0xff000000) | (1 << 1); 2999 } else { 3000 par64 = phys_addr & 0xfffff000; 3001 } 3002 if (!attrs.secure) { 3003 par64 |= (1 << 9); /* NS */ 3004 } 3005 } else { 3006 uint32_t fsr = arm_fi_to_sfsc(&fi); 3007 3008 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3009 ((fsr & 0xf) << 1) | 1; 3010 } 3011 } 3012 return par64; 3013 } 3014 3015 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3016 { 3017 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3018 uint64_t par64; 3019 ARMMMUIdx mmu_idx; 3020 int el = arm_current_el(env); 3021 bool secure = arm_is_secure_below_el3(env); 3022 3023 switch (ri->opc2 & 6) { 3024 case 0: 3025 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 3026 switch (el) { 3027 case 3: 3028 mmu_idx = ARMMMUIdx_S1E3; 3029 break; 3030 case 2: 3031 mmu_idx = ARMMMUIdx_S1NSE1; 3032 break; 3033 case 1: 3034 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 3035 break; 3036 default: 3037 g_assert_not_reached(); 3038 } 3039 break; 3040 case 2: 3041 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3042 switch (el) { 3043 case 3: 3044 mmu_idx = ARMMMUIdx_S1SE0; 3045 break; 3046 case 2: 3047 mmu_idx = ARMMMUIdx_S1NSE0; 3048 break; 3049 case 1: 3050 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 3051 break; 3052 default: 3053 g_assert_not_reached(); 3054 } 3055 break; 3056 case 4: 3057 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3058 mmu_idx = ARMMMUIdx_S12NSE1; 3059 break; 3060 case 6: 3061 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3062 mmu_idx = ARMMMUIdx_S12NSE0; 3063 break; 3064 default: 3065 g_assert_not_reached(); 3066 } 3067 3068 par64 = do_ats_write(env, value, access_type, mmu_idx); 3069 3070 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3071 } 3072 3073 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3074 uint64_t value) 3075 { 3076 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3077 uint64_t par64; 3078 3079 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2); 3080 3081 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3082 } 3083 3084 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3085 bool isread) 3086 { 3087 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 3088 return CP_ACCESS_TRAP; 3089 } 3090 return CP_ACCESS_OK; 3091 } 3092 3093 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3094 uint64_t value) 3095 { 3096 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3097 ARMMMUIdx mmu_idx; 3098 int secure = arm_is_secure_below_el3(env); 3099 3100 switch (ri->opc2 & 6) { 3101 case 0: 3102 switch (ri->opc1) { 3103 case 0: /* AT S1E1R, AT S1E1W */ 3104 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 3105 break; 3106 case 4: /* AT S1E2R, AT S1E2W */ 3107 mmu_idx = ARMMMUIdx_S1E2; 3108 break; 3109 case 6: /* AT S1E3R, AT S1E3W */ 3110 mmu_idx = ARMMMUIdx_S1E3; 3111 break; 3112 default: 3113 g_assert_not_reached(); 3114 } 3115 break; 3116 case 2: /* AT S1E0R, AT S1E0W */ 3117 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 3118 break; 3119 case 4: /* AT S12E1R, AT S12E1W */ 3120 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 3121 break; 3122 case 6: /* AT S12E0R, AT S12E0W */ 3123 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 3124 break; 3125 default: 3126 g_assert_not_reached(); 3127 } 3128 3129 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3130 } 3131 #endif 3132 3133 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3134 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3135 .access = PL1_RW, .resetvalue = 0, 3136 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3137 offsetoflow32(CPUARMState, cp15.par_ns) }, 3138 .writefn = par_write }, 3139 #ifndef CONFIG_USER_ONLY 3140 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3141 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3142 .access = PL1_W, .accessfn = ats_access, 3143 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 3144 #endif 3145 REGINFO_SENTINEL 3146 }; 3147 3148 /* Return basic MPU access permission bits. */ 3149 static uint32_t simple_mpu_ap_bits(uint32_t val) 3150 { 3151 uint32_t ret; 3152 uint32_t mask; 3153 int i; 3154 ret = 0; 3155 mask = 3; 3156 for (i = 0; i < 16; i += 2) { 3157 ret |= (val >> i) & mask; 3158 mask <<= 2; 3159 } 3160 return ret; 3161 } 3162 3163 /* Pad basic MPU access permission bits to extended format. */ 3164 static uint32_t extended_mpu_ap_bits(uint32_t val) 3165 { 3166 uint32_t ret; 3167 uint32_t mask; 3168 int i; 3169 ret = 0; 3170 mask = 3; 3171 for (i = 0; i < 16; i += 2) { 3172 ret |= (val & mask) << i; 3173 mask <<= 2; 3174 } 3175 return ret; 3176 } 3177 3178 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3179 uint64_t value) 3180 { 3181 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3182 } 3183 3184 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3185 { 3186 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3187 } 3188 3189 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3190 uint64_t value) 3191 { 3192 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3193 } 3194 3195 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3196 { 3197 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3198 } 3199 3200 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3201 { 3202 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3203 3204 if (!u32p) { 3205 return 0; 3206 } 3207 3208 u32p += env->pmsav7.rnr[M_REG_NS]; 3209 return *u32p; 3210 } 3211 3212 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3213 uint64_t value) 3214 { 3215 ARMCPU *cpu = arm_env_get_cpu(env); 3216 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3217 3218 if (!u32p) { 3219 return; 3220 } 3221 3222 u32p += env->pmsav7.rnr[M_REG_NS]; 3223 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3224 *u32p = value; 3225 } 3226 3227 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3228 uint64_t value) 3229 { 3230 ARMCPU *cpu = arm_env_get_cpu(env); 3231 uint32_t nrgs = cpu->pmsav7_dregion; 3232 3233 if (value >= nrgs) { 3234 qemu_log_mask(LOG_GUEST_ERROR, 3235 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3236 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3237 return; 3238 } 3239 3240 raw_write(env, ri, value); 3241 } 3242 3243 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3244 /* Reset for all these registers is handled in arm_cpu_reset(), 3245 * because the PMSAv7 is also used by M-profile CPUs, which do 3246 * not register cpregs but still need the state to be reset. 3247 */ 3248 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3249 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3250 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3251 .readfn = pmsav7_read, .writefn = pmsav7_write, 3252 .resetfn = arm_cp_reset_ignore }, 3253 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3254 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3255 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3256 .readfn = pmsav7_read, .writefn = pmsav7_write, 3257 .resetfn = arm_cp_reset_ignore }, 3258 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3259 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3260 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3261 .readfn = pmsav7_read, .writefn = pmsav7_write, 3262 .resetfn = arm_cp_reset_ignore }, 3263 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3264 .access = PL1_RW, 3265 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3266 .writefn = pmsav7_rgnr_write, 3267 .resetfn = arm_cp_reset_ignore }, 3268 REGINFO_SENTINEL 3269 }; 3270 3271 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3272 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3273 .access = PL1_RW, .type = ARM_CP_ALIAS, 3274 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3275 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3276 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3277 .access = PL1_RW, .type = ARM_CP_ALIAS, 3278 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3279 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3280 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3281 .access = PL1_RW, 3282 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3283 .resetvalue = 0, }, 3284 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3285 .access = PL1_RW, 3286 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3287 .resetvalue = 0, }, 3288 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3289 .access = PL1_RW, 3290 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3291 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3292 .access = PL1_RW, 3293 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3294 /* Protection region base and size registers */ 3295 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3296 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3297 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3298 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3299 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3300 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3301 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3302 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3303 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3304 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3305 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3306 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3307 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3308 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3309 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3310 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3311 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3312 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3313 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3314 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3315 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3316 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3317 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3318 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3319 REGINFO_SENTINEL 3320 }; 3321 3322 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3323 uint64_t value) 3324 { 3325 TCR *tcr = raw_ptr(env, ri); 3326 int maskshift = extract32(value, 0, 3); 3327 3328 if (!arm_feature(env, ARM_FEATURE_V8)) { 3329 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3330 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3331 * using Long-desciptor translation table format */ 3332 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3333 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3334 /* In an implementation that includes the Security Extensions 3335 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3336 * Short-descriptor translation table format. 3337 */ 3338 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3339 } else { 3340 value &= TTBCR_N; 3341 } 3342 } 3343 3344 /* Update the masks corresponding to the TCR bank being written 3345 * Note that we always calculate mask and base_mask, but 3346 * they are only used for short-descriptor tables (ie if EAE is 0); 3347 * for long-descriptor tables the TCR fields are used differently 3348 * and the mask and base_mask values are meaningless. 3349 */ 3350 tcr->raw_tcr = value; 3351 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3352 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3353 } 3354 3355 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3356 uint64_t value) 3357 { 3358 ARMCPU *cpu = arm_env_get_cpu(env); 3359 TCR *tcr = raw_ptr(env, ri); 3360 3361 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3362 /* With LPAE the TTBCR could result in a change of ASID 3363 * via the TTBCR.A1 bit, so do a TLB flush. 3364 */ 3365 tlb_flush(CPU(cpu)); 3366 } 3367 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3368 value = deposit64(tcr->raw_tcr, 0, 32, value); 3369 vmsa_ttbcr_raw_write(env, ri, value); 3370 } 3371 3372 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3373 { 3374 TCR *tcr = raw_ptr(env, ri); 3375 3376 /* Reset both the TCR as well as the masks corresponding to the bank of 3377 * the TCR being reset. 3378 */ 3379 tcr->raw_tcr = 0; 3380 tcr->mask = 0; 3381 tcr->base_mask = 0xffffc000u; 3382 } 3383 3384 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3385 uint64_t value) 3386 { 3387 ARMCPU *cpu = arm_env_get_cpu(env); 3388 TCR *tcr = raw_ptr(env, ri); 3389 3390 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3391 tlb_flush(CPU(cpu)); 3392 tcr->raw_tcr = value; 3393 } 3394 3395 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3396 uint64_t value) 3397 { 3398 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3399 if (cpreg_field_is_64bit(ri) && 3400 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3401 ARMCPU *cpu = arm_env_get_cpu(env); 3402 tlb_flush(CPU(cpu)); 3403 } 3404 raw_write(env, ri, value); 3405 } 3406 3407 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3408 uint64_t value) 3409 { 3410 ARMCPU *cpu = arm_env_get_cpu(env); 3411 CPUState *cs = CPU(cpu); 3412 3413 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 3414 if (raw_read(env, ri) != value) { 3415 tlb_flush_by_mmuidx(cs, 3416 ARMMMUIdxBit_S12NSE1 | 3417 ARMMMUIdxBit_S12NSE0 | 3418 ARMMMUIdxBit_S2NS); 3419 raw_write(env, ri, value); 3420 } 3421 } 3422 3423 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3424 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3425 .access = PL1_RW, .type = ARM_CP_ALIAS, 3426 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3427 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3428 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3429 .access = PL1_RW, .resetvalue = 0, 3430 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3431 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3432 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3433 .access = PL1_RW, .resetvalue = 0, 3434 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3435 offsetof(CPUARMState, cp15.dfar_ns) } }, 3436 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3437 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3438 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3439 .resetvalue = 0, }, 3440 REGINFO_SENTINEL 3441 }; 3442 3443 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3444 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3445 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3446 .access = PL1_RW, 3447 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3448 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3449 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3450 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3451 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3452 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3453 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3454 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3455 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3456 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3457 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3458 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3459 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3460 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 3461 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3462 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3463 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3464 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3465 .raw_writefn = vmsa_ttbcr_raw_write, 3466 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 3467 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 3468 REGINFO_SENTINEL 3469 }; 3470 3471 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3472 * qemu tlbs nor adjusting cached masks. 3473 */ 3474 static const ARMCPRegInfo ttbcr2_reginfo = { 3475 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3476 .access = PL1_RW, .type = ARM_CP_ALIAS, 3477 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 3478 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 3479 }; 3480 3481 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3482 uint64_t value) 3483 { 3484 env->cp15.c15_ticonfig = value & 0xe7; 3485 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3486 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3487 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3488 } 3489 3490 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3491 uint64_t value) 3492 { 3493 env->cp15.c15_threadid = value & 0xffff; 3494 } 3495 3496 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3497 uint64_t value) 3498 { 3499 /* Wait-for-interrupt (deprecated) */ 3500 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); 3501 } 3502 3503 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3504 uint64_t value) 3505 { 3506 /* On OMAP there are registers indicating the max/min index of dcache lines 3507 * containing a dirty line; cache flush operations have to reset these. 3508 */ 3509 env->cp15.c15_i_max = 0x000; 3510 env->cp15.c15_i_min = 0xff0; 3511 } 3512 3513 static const ARMCPRegInfo omap_cp_reginfo[] = { 3514 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3515 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3516 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3517 .resetvalue = 0, }, 3518 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3519 .access = PL1_RW, .type = ARM_CP_NOP }, 3520 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3521 .access = PL1_RW, 3522 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3523 .writefn = omap_ticonfig_write }, 3524 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3525 .access = PL1_RW, 3526 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3527 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3528 .access = PL1_RW, .resetvalue = 0xff0, 3529 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3530 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3531 .access = PL1_RW, 3532 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3533 .writefn = omap_threadid_write }, 3534 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3535 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3536 .type = ARM_CP_NO_RAW, 3537 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3538 /* TODO: Peripheral port remap register: 3539 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3540 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3541 * when MMU is off. 3542 */ 3543 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3544 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3545 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3546 .writefn = omap_cachemaint_write }, 3547 { .name = "C9", .cp = 15, .crn = 9, 3548 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3549 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3550 REGINFO_SENTINEL 3551 }; 3552 3553 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3554 uint64_t value) 3555 { 3556 env->cp15.c15_cpar = value & 0x3fff; 3557 } 3558 3559 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3560 { .name = "XSCALE_CPAR", 3561 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3562 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3563 .writefn = xscale_cpar_write, }, 3564 { .name = "XSCALE_AUXCR", 3565 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3566 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3567 .resetvalue = 0, }, 3568 /* XScale specific cache-lockdown: since we have no cache we NOP these 3569 * and hope the guest does not really rely on cache behaviour. 3570 */ 3571 { .name = "XSCALE_LOCK_ICACHE_LINE", 3572 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3573 .access = PL1_W, .type = ARM_CP_NOP }, 3574 { .name = "XSCALE_UNLOCK_ICACHE", 3575 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3576 .access = PL1_W, .type = ARM_CP_NOP }, 3577 { .name = "XSCALE_DCACHE_LOCK", 3578 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3579 .access = PL1_RW, .type = ARM_CP_NOP }, 3580 { .name = "XSCALE_UNLOCK_DCACHE", 3581 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3582 .access = PL1_W, .type = ARM_CP_NOP }, 3583 REGINFO_SENTINEL 3584 }; 3585 3586 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3587 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3588 * implementation of this implementation-defined space. 3589 * Ideally this should eventually disappear in favour of actually 3590 * implementing the correct behaviour for all cores. 3591 */ 3592 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3593 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3594 .access = PL1_RW, 3595 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3596 .resetvalue = 0 }, 3597 REGINFO_SENTINEL 3598 }; 3599 3600 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3601 /* Cache status: RAZ because we have no cache so it's always clean */ 3602 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3603 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3604 .resetvalue = 0 }, 3605 REGINFO_SENTINEL 3606 }; 3607 3608 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 3609 /* We never have a a block transfer operation in progress */ 3610 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 3611 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3612 .resetvalue = 0 }, 3613 /* The cache ops themselves: these all NOP for QEMU */ 3614 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 3615 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3616 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 3617 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3618 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 3619 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3620 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 3621 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3622 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 3623 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3624 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 3625 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3626 REGINFO_SENTINEL 3627 }; 3628 3629 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 3630 /* The cache test-and-clean instructions always return (1 << 30) 3631 * to indicate that there are no dirty cache lines. 3632 */ 3633 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 3634 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3635 .resetvalue = (1 << 30) }, 3636 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 3637 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3638 .resetvalue = (1 << 30) }, 3639 REGINFO_SENTINEL 3640 }; 3641 3642 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 3643 /* Ignore ReadBuffer accesses */ 3644 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 3645 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3646 .access = PL1_RW, .resetvalue = 0, 3647 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 3648 REGINFO_SENTINEL 3649 }; 3650 3651 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3652 { 3653 ARMCPU *cpu = arm_env_get_cpu(env); 3654 unsigned int cur_el = arm_current_el(env); 3655 bool secure = arm_is_secure(env); 3656 3657 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3658 return env->cp15.vpidr_el2; 3659 } 3660 return raw_read(env, ri); 3661 } 3662 3663 static uint64_t mpidr_read_val(CPUARMState *env) 3664 { 3665 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); 3666 uint64_t mpidr = cpu->mp_affinity; 3667 3668 if (arm_feature(env, ARM_FEATURE_V7MP)) { 3669 mpidr |= (1U << 31); 3670 /* Cores which are uniprocessor (non-coherent) 3671 * but still implement the MP extensions set 3672 * bit 30. (For instance, Cortex-R5). 3673 */ 3674 if (cpu->mp_is_up) { 3675 mpidr |= (1u << 30); 3676 } 3677 } 3678 return mpidr; 3679 } 3680 3681 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3682 { 3683 unsigned int cur_el = arm_current_el(env); 3684 bool secure = arm_is_secure(env); 3685 3686 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3687 return env->cp15.vmpidr_el2; 3688 } 3689 return mpidr_read_val(env); 3690 } 3691 3692 static const ARMCPRegInfo lpae_cp_reginfo[] = { 3693 /* NOP AMAIR0/1 */ 3694 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 3695 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 3696 .access = PL1_RW, .type = ARM_CP_CONST, 3697 .resetvalue = 0 }, 3698 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 3699 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 3700 .access = PL1_RW, .type = ARM_CP_CONST, 3701 .resetvalue = 0 }, 3702 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 3703 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 3704 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 3705 offsetof(CPUARMState, cp15.par_ns)} }, 3706 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 3707 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3708 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3709 offsetof(CPUARMState, cp15.ttbr0_ns) }, 3710 .writefn = vmsa_ttbr_write, }, 3711 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 3712 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3713 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3714 offsetof(CPUARMState, cp15.ttbr1_ns) }, 3715 .writefn = vmsa_ttbr_write, }, 3716 REGINFO_SENTINEL 3717 }; 3718 3719 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3720 { 3721 return vfp_get_fpcr(env); 3722 } 3723 3724 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3725 uint64_t value) 3726 { 3727 vfp_set_fpcr(env, value); 3728 } 3729 3730 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3731 { 3732 return vfp_get_fpsr(env); 3733 } 3734 3735 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3736 uint64_t value) 3737 { 3738 vfp_set_fpsr(env, value); 3739 } 3740 3741 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 3742 bool isread) 3743 { 3744 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 3745 return CP_ACCESS_TRAP; 3746 } 3747 return CP_ACCESS_OK; 3748 } 3749 3750 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 3751 uint64_t value) 3752 { 3753 env->daif = value & PSTATE_DAIF; 3754 } 3755 3756 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 3757 const ARMCPRegInfo *ri, 3758 bool isread) 3759 { 3760 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 3761 * SCTLR_EL1.UCI is set. 3762 */ 3763 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 3764 return CP_ACCESS_TRAP; 3765 } 3766 return CP_ACCESS_OK; 3767 } 3768 3769 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 3770 * Page D4-1736 (DDI0487A.b) 3771 */ 3772 3773 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3774 uint64_t value) 3775 { 3776 CPUState *cs = ENV_GET_CPU(env); 3777 bool sec = arm_is_secure_below_el3(env); 3778 3779 if (sec) { 3780 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3781 ARMMMUIdxBit_S1SE1 | 3782 ARMMMUIdxBit_S1SE0); 3783 } else { 3784 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3785 ARMMMUIdxBit_S12NSE1 | 3786 ARMMMUIdxBit_S12NSE0); 3787 } 3788 } 3789 3790 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3791 uint64_t value) 3792 { 3793 CPUState *cs = ENV_GET_CPU(env); 3794 3795 if (tlb_force_broadcast(env)) { 3796 tlbi_aa64_vmalle1is_write(env, NULL, value); 3797 return; 3798 } 3799 3800 if (arm_is_secure_below_el3(env)) { 3801 tlb_flush_by_mmuidx(cs, 3802 ARMMMUIdxBit_S1SE1 | 3803 ARMMMUIdxBit_S1SE0); 3804 } else { 3805 tlb_flush_by_mmuidx(cs, 3806 ARMMMUIdxBit_S12NSE1 | 3807 ARMMMUIdxBit_S12NSE0); 3808 } 3809 } 3810 3811 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3812 uint64_t value) 3813 { 3814 /* Note that the 'ALL' scope must invalidate both stage 1 and 3815 * stage 2 translations, whereas most other scopes only invalidate 3816 * stage 1 translations. 3817 */ 3818 ARMCPU *cpu = arm_env_get_cpu(env); 3819 CPUState *cs = CPU(cpu); 3820 3821 if (arm_is_secure_below_el3(env)) { 3822 tlb_flush_by_mmuidx(cs, 3823 ARMMMUIdxBit_S1SE1 | 3824 ARMMMUIdxBit_S1SE0); 3825 } else { 3826 if (arm_feature(env, ARM_FEATURE_EL2)) { 3827 tlb_flush_by_mmuidx(cs, 3828 ARMMMUIdxBit_S12NSE1 | 3829 ARMMMUIdxBit_S12NSE0 | 3830 ARMMMUIdxBit_S2NS); 3831 } else { 3832 tlb_flush_by_mmuidx(cs, 3833 ARMMMUIdxBit_S12NSE1 | 3834 ARMMMUIdxBit_S12NSE0); 3835 } 3836 } 3837 } 3838 3839 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3840 uint64_t value) 3841 { 3842 ARMCPU *cpu = arm_env_get_cpu(env); 3843 CPUState *cs = CPU(cpu); 3844 3845 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3846 } 3847 3848 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3849 uint64_t value) 3850 { 3851 ARMCPU *cpu = arm_env_get_cpu(env); 3852 CPUState *cs = CPU(cpu); 3853 3854 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3855 } 3856 3857 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3858 uint64_t value) 3859 { 3860 /* Note that the 'ALL' scope must invalidate both stage 1 and 3861 * stage 2 translations, whereas most other scopes only invalidate 3862 * stage 1 translations. 3863 */ 3864 CPUState *cs = ENV_GET_CPU(env); 3865 bool sec = arm_is_secure_below_el3(env); 3866 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3867 3868 if (sec) { 3869 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3870 ARMMMUIdxBit_S1SE1 | 3871 ARMMMUIdxBit_S1SE0); 3872 } else if (has_el2) { 3873 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3874 ARMMMUIdxBit_S12NSE1 | 3875 ARMMMUIdxBit_S12NSE0 | 3876 ARMMMUIdxBit_S2NS); 3877 } else { 3878 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3879 ARMMMUIdxBit_S12NSE1 | 3880 ARMMMUIdxBit_S12NSE0); 3881 } 3882 } 3883 3884 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3885 uint64_t value) 3886 { 3887 CPUState *cs = ENV_GET_CPU(env); 3888 3889 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3890 } 3891 3892 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3893 uint64_t value) 3894 { 3895 CPUState *cs = ENV_GET_CPU(env); 3896 3897 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3898 } 3899 3900 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3901 uint64_t value) 3902 { 3903 /* Invalidate by VA, EL2 3904 * Currently handles both VAE2 and VALE2, since we don't support 3905 * flush-last-level-only. 3906 */ 3907 ARMCPU *cpu = arm_env_get_cpu(env); 3908 CPUState *cs = CPU(cpu); 3909 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3910 3911 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3912 } 3913 3914 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3915 uint64_t value) 3916 { 3917 /* Invalidate by VA, EL3 3918 * Currently handles both VAE3 and VALE3, since we don't support 3919 * flush-last-level-only. 3920 */ 3921 ARMCPU *cpu = arm_env_get_cpu(env); 3922 CPUState *cs = CPU(cpu); 3923 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3924 3925 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 3926 } 3927 3928 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3929 uint64_t value) 3930 { 3931 ARMCPU *cpu = arm_env_get_cpu(env); 3932 CPUState *cs = CPU(cpu); 3933 bool sec = arm_is_secure_below_el3(env); 3934 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3935 3936 if (sec) { 3937 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3938 ARMMMUIdxBit_S1SE1 | 3939 ARMMMUIdxBit_S1SE0); 3940 } else { 3941 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3942 ARMMMUIdxBit_S12NSE1 | 3943 ARMMMUIdxBit_S12NSE0); 3944 } 3945 } 3946 3947 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3948 uint64_t value) 3949 { 3950 /* Invalidate by VA, EL1&0 (AArch64 version). 3951 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 3952 * since we don't support flush-for-specific-ASID-only or 3953 * flush-last-level-only. 3954 */ 3955 ARMCPU *cpu = arm_env_get_cpu(env); 3956 CPUState *cs = CPU(cpu); 3957 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3958 3959 if (tlb_force_broadcast(env)) { 3960 tlbi_aa64_vae1is_write(env, NULL, value); 3961 return; 3962 } 3963 3964 if (arm_is_secure_below_el3(env)) { 3965 tlb_flush_page_by_mmuidx(cs, pageaddr, 3966 ARMMMUIdxBit_S1SE1 | 3967 ARMMMUIdxBit_S1SE0); 3968 } else { 3969 tlb_flush_page_by_mmuidx(cs, pageaddr, 3970 ARMMMUIdxBit_S12NSE1 | 3971 ARMMMUIdxBit_S12NSE0); 3972 } 3973 } 3974 3975 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3976 uint64_t value) 3977 { 3978 CPUState *cs = ENV_GET_CPU(env); 3979 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3980 3981 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3982 ARMMMUIdxBit_S1E2); 3983 } 3984 3985 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3986 uint64_t value) 3987 { 3988 CPUState *cs = ENV_GET_CPU(env); 3989 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3990 3991 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3992 ARMMMUIdxBit_S1E3); 3993 } 3994 3995 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3996 uint64_t value) 3997 { 3998 /* Invalidate by IPA. This has to invalidate any structures that 3999 * contain only stage 2 translation information, but does not need 4000 * to apply to structures that contain combined stage 1 and stage 2 4001 * translation information. 4002 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 4003 */ 4004 ARMCPU *cpu = arm_env_get_cpu(env); 4005 CPUState *cs = CPU(cpu); 4006 uint64_t pageaddr; 4007 4008 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4009 return; 4010 } 4011 4012 pageaddr = sextract64(value << 12, 0, 48); 4013 4014 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 4015 } 4016 4017 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4018 uint64_t value) 4019 { 4020 CPUState *cs = ENV_GET_CPU(env); 4021 uint64_t pageaddr; 4022 4023 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4024 return; 4025 } 4026 4027 pageaddr = sextract64(value << 12, 0, 48); 4028 4029 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4030 ARMMMUIdxBit_S2NS); 4031 } 4032 4033 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4034 bool isread) 4035 { 4036 /* We don't implement EL2, so the only control on DC ZVA is the 4037 * bit in the SCTLR which can prohibit access for EL0. 4038 */ 4039 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4040 return CP_ACCESS_TRAP; 4041 } 4042 return CP_ACCESS_OK; 4043 } 4044 4045 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4046 { 4047 ARMCPU *cpu = arm_env_get_cpu(env); 4048 int dzp_bit = 1 << 4; 4049 4050 /* DZP indicates whether DC ZVA access is allowed */ 4051 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4052 dzp_bit = 0; 4053 } 4054 return cpu->dcz_blocksize | dzp_bit; 4055 } 4056 4057 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4058 bool isread) 4059 { 4060 if (!(env->pstate & PSTATE_SP)) { 4061 /* Access to SP_EL0 is undefined if it's being used as 4062 * the stack pointer. 4063 */ 4064 return CP_ACCESS_TRAP_UNCATEGORIZED; 4065 } 4066 return CP_ACCESS_OK; 4067 } 4068 4069 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4070 { 4071 return env->pstate & PSTATE_SP; 4072 } 4073 4074 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4075 { 4076 update_spsel(env, val); 4077 } 4078 4079 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4080 uint64_t value) 4081 { 4082 ARMCPU *cpu = arm_env_get_cpu(env); 4083 4084 if (raw_read(env, ri) == value) { 4085 /* Skip the TLB flush if nothing actually changed; Linux likes 4086 * to do a lot of pointless SCTLR writes. 4087 */ 4088 return; 4089 } 4090 4091 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4092 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4093 value &= ~SCTLR_M; 4094 } 4095 4096 raw_write(env, ri, value); 4097 /* ??? Lots of these bits are not implemented. */ 4098 /* This may enable/disable the MMU, so do a TLB flush. */ 4099 tlb_flush(CPU(cpu)); 4100 } 4101 4102 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4103 bool isread) 4104 { 4105 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4106 return CP_ACCESS_TRAP_FP_EL2; 4107 } 4108 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4109 return CP_ACCESS_TRAP_FP_EL3; 4110 } 4111 return CP_ACCESS_OK; 4112 } 4113 4114 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4115 uint64_t value) 4116 { 4117 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4118 } 4119 4120 static const ARMCPRegInfo v8_cp_reginfo[] = { 4121 /* Minimal set of EL0-visible registers. This will need to be expanded 4122 * significantly for system emulation of AArch64 CPUs. 4123 */ 4124 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4125 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4126 .access = PL0_RW, .type = ARM_CP_NZCV }, 4127 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4128 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4129 .type = ARM_CP_NO_RAW, 4130 .access = PL0_RW, .accessfn = aa64_daif_access, 4131 .fieldoffset = offsetof(CPUARMState, daif), 4132 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4133 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4134 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4135 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4136 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4137 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4138 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4139 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4140 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4141 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4142 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4143 .access = PL0_R, .type = ARM_CP_NO_RAW, 4144 .readfn = aa64_dczid_read }, 4145 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4146 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4147 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4148 #ifndef CONFIG_USER_ONLY 4149 /* Avoid overhead of an access check that always passes in user-mode */ 4150 .accessfn = aa64_zva_access, 4151 #endif 4152 }, 4153 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4154 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4155 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4156 /* Cache ops: all NOPs since we don't emulate caches */ 4157 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4158 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4159 .access = PL1_W, .type = ARM_CP_NOP }, 4160 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4161 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4162 .access = PL1_W, .type = ARM_CP_NOP }, 4163 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4164 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4165 .access = PL0_W, .type = ARM_CP_NOP, 4166 .accessfn = aa64_cacheop_access }, 4167 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4168 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4169 .access = PL1_W, .type = ARM_CP_NOP }, 4170 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4171 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4172 .access = PL1_W, .type = ARM_CP_NOP }, 4173 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4174 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4175 .access = PL0_W, .type = ARM_CP_NOP, 4176 .accessfn = aa64_cacheop_access }, 4177 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4178 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4179 .access = PL1_W, .type = ARM_CP_NOP }, 4180 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4181 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4182 .access = PL0_W, .type = ARM_CP_NOP, 4183 .accessfn = aa64_cacheop_access }, 4184 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4185 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4186 .access = PL0_W, .type = ARM_CP_NOP, 4187 .accessfn = aa64_cacheop_access }, 4188 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4189 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4190 .access = PL1_W, .type = ARM_CP_NOP }, 4191 /* TLBI operations */ 4192 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4193 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4194 .access = PL1_W, .type = ARM_CP_NO_RAW, 4195 .writefn = tlbi_aa64_vmalle1is_write }, 4196 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4197 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4198 .access = PL1_W, .type = ARM_CP_NO_RAW, 4199 .writefn = tlbi_aa64_vae1is_write }, 4200 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4201 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4202 .access = PL1_W, .type = ARM_CP_NO_RAW, 4203 .writefn = tlbi_aa64_vmalle1is_write }, 4204 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4205 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4206 .access = PL1_W, .type = ARM_CP_NO_RAW, 4207 .writefn = tlbi_aa64_vae1is_write }, 4208 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4209 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4210 .access = PL1_W, .type = ARM_CP_NO_RAW, 4211 .writefn = tlbi_aa64_vae1is_write }, 4212 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4213 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4214 .access = PL1_W, .type = ARM_CP_NO_RAW, 4215 .writefn = tlbi_aa64_vae1is_write }, 4216 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4217 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4218 .access = PL1_W, .type = ARM_CP_NO_RAW, 4219 .writefn = tlbi_aa64_vmalle1_write }, 4220 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4221 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4222 .access = PL1_W, .type = ARM_CP_NO_RAW, 4223 .writefn = tlbi_aa64_vae1_write }, 4224 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4225 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4226 .access = PL1_W, .type = ARM_CP_NO_RAW, 4227 .writefn = tlbi_aa64_vmalle1_write }, 4228 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4229 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4230 .access = PL1_W, .type = ARM_CP_NO_RAW, 4231 .writefn = tlbi_aa64_vae1_write }, 4232 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4233 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4234 .access = PL1_W, .type = ARM_CP_NO_RAW, 4235 .writefn = tlbi_aa64_vae1_write }, 4236 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4237 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4238 .access = PL1_W, .type = ARM_CP_NO_RAW, 4239 .writefn = tlbi_aa64_vae1_write }, 4240 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4241 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4242 .access = PL2_W, .type = ARM_CP_NO_RAW, 4243 .writefn = tlbi_aa64_ipas2e1is_write }, 4244 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4245 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4246 .access = PL2_W, .type = ARM_CP_NO_RAW, 4247 .writefn = tlbi_aa64_ipas2e1is_write }, 4248 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4249 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4250 .access = PL2_W, .type = ARM_CP_NO_RAW, 4251 .writefn = tlbi_aa64_alle1is_write }, 4252 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4253 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4254 .access = PL2_W, .type = ARM_CP_NO_RAW, 4255 .writefn = tlbi_aa64_alle1is_write }, 4256 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4257 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4258 .access = PL2_W, .type = ARM_CP_NO_RAW, 4259 .writefn = tlbi_aa64_ipas2e1_write }, 4260 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4261 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4262 .access = PL2_W, .type = ARM_CP_NO_RAW, 4263 .writefn = tlbi_aa64_ipas2e1_write }, 4264 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4265 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4266 .access = PL2_W, .type = ARM_CP_NO_RAW, 4267 .writefn = tlbi_aa64_alle1_write }, 4268 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4269 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4270 .access = PL2_W, .type = ARM_CP_NO_RAW, 4271 .writefn = tlbi_aa64_alle1is_write }, 4272 #ifndef CONFIG_USER_ONLY 4273 /* 64 bit address translation operations */ 4274 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4275 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4276 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4277 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4278 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4279 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4280 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4281 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4282 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4283 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4284 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4285 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4286 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4287 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4288 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4289 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4290 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4291 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4292 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4293 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4294 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4295 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4296 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4297 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4298 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4299 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4300 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4301 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4302 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4303 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4304 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4305 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4306 .type = ARM_CP_ALIAS, 4307 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4308 .access = PL1_RW, .resetvalue = 0, 4309 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4310 .writefn = par_write }, 4311 #endif 4312 /* TLB invalidate last level of translation table walk */ 4313 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4314 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 4315 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4316 .type = ARM_CP_NO_RAW, .access = PL1_W, 4317 .writefn = tlbimvaa_is_write }, 4318 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4319 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 4320 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4321 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 4322 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4323 .type = ARM_CP_NO_RAW, .access = PL2_W, 4324 .writefn = tlbimva_hyp_write }, 4325 { .name = "TLBIMVALHIS", 4326 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4327 .type = ARM_CP_NO_RAW, .access = PL2_W, 4328 .writefn = tlbimva_hyp_is_write }, 4329 { .name = "TLBIIPAS2", 4330 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4331 .type = ARM_CP_NO_RAW, .access = PL2_W, 4332 .writefn = tlbiipas2_write }, 4333 { .name = "TLBIIPAS2IS", 4334 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4335 .type = ARM_CP_NO_RAW, .access = PL2_W, 4336 .writefn = tlbiipas2_is_write }, 4337 { .name = "TLBIIPAS2L", 4338 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4339 .type = ARM_CP_NO_RAW, .access = PL2_W, 4340 .writefn = tlbiipas2_write }, 4341 { .name = "TLBIIPAS2LIS", 4342 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4343 .type = ARM_CP_NO_RAW, .access = PL2_W, 4344 .writefn = tlbiipas2_is_write }, 4345 /* 32 bit cache operations */ 4346 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4347 .type = ARM_CP_NOP, .access = PL1_W }, 4348 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 4349 .type = ARM_CP_NOP, .access = PL1_W }, 4350 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4351 .type = ARM_CP_NOP, .access = PL1_W }, 4352 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 4353 .type = ARM_CP_NOP, .access = PL1_W }, 4354 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 4355 .type = ARM_CP_NOP, .access = PL1_W }, 4356 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 4357 .type = ARM_CP_NOP, .access = PL1_W }, 4358 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4359 .type = ARM_CP_NOP, .access = PL1_W }, 4360 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4361 .type = ARM_CP_NOP, .access = PL1_W }, 4362 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 4363 .type = ARM_CP_NOP, .access = PL1_W }, 4364 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4365 .type = ARM_CP_NOP, .access = PL1_W }, 4366 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 4367 .type = ARM_CP_NOP, .access = PL1_W }, 4368 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 4369 .type = ARM_CP_NOP, .access = PL1_W }, 4370 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4371 .type = ARM_CP_NOP, .access = PL1_W }, 4372 /* MMU Domain access control / MPU write buffer control */ 4373 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 4374 .access = PL1_RW, .resetvalue = 0, 4375 .writefn = dacr_write, .raw_writefn = raw_write, 4376 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 4377 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 4378 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 4379 .type = ARM_CP_ALIAS, 4380 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 4381 .access = PL1_RW, 4382 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 4383 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 4384 .type = ARM_CP_ALIAS, 4385 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 4386 .access = PL1_RW, 4387 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 4388 /* We rely on the access checks not allowing the guest to write to the 4389 * state field when SPSel indicates that it's being used as the stack 4390 * pointer. 