xref: /openbmc/qemu/target/arm/helper.c (revision c79aa350)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "exec/helper-proto.h"
15 #include "qemu/main-loop.h"
16 #include "qemu/timer.h"
17 #include "qemu/bitops.h"
18 #include "qemu/crc32c.h"
19 #include "qemu/qemu-print.h"
20 #include "exec/exec-all.h"
21 #include <zlib.h> /* For crc32 */
22 #include "hw/irq.h"
23 #include "sysemu/cpu-timers.h"
24 #include "sysemu/kvm.h"
25 #include "qapi/qapi-commands-machine-target.h"
26 #include "qapi/error.h"
27 #include "qemu/guest-random.h"
28 #ifdef CONFIG_TCG
29 #include "semihosting/common-semi.h"
30 #endif
31 #include "cpregs.h"
32 
33 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
34 
35 static void switch_mode(CPUARMState *env, int mode);
36 
37 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
38 {
39     assert(ri->fieldoffset);
40     if (cpreg_field_is_64bit(ri)) {
41         return CPREG_FIELD64(env, ri);
42     } else {
43         return CPREG_FIELD32(env, ri);
44     }
45 }
46 
47 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
48 {
49     assert(ri->fieldoffset);
50     if (cpreg_field_is_64bit(ri)) {
51         CPREG_FIELD64(env, ri) = value;
52     } else {
53         CPREG_FIELD32(env, ri) = value;
54     }
55 }
56 
57 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
58 {
59     return (char *)env + ri->fieldoffset;
60 }
61 
62 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
63 {
64     /* Raw read of a coprocessor register (as needed for migration, etc). */
65     if (ri->type & ARM_CP_CONST) {
66         return ri->resetvalue;
67     } else if (ri->raw_readfn) {
68         return ri->raw_readfn(env, ri);
69     } else if (ri->readfn) {
70         return ri->readfn(env, ri);
71     } else {
72         return raw_read(env, ri);
73     }
74 }
75 
76 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
77                              uint64_t v)
78 {
79     /*
80      * Raw write of a coprocessor register (as needed for migration, etc).
81      * Note that constant registers are treated as write-ignored; the
82      * caller should check for success by whether a readback gives the
83      * value written.
84      */
85     if (ri->type & ARM_CP_CONST) {
86         return;
87     } else if (ri->raw_writefn) {
88         ri->raw_writefn(env, ri, v);
89     } else if (ri->writefn) {
90         ri->writefn(env, ri, v);
91     } else {
92         raw_write(env, ri, v);
93     }
94 }
95 
96 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
97 {
98    /*
99     * Return true if the regdef would cause an assertion if you called
100     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
101     * program bug for it not to have the NO_RAW flag).
102     * NB that returning false here doesn't necessarily mean that calling
103     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
104     * read/write access functions which are safe for raw use" from "has
105     * read/write access functions which have side effects but has forgotten
106     * to provide raw access functions".
107     * The tests here line up with the conditions in read/write_raw_cp_reg()
108     * and assertions in raw_read()/raw_write().
109     */
110     if ((ri->type & ARM_CP_CONST) ||
111         ri->fieldoffset ||
112         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
113         return false;
114     }
115     return true;
116 }
117 
118 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
119 {
120     /* Write the coprocessor state from cpu->env to the (index,value) list. */
121     int i;
122     bool ok = true;
123 
124     for (i = 0; i < cpu->cpreg_array_len; i++) {
125         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
126         const ARMCPRegInfo *ri;
127         uint64_t newval;
128 
129         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
130         if (!ri) {
131             ok = false;
132             continue;
133         }
134         if (ri->type & ARM_CP_NO_RAW) {
135             continue;
136         }
137 
138         newval = read_raw_cp_reg(&cpu->env, ri);
139         if (kvm_sync) {
140             /*
141              * Only sync if the previous list->cpustate sync succeeded.
142              * Rather than tracking the success/failure state for every
143              * item in the list, we just recheck "does the raw write we must
144              * have made in write_list_to_cpustate() read back OK" here.