4391 */ 4392 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 4393 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 4394 .access = PL1_RW, .accessfn = sp_el0_access, 4395 .type = ARM_CP_ALIAS, 4396 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 4397 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 4398 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 4399 .access = PL2_RW, .type = ARM_CP_ALIAS, 4400 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 4401 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 4402 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 4403 .type = ARM_CP_NO_RAW, 4404 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 4405 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 4406 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 4407 .type = ARM_CP_ALIAS, 4408 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 4409 .access = PL2_RW, .accessfn = fpexc32_access }, 4410 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 4411 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 4412 .access = PL2_RW, .resetvalue = 0, 4413 .writefn = dacr_write, .raw_writefn = raw_write, 4414 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 4415 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 4416 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 4417 .access = PL2_RW, .resetvalue = 0, 4418 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 4419 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 4420 .type = ARM_CP_ALIAS, 4421 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 4422 .access = PL2_RW, 4423 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 4424 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 4425 .type = ARM_CP_ALIAS, 4426 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 4427 .access = PL2_RW, 4428 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 4429 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 4430 .type = ARM_CP_ALIAS, 4431 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 4432 .access = PL2_RW, 4433 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 4434 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 4435 .type = ARM_CP_ALIAS, 4436 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 4437 .access = PL2_RW, 4438 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 4439 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 4440 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 4441 .resetvalue = 0, 4442 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 4443 { .name = "SDCR", .type = ARM_CP_ALIAS, 4444 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 4445 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4446 .writefn = sdcr_write, 4447 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 4448 REGINFO_SENTINEL 4449 }; 4450 4451 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 4452 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 4453 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4454 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4455 .access = PL2_RW, 4456 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 4457 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 4458 .type = ARM_CP_NO_RAW, 4459 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4460 .access = PL2_RW, 4461 .type = ARM_CP_CONST, .resetvalue = 0 }, 4462 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 4463 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 4464 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4465 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4466 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4467 .access = PL2_RW, 4468 .type = ARM_CP_CONST, .resetvalue = 0 }, 4469 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4470 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4471 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4472 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4473 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4474 .access = PL2_RW, .type = ARM_CP_CONST, 4475 .resetvalue = 0 }, 4476 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4477 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4478 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4479 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4480 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4481 .access = PL2_RW, .type = ARM_CP_CONST, 4482 .resetvalue = 0 }, 4483 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4484 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4485 .access = PL2_RW, .type = ARM_CP_CONST, 4486 .resetvalue = 0 }, 4487 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4488 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4489 .access = PL2_RW, .type = ARM_CP_CONST, 4490 .resetvalue = 0 }, 4491 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4492 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4493 .access = PL2_RW, .type = ARM_CP_CONST, 4494 .resetvalue = 0 }, 4495 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4496 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4497 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4498 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 4499 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4500 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4501 .type = ARM_CP_CONST, .resetvalue = 0 }, 4502 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4503 .cp = 15, .opc1 = 6, .crm = 2, 4504 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4505 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 4506 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4507 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4508 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4509 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4510 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4511 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4512 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4513 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4514 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4515 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4516 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4517 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4518 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4519 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4520 .resetvalue = 0 }, 4521 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4522 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4523 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4524 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4525 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4526 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4527 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4528 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4529 .resetvalue = 0 }, 4530 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4531 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4532 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4533 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4534 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4535 .resetvalue = 0 }, 4536 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4537 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4538 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4539 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4540 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4541 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4542 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4543 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4544 .access = PL2_RW, .accessfn = access_tda, 4545 .type = ARM_CP_CONST, .resetvalue = 0 }, 4546 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 4547 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4548 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4549 .type = ARM_CP_CONST, .resetvalue = 0 }, 4550 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4551 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4552 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4553 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4554 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4555 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4556 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4557 .type = ARM_CP_CONST, 4558 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4559 .access = PL2_RW, .resetvalue = 0 }, 4560 REGINFO_SENTINEL 4561 }; 4562 4563 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 4564 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 4565 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 4566 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 4567 .access = PL2_RW, 4568 .type = ARM_CP_CONST, .resetvalue = 0 }, 4569 REGINFO_SENTINEL 4570 }; 4571 4572 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 4573 { 4574 ARMCPU *cpu = arm_env_get_cpu(env); 4575 uint64_t valid_mask = HCR_MASK; 4576 4577 if (arm_feature(env, ARM_FEATURE_EL3)) { 4578 valid_mask &= ~HCR_HCD; 4579 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 4580 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 4581 * However, if we're using the SMC PSCI conduit then QEMU is 4582 * effectively acting like EL3 firmware and so the guest at 4583 * EL2 should retain the ability to prevent EL1 from being 4584 * able to make SMC calls into the ersatz firmware, so in 4585 * that case HCR.TSC should be read/write. 4586 */ 4587 valid_mask &= ~HCR_TSC; 4588 } 4589 if (cpu_isar_feature(aa64_lor, cpu)) { 4590 valid_mask |= HCR_TLOR; 4591 } 4592 if (cpu_isar_feature(aa64_pauth, cpu)) { 4593 valid_mask |= HCR_API | HCR_APK; 4594 } 4595 4596 /* Clear RES0 bits. */ 4597 value &= valid_mask; 4598 4599 /* These bits change the MMU setup: 4600 * HCR_VM enables stage 2 translation 4601 * HCR_PTW forbids certain page-table setups 4602 * HCR_DC Disables stage1 and enables stage2 translation 4603 */ 4604 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 4605 tlb_flush(CPU(cpu)); 4606 } 4607 env->cp15.hcr_el2 = value; 4608 4609 /* 4610 * Updates to VI and VF require us to update the status of 4611 * virtual interrupts, which are the logical OR of these bits 4612 * and the state of the input lines from the GIC. (This requires 4613 * that we have the iothread lock, which is done by marking the 4614 * reginfo structs as ARM_CP_IO.) 4615 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 4616 * possible for it to be taken immediately, because VIRQ and 4617 * VFIQ are masked unless running at EL0 or EL1, and HCR 4618 * can only be written at EL2. 4619 */ 4620 g_assert(qemu_mutex_iothread_locked()); 4621 arm_cpu_update_virq(cpu); 4622 arm_cpu_update_vfiq(cpu); 4623 } 4624 4625 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 4626 uint64_t value) 4627 { 4628 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 4629 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 4630 hcr_write(env, NULL, value); 4631 } 4632 4633 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 4634 uint64_t value) 4635 { 4636 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 4637 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 4638 hcr_write(env, NULL, value); 4639 } 4640 4641 /* 4642 * Return the effective value of HCR_EL2. 4643 * Bits that are not included here: 4644 * RW (read from SCR_EL3.RW as needed) 4645 */ 4646 uint64_t arm_hcr_el2_eff(CPUARMState *env) 4647 { 4648 uint64_t ret = env->cp15.hcr_el2; 4649 4650 if (arm_is_secure_below_el3(env)) { 4651 /* 4652 * "This register has no effect if EL2 is not enabled in the 4653 * current Security state". This is ARMv8.4-SecEL2 speak for 4654 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 4655 * 4656 * Prior to that, the language was "In an implementation that 4657 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 4658 * as if this field is 0 for all purposes other than a direct 4659 * read or write access of HCR_EL2". With lots of enumeration 4660 * on a per-field basis. In current QEMU, this is condition 4661 * is arm_is_secure_below_el3. 4662 * 4663 * Since the v8.4 language applies to the entire register, and 4664 * appears to be backward compatible, use that. 4665 */ 4666 ret = 0; 4667 } else if (ret & HCR_TGE) { 4668 /* These bits are up-to-date as of ARMv8.4. */ 4669 if (ret & HCR_E2H) { 4670 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 4671 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 4672 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 4673 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE); 4674 } else { 4675 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 4676 } 4677 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 4678 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 4679 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 4680 HCR_TLOR); 4681 } 4682 4683 return ret; 4684 } 4685 4686 static const ARMCPRegInfo el2_cp_reginfo[] = { 4687 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 4688 .type = ARM_CP_IO, 4689 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4690 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4691 .writefn = hcr_write }, 4692 { .name = "HCR", .state = ARM_CP_STATE_AA32, 4693 .type = ARM_CP_ALIAS | ARM_CP_IO, 4694 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4695 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4696 .writefn = hcr_writelow }, 4697 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 4698 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 4699 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4700 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 4701 .type = ARM_CP_ALIAS, 4702 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 4703 .access = PL2_RW, 4704 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 4705 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4706 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4707 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 4708 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4709 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4710 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 4711 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4712 .type = ARM_CP_ALIAS, 4713 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4714 .access = PL2_RW, 4715 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 4716 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 4717 .type = ARM_CP_ALIAS, 4718 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 4719 .access = PL2_RW, 4720 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 4721 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4722 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4723 .access = PL2_RW, .writefn = vbar_write, 4724 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 4725 .resetvalue = 0 }, 4726 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 4727 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 4728 .access = PL3_RW, .type = ARM_CP_ALIAS, 4729 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 4730 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4731 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4732 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 4733 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, 4734 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4735 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4736 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 4737 .resetvalue = 0 }, 4738 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4739 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4740 .access = PL2_RW, .type = ARM_CP_ALIAS, 4741 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 4742 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4743 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4744 .access = PL2_RW, .type = ARM_CP_CONST, 4745 .resetvalue = 0 }, 4746 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 4747 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4748 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4749 .access = PL2_RW, .type = ARM_CP_CONST, 4750 .resetvalue = 0 }, 4751 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4752 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4753 .access = PL2_RW, .type = ARM_CP_CONST, 4754 .resetvalue = 0 }, 4755 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4756 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4757 .access = PL2_RW, .type = ARM_CP_CONST, 4758 .resetvalue = 0 }, 4759 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4760 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4761 .access = PL2_RW, 4762 /* no .writefn needed as this can't cause an ASID change; 4763 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4764 */ 4765 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 4766 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 4767 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4768 .type = ARM_CP_ALIAS, 4769 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4770 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4771 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 4772 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4773 .access = PL2_RW, 4774 /* no .writefn needed as this can't cause an ASID change; 4775 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4776 */ 4777 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4778 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4779 .cp = 15, .opc1 = 6, .crm = 2, 4780 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4781 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4782 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 4783 .writefn = vttbr_write }, 4784 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4785 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4786 .access = PL2_RW, .writefn = vttbr_write, 4787 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 4788 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4789 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4790 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 4791 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 4792 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4793 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4794 .access = PL2_RW, .resetvalue = 0, 4795 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 4796 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4797 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4798 .access = PL2_RW, .resetvalue = 0, 4799 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4800 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4801 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4802 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4803 { .name = "TLBIALLNSNH", 4804 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4805 .type = ARM_CP_NO_RAW, .access = PL2_W, 4806 .writefn = tlbiall_nsnh_write }, 4807 { .name = "TLBIALLNSNHIS", 4808 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4809 .type = ARM_CP_NO_RAW, .access = PL2_W, 4810 .writefn = tlbiall_nsnh_is_write }, 4811 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4812 .type = ARM_CP_NO_RAW, .access = PL2_W, 4813 .writefn = tlbiall_hyp_write }, 4814 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4815 .type = ARM_CP_NO_RAW, .access = PL2_W, 4816 .writefn = tlbiall_hyp_is_write }, 4817 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4818 .type = ARM_CP_NO_RAW, .access = PL2_W, 4819 .writefn = tlbimva_hyp_write }, 4820 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4821 .type = ARM_CP_NO_RAW, .access = PL2_W, 4822 .writefn = tlbimva_hyp_is_write }, 4823 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 4824 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4825 .type = ARM_CP_NO_RAW, .access = PL2_W, 4826 .writefn = tlbi_aa64_alle2_write }, 4827 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 4828 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4829 .type = ARM_CP_NO_RAW, .access = PL2_W, 4830 .writefn = tlbi_aa64_vae2_write }, 4831 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 4832 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4833 .access = PL2_W, .type = ARM_CP_NO_RAW, 4834 .writefn = tlbi_aa64_vae2_write }, 4835 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 4836 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4837 .access = PL2_W, .type = ARM_CP_NO_RAW, 4838 .writefn = tlbi_aa64_alle2is_write }, 4839 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 4840 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4841 .type = ARM_CP_NO_RAW, .access = PL2_W, 4842 .writefn = tlbi_aa64_vae2is_write }, 4843 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 4844 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4845 .access = PL2_W, .type = ARM_CP_NO_RAW, 4846 .writefn = tlbi_aa64_vae2is_write }, 4847 #ifndef CONFIG_USER_ONLY 4848 /* Unlike the other EL2-related AT operations, these must 4849 * UNDEF from EL3 if EL2 is not implemented, which is why we 4850 * define them here rather than with the rest of the AT ops. 4851 */ 4852 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 4853 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4854 .access = PL2_W, .accessfn = at_s1e2_access, 4855 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4856 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 4857 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4858 .access = PL2_W, .accessfn = at_s1e2_access, 4859 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4860 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 4861 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 4862 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 4863 * to behave as if SCR.NS was 1. 4864 */ 4865 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4866 .access = PL2_W, 4867 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 4868 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4869 .access = PL2_W, 4870 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 4871 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4872 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4873 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 4874 * reset values as IMPDEF. We choose to reset to 3 to comply with 4875 * both ARMv7 and ARMv8. 4876 */ 4877 .access = PL2_RW, .resetvalue = 3, 4878 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 4879 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4880 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4881 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 4882 .writefn = gt_cntvoff_write, 4883 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4884 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4885 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 4886 .writefn = gt_cntvoff_write, 4887 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4888 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4889 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4890 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4891 .type = ARM_CP_IO, .access = PL2_RW, 4892 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4893 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4894 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4895 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 4896 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4897 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4898 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4899 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 4900 .resetfn = gt_hyp_timer_reset, 4901 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 4902 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4903 .type = ARM_CP_IO, 4904 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4905 .access = PL2_RW, 4906 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 4907 .resetvalue = 0, 4908 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 4909 #endif 4910 /* The only field of MDCR_EL2 that has a defined architectural reset value 4911 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 4912 * don't implement any PMU event counters, so using zero as a reset 4913 * value for MDCR_EL2 is okay 4914 */ 4915 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4916 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4917 .access = PL2_RW, .resetvalue = 0, 4918 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 4919 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 4920 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4921 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4922 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4923 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 4924 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4925 .access = PL2_RW, 4926 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4927 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4928 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4929 .access = PL2_RW, 4930 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 4931 REGINFO_SENTINEL 4932 }; 4933 4934 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 4935 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 4936 .type = ARM_CP_ALIAS | ARM_CP_IO, 4937 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 4938 .access = PL2_RW, 4939 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 4940 .writefn = hcr_writehigh }, 4941 REGINFO_SENTINEL 4942 }; 4943 4944 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 4945 bool isread) 4946 { 4947 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 4948 * At Secure EL1 it traps to EL3. 4949 */ 4950 if (arm_current_el(env) == 3) { 4951 return CP_ACCESS_OK; 4952 } 4953 if (arm_is_secure_below_el3(env)) { 4954 return CP_ACCESS_TRAP_EL3; 4955 } 4956 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 4957 if (isread) { 4958 return CP_ACCESS_OK; 4959 } 4960 return CP_ACCESS_TRAP_UNCATEGORIZED; 4961 } 4962 4963 static const ARMCPRegInfo el3_cp_reginfo[] = { 4964 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 4965 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 4966 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 4967 .resetvalue = 0, .writefn = scr_write }, 4968 { .name = "SCR", .type = ARM_CP_ALIAS, 4969 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 4970 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4971 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 4972 .writefn = scr_write }, 4973 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 4974 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 4975 .access = PL3_RW, .resetvalue = 0, 4976 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 4977 { .name = "SDER", 4978 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 4979 .access = PL3_RW, .resetvalue = 0, 4980 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 4981 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4982 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4983 .writefn = vbar_write, .resetvalue = 0, 4984 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 4985 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 4986 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 4987 .access = PL3_RW, .resetvalue = 0, 4988 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 4989 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 4990 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 4991 .access = PL3_RW, 4992 /* no .writefn needed as this can't cause an ASID change; 4993 * we must provide a .raw_writefn and .resetfn because we handle 4994 * reset and migration for the AArch32 TTBCR(S), which might be 4995 * using mask and base_mask. 4996 */ 4997 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 4998 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 4999 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5000 .type = ARM_CP_ALIAS, 5001 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5002 .access = PL3_RW, 5003 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5004 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5005 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5006 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5007 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5008 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5009 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5010 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5011 .type = ARM_CP_ALIAS, 5012 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5013 .access = PL3_RW, 5014 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5015 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5016 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5017 .access = PL3_RW, .writefn = vbar_write, 5018 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5019 .resetvalue = 0 }, 5020 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5021 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5022 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5023 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5024 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5025 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5026 .access = PL3_RW, .resetvalue = 0, 5027 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5028 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5029 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5030 .access = PL3_RW, .type = ARM_CP_CONST, 5031 .resetvalue = 0 }, 5032 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5033 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5034 .access = PL3_RW, .type = ARM_CP_CONST, 5035 .resetvalue = 0 }, 5036 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5037 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5038 .access = PL3_RW, .type = ARM_CP_CONST, 5039 .resetvalue = 0 }, 5040 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5041 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5042 .access = PL3_W, .type = ARM_CP_NO_RAW, 5043 .writefn = tlbi_aa64_alle3is_write }, 5044 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5045 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5046 .access = PL3_W, .type = ARM_CP_NO_RAW, 5047 .writefn = tlbi_aa64_vae3is_write }, 5048 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5049 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5050 .access = PL3_W, .type = ARM_CP_NO_RAW, 5051 .writefn = tlbi_aa64_vae3is_write }, 5052 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5053 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5054 .access = PL3_W, .type = ARM_CP_NO_RAW, 5055 .writefn = tlbi_aa64_alle3_write }, 5056 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5057 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5058 .access = PL3_W, .type = ARM_CP_NO_RAW, 5059 .writefn = tlbi_aa64_vae3_write }, 5060 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5061 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5062 .access = PL3_W, .type = ARM_CP_NO_RAW, 5063 .writefn = tlbi_aa64_vae3_write }, 5064 REGINFO_SENTINEL 5065 }; 5066 5067 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5068 bool isread) 5069 { 5070 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 5071 * but the AArch32 CTR has its own reginfo struct) 5072 */ 5073 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5074 return CP_ACCESS_TRAP; 5075 } 5076 return CP_ACCESS_OK; 5077 } 5078 5079 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5080 uint64_t value) 5081 { 5082 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5083 * read via a bit in OSLSR_EL1. 5084 */ 5085 int oslock; 5086 5087 if (ri->state == ARM_CP_STATE_AA32) { 5088 oslock = (value == 0xC5ACCE55); 5089 } else { 5090 oslock = value & 1; 5091 } 5092 5093 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5094 } 5095 5096 static const ARMCPRegInfo debug_cp_reginfo[] = { 5097 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5098 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5099 * unlike DBGDRAR it is never accessible from EL0. 5100 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 5101 * accessor. 5102 */ 5103 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 5104 .access = PL0_R, .accessfn = access_tdra, 5105 .type = ARM_CP_CONST, .resetvalue = 0 }, 5106 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 5107 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5108 .access = PL1_R, .accessfn = access_tdra, 5109 .type = ARM_CP_CONST, .resetvalue = 0 }, 5110 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 5111 .access = PL0_R, .accessfn = access_tdra, 5112 .type = ARM_CP_CONST, .resetvalue = 0 }, 5113 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 5114 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 5115 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5116 .access = PL1_RW, .accessfn = access_tda, 5117 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 5118 .resetvalue = 0 }, 5119 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 5120 * We don't implement the configurable EL0 access. 5121 */ 5122 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 5123 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5124 .type = ARM_CP_ALIAS, 5125 .access = PL1_R, .accessfn = access_tda, 5126 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 5127 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 5128 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 5129 .access = PL1_W, .type = ARM_CP_NO_RAW, 5130 .accessfn = access_tdosa, 5131 .writefn = oslar_write }, 5132 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 5133 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 5134 .access = PL1_R, .resetvalue = 10, 5135 .accessfn = access_tdosa, 5136 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 5137 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 5138 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 5139 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 5140 .access = PL1_RW, .accessfn = access_tdosa, 5141 .type = ARM_CP_NOP }, 5142 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 5143 * implement vector catch debug events yet. 5144 */ 5145 { .name = "DBGVCR", 5146 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5147 .access = PL1_RW, .accessfn = access_tda, 5148 .type = ARM_CP_NOP }, 5149 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 5150 * to save and restore a 32-bit guest's DBGVCR) 5151 */ 5152 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 5153 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 5154 .access = PL2_RW, .accessfn = access_tda, 5155 .type = ARM_CP_NOP }, 5156 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 5157 * Channel but Linux may try to access this register. The 32-bit 5158 * alias is DBGDCCINT. 5159 */ 5160 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 5161 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 5162 .access = PL1_RW, .accessfn = access_tda, 5163 .type = ARM_CP_NOP }, 5164 REGINFO_SENTINEL 5165 }; 5166 5167 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 5168 /* 64 bit access versions of the (dummy) debug registers */ 5169 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 5170 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5171 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 5172 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5173 REGINFO_SENTINEL 5174 }; 5175 5176 /* Return the exception level to which exceptions should be taken 5177 * via SVEAccessTrap. If an exception should be routed through 5178 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 5179 * take care of raising that exception. 5180 * C.f. the ARM pseudocode function CheckSVEEnabled. 5181 */ 5182 int sve_exception_el(CPUARMState *env, int el) 5183 { 5184 #ifndef CONFIG_USER_ONLY 5185 if (el <= 1) { 5186 bool disabled = false; 5187 5188 /* The CPACR.ZEN controls traps to EL1: 5189 * 0, 2 : trap EL0 and EL1 accesses 5190 * 1 : trap only EL0 accesses 5191 * 3 : trap no accesses 5192 */ 5193 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 5194 disabled = true; 5195 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 5196 disabled = el == 0; 5197 } 5198 if (disabled) { 5199 /* route_to_el2 */ 5200 return (arm_feature(env, ARM_FEATURE_EL2) 5201 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1); 5202 } 5203 5204 /* Check CPACR.FPEN. */ 5205 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 5206 disabled = true; 5207 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 5208 disabled = el == 0; 5209 } 5210 if (disabled) { 5211 return 0; 5212 } 5213 } 5214 5215 /* CPTR_EL2. Since TZ and TFP are positive, 5216 * they will be zero when EL2 is not present. 5217 */ 5218 if (el <= 2 && !arm_is_secure_below_el3(env)) { 5219 if (env->cp15.cptr_el[2] & CPTR_TZ) { 5220 return 2; 5221 } 5222 if (env->cp15.cptr_el[2] & CPTR_TFP) { 5223 return 0; 5224 } 5225 } 5226 5227 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 5228 if (arm_feature(env, ARM_FEATURE_EL3) 5229 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 5230 return 3; 5231 } 5232 #endif 5233 return 0; 5234 } 5235 5236 /* 5237 * Given that SVE is enabled, return the vector length for EL. 5238 */ 5239 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 5240 { 5241 ARMCPU *cpu = arm_env_get_cpu(env); 5242 uint32_t zcr_len = cpu->sve_max_vq - 1; 5243 5244 if (el <= 1) { 5245 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 5246 } 5247 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 5248 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 5249 } 5250 if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) { 5251 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 5252 } 5253 return zcr_len; 5254 } 5255 5256 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5257 uint64_t value) 5258 { 5259 int cur_el = arm_current_el(env); 5260 int old_len = sve_zcr_len_for_el(env, cur_el); 5261 int new_len; 5262 5263 /* Bits other than [3:0] are RAZ/WI. */ 5264 raw_write(env, ri, value & 0xf); 5265 5266 /* 5267 * Because we arrived here, we know both FP and SVE are enabled; 5268 * otherwise we would have trapped access to the ZCR_ELn register. 5269 */ 5270 new_len = sve_zcr_len_for_el(env, cur_el); 5271 if (new_len < old_len) { 5272 aarch64_sve_narrow_vq(env, new_len + 1); 5273 } 5274 } 5275 5276 static const ARMCPRegInfo zcr_el1_reginfo = { 5277 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 5278 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 5279 .access = PL1_RW, .type = ARM_CP_SVE, 5280 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 5281 .writefn = zcr_write, .raw_writefn = raw_write 5282 }; 5283 5284 static const ARMCPRegInfo zcr_el2_reginfo = { 5285 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 5286 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 5287 .access = PL2_RW, .type = ARM_CP_SVE, 5288 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 5289 .writefn = zcr_write, .raw_writefn = raw_write 5290 }; 5291 5292 static const ARMCPRegInfo zcr_no_el2_reginfo = { 5293 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 5294 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 5295 .access = PL2_RW, .type = ARM_CP_SVE, 5296 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 5297 }; 5298 5299 static const ARMCPRegInfo zcr_el3_reginfo = { 5300 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 5301 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 5302 .access = PL3_RW, .type = ARM_CP_SVE, 5303 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 5304 .writefn = zcr_write, .raw_writefn = raw_write 5305 }; 5306 5307 void hw_watchpoint_update(ARMCPU *cpu, int n) 5308 { 5309 CPUARMState *env = &cpu->env; 5310 vaddr len = 0; 5311 vaddr wvr = env->cp15.dbgwvr[n]; 5312 uint64_t wcr = env->cp15.dbgwcr[n]; 5313 int mask; 5314 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 5315 5316 if (env->cpu_watchpoint[n]) { 5317 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 5318 env->cpu_watchpoint[n] = NULL; 5319 } 5320 5321 if (!extract64(wcr, 0, 1)) { 5322 /* E bit clear : watchpoint disabled */ 5323 return; 5324 } 5325 5326 switch (extract64(wcr, 3, 2)) { 5327 case 0: 5328 /* LSC 00 is reserved and must behave as if the wp is disabled */ 5329 return; 5330 case 1: 5331 flags |= BP_MEM_READ; 5332 break; 5333 case 2: 5334 flags |= BP_MEM_WRITE; 5335 break; 5336 case 3: 5337 flags |= BP_MEM_ACCESS; 5338 break; 5339 } 5340 5341 /* Attempts to use both MASK and BAS fields simultaneously are 5342 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 5343 * thus generating a watchpoint for every byte in the masked region. 5344 */ 5345 mask = extract64(wcr, 24, 4); 5346 if (mask == 1 || mask == 2) { 5347 /* Reserved values of MASK; we must act as if the mask value was 5348 * some non-reserved value, or as if the watchpoint were disabled. 5349 * We choose the latter. 5350 */ 5351 return; 5352 } else if (mask) { 5353 /* Watchpoint covers an aligned area up to 2GB in size */ 5354 len = 1ULL << mask; 5355 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 5356 * whether the watchpoint fires when the unmasked bits match; we opt 5357 * to generate the exceptions. 5358 */ 5359 wvr &= ~(len - 1); 5360 } else { 5361 /* Watchpoint covers bytes defined by the byte address select bits */ 5362 int bas = extract64(wcr, 5, 8); 5363 int basstart; 5364 5365 if (bas == 0) { 5366 /* This must act as if the watchpoint is disabled */ 5367 return; 5368 } 5369 5370 if (extract64(wvr, 2, 1)) { 5371 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 5372 * ignored, and BAS[3:0] define which bytes to watch. 5373 */ 5374 bas &= 0xf; 5375 } 5376 /* The BAS bits are supposed to be programmed to indicate a contiguous 5377 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 5378 * we fire for each byte in the word/doubleword addressed by the WVR. 5379 * We choose to ignore any non-zero bits after the first range of 1s. 5380 */ 5381 basstart = ctz32(bas); 5382 len = cto32(bas >> basstart); 5383 wvr += basstart; 5384 } 5385 5386 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 5387 &env->cpu_watchpoint[n]); 5388 } 5389 5390 void hw_watchpoint_update_all(ARMCPU *cpu) 5391 { 5392 int i; 5393 CPUARMState *env = &cpu->env; 5394 5395 /* Completely clear out existing QEMU watchpoints and our array, to 5396 * avoid possible stale entries following migration load. 5397 */ 5398 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 5399 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 5400 5401 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 5402 hw_watchpoint_update(cpu, i); 5403 } 5404 } 5405 5406 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5407 uint64_t value) 5408 { 5409 ARMCPU *cpu = arm_env_get_cpu(env); 5410 int i = ri->crm; 5411 5412 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 5413 * register reads and behaves as if values written are sign extended. 5414 * Bits [1:0] are RES0. 5415 */ 5416 value = sextract64(value, 0, 49) & ~3ULL; 5417 5418 raw_write(env, ri, value); 5419 hw_watchpoint_update(cpu, i); 5420 } 5421 5422 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5423 uint64_t value) 5424 { 5425 ARMCPU *cpu = arm_env_get_cpu(env); 5426 int i = ri->crm; 5427 5428 raw_write(env, ri, value); 5429 hw_watchpoint_update(cpu, i); 5430 } 5431 5432 void hw_breakpoint_update(ARMCPU *cpu, int n) 5433 { 5434 CPUARMState *env = &cpu->env; 5435 uint64_t bvr = env->cp15.dbgbvr[n]; 5436 uint64_t bcr = env->cp15.dbgbcr[n]; 5437 vaddr addr; 5438 int bt; 5439 int flags = BP_CPU; 5440 5441 if (env->cpu_breakpoint[n]) { 5442 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 5443 env->cpu_breakpoint[n] = NULL; 5444 } 5445 5446 if (!extract64(bcr, 0, 1)) { 5447 /* E bit clear : watchpoint disabled */ 5448 return; 5449 } 5450 5451 bt = extract64(bcr, 20, 4); 5452 5453 switch (bt) { 5454 case 4: /* unlinked address mismatch (reserved if AArch64) */ 5455 case 5: /* linked address mismatch (reserved if AArch64) */ 5456 qemu_log_mask(LOG_UNIMP, 5457 "arm: address mismatch breakpoint types not implemented\n"); 5458 return; 5459 case 0: /* unlinked address match */ 5460 case 1: /* linked address match */ 5461 { 5462 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 5463 * we behave as if the register was sign extended. Bits [1:0] are 5464 * RES0. The BAS field is used to allow setting breakpoints on 16 5465 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 5466 * a bp will fire if the addresses covered by the bp and the addresses 5467 * covered by the insn overlap but the insn doesn't start at the 5468 * start of the bp address range. We choose to require the insn and 5469 * the bp to have the same address. The constraints on writing to 5470 * BAS enforced in dbgbcr_write mean we have only four cases: 5471 * 0b0000 => no breakpoint 5472 * 0b0011 => breakpoint on addr 5473 * 0b1100 => breakpoint on addr + 2 5474 * 0b1111 => breakpoint on addr 5475 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 5476 */ 5477 int bas = extract64(bcr, 5, 4); 5478 addr = sextract64(bvr, 0, 49) & ~3ULL; 5479 if (bas == 0) { 5480 return; 5481 } 5482 if (bas == 0xc) { 5483 addr += 2; 5484 } 5485 break; 5486 } 5487 case 2: /* unlinked context ID match */ 5488 case 8: /* unlinked VMID match (reserved if no EL2) */ 5489 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 5490 qemu_log_mask(LOG_UNIMP, 5491 "arm: unlinked context breakpoint types not implemented\n"); 5492 return; 5493 case 9: /* linked VMID match (reserved if no EL2) */ 5494 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 5495 case 3: /* linked context ID match */ 5496 default: 5497 /* We must generate no events for Linked context matches (unless 5498 * they are linked to by some other bp/wp, which is handled in 5499 * updates for the linking bp/wp). We choose to also generate no events 5500 * for reserved values. 5501 */ 5502 return; 5503 } 5504 5505 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 5506 } 5507 5508 void hw_breakpoint_update_all(ARMCPU *cpu) 5509 { 5510 int i; 5511 CPUARMState *env = &cpu->env; 5512 5513 /* Completely clear out existing QEMU breakpoints and our array, to 5514 * avoid possible stale entries following migration load. 5515 */ 5516 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 5517 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 5518 5519 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 5520 hw_breakpoint_update(cpu, i); 5521 } 5522 } 5523 5524 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5525 uint64_t value) 5526 { 5527 ARMCPU *cpu = arm_env_get_cpu(env); 5528 int i = ri->crm; 5529 5530 raw_write(env, ri, value); 5531 hw_breakpoint_update(cpu, i); 5532 } 5533 5534 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5535 uint64_t value) 5536 { 5537 ARMCPU *cpu = arm_env_get_cpu(env); 5538 int i = ri->crm; 5539 5540 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 5541 * copy of BAS[0]. 5542 */ 5543 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 5544 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 5545 5546 raw_write(env, ri, value); 5547 hw_breakpoint_update(cpu, i); 5548 } 5549 5550 static void define_debug_regs(ARMCPU *cpu) 5551 { 5552 /* Define v7 and v8 architectural debug registers. 5553 * These are just dummy implementations for now. 5554 */ 5555 int i; 5556 int wrps, brps, ctx_cmps; 5557 ARMCPRegInfo dbgdidr = { 5558 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 5559 .access = PL0_R, .accessfn = access_tda, 5560 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 5561 }; 5562 5563 /* Note that all these register fields hold "number of Xs minus 1". */ 5564 brps = extract32(cpu->dbgdidr, 24, 4); 5565 wrps = extract32(cpu->dbgdidr, 28, 4); 5566 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 5567 5568 assert(ctx_cmps <= brps); 5569 5570 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 5571 * of the debug registers such as number of breakpoints; 5572 * check that if they both exist then they agree. 5573 */ 5574 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 5575 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 5576 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 5577 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 5578 } 5579 5580 define_one_arm_cp_reg(cpu, &dbgdidr); 5581 define_arm_cp_regs(cpu, debug_cp_reginfo); 5582 5583 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 5584 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 5585 } 5586 5587 for (i = 0; i < brps + 1; i++) { 5588 ARMCPRegInfo dbgregs[] = { 5589 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 5590 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 5591 .access = PL1_RW, .accessfn = access_tda, 5592 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 5593 .writefn = dbgbvr_write, .raw_writefn = raw_write 5594 }, 5595 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 5596 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 5597 .access = PL1_RW, .accessfn = access_tda, 5598 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 5599 .writefn = dbgbcr_write, .raw_writefn = raw_write 5600 }, 5601 REGINFO_SENTINEL 5602 }; 5603 define_arm_cp_regs(cpu, dbgregs); 5604 } 5605 5606 for (i = 0; i < wrps + 1; i++) { 5607 ARMCPRegInfo dbgregs[] = { 5608 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 5609 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 5610 .access = PL1_RW, .accessfn = access_tda, 5611 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 5612 .writefn = dbgwvr_write, .raw_writefn = raw_write 5613 }, 5614 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 5615 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 5616 .access = PL1_RW, .accessfn = access_tda, 5617 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 5618 .writefn = dbgwcr_write, .raw_writefn = raw_write 5619 }, 5620 REGINFO_SENTINEL 5621 }; 5622 define_arm_cp_regs(cpu, dbgregs); 5623 } 5624 } 5625 5626 /* We don't know until after realize whether there's a GICv3 5627 * attached, and that is what registers the gicv3 sysregs. 5628 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 5629 * at runtime. 5630 */ 5631 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 5632 { 5633 ARMCPU *cpu = arm_env_get_cpu(env); 5634 uint64_t pfr1 = cpu->id_pfr1; 5635 5636 if (env->gicv3state) { 5637 pfr1 |= 1 << 28; 5638 } 5639 return pfr1; 5640 } 5641 5642 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 5643 { 5644 ARMCPU *cpu = arm_env_get_cpu(env); 5645 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 5646 5647 if (env->gicv3state) { 5648 pfr0 |= 1 << 24; 5649 } 5650 return pfr0; 5651 } 5652 5653 /* Shared logic between LORID and the rest of the LOR* registers. 5654 * Secure state has already been delt with. 5655 */ 5656 static CPAccessResult access_lor_ns(CPUARMState *env) 5657 { 5658 int el = arm_current_el(env); 5659 5660 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 5661 return CP_ACCESS_TRAP_EL2; 5662 } 5663 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 5664 return CP_ACCESS_TRAP_EL3; 5665 } 5666 return CP_ACCESS_OK; 5667 } 5668 5669 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, 5670 bool isread) 5671 { 5672 if (arm_is_secure_below_el3(env)) { 5673 /* Access ok in secure mode. */ 5674 return CP_ACCESS_OK; 5675 } 5676 return access_lor_ns(env); 5677 } 5678 5679 static CPAccessResult access_lor_other(CPUARMState *env, 5680 const ARMCPRegInfo *ri, bool isread) 5681 { 5682 if (arm_is_secure_below_el3(env)) { 5683 /* Access denied in secure mode. */ 5684 return CP_ACCESS_TRAP; 5685 } 5686 return access_lor_ns(env); 5687 } 5688 5689 #ifdef TARGET_AARCH64 5690 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 5691 bool isread) 5692 { 5693 int el = arm_current_el(env); 5694 5695 if (el < 2 && 5696 arm_feature(env, ARM_FEATURE_EL2) && 5697 !(arm_hcr_el2_eff(env) & HCR_APK)) { 5698 return CP_ACCESS_TRAP_EL2; 5699 } 5700 if (el < 3 && 5701 arm_feature(env, ARM_FEATURE_EL3) && 5702 !(env->cp15.scr_el3 & SCR_APK)) { 5703 return CP_ACCESS_TRAP_EL3; 5704 } 5705 return CP_ACCESS_OK; 5706 } 5707 5708 static const ARMCPRegInfo pauth_reginfo[] = { 5709 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5710 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 5711 .access = PL1_RW, .accessfn = access_pauth, 5712 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 5713 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5714 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 5715 .access = PL1_RW, .accessfn = access_pauth, 5716 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 5717 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5718 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 5719 .access = PL1_RW, .accessfn = access_pauth, 5720 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 5721 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5722 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 5723 .access = PL1_RW, .accessfn = access_pauth, 5724 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 5725 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5726 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 5727 .access = PL1_RW, .accessfn = access_pauth, 5728 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 5729 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5730 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 5731 .access = PL1_RW, .accessfn = access_pauth, 5732 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 5733 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5734 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 5735 .access = PL1_RW, .accessfn = access_pauth, 5736 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 5737 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5738 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 5739 .access = PL1_RW, .accessfn = access_pauth, 5740 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 5741 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5742 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 5743 .access = PL1_RW, .accessfn = access_pauth, 5744 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 5745 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5746 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 5747 .access = PL1_RW, .accessfn = access_pauth, 5748 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 5749 REGINFO_SENTINEL 5750 }; 5751 5752 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 5753 { 5754 Error *err = NULL; 5755 uint64_t ret; 5756 5757 /* Success sets NZCV = 0000. */ 5758 env->NF = env->CF = env->VF = 0, env->ZF = 1; 5759 5760 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 5761 /* 5762 * ??? Failed, for unknown reasons in the crypto subsystem. 5763 * The best we can do is log the reason and return the 5764 * timed-out indication to the guest. There is no reason 5765 * we know to expect this failure to be transitory, so the 5766 * guest may well hang retrying the operation. 5767 */ 5768 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 5769 ri->name, error_get_pretty(err)); 5770 error_free(err); 5771 5772 env->ZF = 0; /* NZCF = 0100 */ 5773 return 0; 5774 } 5775 return ret; 5776 } 5777 5778 /* We do not support re-seeding, so the two registers operate the same. */ 5779 static const ARMCPRegInfo rndr_reginfo[] = { 5780 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 5781 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 5782 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 5783 .access = PL0_R, .readfn = rndr_readfn }, 5784 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 5785 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 5786 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 5787 .access = PL0_R, .readfn = rndr_readfn }, 5788 REGINFO_SENTINEL 5789 }; 5790 #endif 5791 5792 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 5793 bool isread) 5794 { 5795 int el = arm_current_el(env); 5796 5797 if (el == 0) { 5798 uint64_t sctlr = arm_sctlr(env, el); 5799 if (!(sctlr & SCTLR_EnRCTX)) { 5800 return CP_ACCESS_TRAP; 5801 } 5802 } else if (el == 1) { 5803 uint64_t hcr = arm_hcr_el2_eff(env); 5804 if (hcr & HCR_NV) { 5805 return CP_ACCESS_TRAP_EL2; 5806 } 5807 } 5808 return CP_ACCESS_OK; 5809 } 5810 5811 static const ARMCPRegInfo predinv_reginfo[] = { 5812 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 5813 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 5814 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5815 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 5816 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 5817 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5818 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 5819 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 5820 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5821 /* 5822 * Note the AArch32 opcodes have a different OPC1. 5823 */ 5824 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 5825 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 5826 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5827 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 5828 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 5829 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5830 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 5831 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 5832 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5833 REGINFO_SENTINEL 5834 }; 5835 5836 void register_cp_regs_for_features(ARMCPU *cpu) 5837 { 5838 /* Register all the coprocessor registers based on feature bits */ 5839 CPUARMState *env = &cpu->env; 5840 if (arm_feature(env, ARM_FEATURE_M)) { 5841 /* M profile has no coprocessor registers */ 5842 return; 5843 } 5844 5845 define_arm_cp_regs(cpu, cp_reginfo); 5846 if (!arm_feature(env, ARM_FEATURE_V8)) { 5847 /* Must go early as it is full of wildcards that may be 5848 * overridden by later definitions. 5849 */ 5850 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 5851 } 5852 5853 if (arm_feature(env, ARM_FEATURE_V6)) { 5854 /* The ID registers all have impdef reset values */ 5855 ARMCPRegInfo v6_idregs[] = { 5856 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 5857 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5858 .access = PL1_R, .type = ARM_CP_CONST, 5859 .resetvalue = cpu->id_pfr0 }, 5860 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 5861 * the value of the GIC field until after we define these regs. 5862 */ 5863 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 5864 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 5865 .access = PL1_R, .type = ARM_CP_NO_RAW, 5866 .readfn = id_pfr1_read, 5867 .writefn = arm_cp_write_ignore }, 5868 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 5869 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 5870 .access = PL1_R, .type = ARM_CP_CONST, 5871 .resetvalue = cpu->id_dfr0 }, 5872 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 5873 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 5874 .access = PL1_R, .type = ARM_CP_CONST, 5875 .resetvalue = cpu->id_afr0 }, 5876 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 5877 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 5878 .access = PL1_R, .type = ARM_CP_CONST, 5879 .resetvalue = cpu->id_mmfr0 }, 5880 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 5881 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 5882 .access = PL1_R, .type = ARM_CP_CONST, 5883 .resetvalue = cpu->id_mmfr1 }, 5884 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 5885 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 5886 .access = PL1_R, .type = ARM_CP_CONST, 5887 .resetvalue = cpu->id_mmfr2 }, 5888 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 5889 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 5890 .access = PL1_R, .type = ARM_CP_CONST, 5891 .resetvalue = cpu->id_mmfr3 }, 5892 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 5893 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 5894 .access = PL1_R, .type = ARM_CP_CONST, 5895 .resetvalue = cpu->isar.id_isar0 }, 5896 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 5897 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 5898 .access = PL1_R, .type = ARM_CP_CONST, 5899 .resetvalue = cpu->isar.id_isar1 }, 5900 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 5901 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5902 .access = PL1_R, .type = ARM_CP_CONST, 5903 .resetvalue = cpu->isar.id_isar2 }, 5904 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 5905 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 5906 .access = PL1_R, .type = ARM_CP_CONST, 5907 .resetvalue = cpu->isar.id_isar3 }, 5908 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 5909 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 5910 .access = PL1_R, .type = ARM_CP_CONST, 5911 .resetvalue = cpu->isar.id_isar4 }, 5912 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 5913 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 5914 .access = PL1_R, .type = ARM_CP_CONST, 5915 .resetvalue = cpu->isar.id_isar5 }, 5916 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 5917 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 5918 .access = PL1_R, .type = ARM_CP_CONST, 5919 .resetvalue = cpu->id_mmfr4 }, 5920 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 5921 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 5922 .access = PL1_R, .type = ARM_CP_CONST, 5923 .resetvalue = cpu->isar.id_isar6 }, 5924 REGINFO_SENTINEL 5925 }; 5926 define_arm_cp_regs(cpu, v6_idregs); 5927 define_arm_cp_regs(cpu, v6_cp_reginfo); 5928 } else { 5929 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 5930 } 5931 if (arm_feature(env, ARM_FEATURE_V6K)) { 5932 define_arm_cp_regs(cpu, v6k_cp_reginfo); 5933 } 5934 if (arm_feature(env, ARM_FEATURE_V7MP) && 5935 !arm_feature(env, ARM_FEATURE_PMSA)) { 5936 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 5937 } 5938 if (arm_feature(env, ARM_FEATURE_V7VE)) { 5939 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 5940 } 5941 if (arm_feature(env, ARM_FEATURE_V7)) { 5942 /* v7 performance monitor control register: same implementor 5943 * field as main ID register, and we implement four counters in 5944 * addition to the cycle count register. 5945 */ 5946 unsigned int i, pmcrn = 4; 5947 ARMCPRegInfo pmcr = { 5948 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 5949 .access = PL0_RW, 5950 .type = ARM_CP_IO | ARM_CP_ALIAS, 5951 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 5952 .accessfn = pmreg_access, .writefn = pmcr_write, 5953 .raw_writefn = raw_write, 5954 }; 5955 ARMCPRegInfo pmcr64 = { 5956 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 5957 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 5958 .access = PL0_RW, .accessfn = pmreg_access, 5959 .type = ARM_CP_IO, 5960 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 5961 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT), 5962 .writefn = pmcr_write, .raw_writefn = raw_write, 5963 }; 5964 define_one_arm_cp_reg(cpu, &pmcr); 5965 define_one_arm_cp_reg(cpu, &pmcr64); 5966 for (i = 0; i < pmcrn; i++) { 5967 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 5968 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 5969 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 5970 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 5971 ARMCPRegInfo pmev_regs[] = { 5972 { .name = pmevcntr_name, .cp = 15, .crn = 14, 5973 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 5974 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 5975 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 5976 .accessfn = pmreg_access }, 5977 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 5978 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 5979 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 5980 .type = ARM_CP_IO, 5981 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 5982 .raw_readfn = pmevcntr_rawread, 5983 .raw_writefn = pmevcntr_rawwrite }, 5984 { .name = pmevtyper_name, .cp = 15, .crn = 14, 5985 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 5986 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 5987 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 5988 .accessfn = pmreg_access }, 5989 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 5990 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 5991 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 5992 .type = ARM_CP_IO, 5993 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 5994 .raw_writefn = pmevtyper_rawwrite }, 5995 REGINFO_SENTINEL 5996 }; 5997 define_arm_cp_regs(cpu, pmev_regs); 5998 g_free(pmevcntr_name); 5999 g_free(pmevcntr_el0_name); 6000 g_free(pmevtyper_name); 6001 g_free(pmevtyper_el0_name); 6002 } 6003 ARMCPRegInfo clidr = { 6004 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 6005 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 6006 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 6007 }; 6008 define_one_arm_cp_reg(cpu, &clidr); 6009 define_arm_cp_regs(cpu, v7_cp_reginfo); 6010 define_debug_regs(cpu); 6011 } else { 6012 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 6013 } 6014 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 && 6015 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) { 6016 ARMCPRegInfo v81_pmu_regs[] = { 6017 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6018 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6019 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6020 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6021 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6022 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6023 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6024 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6025 REGINFO_SENTINEL 6026 }; 6027 define_arm_cp_regs(cpu, v81_pmu_regs); 6028 } 6029 if (arm_feature(env, ARM_FEATURE_V8)) { 6030 /* AArch64 ID registers, which all have impdef reset values. 6031 * Note that within the ID register ranges the unused slots 6032 * must all RAZ, not UNDEF; future architecture versions may 6033 * define new registers here. 6034 */ 6035 ARMCPRegInfo v8_idregs[] = { 6036 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 6037 * know the right value for the GIC field until after we 6038 * define these regs. 6039 */ 6040 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 6041 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 6042 .access = PL1_R, .type = ARM_CP_NO_RAW, 6043 .readfn = id_aa64pfr0_read, 6044 .writefn = arm_cp_write_ignore }, 6045 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 6046 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 6047 .access = PL1_R, .type = ARM_CP_CONST, 6048 .resetvalue = cpu->isar.id_aa64pfr1}, 6049 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6050 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 6051 .access = PL1_R, .type = ARM_CP_CONST, 6052 .resetvalue = 0 }, 6053 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 6055 .access = PL1_R, .type = ARM_CP_CONST, 6056 .resetvalue = 0 }, 6057 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 6058 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 6059 .access = PL1_R, .type = ARM_CP_CONST, 6060 /* At present, only SVEver == 0 is defined anyway. */ 6061 .resetvalue = 0 }, 6062 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6063 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 6064 .access = PL1_R, .type = ARM_CP_CONST, 6065 .resetvalue = 0 }, 6066 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6067 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 6068 .access = PL1_R, .type = ARM_CP_CONST, 6069 .resetvalue = 0 }, 6070 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6071 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 6072 .access = PL1_R, .type = ARM_CP_CONST, 6073 .resetvalue = 0 }, 6074 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 6075 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 6076 .access = PL1_R, .type = ARM_CP_CONST, 6077 .resetvalue = cpu->id_aa64dfr0 }, 6078 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 6079 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 6080 .access = PL1_R, .type = ARM_CP_CONST, 6081 .resetvalue = cpu->id_aa64dfr1 }, 6082 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6083 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 6084 .access = PL1_R, .type = ARM_CP_CONST, 6085 .resetvalue = 0 }, 6086 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6087 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 6088 .access = PL1_R, .type = ARM_CP_CONST, 6089 .resetvalue = 0 }, 6090 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 6091 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 6092 .access = PL1_R, .type = ARM_CP_CONST, 6093 .resetvalue = cpu->id_aa64afr0 }, 6094 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 6095 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 6096 .access = PL1_R, .type = ARM_CP_CONST, 6097 .resetvalue = cpu->id_aa64afr1 }, 6098 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6099 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 6100 .access = PL1_R, .type = ARM_CP_CONST, 6101 .resetvalue = 0 }, 6102 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6103 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 6104 .access = PL1_R, .type = ARM_CP_CONST, 6105 .resetvalue = 0 }, 6106 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 6107 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 6108 .access = PL1_R, .type = ARM_CP_CONST, 6109 .resetvalue = cpu->isar.id_aa64isar0 }, 6110 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 6111 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 6112 .access = PL1_R, .type = ARM_CP_CONST, 6113 .resetvalue = cpu->isar.id_aa64isar1 }, 6114 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6115 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 6116 .access = PL1_R, .type = ARM_CP_CONST, 6117 .resetvalue = 0 }, 6118 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6119 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 6120 .access = PL1_R, .type = ARM_CP_CONST, 6121 .resetvalue = 0 }, 6122 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6123 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 6124 .access = PL1_R, .type = ARM_CP_CONST, 6125 .resetvalue = 0 }, 6126 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6127 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 6128 .access = PL1_R, .type = ARM_CP_CONST, 6129 .resetvalue = 0 }, 6130 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6131 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 6132 .access = PL1_R, .type = ARM_CP_CONST, 6133 .resetvalue = 0 }, 6134 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6135 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 6136 .access = PL1_R, .type = ARM_CP_CONST, 6137 .resetvalue = 0 }, 6138 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 6139 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6140 .access = PL1_R, .type = ARM_CP_CONST, 6141 .resetvalue = cpu->isar.id_aa64mmfr0 }, 6142 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 6143 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 6144 .access = PL1_R, .type = ARM_CP_CONST, 6145 .resetvalue = cpu->isar.id_aa64mmfr1 }, 6146 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6147 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 6148 .access = PL1_R, .type = ARM_CP_CONST, 6149 .resetvalue = 0 }, 6150 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6151 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 6152 .access = PL1_R, .type = ARM_CP_CONST, 6153 .resetvalue = 0 }, 6154 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6155 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 6156 .access = PL1_R, .type = ARM_CP_CONST, 6157 .resetvalue = 0 }, 6158 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6159 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 6160 .access = PL1_R, .type = ARM_CP_CONST, 6161 .resetvalue = 0 }, 6162 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6163 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 6164 .access = PL1_R, .type = ARM_CP_CONST, 6165 .resetvalue = 0 }, 6166 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6167 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 6168 .access = PL1_R, .type = ARM_CP_CONST, 6169 .resetvalue = 0 }, 6170 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 6171 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 6172 .access = PL1_R, .type = ARM_CP_CONST, 6173 .resetvalue = cpu->isar.mvfr0 }, 6174 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 6175 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 6176 .access = PL1_R, .type = ARM_CP_CONST, 6177 .resetvalue = cpu->isar.mvfr1 }, 6178 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 6179 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 6180 .access = PL1_R, .type = ARM_CP_CONST, 6181 .resetvalue = cpu->isar.mvfr2 }, 6182 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6183 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 6184 .access = PL1_R, .type = ARM_CP_CONST, 6185 .resetvalue = 0 }, 6186 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6187 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 6188 .access = PL1_R, .type = ARM_CP_CONST, 6189 .resetvalue = 0 }, 6190 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6191 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 6192 .access = PL1_R, .type = ARM_CP_CONST, 6193 .resetvalue = 0 }, 6194 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6195 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 6196 .access = PL1_R, .type = ARM_CP_CONST, 6197 .resetvalue = 0 }, 6198 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6199 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 6200 .access = PL1_R, .type = ARM_CP_CONST, 6201 .resetvalue = 0 }, 6202 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 6203 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 6204 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6205 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 6206 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 6207 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 6208 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6209 .resetvalue = cpu->pmceid0 }, 6210 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 6211 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 6212 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6213 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 6214 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 6215 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 6216 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6217 .resetvalue = cpu->pmceid1 }, 6218 REGINFO_SENTINEL 6219 }; 6220 #ifdef CONFIG_USER_ONLY 6221 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 6222 { .name = "ID_AA64PFR0_EL1", 6223 .exported_bits = 0x000f000f00ff0000, 6224 .fixed_bits = 0x0000000000000011 }, 6225 { .name = "ID_AA64PFR1_EL1", 6226 .exported_bits = 0x00000000000000f0 }, 6227 { .name = "ID_AA64PFR*_EL1_RESERVED", 6228 .is_glob = true }, 6229 { .name = "ID_AA64ZFR0_EL1" }, 6230 { .name = "ID_AA64MMFR0_EL1", 6231 .fixed_bits = 0x00000000ff000000 }, 6232 { .name = "ID_AA64MMFR1_EL1" }, 6233 { .name = "ID_AA64MMFR*_EL1_RESERVED", 6234 .is_glob = true }, 6235 { .name = "ID_AA64DFR0_EL1", 6236 .fixed_bits = 0x0000000000000006 }, 6237 { .name = "ID_AA64DFR1_EL1" }, 6238 { .name = "ID_AA64DFR*_EL1_RESERVED", 6239 .is_glob = true }, 6240 { .name = "ID_AA64AFR*", 6241 .is_glob = true }, 6242 { .name = "ID_AA64ISAR0_EL1", 6243 .exported_bits = 0x00fffffff0fffff0 }, 6244 { .name = "ID_AA64ISAR1_EL1", 6245 .exported_bits = 0x000000f0ffffffff }, 6246 { .name = "ID_AA64ISAR*_EL1_RESERVED", 6247 .is_glob = true }, 6248 REGUSERINFO_SENTINEL 6249 }; 6250 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 6251 #endif 6252 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 6253 if (!arm_feature(env, ARM_FEATURE_EL3) && 6254 !arm_feature(env, ARM_FEATURE_EL2)) { 6255 ARMCPRegInfo rvbar = { 6256 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 6257 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6258 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 6259 }; 6260 define_one_arm_cp_reg(cpu, &rvbar); 6261 } 6262 define_arm_cp_regs(cpu, v8_idregs); 6263 define_arm_cp_regs(cpu, v8_cp_reginfo); 6264 } 6265 if (arm_feature(env, ARM_FEATURE_EL2)) { 6266 uint64_t vmpidr_def = mpidr_read_val(env); 6267 ARMCPRegInfo vpidr_regs[] = { 6268 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 6269 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6270 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6271 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 6272 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 6273 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 6274 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6275 .access = PL2_RW, .resetvalue = cpu->midr, 6276 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 6277 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 6278 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6279 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6280 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 6281 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 6282 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 6283 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6284 .access = PL2_RW, 6285 .resetvalue = vmpidr_def, 6286 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 6287 REGINFO_SENTINEL 6288 }; 6289 define_arm_cp_regs(cpu, vpidr_regs); 6290 define_arm_cp_regs(cpu, el2_cp_reginfo); 6291 if (arm_feature(env, ARM_FEATURE_V8)) { 6292 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 6293 } 6294 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 6295 if (!arm_feature(env, ARM_FEATURE_EL3)) { 6296 ARMCPRegInfo rvbar = { 6297 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 6298 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 6299 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 6300 }; 6301 define_one_arm_cp_reg(cpu, &rvbar); 6302 } 6303 } else { 6304 /* If EL2 is missing but higher ELs are enabled, we need to 6305 * register the no_el2 reginfos. 6306 */ 6307 if (arm_feature(env, ARM_FEATURE_EL3)) { 6308 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 6309 * of MIDR_EL1 and MPIDR_EL1. 6310 */ 6311 ARMCPRegInfo vpidr_regs[] = { 6312 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6313 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6314 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 6315 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 6316 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 6317 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6318 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6319 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 6320 .type = ARM_CP_NO_RAW, 6321 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 6322 REGINFO_SENTINEL 6323 }; 6324 define_arm_cp_regs(cpu, vpidr_regs); 6325 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 6326 if (arm_feature(env, ARM_FEATURE_V8)) { 6327 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 6328 } 6329 } 6330 } 6331 if (arm_feature(env, ARM_FEATURE_EL3)) { 6332 define_arm_cp_regs(cpu, el3_cp_reginfo); 6333 ARMCPRegInfo el3_regs[] = { 6334 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 6335 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 6336 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 6337 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 6338 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 6339 .access = PL3_RW, 6340 .raw_writefn = raw_write, .writefn = sctlr_write, 6341 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 6342 .resetvalue = cpu->reset_sctlr }, 6343 REGINFO_SENTINEL 6344 }; 6345 6346 define_arm_cp_regs(cpu, el3_regs); 6347 } 6348 /* The behaviour of NSACR is sufficiently various that we don't 6349 * try to describe it in a single reginfo: 6350 * if EL3 is 64 bit, then trap to EL3 from S EL1, 6351 * reads as constant 0xc00 from NS EL1 and NS EL2 6352 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 6353 * if v7 without EL3, register doesn't exist 6354 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 6355 */ 6356 if (arm_feature(env, ARM_FEATURE_EL3)) { 6357 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6358 ARMCPRegInfo nsacr = { 6359 .name = "NSACR", .type = ARM_CP_CONST, 6360 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6361 .access = PL1_RW, .accessfn = nsacr_access, 6362 .resetvalue = 0xc00 6363 }; 6364 define_one_arm_cp_reg(cpu, &nsacr); 6365 } else { 6366 ARMCPRegInfo nsacr = { 6367 .name = "NSACR", 6368 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6369 .access = PL3_RW | PL1_R, 6370 .resetvalue = 0, 6371 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 6372 }; 6373 define_one_arm_cp_reg(cpu, &nsacr); 6374 } 6375 } else { 6376 if (arm_feature(env, ARM_FEATURE_V8)) { 6377 ARMCPRegInfo nsacr = { 6378 .name = "NSACR", .type = ARM_CP_CONST, 6379 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6380 .access = PL1_R, 6381 .resetvalue = 0xc00 6382 }; 6383 define_one_arm_cp_reg(cpu, &nsacr); 6384 } 6385 } 6386 6387 if (arm_feature(env, ARM_FEATURE_PMSA)) { 6388 if (arm_feature(env, ARM_FEATURE_V6)) { 6389 /* PMSAv6 not implemented */ 6390 assert(arm_feature(env, ARM_FEATURE_V7)); 6391 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 6392 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 6393 } else { 6394 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 6395 } 6396 } else { 6397 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 6398 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 6399 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */ 6400 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) { 6401 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 6402 } 6403 } 6404 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 6405 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 6406 } 6407 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 6408 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 6409 } 6410 if (arm_feature(env, ARM_FEATURE_VAPA)) { 6411 define_arm_cp_regs(cpu, vapa_cp_reginfo); 6412 } 6413 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 6414 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 6415 } 6416 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 6417 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 6418 } 6419 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 6420 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 6421 } 6422 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 6423 define_arm_cp_regs(cpu, omap_cp_reginfo); 6424 } 6425 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 6426 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 6427 } 6428 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 6429 define_arm_cp_regs(cpu, xscale_cp_reginfo); 6430 } 6431 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 6432 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 6433 } 6434 if (arm_feature(env, ARM_FEATURE_LPAE)) { 6435 define_arm_cp_regs(cpu, lpae_cp_reginfo); 6436 } 6437 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 6438 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 6439 * be read-only (ie write causes UNDEF exception). 6440 */ 6441 { 6442 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 6443 /* Pre-v8 MIDR space. 6444 * Note that the MIDR isn't a simple constant register because 6445 * of the TI925 behaviour where writes to another register can 6446 * cause the MIDR value to change. 6447 * 6448 * Unimplemented registers in the c15 0 0 0 space default to 6449 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 6450 * and friends override accordingly. 6451 */ 6452 { .name = "MIDR", 6453 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 6454 .access = PL1_R, .resetvalue = cpu->midr, 6455 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 6456 .readfn = midr_read, 6457 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 6458 .type = ARM_CP_OVERRIDE }, 6459 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 6460 { .name = "DUMMY", 6461 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 6462 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6463 { .name = "DUMMY", 6464 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 6465 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6466 { .name = "DUMMY", 6467 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 6468 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6469 { .name = "DUMMY", 6470 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 6471 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6472 { .name = "DUMMY", 6473 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 6474 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6475 REGINFO_SENTINEL 6476 }; 6477 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 6478 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 6479 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 6480 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 6481 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 6482 .readfn = midr_read }, 6483 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 6484 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 6485 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 6486 .access = PL1_R, .resetvalue = cpu->midr }, 6487 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 6488 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 6489 .access = PL1_R, .resetvalue = cpu->midr }, 6490 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 6491 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 6492 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 6493 REGINFO_SENTINEL 6494 }; 6495 ARMCPRegInfo id_cp_reginfo[] = { 6496 /* These are common to v8 and pre-v8 */ 6497 { .name = "CTR", 6498 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 6499 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 6500 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 6501 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 6502 .access = PL0_R, .accessfn = ctr_el0_access, 6503 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 6504 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 6505 { .name = "TCMTR", 6506 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 6507 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6508 REGINFO_SENTINEL 6509 }; 6510 /* TLBTR is specific to VMSA */ 6511 ARMCPRegInfo id_tlbtr_reginfo = { 6512 .name = "TLBTR", 6513 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 6514 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 6515 }; 6516 /* MPUIR is specific to PMSA V6+ */ 6517 ARMCPRegInfo id_mpuir_reginfo = { 6518 .name = "MPUIR", 6519 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 6520 .access = PL1_R, .type = ARM_CP_CONST, 6521 .resetvalue = cpu->pmsav7_dregion << 8 6522 }; 6523 ARMCPRegInfo crn0_wi_reginfo = { 6524 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 6525 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 6526 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 6527 }; 6528 #ifdef CONFIG_USER_ONLY 6529 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 6530 { .name = "MIDR_EL1", 6531 .exported_bits = 0x00000000ffffffff }, 6532 { .name = "REVIDR_EL1" }, 6533 REGUSERINFO_SENTINEL 6534 }; 6535 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 6536 #endif 6537 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 6538 arm_feature(env, ARM_FEATURE_STRONGARM)) { 6539 ARMCPRegInfo *r; 6540 /* Register the blanket "writes ignored" value first to cover the 6541 * whole space. Then update the specific ID registers to allow write 6542 * access, so that they ignore writes rather than causing them to 6543 * UNDEF. 6544 */ 6545 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 6546 for (r = id_pre_v8_midr_cp_reginfo; 6547 r->type != ARM_CP_SENTINEL; r++) { 6548 r->access = PL1_RW; 6549 } 6550 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 6551 r->access = PL1_RW; 6552 } 6553 id_mpuir_reginfo.access = PL1_RW; 6554 id_tlbtr_reginfo.access = PL1_RW; 6555 } 6556 if (arm_feature(env, ARM_FEATURE_V8)) { 6557 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 6558 } else { 6559 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 6560 } 6561 define_arm_cp_regs(cpu, id_cp_reginfo); 6562 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 6563 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 6564 } else if (arm_feature(env, ARM_FEATURE_V7)) { 6565 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 6566 } 6567 } 6568 6569 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 6570 ARMCPRegInfo mpidr_cp_reginfo[] = { 6571 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 6572 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 6573 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 6574 REGINFO_SENTINEL 6575 }; 6576 #ifdef CONFIG_USER_ONLY 6577 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 6578 { .name = "MPIDR_EL1", 6579 .fixed_bits = 0x0000000080000000 }, 6580 REGUSERINFO_SENTINEL 6581 }; 6582 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 6583 #endif 6584 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 6585 } 6586 6587 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 6588 ARMCPRegInfo auxcr_reginfo[] = { 6589 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 6590 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 6591 .access = PL1_RW, .type = ARM_CP_CONST, 6592 .resetvalue = cpu->reset_auxcr }, 6593 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 6594 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 6595 .access = PL2_RW, .type = ARM_CP_CONST, 6596 .resetvalue = 0 }, 6597 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 6598 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 6599 .access = PL3_RW, .type = ARM_CP_CONST, 6600 .resetvalue = 0 }, 6601 REGINFO_SENTINEL 6602 }; 6603 define_arm_cp_regs(cpu, auxcr_reginfo); 6604 if (arm_feature(env, ARM_FEATURE_V8)) { 6605 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */ 6606 ARMCPRegInfo hactlr2_reginfo = { 6607 .