145              */
146             uint64_t oldval = cpu->cpreg_values[i];
147 
148             if (oldval == newval) {
149                 continue;
150             }
151 
152             write_raw_cp_reg(&cpu->env, ri, oldval);
153             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
154                 continue;
155             }
156 
157             write_raw_cp_reg(&cpu->env, ri, newval);
158         }
159         cpu->cpreg_values[i] = newval;
160     }
161     return ok;
162 }
163 
164 bool write_list_to_cpustate(ARMCPU *cpu)
165 {
166     int i;
167     bool ok = true;
168 
169     for (i = 0; i < cpu->cpreg_array_len; i++) {
170         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
171         uint64_t v = cpu->cpreg_values[i];
172         const ARMCPRegInfo *ri;
173 
174         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
175         if (!ri) {
176             ok = false;
177             continue;
178         }
179         if (ri->type & ARM_CP_NO_RAW) {
180             continue;
181         }
182         /*
183          * Write value and confirm it reads back as written
184          * (to catch read-only registers and partially read-only
185          * registers where the incoming migration value doesn't match)
186          */
187         write_raw_cp_reg(&cpu->env, ri, v);
188         if (read_raw_cp_reg(&cpu->env, ri) != v) {
189             ok = false;
190         }
191     }
192     return ok;
193 }
194 
195 static void add_cpreg_to_list(gpointer key, gpointer opaque)
196 {
197     ARMCPU *cpu = opaque;
198     uint32_t regidx = (uintptr_t)key;
199     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
200 
201     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
202         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
203         /* The value array need not be initialized at this point */
204         cpu->cpreg_array_len++;
205     }
206 }
207 
208 static void count_cpreg(gpointer key, gpointer opaque)
209 {
210     ARMCPU *cpu = opaque;
211     const ARMCPRegInfo *ri;
212 
213     ri = g_hash_table_lookup(cpu->cp_regs, key);
214 
215     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
216         cpu->cpreg_array_len++;
217     }
218 }
219 
220 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
221 {
222     uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
223     uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
224 
225     if (aidx > bidx) {
226         return 1;
227     }
228     if (aidx < bidx) {
229         return -1;
230     }
231     return 0;
232 }
233 
234 void init_cpreg_list(ARMCPU *cpu)
235 {
236     /*
237      * Initialise the cpreg_tuples[] array based on the cp_regs hash.
238      * Note that we require cpreg_tuples[] to be sorted by key ID.
239      */
240     GList *keys;
241     int arraylen;
242 
243     keys = g_hash_table_get_keys(cpu->cp_regs);
244     keys = g_list_sort(keys, cpreg_key_compare);
245 
246     cpu->cpreg_array_len = 0;
247 
248     g_list_foreach(keys, count_cpreg, cpu);
249 
250     arraylen = cpu->cpreg_array_len;
251     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
252     cpu->cpreg_values = g_new(uint64_t, arraylen);
253     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
254     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
255     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
256     cpu->cpreg_array_len = 0;
257 
258     g_list_foreach(keys, add_cpreg_to_list, cpu);
259 
260     assert(cpu->cpreg_array_len == arraylen);
261 
262     g_list_free(keys);
263 }
264 
265 /*
266  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
267  */
268 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
269                                         const ARMCPRegInfo *ri,
270                                         bool isread)
271 {
272     if (!is_a64(env) && arm_current_el(env) == 3 &&
273         arm_is_secure_below_el3(env)) {
274         return CP_ACCESS_TRAP_UNCATEGORIZED;
275     }
276     return CP_ACCESS_OK;
277 }
278 
279 /*
280  * Some secure-only AArch32 registers trap to EL3 if used from
281  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
282  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
283  * We assume that the .access field is set to PL1_RW.
284  */
285 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
286                                             const ARMCPRegInfo *ri,
287                                             bool isread)
288 {
289     if (arm_current_el(env) == 3) {
290         return CP_ACCESS_OK;
291     }
292     if (arm_is_secure_below_el3(env)) {
293         if (env->cp15.scr_el3 & SCR_EEL2) {
294             return CP_ACCESS_TRAP_EL2;
295         }
296         return CP_ACCESS_TRAP_EL3;
297     }
298     /* This will be EL1 NS and EL2 NS, which just UNDEF */
299     return CP_ACCESS_TRAP_UNCATEGORIZED;
300 }
301 
302 /*
303  * Check for traps to performance monitor registers, which are controlled
304  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
305  */
306 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
307                                  bool isread)
308 {
309     int el = arm_current_el(env);
310     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
311 
312     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
313         return CP_ACCESS_TRAP_EL2;
314     }
315     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
316         return CP_ACCESS_TRAP_EL3;
317     }
318     return CP_ACCESS_OK;
319 }
320 
321 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
322 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
323                                       bool isread)
324 {
325     if (arm_current_el(env) == 1) {
326         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
327         if (arm_hcr_el2_eff(env) & trap) {
328             return CP_ACCESS_TRAP_EL2;
329         }
330     }
331     return CP_ACCESS_OK;
332 }
333 
334 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
335 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
336                                  bool isread)
337 {
338     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
339         return CP_ACCESS_TRAP_EL2;
340     }
341     return CP_ACCESS_OK;
342 }
343 
344 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
345 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
346                                   bool isread)
347 {
348     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
349         return CP_ACCESS_TRAP_EL2;
350     }
351     return CP_ACCESS_OK;
352 }
353 
354 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
355 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
356                                   bool isread)
357 {
358     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
359         return CP_ACCESS_TRAP_EL2;
360     }
361     return CP_ACCESS_OK;
362 }
363 
364 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
365 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
366                                     bool isread)
367 {
368     if (arm_current_el(env) == 1 &&
369         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
370         return CP_ACCESS_TRAP_EL2;
371     }
372     return CP_ACCESS_OK;
373 }
374 
375 #ifdef TARGET_AARCH64
376 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
377 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
378                                     bool isread)
379 {
380     if (arm_current_el(env) == 1 &&
381         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
382         return CP_ACCESS_TRAP_EL2;
383     }
384     return CP_ACCESS_OK;
385 }
386 #endif
387 
388 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
389 {
390     ARMCPU *cpu = env_archcpu(env);
391 
392     raw_write(env, ri, value);
393     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
394 }
395 
396 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
397 {
398     ARMCPU *cpu = env_archcpu(env);
399 
400     if (raw_read(env, ri) != value) {
401         /*
402          * Unlike real hardware the qemu TLB uses virtual addresses,
403          * not modified virtual addresses, so this causes a TLB flush.
404          */
405         tlb_flush(CPU(cpu));
406         raw_write(env, ri, value);
407     }
408 }
409 
410 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
411                              uint64_t value)
412 {
413     ARMCPU *cpu = env_archcpu(env);
414 
415     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
416         && !extended_addresses_enabled(env)) {
417         /*
418          * For VMSA (when not using the LPAE long descriptor page table
419          * format) this register includes the ASID, so do a TLB flush.
420          * For PMSA it is purely a process ID and no action is needed.
421          */
422         tlb_flush(CPU(cpu));
423     }
424     raw_write(env, ri, value);
425 }
426 
427 static int alle1_tlbmask(CPUARMState *env)
428 {
429     /*
430      * Note that the 'ALL' scope must invalidate both stage 1 and
431      * stage 2 translations, whereas most other scopes only invalidate
432      * stage 1 translations.
433      */
434     return (ARMMMUIdxBit_E10_1 |
435             ARMMMUIdxBit_E10_1_PAN |
436             ARMMMUIdxBit_E10_0 |
437             ARMMMUIdxBit_Stage2 |
438             ARMMMUIdxBit_Stage2_S);
439 }
440 
441 
442 /* IS variants of TLB operations must affect all cores */
443 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
444                              uint64_t value)
445 {
446     CPUState *cs = env_cpu(env);
447 
448     tlb_flush_all_cpus_synced(cs);
449 }
450 
451 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
452                              uint64_t value)
453 {
454     CPUState *cs = env_cpu(env);
455 
456     tlb_flush_all_cpus_synced(cs);
457 }
458 
459 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
460                              uint64_t value)
461 {
462     CPUState *cs = env_cpu(env);
463 
464     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
465 }
466 
467 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
468                              uint64_t value)
469 {
470     CPUState *cs = env_cpu(env);
471 
472     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
473 }
474 
475 /*
476  * Non-IS variants of TLB operations are upgraded to
477  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
478  * force broadcast of these operations.