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 6608 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 6609 .access = PL2_RW, .type = ARM_CP_CONST, 6610 .resetvalue = 0 6611 }; 6612 define_one_arm_cp_reg(cpu, &hactlr2_reginfo); 6613 } 6614 } 6615 6616 if (arm_feature(env, ARM_FEATURE_CBAR)) { 6617 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6618 /* 32 bit view is [31:18] 0...0 [43:32]. */ 6619 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 6620 | extract64(cpu->reset_cbar, 32, 12); 6621 ARMCPRegInfo cbar_reginfo[] = { 6622 { .name = "CBAR", 6623 .type = ARM_CP_CONST, 6624 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 6625 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 6626 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 6627 .type = ARM_CP_CONST, 6628 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 6629 .access = PL1_R, .resetvalue = cbar32 }, 6630 REGINFO_SENTINEL 6631 }; 6632 /* We don't implement a r/w 64 bit CBAR currently */ 6633 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 6634 define_arm_cp_regs(cpu, cbar_reginfo); 6635 } else { 6636 ARMCPRegInfo cbar = { 6637 .name = "CBAR", 6638 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 6639 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 6640 .fieldoffset = offsetof(CPUARMState, 6641 cp15.c15_config_base_address) 6642 }; 6643 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 6644 cbar.access = PL1_R; 6645 cbar.fieldoffset = 0; 6646 cbar.type = ARM_CP_CONST; 6647 } 6648 define_one_arm_cp_reg(cpu, &cbar); 6649 } 6650 } 6651 6652 if (arm_feature(env, ARM_FEATURE_VBAR)) { 6653 ARMCPRegInfo vbar_cp_reginfo[] = { 6654 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 6655 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 6656 .access = PL1_RW, .writefn = vbar_write, 6657 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 6658 offsetof(CPUARMState, cp15.vbar_ns) }, 6659 .resetvalue = 0 }, 6660 REGINFO_SENTINEL 6661 }; 6662 define_arm_cp_regs(cpu, vbar_cp_reginfo); 6663 } 6664 6665 /* Generic registers whose values depend on the implementation */ 6666 { 6667 ARMCPRegInfo sctlr = { 6668 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 6669 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6670 .access = PL1_RW, 6671 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 6672 offsetof(CPUARMState, cp15.sctlr_ns) }, 6673 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 6674 .raw_writefn = raw_write, 6675 }; 6676 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 6677 /* Normally we would always end the TB on an SCTLR write, but Linux 6678 * arch/arm/mach-pxa/sleep.S expects two instructions following 6679 * an MMU enable to execute from cache. Imitate this behaviour. 6680 */ 6681 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 6682 } 6683 define_one_arm_cp_reg(cpu, &sctlr); 6684 } 6685 6686 if (cpu_isar_feature(aa64_lor, cpu)) { 6687 /* 6688 * A trivial implementation of ARMv8.1-LOR leaves all of these 6689 * registers fixed at 0, which indicates that there are zero 6690 * supported Limited Ordering regions. 6691 */ 6692 static const ARMCPRegInfo lor_reginfo[] = { 6693 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6694 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6695 .access = PL1_RW, .accessfn = access_lor_other, 6696 .type = ARM_CP_CONST, .resetvalue = 0 }, 6697 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6698 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6699 .access = PL1_RW, .accessfn = access_lor_other, 6700 .type = ARM_CP_CONST, .resetvalue = 0 }, 6701 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6702 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6703 .access = PL1_RW, .accessfn = access_lor_other, 6704 .type = ARM_CP_CONST, .resetvalue = 0 }, 6705 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6706 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6707 .access = PL1_RW, .accessfn = access_lor_other, 6708 .type = ARM_CP_CONST, .resetvalue = 0 }, 6709 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6710 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6711 .access = PL1_R, .accessfn = access_lorid, 6712 .type = ARM_CP_CONST, .resetvalue = 0 }, 6713 REGINFO_SENTINEL 6714 }; 6715 define_arm_cp_regs(cpu, lor_reginfo); 6716 } 6717 6718 if (cpu_isar_feature(aa64_sve, cpu)) { 6719 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 6720 if (arm_feature(env, ARM_FEATURE_EL2)) { 6721 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 6722 } else { 6723 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 6724 } 6725 if (arm_feature(env, ARM_FEATURE_EL3)) { 6726 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 6727 } 6728 } 6729 6730 #ifdef TARGET_AARCH64 6731 if (cpu_isar_feature(aa64_pauth, cpu)) { 6732 define_arm_cp_regs(cpu, pauth_reginfo); 6733 } 6734 if (cpu_isar_feature(aa64_rndr, cpu)) { 6735 define_arm_cp_regs(cpu, rndr_reginfo); 6736 } 6737 #endif 6738 6739 /* 6740 * While all v8.0 cpus support aarch64, QEMU does have configurations 6741 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max, 6742 * which will set ID_ISAR6. 6743 */ 6744 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) 6745 ? cpu_isar_feature(aa64_predinv, cpu) 6746 : cpu_isar_feature(aa32_predinv, cpu)) { 6747 define_arm_cp_regs(cpu, predinv_reginfo); 6748 } 6749 } 6750 6751 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 6752 { 6753 CPUState *cs = CPU(cpu); 6754 CPUARMState *env = &cpu->env; 6755 6756 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6757 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 6758 aarch64_fpu_gdb_set_reg, 6759 34, "aarch64-fpu.xml", 0); 6760 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 6761 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6762 51, "arm-neon.xml", 0); 6763 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 6764 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6765 35, "arm-vfp3.xml", 0); 6766 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 6767 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6768 19, "arm-vfp.xml", 0); 6769 } 6770 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 6771 arm_gen_dynamic_xml(cs), 6772 "system-registers.xml", 0); 6773 } 6774 6775 /* Sort alphabetically by type name, except for "any". */ 6776 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 6777 { 6778 ObjectClass *class_a = (ObjectClass *)a; 6779 ObjectClass *class_b = (ObjectClass *)b; 6780 const char *name_a, *name_b; 6781 6782 name_a = object_class_get_name(class_a); 6783 name_b = object_class_get_name(class_b); 6784 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 6785 return 1; 6786 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 6787 return -1; 6788 } else { 6789 return strcmp(name_a, name_b); 6790 } 6791 } 6792 6793 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 6794 { 6795 ObjectClass *oc = data; 6796 const char *typename; 6797 char *name; 6798 6799 typename = object_class_get_name(oc); 6800 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 6801 qemu_printf(" %s\n", name); 6802 g_free(name); 6803 } 6804 6805 void arm_cpu_list(void) 6806 { 6807 GSList *list; 6808 6809 list = object_class_get_list(TYPE_ARM_CPU, false); 6810 list = g_slist_sort(list, arm_cpu_list_compare); 6811 qemu_printf("Available CPUs:\n"); 6812 g_slist_foreach(list, arm_cpu_list_entry, NULL); 6813 g_slist_free(list); 6814 } 6815 6816 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 6817 { 6818 ObjectClass *oc = data; 6819 CpuDefinitionInfoList **cpu_list = user_data; 6820 CpuDefinitionInfoList *entry; 6821 CpuDefinitionInfo *info; 6822 const char *typename; 6823 6824 typename = object_class_get_name(oc); 6825 info = g_malloc0(sizeof(*info)); 6826 info->name = g_strndup(typename, 6827 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 6828 info->q_typename = g_strdup(typename); 6829 6830 entry = g_malloc0(sizeof(*entry)); 6831 entry->value = info; 6832 entry->next = *cpu_list; 6833 *cpu_list = entry; 6834 } 6835 6836 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 6837 { 6838 CpuDefinitionInfoList *cpu_list = NULL; 6839 GSList *list; 6840 6841 list = object_class_get_list(TYPE_ARM_CPU, false); 6842 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 6843 g_slist_free(list); 6844 6845 return cpu_list; 6846 } 6847 6848 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 6849 void *opaque, int state, int secstate, 6850 int crm, int opc1, int opc2, 6851 const char *name) 6852 { 6853 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 6854 * add a single reginfo struct to the hash table. 6855 */ 6856 uint32_t *key = g_new(uint32_t, 1); 6857 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 6858 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 6859 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 6860 6861 r2->name = g_strdup(name); 6862 /* Reset the secure state to the specific incoming state. This is 6863 * necessary as the register may have been defined with both states. 6864 */ 6865 r2->secure = secstate; 6866 6867 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 6868 /* Register is banked (using both entries in array). 6869 * Overwriting fieldoffset as the array is only used to define 6870 * banked registers but later only fieldoffset is used. 6871 */ 6872 r2->fieldoffset = r->bank_fieldoffsets[ns]; 6873 } 6874 6875 if (state == ARM_CP_STATE_AA32) { 6876 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 6877 /* If the register is banked then we don't need to migrate or 6878 * reset the 32-bit instance in certain cases: 6879 * 6880 * 1) If the register has both 32-bit and 64-bit instances then we 6881 * can count on the 64-bit instance taking care of the 6882 * non-secure bank. 6883 * 2) If ARMv8 is enabled then we can count on a 64-bit version 6884 * taking care of the secure bank. This requires that separate 6885 * 32 and 64-bit definitions are provided. 6886 */ 6887 if ((r->state == ARM_CP_STATE_BOTH && ns) || 6888 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 6889 r2->type |= ARM_CP_ALIAS; 6890 } 6891 } else if ((secstate != r->secure) && !ns) { 6892 /* The register is not banked so we only want to allow migration of 6893 * the non-secure instance. 6894 */ 6895 r2->type |= ARM_CP_ALIAS; 6896 } 6897 6898 if (r->state == ARM_CP_STATE_BOTH) { 6899 /* We assume it is a cp15 register if the .cp field is left unset. 6900 */ 6901 if (r2->cp == 0) { 6902 r2->cp = 15; 6903 } 6904 6905 #ifdef HOST_WORDS_BIGENDIAN 6906 if (r2->fieldoffset) { 6907 r2->fieldoffset += sizeof(uint32_t); 6908 } 6909 #endif 6910 } 6911 } 6912 if (state == ARM_CP_STATE_AA64) { 6913 /* To allow abbreviation of ARMCPRegInfo 6914 * definitions, we treat cp == 0 as equivalent to 6915 * the value for "standard guest-visible sysreg". 6916 * STATE_BOTH definitions are also always "standard 6917 * sysreg" in their AArch64 view (the .cp value may 6918 * be non-zero for the benefit of the AArch32 view). 6919 */ 6920 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 6921 r2->cp = CP_REG_ARM64_SYSREG_CP; 6922 } 6923 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 6924 r2->opc0, opc1, opc2); 6925 } else { 6926 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 6927 } 6928 if (opaque) { 6929 r2->opaque = opaque; 6930 } 6931 /* reginfo passed to helpers is correct for the actual access, 6932 * and is never ARM_CP_STATE_BOTH: 6933 */ 6934 r2->state = state; 6935 /* Make sure reginfo passed to helpers for wildcarded regs 6936 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 6937 */ 6938 r2->crm = crm; 6939 r2->opc1 = opc1; 6940 r2->opc2 = opc2; 6941 /* By convention, for wildcarded registers only the first 6942 * entry is used for migration; the others are marked as 6943 * ALIAS so we don't try to transfer the register 6944 * multiple times. Special registers (ie NOP/WFI) are 6945 * never migratable and not even raw-accessible. 6946 */ 6947 if ((r->type & ARM_CP_SPECIAL)) { 6948 r2->type |= ARM_CP_NO_RAW; 6949 } 6950 if (((r->crm == CP_ANY) && crm != 0) || 6951 ((r->opc1 == CP_ANY) && opc1 != 0) || 6952 ((r->opc2 == CP_ANY) && opc2 != 0)) { 6953 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 6954 } 6955 6956 /* Check that raw accesses are either forbidden or handled. Note that 6957 * we can't assert this earlier because the setup of fieldoffset for 6958 * banked registers has to be done first. 6959 */ 6960 if (!(r2->type & ARM_CP_NO_RAW)) { 6961 assert(!raw_accessors_invalid(r2)); 6962 } 6963 6964 /* Overriding of an existing definition must be explicitly 6965 * requested. 6966 */ 6967 if (!(r->type & ARM_CP_OVERRIDE)) { 6968 ARMCPRegInfo *oldreg; 6969 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 6970 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 6971 fprintf(stderr, "Register redefined: cp=%d %d bit " 6972 "crn=%d crm=%d opc1=%d opc2=%d, " 6973 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 6974 r2->crn, r2->crm, r2->opc1, r2->opc2, 6975 oldreg->name, r2->name); 6976 g_assert_not_reached(); 6977 } 6978 } 6979 g_hash_table_insert(cpu->cp_regs, key, r2); 6980 } 6981 6982 6983 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 6984 const ARMCPRegInfo *r, void *opaque) 6985 { 6986 /* Define implementations of coprocessor registers. 6987 * We store these in a hashtable because typically 6988 * there are less than 150 registers in a space which 6989 * is 16*16*16*8*8 = 262144 in size. 6990 * Wildcarding is supported for the crm, opc1 and opc2 fields. 6991 * If a register is defined twice then the second definition is 6992 * used, so this can be used to define some generic registers and 6993 * then override them with implementation specific variations. 6994 * At least one of the original and the second definition should 6995 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 6996 * against accidental use. 6997 * 6998 * The state field defines whether the register is to be 6999 * visible in the AArch32 or AArch64 execution state. If the 7000 * state is set to ARM_CP_STATE_BOTH then we synthesise a 7001 * reginfo structure for the AArch32 view, which sees the lower 7002 * 32 bits of the 64 bit register. 7003 * 7004 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 7005 * be wildcarded. AArch64 registers are always considered to be 64 7006 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 7007 * the register, if any. 7008 */ 7009 int crm, opc1, opc2, state; 7010 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 7011 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 7012 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 7013 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 7014 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 7015 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 7016 /* 64 bit registers have only CRm and Opc1 fields */ 7017 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 7018 /* op0 only exists in the AArch64 encodings */ 7019 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 7020 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 7021 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 7022 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 7023 * encodes a minimum access level for the register. We roll this 7024 * runtime check into our general permission check code, so check 7025 * here that the reginfo's specified permissions are strict enough 7026 * to encompass the generic architectural permission check. 7027 */ 7028 if (r->state != ARM_CP_STATE_AA32) { 7029 int mask = 0; 7030 switch (r->opc1) { 7031 case 0: 7032 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 7033 mask = PL0U_R | PL1_RW; 7034 break; 7035 case 1: case 2: 7036 /* min_EL EL1 */ 7037 mask = PL1_RW; 7038 break; 7039 case 3: 7040 /* min_EL EL0 */ 7041 mask = PL0_RW; 7042 break; 7043 case 4: 7044 /* min_EL EL2 */ 7045 mask = PL2_RW; 7046 break; 7047 case 5: 7048 /* unallocated encoding, so not possible */ 7049 assert(false); 7050 break; 7051 case 6: 7052 /* min_EL EL3 */ 7053 mask = PL3_RW; 7054 break; 7055 case 7: 7056 /* min_EL EL1, secure mode only (we don't check the latter) */ 7057 mask = PL1_RW; 7058 break; 7059 default: 7060 /* broken reginfo with out-of-range opc1 */ 7061 assert(false); 7062 break; 7063 } 7064 /* assert our permissions are not too lax (stricter is fine) */ 7065 assert((r->access & ~mask) == 0); 7066 } 7067 7068 /* Check that the register definition has enough info to handle 7069 * reads and writes if they are permitted. 7070 */ 7071 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 7072 if (r->access & PL3_R) { 7073 assert((r->fieldoffset || 7074 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 7075 r->readfn); 7076 } 7077 if (r->access & PL3_W) { 7078 assert((r->fieldoffset || 7079 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 7080 r->writefn); 7081 } 7082 } 7083 /* Bad type field probably means missing sentinel at end of reg list */ 7084 assert(cptype_valid(r->type)); 7085 for (crm = crmmin; crm <= crmmax; crm++) { 7086 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 7087 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 7088 for (state = ARM_CP_STATE_AA32; 7089 state <= ARM_CP_STATE_AA64; state++) { 7090 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 7091 continue; 7092 } 7093 if (state == ARM_CP_STATE_AA32) { 7094 /* Under AArch32 CP registers can be common 7095 * (same for secure and non-secure world) or banked. 7096 */ 7097 char *name; 7098 7099 switch (r->secure) { 7100 case ARM_CP_SECSTATE_S: 7101 case ARM_CP_SECSTATE_NS: 7102 add_cpreg_to_hashtable(cpu, r, opaque, state, 7103 r->secure, crm, opc1, opc2, 7104 r->name); 7105 break; 7106 default: 7107 name = g_strdup_printf("%s_S", r->name); 7108 add_cpreg_to_hashtable(cpu, r, opaque, state, 7109 ARM_CP_SECSTATE_S, 7110 crm, opc1, opc2, name); 7111 g_free(name); 7112 add_cpreg_to_hashtable(cpu, r, opaque, state, 7113 ARM_CP_SECSTATE_NS, 7114 crm, opc1, opc2, r->name); 7115 break; 7116 } 7117 } else { 7118 /* AArch64 registers get mapped to non-secure instance 7119 * of AArch32 */ 7120 add_cpreg_to_hashtable(cpu, r, opaque, state, 7121 ARM_CP_SECSTATE_NS, 7122 crm, opc1, opc2, r->name); 7123 } 7124 } 7125 } 7126 } 7127 } 7128 } 7129 7130 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 7131 const ARMCPRegInfo *regs, void *opaque) 7132 { 7133 /* Define a whole list of registers */ 7134 const ARMCPRegInfo *r; 7135 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 7136 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 7137 } 7138 } 7139 7140 /* 7141 * Modify ARMCPRegInfo for access from userspace. 7142 * 7143 * This is a data driven modification directed by 7144 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 7145 * user-space cannot alter any values and dynamic values pertaining to 7146 * execution state are hidden from user space view anyway. 7147 */ 7148 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 7149 { 7150 const ARMCPRegUserSpaceInfo *m; 7151 ARMCPRegInfo *r; 7152 7153 for (m = mods; m->name; m++) { 7154 GPatternSpec *pat = NULL; 7155 if (m->is_glob) { 7156 pat = g_pattern_spec_new(m->name); 7157 } 7158 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 7159 if (pat && g_pattern_match_string(pat, r->name)) { 7160 r->type = ARM_CP_CONST; 7161 r->access = PL0U_R; 7162 r->resetvalue = 0; 7163 /* continue */ 7164 } else if (strcmp(r->name, m->name) == 0) { 7165 r->type = ARM_CP_CONST; 7166 r->access = PL0U_R; 7167 r->resetvalue &= m->exported_bits; 7168 r->resetvalue |= m->fixed_bits; 7169 break; 7170 } 7171 } 7172 if (pat) { 7173 g_pattern_spec_free(pat); 7174 } 7175 } 7176 } 7177 7178 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 7179 { 7180 return g_hash_table_lookup(cpregs, &encoded_cp); 7181 } 7182 7183 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 7184 uint64_t value) 7185 { 7186 /* Helper coprocessor write function for write-ignore registers */ 7187 } 7188 7189 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 7190 { 7191 /* Helper coprocessor write function for read-as-zero registers */ 7192 return 0; 7193 } 7194 7195 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 7196 { 7197 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 7198 } 7199 7200 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 7201 { 7202 /* Return true if it is not valid for us to switch to 7203 * this CPU mode (ie all the UNPREDICTABLE cases in 7204 * the ARM ARM CPSRWriteByInstr pseudocode). 7205 */ 7206 7207 /* Changes to or from Hyp via MSR and CPS are illegal. */ 7208 if (write_type == CPSRWriteByInstr && 7209 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 7210 mode == ARM_CPU_MODE_HYP)) { 7211 return 1; 7212 } 7213 7214 switch (mode) { 7215 case ARM_CPU_MODE_USR: 7216 return 0; 7217 case ARM_CPU_MODE_SYS: 7218 case ARM_CPU_MODE_SVC: 7219 case ARM_CPU_MODE_ABT: 7220 case ARM_CPU_MODE_UND: 7221 case ARM_CPU_MODE_IRQ: 7222 case ARM_CPU_MODE_FIQ: 7223 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 7224 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 7225 */ 7226 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 7227 * and CPS are treated as illegal mode changes. 7228 */ 7229 if (write_type == CPSRWriteByInstr && 7230 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 7231 (arm_hcr_el2_eff(env) & HCR_TGE)) { 7232 return 1; 7233 } 7234 return 0; 7235 case ARM_CPU_MODE_HYP: 7236 return !arm_feature(env, ARM_FEATURE_EL2) 7237 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); 7238 case ARM_CPU_MODE_MON: 7239 return arm_current_el(env) < 3; 7240 default: 7241 return 1; 7242 } 7243 } 7244 7245 uint32_t cpsr_read(CPUARMState *env) 7246 { 7247 int ZF; 7248 ZF = (env->ZF == 0); 7249 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 7250 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 7251 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 7252 | ((env->condexec_bits & 0xfc) << 8) 7253 | (env->GE << 16) | (env->daif & CPSR_AIF); 7254 } 7255 7256 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 7257 CPSRWriteType write_type) 7258 { 7259 uint32_t changed_daif; 7260 7261 if (mask & CPSR_NZCV) { 7262 env->ZF = (~val) & CPSR_Z; 7263 env->NF = val; 7264 env->CF = (val >> 29) & 1; 7265 env->VF = (val << 3) & 0x80000000; 7266 } 7267 if (mask & CPSR_Q) 7268 env->QF = ((val & CPSR_Q) != 0); 7269 if (mask & CPSR_T) 7270 env->thumb = ((val & CPSR_T) != 0); 7271 if (mask & CPSR_IT_0_1) { 7272 env->condexec_bits &= ~3; 7273 env->condexec_bits |= (val >> 25) & 3; 7274 } 7275 if (mask & CPSR_IT_2_7) { 7276 env->condexec_bits &= 3; 7277 env->condexec_bits |= (val >> 8) & 0xfc; 7278 } 7279 if (mask & CPSR_GE) { 7280 env->GE = (val >> 16) & 0xf; 7281 } 7282 7283 /* In a V7 implementation that includes the security extensions but does 7284 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 7285 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 7286 * bits respectively. 7287 * 7288 * In a V8 implementation, it is permitted for privileged software to 7289 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 7290 */ 7291 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 7292 arm_feature(env, ARM_FEATURE_EL3) && 7293 !arm_feature(env, ARM_FEATURE_EL2) && 7294 !arm_is_secure(env)) { 7295 7296 changed_daif = (env->daif ^ val) & mask; 7297 7298 if (changed_daif & CPSR_A) { 7299 /* Check to see if we are allowed to change the masking of async 7300 * abort exceptions from a non-secure state. 7301 */ 7302 if (!(env->cp15.scr_el3 & SCR_AW)) { 7303 qemu_log_mask(LOG_GUEST_ERROR, 7304 "Ignoring attempt to switch CPSR_A flag from " 7305 "non-secure world with SCR.AW bit clear\n"); 7306 mask &= ~CPSR_A; 7307 } 7308 } 7309 7310 if (changed_daif & CPSR_F) { 7311 /* Check to see if we are allowed to change the masking of FIQ 7312 * exceptions from a non-secure state. 7313 */ 7314 if (!(env->cp15.scr_el3 & SCR_FW)) { 7315 qemu_log_mask(LOG_GUEST_ERROR, 7316 "Ignoring attempt to switch CPSR_F flag from " 7317 "non-secure world with SCR.FW bit clear\n"); 7318 mask &= ~CPSR_F; 7319 } 7320 7321 /* Check whether non-maskable FIQ (NMFI) support is enabled. 7322 * If this bit is set software is not allowed to mask 7323 * FIQs, but is allowed to set CPSR_F to 0. 7324 */ 7325 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 7326 (val & CPSR_F)) { 7327 qemu_log_mask(LOG_GUEST_ERROR, 7328 "Ignoring attempt to enable CPSR_F flag " 7329 "(non-maskable FIQ [NMFI] support enabled)\n"); 7330 mask &= ~CPSR_F; 7331 } 7332 } 7333 } 7334 7335 env->daif &= ~(CPSR_AIF & mask); 7336 env->daif |= val & CPSR_AIF & mask; 7337 7338 if (write_type != CPSRWriteRaw && 7339 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 7340 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 7341 /* Note that we can only get here in USR mode if this is a 7342 * gdb stub write; for this case we follow the architectural 7343 * behaviour for guest writes in USR mode of ignoring an attempt 7344 * to switch mode. (Those are caught by translate.c for writes 7345 * triggered by guest instructions.) 7346 */ 7347 mask &= ~CPSR_M; 7348 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 7349 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 7350 * v7, and has defined behaviour in v8: 7351 * + leave CPSR.M untouched 7352 * + allow changes to the other CPSR fields 7353 * + set PSTATE.IL 7354 * For user changes via the GDB stub, we don't set PSTATE.IL, 7355 * as this would be unnecessarily harsh for a user error. 7356 */ 7357 mask &= ~CPSR_M; 7358 if (write_type != CPSRWriteByGDBStub && 7359 arm_feature(env, ARM_FEATURE_V8)) { 7360 mask |= CPSR_IL; 7361 val |= CPSR_IL; 7362 } 7363 qemu_log_mask(LOG_GUEST_ERROR, 7364 "Illegal AArch32 mode switch attempt from %s to %s\n", 7365 aarch32_mode_name(env->uncached_cpsr), 7366 aarch32_mode_name(val)); 7367 } else { 7368 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 7369 write_type == CPSRWriteExceptionReturn ? 7370 "Exception return from AArch32" : 7371 "AArch32 mode switch from", 7372 aarch32_mode_name(env->uncached_cpsr), 7373 aarch32_mode_name(val), env->regs[15]); 7374 switch_mode(env, val & CPSR_M); 7375 } 7376 } 7377 mask &= ~CACHED_CPSR_BITS; 7378 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 7379 } 7380 7381 /* Sign/zero extend */ 7382 uint32_t HELPER(sxtb16)(uint32_t x) 7383 { 7384 uint32_t res; 7385 res = (uint16_t)(int8_t)x; 7386 res |= (uint32_t)(int8_t)(x >> 16) << 16; 7387 return res; 7388 } 7389 7390 uint32_t HELPER(uxtb16)(uint32_t x) 7391 { 7392 uint32_t res; 7393 res = (uint16_t)(uint8_t)x; 7394 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 7395 return res; 7396 } 7397 7398 int32_t HELPER(sdiv)(int32_t num, int32_t den) 7399 { 7400 if (den == 0) 7401 return 0; 7402 if (num == INT_MIN && den == -1) 7403 return INT_MIN; 7404 return num / den; 7405 } 7406 7407 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 7408 { 7409 if (den == 0) 7410 return 0; 7411 return num / den; 7412 } 7413 7414 uint32_t HELPER(rbit)(uint32_t x) 7415 { 7416 return revbit32(x); 7417 } 7418 7419 #ifdef CONFIG_USER_ONLY 7420 7421 /* These should probably raise undefined insn exceptions. */ 7422 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 7423 { 7424 ARMCPU *cpu = arm_env_get_cpu(env); 7425 7426 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 7427 } 7428 7429 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 7430 { 7431 ARMCPU *cpu = arm_env_get_cpu(env); 7432 7433 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 7434 return 0; 7435 } 7436 7437 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 7438 { 7439 /* translate.c should never generate calls here in user-only mode */ 7440 g_assert_not_reached(); 7441 } 7442 7443 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 7444 { 7445 /* translate.c should never generate calls here in user-only mode */ 7446 g_assert_not_reached(); 7447 } 7448 7449 void HELPER(v7m_preserve_fp_state)(CPUARMState *env) 7450 { 7451 /* translate.c should never generate calls here in user-only mode */ 7452 g_assert_not_reached(); 7453 } 7454 7455 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr) 7456 { 7457 /* translate.c should never generate calls here in user-only mode */ 7458 g_assert_not_reached(); 7459 } 7460 7461 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr) 7462 { 7463 /* translate.c should never generate calls here in user-only mode */ 7464 g_assert_not_reached(); 7465 } 7466 7467 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 7468 { 7469 /* The TT instructions can be used by unprivileged code, but in 7470 * user-only emulation we don't have the MPU. 7471 * Luckily since we know we are NonSecure unprivileged (and that in 7472 * turn means that the A flag wasn't specified), all the bits in the 7473 * register must be zero: 7474 * IREGION: 0 because IRVALID is 0 7475 * IRVALID: 0 because NS 7476 * S: 0 because NS 7477 * NSRW: 0 because NS 7478 * NSR: 0 because NS 7479 * RW: 0 because unpriv and A flag not set 7480 * R: 0 because unpriv and A flag not set 7481 * SRVALID: 0 because NS 7482 * MRVALID: 0 because unpriv and A flag not set 7483 * SREGION: 0 becaus SRVALID is 0 7484 * MREGION: 0 because MRVALID is 0 7485 */ 7486 return 0; 7487 } 7488 7489 static void switch_mode(CPUARMState *env, int mode) 7490 { 7491 ARMCPU *cpu = arm_env_get_cpu(env); 7492 7493 if (mode != ARM_CPU_MODE_USR) { 7494 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 7495 } 7496 } 7497 7498 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 7499 uint32_t cur_el, bool secure) 7500 { 7501 return 1; 7502 } 7503 7504 void aarch64_sync_64_to_32(CPUARMState *env) 7505 { 7506 g_assert_not_reached(); 7507 } 7508 7509 #else 7510 7511 static void switch_mode(CPUARMState *env, int mode) 7512 { 7513 int old_mode; 7514 int i; 7515 7516 old_mode = env->uncached_cpsr & CPSR_M; 7517 if (mode == old_mode) 7518 return; 7519 7520 if (old_mode == ARM_CPU_MODE_FIQ) { 7521 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 7522 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 7523 } else if (mode == ARM_CPU_MODE_FIQ) { 7524 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 7525 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 7526 } 7527 7528 i = bank_number(old_mode); 7529 env->banked_r13[i] = env->regs[13]; 7530 env->banked_spsr[i] = env->spsr; 7531 7532 i = bank_number(mode); 7533 env->regs[13] = env->banked_r13[i]; 7534 env->spsr = env->banked_spsr[i]; 7535 7536 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 7537 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 7538 } 7539 7540 /* Physical Interrupt Target EL Lookup Table 7541 * 7542 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 7543 * 7544 * The below multi-dimensional table is used for looking up the target 7545 * exception level given numerous condition criteria. Specifically, the 7546 * target EL is based on SCR and HCR routing controls as well as the 7547 * currently executing EL and secure state. 7548 * 7549 * Dimensions: 7550 * target_el_table[2][2][2][2][2][4] 7551 * | | | | | +--- Current EL 7552 * | | | | +------ Non-secure(0)/Secure(1) 7553 * | | | +--------- HCR mask override 7554 * | | +------------ SCR exec state control 7555 * | +--------------- SCR mask override 7556 * +------------------ 32-bit(0)/64-bit(1) EL3 7557 * 7558 * The table values are as such: 7559 * 0-3 = EL0-EL3 7560 * -1 = Cannot occur 7561 * 7562 * The ARM ARM target EL table includes entries indicating that an "exception 7563 * is not taken". The two cases where this is applicable are: 7564 * 1) An exception is taken from EL3 but the SCR does not have the exception 7565 * routed to EL3. 7566 * 2) An exception is taken from EL2 but the HCR does not have the exception 7567 * routed to EL2. 7568 * In these two cases, the below table contain a target of EL1. This value is 7569 * returned as it is expected that the consumer of the table data will check 7570 * for "target EL >= current EL" to ensure the exception is not taken. 7571 * 7572 * SCR HCR 7573 * 64 EA AMO From 7574 * BIT IRQ IMO Non-secure Secure 7575 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 7576 */ 7577 static const int8_t target_el_table[2][2][2][2][2][4] = { 7578 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 7579 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 7580 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 7581 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 7582 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 7583 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 7584 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 7585 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 7586 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 7587 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 7588 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 7589 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 7590 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 7591 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 7592 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 7593 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 7594 }; 7595 7596 /* 7597 * Determine the target EL for physical exceptions 7598 */ 7599 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 7600 uint32_t cur_el, bool secure) 7601 { 7602 CPUARMState *env = cs->env_ptr; 7603 bool rw; 7604 bool scr; 7605 bool hcr; 7606 int target_el; 7607 /* Is the highest EL AArch64? */ 7608 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 7609 uint64_t hcr_el2; 7610 7611 if (arm_feature(env, ARM_FEATURE_EL3)) { 7612 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 7613 } else { 7614 /* Either EL2 is the highest EL (and so the EL2 register width 7615 * is given by is64); or there is no EL2 or EL3, in which case 7616 * the value of 'rw' does not affect the table lookup anyway. 7617 */ 7618 rw = is64; 7619 } 7620 7621 hcr_el2 = arm_hcr_el2_eff(env); 7622 switch (excp_idx) { 7623 case EXCP_IRQ: 7624 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 7625 hcr = hcr_el2 & HCR_IMO; 7626 break; 7627 case EXCP_FIQ: 7628 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 7629 hcr = hcr_el2 & HCR_FMO; 7630 break; 7631 default: 7632 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 7633 hcr = hcr_el2 & HCR_AMO; 7634 break; 7635 }; 7636 7637 /* Perform a table-lookup for the target EL given the current state */ 7638 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 7639 7640 assert(target_el > 0); 7641 7642 return target_el; 7643 } 7644 7645 /* 7646 * Return true if the v7M CPACR permits access to the FPU for the specified 7647 * security state and privilege level. 7648 */ 7649 static bool v7m_cpacr_pass(CPUARMState *env, bool is_secure, bool is_priv) 7650 { 7651 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) { 7652 case 0: 7653 case 2: /* UNPREDICTABLE: we treat like 0 */ 7654 return false; 7655 case 1: 7656 return is_priv; 7657 case 3: 7658 return true; 7659 default: 7660 g_assert_not_reached(); 7661 } 7662 } 7663 7664 /* 7665 * What kind of stack write are we doing? This affects how exceptions 7666 * generated during the stacking are treated. 7667 */ 7668 typedef enum StackingMode { 7669 STACK_NORMAL, 7670 STACK_IGNFAULTS, 7671 STACK_LAZYFP, 7672 } StackingMode; 7673 7674 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value, 7675 ARMMMUIdx mmu_idx, StackingMode mode) 7676 { 7677 CPUState *cs = CPU(cpu); 7678 CPUARMState *env = &cpu->env; 7679 MemTxAttrs attrs = {}; 7680 MemTxResult txres; 7681 target_ulong page_size; 7682 hwaddr physaddr; 7683 int prot; 7684 ARMMMUFaultInfo fi = {}; 7685 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 7686 int exc; 7687 bool exc_secure; 7688 7689 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr, 7690 &attrs, &prot, &page_size, &fi, NULL)) { 7691 /* MPU/SAU lookup failed */ 7692 if (fi.type == ARMFault_QEMU_SFault) { 7693 if (mode == STACK_LAZYFP) { 7694 qemu_log_mask(CPU_LOG_INT, 7695 "...SecureFault with SFSR.LSPERR " 7696 "during lazy stacking\n"); 7697 env->v7m.sfsr |= R_V7M_SFSR_LSPERR_MASK; 7698 } else { 7699 qemu_log_mask(CPU_LOG_INT, 7700 "...SecureFault with SFSR.AUVIOL " 7701 "during stacking\n"); 7702 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; 7703 } 7704 env->v7m.sfsr |= R_V7M_SFSR_SFARVALID_MASK; 7705 env->v7m.sfar = addr; 7706 exc = ARMV7M_EXCP_SECURE; 7707 exc_secure = false; 7708 } else { 7709 if (mode == STACK_LAZYFP) { 7710 qemu_log_mask(CPU_LOG_INT, 7711 "...MemManageFault with CFSR.MLSPERR\n"); 7712 env->v7m.cfsr[secure] |= R_V7M_CFSR_MLSPERR_MASK; 7713 } else { 7714 qemu_log_mask(CPU_LOG_INT, 7715 "...MemManageFault with CFSR.MSTKERR\n"); 7716 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK; 7717 } 7718 exc = ARMV7M_EXCP_MEM; 7719 exc_secure = secure; 7720 } 7721 goto pend_fault; 7722 } 7723 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value, 7724 attrs, &txres); 7725 if (txres != MEMTX_OK) { 7726 /* BusFault trying to write the data */ 7727 if (mode == STACK_LAZYFP) { 7728 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.LSPERR\n"); 7729 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_LSPERR_MASK; 7730 } else { 7731 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n"); 7732 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK; 7733 } 7734 exc = ARMV7M_EXCP_BUS; 7735 exc_secure = false; 7736 goto pend_fault; 7737 } 7738 return true; 7739 7740 pend_fault: 7741 /* By pending the exception at this point we are making 7742 * the IMPDEF choice "overridden exceptions pended" (see the 7743 * MergeExcInfo() pseudocode). The other choice would be to not 7744 * pend them now and then make a choice about which to throw away 7745 * later if we have two derived exceptions. 7746 * The only case when we must not pend the exception but instead 7747 * throw it away is if we are doing the push of the callee registers 7748 * and we've already generated a derived exception (this is indicated 7749 * by the caller passing STACK_IGNFAULTS). Even in this case we will 7750 * still update the fault status registers. 7751 */ 7752 switch (mode) { 7753 case STACK_NORMAL: 7754 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure); 7755 break; 7756 case STACK_LAZYFP: 7757 armv7m_nvic_set_pending_lazyfp(env->nvic, exc, exc_secure); 7758 break; 7759 case STACK_IGNFAULTS: 7760 break; 7761 } 7762 return false; 7763 } 7764 7765 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr, 7766 ARMMMUIdx mmu_idx) 7767 { 7768 CPUState *cs = CPU(cpu); 7769 CPUARMState *env = &cpu->env; 7770 MemTxAttrs attrs = {}; 7771 MemTxResult txres; 7772 target_ulong page_size; 7773 hwaddr physaddr; 7774 int prot; 7775 ARMMMUFaultInfo fi = {}; 7776 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 7777 int exc; 7778 bool exc_secure; 7779 uint32_t value; 7780 7781 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr, 7782 &attrs, &prot, &page_size, &fi, NULL)) { 7783 /* MPU/SAU lookup failed */ 7784 if (fi.type == ARMFault_QEMU_SFault) { 7785 qemu_log_mask(CPU_LOG_INT, 7786 "...SecureFault with SFSR.AUVIOL during unstack\n"); 7787 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 7788 env->v7m.sfar = addr; 7789 exc = ARMV7M_EXCP_SECURE; 7790 exc_secure = false; 7791 } else { 7792 qemu_log_mask(CPU_LOG_INT, 7793 "...MemManageFault with CFSR.MUNSTKERR\n"); 7794 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK; 7795 exc = ARMV7M_EXCP_MEM; 7796 exc_secure = secure; 7797 } 7798 goto pend_fault; 7799 } 7800 7801 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr, 7802 attrs, &txres); 7803 if (txres != MEMTX_OK) { 7804 /* BusFault trying to read the data */ 7805 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n"); 7806 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK; 7807 exc = ARMV7M_EXCP_BUS; 7808 exc_secure = false; 7809 goto pend_fault; 7810 } 7811 7812 *dest = value; 7813 return true; 7814 7815 pend_fault: 7816 /* By pending the exception at this point we are making 7817 * the IMPDEF choice "overridden exceptions pended" (see the 7818 * MergeExcInfo() pseudocode). The other choice would be to not 7819 * pend them now and then make a choice about which to throw away 7820 * later if we have two derived exceptions. 7821 */ 7822 armv7m_nvic_set_pending(env->nvic, exc, exc_secure); 7823 return false; 7824 } 7825 7826 void HELPER(v7m_preserve_fp_state)(CPUARMState *env) 7827 { 7828 /* 7829 * Preserve FP state (because LSPACT was set and we are about 7830 * to execute an FP instruction). This corresponds to the 7831 * PreserveFPState() pseudocode. 7832 * We may throw an exception if the stacking fails. 7833 */ 7834 ARMCPU *cpu = arm_env_get_cpu(env); 7835 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 7836 bool negpri = !(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_HFRDY_MASK); 7837 bool is_priv = !(env->v7m.fpccr[is_secure] & R_V7M_FPCCR_USER_MASK); 7838 bool splimviol = env->v7m.fpccr[is_secure] & R_V7M_FPCCR_SPLIMVIOL_MASK; 7839 uint32_t fpcar = env->v7m.fpcar[is_secure]; 7840 bool stacked_ok = true; 7841 bool ts = is_secure && (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK); 7842 bool take_exception; 7843 7844 /* Take the iothread lock as we are going to touch the NVIC */ 7845 qemu_mutex_lock_iothread(); 7846 7847 /* Check the background context had access to the FPU */ 7848 if (!v7m_cpacr_pass(env, is_secure, is_priv)) { 7849 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, is_secure); 7850 env->v7m.cfsr[is_secure] |= R_V7M_CFSR_NOCP_MASK; 7851 stacked_ok = false; 7852 } else if (!is_secure && !extract32(env->v7m.nsacr, 10, 1)) { 7853 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S); 7854 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK; 7855 stacked_ok = false; 7856 } 7857 7858 if (!splimviol && stacked_ok) { 7859 /* We only stack if the stack limit wasn't violated */ 7860 int i; 7861 ARMMMUIdx mmu_idx; 7862 7863 mmu_idx = arm_v7m_mmu_idx_all(env, is_secure, is_priv, negpri); 7864 for (i = 0; i < (ts ? 32 : 16); i += 2) { 7865 uint64_t dn = *aa32_vfp_dreg(env, i / 2); 7866 uint32_t faddr = fpcar + 4 * i; 7867 uint32_t slo = extract64(dn, 0, 32); 7868 uint32_t shi = extract64(dn, 32, 32); 7869 7870 if (i >= 16) { 7871 faddr += 8; /* skip the slot for the FPSCR */ 7872 } 7873 stacked_ok = stacked_ok && 7874 v7m_stack_write(cpu, faddr, slo, mmu_idx, STACK_LAZYFP) && 7875 v7m_stack_write(cpu, faddr + 4, shi, mmu_idx, STACK_LAZYFP); 7876 } 7877 7878 stacked_ok = stacked_ok && 7879 v7m_stack_write(cpu, fpcar + 0x40, 7880 vfp_get_fpscr(env), mmu_idx, STACK_LAZYFP); 7881 } 7882 7883 /* 7884 * We definitely pended an exception, but it's possible that it 7885 * might not be able to be taken now. If its priority permits us 7886 * to take it now, then we must not update the LSPACT or FP regs, 7887 * but instead jump out to take the exception immediately. 7888 * If it's just pending and won't be taken until the current 7889 * handler exits, then we do update LSPACT and the FP regs. 7890 */ 7891 take_exception = !stacked_ok && 7892 armv7m_nvic_can_take_pending_exception(env->nvic); 7893 7894 qemu_mutex_unlock_iothread(); 7895 7896 if (take_exception) { 7897 raise_exception_ra(env, EXCP_LAZYFP, 0, 1, GETPC()); 7898 } 7899 7900 env->v7m.fpccr[is_secure] &= ~R_V7M_FPCCR_LSPACT_MASK; 7901 7902 if (ts) { 7903 /* Clear s0 to s31 and the FPSCR */ 7904 int i; 7905 7906 for (i = 0; i < 32; i += 2) { 7907 *aa32_vfp_dreg(env, i / 2) = 0; 7908 } 7909 vfp_set_fpscr(env, 0); 7910 } 7911 /* 7912 * Otherwise s0 to s15 and FPSCR are UNKNOWN; we choose to leave them 7913 * unchanged. 7914 */ 7915 } 7916 7917 /* Write to v7M CONTROL.SPSEL bit for the specified security bank. 7918 * This may change the current stack pointer between Main and Process 7919 * stack pointers if it is done for the CONTROL register for the current 7920 * security state. 7921 */ 7922 static void write_v7m_control_spsel_for_secstate(CPUARMState *env, 7923 bool new_spsel, 7924 bool secstate) 7925 { 7926 bool old_is_psp = v7m_using_psp(env); 7927 7928 env->v7m.control[secstate] = 7929 deposit32(env->v7m.control[secstate], 7930 R_V7M_CONTROL_SPSEL_SHIFT, 7931 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); 7932 7933 if (secstate == env->v7m.secure) { 7934 bool new_is_psp = v7m_using_psp(env); 7935 uint32_t tmp; 7936 7937 if (old_is_psp != new_is_psp) { 7938 tmp = env->v7m.other_sp; 7939 env->v7m.other_sp = env->regs[13]; 7940 env->regs[13] = tmp; 7941 } 7942 } 7943 } 7944 7945 /* Write to v7M CONTROL.SPSEL bit. This may change the current 7946 * stack pointer between Main and Process stack pointers. 7947 */ 7948 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) 7949 { 7950 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); 7951 } 7952 7953 void write_v7m_exception(CPUARMState *env, uint32_t new_exc) 7954 { 7955 /* Write a new value to v7m.exception, thus transitioning into or out 7956 * of Handler mode; this may result in a change of active stack pointer. 7957 */ 7958 bool new_is_psp, old_is_psp = v7m_using_psp(env); 7959 uint32_t tmp; 7960 7961 env->v7m.exception = new_exc; 7962 7963 new_is_psp = v7m_using_psp(env); 7964 7965 if (old_is_psp != new_is_psp) { 7966 tmp = env->v7m.other_sp; 7967 env->v7m.other_sp = env->regs[13]; 7968 env->regs[13] = tmp; 7969 } 7970 } 7971 7972 /* Switch M profile security state between NS and S */ 7973 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) 7974 { 7975 uint32_t new_ss_msp, new_ss_psp; 7976 7977 if (env->v7m.secure == new_secstate) { 7978 return; 7979 } 7980 7981 /* All the banked state is accessed by looking at env->v7m.secure 7982 * except for the stack pointer; rearrange the SP appropriately. 7983 */ 7984 new_ss_msp = env->v7m.other_ss_msp; 7985 new_ss_psp = env->v7m.other_ss_psp; 7986 7987 if (v7m_using_psp(env)) { 7988 env->v7m.other_ss_psp = env->regs[13]; 7989 env->v7m.other_ss_msp = env->v7m.other_sp; 7990 } else { 7991 env->v7m.other_ss_msp = env->regs[13]; 7992 env->v7m.other_ss_psp = env->v7m.other_sp; 7993 } 7994 7995 env->v7m.secure = new_secstate; 7996 7997 if (v7m_using_psp(env)) { 7998 env->regs[13] = new_ss_psp; 7999 env->v7m.other_sp = new_ss_msp; 8000 } else { 8001 env->regs[13] = new_ss_msp; 8002 env->v7m.other_sp = new_ss_psp; 8003 } 8004 } 8005 8006 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 8007 { 8008 /* Handle v7M BXNS: 8009 * - if the return value is a magic value, do exception return (like BX) 8010 * - otherwise bit 0 of the return value is the target security state 8011 */ 8012 uint32_t min_magic; 8013 8014 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8015 /* Covers FNC_RETURN and EXC_RETURN magic */ 8016 min_magic = FNC_RETURN_MIN_MAGIC; 8017 } else { 8018 /* EXC_RETURN magic only */ 8019 min_magic = EXC_RETURN_MIN_MAGIC; 8020 } 8021 8022 if (dest >= min_magic) { 8023 /* This is an exception return magic value; put it where 8024 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. 8025 * Note that if we ever add gen_ss_advance() singlestep support to 8026 * M profile this should count as an "instruction execution complete" 8027 * event (compare gen_bx_excret_final_code()). 8028 */ 8029 env->regs[15] = dest & ~1; 8030 env->thumb = dest & 1; 8031 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); 8032 /* notreached */ 8033 } 8034 8035 /* translate.c should have made BXNS UNDEF unless we're secure */ 8036 assert(env->v7m.secure); 8037 8038 if (!