479  */
480 static bool tlb_force_broadcast(CPUARMState *env)
481 {
482     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
483 }
484 
485 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
486                           uint64_t value)
487 {
488     /* Invalidate all (TLBIALL) */
489     CPUState *cs = env_cpu(env);
490 
491     if (tlb_force_broadcast(env)) {
492         tlb_flush_all_cpus_synced(cs);
493     } else {
494         tlb_flush(cs);
495     }
496 }
497 
498 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
499                           uint64_t value)
500 {
501     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
502     CPUState *cs = env_cpu(env);
503 
504     value &= TARGET_PAGE_MASK;
505     if (tlb_force_broadcast(env)) {
506         tlb_flush_page_all_cpus_synced(cs, value);
507     } else {
508         tlb_flush_page(cs, value);
509     }
510 }
511 
512 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
513                            uint64_t value)
514 {
515     /* Invalidate by ASID (TLBIASID) */
516     CPUState *cs = env_cpu(env);
517 
518     if (tlb_force_broadcast(env)) {
519         tlb_flush_all_cpus_synced(cs);
520     } else {
521         tlb_flush(cs);
522     }
523 }
524 
525 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
526                            uint64_t value)
527 {
528     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
529     CPUState *cs = env_cpu(env);
530 
531     value &= TARGET_PAGE_MASK;
532     if (tlb_force_broadcast(env)) {
533         tlb_flush_page_all_cpus_synced(cs, value);
534     } else {
535         tlb_flush_page(cs, value);
536     }
537 }
538 
539 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
540                                uint64_t value)
541 {
542     CPUState *cs = env_cpu(env);
543 
544     tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
545 }
546 
547 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
548                                   uint64_t value)
549 {
550     CPUState *cs = env_cpu(env);
551 
552     tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
553 }
554 
555 
556 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
557                               uint64_t value)
558 {
559     CPUState *cs = env_cpu(env);
560 
561     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
562 }
563 
564 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565                                  uint64_t value)
566 {
567     CPUState *cs = env_cpu(env);
568 
569     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
570 }
571 
572 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
573                               uint64_t value)
574 {
575     CPUState *cs = env_cpu(env);
576     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
577 
578     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
579 }
580 
581 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
582                                  uint64_t value)
583 {
584     CPUState *cs = env_cpu(env);
585     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
586 
587     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
588                                              ARMMMUIdxBit_E2);
589 }
590 
591 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
592                                 uint64_t value)
593 {
594     CPUState *cs = env_cpu(env);
595     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
596 
597     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
598 }
599 
600 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
601                                 uint64_t value)
602 {
603     CPUState *cs = env_cpu(env);
604     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
605 
606     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
607 }
608 
609 static const ARMCPRegInfo cp_reginfo[] = {
610     /*
611      * Define the secure and non-secure FCSE identifier CP registers
612      * separately because there is no secure bank in V8 (no _EL3).  This allows
613      * the secure register to be properly reset and migrated. There is also no
614      * v8 EL1 version of the register so the non-secure instance stands alone.
615      */
616     { .name = "FCSEIDR",
617       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
618       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
619       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
620       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
621     { .name = "FCSEIDR_S",
622       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
623       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
624       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
625       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
626     /*
627      * Define the secure and non-secure context identifier CP registers
628      * separately because there is no secure bank in V8 (no _EL3).  This allows
629      * the secure register to be properly reset and migrated.  In the
630      * non-secure case, the 32-bit register will have reset and migration
631      * disabled during registration as it is handled by the 64-bit instance.
632      */
633     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
634       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
635       .access = PL1_RW, .accessfn = access_tvm_trvm,
636       .secure = ARM_CP_SECSTATE_NS,
637       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
638       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
639     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
640       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
641       .access = PL1_RW, .accessfn = access_tvm_trvm,
642       .secure = ARM_CP_SECSTATE_S,
643       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
644       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
645 };
646 
647 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
648     /*
649      * NB: Some of these registers exist in v8 but with more precise
650      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
651      */
652     /* MMU Domain access control / MPU write buffer control */
653     { .name = "DACR",
654       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
655       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
656       .writefn = dacr_write, .raw_writefn = raw_write,
657       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
658                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
659     /*
660      * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
661      * For v6 and v5, these mappings are overly broad.
662      */
663     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
664       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
665     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
666       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
667     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
668       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
669     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
670       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
671     /* Cache maintenance ops; some of this space may be overridden later. */
672     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
673       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
674       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
675 };
676 
677 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
678     /*
679      * Not all pre-v6 cores implemented this WFI, so this is slightly
680      * over-broad.
681      */
682     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
683       .access = PL1_W, .type = ARM_CP_WFI },
684 };
685 
686 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
687     /*
688      * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
689      * is UNPREDICTABLE; we choose to NOP as most implementations do).
690      */
691     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
692       .access = PL1_W, .type = ARM_CP_WFI },
693     /*
694      * L1 cache lockdown. Not architectural in v6 and earlier but in practice
695      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
696      * OMAPCP will override this space.
697      */
698     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
699       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
700       .resetvalue = 0 },
701     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
702       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
703       .resetvalue = 0 },
704     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
705     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
706       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
707       .resetvalue = 0 },
708     /*
709      * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
710      * implementing it as RAZ means the "debug architecture version" bits
711      * will read as a reserved value, which should cause Linux to not try
712      * to use the debug hardware.
713      */
714     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
715       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
716     /*
717      * MMU TLB control. Note that the wildcarding means we cover not just
718      * the unified TLB ops but also the dside/iside/inner-shareable variants.
719      */
720     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
721       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
722       .type = ARM_CP_NO_RAW },
723     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
724       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
725       .type = ARM_CP_NO_RAW },
726     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
727       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
728       .type = ARM_CP_NO_RAW },
729     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
730       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
731       .type = ARM_CP_NO_RAW },
732     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
733       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
734     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
735       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
736 };
737 
738 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
739                         uint64_t value)
740 {
741     uint32_t mask = 0;
742 
743     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
744     if (!arm_feature(env, ARM_FEATURE_V8)) {
745         /*
746          * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
747          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
748          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
749          */
750         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
751             /* VFP coprocessor: cp10 & cp11 [23:20] */
752             mask |= R_CPACR_ASEDIS_MASK |
753                     R_CPACR_D32DIS_MASK |
754                     R_CPACR_CP11_MASK |
755                     R_CPACR_CP10_MASK;
756 
757             if (!arm_feature(env, ARM_FEATURE_NEON)) {
758                 /* ASEDIS [31] bit is RAO/WI */
759                 value |= R_CPACR_ASEDIS_MASK;
760             }
761 
762             /*
763              * VFPv3 and upwards with NEON implement 32 double precision
764              * registers (D0-D31).
765              */
766             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
767                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
768                 value |= R_CPACR_D32DIS_MASK;
769             }
770         }
771         value &= mask;
772     }
773 
774     /*
775      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
776      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
777      */
778     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
779         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
780         mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
781         value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
782     }
783 
784     env->cp15.cpacr_el1 = value;
785 }
786 
787 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
788 {
789     /*
790      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
791      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
792      */
793     uint64_t value = env->cp15.cpacr_el1;
794 
795     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
796         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
797         value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
798     }
799     return value;
800 }
801 
802 
803 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
804 {
805     /*
806      * Call cpacr_write() so that we reset with the correct RAO bits set
807      * for our CPU features.
808      */
809     cpacr_write(env, ri, 0);
810 }
811 
812 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
813                                    bool isread)
814 {
815     if (arm_feature(env, ARM_FEATURE_V8)) {
816         /* Check if CPACR accesses are to be trapped to EL2 */
817         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
818             FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
819             return CP_ACCESS_TRAP_EL2;
820         /* Check if CPACR accesses are to be trapped to EL3 */
821         } else if (arm_current_el(env) < 3 &&
822                    FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
823             return CP_ACCESS_TRAP_EL3;
824         }
825     }
826 
827     return CP_ACCESS_OK;
828 }
829 
830 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
831                                   bool isread)
832 {
833     /* Check if CPTR accesses are set to trap to EL3 */
834     if (arm_current_el(env) == 2 &&
835         FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
836         return CP_ACCESS_TRAP_EL3;
837     }
838 
839     return CP_ACCESS_OK;
840 }
841 
842 static const ARMCPRegInfo v6_cp_reginfo[] = {
843     /* prefetch by MVA in v6, NOP in v7 */
844     { .name = "MVA_prefetch",
845       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
846       .access = PL1_W, .type = ARM_CP_NOP },
847     /*
848      * We need to break the TB after ISB to execute self-modifying code
849      * correctly and also to take any pending interrupts immediately.
850      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
851      */
852     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
853       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
854     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
855       .access = PL0_W, .type = ARM_CP_NOP },
856     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
857       .access = PL0_W, .type = ARM_CP_NOP },
858     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
859       .access = PL1_RW, .accessfn = access_tvm_trvm,
860       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
861                              offsetof(CPUARMState, cp15.ifar_ns) },
862       .resetvalue = 0, },
863     /*
864      * Watchpoint Fault Address Register : should actually only be present
865      * for 1136, 1176, 11MPCore.
866      */
867     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
868       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
869     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
870       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
871       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
872       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
873 };
874 
875 typedef struct pm_event {
876     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
877     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
878     bool (*supported)(CPUARMState *);
879     /*
880      * Retrieve the current count of the underlying event. The programmed
881      * counters hold a difference from the return value from this function
882      */
883     uint64_t (*get_count)(CPUARMState *);
884     /*
885      * Return how many nanoseconds it will take (at a minimum) for count events
886      * to occur. A negative value indicates the counter will never overflow, or
887      * that the counter has otherwise arranged for the overflow bit to be set
888      * and the PMU interrupt to be raised on overflow.