(dest & 1)) { 8039 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 8040 } 8041 switch_v7m_security_state(env, dest & 1); 8042 env->thumb = 1; 8043 env->regs[15] = dest & ~1; 8044 } 8045 8046 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 8047 { 8048 /* Handle v7M BLXNS: 8049 * - bit 0 of the destination address is the target security state 8050 */ 8051 8052 /* At this point regs[15] is the address just after the BLXNS */ 8053 uint32_t nextinst = env->regs[15] | 1; 8054 uint32_t sp = env->regs[13] - 8; 8055 uint32_t saved_psr; 8056 8057 /* translate.c will have made BLXNS UNDEF unless we're secure */ 8058 assert(env->v7m.secure); 8059 8060 if (dest & 1) { 8061 /* target is Secure, so this is just a normal BLX, 8062 * except that the low bit doesn't indicate Thumb/not. 8063 */ 8064 env->regs[14] = nextinst; 8065 env->thumb = 1; 8066 env->regs[15] = dest & ~1; 8067 return; 8068 } 8069 8070 /* Target is non-secure: first push a stack frame */ 8071 if (!QEMU_IS_ALIGNED(sp, 8)) { 8072 qemu_log_mask(LOG_GUEST_ERROR, 8073 "BLXNS with misaligned SP is UNPREDICTABLE\n"); 8074 } 8075 8076 if (sp < v7m_sp_limit(env)) { 8077 raise_exception(env, EXCP_STKOF, 0, 1); 8078 } 8079 8080 saved_psr = env->v7m.exception; 8081 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { 8082 saved_psr |= XPSR_SFPA; 8083 } 8084 8085 /* Note that these stores can throw exceptions on MPU faults */ 8086 cpu_stl_data(env, sp, nextinst); 8087 cpu_stl_data(env, sp + 4, saved_psr); 8088 8089 env->regs[13] = sp; 8090 env->regs[14] = 0xfeffffff; 8091 if (arm_v7m_is_handler_mode(env)) { 8092 /* Write a dummy value to IPSR, to avoid leaking the current secure 8093 * exception number to non-secure code. This is guaranteed not 8094 * to cause write_v7m_exception() to actually change stacks. 8095 */ 8096 write_v7m_exception(env, 1); 8097 } 8098 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 8099 switch_v7m_security_state(env, 0); 8100 env->thumb = 1; 8101 env->regs[15] = dest; 8102 } 8103 8104 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, 8105 bool spsel) 8106 { 8107 /* Return a pointer to the location where we currently store the 8108 * stack pointer for the requested security state and thread mode. 8109 * This pointer will become invalid if the CPU state is updated 8110 * such that the stack pointers are switched around (eg changing 8111 * the SPSEL control bit). 8112 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). 8113 * Unlike that pseudocode, we require the caller to pass us in the 8114 * SPSEL control bit value; this is because we also use this 8115 * function in handling of pushing of the callee-saves registers 8116 * part of the v8M stack frame (pseudocode PushCalleeStack()), 8117 * and in the tailchain codepath the SPSEL bit comes from the exception 8118 * return magic LR value from the previous exception. The pseudocode 8119 * opencodes the stack-selection in PushCalleeStack(), but we prefer 8120 * to make this utility function generic enough to do the job. 8121 */ 8122 bool want_psp = threadmode && spsel; 8123 8124 if (secure == env->v7m.secure) { 8125 if (want_psp == v7m_using_psp(env)) { 8126 return &env->regs[13]; 8127 } else { 8128 return &env->v7m.other_sp; 8129 } 8130 } else { 8131 if (want_psp) { 8132 return &env->v7m.other_ss_psp; 8133 } else { 8134 return &env->v7m.other_ss_msp; 8135 } 8136 } 8137 } 8138 8139 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure, 8140 uint32_t *pvec) 8141 { 8142 CPUState *cs = CPU(cpu); 8143 CPUARMState *env = &cpu->env; 8144 MemTxResult result; 8145 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4; 8146 uint32_t vector_entry; 8147 MemTxAttrs attrs = {}; 8148 ARMMMUIdx mmu_idx; 8149 bool exc_secure; 8150 8151 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true); 8152 8153 /* We don't do a get_phys_addr() here because the rules for vector 8154 * loads are special: they always use the default memory map, and 8155 * the default memory map permits reads from all addresses. 8156 * Since there's no easy way to pass through to pmsav8_mpu_lookup() 8157 * that we want this special case which would always say "yes", 8158 * we just do the SAU lookup here followed by a direct physical load. 8159 */ 8160 attrs.secure = targets_secure; 8161 attrs.user = false; 8162 8163 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8164 V8M_SAttributes sattrs = {}; 8165 8166 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 8167 if (sattrs.ns) { 8168 attrs.secure = false; 8169 } else if (!targets_secure) { 8170 /* NS access to S memory */ 8171 goto load_fail; 8172 } 8173 } 8174 8175 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr, 8176 attrs, &result); 8177 if (result != MEMTX_OK) { 8178 goto load_fail; 8179 } 8180 *pvec = vector_entry; 8181 return true; 8182 8183 load_fail: 8184 /* All vector table fetch fails are reported as HardFault, with 8185 * HFSR.VECTTBL and .FORCED set. (FORCED is set because 8186 * technically the underlying exception is a MemManage or BusFault 8187 * that is escalated to HardFault.) This is a terminal exception, 8188 * so we will either take the HardFault immediately or else enter 8189 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()). 8190 */ 8191 exc_secure = targets_secure || 8192 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 8193 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK; 8194 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure); 8195 return false; 8196 } 8197 8198 static uint32_t v7m_integrity_sig(CPUARMState *env, uint32_t lr) 8199 { 8200 /* 8201 * Return the integrity signature value for the callee-saves 8202 * stack frame section. @lr is the exception return payload/LR value 8203 * whose FType bit forms bit 0 of the signature if FP is present. 8204 */ 8205 uint32_t sig = 0xfefa125a; 8206 8207 if (!arm_feature(env, ARM_FEATURE_VFP) || (lr & R_V7M_EXCRET_FTYPE_MASK)) { 8208 sig |= 1; 8209 } 8210 return sig; 8211 } 8212 8213 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain, 8214 bool ignore_faults) 8215 { 8216 /* For v8M, push the callee-saves register part of the stack frame. 8217 * Compare the v8M pseudocode PushCalleeStack(). 8218 * In the tailchaining case this may not be the current stack. 8219 */ 8220 CPUARMState *env = &cpu->env; 8221 uint32_t *frame_sp_p; 8222 uint32_t frameptr; 8223 ARMMMUIdx mmu_idx; 8224 bool stacked_ok; 8225 uint32_t limit; 8226 bool want_psp; 8227 uint32_t sig; 8228 StackingMode smode = ignore_faults ? STACK_IGNFAULTS : STACK_NORMAL; 8229 8230 if (dotailchain) { 8231 bool mode = lr & R_V7M_EXCRET_MODE_MASK; 8232 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) || 8233 !mode; 8234 8235 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv); 8236 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode, 8237 lr & R_V7M_EXCRET_SPSEL_MASK); 8238 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK); 8239 if (want_psp) { 8240 limit = env->v7m.psplim[M_REG_S]; 8241 } else { 8242 limit = env->v7m.msplim[M_REG_S]; 8243 } 8244 } else { 8245 mmu_idx = arm_mmu_idx(env); 8246 frame_sp_p = &env->regs[13]; 8247 limit = v7m_sp_limit(env); 8248 } 8249 8250 frameptr = *frame_sp_p - 0x28; 8251 if (frameptr < limit) { 8252 /* 8253 * Stack limit failure: set SP to the limit value, and generate 8254 * STKOF UsageFault. Stack pushes below the limit must not be 8255 * performed. It is IMPDEF whether pushes above the limit are 8256 * performed; we choose not to. 8257 */ 8258 qemu_log_mask(CPU_LOG_INT, 8259 "...STKOF during callee-saves register stacking\n"); 8260 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; 8261 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 8262 env->v7m.secure); 8263 *frame_sp_p = limit; 8264 return true; 8265 } 8266 8267 /* Write as much of the stack frame as we can. A write failure may 8268 * cause us to pend a derived exception. 8269 */ 8270 sig = v7m_integrity_sig(env, lr); 8271 stacked_ok = 8272 v7m_stack_write(cpu, frameptr, sig, mmu_idx, smode) && 8273 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, smode) && 8274 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, smode) && 8275 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, smode) && 8276 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, smode) && 8277 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, smode) && 8278 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, smode) && 8279 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, smode) && 8280 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, smode); 8281 8282 /* Update SP regardless of whether any of the stack accesses failed. */ 8283 *frame_sp_p = frameptr; 8284 8285 return !stacked_ok; 8286 } 8287 8288 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain, 8289 bool ignore_stackfaults) 8290 { 8291 /* Do the "take the exception" parts of exception entry, 8292 * but not the pushing of state to the stack. This is 8293 * similar to the pseudocode ExceptionTaken() function. 8294 */ 8295 CPUARMState *env = &cpu->env; 8296 uint32_t addr; 8297 bool targets_secure; 8298 int exc; 8299 bool push_failed = false; 8300 8301 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure); 8302 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n", 8303 targets_secure ? "secure" : "nonsecure", exc); 8304 8305 if (dotailchain) { 8306 /* Sanitize LR FType and PREFIX bits */ 8307 if (!arm_feature(env, ARM_FEATURE_VFP)) { 8308 lr |= R_V7M_EXCRET_FTYPE_MASK; 8309 } 8310 lr = deposit32(lr, 24, 8, 0xff); 8311 } 8312 8313 if (arm_feature(env, ARM_FEATURE_V8)) { 8314 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 8315 (lr & R_V7M_EXCRET_S_MASK)) { 8316 /* The background code (the owner of the registers in the 8317 * exception frame) is Secure. This means it may either already 8318 * have or now needs to push callee-saves registers. 8319 */ 8320 if (targets_secure) { 8321 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { 8322 /* We took an exception from Secure to NonSecure 8323 * (which means the callee-saved registers got stacked) 8324 * and are now tailchaining to a Secure exception. 8325 * Clear DCRS so eventual return from this Secure 8326 * exception unstacks the callee-saved registers. 8327 */ 8328 lr &= ~R_V7M_EXCRET_DCRS_MASK; 8329 } 8330 } else { 8331 /* We're going to a non-secure exception; push the 8332 * callee-saves registers to the stack now, if they're 8333 * not already saved. 8334 */ 8335 if (lr & R_V7M_EXCRET_DCRS_MASK && 8336 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) { 8337 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain, 8338 ignore_stackfaults); 8339 } 8340 lr |= R_V7M_EXCRET_DCRS_MASK; 8341 } 8342 } 8343 8344 lr &= ~R_V7M_EXCRET_ES_MASK; 8345 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8346 lr |= R_V7M_EXCRET_ES_MASK; 8347 } 8348 lr &= ~R_V7M_EXCRET_SPSEL_MASK; 8349 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { 8350 lr |= R_V7M_EXCRET_SPSEL_MASK; 8351 } 8352 8353 /* Clear registers if necessary to prevent non-secure exception 8354 * code being able to see register values from secure code. 8355 * Where register values become architecturally UNKNOWN we leave 8356 * them with their previous values. 8357 */ 8358 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8359 if (!targets_secure) { 8360 /* Always clear the caller-saved registers (they have been 8361 * pushed to the stack earlier in v7m_push_stack()). 8362 * Clear callee-saved registers if the background code is 8363 * Secure (in which case these regs were saved in 8364 * v7m_push_callee_stack()). 8365 */ 8366 int i; 8367 8368 for (i = 0; i < 13; i++) { 8369 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ 8370 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { 8371 env->regs[i] = 0; 8372 } 8373 } 8374 /* Clear EAPSR */ 8375 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); 8376 } 8377 } 8378 } 8379 8380 if (push_failed && !ignore_stackfaults) { 8381 /* Derived exception on callee-saves register stacking: 8382 * we might now want to take a different exception which 8383 * targets a different security state, so try again from the top. 8384 */ 8385 qemu_log_mask(CPU_LOG_INT, 8386 "...derived exception on callee-saves register stacking"); 8387 v7m_exception_taken(cpu, lr, true, true); 8388 return; 8389 } 8390 8391 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) { 8392 /* Vector load failed: derived exception */ 8393 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load"); 8394 v7m_exception_taken(cpu, lr, true, true); 8395 return; 8396 } 8397 8398 /* Now we've done everything that might cause a derived exception 8399 * we can go ahead and activate whichever exception we're going to 8400 * take (which might now be the derived exception). 8401 */ 8402 armv7m_nvic_acknowledge_irq(env->nvic); 8403 8404 /* Switch to target security state -- must do this before writing SPSEL */ 8405 switch_v7m_security_state(env, targets_secure); 8406 write_v7m_control_spsel(env, 0); 8407 arm_clear_exclusive(env); 8408 /* Clear SFPA and FPCA (has no effect if no FPU) */ 8409 env->v7m.control[M_REG_S] &= 8410 ~(R_V7M_CONTROL_FPCA_MASK | R_V7M_CONTROL_SFPA_MASK); 8411 /* Clear IT bits */ 8412 env->condexec_bits = 0; 8413 env->regs[14] = lr; 8414 env->regs[15] = addr & 0xfffffffe; 8415 env->thumb = addr & 1; 8416 } 8417 8418 static void v7m_update_fpccr(CPUARMState *env, uint32_t frameptr, 8419 bool apply_splim) 8420 { 8421 /* 8422 * Like the pseudocode UpdateFPCCR: save state in FPCAR and FPCCR 8423 * that we will need later in order to do lazy FP reg stacking. 8424 */ 8425 bool is_secure = env->v7m.secure; 8426 void *nvic = env->nvic; 8427 /* 8428 * Some bits are unbanked and live always in fpccr[M_REG_S]; some bits 8429 * are banked and we want to update the bit in the bank for the 8430 * current security state; and in one case we want to specifically 8431 * update the NS banked version of a bit even if we are secure. 8432 */ 8433 uint32_t *fpccr_s = &env->v7m.fpccr[M_REG_S]; 8434 uint32_t *fpccr_ns = &env->v7m.fpccr[M_REG_NS]; 8435 uint32_t *fpccr = &env->v7m.fpccr[is_secure]; 8436 bool hfrdy, bfrdy, mmrdy, ns_ufrdy, s_ufrdy, sfrdy, monrdy; 8437 8438 env->v7m.fpcar[is_secure] = frameptr & ~0x7; 8439 8440 if (apply_splim && arm_feature(env, ARM_FEATURE_V8)) { 8441 bool splimviol; 8442 uint32_t splim = v7m_sp_limit(env); 8443 bool ign = armv7m_nvic_neg_prio_requested(nvic, is_secure) && 8444 (env->v7m.ccr[is_secure] & R_V7M_CCR_STKOFHFNMIGN_MASK); 8445 8446 splimviol = !ign && frameptr < splim; 8447 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, SPLIMVIOL, splimviol); 8448 } 8449 8450 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, LSPACT, 1); 8451 8452 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, S, is_secure); 8453 8454 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, USER, arm_current_el(env) == 0); 8455 8456 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, THREAD, 8457 !arm_v7m_is_handler_mode(env)); 8458 8459 hfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_HARD, false); 8460 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, HFRDY, hfrdy); 8461 8462 bfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_BUS, false); 8463 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, BFRDY, bfrdy); 8464 8465 mmrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_MEM, is_secure); 8466 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, MMRDY, mmrdy); 8467 8468 ns_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, false); 8469 *fpccr_ns = FIELD_DP32(*fpccr_ns, V7M_FPCCR, UFRDY, ns_ufrdy); 8470 8471 monrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_DEBUG, false); 8472 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, MONRDY, monrdy); 8473 8474 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8475 s_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, true); 8476 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, UFRDY, s_ufrdy); 8477 8478 sfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_SECURE, false); 8479 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, SFRDY, sfrdy); 8480 } 8481 } 8482 8483 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr) 8484 { 8485 /* fptr is the value of Rn, the frame pointer we store the FP regs to */ 8486 bool s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 8487 bool lspact = env->v7m.fpccr[s] & R_V7M_FPCCR_LSPACT_MASK; 8488 8489 assert(env->v7m.secure); 8490 8491 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) { 8492 return; 8493 } 8494 8495 /* Check access to the coprocessor is permitted */ 8496 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) { 8497 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC()); 8498 } 8499 8500 if (lspact) { 8501 /* LSPACT should not be active when there is active FP state */ 8502 raise_exception_ra(env, EXCP_LSERR, 0, 1, GETPC()); 8503 } 8504 8505 if (fptr & 7) { 8506 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC()); 8507 } 8508 8509 /* 8510 * Note that we do not use v7m_stack_write() here, because the 8511 * accesses should not set the FSR bits for stacking errors if they 8512 * fail. (In pseudocode terms, they are AccType_NORMAL, not AccType_STACK 8513 * or AccType_LAZYFP). Faults in cpu_stl_data() will throw exceptions 8514 * and longjmp out. 8515 */ 8516 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) { 8517 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK; 8518 int i; 8519 8520 for (i = 0; i < (ts ? 32 : 16); i += 2) { 8521 uint64_t dn = *aa32_vfp_dreg(env, i / 2); 8522 uint32_t faddr = fptr + 4 * i; 8523 uint32_t slo = extract64(dn, 0, 32); 8524 uint32_t shi = extract64(dn, 32, 32); 8525 8526 if (i >= 16) { 8527 faddr += 8; /* skip the slot for the FPSCR */ 8528 } 8529 cpu_stl_data(env, faddr, slo); 8530 cpu_stl_data(env, faddr + 4, shi); 8531 } 8532 cpu_stl_data(env, fptr + 0x40, vfp_get_fpscr(env)); 8533 8534 /* 8535 * If TS is 0 then s0 to s15 and FPSCR are UNKNOWN; we choose to 8536 * leave them unchanged, matching our choice in v7m_preserve_fp_state. 8537 */ 8538 if (ts) { 8539 for (i = 0; i < 32; i += 2) { 8540 *aa32_vfp_dreg(env, i / 2) = 0; 8541 } 8542 vfp_set_fpscr(env, 0); 8543 } 8544 } else { 8545 v7m_update_fpccr(env, fptr, false); 8546 } 8547 8548 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK; 8549 } 8550 8551 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr) 8552 { 8553 /* fptr is the value of Rn, the frame pointer we load the FP regs from */ 8554 assert(env->v7m.secure); 8555 8556 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) { 8557 return; 8558 } 8559 8560 /* Check access to the coprocessor is permitted */ 8561 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) { 8562 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC()); 8563 } 8564 8565 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) { 8566 /* State in FP is still valid */ 8567 env->v7m.fpccr[M_REG_S] &= ~R_V7M_FPCCR_LSPACT_MASK; 8568 } else { 8569 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK; 8570 int i; 8571 uint32_t fpscr; 8572 8573 if (fptr & 7) { 8574 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC()); 8575 } 8576 8577 for (i = 0; i < (ts ? 32 : 16); i += 2) { 8578 uint32_t slo, shi; 8579 uint64_t dn; 8580 uint32_t faddr = fptr + 4 * i; 8581 8582 if (i >= 16) { 8583 faddr += 8; /* skip the slot for the FPSCR */ 8584 } 8585 8586 slo = cpu_ldl_data(env, faddr); 8587 shi = cpu_ldl_data(env, faddr + 4); 8588 8589 dn = (uint64_t) shi << 32 | slo; 8590 *aa32_vfp_dreg(env, i / 2) = dn; 8591 } 8592 fpscr = cpu_ldl_data(env, fptr + 0x40); 8593 vfp_set_fpscr(env, fpscr); 8594 } 8595 8596 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK; 8597 } 8598 8599 static bool v7m_push_stack(ARMCPU *cpu) 8600 { 8601 /* Do the "set up stack frame" part of exception entry, 8602 * similar to pseudocode PushStack(). 8603 * Return true if we generate a derived exception (and so 8604 * should ignore further stack faults trying to process 8605 * that derived exception.) 8606 */ 8607 bool stacked_ok = true, limitviol = false; 8608 CPUARMState *env = &cpu->env; 8609 uint32_t xpsr = xpsr_read(env); 8610 uint32_t frameptr = env->regs[13]; 8611 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 8612 uint32_t framesize; 8613 bool nsacr_cp10 = extract32(env->v7m.nsacr, 10, 1); 8614 8615 if ((env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) && 8616 (env->v7m.secure || nsacr_cp10)) { 8617 if (env->v7m.secure && 8618 env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK) { 8619 framesize = 0xa8; 8620 } else { 8621 framesize = 0x68; 8622 } 8623 } else { 8624 framesize = 0x20; 8625 } 8626 8627 /* Align stack pointer if the guest wants that */ 8628 if ((frameptr & 4) && 8629 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { 8630 frameptr -= 4; 8631 xpsr |= XPSR_SPREALIGN; 8632 } 8633 8634 xpsr &= ~XPSR_SFPA; 8635 if (env->v7m.secure && 8636 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) { 8637 xpsr |= XPSR_SFPA; 8638 } 8639 8640 frameptr -= framesize; 8641 8642 if (arm_feature(env, ARM_FEATURE_V8)) { 8643 uint32_t limit = v7m_sp_limit(env); 8644 8645 if (frameptr < limit) { 8646 /* 8647 * Stack limit failure: set SP to the limit value, and generate 8648 * STKOF UsageFault. Stack pushes below the limit must not be 8649 * performed. It is IMPDEF whether pushes above the limit are 8650 * performed; we choose not to. 8651 */ 8652 qemu_log_mask(CPU_LOG_INT, 8653 "...STKOF during stacking\n"); 8654 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; 8655 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 8656 env->v7m.secure); 8657 env->regs[13] = limit; 8658 /* 8659 * We won't try to perform any further memory accesses but 8660 * we must continue through the following code to check for 8661 * permission faults during FPU state preservation, and we 8662 * must update FPCCR if lazy stacking is enabled. 8663 */ 8664 limitviol = true; 8665 stacked_ok = false; 8666 } 8667 } 8668 8669 /* Write as much of the stack frame as we can. If we fail a stack 8670 * write this will result in a derived exception being pended 8671 * (which may be taken in preference to the one we started with 8672 * if it has higher priority). 8673 */ 8674 stacked_ok = stacked_ok && 8675 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, STACK_NORMAL) && 8676 v7m_stack_write(cpu, frameptr + 4, env->regs[1], 8677 mmu_idx, STACK_NORMAL) && 8678 v7m_stack_write(cpu, frameptr + 8, env->regs[2], 8679 mmu_idx, STACK_NORMAL) && 8680 v7m_stack_write(cpu, frameptr + 12, env->regs[3], 8681 mmu_idx, STACK_NORMAL) && 8682 v7m_stack_write(cpu, frameptr + 16, env->regs[12], 8683 mmu_idx, STACK_NORMAL) && 8684 v7m_stack_write(cpu, frameptr + 20, env->regs[14], 8685 mmu_idx, STACK_NORMAL) && 8686 v7m_stack_write(cpu, frameptr + 24, env->regs[15], 8687 mmu_idx, STACK_NORMAL) && 8688 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, STACK_NORMAL); 8689 8690 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) { 8691 /* FPU is active, try to save its registers */ 8692 bool fpccr_s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 8693 bool lspact = env->v7m.fpccr[fpccr_s] & R_V7M_FPCCR_LSPACT_MASK; 8694 8695 if (lspact && arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8696 qemu_log_mask(CPU_LOG_INT, 8697 "...SecureFault because LSPACT and FPCA both set\n"); 8698 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK; 8699 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 8700 } else if (!env->v7m.secure && !nsacr_cp10) { 8701 qemu_log_mask(CPU_LOG_INT, 8702 "...Secure UsageFault with CFSR.NOCP because " 8703 "NSACR.CP10 prevents stacking FP regs\n"); 8704 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S); 8705 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK; 8706 } else { 8707 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) { 8708 /* Lazy stacking disabled, save registers now */ 8709 int i; 8710 bool cpacr_pass = v7m_cpacr_pass(env, env->v7m.secure, 8711 arm_current_el(env) != 0); 8712 8713 if (stacked_ok && !cpacr_pass) { 8714 /* 8715 * Take UsageFault if CPACR forbids access. The pseudocode 8716 * here does a full CheckCPEnabled() but we know the NSACR 8717 * check can never fail as we have already handled that. 8718 */ 8719 qemu_log_mask(CPU_LOG_INT, 8720 "...UsageFault with CFSR.NOCP because " 8721 "CPACR.CP10 prevents stacking FP regs\n"); 8722 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 8723 env->v7m.secure); 8724 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; 8725 stacked_ok = false; 8726 } 8727 8728 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) { 8729 uint64_t dn = *aa32_vfp_dreg(env, i / 2); 8730 uint32_t faddr = frameptr + 0x20 + 4 * i; 8731 uint32_t slo = extract64(dn, 0, 32); 8732 uint32_t shi = extract64(dn, 32, 32); 8733 8734 if (i >= 16) { 8735 faddr += 8; /* skip the slot for the FPSCR */ 8736 } 8737 stacked_ok = stacked_ok && 8738 v7m_stack_write(cpu, faddr, slo, 8739 mmu_idx, STACK_NORMAL) && 8740 v7m_stack_write(cpu, faddr + 4, shi, 8741 mmu_idx, STACK_NORMAL); 8742 } 8743 stacked_ok = stacked_ok && 8744 v7m_stack_write(cpu, frameptr + 0x60, 8745 vfp_get_fpscr(env), mmu_idx, STACK_NORMAL); 8746 if (cpacr_pass) { 8747 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) { 8748 *aa32_vfp_dreg(env, i / 2) = 0; 8749 } 8750 vfp_set_fpscr(env, 0); 8751 } 8752 } else { 8753 /* Lazy stacking enabled, save necessary info to stack later */ 8754 v7m_update_fpccr(env, frameptr + 0x20, true); 8755 } 8756 } 8757 } 8758 8759 /* 8760 * If we broke a stack limit then SP was already updated earlier; 8761 * otherwise we update SP regardless of whether any of the stack 8762 * accesses failed or we took some other kind of fault. 8763 */ 8764 if (!limitviol) { 8765 env->regs[13] = frameptr; 8766 } 8767 8768 return !stacked_ok; 8769 } 8770 8771 static void do_v7m_exception_exit(ARMCPU *cpu) 8772 { 8773 CPUARMState *env = &cpu->env; 8774 uint32_t excret; 8775 uint32_t xpsr, xpsr_mask; 8776 bool ufault = false; 8777 bool sfault = false; 8778 bool return_to_sp_process; 8779 bool return_to_handler; 8780 bool rettobase = false; 8781 bool exc_secure = false; 8782 bool return_to_secure; 8783 bool ftype; 8784 bool restore_s16_s31; 8785 8786 /* If we're not in Handler mode then jumps to magic exception-exit 8787 * addresses don't have magic behaviour. However for the v8M 8788 * security extensions the magic secure-function-return has to 8789 * work in thread mode too, so to avoid doing an extra check in 8790 * the generated code we allow exception-exit magic to also cause the 8791 * internal exception and bring us here in thread mode. Correct code 8792 * will never try to do this (the following insn fetch will always 8793 * fault) so we the overhead of having taken an unnecessary exception 8794 * doesn't matter. 8795 */ 8796 if (!arm_v7m_is_handler_mode(env)) { 8797 return; 8798 } 8799 8800 /* In the spec pseudocode ExceptionReturn() is called directly 8801 * from BXWritePC() and gets the full target PC value including 8802 * bit zero. In QEMU's implementation we treat it as a normal 8803 * jump-to-register (which is then caught later on), and so split 8804 * the target value up between env->regs[15] and env->thumb in 8805 * gen_bx(). Reconstitute it. 8806 */ 8807 excret = env->regs[15]; 8808 if (env->thumb) { 8809 excret |= 1; 8810 } 8811 8812 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 8813 " previous exception %d\n", 8814 excret, env->v7m.exception); 8815 8816 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { 8817 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " 8818 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", 8819 excret); 8820 } 8821 8822 ftype = excret & R_V7M_EXCRET_FTYPE_MASK; 8823 8824 if (!arm_feature(env, ARM_FEATURE_VFP) && !ftype) { 8825 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero FTYPE in exception " 8826 "exit PC value 0x%" PRIx32 " is UNPREDICTABLE " 8827 "if FPU not present\n", 8828 excret); 8829 ftype = true; 8830 } 8831 8832 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8833 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before 8834 * we pick which FAULTMASK to clear. 8835 */ 8836 if (!env->v7m.secure && 8837 ((excret & R_V7M_EXCRET_ES_MASK) || 8838 !(excret & R_V7M_EXCRET_DCRS_MASK))) { 8839 sfault = 1; 8840 /* For all other purposes, treat ES as 0 (R_HXSR) */ 8841 excret &= ~R_V7M_EXCRET_ES_MASK; 8842 } 8843 exc_secure = excret & R_V7M_EXCRET_ES_MASK; 8844 } 8845 8846 if (env->v7m.exception != ARMV7M_EXCP_NMI) { 8847 /* Auto-clear FAULTMASK on return from other than NMI. 8848 * If the security extension is implemented then this only 8849 * happens if the raw execution priority is >= 0; the 8850 * value of the ES bit in the exception return value indicates 8851 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) 8852 */ 8853 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8854 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { 8855 env->v7m.faultmask[exc_secure] = 0; 8856 } 8857 } else { 8858 env->v7m.faultmask[M_REG_NS] = 0; 8859 } 8860 } 8861 8862 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, 8863 exc_secure)) { 8864 case -1: 8865 /* attempt to exit an exception that isn't active */ 8866 ufault = true; 8867 break; 8868 case 0: 8869 /* still an irq active now */ 8870 break; 8871 case 1: 8872 /* we returned to base exception level, no nesting. 8873 * (In the pseudocode this is written using "NestedActivation != 1" 8874 * where we have 'rettobase == false'.) 8875 */ 8876 rettobase = true; 8877 break; 8878 default: 8879 g_assert_not_reached(); 8880 } 8881 8882 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); 8883 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; 8884 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && 8885 (excret & R_V7M_EXCRET_S_MASK); 8886 8887 if (arm_feature(env, ARM_FEATURE_V8)) { 8888 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8889 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); 8890 * we choose to take the UsageFault. 8891 */ 8892 if ((excret & R_V7M_EXCRET_S_MASK) || 8893 (excret & R_V7M_EXCRET_ES_MASK) || 8894 !(excret & R_V7M_EXCRET_DCRS_MASK)) { 8895 ufault = true; 8896 } 8897 } 8898 if (excret & R_V7M_EXCRET_RES0_MASK) { 8899 ufault = true; 8900 } 8901 } else { 8902 /* For v7M we only recognize certain combinations of the low bits */ 8903 switch (excret & 0xf) { 8904 case 1: /* Return to Handler */ 8905 break; 8906 case 13: /* Return to Thread using Process stack */ 8907 case 9: /* Return to Thread using Main stack */ 8908 /* We only need to check NONBASETHRDENA for v7M, because in 8909 * v8M this bit does not exist (it is RES1). 8910 */ 8911 if (!rettobase && 8912 !(env->v7m.ccr[env->v7m.secure] & 8913 R_V7M_CCR_NONBASETHRDENA_MASK)) { 8914 ufault = true; 8915 } 8916 break; 8917 default: 8918 ufault = true; 8919 } 8920 } 8921 8922 /* 8923 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in 8924 * Handler mode (and will be until we write the new XPSR.Interrupt 8925 * field) this does not switch around the current stack pointer. 8926 * We must do this before we do any kind of tailchaining, including 8927 * for the derived exceptions on integrity check failures, or we will 8928 * give the guest an incorrect EXCRET.SPSEL value on exception entry. 8929 */ 8930 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); 8931 8932 /* 8933 * Clear scratch FP values left in caller saved registers; this 8934 * must happen before any kind of tail chaining. 8935 */ 8936 if ((env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_CLRONRET_MASK) && 8937 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) { 8938 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) { 8939 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK; 8940 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 8941 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 8942 "stackframe: error during lazy state deactivation\n"); 8943 v7m_exception_taken(cpu, excret, true, false); 8944 return; 8945 } else { 8946 /* Clear s0..s15 and FPSCR */ 8947 int i; 8948 8949 for (i = 0; i < 16; i += 2) { 8950 *aa32_vfp_dreg(env, i / 2) = 0; 8951 } 8952 vfp_set_fpscr(env, 0); 8953 } 8954 } 8955 8956 if (sfault) { 8957 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; 8958 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 8959 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 8960 "stackframe: failed EXC_RETURN.ES validity check\n"); 8961 v7m_exception_taken(cpu, excret, true, false); 8962 return; 8963 } 8964 8965 if (ufault) { 8966 /* Bad exception return: instead of popping the exception 8967 * stack, directly take a usage fault on the current stack. 8968 */ 8969 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 8970 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 8971 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 8972 "stackframe: failed exception return integrity check\n"); 8973 v7m_exception_taken(cpu, excret, true, false); 8974 return; 8975 } 8976 8977 /* 8978 * Tailchaining: if there is currently a pending exception that 8979 * is high enough priority to preempt execution at the level we're 8980 * about to return to, then just directly take that exception now, 8981 * avoiding an unstack-and-then-stack. Note that now we have 8982 * deactivated the previous exception by calling armv7m_nvic_complete_irq() 8983 * our current execution priority is already the execution priority we are 8984 * returning to -- none of the state we would unstack or set based on 8985 * the EXCRET value affects it. 8986 */ 8987 if (armv7m_nvic_can_take_pending_exception(env->nvic)) { 8988 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n"); 8989 v7m_exception_taken(cpu, excret, true, false); 8990 return; 8991 } 8992 8993 switch_v7m_security_state(env, return_to_secure); 8994 8995 { 8996 /* The stack pointer we should be reading the exception frame from 8997 * depends on bits in the magic exception return type value (and 8998 * for v8M isn't necessarily the stack pointer we will eventually 8999 * end up resuming execution with). Get a pointer to the location 9000 * in the CPU state struct where the SP we need is currently being 9001 * stored; we will use and modify it in place. 9002 * We use this limited C variable scope so we don't accidentally 9003 * use 'frame_sp_p' after we do something that makes it invalid. 9004 */ 9005 uint32_t *frame_sp_p = get_v7m_sp_ptr(env, 9006 return_to_secure, 9007 !return_to_handler, 9008 return_to_sp_process); 9009 uint32_t frameptr = *frame_sp_p; 9010 bool pop_ok = true; 9011 ARMMMUIdx mmu_idx; 9012 bool return_to_priv = return_to_handler || 9013 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK); 9014 9015 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure, 9016 return_to_priv); 9017 9018 if (!QEMU_IS_ALIGNED(frameptr, 8) && 9019 arm_feature(env, ARM_FEATURE_V8)) { 9020 qemu_log_mask(LOG_GUEST_ERROR, 9021 "M profile exception return with non-8-aligned SP " 9022 "for destination state is UNPREDICTABLE\n"); 9023 } 9024 9025 /* Do we need to pop callee-saved registers? */ 9026 if (return_to_secure && 9027 ((excret & R_V7M_EXCRET_ES_MASK) == 0 || 9028 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { 9029 uint32_t actual_sig; 9030 9031 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx); 9032 9033 if (pop_ok && v7m_integrity_sig(env, excret) != actual_sig) { 9034 /* Take a SecureFault on the current stack */ 9035 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; 9036 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 9037 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 9038 "stackframe: failed exception return integrity " 9039 "signature check\n"); 9040 v7m_exception_taken(cpu, excret, true, false); 9041 return; 9042 } 9043 9044 pop_ok = pop_ok && 9045 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && 9046 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) && 9047 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) && 9048 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) && 9049 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) && 9050 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) && 9051 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) && 9052 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx); 9053 9054 frameptr += 0x28; 9055 } 9056 9057 /* Pop registers */ 9058 pop_ok = pop_ok && 9059 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) && 9060 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) && 9061 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) && 9062 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) && 9063 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) && 9064 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) && 9065 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) && 9066 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx); 9067 9068 if (!pop_ok) { 9069 /* v7m_stack_read() pended a fault, so take it (as a tail 9070 * chained exception on the same stack frame) 9071 */ 9072 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n"); 9073 v7m_exception_taken(cpu, excret, true, false); 9074 return; 9075 } 9076 9077 /* Returning from an exception with a PC with bit 0 set is defined 9078 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified 9079 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore 9080 * the lsbit, and there are several RTOSes out there which incorrectly 9081 * assume the r15 in the stack frame should be a Thumb-style "lsbit 9082 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but 9083 * complain about the badly behaved guest. 9084 */ 9085 if (env->regs[15] & 1) { 9086 env->regs[15] &= ~1U; 9087 if (!arm_feature(env, ARM_FEATURE_V8)) { 9088 qemu_log_mask(LOG_GUEST_ERROR, 9089 "M profile return from interrupt with misaligned " 9090 "PC is UNPREDICTABLE on v7M\n"); 9091 } 9092 } 9093 9094 if (arm_feature(env, ARM_FEATURE_V8)) { 9095 /* For v8M we have to check whether the xPSR exception field 9096 * matches the EXCRET value for return to handler/thread 9097 * before we commit to changing the SP and xPSR. 9098 */ 9099 bool will_be_handler = (xpsr & XPSR_EXCP) != 0; 9100 if (return_to_handler != will_be_handler) { 9101 /* Take an INVPC UsageFault on the current stack. 9102 * By this point we will have switched to the security state 9103 * for the background state, so this UsageFault will target 9104 * that state. 9105 */ 9106 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 9107 env->v7m.secure); 9108 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 9109 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 9110 "stackframe: failed exception return integrity " 9111 "check\n"); 9112 v7m_exception_taken(cpu, excret, true, false); 9113 return; 9114 } 9115 } 9116 9117 if (!ftype) { 9118 /* FP present and we need to handle it */ 9119 if (!return_to_secure && 9120 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK)) { 9121 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 9122 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK; 9123 qemu_log_mask(CPU_LOG_INT, 9124 "...taking SecureFault on existing stackframe: " 9125 "Secure LSPACT set but exception return is " 9126 "not to secure state\n"); 9127 v7m_exception_taken(cpu, excret, true, false); 9128 return; 9129 } 9130 9131 restore_s16_s31 = return_to_secure && 9132 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK); 9133 9134 if (env->v7m.fpccr[return_to_secure] & R_V7M_FPCCR_LSPACT_MASK) { 9135 /* State in FPU is still valid, just clear LSPACT */ 9136 env->v7m.fpccr[return_to_secure] &= ~R_V7M_FPCCR_LSPACT_MASK; 9137 } else { 9138 int i; 9139 uint32_t fpscr; 9140 bool cpacr_pass, nsacr_pass; 9141 9142 cpacr_pass = v7m_cpacr_pass(env, return_to_secure, 9143 return_to_priv); 9144 nsacr_pass = return_to_secure || 9145 extract32(env->v7m.nsacr, 10, 1); 9146 9147 if (!cpacr_pass) { 9148 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 9149 return_to_secure); 9150 env->v7m.cfsr[return_to_secure] |= R_V7M_CFSR_NOCP_MASK; 9151 qemu_log_mask(CPU_LOG_INT, 9152 "...taking UsageFault on existing " 9153 "stackframe: CPACR.CP10 prevents unstacking " 9154 "FP regs\n"); 9155 v7m_exception_taken(cpu, excret, true, false); 9156 return; 9157 } else if (!nsacr_pass) { 9158 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, true); 9159 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_INVPC_MASK; 9160 qemu_log_mask(CPU_LOG_INT, 9161 "...taking Secure UsageFault on existing " 9162 "stackframe: NSACR.CP10 prevents unstacking " 9163 "FP regs\n"); 9164 v7m_exception_taken(cpu, excret, true, false); 9165 return; 9166 } 9167 9168 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) { 9169 uint32_t slo, shi; 9170 uint64_t dn; 9171 uint32_t faddr = frameptr + 0x20 + 4 * i; 9172 9173 if (i >= 16) { 9174 faddr += 8; /* Skip the slot for the FPSCR */ 9175 } 9176 9177 pop_ok = pop_ok && 9178 v7m_stack_read(cpu, &slo, faddr, mmu_idx) && 9179 v7m_stack_read(cpu, &shi, faddr + 4, mmu_idx); 9180 9181 if (!pop_ok) { 9182 break; 9183 } 9184 9185 dn = (uint64_t)shi << 32 | slo; 9186 *aa32_vfp_dreg(env, i / 2) = dn; 9187 } 9188 pop_ok = pop_ok && 9189 v7m_stack_read(cpu, &fpscr, frameptr + 0x60, mmu_idx); 9190 if (pop_ok) { 9191 vfp_set_fpscr(env, fpscr); 9192 } 9193 if (!pop_ok) { 9194 /* 9195 * These regs are 0 if security extension present; 9196 * otherwise merely UNKNOWN. We zero always. 9197 */ 9198 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) { 9199 *aa32_vfp_dreg(env, i / 2) = 0; 9200 } 9201 vfp_set_fpscr(env, 0); 9202 } 9203 } 9204 } 9205 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S], 9206 V7M_CONTROL, FPCA, !ftype); 9207 9208 /* Commit to consuming the stack frame */ 9209 frameptr += 0x20; 9210 if (!ftype) { 9211 frameptr += 0x48; 9212 if (restore_s16_s31) { 9213 frameptr += 0x40; 9214 } 9215 } 9216 /* Undo stack alignment (the SPREALIGN bit indicates that the original 9217 * pre-exception SP was not 8-aligned and we added a padding word to 9218 * align it, so we undo this by ORing in the bit that increases it 9219 * from the current 8-aligned value to the 8-unaligned value. (Adding 4 9220 * would work too but a logical OR is how the pseudocode specifies it.) 9221 */ 9222 if (xpsr & XPSR_SPREALIGN) { 9223 frameptr |= 4; 9224 } 9225 *frame_sp_p = frameptr; 9226 } 9227 9228 xpsr_mask = ~(XPSR_SPREALIGN | XPSR_SFPA); 9229 if (!arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 9230 xpsr_mask &= ~XPSR_GE; 9231 } 9232 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ 9233 xpsr_write(env, xpsr, xpsr_mask); 9234 9235 if (env->v7m.secure) { 9236 bool sfpa = xpsr & XPSR_SFPA; 9237 9238 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S], 9239 V7M_CONTROL, SFPA, sfpa); 9240 } 9241 9242 /* The restored xPSR exception field will be zero if we're 9243 * resuming in Thread mode. If that doesn't match what the 9244 * exception return excret specified then this is a UsageFault. 9245 * v7M requires we make this check here; v8M did it earlier. 9246 */ 9247 if (return_to_handler != arm_v7m_is_handler_mode(env)) { 9248 /* Take an INVPC UsageFault by pushing the stack again; 9249 * we know we're v7M so this is never a Secure UsageFault. 9250 */ 9251 bool ignore_stackfaults; 9252 9253 assert(!arm_feature(env, ARM_FEATURE_V8)); 9254 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); 9255 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 9256 ignore_stackfaults = v7m_push_stack(cpu); 9257 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " 9258 "failed exception return integrity check\n"); 9259 v7m_exception_taken(cpu, excret, false, ignore_stackfaults); 9260 return; 9261 } 9262 9263 /* Otherwise, we have a successful exception exit. */ 9264 arm_clear_exclusive(env); 9265 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); 9266 } 9267 9268 static bool do_v7m_function_return(ARMCPU *cpu) 9269 { 9270 /* v8M security extensions magic function return. 9271 * We may either: 9272 * (1) throw an exception (longjump) 9273 * (2) return true if we successfully handled the function return 9274 * (3) return false if we failed a consistency check and have 9275 * pended a UsageFault that needs to be taken now 9276 * 9277 * At this point the magic return value is split between env->regs[15] 9278 * and env->thumb. We don't bother to reconstitute it because we don't 9279 * need it (all values are handled the same way). 9280 */ 9281 CPUARMState *env = &cpu->env; 9282 uint32_t newpc, newpsr, newpsr_exc; 9283 9284 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); 9285 9286 { 9287 bool threadmode, spsel; 9288 TCGMemOpIdx oi; 9289 ARMMMUIdx mmu_idx; 9290 uint32_t *frame_sp_p; 9291 uint32_t frameptr; 9292 9293 /* Pull the return address and IPSR from the Secure stack */ 9294 threadmode = !arm_v7m_is_handler_mode(env); 9295 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; 9296 9297 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); 9298 frameptr = *frame_sp_p; 9299 9300 /* These loads may throw an exception (for MPU faults). We want to 9301 * do them as secure, so work out what MMU index that is. 9302 */ 9303 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 9304 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); 9305 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); 9306 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); 9307 9308 /* Consistency checks on new IPSR */ 9309 newpsr_exc = newpsr & XPSR_EXCP; 9310 if (!((env->v7m.exception == 0 && newpsr_exc == 0) || 9311 (env->v7m.exception == 1 && newpsr_exc != 0))) { 9312 /* Pend the fault and tell our caller to take it */ 9313 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 9314 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 9315 env->v7m.secure); 9316 qemu_log_mask(CPU_LOG_INT, 9317 "...taking INVPC UsageFault: " 9318 "IPSR consistency check failed\n"); 9319 return false; 9320 } 9321 9322 *frame_sp_p = frameptr + 8; 9323 } 9324 9325 /* This invalidates frame_sp_p */ 9326 switch_v7m_security_state(env, true); 9327 env->v7m.exception = newpsr_exc; 9328 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 9329 if (newpsr & XPSR_SFPA) { 9330 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; 9331 } 9332 xpsr_write(env, 0, XPSR_IT); 9333 env->thumb = newpc & 1; 9334 env->regs[15] = newpc & ~1; 9335 9336 qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); 9337 return true; 9338 } 9339 9340 static void arm_log_exception(int idx) 9341 { 9342 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9343 const char *exc = NULL; 9344 static const char * const excnames[] = { 9345 [EXCP_UDEF] = "Undefined Instruction", 9346 [EXCP_SWI] = "SVC", 9347 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9348 [EXCP_DATA_ABORT] = "Data Abort", 9349 [EXCP_IRQ] = "IRQ", 9350 [EXCP_FIQ] = "FIQ", 9351 [EXCP_BKPT] = "Breakpoint", 9352 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9353 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9354 [EXCP_HVC] = "Hypervisor Call", 9355 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9356 [EXCP_SMC] = "Secure Monitor Call", 9357 [EXCP_VIRQ] = "Virtual IRQ", 9358 [EXCP_VFIQ] = "Virtual FIQ", 9359 [EXCP_SEMIHOST] = "Semihosting call", 9360 [EXCP_NOCP] = "v7M NOCP UsageFault", 9361 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9362 [EXCP_STKOF] = "v8M STKOF UsageFault", 9363 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9364 [EXCP_LSERR] = "v8M LSERR UsageFault", 9365 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9366 }; 9367 9368 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9369 exc = excnames[idx]; 9370 } 9371 if (!exc) { 9372 exc = "unknown"; 9373 } 9374 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 9375 } 9376 } 9377 9378 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, 9379 uint32_t addr, uint16_t *insn) 9380 { 9381 /* Load a 16-bit portion of a v7M instruction, returning true on success, 9382 * or false on failure (in which case we will have pended the appropriate 9383 * exception). 