889      */
890     int64_t (*ns_per_count)(uint64_t);
891 } pm_event;
892 
893 static bool event_always_supported(CPUARMState *env)
894 {
895     return true;
896 }
897 
898 static uint64_t swinc_get_count(CPUARMState *env)
899 {
900     /*
901      * SW_INCR events are written directly to the pmevcntr's by writes to
902      * PMSWINC, so there is no underlying count maintained by the PMU itself
903      */
904     return 0;
905 }
906 
907 static int64_t swinc_ns_per(uint64_t ignored)
908 {
909     return -1;
910 }
911 
912 /*
913  * Return the underlying cycle count for the PMU cycle counters. If we're in
914  * usermode, simply return 0.
915  */
916 static uint64_t cycles_get_count(CPUARMState *env)
917 {
918 #ifndef CONFIG_USER_ONLY
919     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
920                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
921 #else
922     return cpu_get_host_ticks();
923 #endif
924 }
925 
926 #ifndef CONFIG_USER_ONLY
927 static int64_t cycles_ns_per(uint64_t cycles)
928 {
929     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
930 }
931 
932 static bool instructions_supported(CPUARMState *env)
933 {
934     return icount_enabled() == 1; /* Precise instruction counting */
935 }
936 
937 static uint64_t instructions_get_count(CPUARMState *env)
938 {
939     return (uint64_t)icount_get_raw();
940 }
941 
942 static int64_t instructions_ns_per(uint64_t icount)
943 {
944     return icount_to_ns((int64_t)icount);
945 }
946 #endif
947 
948 static bool pmuv3p1_events_supported(CPUARMState *env)
949 {
950     /* For events which are supported in any v8.1 PMU */
951     return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
952 }
953 
954 static bool pmuv3p4_events_supported(CPUARMState *env)
955 {
956     /* For events which are supported in any v8.1 PMU */
957     return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
958 }
959 
960 static uint64_t zero_event_get_count(CPUARMState *env)
961 {
962     /* For events which on QEMU never fire, so their count is always zero */
963     return 0;
964 }
965 
966 static int64_t zero_event_ns_per(uint64_t cycles)
967 {
968     /* An event which never fires can never overflow */
969     return -1;
970 }
971 
972 static const pm_event pm_events[] = {
973     { .number = 0x000, /* SW_INCR */
974       .supported = event_always_supported,
975       .get_count = swinc_get_count,
976       .ns_per_count = swinc_ns_per,
977     },
978 #ifndef CONFIG_USER_ONLY
979     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
980       .supported = instructions_supported,
981       .get_count = instructions_get_count,
982       .ns_per_count = instructions_ns_per,
983     },
984     { .number = 0x011, /* CPU_CYCLES, Cycle */
985       .supported = event_always_supported,
986       .get_count = cycles_get_count,
987       .ns_per_count = cycles_ns_per,
988     },
989 #endif
990     { .number = 0x023, /* STALL_FRONTEND */
991       .supported = pmuv3p1_events_supported,
992       .get_count = zero_event_get_count,
993       .ns_per_count = zero_event_ns_per,
994     },
995     { .number = 0x024, /* STALL_BACKEND */
996       .supported = pmuv3p1_events_supported,
997       .get_count = zero_event_get_count,
998       .ns_per_count = zero_event_ns_per,
999     },
1000     { .number = 0x03c, /* STALL */
1001       .supported = pmuv3p4_events_supported,
1002       .get_count = zero_event_get_count,
1003       .ns_per_count = zero_event_ns_per,
1004     },
1005 };
1006 
1007 /*
1008  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1009  * events (i.e. the statistical profiling extension), this implementation
1010  * should first be updated to something sparse instead of the current
1011  * supported_event_map[] array.
1012  */
1013 #define MAX_EVENT_ID 0x3c
1014 #define UNSUPPORTED_EVENT UINT16_MAX
1015 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1016 
1017 /*
1018  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1019  * of ARM event numbers to indices in our pm_events array.
1020  *
1021  * Note: Events in the 0x40XX range are not currently supported.
1022  */
1023 void pmu_init(ARMCPU *cpu)
1024 {
1025     unsigned int i;
1026 
1027     /*
1028      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1029      * events to them
1030      */
1031     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1032         supported_event_map[i] = UNSUPPORTED_EVENT;
1033     }
1034     cpu->pmceid0 = 0;
1035     cpu->pmceid1 = 0;
1036 
1037     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1038         const pm_event *cnt = &pm_events[i];
1039         assert(cnt->number <= MAX_EVENT_ID);
1040         /* We do not currently support events in the 0x40xx range */
1041         assert(cnt->number <= 0x3f);
1042 
1043         if (cnt->supported(&cpu->env)) {
1044             supported_event_map[cnt->number] = i;
1045             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1046             if (cnt->number & 0x20) {
1047                 cpu->pmceid1 |= event_mask;
1048             } else {
1049                 cpu->pmceid0 |= event_mask;
1050             }
1051         }
1052     }
1053 }
1054 
1055 /*
1056  * Check at runtime whether a PMU event is supported for the current machine
1057  */
1058 static bool event_supported(uint16_t number)
1059 {
1060     if (number > MAX_EVENT_ID) {
1061         return false;
1062     }
1063     return supported_event_map[number] != UNSUPPORTED_EVENT;
1064 }
1065 
1066 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1067                                    bool isread)
1068 {
1069     /*
1070      * Performance monitor registers user accessibility is controlled
1071      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1072      * trapping to EL2 or EL3 for other accesses.
1073      */
1074     int el = arm_current_el(env);
1075     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1076 
1077     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1078         return CP_ACCESS_TRAP;
1079     }
1080     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1081         return CP_ACCESS_TRAP_EL2;
1082     }
1083     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1084         return CP_ACCESS_TRAP_EL3;
1085     }
1086 
1087     return CP_ACCESS_OK;
1088 }
1089 
1090 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1091                                            const ARMCPRegInfo *ri,
1092                                            bool isread)
1093 {
1094     /* ER: event counter read trap control */
1095     if (arm_feature(env, ARM_FEATURE_V8)
1096         && arm_current_el(env) == 0
1097         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1098         && isread) {
1099         return CP_ACCESS_OK;
1100     }
1101 
1102     return pmreg_access(env, ri, isread);
1103 }
1104 
1105 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1106                                          const ARMCPRegInfo *ri,
1107                                          bool isread)
1108 {
1109     /* SW: software increment write trap control */
1110     if (arm_feature(env, ARM_FEATURE_V8)
1111         && arm_current_el(env) == 0
1112         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1113         && !isread) {
1114         return CP_ACCESS_OK;
1115     }
1116 
1117     return pmreg_access(env, ri, isread);
1118 }
1119 
1120 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1121                                         const ARMCPRegInfo *ri,
1122                                         bool isread)
1123 {
1124     /* ER: event counter read trap control */
1125     if (arm_feature(env, ARM_FEATURE_V8)
1126         && arm_current_el(env) == 0
1127         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1128         return CP_ACCESS_OK;
1129     }
1130 
1131     return pmreg_access(env, ri, isread);
1132 }
1133 
1134 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1135                                          const ARMCPRegInfo *ri,
1136                                          bool isread)
1137 {
1138     /* CR: cycle counter read trap control */
1139     if (arm_feature(env, ARM_FEATURE_V8)
1140         && arm_current_el(env) == 0
1141         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1142         && isread) {
1143         return CP_ACCESS_OK;
1144     }
1145 
1146     return pmreg_access(env, ri, isread);
1147 }
1148 
1149 /*
1150  * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1151  * We use these to decide whether we need to wrap a write to MDCR_EL2
1152  * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1153  */
1154 #define MDCR_EL2_PMU_ENABLE_BITS \
1155     (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1156 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1157 
1158 /*
1159  * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1160  * the current EL, security state, and register configuration.
1161  */
1162 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1163 {
1164     uint64_t filter;
1165     bool e, p, u, nsk, nsu, nsh, m;
1166     bool enabled, prohibited = false, filtered;
1167     bool secure = arm_is_secure(env);
1168     int el = arm_current_el(env);
1169     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1170     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1171 
1172     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1173         return false;
1174     }
1175 
1176     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1177             (counter < hpmn || counter == 31)) {
1178         e = env->cp15.c9_pmcr & PMCRE;
1179     } else {
1180         e = mdcr_el2 & MDCR_HPME;
1181     }
1182     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1183 
1184     /* Is event counting prohibited? */
1185     if (el == 2 && (counter < hpmn || counter == 31)) {
1186         prohibited = mdcr_el2 & MDCR_HPMD;
1187     }
1188     if (secure) {
1189         prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1190     }
1191 
1192     if (counter == 31) {
1193         /*
1194          * The cycle counter defaults to running. PMCR.DP says "disable
1195          * the cycle counter when event counting is prohibited".