9384 * We need to do the instruction fetch's MPU and SAU checks 9385 * like this because there is no MMU index that would allow 9386 * doing the load with a single function call. Instead we must 9387 * first check that the security attributes permit the load 9388 * and that they don't mismatch on the two halves of the instruction, 9389 * and then we do the load as a secure load (ie using the security 9390 * attributes of the address, not the CPU, as architecturally required). 9391 */ 9392 CPUState *cs = CPU(cpu); 9393 CPUARMState *env = &cpu->env; 9394 V8M_SAttributes sattrs = {}; 9395 MemTxAttrs attrs = {}; 9396 ARMMMUFaultInfo fi = {}; 9397 MemTxResult txres; 9398 target_ulong page_size; 9399 hwaddr physaddr; 9400 int prot; 9401 9402 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); 9403 if (!sattrs.nsc || sattrs.ns) { 9404 /* This must be the second half of the insn, and it straddles a 9405 * region boundary with the second half not being S&NSC. 9406 */ 9407 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 9408 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 9409 qemu_log_mask(CPU_LOG_INT, 9410 "...really SecureFault with SFSR.INVEP\n"); 9411 return false; 9412 } 9413 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, 9414 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) { 9415 /* the MPU lookup failed */ 9416 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 9417 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); 9418 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); 9419 return false; 9420 } 9421 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, 9422 attrs, &txres); 9423 if (txres != MEMTX_OK) { 9424 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 9425 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 9426 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); 9427 return false; 9428 } 9429 return true; 9430 } 9431 9432 static bool v7m_handle_execute_nsc(ARMCPU *cpu) 9433 { 9434 /* Check whether this attempt to execute code in a Secure & NS-Callable 9435 * memory region is for an SG instruction; if so, then emulate the 9436 * effect of the SG instruction and return true. Otherwise pend 9437 * the correct kind of exception and return false. 9438 */ 9439 CPUARMState *env = &cpu->env; 9440 ARMMMUIdx mmu_idx; 9441 uint16_t insn; 9442 9443 /* We should never get here unless get_phys_addr_pmsav8() caused 9444 * an exception for NS executing in S&NSC memory. 9445 */ 9446 assert(!env->v7m.secure); 9447 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 9448 9449 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ 9450 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 9451 9452 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { 9453 return false; 9454 } 9455 9456 if (!env->thumb) { 9457 goto gen_invep; 9458 } 9459 9460 if (insn != 0xe97f) { 9461 /* Not an SG instruction first half (we choose the IMPDEF 9462 * early-SG-check option). 9463 */ 9464 goto gen_invep; 9465 } 9466 9467 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { 9468 return false; 9469 } 9470 9471 if (insn != 0xe97f) { 9472 /* Not an SG instruction second half (yes, both halves of the SG 9473 * insn have the same hex value) 9474 */ 9475 goto gen_invep; 9476 } 9477 9478 /* OK, we have confirmed that we really have an SG instruction. 9479 * We know we're NS in S memory so don't need to repeat those checks. 9480 */ 9481 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 9482 ", executing it\n", env->regs[15]); 9483 env->regs[14] &= ~1; 9484 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 9485 switch_v7m_security_state(env, true); 9486 xpsr_write(env, 0, XPSR_IT); 9487 env->regs[15] += 4; 9488 return true; 9489 9490 gen_invep: 9491 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 9492 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 9493 qemu_log_mask(CPU_LOG_INT, 9494 "...really SecureFault with SFSR.INVEP\n"); 9495 return false; 9496 } 9497 9498 void arm_v7m_cpu_do_interrupt(CPUState *cs) 9499 { 9500 ARMCPU *cpu = ARM_CPU(cs); 9501 CPUARMState *env = &cpu->env; 9502 uint32_t lr; 9503 bool ignore_stackfaults; 9504 9505 arm_log_exception(cs->exception_index); 9506 9507 /* For exceptions we just mark as pending on the NVIC, and let that 9508 handle it. */ 9509 switch (cs->exception_index) { 9510 case EXCP_UDEF: 9511 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 9512 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; 9513 break; 9514 case EXCP_NOCP: 9515 { 9516 /* 9517 * NOCP might be directed to something other than the current 9518 * security state if this fault is because of NSACR; we indicate 9519 * the target security state using exception.target_el. 9520 */ 9521 int target_secstate; 9522 9523 if (env->exception.target_el == 3) { 9524 target_secstate = M_REG_S; 9525 } else { 9526 target_secstate = env->v7m.secure; 9527 } 9528 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, target_secstate); 9529 env->v7m.cfsr[target_secstate] |= R_V7M_CFSR_NOCP_MASK; 9530 break; 9531 } 9532 case EXCP_INVSTATE: 9533 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 9534 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; 9535 break; 9536 case EXCP_STKOF: 9537 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 9538 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; 9539 break; 9540 case EXCP_LSERR: 9541 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 9542 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK; 9543 break; 9544 case EXCP_UNALIGNED: 9545 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 9546 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNALIGNED_MASK; 9547 break; 9548 case EXCP_SWI: 9549 /* The PC already points to the next instruction. */ 9550 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); 9551 break; 9552 case EXCP_PREFETCH_ABORT: 9553 case EXCP_DATA_ABORT: 9554 /* Note that for M profile we don't have a guest facing FSR, but 9555 * the env->exception.fsr will be populated by the code that 9556 * raises the fault, in the A profile short-descriptor format. 9557 */ 9558 switch (env->exception.fsr & 0xf) { 9559 case M_FAKE_FSR_NSC_EXEC: 9560 /* Exception generated when we try to execute code at an address 9561 * which is marked as Secure & Non-Secure Callable and the CPU 9562 * is in the Non-Secure state. The only instruction which can 9563 * be executed like this is SG (and that only if both halves of 9564 * the SG instruction have the same security attributes.) 9565 * Everything else must generate an INVEP SecureFault, so we 9566 * emulate the SG instruction here. 9567 */ 9568 if (v7m_handle_execute_nsc(cpu)) { 9569 return; 9570 } 9571 break; 9572 case M_FAKE_FSR_SFAULT: 9573 /* Various flavours of SecureFault for attempts to execute or 9574 * access data in the wrong security state. 9575 */ 9576 switch (cs->exception_index) { 9577 case EXCP_PREFETCH_ABORT: 9578 if (env->v7m.secure) { 9579 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; 9580 qemu_log_mask(CPU_LOG_INT, 9581 "...really SecureFault with SFSR.INVTRAN\n"); 9582 } else { 9583 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 9584 qemu_log_mask(CPU_LOG_INT, 9585 "...really SecureFault with SFSR.INVEP\n"); 9586 } 9587 break; 9588 case EXCP_DATA_ABORT: 9589 /* This must be an NS access to S memory */ 9590 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; 9591 qemu_log_mask(CPU_LOG_INT, 9592 "...really SecureFault with SFSR.AUVIOL\n"); 9593 break; 9594 } 9595 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 9596 break; 9597 case 0x8: /* External Abort */ 9598 switch (cs->exception_index) { 9599 case EXCP_PREFETCH_ABORT: 9600 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 9601 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); 9602 break; 9603 case EXCP_DATA_ABORT: 9604 env->v7m.cfsr[M_REG_NS] |= 9605 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); 9606 env->v7m.bfar = env->exception.vaddress; 9607 qemu_log_mask(CPU_LOG_INT, 9608 "...with CFSR.PRECISERR and BFAR 0x%x\n", 9609 env->v7m.bfar); 9610 break; 9611 } 9612 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 9613 break; 9614 default: 9615 /* All other FSR values are either MPU faults or "can't happen 9616 * for M profile" cases. 9617 */ 9618 switch (cs->exception_index) { 9619 case EXCP_PREFETCH_ABORT: 9620 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 9621 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); 9622 break; 9623 case EXCP_DATA_ABORT: 9624 env->v7m.cfsr[env->v7m.secure] |= 9625 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); 9626 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; 9627 qemu_log_mask(CPU_LOG_INT, 9628 "...with CFSR.DACCVIOL and MMFAR 0x%x\n", 9629 env->v7m.mmfar[env->v7m.secure]); 9630 break; 9631 } 9632 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, 9633 env->v7m.secure); 9634 break; 9635 } 9636 break; 9637 case EXCP_BKPT: 9638 if (semihosting_enabled()) { 9639 int nr; 9640 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 9641 if (nr == 0xab) { 9642 env->regs[15] += 2; 9643 qemu_log_mask(CPU_LOG_INT, 9644 "...handling as semihosting call 0x%x\n", 9645 env->regs[0]); 9646 env->regs[0] = do_arm_semihosting(env); 9647 return; 9648 } 9649 } 9650 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); 9651 break; 9652 case EXCP_IRQ: 9653 break; 9654 case EXCP_EXCEPTION_EXIT: 9655 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { 9656 /* Must be v8M security extension function return */ 9657 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); 9658 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 9659 if (do_v7m_function_return(cpu)) { 9660 return; 9661 } 9662 } else { 9663 do_v7m_exception_exit(cpu); 9664 return; 9665 } 9666 break; 9667 case EXCP_LAZYFP: 9668 /* 9669 * We already pended the specific exception in the NVIC in the 9670 * v7m_preserve_fp_state() helper function. 9671 */ 9672 break; 9673 default: 9674 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9675 return; /* Never happens. Keep compiler happy. */ 9676 } 9677 9678 if (arm_feature(env, ARM_FEATURE_V8)) { 9679 lr = R_V7M_EXCRET_RES1_MASK | 9680 R_V7M_EXCRET_DCRS_MASK; 9681 /* The S bit indicates whether we should return to Secure 9682 * or NonSecure (ie our current state). 9683 * The ES bit indicates whether we're taking this exception 9684 * to Secure or NonSecure (ie our target state). We set it 9685 * later, in v7m_exception_taken(). 9686 * The SPSEL bit is also set in v7m_exception_taken() for v8M. 9687 * This corresponds to the ARM ARM pseudocode for v8M setting 9688 * some LR bits in PushStack() and some in ExceptionTaken(); 9689 * the distinction matters for the tailchain cases where we 9690 * can take an exception without pushing the stack. 9691 */ 9692 if (env->v7m.secure) { 9693 lr |= R_V7M_EXCRET_S_MASK; 9694 } 9695 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) { 9696 lr |= R_V7M_EXCRET_FTYPE_MASK; 9697 } 9698 } else { 9699 lr = R_V7M_EXCRET_RES1_MASK | 9700 R_V7M_EXCRET_S_MASK | 9701 R_V7M_EXCRET_DCRS_MASK | 9702 R_V7M_EXCRET_FTYPE_MASK | 9703 R_V7M_EXCRET_ES_MASK; 9704 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { 9705 lr |= R_V7M_EXCRET_SPSEL_MASK; 9706 } 9707 } 9708 if (!arm_v7m_is_handler_mode(env)) { 9709 lr |= R_V7M_EXCRET_MODE_MASK; 9710 } 9711 9712 ignore_stackfaults = v7m_push_stack(cpu); 9713 v7m_exception_taken(cpu, lr, false, ignore_stackfaults); 9714 } 9715 9716 /* Function used to synchronize QEMU's AArch64 register set with AArch32 9717 * register set. This is necessary when switching between AArch32 and AArch64 9718 * execution state. 9719 */ 9720 void aarch64_sync_32_to_64(CPUARMState *env) 9721 { 9722 int i; 9723 uint32_t mode = env->uncached_cpsr & CPSR_M; 9724 9725 /* We can blanket copy R[0:7] to X[0:7] */ 9726 for (i = 0; i < 8; i++) { 9727 env->xregs[i] = env->regs[i]; 9728 } 9729 9730 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9731 * Otherwise, they come from the banked user regs. 9732 */ 9733 if (mode == ARM_CPU_MODE_FIQ) { 9734 for (i = 8; i < 13; i++) { 9735 env->xregs[i] = env->usr_regs[i - 8]; 9736 } 9737 } else { 9738 for (i = 8; i < 13; i++) { 9739 env->xregs[i] = env->regs[i]; 9740 } 9741 } 9742 9743 /* Registers x13-x23 are the various mode SP and FP registers. Registers 9744 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9745 * from the mode banked register. 9746 */ 9747 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9748 env->xregs[13] = env->regs[13]; 9749 env->xregs[14] = env->regs[14]; 9750 } else { 9751 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9752 /* HYP is an exception in that it is copied from r14 */ 9753 if (mode == ARM_CPU_MODE_HYP) { 9754 env->xregs[14] = env->regs[14]; 9755 } else { 9756 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9757 } 9758 } 9759 9760 if (mode == ARM_CPU_MODE_HYP) { 9761 env->xregs[15] = env->regs[13]; 9762 } else { 9763 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9764 } 9765 9766 if (mode == ARM_CPU_MODE_IRQ) { 9767 env->xregs[16] = env->regs[14]; 9768 env->xregs[17] = env->regs[13]; 9769 } else { 9770 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9771 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9772 } 9773 9774 if (mode == ARM_CPU_MODE_SVC) { 9775 env->xregs[18] = env->regs[14]; 9776 env->xregs[19] = env->regs[13]; 9777 } else { 9778 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9779 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9780 } 9781 9782 if (mode == ARM_CPU_MODE_ABT) { 9783 env->xregs[20] = env->regs[14]; 9784 env->xregs[21] = env->regs[13]; 9785 } else { 9786 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9787 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9788 } 9789 9790 if (mode == ARM_CPU_MODE_UND) { 9791 env->xregs[22] = env->regs[14]; 9792 env->xregs[23] = env->regs[13]; 9793 } else { 9794 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9795 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9796 } 9797 9798 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9799 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9800 * FIQ bank for r8-r14. 9801 */ 9802 if (mode == ARM_CPU_MODE_FIQ) { 9803 for (i = 24; i < 31; i++) { 9804 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9805 } 9806 } else { 9807 for (i = 24; i < 29; i++) { 9808 env->xregs[i] = env->fiq_regs[i - 24]; 9809 } 9810 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9811 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9812 } 9813 9814 env->pc = env->regs[15]; 9815 } 9816 9817 /* Function used to synchronize QEMU's AArch32 register set with AArch64 9818 * register set. This is necessary when switching between AArch32 and AArch64 9819 * execution state. 9820 */ 9821 void aarch64_sync_64_to_32(CPUARMState *env) 9822 { 9823 int i; 9824 uint32_t mode = env->uncached_cpsr & CPSR_M; 9825 9826 /* We can blanket copy X[0:7] to R[0:7] */ 9827 for (i = 0; i < 8; i++) { 9828 env->regs[i] = env->xregs[i]; 9829 } 9830 9831 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9832 * Otherwise, we copy x8-x12 into the banked user regs. 9833 */ 9834 if (mode == ARM_CPU_MODE_FIQ) { 9835 for (i = 8; i < 13; i++) { 9836 env->usr_regs[i - 8] = env->xregs[i]; 9837 } 9838 } else { 9839 for (i = 8; i < 13; i++) { 9840 env->regs[i] = env->xregs[i]; 9841 } 9842 } 9843 9844 /* Registers r13 & r14 depend on the current mode. 9845 * If we are in a given mode, we copy the corresponding x registers to r13 9846 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9847 * for the mode. 9848 */ 9849 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9850 env->regs[13] = env->xregs[13]; 9851 env->regs[14] = env->xregs[14]; 9852 } else { 9853 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9854 9855 /* HYP is an exception in that it does not have its own banked r14 but 9856 * shares the USR r14 9857 */ 9858 if (mode == ARM_CPU_MODE_HYP) { 9859 env->regs[14] = env->xregs[14]; 9860 } else { 9861 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9862 } 9863 } 9864 9865 if (mode == ARM_CPU_MODE_HYP) { 9866 env->regs[13] = env->xregs[15]; 9867 } else { 9868 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9869 } 9870 9871 if (mode == ARM_CPU_MODE_IRQ) { 9872 env->regs[14] = env->xregs[16]; 9873 env->regs[13] = env->xregs[17]; 9874 } else { 9875 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9876 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9877 } 9878 9879 if (mode == ARM_CPU_MODE_SVC) { 9880 env->regs[14] = env->xregs[18]; 9881 env->regs[13] = env->xregs[19]; 9882 } else { 9883 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9884 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9885 } 9886 9887 if (mode == ARM_CPU_MODE_ABT) { 9888 env->regs[14] = env->xregs[20]; 9889 env->regs[13] = env->xregs[21]; 9890 } else { 9891 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9892 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9893 } 9894 9895 if (mode == ARM_CPU_MODE_UND) { 9896 env->regs[14] = env->xregs[22]; 9897 env->regs[13] = env->xregs[23]; 9898 } else { 9899 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9900 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9901 } 9902 9903 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9904 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9905 * FIQ bank for r8-r14. 9906 */ 9907 if (mode == ARM_CPU_MODE_FIQ) { 9908 for (i = 24; i < 31; i++) { 9909 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9910 } 9911 } else { 9912 for (i = 24; i < 29; i++) { 9913 env->fiq_regs[i - 24] = env->xregs[i]; 9914 } 9915 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9916 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9917 } 9918 9919 env->regs[15] = env->pc; 9920 } 9921 9922 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9923 uint32_t mask, uint32_t offset, 9924 uint32_t newpc) 9925 { 9926 /* Change the CPU state so as to actually take the exception. */ 9927 switch_mode(env, new_mode); 9928 /* 9929 * For exceptions taken to AArch32 we must clear the SS bit in both 9930 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9931 */ 9932 env->uncached_cpsr &= ~PSTATE_SS; 9933 env->spsr = cpsr_read(env); 9934 /* Clear IT bits. */ 9935 env->condexec_bits = 0; 9936 /* Switch to the new mode, and to the correct instruction set. */ 9937 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9938 /* Set new mode endianness */ 9939 env->uncached_cpsr &= ~CPSR_E; 9940 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 9941 env->uncached_cpsr |= CPSR_E; 9942 } 9943 /* J and IL must always be cleared for exception entry */ 9944 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9945 env->daif |= mask; 9946 9947 if (new_mode == ARM_CPU_MODE_HYP) { 9948 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9949 env->elr_el[2] = env->regs[15]; 9950 } else { 9951 /* 9952 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9953 * and we should just guard the thumb mode on V4 9954 */ 9955 if (arm_feature(env, ARM_FEATURE_V4T)) { 9956 env->thumb = 9957 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9958 } 9959 env->regs[14] = env->regs[15] + offset; 9960 } 9961 env->regs[15] = newpc; 9962 } 9963 9964 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9965 { 9966 /* 9967 * Handle exception entry to Hyp mode; this is sufficiently 9968 * different to entry to other AArch32 modes that we handle it 9969 * separately here. 9970 * 9971 * The vector table entry used is always the 0x14 Hyp mode entry point, 9972 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 9973 * The offset applied to the preferred return address is always zero 9974 * (see DDI0487C.a section G1.12.3). 9975 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9976 */ 9977 uint32_t addr, mask; 9978 ARMCPU *cpu = ARM_CPU(cs); 9979 CPUARMState *env = &cpu->env; 9980 9981 switch (cs->exception_index) { 9982 case EXCP_UDEF: 9983 addr = 0x04; 9984 break; 9985 case EXCP_SWI: 9986 addr = 0x14; 9987 break; 9988 case EXCP_BKPT: 9989 /* Fall through to prefetch abort. */ 9990 case EXCP_PREFETCH_ABORT: 9991 env->cp15.ifar_s = env->exception.vaddress; 9992 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9993 (uint32_t)env->exception.vaddress); 9994 addr = 0x0c; 9995 break; 9996 case EXCP_DATA_ABORT: 9997 env->cp15.dfar_s = env->exception.vaddress; 9998 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9999 (uint32_t)env->exception.vaddress); 10000 addr = 0x10; 10001 break; 10002 case EXCP_IRQ: 10003 addr = 0x18; 10004 break; 10005 case EXCP_FIQ: 10006 addr = 0x1c; 10007 break; 10008 case EXCP_HVC: 10009 addr = 0x08; 10010 break; 10011 case EXCP_HYP_TRAP: 10012 addr = 0x14; 10013 default: 10014 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10015 } 10016 10017 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10018 if (!arm_feature(env, ARM_FEATURE_V8)) { 10019 /* 10020 * QEMU syndrome values are v8-style. v7 has the IL bit 10021 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10022 * If this is a v7 CPU, squash the IL bit in those cases. 10023 */ 10024 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10025 (cs->exception_index == EXCP_DATA_ABORT && 10026 !(env->exception.syndrome & ARM_EL_ISV)) || 10027 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10028 env->exception.syndrome &= ~ARM_EL_IL; 10029 } 10030 } 10031 env->cp15.esr_el[2] = env->exception.syndrome; 10032 } 10033 10034 if (arm_current_el(env) != 2 && addr < 0x14) { 10035 addr = 0x14; 10036 } 10037 10038 mask = 0; 10039 if (!(env->cp15.scr_el3 & SCR_EA)) { 10040 mask |= CPSR_A; 10041 } 10042 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10043 mask |= CPSR_I; 10044 } 10045 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10046 mask |= CPSR_F; 10047 } 10048 10049 addr += env->cp15.hvbar; 10050 10051 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10052 } 10053 10054 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10055 { 10056 ARMCPU *cpu = ARM_CPU(cs); 10057 CPUARMState *env = &cpu->env; 10058 uint32_t addr; 10059 uint32_t mask; 10060 int new_mode; 10061 uint32_t offset; 10062 uint32_t moe; 10063 10064 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10065 switch (syn_get_ec(env->exception.syndrome)) { 10066 case EC_BREAKPOINT: 10067 case EC_BREAKPOINT_SAME_EL: 10068 moe = 1; 10069 break; 10070 case EC_WATCHPOINT: 10071 case EC_WATCHPOINT_SAME_EL: 10072 moe = 10; 10073 break; 10074 case EC_AA32_BKPT: 10075 moe = 3; 10076 break; 10077 case EC_VECTORCATCH: 10078 moe = 5; 10079 break; 10080 default: 10081 moe = 0; 10082 break; 10083 } 10084 10085 if (moe) { 10086 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10087 } 10088 10089 if (env->exception.target_el == 2) { 10090 arm_cpu_do_interrupt_aarch32_hyp(cs); 10091 return; 10092 } 10093 10094 switch (cs->exception_index) { 10095 case EXCP_UDEF: 10096 new_mode = ARM_CPU_MODE_UND; 10097 addr = 0x04; 10098 mask = CPSR_I; 10099 if (env->thumb) 10100 offset = 2; 10101 else 10102 offset = 4; 10103 break; 10104 case EXCP_SWI: 10105 new_mode = ARM_CPU_MODE_SVC; 10106 addr = 0x08; 10107 mask = CPSR_I; 10108 /* The PC already points to the next instruction. */ 10109 offset = 0; 10110 break; 10111 case EXCP_BKPT: 10112 /* Fall through to prefetch abort. */ 10113 case EXCP_PREFETCH_ABORT: 10114 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10115 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10116 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10117 env->exception.fsr, (uint32_t)env->exception.vaddress); 10118 new_mode = ARM_CPU_MODE_ABT; 10119 addr = 0x0c; 10120 mask = CPSR_A | CPSR_I; 10121 offset = 4; 10122 break; 10123 case EXCP_DATA_ABORT: 10124 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10125 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10126 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10127 env->exception.fsr, 10128 (uint32_t)env->exception.vaddress); 10129 new_mode = ARM_CPU_MODE_ABT; 10130 addr = 0x10; 10131 mask = CPSR_A | CPSR_I; 10132 offset = 8; 10133 break; 10134 case EXCP_IRQ: 10135 new_mode = ARM_CPU_MODE_IRQ; 10136 addr = 0x18; 10137 /* Disable IRQ and imprecise data aborts. */ 10138 mask = CPSR_A | CPSR_I; 10139 offset = 4; 10140 if (env->cp15.scr_el3 & SCR_IRQ) { 10141 /* IRQ routed to monitor mode */ 10142 new_mode = ARM_CPU_MODE_MON; 10143 mask |= CPSR_F; 10144 } 10145 break; 10146 case EXCP_FIQ: 10147 new_mode = ARM_CPU_MODE_FIQ; 10148 addr = 0x1c; 10149 /* Disable FIQ, IRQ and imprecise data aborts. */ 10150 mask = CPSR_A | CPSR_I | CPSR_F; 10151 if (env->cp15.scr_el3 & SCR_FIQ) { 10152 /* FIQ routed to monitor mode */ 10153 new_mode = ARM_CPU_MODE_MON; 10154 } 10155 offset = 4; 10156 break; 10157 case EXCP_VIRQ: 10158 new_mode = ARM_CPU_MODE_IRQ; 10159 addr = 0x18; 10160 /* Disable IRQ and imprecise data aborts. */ 10161 mask = CPSR_A | CPSR_I; 10162 offset = 4; 10163 break; 10164 case EXCP_VFIQ: 10165 new_mode = ARM_CPU_MODE_FIQ; 10166 addr = 0x1c; 10167 /* Disable FIQ, IRQ and imprecise data aborts. */ 10168 mask = CPSR_A | CPSR_I | CPSR_F; 10169 offset = 4; 10170 break; 10171 case EXCP_SMC: 10172 new_mode = ARM_CPU_MODE_MON; 10173 addr = 0x08; 10174 mask = CPSR_A | CPSR_I | CPSR_F; 10175 offset = 0; 10176 break; 10177 default: 10178 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10179 return; /* Never happens. Keep compiler happy. */ 10180 } 10181 10182 if (new_mode == ARM_CPU_MODE_MON) { 10183 addr += env->cp15.mvbar; 10184 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10185 /* High vectors. When enabled, base address cannot be remapped. */ 10186 addr += 0xffff0000; 10187 } else { 10188 /* ARM v7 architectures provide a vector base address register to remap 10189 * the interrupt vector table. 10190 * This register is only followed in non-monitor mode, and is banked. 10191 * Note: only bits 31:5 are valid. 10192 */ 10193 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10194 } 10195 10196 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10197 env->cp15.scr_el3 &= ~SCR_NS; 10198 } 10199 10200 take_aarch32_exception(env, new_mode, mask, offset, addr); 10201 } 10202 10203 /* Handle exception entry to a target EL which is using AArch64 */ 10204 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10205 { 10206 ARMCPU *cpu = ARM_CPU(cs); 10207 CPUARMState *env = &cpu->env; 10208 unsigned int new_el = env->exception.target_el; 10209 target_ulong addr = env->cp15.vbar_el[new_el]; 10210 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10211 unsigned int cur_el = arm_current_el(env); 10212 10213 /* 10214 * Note that new_el can never be 0. If cur_el is 0, then 10215 * el0_a64 is is_a64(), else el0_a64 is ignored. 10216 */ 10217 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10218 10219 if (cur_el < new_el) { 10220 /* Entry vector offset depends on whether the implemented EL 10221 * immediately lower than the target level is using AArch32 or AArch64 10222 */ 10223 bool is_aa64; 10224 10225 switch (new_el) { 10226 case 3: 10227 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10228 break; 10229 case 2: 10230 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 10231 break; 10232 case 1: 10233 is_aa64 = is_a64(env); 10234 break; 10235 default: 10236 g_assert_not_reached(); 10237 } 10238 10239 if (is_aa64) { 10240 addr += 0x400; 10241 } else { 10242 addr += 0x600; 10243 } 10244 } else if (pstate_read(env) & PSTATE_SP) { 10245 addr += 0x200; 10246 } 10247 10248 switch (cs->exception_index) { 10249 case EXCP_PREFETCH_ABORT: 10250 case EXCP_DATA_ABORT: 10251 env->cp15.far_el[new_el] = env->exception.vaddress; 10252 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10253 env->cp15.far_el[new_el]); 10254 /* fall through */ 10255 case EXCP_BKPT: 10256 case EXCP_UDEF: 10257 case EXCP_SWI: 10258 case EXCP_HVC: 10259 case EXCP_HYP_TRAP: 10260 case EXCP_SMC: 10261 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { 10262 /* 10263 * QEMU internal FP/SIMD syndromes from AArch32 include the 10264 * TA and coproc fields which are only exposed if the exception 10265 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10266 * AArch64 format syndrome. 10267 */ 10268 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10269 } 10270 env->cp15.esr_el[new_el] = env->exception.syndrome; 10271 break; 10272 case EXCP_IRQ: 10273 case EXCP_VIRQ: 10274 addr += 0x80; 10275 break; 10276 case EXCP_FIQ: 10277 case EXCP_VFIQ: 10278 addr += 0x100; 10279 break; 10280 case EXCP_SEMIHOST: 10281 qemu_log_mask(CPU_LOG_INT, 10282 "...handling as semihosting call 0x%" PRIx64 "\n", 10283 env->xregs[0]); 10284 env->xregs[0] = do_arm_semihosting(env); 10285 return; 10286 default: 10287 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10288 } 10289 10290 if (is_a64(env)) { 10291 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 10292 aarch64_save_sp(env, arm_current_el(env)); 10293 env->elr_el[new_el] = env->pc; 10294 } else { 10295 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 10296 env->elr_el[new_el] = env->regs[15]; 10297 10298 aarch64_sync_32_to_64(env); 10299 10300 env->condexec_bits = 0; 10301 } 10302 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10303 env->elr_el[new_el]); 10304 10305 pstate_write(env, PSTATE_DAIF | new_mode); 10306 env->aarch64 = 1; 10307 aarch64_restore_sp(env, new_el); 10308 10309 env->pc = addr; 10310 10311 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10312 new_el, env->pc, pstate_read(env)); 10313 } 10314 10315 static inline bool check_for_semihosting(CPUState *cs) 10316 { 10317 /* Check whether this exception is a semihosting call; if so 10318 * then handle it and return true; otherwise return false. 10319 */ 10320 ARMCPU *cpu = ARM_CPU(cs); 10321 CPUARMState *env = &cpu->env; 10322 10323 if (is_a64(env)) { 10324 if (cs->exception_index == EXCP_SEMIHOST) { 10325 /* This is always the 64-bit semihosting exception. 10326 * The "is this usermode" and "is semihosting enabled" 10327 * checks have been done at translate time. 10328 */ 10329 qemu_log_mask(CPU_LOG_INT, 10330 "...handling as semihosting call 0x%" PRIx64 "\n", 10331 env->xregs[0]); 10332 env->xregs[0] = do_arm_semihosting(env); 10333 return true; 10334 } 10335 return false; 10336 } else { 10337 uint32_t imm; 10338 10339 /* Only intercept calls from privileged modes, to provide some 10340 * semblance of security. 10341 */ 10342 if (cs->exception_index != EXCP_SEMIHOST && 10343 (!semihosting_enabled() || 10344 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 10345 return false; 10346 } 10347 10348 switch (cs->exception_index) { 10349 case EXCP_SEMIHOST: 10350 /* This is always a semihosting call; the "is this usermode" 10351 * and "is semihosting enabled" checks have been done at 10352 * translate time. 10353 */ 10354 break; 10355 case EXCP_SWI: 10356 /* Check for semihosting interrupt. */ 10357 if (env->thumb) { 10358 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 10359 & 0xff; 10360 if (imm == 0xab) { 10361 break; 10362 } 10363 } else { 10364 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 10365 & 0xffffff; 10366 if (imm == 0x123456) { 10367 break; 10368 } 10369 } 10370 return false; 10371 case EXCP_BKPT: 10372 /* See if this is a semihosting syscall. */ 10373 if (env->thumb) { 10374 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 10375 & 0xff; 10376 if (imm == 0xab) { 10377 env->regs[15] += 2; 10378 break; 10379 } 10380 } 10381 return false; 10382 default: 10383 return false; 10384 } 10385 10386 qemu_log_mask(CPU_LOG_INT, 10387 "...handling as semihosting call 0x%x\n", 10388 env->regs[0]); 10389 env->regs[0] = do_arm_semihosting(env); 10390 return true; 10391 } 10392 } 10393 10394 /* Handle a CPU exception for A and R profile CPUs. 10395 * Do any appropriate logging, handle PSCI calls, and then hand off 10396 * to the AArch64-entry or AArch32-entry function depending on the 10397 * target exception level's register width. 10398 */ 10399 void arm_cpu_do_interrupt(CPUState *cs) 10400 { 10401 ARMCPU *cpu = ARM_CPU(cs); 10402 CPUARMState *env = &cpu->env; 10403 unsigned int new_el = env->exception.target_el; 10404 10405 assert(!arm_feature(env, ARM_FEATURE_M)); 10406 10407 arm_log_exception(cs->exception_index); 10408 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10409 new_el); 10410 if (qemu_loglevel_mask(CPU_LOG_INT) 10411 && !excp_is_internal(cs->exception_index)) { 10412 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10413 syn_get_ec(env->exception.syndrome), 10414 env->exception.syndrome); 10415 } 10416 10417 if (arm_is_psci_call(cpu, cs->exception_index)) { 10418 arm_handle_psci_call(cpu); 10419 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10420 return; 10421 } 10422 10423 /* Semihosting semantics depend on the register width of the 10424 * code that caused the exception, not the target exception level, 10425 * so must be handled here. 10426 */ 10427 if (check_for_semihosting(cs)) { 10428 return; 10429 } 10430 10431 /* Hooks may change global state so BQL should be held, also the 10432 * BQL needs to be held for any modification of 10433 * cs->interrupt_request. 10434 */ 10435 g_assert(qemu_mutex_iothread_locked()); 10436 10437 arm_call_pre_el_change_hook(cpu); 10438 10439 assert(!excp_is_internal(cs->exception_index)); 10440 if (arm_el_is_aa64(env, new_el)) { 10441 arm_cpu_do_interrupt_aarch64(cs); 10442 } else { 10443 arm_cpu_do_interrupt_aarch32(cs); 10444 } 10445 10446 arm_call_el_change_hook(cpu); 10447 10448 if (!kvm_enabled()) { 10449 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10450 } 10451 } 10452 #endif /* !CONFIG_USER_ONLY */ 10453 10454 /* Return the exception level which controls this address translation regime */ 10455 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 10456 { 10457 switch (mmu_idx) { 10458 case ARMMMUIdx_S2NS: 10459 case ARMMMUIdx_S1E2: 10460 return 2; 10461 case ARMMMUIdx_S1E3: 10462 return 3; 10463 case ARMMMUIdx_S1SE0: 10464 return arm_el_is_aa64(env, 3) ? 1 : 3; 10465 case ARMMMUIdx_S1SE1: 10466 case ARMMMUIdx_S1NSE0: 10467 case ARMMMUIdx_S1NSE1: 10468 case ARMMMUIdx_MPrivNegPri: 10469 case ARMMMUIdx_MUserNegPri: 10470 case ARMMMUIdx_MPriv: 10471 case ARMMMUIdx_MUser: 10472 case ARMMMUIdx_MSPrivNegPri: 10473 case ARMMMUIdx_MSUserNegPri: 10474 case ARMMMUIdx_MSPriv: 10475 case ARMMMUIdx_MSUser: 10476 return 1; 10477 default: 10478 g_assert_not_reached(); 10479 } 10480 } 10481 10482 #ifndef CONFIG_USER_ONLY 10483 10484 /* Return the SCTLR value which controls this address translation regime */ 10485 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10486 { 10487 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10488 } 10489 10490 /* Return true if the specified stage of address translation is disabled */ 10491 static inline bool regime_translation_disabled(CPUARMState *env, 10492 ARMMMUIdx mmu_idx) 10493 { 10494 if (arm_feature(env, ARM_FEATURE_M)) { 10495 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10496 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10497 case R_V7M_MPU_CTRL_ENABLE_MASK: 10498 /* Enabled, but not for HardFault and NMI */ 10499 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10500 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10501 /* Enabled for all cases */ 10502 return false; 10503 case 0: 10504 default: 10505 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10506 * we warned about that in armv7m_nvic.c when the guest set it. 10507 */ 10508 return true; 10509 } 10510 } 10511 10512 if (mmu_idx == ARMMMUIdx_S2NS) { 10513 /* HCR.DC means HCR.VM behaves as 1 */ 10514 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10515 } 10516 10517 if (env->cp15.hcr_el2 & HCR_TGE) { 10518 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10519 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10520 return true; 10521 } 10522 } 10523 10524 if ((env->cp15.hcr_el2 & HCR_DC) && 10525 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) { 10526 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10527 return true; 10528 } 10529 10530 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10531 } 10532 10533 static inline bool regime_translation_big_endian(CPUARMState *env, 10534 ARMMMUIdx mmu_idx) 10535 { 10536 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10537 } 10538 10539 /* Return the TTBR associated with this translation regime */ 10540 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10541 int ttbrn) 10542 { 10543 if (mmu_idx == ARMMMUIdx_S2NS) { 10544 return env->cp15.vttbr_el2; 10545 } 10546 if (ttbrn == 0) { 10547 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10548 } else { 10549 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10550 } 10551 } 10552 10553 #endif /* !CONFIG_USER_ONLY */ 10554 10555 /* Return the TCR controlling this translation regime */ 10556 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 10557 { 10558 if (mmu_idx == ARMMMUIdx_S2NS) { 10559 return &env->cp15.vtcr_el2; 10560 } 10561 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 10562 } 10563 10564 /* Convert a possible stage1+2 MMU index into the appropriate 10565 * stage 1 MMU index 10566 */ 10567 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10568 { 10569 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 10570 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 10571 } 10572 return mmu_idx; 10573 } 10574 10575 /* Return true if the translation regime is using LPAE format page tables */ 10576 static inline bool regime_using_lpae_format(CPUARMState *env, 10577 ARMMMUIdx mmu_idx) 10578 { 10579 int el = regime_el(env, mmu_idx); 10580 if (el == 2 || arm_el_is_aa64(env, el)) { 10581 return true; 10582 } 10583 if (arm_feature(env, ARM_FEATURE_LPAE) 10584 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10585 return true; 10586 } 10587 return false; 10588 } 10589 10590 /* Returns true if the stage 1 translation regime is using LPAE format page 10591 * tables. Used when raising alignment exceptions, whose FSR changes depending 10592 * on whether the long or short descriptor format is in use. */ 10593 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10594 { 10595 mmu_idx = stage_1_mmu_idx(mmu_idx); 10596 10597 return regime_using_lpae_format(env, mmu_idx); 10598 } 10599 10600 #ifndef CONFIG_USER_ONLY 10601 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10602 { 10603 switch (mmu_idx) { 10604 case ARMMMUIdx_S1SE0: 10605 case ARMMMUIdx_S1NSE0: 10606 case ARMMMUIdx_MUser: 10607 case ARMMMUIdx_MSUser: 10608 case ARMMMUIdx_MUserNegPri: 10609 case ARMMMUIdx_MSUserNegPri: 10610 return true; 10611 default: 10612 return false; 10613 case ARMMMUIdx_S12NSE0: 10614 case ARMMMUIdx_S12NSE1: 10615 g_assert_not_reached(); 10616 } 10617 } 10618 10619 /* Translate section/page access permissions to page 10620 * R/W protection flags 10621 * 10622 * @env: CPUARMState 10623 * @mmu_idx: MMU index indicating required translation regime 10624 * @ap: The 3-bit access permissions (AP[2:0]) 10625 * @domain_prot: The 2-bit domain access permissions 10626 */ 10627 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10628 int ap, int domain_prot) 10629 { 10630 bool is_user = regime_is_user(env, mmu_idx); 10631 10632 if (domain_prot == 3) { 10633 return PAGE_READ | PAGE_WRITE; 10634 } 10635 10636 switch (ap) { 10637 case 0: 10638 if (arm_feature(env, ARM_FEATURE_V7)) { 10639 return 0; 10640 } 10641 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10642 case SCTLR_S: 10643 return is_user ? 0 : PAGE_READ; 10644 case SCTLR_R: 10645 return PAGE_READ; 10646 default: 10647 return 0; 10648 } 10649 case 1: 10650 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10651 case 2: 10652 if (is_user) { 10653 return PAGE_READ; 10654 } else { 10655 return PAGE_READ | PAGE_WRITE; 10656 } 10657 case 3: 10658 return PAGE_READ | PAGE_WRITE; 10659 case 4: /* Reserved. */ 10660 return 0; 10661 case 5: 10662 return is_user ? 0 : PAGE_READ; 10663 case 6: 10664 return PAGE_READ; 10665 case 7: 10666 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10667 return 0; 10668 } 10669 return PAGE_READ; 10670 default: 10671 g_assert_not_reached(); 10672 } 10673 } 10674 10675 /* Translate section/page access permissions to page 10676 * R/W protection flags. 10677 * 10678 * @ap: The 2-bit simple AP (AP[2:1]) 10679 * @is_user: TRUE if accessing from PL0 10680 */ 10681 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10682 { 10683 switch (ap) { 10684 case 0: 10685 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10686 case 1: 10687 return PAGE_READ | PAGE_WRITE; 10688 case 2: 10689 return is_user ? 0 : PAGE_READ; 10690 case 3: 10691 return PAGE_READ; 10692 default: 10693 g_assert_not_reached(); 10694 } 10695 } 10696 10697 static inline int 10698 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10699 { 10700 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10701 } 10702 10703 /* Translate S2 section/page access permissions to protection flags 10704 * 10705 * @env: CPUARMState 10706 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10707 * @xn: XN (execute-never) bit 10708 */ 10709 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 10710 { 10711 int prot = 0; 10712 10713 if (s2ap & 1) { 10714 prot |= PAGE_READ; 10715 } 10716 if (s2ap & 2) { 10717 prot |= PAGE_WRITE; 10718 } 10719 if (!xn) { 10720 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10721 prot |= PAGE_EXEC; 10722 } 10723 } 10724 return prot; 10725 } 10726 10727 /* Translate section/page access permissions to protection flags 10728 * 10729 * @env: CPUARMState 10730 * @mmu_idx: MMU index indicating required translation regime 10731 * @is_aa64: TRUE if AArch64 10732 * @ap: The 2-bit simple AP (AP[2:1]) 10733 * @ns: NS (non-secure) bit 10734 * @xn: XN (execute-never) bit 10735 * @pxn: PXN (privileged execute-never) bit 10736 */ 10737 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10738 int ap, int ns, int xn, int pxn) 10739 { 10740 bool is_user = regime_is_user(env, mmu_idx); 10741 int prot_rw, user_rw; 10742 bool have_wxn; 10743 int wxn = 0; 10744 10745 assert(mmu_idx != ARMMMUIdx_S2NS); 10746 10747 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10748 if (is_user) { 10749 prot_rw = user_rw; 10750 } else { 10751 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10752 } 10753 10754 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10755 return prot_rw; 10756 } 10757 10758 /* TODO have_wxn should be replaced with 10759 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10760 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10761 * compatible processors have EL2, which is required for [U]WXN. 10762 */ 10763 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10764 10765 if (have_wxn) { 10766 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10767 } 10768 10769 if (is_aa64) { 10770 switch (regime_el(env, mmu_idx)) { 10771 case 1: 10772 if (!is_user) { 10773 xn = pxn || (user_rw & PAGE_WRITE); 10774 } 10775 break; 10776 case 2: 10777 case 3: 10778 break; 10779 } 10780 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10781 switch (regime_el(env, mmu_idx)) { 10782 case 1: 10783 case 3: 10784 if (is_user) { 10785 xn = xn || !(user_rw & PAGE_READ); 10786 } else { 10787 int uwxn = 0; 10788 if (have_wxn) { 10789 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10790 } 10791 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10792 (uwxn && (user_rw & PAGE_WRITE)); 10793 } 10794 break; 10795 case 2: 10796 break; 10797 } 10798 } else { 10799 xn = wxn = 0; 10800 } 10801 10802 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10803 return prot_rw; 10804 } 10805 return prot_rw | PAGE_EXEC; 10806 } 10807 10808 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10809 uint32_t *table, uint32_t address) 10810 { 10811 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10812 TCR *tcr = regime_tcr(env, mmu_idx); 10813 10814 if (address & tcr->mask) { 10815 if (tcr->raw_tcr & TTBCR_PD1) { 10816 /* Translation table walk disabled for TTBR1 */ 10817 return false; 10818 } 10819 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10820 } else { 10821 if (tcr->raw_tcr & TTBCR_PD0) { 10822 /* Translation table walk disabled for TTBR0 */ 10823 return false; 10824 } 10825 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10826 } 10827 *table |= (address >> 18) & 0x3ffc; 10828 return true; 10829 } 10830 10831 /* Translate a S1 pagetable walk through S2 if needed. */ 10832 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10833 hwaddr addr, MemTxAttrs txattrs, 10834 ARMMMUFaultInfo *fi) 10835 { 10836 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 10837 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 10838 target_ulong s2size; 10839 hwaddr s2pa; 10840 int s2prot; 10841 int ret; 10842 ARMCacheAttrs cacheattrs = {}; 10843 ARMCacheAttrs *pcacheattrs = NULL; 10844 10845 if (env->cp15.hcr_el2 & HCR_PTW) { 10846 /* 10847 * PTW means we must fault if this S1 walk touches S2 Device 10848 * memory; otherwise we don't care about the attributes and can 10849 * save the S2 translation the effort of computing them. 10850 */ 10851 pcacheattrs = &cacheattrs; 10852 } 10853 10854 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 10855 &txattrs, &s2prot, &s2size, fi, pcacheattrs); 10856 if (ret) { 10857 assert(fi->type != ARMFault_None); 10858 fi->s2addr = addr; 10859 fi->stage2 = true; 10860 fi->s1ptw = true; 10861 return ~0; 10862 } 10863 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { 10864 /* Access was to Device memory: generate Permission fault */ 10865 fi->type = ARMFault_Permission; 10866 fi->s2addr = addr; 10867 fi->stage2 = true; 10868 fi->s1ptw = true; 10869 return ~0; 10870 } 10871 addr = s2pa; 10872 } 10873 return addr; 10874 } 10875 10876 /* All loads done in the course of a page table walk go through here. */ 10877 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10878 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10879 { 10880 ARMCPU *cpu = ARM_CPU(cs); 10881 CPUARMState *env = &cpu->env; 10882 MemTxAttrs attrs = {}; 10883 MemTxResult result = MEMTX_OK; 10884 AddressSpace *as; 10885 uint32_t data; 10886 10887 attrs.secure = is_secure; 10888 as = arm_addressspace(cs, attrs); 10889 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10890 if (fi->s1ptw) { 10891 return 0; 10892 } 10893 if (regime_translation_big_endian(env, mmu_idx)) { 10894 data = address_space_ldl_be(as, addr, attrs, &result); 10895 } else { 10896 data = address_space_ldl_le(as, addr, attrs, &result); 10897 } 10898 if (result == MEMTX_OK) { 10899 return data; 10900 } 10901 fi->type = ARMFault_SyncExternalOnWalk; 10902 fi->ea = arm_extabort_type(result); 10903 return 0; 10904 } 10905 10906 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10907 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10908 { 10909 ARMCPU *cpu = ARM_CPU(cs); 10910 CPUARMState *env = &cpu->env; 10911 MemTxAttrs attrs = {}; 10912 MemTxResult result = MEMTX_OK; 10913 AddressSpace *as; 10914 uint64_t data; 10915 10916 attrs.secure = is_secure; 10917 as = arm_addressspace(cs, attrs); 10918 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10919 if (fi->s1ptw) { 10920 return 0; 10921 } 10922 if (regime_translation_big_endian(env, mmu_idx)) { 10923 data = address_space_ldq_be(as, addr, attrs, &result); 10924 } else { 10925 data = address_space_ldq_le(as, addr, attrs, &result); 10926 } 10927 if (result == MEMTX_OK) { 10928 return data; 10929 } 10930 fi->type = ARMFault_SyncExternalOnWalk; 10931 fi->ea = arm_extabort_type(result); 10932 return 0; 10933 } 10934 10935 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10936 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10937 hwaddr *phys_ptr, int *prot, 10938 target_ulong *page_size, 10939 ARMMMUFaultInfo *fi) 10940 { 10941 CPUState *cs = CPU(arm_env_get_cpu(env)); 10942 int level = 1; 10943 uint32_t table; 10944 uint32_t desc; 10945 int type; 10946 int ap; 10947 int domain = 0; 10948 int domain_prot; 10949 hwaddr phys_addr; 10950 uint32_t dacr; 10951 10952 /* Pagetable walk. */ 10953 /* Lookup l1 descriptor. */ 10954 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10955 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10956 fi->type = ARMFault_Translation; 10957 goto do_fault; 10958 } 10959 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10960 mmu_idx, fi); 10961 if (fi->type != ARMFault_None) { 10962 goto do_fault; 10963 } 10964 type = (desc & 3); 10965 domain = (desc >> 5) & 0x0f; 10966 if (regime_el(env, mmu_idx) == 1) { 10967 dacr = env->cp15.dacr_ns; 10968 } else { 10969 dacr = env->cp15.dacr_s; 10970 } 10971 domain_prot = (dacr >> (domain * 2)) & 3; 10972 if (type == 0) { 10973 /* Section translation fault. */ 10974 fi->type = ARMFault_Translation; 10975 goto do_fault; 10976 } 10977 if (type != 2) { 10978 level = 2; 10979 } 10980 if (domain_prot == 0 || domain_prot == 2) { 10981 fi->type = ARMFault_Domain; 10982 goto do_fault; 10983 } 10984 if (type == 2) { 10985 /* 1Mb section. */ 10986 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10987 ap = (desc >> 10) & 3; 10988 *page_size = 1024 * 1024; 10989 } else { 10990 /* Lookup l2 entry. */ 10991 if (type == 1) { 10992 /* Coarse pagetable. */ 10993 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10994 } else { 10995 /* Fine pagetable. */ 10996 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10997 } 10998 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10999 mmu_idx, fi); 11000 if (fi->type != ARMFault_None) { 11001 goto do_fault; 11002 } 11003 switch (desc & 3) { 11004 case 0: /* Page translation fault. */ 11005 fi->type = ARMFault_Translation; 11006 goto do_fault; 11007 case 1: /* 64k page. */ 11008 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11009 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 11010 *page_size = 0x10000; 11011 break; 11012 case 2: /* 4k page. */ 11013 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11014 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 11015 *page_size = 0x1000; 11016 break; 11017 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 11018 if (type == 1) { 11019 /* ARMv6/XScale extended small page format */ 11020 if (arm_feature(env, ARM_FEATURE_XSCALE) 11021 || arm_feature(env, ARM_FEATURE_V6)) { 11022 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11023 *page_size = 0x1000; 11024 } else { 11025 /* UNPREDICTABLE in ARMv5; we choose to take a 11026 * page translation fault. 11027 */ 11028 fi->type = ARMFault_Translation; 11029 goto do_fault; 11030 } 11031 } else { 11032 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 11033 *page_size = 0x400; 11034 } 11035 ap = (desc >> 4) & 3; 11036 break; 11037 default: 11038 /* Never happens, but compiler isn't smart enough to tell. */ 11039 abort(); 11040 } 11041 } 11042 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11043 *prot |= *prot ? PAGE_EXEC : 0; 11044 if (!(*prot & (1 << access_type))) { 11045 /* Access permission fault. */ 11046 fi->type = ARMFault_Permission; 11047 goto do_fault; 11048 } 11049 *phys_ptr = phys_addr; 11050 return false; 11051 do_fault: 11052 fi->domain = domain; 11053 fi->level = level; 11054 return true; 11055 } 11056 11057 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 11058 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11059 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 11060 target_ulong *page_size, ARMMMUFaultInfo *fi) 11061 { 11062 CPUState *cs = CPU(arm_env_get_cpu(env)); 11063 int level = 1; 11064 uint32_t table; 11065 uint32_t desc; 11066 uint32_t xn; 11067 uint32_t pxn = 0; 11068 int type; 11069 int ap; 11070 int domain = 0; 11071 int domain_prot; 11072 hwaddr phys_addr; 11073 uint32_t dacr; 11074 bool ns; 11075 11076 /* Pagetable walk. */ 11077 /* Lookup l1 descriptor. */ 11078 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 11079 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 11080 fi->type = ARMFault_Translation; 11081 goto do_fault; 11082 } 11083 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11084 mmu_idx, fi); 11085 if (fi->type != ARMFault_None) { 11086 goto do_fault; 11087 } 11088 type = (desc & 3); 11089 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 11090 /* Section translation fault, or attempt to use the encoding 11091 * which is Reserved on implementations without PXN. 11092 */ 11093 fi->type = ARMFault_Translation; 11094 goto do_fault; 11095 } 11096 if ((type == 1) || !(desc & (1 << 18))) { 11097 /* Page or Section. */ 11098 domain = (desc >> 5) & 0x0f; 11099 } 11100 if (regime_el(env, mmu_idx) == 1) { 11101 dacr = env->cp15.dacr_ns; 11102 } else { 11103 dacr = env->cp15.dacr_s; 11104 } 11105 if (type == 1) { 11106 level = 2; 11107 } 11108 domain_prot = (dacr >> (domain * 2)) & 3; 11109 if (domain_prot == 0 || domain_prot == 2) { 11110 /* Section or Page domain fault */ 11111 fi->type = ARMFault_Domain; 11112 goto do_fault; 11113 } 11114 if (type != 1) { 11115 if (desc & (1 << 18)) { 11116 /* Supersection. */ 11117 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 11118 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 11119 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 11120 *page_size = 0x1000000; 11121 } else { 11122 /* Section. */ 11123 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 11124 *page_size = 0x100000; 11125 } 11126 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 11127 xn = desc & (1 << 4); 11128 pxn = desc & 1; 11129 ns = extract32(desc, 19, 1); 11130 } else { 11131 if (arm_feature(env, ARM_FEATURE_PXN)) { 11132 pxn = (desc >> 2) & 1; 11133 } 11134 ns = extract32(desc, 3, 1); 11135 /* Lookup l2 entry. */ 11136 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 11137 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11138 mmu_idx, fi); 11139 if (fi->type != ARMFault_None) { 11140 goto do_fault; 11141 } 11142 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 11143 switch (desc & 3) { 11144 case 0: /* Page translation fault. */ 11145 fi->type = ARMFault_Translation; 11146 goto do_fault; 11147 case 1: /* 64k page. */ 11148 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11149 xn = desc & (1 << 15); 11150 *page_size = 0x10000; 11151 break; 11152 case 2: case 3: /* 4k page. */ 11153 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11154 xn = desc & 1; 11155 *page_size = 0x1000; 11156 break; 11157 default: 11158 /* Never happens, but compiler isn't smart enough to tell. */ 11159 abort(); 11160 } 11161 } 11162 if (domain_prot == 3) { 11163 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11164 } else { 11165 if (pxn && !regime_is_user(env, mmu_idx)) { 11166 xn = 1; 11167 } 11168 if (xn && access_type == MMU_INST_FETCH) { 11169 fi->type = ARMFault_Permission; 11170 goto do_fault; 11171 } 11172 11173 if (arm_feature(env, ARM_FEATURE_V6K) && 11174 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 11175 /* The simplified model uses AP[0] as an access control bit. */ 11176 if ((ap & 1) == 0) { 11177 /* Access flag fault. */ 11178 fi->type = ARMFault_AccessFlag; 11179 goto do_fault; 11180 } 11181 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 11182 } else { 11183 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11184 } 11185 if (*prot && !xn) { 11186 *prot |= PAGE_EXEC; 11187 } 11188 if (!(*prot & (1 << access_type))) { 11189 /* Access permission fault. */ 11190 fi->type = ARMFault_Permission; 11191 goto do_fault; 11192 } 11193 } 11194 if (ns) { 11195 /* The NS bit will (as required by the architecture) have no effect if 11196 * the CPU doesn't support TZ or this is a non-secure translation 11197 * regime, because the attribute will already be non-secure. 11198 */ 11199 attrs->secure = false; 11200 } 11201 *phys_ptr = phys_addr; 11202 return false; 11203 do_fault: 11204 fi->domain = domain; 11205 fi->level = level; 11206 return true; 11207 } 11208 11209 /* 11210 * check_s2_mmu_setup 11211 * @cpu: ARMCPU 11212 * @is_aa64: True if the translation regime is in AArch64 state 11213 * @startlevel: Suggested starting level 11214 * @inputsize: Bitsize of IPAs 11215 * @stride: Page-table stride (See the ARM ARM) 11216 * 11217 * Returns true if the suggested S2 translation parameters are OK and 11218 * false otherwise. 11219 */ 11220 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 11221 int inputsize, int stride) 11222 { 11223 const int grainsize = stride + 3; 11224 int startsizecheck; 11225 11226 /* Negative levels are never allowed. */ 11227 if (level < 0) { 11228 return false; 11229 } 11230 11231 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 11232 if (startsizecheck < 1 || startsizecheck > stride + 4) { 11233 return false; 11234 } 11235 11236 if (is_aa64) { 11237 CPUARMState *env = &cpu->env; 11238 unsigned int pamax = arm_pamax(cpu); 11239 11240 switch (stride) { 11241 case 13: /* 64KB Pages. */ 11242 if (level == 0 || (level == 1 && pamax <= 42)) { 11243 return false; 11244 } 11245 break; 11246 case 11: /* 16KB Pages. */ 11247 if (level == 0 || (level == 1 && pamax <= 40)) { 11248 return false; 11249 } 11250 break; 11251 case 9: /* 4KB Pages. */ 11252 if (level == 0 && pamax <= 42) { 11253 return false; 11254 } 11255 break; 11256 default: 11257 g_assert_not_reached(); 11258 } 11259 11260 /* Inputsize checks. */ 11261 if (inputsize > pamax && 11262 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 11263 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 11264 return false; 11265 } 11266 } else { 11267 /* AArch32 only supports 4KB pages. Assert on that. */ 11268 assert(stride == 9); 11269 11270 if (level == 0) { 11271 return false; 11272 } 11273 } 11274 return true; 11275 } 11276 11277 /* Translate from the 4-bit stage 2 representation of 11278 * memory attributes (without cache-allocation hints) to 11279 * the 8-bit representation of the stage 1 MAIR registers 11280 * (which includes allocation hints). 11281 * 11282 * ref: shared/translation/attrs/S2AttrDecode() 11283 * .../S2ConvertAttrsHints() 11284 */ 11285 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11286 { 11287 uint8_t hiattr = extract32(s2attrs, 2, 2); 11288 uint8_t loattr = extract32(s2attrs, 0, 2); 11289 uint8_t hihint = 0, lohint = 0; 11290 11291 if (hiattr != 0) { /* normal memory */ 11292 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 11293 hiattr = loattr = 1; /* non-cacheable */ 11294 } else { 11295 if (hiattr != 1) { /* Write-through or write-back */ 11296 hihint = 3; /* RW allocate */ 11297 } 11298 if (loattr != 1) { /* Write-through or write-back */ 11299 lohint = 3; /* RW allocate */ 11300 } 11301 } 11302 } 11303 11304 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11305 } 11306 #endif /* !CONFIG_USER_ONLY */ 11307 11308 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va, 11309 ARMMMUIdx mmu_idx) 11310 { 11311 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11312 uint32_t el = regime_el(env, mmu_idx); 11313 bool tbi, tbid, epd, hpd, using16k, using64k; 11314 int select, tsz; 11315 11316 /* 11317 * Bit 55 is always between the two regions, and is canonical for 11318 * determining if address tagging is enabled. 11319 */ 11320 select = extract64(va, 55, 1); 11321 11322 if (el > 1) { 11323 tsz = extract32(tcr, 0, 6); 11324 using64k = extract32(tcr, 14, 1); 11325 using16k = extract32(tcr, 15, 1); 11326 if (mmu_idx == ARMMMUIdx_S2NS) { 11327 /* VTCR_EL2 */ 11328 tbi = tbid = hpd = false; 11329 } else { 11330 tbi = extract32(tcr, 20, 1); 11331 hpd = extract32(tcr, 24, 1); 11332 tbid = extract32(tcr, 29, 1); 11333 } 11334 epd = false; 11335 } else if (!select) { 11336 tsz = extract32(tcr, 0, 6); 11337 epd = extract32(tcr, 7, 1); 11338 using64k = extract32(tcr, 14, 1); 11339 using16k = extract32(tcr, 15, 1); 11340 tbi = extract64(tcr, 37, 1); 11341 hpd = extract64(tcr, 41, 1); 11342 tbid = extract64(tcr, 51, 1); 11343 } else { 11344 int tg = extract32(tcr, 30, 2); 11345 using16k = tg == 1; 11346 using64k = tg == 3; 11347 tsz = extract32(tcr, 16, 6); 11348 epd = extract32(tcr, 23, 1); 11349 tbi = extract64(tcr, 38, 1); 11350 hpd = extract64(tcr, 42, 1); 11351 tbid = extract64(tcr, 52, 1); 11352 } 11353 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ 11354 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 11355 11356 return (ARMVAParameters) { 11357 .tsz = tsz, 11358 .select = select, 11359 .tbi = tbi, 11360 .tbid = tbid, 11361 .epd = epd, 11362 .hpd = hpd, 11363 .using16k = using16k, 11364 .using64k = using64k, 11365 }; 11366 } 11367 11368 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11369 ARMMMUIdx mmu_idx, bool data) 11370 { 11371 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx); 11372 11373 /* Present TBI as a composite with TBID. */ 11374 ret.tbi &= (data || !ret.tbid); 11375 return ret; 11376 } 11377 11378 #ifndef CONFIG_USER_ONLY 11379 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11380 ARMMMUIdx mmu_idx) 11381 { 11382 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11383 uint32_t el = regime_el(env, mmu_idx); 11384 int select, tsz; 11385 bool epd, hpd; 11386 11387 if (mmu_idx == ARMMMUIdx_S2NS) { 11388 /* VTCR */ 11389 bool sext = extract32(tcr, 4, 1); 11390 bool sign = extract32(tcr, 3, 1); 11391 11392 /* 11393 * If the sign-extend bit is not the same as t0sz[3], the result 11394 * is unpredictable. Flag this as a guest error. 11395 */ 11396 if (sign != sext) { 11397 qemu_log_mask(LOG_GUEST_ERROR, 11398 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11399 } 11400 tsz = sextract32(tcr, 0, 4) + 8; 11401 select = 0; 11402 hpd = false; 11403 epd = false; 11404 } else if (el == 2) { 11405 /* HTCR */ 11406 tsz = extract32(tcr, 0, 3); 11407 select = 0; 11408 hpd = extract64(tcr, 24, 1); 11409 epd = false; 11410 } else { 11411 int t0sz = extract32(tcr, 0, 3); 11412 int t1sz = extract32(tcr, 16, 3); 11413 11414 if (t1sz == 0) { 11415 select = va > (0xffffffffu >> t0sz); 11416 } else { 11417 /* Note that we will detect errors later. */ 11418 select = va >= ~(0xffffffffu >> t1sz); 11419 } 11420 if (!select) { 11421 tsz = t0sz; 11422 epd = extract32(tcr, 7, 1); 11423 hpd = extract64(tcr, 41, 1); 11424 } else { 11425 tsz = t1sz; 11426 epd = extract32(tcr, 23, 1); 11427 hpd = extract64(tcr, 42, 1); 11428 } 11429 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11430 hpd &= extract32(tcr, 6, 1); 11431 } 11432 11433 return (ARMVAParameters) { 11434 .tsz = tsz, 11435 .select = select, 11436 .epd = epd, 11437 .hpd = hpd, 11438 }; 11439 } 11440 11441 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 11442 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11443 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11444 target_ulong *page_size_ptr, 11445 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11446 { 11447 ARMCPU *cpu = arm_env_get_cpu(env); 11448 CPUState *cs = CPU(cpu); 11449 /* Read an LPAE long-descriptor translation table. */ 11450 ARMFaultType fault_type = ARMFault_Translation; 11451 uint32_t level; 11452 ARMVAParameters param; 11453 uint64_t ttbr; 11454 hwaddr descaddr, indexmask, indexmask_grainsize; 11455 uint32_t tableattrs; 11456 target_ulong page_size; 11457 uint32_t attrs; 11458 int32_t stride; 11459 int addrsize, inputsize; 11460 TCR *tcr = regime_tcr(env, mmu_idx); 11461 int ap, ns, xn, pxn; 11462 uint32_t el = regime_el(env, mmu_idx); 11463 bool ttbr1_valid; 11464 uint64_t descaddrmask; 11465 bool aarch64 = arm_el_is_aa64(env, el); 11466 bool guarded = false; 11467 11468 /* TODO: 11469 * This code does not handle the different format TCR for VTCR_EL2. 11470 * This code also does not support shareability levels. 11471 * Attribute and permission bit handling should also be checked when adding 11472 * support for those page table walks. 11473 */ 11474 if (aarch64) { 11475 param = aa64_va_parameters(env, address, mmu_idx, 11476 access_type != MMU_INST_FETCH); 11477 level = 0; 11478 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 11479 * invalid. 11480 */ 11481 ttbr1_valid = (el < 2); 11482 addrsize = 64 - 8 * param.tbi; 11483 inputsize = 64 - param.tsz; 11484 } else { 11485 param = aa32_va_parameters(env, address, mmu_idx); 11486 level = 1; 11487 /* There is no TTBR1 for EL2 */ 11488 ttbr1_valid = (el != 2); 11489 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32); 11490 inputsize = addrsize - param.tsz; 11491 } 11492 11493 /* 11494 * We determined the region when collecting the parameters, but we 11495 * have not yet validated that the address is valid for the region. 11496 * Extract the top bits and verify that they all match select. 11497 * 11498 * For aa32, if inputsize == addrsize, then we have selected the 11499 * region by exclusion in aa32_va_parameters and there is no more 11500 * validation to do here. 11501 */ 11502 if (inputsize < addrsize) { 11503 target_ulong top_bits = sextract64(address, inputsize, 11504 addrsize - inputsize); 11505 if (-top_bits != param.select || (param.select && !ttbr1_valid)) { 11506 /* The gap between the two regions is a Translation fault */ 11507 fault_type = ARMFault_Translation; 11508 goto do_fault; 11509 } 11510 } 11511 11512 if (param.using64k) { 11513 stride = 13; 11514 } else if (param.using16k) { 11515 stride = 11; 11516 } else { 11517 stride = 9; 11518 } 11519 11520 /* Note that QEMU ignores shareability and cacheability attributes, 11521 * so we don't need to do anything with the SH, ORGN, IRGN fields 11522 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11523 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11524 * implement any ASID-like capability so we can ignore it (instead 11525 * we will always flush the TLB any time the ASID is changed). 11526 */ 11527 ttbr = regime_ttbr(env, mmu_idx, param.select); 11528 11529 /* Here we should have set up all the parameters for the translation: 11530 * inputsize, ttbr, epd, stride, tbi 11531 */ 11532 11533 if (param.epd) { 11534 /* Translation table walk disabled => Translation fault on TLB miss 11535 * Note: This is always 0 on 64-bit EL2 and EL3. 11536 */ 11537 goto do_fault; 11538 } 11539 11540 if (mmu_idx != ARMMMUIdx_S2NS) { 11541 /* The starting level depends on the virtual address size (which can 11542 * be up to 48 bits) and the translation granule size. It indicates 11543 * the number of strides (stride bits at a time) needed to 11544 * consume the bits of the input address. In the pseudocode this is: 11545 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11546 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11547 * our 'stride + 3' and 'stride' is our 'stride'. 11548 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11549 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11550 * = 4 - (inputsize - 4) / stride; 11551 */ 11552 level = 4 - (inputsize - 4) / stride; 11553 } else { 11554 /* For stage 2 translations the starting level is specified by the 11555 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11556 */ 11557 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11558 uint32_t startlevel; 11559 bool ok; 11560 11561 if (!aarch64 || stride == 9) { 11562 /* AArch32 or 4KB pages */ 11563 startlevel = 2 - sl0; 11564 } else { 11565 /* 16KB or 64KB pages */ 11566 startlevel = 3 - sl0; 11567 } 11568 11569 /* Check that the starting level is valid. */ 11570 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11571 inputsize, stride); 11572 if (!ok) { 11573 fault_type = ARMFault_Translation; 11574 goto do_fault; 11575 } 11576 level = startlevel; 11577 } 11578 11579 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 11580 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 11581 11582 /* Now we can extract the actual base address from the TTBR */ 11583 descaddr = extract64(ttbr, 0, 48); 11584 descaddr &= ~indexmask; 11585 11586 /* The address field in the descriptor goes up to bit 39 for ARMv7 11587 * but up to bit 47 for ARMv8, but we use the descaddrmask 11588 * up to bit 39 for AArch32, because we don't need other bits in that case 11589 * to construct next descriptor address (anyway they should be all zeroes). 11590 */ 11591 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 11592 ~indexmask_grainsize; 11593 11594 /* Secure accesses start with the page table in secure memory and 11595 * can be downgraded to non-secure at any step. Non-secure accesses 11596 * remain non-secure. We implement this by just ORing in the NSTable/NS 11597 * bits at each step. 11598 */ 11599 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11600 for (;;) { 11601 uint64_t descriptor; 11602 bool nstable; 11603 11604 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11605 descaddr &= ~7ULL; 11606 nstable = extract32(tableattrs, 4, 1); 11607 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11608 if (fi->type != ARMFault_None) { 11609 goto do_fault; 11610 } 11611 11612 if (!(descriptor & 1) || 11613 (!(descriptor & 2) && (level == 3))) { 11614 /* Invalid, or the Reserved level 3 encoding */ 11615 goto do_fault; 11616 } 11617 descaddr = descriptor & descaddrmask; 11618 11619 if ((descriptor & 2) && (level < 3)) { 11620 /* Table entry. The top five bits are attributes which may 11621 * propagate down through lower levels of the table (and 11622 * which are all arranged so that 0 means "no effect", so 11623 * we can gather them up by ORing in the bits at each level). 11624 */ 11625 tableattrs |= extract64(descriptor, 59, 5); 11626 level++; 11627 indexmask = indexmask_grainsize; 11628 continue; 11629 } 11630 /* Block entry at level 1 or 2, or page entry at level 3. 11631 * These are basically the same thing, although the number 11632 * of bits we pull in from the vaddr varies. 11633 */ 11634 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11635 descaddr |= (address & (page_size - 1)); 11636 /* Extract attributes from the descriptor */ 11637 attrs = extract64(descriptor, 2, 10) 11638 | (extract64(descriptor, 52, 12) << 10); 11639 11640 if (mmu_idx == ARMMMUIdx_S2NS) { 11641 /* Stage 2 table descriptors do not include any attribute fields */ 11642 break; 11643 } 11644 /* Merge in attributes from table descriptors */ 11645 attrs |= nstable << 3; /* NS */ 11646 guarded = extract64(descriptor, 50, 1); /* GP */ 11647 if (param.hpd) { 11648 /* HPD disables all the table attributes except NSTable. */ 11649 break; 11650 } 11651 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11652 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11653 * means "force PL1 access only", which means forcing AP[1] to 0. 11654 */ 11655 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11656 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11657 break; 11658 } 11659 /* Here descaddr is the final physical address, and attributes 11660 * are all in attrs. 11661 */ 11662 fault_type = ARMFault_AccessFlag; 11663 if ((attrs & (1 << 8)) == 0) { 11664 /* Access flag */ 11665 goto do_fault; 11666 } 11667 11668 ap = extract32(attrs, 4, 2); 11669 xn = extract32(attrs, 12, 1); 11670 11671 if (mmu_idx == ARMMMUIdx_S2NS) { 11672 ns = true; 11673 *prot = get_S2prot(env, ap, xn); 11674 } else { 11675 ns = extract32(attrs, 3, 1); 11676 pxn = extract32(attrs, 11, 1); 11677 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11678 } 11679 11680 fault_type = ARMFault_Permission; 11681 if (!(*prot & (1 << access_type))) { 11682 goto do_fault; 11683 } 11684 11685 if (ns) { 11686 /* The NS bit will (as required by the architecture) have no effect if 11687 * the CPU doesn't support TZ or this is a non-secure translation 11688 * regime, because the attribute will already be non-secure. 11689 */ 11690 txattrs->secure = false; 11691 } 11692 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11693 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11694 txattrs->target_tlb_bit0 = true; 11695 } 11696 11697 if (cacheattrs != NULL) { 11698 if (mmu_idx == ARMMMUIdx_S2NS) { 11699 cacheattrs->attrs = convert_stage2_attrs(env, 11700 extract32(attrs, 0, 4)); 11701 } else { 11702 /* Index into MAIR registers for cache attributes */ 11703 uint8_t attrindx = extract32(attrs, 0, 3); 11704 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11705 assert(attrindx <= 7); 11706 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11707 } 11708 cacheattrs->shareability = extract32(attrs, 6, 2); 11709 } 11710 11711 *phys_ptr = descaddr; 11712 *page_size_ptr = page_size; 11713 return false; 11714 11715 do_fault: 11716 fi->type = fault_type; 11717 fi->level = level; 11718 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11719 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 11720 return true; 11721 } 11722 11723 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11724 ARMMMUIdx mmu_idx, 11725 int32_t address, int *prot) 11726 { 11727 if (!arm_feature(env, ARM_FEATURE_M)) { 11728 *prot = PAGE_READ | PAGE_WRITE; 11729 switch (address) { 11730 case 0xF0000000 ... 0xFFFFFFFF: 11731 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11732 /* hivecs execing is ok */ 11733 *prot |= PAGE_EXEC; 11734 } 11735 break; 11736 case 0x00000000 ... 0x7FFFFFFF: 11737 *prot |= PAGE_EXEC; 11738 break; 11739 } 11740 } else { 11741 /* Default system address map for M profile cores. 11742 * The architecture specifies which regions are execute-never; 11743 * at the MPU level no other checks are defined. 11744 */ 11745 switch (address) { 11746 case 0x00000000 ... 0x1fffffff: /* ROM */ 11747 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11748 case 0x60000000 ... 0x7fffffff: /* RAM */ 11749 case 0x80000000 ... 0x9fffffff: /* RAM */ 11750 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11751 break; 11752 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11753 case 0xa0000000 ... 0xbfffffff: /* Device */ 11754 case 0xc0000000 ... 0xdfffffff: /* Device */ 11755 case 0xe0000000 ... 0xffffffff: /* System */ 11756 *prot = PAGE_READ | PAGE_WRITE; 11757 break; 11758 default: 11759 g_assert_not_reached(); 11760 } 11761 } 11762 } 11763 11764 static bool pmsav7_use_background_region(ARMCPU *cpu, 11765 ARMMMUIdx mmu_idx, bool is_user) 11766 { 11767 /* Return true if we should use the default memory map as a 11768 * "background" region if there are no hits against any MPU regions. 11769 */ 11770 CPUARMState *env = &cpu->env; 11771 11772 if (is_user) { 11773 return false; 11774 } 11775 11776 if (arm_feature(env, ARM_FEATURE_M)) { 11777 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11778 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11779 } else { 11780 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11781 } 11782 } 11783 11784 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11785 { 11786 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11787 return arm_feature(env, ARM_FEATURE_M) && 11788 extract32(address, 20, 12) == 0xe00; 11789 } 11790 11791 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11792 { 11793 /* True if address is in the M profile system region 11794 * 0xe0000000 - 0xffffffff 11795 */ 11796 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11797 } 11798 11799 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11800 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11801 hwaddr *phys_ptr, int *prot, 11802 target_ulong *page_size, 11803 ARMMMUFaultInfo *fi) 11804 { 11805 ARMCPU *cpu = arm_env_get_cpu(env); 11806 int n; 11807 bool is_user = regime_is_user(env, mmu_idx); 11808 11809 *phys_ptr = address; 11810 *page_size = TARGET_PAGE_SIZE; 11811 *prot = 0; 11812 11813 if (regime_translation_disabled(env, mmu_idx) || 11814 m_is_ppb_region(env, address)) { 11815 /* MPU disabled or M profile PPB access: use default memory map. 11816 * The other case which uses the default memory map in the 11817 * v7M ARM ARM pseudocode is exception vector reads from the vector 11818 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11819 * which always does a direct read using address_space_ldl(), rather 11820 * than going via this function, so we don't need to check that here. 11821 */ 11822 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11823 } else { /* MPU enabled */ 11824 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11825 /* region search */ 11826 uint32_t base = env->pmsav7.drbar[n]; 11827 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11828 uint32_t rmask; 11829 bool srdis = false; 11830 11831 if (!(env->pmsav7.drsr[n] & 0x1)) { 11832 continue; 11833 } 11834 11835 if (!rsize) { 11836 qemu_log_mask(LOG_GUEST_ERROR, 11837 "DRSR[%d]: Rsize field cannot be 0\n", n); 11838 continue; 11839 } 11840 rsize++; 11841 rmask = (1ull << rsize) - 1; 11842 11843 if (base & rmask) { 11844 qemu_log_mask(LOG_GUEST_ERROR, 11845 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11846 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11847 n, base, rmask); 11848 continue; 11849 } 11850 11851 if (address < base || address > base + rmask) { 11852 /* 11853 * Address not in this region. We must check whether the 11854 * region covers addresses in the same page as our address. 11855 * In that case we must not report a size that covers the 11856 * whole page for a subsequent hit against a different MPU 11857 * region or the background region, because it would result in 11858 * incorrect TLB hits for subsequent accesses to addresses that 11859 * are in this MPU region. 11860 */ 11861 if (ranges_overlap(base, rmask, 11862 address & TARGET_PAGE_MASK, 11863 TARGET_PAGE_SIZE)) { 11864 *page_size = 1; 11865 } 11866 continue; 11867 } 11868 11869 /* Region matched */ 11870 11871 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11872 int i, snd; 11873 uint32_t srdis_mask; 11874 11875 rsize -= 3; /* sub region size (power of 2) */ 11876 snd = ((address - base) >> rsize) & 0x7; 11877 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11878 11879 srdis_mask = srdis ? 0x3 : 0x0; 11880 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11881 /* This will check in groups of 2, 4 and then 8, whether 11882 * the subregion bits are consistent. rsize is incremented 11883 * back up to give the region size, considering consistent 11884 * adjacent subregions as one region. Stop testing if rsize 11885 * is already big enough for an entire QEMU page. 11886 */ 11887 int snd_rounded = snd & ~(i - 1); 11888 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11889 snd_rounded + 8, i); 11890 if (srdis_mask ^ srdis_multi) { 11891 break; 11892 } 11893 srdis_mask = (srdis_mask << i) | srdis_mask; 11894 rsize++; 11895 } 11896 } 11897 if (srdis) { 11898 continue; 11899 } 11900 if (rsize < TARGET_PAGE_BITS) { 11901 *page_size = 1 << rsize; 11902 } 11903 break; 11904 } 11905 11906 if (n == -1) { /* no hits */ 11907 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11908 /* background fault */ 11909 fi->type = ARMFault_Background; 11910 return true; 11911 } 11912 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11913 } else { /* a MPU hit! */ 11914 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11915 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11916 11917 if (m_is_system_region(env, address)) { 11918 /* System space is always execute never */ 11919 xn = 1; 11920 } 11921 11922 if (is_user) { /* User mode AP bit decoding */ 11923 switch (ap) { 11924 case 0: 11925 case 1: 11926 case 5: 11927 break; /* no access */ 11928 case 3: 11929 *prot |= PAGE_WRITE; 11930 /* fall through */ 11931 case 2: 11932 case 6: 11933 *prot |= PAGE_READ | PAGE_EXEC; 11934 break; 11935 case 7: 11936 /* for v7M, same as 6; for R profile a reserved value */ 11937 if (arm_feature(env, ARM_FEATURE_M)) { 11938 *prot |= PAGE_READ | PAGE_EXEC; 11939 break; 11940 } 11941 /* fall through */ 11942 default: 11943 qemu_log_mask(LOG_GUEST_ERROR, 11944 "DRACR[%d]: Bad value for AP bits: 0x%" 11945 PRIx32 "\n", n, ap); 11946 } 11947 } else { /* Priv. mode AP bits decoding */ 11948 switch (ap) { 11949 case 0: 11950 break; /* no access */ 11951 case 1: 11952 case 2: 11953 case 3: 11954 *prot |= PAGE_WRITE; 11955 /* fall through */ 11956 case 5: 11957 case 6: 11958 *prot |= PAGE_READ | PAGE_EXEC; 11959 break; 11960 case 7: 11961 /* for v7M, same as 6; for R profile a reserved value */ 11962 if (arm_feature(env, ARM_FEATURE_M)) { 11963 *prot |= PAGE_READ | PAGE_EXEC; 11964 break; 11965 } 11966 /* fall through */ 11967 default: 11968 qemu_log_mask(LOG_GUEST_ERROR, 11969 "DRACR[%d]: Bad value for AP bits: 0x%" 11970 PRIx32 "\n", n, ap); 11971 } 11972 } 11973 11974 /* execute never */ 11975 if (xn) { 11976 *prot &= ~PAGE_EXEC; 11977 } 11978 } 11979 } 11980 11981 fi->type = ARMFault_Permission; 11982 fi->level = 1; 11983 return !(*prot & (1 << access_type)); 11984 } 11985 11986 static bool v8m_is_sau_exempt(CPUARMState *env, 11987 uint32_t address, MMUAccessType access_type) 11988 { 11989 /* The architecture specifies that certain address ranges are 11990 * exempt from v8M SAU/IDAU checks. 11991 */ 11992 return 11993 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 11994 (address >= 0xe0000000 && address <= 0xe0002fff) || 11995 (address >= 0xe000e000 && address <= 0xe000efff) || 11996 (address >= 0xe002e000 && address <= 0xe002efff) || 11997 (address >= 0xe0040000 && address <= 0xe0041fff) || 11998 (address >= 0xe00ff000 && address <= 0xe00fffff); 11999 } 12000 12001 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 12002 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12003 V8M_SAttributes *sattrs) 12004 { 12005 /* Look up the security attributes for this address. Compare the 12006 * pseudocode SecurityCheck() function. 12007 * We assume the caller has zero-initialized *sattrs. 12008 */ 12009 ARMCPU *cpu = arm_env_get_cpu(env); 12010 int r; 12011 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 12012 int idau_region = IREGION_NOTVALID; 12013 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12014 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12015 12016 if (cpu->idau) { 12017 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 12018 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 12019 12020 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 12021 &idau_nsc); 12022 } 12023 12024 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 12025 /* 0xf0000000..0xffffffff is always S for insn fetches */ 12026 return; 12027 } 12028 12029 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 12030 sattrs->ns = !regime_is_secure(env, mmu_idx); 12031 return; 12032 } 12033 12034 if (idau_region != IREGION_NOTVALID) { 12035 sattrs->irvalid = true; 12036 sattrs->iregion = idau_region; 12037 } 12038 12039 switch (env->sau.ctrl & 3) { 12040 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 12041 break; 12042 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 12043 sattrs->ns = true; 12044 break; 12045 default: /* SAU.ENABLE == 1 */ 12046 for (r = 0; r < cpu->sau_sregion; r++) { 12047 if (env->sau.rlar[r] & 1) { 12048 uint32_t base = env->sau.rbar[r] & ~0x1f; 12049 uint32_t limit = env->sau.rlar[r] | 0x1f; 12050 12051 if (base <= address && limit >= address) { 12052 if (base > addr_page_base || limit < addr_page_limit) { 12053 sattrs->subpage = true; 12054 } 12055 if (sattrs->srvalid) { 12056 /* If we hit in more than one region then we must report 12057 * as Secure, not NS-Callable, with no valid region 12058 * number info. 12059 */ 12060 sattrs->ns = false; 12061 sattrs->nsc = false; 12062 sattrs->sregion = 0; 12063 sattrs->srvalid = false; 12064 break; 12065 } else { 12066 if (env->sau.rlar[r] & 2) { 12067 sattrs->nsc = true; 12068 } else { 12069 sattrs->ns = true; 12070 } 12071 sattrs->srvalid = true; 12072 sattrs->sregion = r; 12073 } 12074 } else { 12075 /* 12076 * Address not in this region. We must check whether the 12077 * region covers addresses in the same page as our address. 12078 * In that case we must not report a size that covers the 12079 * whole page for a subsequent hit against a different MPU 12080 * region or the background region, because it would result 12081 * in incorrect TLB hits for subsequent accesses to 12082 * addresses that are in this MPU region. 12083 */ 12084 if (limit >= base && 12085 ranges_overlap(base, limit - base + 1, 12086 addr_page_base, 12087 TARGET_PAGE_SIZE)) { 12088 sattrs->subpage = true; 12089 } 12090 } 12091 } 12092 } 12093 break; 12094 } 12095 12096 /* 12097 * The IDAU will override the SAU lookup results if it specifies 12098 * higher security than the SAU does. 12099 */ 12100 if (!idau_ns) { 12101 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 12102 sattrs->ns = false; 12103 sattrs->nsc = idau_nsc; 12104 } 12105 } 12106 } 12107 12108 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 12109 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12110 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12111 int *prot, bool *is_subpage, 12112 ARMMMUFaultInfo *fi, uint32_t *mregion) 12113 { 12114 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 12115 * that a full phys-to-virt translation does). 12116 * mregion is (if not NULL) set to the region number which matched, 12117 * or -1 if no region number is returned (MPU off, address did not 12118 * hit a region, address hit in multiple regions). 12119 * We set is_subpage to true if the region hit doesn't cover the 12120 * entire TARGET_PAGE the address is within. 12121 */ 12122 ARMCPU *cpu = arm_env_get_cpu(env); 12123 bool is_user = regime_is_user(env, mmu_idx); 12124 uint32_t secure = regime_is_secure(env, mmu_idx); 12125 int n; 12126 int matchregion = -1; 12127 bool hit = false; 12128 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12129 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12130 12131 *is_subpage = false; 12132 *phys_ptr = address; 12133 *prot = 0; 12134 if (mregion) { 12135 *mregion = -1; 12136 } 12137 12138 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 12139 * was an exception vector read from the vector table (which is always 12140 * done using the default system address map), because those accesses 12141 * are done in arm_v7m_load_vector(), which always does a direct 12142 * read using address_space_ldl(), rather than going via this function. 12143 */ 12144 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 12145 hit = true; 12146 } else if (m_is_ppb_region(env, address)) { 12147 hit = true; 12148 } else { 12149 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12150 hit = true; 12151 } 12152 12153 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12154 /* region search */ 12155 /* Note that the base address is bits [31:5] from the register 12156 * with bits [4:0] all zeroes, but the limit address is bits 12157 * [31:5] from the register with bits [4:0] all ones. 12158 */ 12159 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 12160 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12161 12162 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12163 /* Region disabled */ 12164 continue; 12165 } 12166 12167 if (address < base || address > limit) { 12168 /* 12169 * Address not in this region. We must check whether the 12170 * region covers addresses in the same page as our address. 12171 * In that case we must not report a size that covers the 12172 * whole page for a subsequent hit against a different MPU 12173 * region or the background region, because it would result in 12174 * incorrect TLB hits for subsequent accesses to addresses that 12175 * are in this MPU region. 12176 */ 12177 if (limit >= base && 12178 ranges_overlap(base, limit - base + 1, 12179 addr_page_base, 12180 TARGET_PAGE_SIZE)) { 12181 *is_subpage = true; 12182 } 12183 continue; 12184 } 12185 12186 if (base > addr_page_base || limit < addr_page_limit) { 12187 *is_subpage = true; 12188 } 12189 12190 if (matchregion != -1) { 12191 /* Multiple regions match -- always a failure (unlike 12192 * PMSAv7 where highest-numbered-region wins) 12193 */ 12194 fi->type = ARMFault_Permission; 12195 fi->level = 1; 12196 return true; 12197 } 12198 12199 matchregion = n; 12200 hit = true; 12201 } 12202 } 12203 12204 if (!hit) { 12205 /* background fault */ 12206 fi->type = ARMFault_Background; 12207 return true; 12208 } 12209 12210 if (matchregion == -1) { 12211 /* hit using the background region */ 12212 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12213 } else { 12214 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12215 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12216 12217 if (m_is_system_region(env, address)) { 12218 /* System space is always execute never */ 12219 xn = 1; 12220 } 12221 12222 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12223 if (*prot && !xn) { 12224 *prot |= PAGE_EXEC; 12225 } 12226 /* We don't need to look the attribute up in the MAIR0/MAIR1 12227 * registers because that only tells us about cacheability. 12228 */ 12229 if (mregion) { 12230 *mregion = matchregion; 12231 } 12232 } 12233 12234 fi->type = ARMFault_Permission; 12235 fi->level = 1; 12236 return !(*prot & (1 << access_type)); 12237 } 12238 12239 12240 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12241 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12242 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12243 int *prot, target_ulong *page_size, 12244 ARMMMUFaultInfo *fi) 12245 { 12246 uint32_t secure = regime_is_secure(env, mmu_idx); 12247 V8M_SAttributes sattrs = {}; 12248 bool ret; 12249 bool mpu_is_subpage; 12250 12251 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12252 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12253 if (access_type == MMU_INST_FETCH) { 12254 /* Instruction fetches always use the MMU bank and the 12255 * transaction attribute determined by the fetch address, 12256 * regardless of CPU state. This is painful for QEMU 12257 * to handle, because it would mean we need to encode 12258 * into the mmu_idx not just the (user, negpri) information 12259 * for the current security state but also that for the 12260 * other security state, which would balloon the number 12261 * of mmu_idx values needed alarmingly. 12262 * Fortunately we can avoid this because it's not actually 12263 * possible to arbitrarily execute code from memory with 12264 * the wrong security attribute: it will always generate 12265 * an exception of some kind or another, apart from the 12266 * special case of an NS CPU executing an SG instruction 12267 * in S&NSC memory. So we always just fail the translation 12268 * here and sort things out in the exception handler 12269 * (including possibly emulating an SG instruction). 12270 */ 12271 if (sattrs.ns != !secure) { 12272 if (sattrs.nsc) { 12273 fi->type = ARMFault_QEMU_NSCExec; 12274 } else { 12275 fi->type = ARMFault_QEMU_SFault; 12276 } 12277 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12278 *phys_ptr = address; 12279 *prot = 0; 12280 return true; 12281 } 12282 } else { 12283 /* For data accesses we always use the MMU bank indicated 12284 * by the current CPU state, but the security attributes 12285 * might downgrade a secure access to nonsecure. 12286 */ 12287 if (sattrs.ns) { 12288 txattrs->secure = false; 12289 } else if (!secure) { 12290 /* NS access to S memory must fault. 12291 * Architecturally we should first check whether the 12292 * MPU information for this address indicates that we 12293 * are doing an unaligned access to Device memory, which 12294 * should generate a UsageFault instead. QEMU does not 12295 * currently check for that kind of unaligned access though. 12296 * If we added it we would need to do so as a special case 12297 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12298 */ 12299 fi->type = ARMFault_QEMU_SFault; 12300 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12301 *phys_ptr = address; 12302 *prot = 0; 12303 return true; 12304 } 12305 } 12306 } 12307 12308 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12309 txattrs, prot, &mpu_is_subpage, fi, NULL); 12310 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12311 return ret; 12312 } 12313 12314 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12315 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12316 hwaddr *phys_ptr, int *prot, 12317 ARMMMUFaultInfo *fi) 12318 { 12319 int n; 12320 uint32_t mask; 12321 uint32_t base; 12322 bool is_user = regime_is_user(env, mmu_idx); 12323 12324 if (regime_translation_disabled(env, mmu_idx)) { 12325 /* MPU disabled. */ 12326 *phys_ptr = address; 12327 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12328 return false; 12329 } 12330 12331 *phys_ptr = address; 12332 for (n = 7; n >= 0; n--) { 12333 base = env->cp15.c6_region[n]; 12334 if ((base & 1) == 0) { 12335 continue; 12336 } 12337 mask = 1 << ((base >> 1) & 0x1f); 12338 /* Keep this shift separate from the above to avoid an 12339 (undefined) << 32. */ 12340 mask = (mask << 1) - 1; 12341 if (((base ^ address) & ~mask) == 0) { 12342 break; 12343 } 12344 } 12345 if (n < 0) { 12346 fi->type = ARMFault_Background; 12347 return true; 12348 } 12349 12350 if (access_type == MMU_INST_FETCH) { 12351 mask = env->cp15.pmsav5_insn_ap; 12352 } else { 12353 mask = env->cp15.pmsav5_data_ap; 12354 } 12355 mask = (mask >> (n * 4)) & 0xf; 12356 switch (mask) { 12357 case 0: 12358 fi->type = ARMFault_Permission; 12359 fi->level = 1; 12360 return true; 12361 case 1: 12362 if (is_user) { 12363 fi->type = ARMFault_Permission; 12364 fi->level = 1; 12365 return true; 12366 } 12367 *prot = PAGE_READ | PAGE_WRITE; 12368 break; 12369 case 2: 12370 *prot = PAGE_READ; 12371 if (!is_user) { 12372 *prot |= PAGE_WRITE; 12373 } 12374 break; 12375 case 3: 12376 *prot = PAGE_READ | PAGE_WRITE; 12377 break; 12378 case 5: 12379 if (is_user) { 12380 fi->type = ARMFault_Permission; 12381 fi->level = 1; 12382 return true; 12383 } 12384 *prot = PAGE_READ; 12385 break; 12386 case 6: 12387 *prot = PAGE_READ; 12388 break; 12389 default: 12390 /* Bad permission. */ 12391 fi->type = ARMFault_Permission; 12392 fi->level = 1; 12393 return true; 12394 } 12395 *prot |= PAGE_EXEC; 12396 return false; 12397 } 12398 12399 /* Combine either inner or outer cacheability attributes for normal 12400 * memory, according to table D4-42 and pseudocode procedure 12401 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12402 * 12403 * NB: only stage 1 includes allocation hints (RW bits), leading to 12404 * some asymmetry. 12405 */ 12406 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12407 { 12408 if (s1 == 4 || s2 == 4) { 12409 /* non-cacheable has precedence */ 12410 return 4; 12411 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12412 /* stage 1 write-through takes precedence */ 12413 return s1; 12414 } else if (extract32(s2, 2, 2) == 2) { 12415 /* stage 2 write-through takes precedence, but the allocation hint 12416 * is still taken from stage 1 12417 */ 12418 return (2 << 2) | extract32(s1, 0, 2); 12419 } else { /* write-back */ 12420 return s1; 12421 } 12422 } 12423 12424 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12425 * and CombineS1S2Desc() 12426 * 12427 * @s1: Attributes from stage 1 walk 12428 * @s2: Attributes from stage 2 walk 12429 */ 12430 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12431 { 12432 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 12433 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 12434 ARMCacheAttrs ret; 12435 12436 /* Combine shareability attributes (table D4-43) */ 12437 if (s1.shareability == 2 || s2.shareability == 2) { 12438 /* if either are outer-shareable, the result is outer-shareable */ 12439 ret.shareability = 2; 12440 } else if (s1.shareability == 3 || s2.shareability == 3) { 12441 /* if either are inner-shareable, the result is inner-shareable */ 12442 ret.shareability = 3; 12443 } else { 12444 /* both non-shareable */ 12445 ret.shareability = 0; 12446 } 12447 12448 /* Combine memory type and cacheability attributes */ 12449 if (s1hi == 0 || s2hi == 0) { 12450 /* Device has precedence over normal */ 12451 if (s1lo == 0 || s2lo == 0) { 12452 /* nGnRnE has precedence over anything */ 12453 ret.attrs = 0; 12454 } else if (s1lo == 4 || s2lo == 4) { 12455 /* non-Reordering has precedence over Reordering */ 12456 ret.attrs = 4; /* nGnRE */ 12457 } else if (s1lo == 8 || s2lo == 8) { 12458 /* non-Gathering has precedence over Gathering */ 12459 ret.attrs = 8; /* nGRE */ 12460 } else { 12461 ret.attrs = 0xc; /* GRE */ 12462 } 12463 12464 /* Any location for which the resultant memory type is any 12465 * type of Device memory is always treated as Outer Shareable. 12466 */ 12467 ret.shareability = 2; 12468 } else { /* Normal memory */ 12469 /* Outer/inner cacheability combine independently */ 12470 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12471 | combine_cacheattr_nibble(s1lo, s2lo); 12472 12473 if (ret.attrs == 0x44) { 12474 /* Any location for which the resultant memory type is Normal 12475 * Inner Non-cacheable, Outer Non-cacheable is always treated 12476 * as Outer Shareable. 12477 */ 12478 ret.shareability = 2; 12479 } 12480 } 12481 12482 return ret; 12483 } 12484 12485 12486 /* get_phys_addr - get the physical address for this virtual address 12487 * 12488 * Find the physical address corresponding to the given virtual address, 12489 * by doing a translation table walk on MMU based systems or using the 12490 * MPU state on MPU based systems. 12491 * 12492 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12493 * prot and page_size may not be filled in, and the populated fsr value provides 12494 * information on why the translation aborted, in the format of a 12495 * DFSR/IFSR fault register, with the following caveats: 12496 * * we honour the short vs long DFSR format differences. 12497 * * the WnR bit is never set (the caller must do this). 12498 * * for PSMAv5 based systems we don't bother to return a full FSR format 12499 * value. 12500 * 12501 * @env: CPUARMState 12502 * @address: virtual address to get physical address for 12503 * @access_type: 0 for read, 1 for write, 2 for execute 12504 * @mmu_idx: MMU index indicating required translation regime 12505 * @phys_ptr: set to the physical address corresponding to the virtual address 12506 * @attrs: set to the memory transaction attributes to use 12507 * @prot: set to the permissions for the page containing phys_ptr 12508 * @page_size: set to the size of the page containing phys_ptr 12509 * @fi: set to fault info if the translation fails 12510 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12511 */ 12512 static bool get_phys_addr(CPUARMState *env, target_ulong address, 12513 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12514 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12515 target_ulong *page_size, 12516 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12517 { 12518 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 12519 /* Call ourselves recursively to do the stage 1 and then stage 2 12520 * translations. 12521 */ 12522 if (arm_feature(env, ARM_FEATURE_EL2)) { 12523 hwaddr ipa; 12524 int s2_prot; 12525 int ret; 12526 ARMCacheAttrs cacheattrs2 = {}; 12527 12528 ret = get_phys_addr(env, address, access_type, 12529 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 12530 prot, page_size, fi, cacheattrs); 12531 12532 /* If S1 fails or S2 is disabled, return early. */ 12533 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 12534 *phys_ptr = ipa; 12535 return ret; 12536 } 12537 12538 /* S1 is done. Now do S2 translation. */ 12539 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 12540 phys_ptr, attrs, &s2_prot, 12541 page_size, fi, 12542 cacheattrs != NULL ? &cacheattrs2 : NULL); 12543 fi->s2addr = ipa; 12544 /* Combine the S1 and S2 perms. */ 12545 *prot &= s2_prot; 12546 12547 /* Combine the S1 and S2 cache attributes, if needed */ 12548 if (!ret && cacheattrs != NULL) { 12549 if (env->cp15.hcr_el2 & HCR_DC) { 12550 /* 12551 * HCR.DC forces the first stage attributes to 12552 * Normal Non-Shareable, 12553 * Inner Write-Back Read-Allocate Write-Allocate, 12554 * Outer Write-Back Read-Allocate Write-Allocate. 12555 */ 12556 cacheattrs->attrs = 0xff; 12557 cacheattrs->shareability = 0; 12558 } 12559 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12560 } 12561 12562 return ret; 12563 } else { 12564 /* 12565 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12566 */ 12567 mmu_idx = stage_1_mmu_idx(mmu_idx); 12568 } 12569 } 12570 12571 /* The page table entries may downgrade secure to non-secure, but 12572 * cannot upgrade an non-secure translation regime's attributes 12573 * to secure. 12574 */ 12575 attrs->secure = regime_is_secure(env, mmu_idx); 12576 attrs->user = regime_is_user(env, mmu_idx); 12577 12578 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12579 * In v7 and earlier it affects all stage 1 translations. 12580 */ 12581 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 12582 && !arm_feature(env, ARM_FEATURE_V8)) { 12583 if (regime_el(env, mmu_idx) == 3) { 12584 address += env->cp15.fcseidr_s; 12585 } else { 12586 address += env->cp15.fcseidr_ns; 12587 } 12588 } 12589 12590 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12591 bool ret; 12592 *page_size = TARGET_PAGE_SIZE; 12593 12594 if (arm_feature(env, ARM_FEATURE_V8)) { 12595 /* PMSAv8 */ 12596 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12597 phys_ptr, attrs, prot, page_size, fi); 12598 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12599 /* PMSAv7 */ 12600 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12601 phys_ptr, prot, page_size, fi); 12602 } else { 12603 /* Pre-v7 MPU */ 12604 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12605 phys_ptr, prot, fi); 12606 } 12607 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12608 " mmu_idx %u -> %s (prot %c%c%c)\n", 12609 access_type == MMU_DATA_LOAD ? "reading" : 12610 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12611 (uint32_t)address, mmu_idx, 12612 ret ? "Miss" : "Hit", 12613 *prot & PAGE_READ ? 'r' : '-', 12614 *prot & PAGE_WRITE ? 'w' : '-', 12615 *prot & PAGE_EXEC ? 'x' : '-'); 12616 12617 return ret; 12618 } 12619 12620 /* Definitely a real MMU, not an MPU */ 12621 12622 if (regime_translation_disabled(env, mmu_idx)) { 12623 /* MMU disabled. */ 12624 *phys_ptr = address; 12625 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12626 *page_size = TARGET_PAGE_SIZE; 12627 return 0; 12628 } 12629 12630 if (regime_using_lpae_format(env, mmu_idx)) { 12631 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 12632 phys_ptr, attrs, prot, page_size, 12633 fi, cacheattrs); 12634 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12635 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12636 phys_ptr, attrs, prot, page_size, fi); 12637 } else { 12638 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12639 phys_ptr, prot, page_size, fi); 12640 } 12641 } 12642 12643 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12644 MemTxAttrs *attrs) 12645 { 12646 ARMCPU *cpu = ARM_CPU(cs); 12647 CPUARMState *env = &cpu->env; 12648 hwaddr phys_addr; 12649 target_ulong page_size; 12650 int prot; 12651 bool ret; 12652 ARMMMUFaultInfo fi = {}; 12653 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12654 12655 *attrs = (MemTxAttrs) {}; 12656 12657 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 12658 attrs, &prot, &page_size, &fi, NULL); 12659 12660 if (ret) { 12661 return -1; 12662 } 12663 return phys_addr; 12664 } 12665 12666 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 12667 { 12668 uint32_t mask; 12669 unsigned el = arm_current_el(env); 12670 12671 /* First handle registers which unprivileged can read */ 12672 12673 switch (reg) { 12674 case 0 ... 7: /* xPSR sub-fields */ 12675 mask = 0; 12676 if ((reg & 1) && el) { 12677 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ 12678 } 12679 if (!(reg & 4)) { 12680 mask |= XPSR_NZCV | XPSR_Q; /* APSR */ 12681 if (arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 12682 mask |= XPSR_GE; 12683 } 12684 } 12685 /* EPSR reads as zero */ 12686 return xpsr_read(env) & mask; 12687 break; 12688 case 20: /* CONTROL */ 12689 { 12690 uint32_t value = env->v7m.control[env->v7m.secure]; 12691 if (!env->v7m.secure) { 12692 /* SFPA is RAZ/WI from NS; FPCA is stored in the M_REG_S bank */ 12693 value |= env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK; 12694 } 12695 return value; 12696 } 12697 case 0x94: /* CONTROL_NS */ 12698 /* We have to handle this here because unprivileged Secure code 12699 * can read the NS CONTROL register. 12700 */ 12701 if (!env->v7m.secure) { 12702 return 0; 12703 } 12704 return env->v7m.control[M_REG_NS] | 12705 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK); 12706 } 12707 12708 if (el == 0) { 12709 return 0; /* unprivileged reads others as zero */ 12710 } 12711 12712 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12713 switch (reg) { 12714 case 0x88: /* MSP_NS */ 12715 if (!env->v7m.secure) { 12716 return 0; 12717 } 12718 return env->v7m.other_ss_msp; 12719 case 0x89: /* PSP_NS */ 12720 if (!env->v7m.secure) { 12721 return 0; 12722 } 12723 return env->v7m.other_ss_psp; 12724 case 0x8a: /* MSPLIM_NS */ 12725 if (!env->v7m.secure) { 12726 return 0; 12727 } 12728 return env->v7m.msplim[M_REG_NS]; 12729 case 0x8b: /* PSPLIM_NS */ 12730 if (!env->v7m.secure) { 12731 return 0; 12732 } 12733 return env->v7m.psplim[M_REG_NS]; 12734 case 0x90: /* PRIMASK_NS */ 12735 if (!env->v7m.secure) { 12736 return 0; 12737 } 12738 return env->v7m.primask[M_REG_NS]; 12739 case 0x91: /* BASEPRI_NS */ 12740 if (!env->v7m.secure) { 12741 return 0; 12742 } 12743 return env->v7m.basepri[M_REG_NS]; 12744 case 0x93: /* FAULTMASK_NS */ 12745 if (!env->v7m.secure) { 12746 return 0; 12747 } 12748 return env->v7m.faultmask[M_REG_NS]; 12749 case 0x98: /* SP_NS */ 12750 { 12751 /* This gives the non-secure SP selected based on whether we're 12752 * currently in handler mode or not, using the NS CONTROL.SPSEL. 12753 */ 12754 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 12755 12756 if (!env->v7m.secure) { 12757 return 0; 12758 } 12759 if (!arm_v7m_is_handler_mode(env) && spsel) { 12760 return env->v7m.other_ss_psp; 12761 } else { 12762 return env->v7m.other_ss_msp; 12763 } 12764 } 12765 default: 12766 break; 12767 } 12768 } 12769 12770 switch (reg) { 12771 case 8: /* MSP */ 12772 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13]; 12773 case 9: /* PSP */ 12774 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp; 12775 case 10: /* MSPLIM */ 12776 if (!arm_feature(env, ARM_FEATURE_V8)) { 12777 goto bad_reg; 12778 } 12779 return env->v7m.msplim[env->v7m.secure]; 12780 case 11: /* PSPLIM */ 12781 if (!arm_feature(env, ARM_FEATURE_V8)) { 12782 goto bad_reg; 12783 } 12784 return env->v7m.psplim[env->v7m.secure]; 12785 case 16: /* PRIMASK */ 12786 return env->v7m.primask[env->v7m.secure]; 12787 case 17: /* BASEPRI */ 12788 case 18: /* BASEPRI_MAX */ 12789 return env->v7m.basepri[env->v7m.secure]; 12790 case 19: /* FAULTMASK */ 12791 return env->v7m.faultmask[env->v7m.secure]; 12792 default: 12793 bad_reg: 12794 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" 12795 " register %d\n", reg); 12796 return 0; 12797 } 12798 } 12799 12800 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) 12801 { 12802 /* We're passed bits [11..0] of the instruction; extract 12803 * SYSm and the mask bits. 12804 * Invalid combinations of SYSm and mask are UNPREDICTABLE; 12805 * we choose to treat them as if the mask bits were valid. 12806 * NB that the pseudocode 'mask' variable is bits [11..10], 12807 * whereas ours is [11..8]. 12808 */ 12809 uint32_t mask = extract32(maskreg, 8, 4); 12810 uint32_t reg = extract32(maskreg, 0, 8); 12811 int cur_el = arm_current_el(env); 12812 12813 if (cur_el == 0 && reg > 7 && reg != 20) { 12814 /* 12815 * only xPSR sub-fields and CONTROL.SFPA may be written by 12816 * unprivileged code 12817 */ 12818 return; 12819 } 12820 12821 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12822 switch (reg) { 12823 case 0x88: /* MSP_NS */ 12824 if (!env->v7m.secure) { 12825 return; 12826 } 12827 env->v7m.other_ss_msp = val; 12828 return; 12829 case 0x89: /* PSP_NS */ 12830 if (!env->v7m.secure) { 12831 return; 12832 } 12833 env->v7m.other_ss_psp = val; 12834 return; 12835 case 0x8a: /* MSPLIM_NS */ 12836 if (!env->v7m.secure) { 12837 return; 12838 } 12839 env->v7m.msplim[M_REG_NS] = val & ~7; 12840 return; 12841 case 0x8b: /* PSPLIM_NS */ 12842 if (!env->v7m.secure) { 12843 return; 12844 } 12845 env->v7m.psplim[M_REG_NS] = val & ~7; 12846 return; 12847 case 0x90: /* PRIMASK_NS */ 12848 if (!env->v7m.secure) { 12849 return; 12850 } 12851 env->v7m.primask[M_REG_NS] = val & 1; 12852 return; 12853 case 0x91: /* BASEPRI_NS */ 12854 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) { 12855 return; 12856 } 12857 env->v7m.basepri[M_REG_NS] = val & 0xff; 12858 return; 12859 case 0x93: /* FAULTMASK_NS */ 12860 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) { 12861 return; 12862 } 12863 env->v7m.faultmask[M_REG_NS] = val & 1; 12864 return; 12865 case 0x94: /* CONTROL_NS */ 12866 if (!env->v7m.secure) { 12867 return; 12868 } 12869 write_v7m_control_spsel_for_secstate(env, 12870 val & R_V7M_CONTROL_SPSEL_MASK, 12871 M_REG_NS); 12872 if (arm_feature(env, ARM_FEATURE_M_MAIN)) { 12873 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK; 12874 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK; 12875 } 12876 /* 12877 * SFPA is RAZ/WI from NS. FPCA is RO if NSACR.CP10 == 0, 12878 * RES0 if the FPU is not present, and is stored in the S bank 12879 */ 12880 if (arm_feature(env, ARM_FEATURE_VFP) && 12881 extract32(env->v7m.nsacr, 10, 1)) { 12882 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK; 12883 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK; 12884 } 12885 return; 12886 case 0x98: /* SP_NS */ 12887 { 12888 /* This gives the non-secure SP selected based on whether we're 12889 * currently in handler mode or not, using the NS CONTROL.SPSEL. 12890 */ 12891 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 12892 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel; 12893 uint32_t limit; 12894 12895 if (!env->v7m.secure) { 12896 return; 12897 } 12898 12899 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false]; 12900 12901 if (val < limit) { 12902 CPUState *cs = CPU(arm_env_get_cpu(env)); 12903 12904 cpu_restore_state(cs, GETPC(), true); 12905 raise_exception(env, EXCP_STKOF, 0, 1); 12906 } 12907 12908 if (is_psp) { 12909 env->v7m.other_ss_psp = val; 12910 } else { 12911 env->v7m.other_ss_msp = val; 12912 } 12913 return; 12914 } 12915 default: 12916 break; 12917 } 12918 } 12919 12920 switch (reg) { 12921 case 0 ... 7: /* xPSR sub-fields */ 12922 /* only APSR is actually writable */ 12923 if (!(reg & 4)) { 12924 uint32_t apsrmask = 0; 12925 12926 if (mask & 8) { 12927 apsrmask |= XPSR_NZCV | XPSR_Q; 12928 } 12929 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 12930 apsrmask |= XPSR_GE; 12931 } 12932 xpsr_write(env, val, apsrmask); 12933 } 12934 break; 12935 case 8: /* MSP */ 12936 if (v7m_using_psp(env)) { 12937 env->v7m.other_sp = val; 12938 } else { 12939 env->regs[13] = val; 12940 } 12941 break; 12942 case 9: /* PSP */ 12943 if (v7m_using_psp(env)) { 12944 env->regs[13] = val; 12945 } else { 12946 env->v7m.other_sp = val; 12947 } 12948 break; 12949 case 10: /* MSPLIM */ 12950 if (!arm_feature(env, ARM_FEATURE_V8)) { 12951 goto bad_reg; 12952 } 12953 env->v7m.msplim[env->v7m.secure] = val & ~7; 12954 break; 12955 case 11: /* PSPLIM */ 12956 if (!arm_feature(env, ARM_FEATURE_V8)) { 12957 goto bad_reg; 12958 } 12959 env->v7m.psplim[env->v7m.secure] = val & ~7; 12960 break; 12961 case 16: /* PRIMASK */ 12962 env->v7m.primask[env->v7m.secure] = val & 1; 12963 break; 12964 case 17: /* BASEPRI */ 12965 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 12966 goto bad_reg; 12967 } 12968 env->v7m.basepri[env->v7m.secure] = val & 0xff; 12969 break; 12970 case 18: /* BASEPRI_MAX */ 12971 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 12972 goto bad_reg; 12973 } 12974 val &= 0xff; 12975 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] 12976 || env->v7m.basepri[env->v7m.secure] == 0)) { 12977 env->v7m.basepri[env->v7m.secure] = val; 12978 } 12979 break; 12980 case 19: /* FAULTMASK */ 12981 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 12982 goto bad_reg; 12983 } 12984 env->v7m.faultmask[env->v7m.secure] = val & 1; 12985 break; 12986 case 20: /* CONTROL */ 12987 /* 12988 * Writing to the SPSEL bit only has an effect if we are in 12989 * thread mode; other bits can be updated by any privileged code. 12990 * write_v7m_control_spsel() deals with updating the SPSEL bit in 12991 * env->v7m.control, so we only need update the others. 12992 * For v7M, we must just ignore explicit writes to SPSEL in handler 12993 * mode; for v8M the write is permitted but will have no effect. 12994 * All these bits are writes-ignored from non-privileged code, 12995 * except for SFPA. 12996 */ 12997 if (cur_el > 0 && (arm_feature(env, ARM_FEATURE_V8) || 12998 !arm_v7m_is_handler_mode(env))) { 12999 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); 13000 } 13001 if (cur_el > 0 && arm_feature(env, ARM_FEATURE_M_MAIN)) { 13002 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; 13003 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; 13004 } 13005 if (arm_feature(env, ARM_FEATURE_VFP)) { 13006 /* 13007 * SFPA is RAZ/WI from NS or if no FPU. 13008 * FPCA is RO if NSACR.CP10 == 0, RES0 if the FPU is not present. 13009 * Both are stored in the S bank. 13010 */ 13011 if (env->v7m.secure) { 13012 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 13013 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_SFPA_MASK; 13014 } 13015 if (cur_el > 0 && 13016 (env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_SECURITY) || 13017 extract32(env->v7m.nsacr, 10, 1))) { 13018 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK; 13019 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK; 13020 } 13021 } 13022 break; 13023 default: 13024 bad_reg: 13025 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" 13026 " register %d\n", reg); 13027 return; 13028 } 13029 } 13030 13031 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 13032 { 13033 /* Implement the TT instruction. op is bits [7:6] of the insn. */ 13034 bool forceunpriv = op & 1; 13035 bool alt = op & 2; 13036 V8M_SAttributes sattrs = {}; 13037 uint32_t tt_resp; 13038 bool r, rw, nsr, nsrw, mrvalid; 13039 int prot; 13040 ARMMMUFaultInfo fi = {}; 13041 MemTxAttrs attrs = {}; 13042 hwaddr phys_addr; 13043 ARMMMUIdx mmu_idx; 13044 uint32_t mregion; 13045 bool targetpriv; 13046 bool targetsec = env->v7m.secure; 13047 bool is_subpage; 13048 13049 /* Work out what the security state and privilege level we're 13050 * interested in is... 13051 */ 13052 if (alt) { 13053 targetsec = !targetsec; 13054 } 13055 13056 if (forceunpriv) { 13057 targetpriv = false; 13058 } else { 13059 targetpriv = arm_v7m_is_handler_mode(env) || 13060 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK); 13061 } 13062 13063 /* ...and then figure out which MMU index this is */ 13064 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv); 13065 13066 /* We know that the MPU and SAU don't care about the access type 13067 * for our purposes beyond that we don't want to claim to be 13068 * an insn fetch, so we arbitrarily call this a read. 13069 */ 13070 13071 /* MPU region info only available for privileged or if 13072 * inspecting the other MPU state. 13073 */ 13074 if (arm_current_el(env) != 0 || alt) { 13075 /* We can ignore the return value as prot is always set */ 13076 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, 13077 &phys_addr, &attrs, &prot, &is_subpage, 13078 &fi, &mregion); 13079 if (mregion == -1) { 13080 mrvalid = false; 13081 mregion = 0; 13082 } else { 13083 mrvalid = true; 13084 } 13085 r = prot & PAGE_READ; 13086 rw = prot & PAGE_WRITE; 13087 } else { 13088 r = false; 13089 rw = false; 13090 mrvalid = false; 13091 mregion = 0; 13092 } 13093 13094 if (env->v7m.secure) { 13095 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 13096 nsr = sattrs.ns && r; 13097 nsrw = sattrs.ns && rw; 13098 } else { 13099 sattrs.ns = true; 13100 nsr = false; 13101 nsrw = false; 13102 } 13103 13104 tt_resp = (sattrs.iregion << 24) | 13105 (sattrs.irvalid << 23) | 13106 ((!sattrs.ns) << 22) | 13107 (nsrw << 21) | 13108 (nsr << 20) | 13109 (rw << 19) | 13110 (r << 18) | 13111 (sattrs.srvalid << 17) | 13112 (mrvalid << 16) | 13113 (sattrs.sregion << 8) | 13114 mregion; 13115 13116 return tt_resp; 13117 } 13118 13119 #endif 13120 13121 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 13122 MMUAccessType access_type, int mmu_idx, 13123 bool probe, uintptr_t retaddr) 13124 { 13125 ARMCPU *cpu = ARM_CPU(cs); 13126 13127 #ifdef CONFIG_USER_ONLY 13128 cpu->env.exception.vaddress = address; 13129 if (access_type == MMU_INST_FETCH) { 13130 cs->exception_index = EXCP_PREFETCH_ABORT; 13131 } else { 13132 cs->exception_index = EXCP_DATA_ABORT; 13133 } 13134 cpu_loop_exit_restore(cs, retaddr); 13135 #else 13136 hwaddr phys_addr; 13137 target_ulong page_size; 13138 int prot, ret; 13139 MemTxAttrs attrs = {}; 13140 ARMMMUFaultInfo fi = {}; 13141 13142 /* 13143 * Walk the page table and (if the mapping exists) add the page 13144 * to the TLB. On success, return true. Otherwise, if probing, 13145 * return false. Otherwise populate fsr with ARM DFSR/IFSR fault 13146 * register format, and signal the fault. 13147 */ 13148 ret = get_phys_addr(&cpu->env, address, access_type, 13149 core_to_arm_mmu_idx(&cpu->env, mmu_idx), 13150 &phys_addr, &attrs, &prot, &page_size, &fi, NULL); 13151 if (likely(!ret)) { 13152 /* 13153 * Map a single [sub]page. Regions smaller than our declared 13154 * target page size are handled specially, so for those we 13155 * pass in the exact addresses. 13156 */ 13157 if (page_size >= TARGET_PAGE_SIZE) { 13158 phys_addr &= TARGET_PAGE_MASK; 13159 address &= TARGET_PAGE_MASK; 13160 } 13161 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 13162 prot, mmu_idx, page_size); 13163 return true; 13164 } else if (probe) { 13165 return false; 13166 } else { 13167 /* now we have a real cpu fault */ 13168 cpu_restore_state(cs, retaddr, true); 13169 arm_deliver_fault(cpu, address, access_type, mmu_idx, &fi); 13170 } 13171 #endif 13172 } 13173 13174 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 13175 { 13176 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 13177 * Note that we do not implement the (architecturally mandated) 13178 * alignment fault for attempts to use this on Device memory 13179 * (which matches the usual QEMU behaviour of not implementing either 13180 * alignment faults or any memory attribute handling). 13181 */ 13182 13183 ARMCPU *cpu = arm_env_get_cpu(env); 13184 uint64_t blocklen = 4 << cpu->dcz_blocksize; 13185 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 13186 13187 #ifndef CONFIG_USER_ONLY 13188 { 13189 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 13190 * the block size so we might have to do more than one TLB lookup. 13191 * We know that in fact for any v8 CPU the page size is at least 4K 13192 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 13193 * 1K as an artefact of legacy v5 subpage support being present in the 13194 * same QEMU executable. So in practice the hostaddr[] array has 13195 * two entries, given the current setting of TARGET_PAGE_BITS_MIN. 13196 */ 13197 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 13198 void *hostaddr[DIV_ROUND_UP(2 * KiB, 1 << TARGET_PAGE_BITS_MIN)]; 13199 int try, i; 13200 unsigned mmu_idx = cpu_mmu_index(env, false); 13201 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 13202 13203 assert(maxidx <= ARRAY_SIZE(hostaddr)); 13204 13205 for (try = 0; try < 2; try++) { 13206 13207 for (i = 0; i < maxidx; i++) { 13208 hostaddr[i] = tlb_vaddr_to_host(env, 13209 vaddr + TARGET_PAGE_SIZE * i, 13210 1, mmu_idx); 13211 if (!hostaddr[i]) { 13212 break; 13213 } 13214 } 13215 if (i == maxidx) { 13216 /* If it's all in the TLB it's fair game for just writing to; 13217 * we know we don't need to update dirty status, etc. 13218 */ 13219 for (i = 0; i < maxidx - 1; i++) { 13220 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 13221 } 13222 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 13223 return; 13224 } 13225 /* OK, try a store and see if we can populate the tlb. This 13226 * might cause an exception if the memory isn't writable, 13227 * in which case we will longjmp out of here. We must for 13228 * this purpose use the actual register value passed to us 13229 * so that we get the fault address right. 13230 */ 13231 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 13232 /* Now we can populate the other TLB entries, if any */ 13233 for (i = 0; i < maxidx; i++) { 13234 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 13235 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 13236 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 13237 } 13238 } 13239 } 13240 13241 /* Slow path (probably attempt to do this to an I/O device or 13242 * similar, or clearing of a block of code we have translations 13243 * cached for). Just do a series of byte writes as the architecture 13244 * demands. It's not worth trying to use a cpu_physical_memory_map(), 13245 * memset(), unmap() sequence here because: 13246 * + we'd need to account for the blocksize being larger than a page 13247 * + the direct-RAM access case is almost always going to be dealt 13248 * with in the fastpath code above, so there's no speed benefit 13249 * + we would have to deal with the map returning NULL because the 13250 * bounce buffer was in use 13251 */ 13252 for (i = 0; i < blocklen; i++) { 13253 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 13254 } 13255 } 13256 #else 13257 memset(g2h(vaddr), 0, blocklen); 13258 #endif 13259 } 13260 13261 /* Note that signed overflow is undefined in C. The following routines are 13262 careful to use unsigned types where modulo arithmetic is required. 13263 Failure to do so _will_ break on newer gcc. */ 13264 13265 /* Signed saturating arithmetic. */ 13266 13267 /* Perform 16-bit signed saturating addition. */ 13268 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 13269 { 13270 uint16_t res; 13271 13272 res = a + b; 13273 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 13274 if (a & 0x8000) 13275 res = 0x8000; 13276 else 13277 res = 0x7fff; 13278 } 13279 return res; 13280 } 13281 13282 /* Perform 8-bit signed saturating addition. */ 13283 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 13284 { 13285 uint8_t res; 13286 13287 res = a + b; 13288 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 13289 if (a & 0x80) 13290 res = 0x80; 13291 else 13292 res = 0x7f; 13293 } 13294 return res; 13295 } 13296 13297 /* Perform 16-bit signed saturating subtraction. */ 13298 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 13299 { 13300 uint16_t res; 13301 13302 res = a - b; 13303 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 13304 if (a & 0x8000) 13305 res = 0x8000; 13306 else 13307 res = 0x7fff; 13308 } 13309 return res; 13310 } 13311 13312 /* Perform 8-bit signed saturating subtraction. */ 13313 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 13314 { 13315 uint8_t res; 13316 13317 res = a - b; 13318 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 13319 if (a & 0x80) 13320 res = 0x80; 13321 else 13322 res = 0x7f; 13323 } 13324 return res; 13325 } 13326 13327 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 13328 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 13329 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 13330 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 13331 #define PFX q 13332 13333 #include "op_addsub.h" 13334 13335 /* Unsigned saturating arithmetic. */ 13336 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 13337 { 13338 uint16_t res; 13339 res = a + b; 13340 if (res < a) 13341 res = 0xffff; 13342 return res; 13343 } 13344 13345 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 13346 { 13347 if (a > b) 13348 return a - b; 13349 else 13350 return 0; 13351 } 13352 13353 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 13354 { 13355 uint8_t res; 13356 res = a + b; 13357 if (res < a) 13358 res = 0xff; 13359 return res; 13360 } 13361 13362 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 13363 { 13364 if (a > b) 13365 return a - b; 13366 else 13367 return 0; 13368 } 13369 13370 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 13371 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 13372 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 13373 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 13374 #define PFX uq 13375 13376 #include "op_addsub.h" 13377 13378 /* Signed modulo arithmetic. */ 13379 #define SARITH16(a, b, n, op) do { \ 13380 int32_t sum; \ 13381 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 13382 RESULT(sum, n, 16); \ 13383 if (sum >= 0) \ 13384 ge |= 3 << (n * 2); \ 13385 } while(0) 13386 13387 #define SARITH8(a, b, n, op) do { \ 13388 int32_t sum; \ 13389 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 13390 RESULT(sum, n, 8); \ 13391 if (sum >= 0) \ 13392 ge |= 1 << n; \ 13393 } while(0) 13394 13395 13396 #define ADD16(a, b, n) SARITH16(a, b, n, +) 13397 #define SUB16(a, b, n) SARITH16(a, b, n, -) 13398 #define ADD8(a, b, n) SARITH8(a, b, n, +) 13399 #define SUB8(a, b, n) SARITH8(a, b, n, -) 13400 #define PFX s 13401 #define ARITH_GE 13402 13403 #include "op_addsub.h" 13404 13405 /* Unsigned modulo arithmetic. */ 13406 #define ADD16(a, b, n) do { \ 13407 uint32_t sum; \ 13408 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 13409 RESULT(sum, n, 16); \ 13410 if ((sum >> 16) == 1) \ 13411 ge |= 3 << (n * 2); \ 13412 } while(0) 13413 13414 #define ADD8(a, b, n) do { \ 13415 uint32_t sum; \ 13416 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 13417 RESULT(sum, n, 8); \ 13418 if ((sum >> 8) == 1) \ 13419 ge |= 1 << n; \ 13420 } while(0) 13421 13422 #define SUB16(a, b, n) do { \ 13423 uint32_t sum; \ 13424 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 13425 RESULT(sum, n, 16); \ 13426 if ((sum >> 16) == 0) \ 13427 ge |= 3 << (n * 2); \ 13428 } while(0) 13429 13430 #define SUB8(a, b, n) do { \ 13431 uint32_t sum; \ 13432 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 13433 RESULT(sum, n, 8); \ 13434 if ((sum >> 8) == 0) \ 13435 ge |= 1 << n; \ 13436 } while(0) 13437 13438 #define PFX u 13439 #define ARITH_GE 13440 13441 #include "op_addsub.h" 13442 13443 /* Halved signed arithmetic. */ 13444 #define ADD16(a, b, n) \ 13445 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 13446 #define SUB16(a, b, n) \ 13447 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 13448 #define ADD8(a, b, n) \ 13449 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 13450 #define SUB8(a, b, n) \ 13451 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 13452 #define PFX sh 13453 13454 #include "op_addsub.h" 13455 13456 /* Halved unsigned arithmetic. */ 13457 #define ADD16(a, b, n) \ 13458 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13459 #define SUB16(a, b, n) \ 13460 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13461 #define ADD8(a, b, n) \ 13462 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13463 #define SUB8(a, b, n) \ 13464 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13465 #define PFX uh 13466 13467 #include "op_addsub.h" 13468 13469 static inline uint8_t do_usad(uint8_t a, uint8_t b) 13470 { 13471 if (a > b) 13472 return a - b; 13473 else 13474 return b - a; 13475 } 13476 13477 /* Unsigned sum of absolute byte differences. */ 13478 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 13479 { 13480 uint32_t sum; 13481 sum = do_usad(a, b); 13482 sum += do_usad(a >> 8, b >> 8); 13483 sum += do_usad(a >> 16, b >>16); 13484 sum += do_usad(a >> 24, b >> 24); 13485 return sum; 13486 } 13487 13488 /* For ARMv6 SEL instruction. */ 13489 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 13490 { 13491 uint32_t mask; 13492 13493 mask = 0; 13494 if (flags & 1) 13495 mask |= 0xff; 13496 if (flags & 2) 13497 mask |= 0xff00; 13498 if (flags & 4) 13499 mask |= 0xff0000; 13500 if (flags & 8) 13501 mask |= 0xff000000; 13502 return (a & mask) | (b & ~mask); 13503 } 13504 13505 /* CRC helpers. 13506 * The upper bytes of val (above the number specified by 'bytes') must have 13507 * been zeroed out by the caller. 13508 */ 13509 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 13510 { 13511 uint8_t buf[4]; 13512 13513 stl_le_p(buf, val); 13514 13515 /* zlib crc32 converts the accumulator and output to one's complement. */ 13516 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 13517 } 13518 13519 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 13520 { 13521 uint8_t buf[4]; 13522 13523 stl_le_p(buf, val); 13524 13525 /* Linux crc32c converts the output to one's complement. */ 13526 return crc32c(acc, buf, bytes) ^ 0xffffffff; 13527 } 13528 13529 /* Return the exception level to which FP-disabled exceptions should 13530 * be taken, or 0 if FP is enabled. 13531 */ 13532 int fp_exception_el(CPUARMState *env, int cur_el) 13533 { 13534 #ifndef CONFIG_USER_ONLY 13535 int fpen; 13536 13537 /* CPACR and the CPTR registers don't exist before v6, so FP is 13538 * always accessible 13539 */ 13540 if (!arm_feature(env, ARM_FEATURE_V6)) { 13541 return 0; 13542 } 13543 13544 if (arm_feature(env, ARM_FEATURE_M)) { 13545 /* CPACR can cause a NOCP UsageFault taken to current security state */ 13546 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 13547 return 1; 13548 } 13549 13550 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 13551 if (!extract32(env->v7m.nsacr, 10, 1)) { 13552 /* FP insns cause a NOCP UsageFault taken to Secure */ 13553 return 3; 13554 } 13555 } 13556 13557 return 0; 13558 } 13559 13560 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 13561 * 0, 2 : trap EL0 and EL1/PL1 accesses 13562 * 1 : trap only EL0 accesses 13563 * 3 : trap no accesses 13564 */ 13565 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 13566 switch (fpen) { 13567 case 0: 13568 case 2: 13569 if (cur_el == 0 || cur_el == 1) { 13570 /* Trap to PL1, which might be EL1 or EL3 */ 13571 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 13572 return 3; 13573 } 13574 return 1; 13575 } 13576 if (cur_el == 3 && !is_a64(env)) { 13577 /* Secure PL1 running at EL3 */ 13578 return 3; 13579 } 13580 break; 13581 case 1: 13582 if (cur_el == 0) { 13583 return 1; 13584 } 13585 break; 13586 case 3: 13587 break; 13588 } 13589 13590 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 13591 * check because zero bits in the registers mean "don't trap". 13592 */ 13593 13594 /* CPTR_EL2 : present in v7VE or v8 */ 13595 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 13596 && !arm_is_secure_below_el3(env)) { 13597 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 13598 return 2; 13599 } 13600 13601 /* CPTR_EL3 : present in v8 */ 13602 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 13603 /* Trap all FP ops to EL3 */ 13604 return 3; 13605 } 13606 #endif 13607 return 0; 13608 } 13609 13610 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env, 13611 bool secstate, bool priv, bool negpri) 13612 { 13613 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M; 13614 13615 if (priv) { 13616 mmu_idx |= ARM_MMU_IDX_M_PRIV; 13617 } 13618 13619 if (negpri) { 13620 mmu_idx |= ARM_MMU_IDX_M_NEGPRI; 13621 } 13622 13623 if (secstate) { 13624 mmu_idx |= ARM_MMU_IDX_M_S; 13625 } 13626 13627 return mmu_idx; 13628 } 13629 13630 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env, 13631 bool secstate, bool priv) 13632 { 13633 bool negpri = armv7m_nvic_neg_prio_requested(env->nvic, secstate); 13634 13635 return arm_v7m_mmu_idx_all(env, secstate, priv, negpri); 13636 } 13637 13638 /* Return the MMU index for a v7M CPU in the specified security state */ 13639 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13640 { 13641 bool priv = arm_current_el(env) != 0; 13642 13643 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv); 13644 } 13645 13646 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13647 { 13648 int el; 13649 13650 if (arm_feature(env, ARM_FEATURE_M)) { 13651 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13652 } 13653 13654 el = arm_current_el(env); 13655 if (el < 2 && arm_is_secure_below_el3(env)) { 13656 return ARMMMUIdx_S1SE0 + el; 13657 } else { 13658 return ARMMMUIdx_S12NSE0 + el; 13659 } 13660 } 13661 13662 int cpu_mmu_index(CPUARMState *env, bool ifetch) 13663 { 13664 return arm_to_core_mmu_idx(arm_mmu_idx(env)); 13665 } 13666 13667 #ifndef CONFIG_USER_ONLY 13668 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13669 { 13670 return stage_1_mmu_idx(arm_mmu_idx(env)); 13671 } 13672 #endif 13673 13674 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13675 target_ulong *cs_base, uint32_t *pflags) 13676 { 13677 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 13678 int current_el = arm_current_el(env); 13679 int fp_el = fp_exception_el(env, current_el); 13680 uint32_t flags = 0; 13681 13682 if (is_a64(env)) { 13683 ARMCPU *cpu = arm_env_get_cpu(env); 13684 uint64_t sctlr; 13685 13686 *pc = env->pc; 13687 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 13688 13689 /* Get control bits for tagged addresses. */ 13690 { 13691 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13692 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1); 13693 int tbii, tbid; 13694 13695 /* FIXME: ARMv8.1-VHE S2 translation regime. */ 13696 if (regime_el(env, stage1) < 2) { 13697 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1); 13698 tbid = (p1.tbi << 1) | p0.tbi; 13699 tbii = tbid & ~((p1.tbid << 1) | p0.tbid); 13700 } else { 13701 tbid = p0.tbi; 13702 tbii = tbid & !p0.tbid; 13703 } 13704 13705 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 13706 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 13707 } 13708 13709 if (cpu_isar_feature(aa64_sve, cpu)) { 13710 int sve_el = sve_exception_el(env, current_el); 13711 uint32_t zcr_len; 13712 13713 /* If SVE is disabled, but FP is enabled, 13714 * then the effective len is 0. 13715 */ 13716 if (sve_el != 0 && fp_el == 0) { 13717 zcr_len = 0; 13718 } else { 13719 zcr_len = sve_zcr_len_for_el(env, current_el); 13720 } 13721 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 13722 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 13723 } 13724 13725 sctlr = arm_sctlr(env, current_el); 13726 13727 if (cpu_isar_feature(aa64_pauth, cpu)) { 13728 /* 13729 * In order to save space in flags, we record only whether 13730 * pauth is "inactive", meaning all insns are implemented as 13731 * a nop, or "active" when some action must be performed. 13732 * The decision of which action to take is left to a helper. 13733 */ 13734 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13735 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 13736 } 13737 } 13738 13739 if (cpu_isar_feature(aa64_bti, cpu)) { 13740 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13741 if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13742 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 13743 } 13744 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 13745 } 13746 } else { 13747 *pc = env->regs[15]; 13748 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb); 13749 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len); 13750 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride); 13751 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits); 13752 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env)); 13753 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 13754 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) 13755 || arm_el_is_aa64(env, 1) || arm_feature(env, ARM_FEATURE_M)) { 13756 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 13757 } 13758 /* Note that XSCALE_CPAR shares bits with VECSTRIDE */ 13759 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13760 flags = FIELD_DP32(flags, TBFLAG_A32, 13761 XSCALE_CPAR, env->cp15.c15_cpar); 13762 } 13763 } 13764 13765 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13766 13767 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13768 * states defined in the ARM ARM for software singlestep: 13769 * SS_ACTIVE PSTATE.SS State 13770 * 0 x Inactive (the TB flag for SS is always 0) 13771 * 1 0 Active-pending 13772 * 1 1 Active-not-pending 13773 */ 13774 if (arm_singlestep_active(env)) { 13775 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 13776 if (is_a64(env)) { 13777 if (env->pstate & PSTATE_SS) { 13778 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 13779 } 13780 } else { 13781 if (env->uncached_cpsr & PSTATE_SS) { 13782 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 13783 } 13784 } 13785 } 13786 if (arm_cpu_data_is_big_endian(env)) { 13787 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 13788 } 13789 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 13790 13791 if (arm_v7m_is_handler_mode(env)) { 13792 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1); 13793 } 13794 13795 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is 13796 * suppressing them because the requested execution priority is less than 0. 13797 */ 13798 if (arm_feature(env, ARM_FEATURE_V8) && 13799 arm_feature(env, ARM_FEATURE_M) && 13800 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13801 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13802 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1); 13803 } 13804 13805 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13806 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) != env->v7m.secure) { 13807 flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1); 13808 } 13809 13810 if (arm_feature(env, ARM_FEATURE_M) && 13811 (env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13812 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13813 (env->v7m.secure && 13814 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13815 /* 13816 * ASPEN is set, but FPCA/SFPA indicate that there is no active 13817 * FP context; we must create a new FP context before executing 13818 * any FP insn. 13819 */ 13820 flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1); 13821 } 13822 13823 if (arm_feature(env, ARM_FEATURE_M)) { 13824 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13825 13826 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13827 flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1); 13828 } 13829 } 13830 13831 *pflags = flags; 13832 *cs_base = 0; 13833 } 13834 13835 #ifdef TARGET_AARCH64 13836 /* 13837 * The manual says that when SVE is enabled and VQ is widened the 13838 * implementation is allowed to zero the previously inaccessible 13839 * portion of the registers. The corollary to that is that when 13840 * SVE is enabled and VQ is narrowed we are also allowed to zero 13841 * the now inaccessible portion of the registers. 13842 * 13843 * The intent of this is that no predicate bit beyond VQ is ever set. 13844 * Which means that some operations on predicate registers themselves 13845 * may operate on full uint64_t or even unrolled across the maximum 13846 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13847 * may well be cheaper than conditionals to restrict the operation 13848 * to the relevant portion of a uint16_t[16]. 13849 */ 13850 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13851 { 13852 int i, j; 13853 uint64_t pmask; 13854 13855 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13856 assert(vq <= arm_env_get_cpu(env)->sve_max_vq); 13857 13858 /* Zap the high bits of the zregs. */ 13859 for (i = 0; i < 32; i++) { 13860 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13861 } 13862 13863 /* Zap the high bits of the pregs and ffr. */ 13864 pmask = 0; 13865 if (vq & 3) { 13866 pmask = ~(-1ULL << (16 * (vq & 3))); 13867 } 13868 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13869 for (i = 0; i < 17; ++i) { 13870 env->vfp.pregs[i].p[j] &= pmask; 13871 } 13872 pmask = 0; 13873 } 13874 } 13875 13876 /* 13877 * Notice a change in SVE vector size when changing EL. 13878 */ 13879 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13880 int new_el, bool el0_a64) 13881 { 13882 ARMCPU *cpu = arm_env_get_cpu(env); 13883 int old_len, new_len; 13884 bool old_a64, new_a64; 13885 13886 /* Nothing to do if no SVE. */ 13887 if (!cpu_isar_feature(aa64_sve, cpu)) { 13888 return; 13889 } 13890 13891 /* Nothing to do if FP is disabled in either EL. */ 13892 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13893 return; 13894 } 13895 13896 /* 13897 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13898 * at ELx, or not available because the EL is in AArch32 state, then 13899 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13900 * has an effective value of 0". 13901 * 13902 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13903 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13904 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13905 * we already have the correct register contents when encountering the 13906 * vq0->vq0 transition between EL0->EL1. 13907 */ 13908 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13909 old_len = (old_a64 && !sve_exception_el(env, old_el) 13910 ? sve_zcr_len_for_el(env, old_el) : 0); 13911 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13912 new_len = (new_a64 && !sve_exception_el(env, new_el) 13913 ? sve_zcr_len_for_el(env, new_el) : 0); 13914 13915 /* When changing vector length, clear inaccessible state. */ 13916 if (new_len < old_len) { 13917 aarch64_sve_narrow_vq(env, new_len + 1); 13918 } 13919 } 13920 #endif 13921