1196          * Some MDCR bits disable the cycle counter specifically.
1197          */
1198         prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1199         if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1200             if (secure) {
1201                 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1202             }
1203             if (el == 2) {
1204                 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1205             }
1206         }
1207     }
1208 
1209     if (counter == 31) {
1210         filter = env->cp15.pmccfiltr_el0;
1211     } else {
1212         filter = env->cp15.c14_pmevtyper[counter];
1213     }
1214 
1215     p   = filter & PMXEVTYPER_P;
1216     u   = filter & PMXEVTYPER_U;
1217     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1218     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1219     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1220     m   = arm_el_is_aa64(env, 1) &&
1221               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1222 
1223     if (el == 0) {
1224         filtered = secure ? u : u != nsu;
1225     } else if (el == 1) {
1226         filtered = secure ? p : p != nsk;
1227     } else if (el == 2) {
1228         filtered = !nsh;
1229     } else { /* EL3 */
1230         filtered = m != p;
1231     }
1232 
1233     if (counter != 31) {
1234         /*
1235          * If not checking PMCCNTR, ensure the counter is setup to an event we
1236          * support
1237          */
1238         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1239         if (!event_supported(event)) {
1240             return false;
1241         }
1242     }
1243 
1244     return enabled && !prohibited && !filtered;
1245 }
1246 
1247 static void pmu_update_irq(CPUARMState *env)
1248 {
1249     ARMCPU *cpu = env_archcpu(env);
1250     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1251             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1252 }
1253 
1254 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1255 {
1256     /*
1257      * Return true if the clock divider is enabled and the cycle counter
1258      * is supposed to tick only once every 64 clock cycles. This is
1259      * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1260      * (64-bit) cycle counter PMCR.D has no effect.
1261      */
1262     return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1263 }
1264 
1265 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1266 {
1267     /* Return true if the specified event counter is configured to be 64 bit */
1268 
1269     /* This isn't intended to be used with the cycle counter */
1270     assert(counter < 31);
1271 
1272     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1273         return false;
1274     }
1275 
1276     if (arm_feature(env, ARM_FEATURE_EL2)) {
1277         /*
1278          * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1279          * current security state, so we don't use arm_mdcr_el2_eff() here.
1280          */
1281         bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1282         int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1283 
1284         if (hpmn != 0 && counter >= hpmn) {
1285             return hlp;
1286         }
1287     }
1288     return env->cp15.c9_pmcr & PMCRLP;
1289 }
1290 
1291 /*
1292  * Ensure c15_ccnt is the guest-visible count so that operations such as
1293  * enabling/disabling the counter or filtering, modifying the count itself,
1294  * etc. can be done logically. This is essentially a no-op if the counter is
1295  * not enabled at the time of the call.
1296  */
1297 static void pmccntr_op_start(CPUARMState *env)
1298 {
1299     uint64_t cycles = cycles_get_count(env);
1300 
1301     if (pmu_counter_enabled(env, 31)) {
1302         uint64_t eff_cycles = cycles;
1303         if (pmccntr_clockdiv_enabled(env)) {
1304             eff_cycles /= 64;
1305         }
1306 
1307         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1308 
1309         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1310                                  1ull << 63 : 1ull << 31;
1311         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1312             env->cp15.c9_pmovsr |= (1ULL << 31);
1313             pmu_update_irq(env);
1314         }
1315 
1316         env->cp15.c15_ccnt = new_pmccntr;
1317     }
1318     env->cp15.c15_ccnt_delta = cycles;
1319 }
1320 
1321 /*
1322  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1323  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1324  * pmccntr_op_start.
1325  */
1326 static void pmccntr_op_finish(CPUARMState *env)
1327 {
1328     if (pmu_counter_enabled(env, 31)) {
1329 #ifndef CONFIG_USER_ONLY
1330         /* Calculate when the counter will next overflow */
1331         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1332         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1333             remaining_cycles = (uint32_t)remaining_cycles;
1334         }
1335         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1336 
1337         if (overflow_in > 0) {
1338             int64_t overflow_at;
1339 
1340             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1341                                  overflow_in, &overflow_at)) {
1342                 ARMCPU *cpu = env_archcpu(env);
1343                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1344             }
1345         }
1346 #endif
1347 
1348         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1349         if (pmccntr_clockdiv_enabled(env)) {
1350             prev_cycles /= 64;
1351         }
1352         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1353     }
1354 }
1355 
1356 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1357 {
1358 
1359     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1360     uint64_t count = 0;
1361     if (event_supported(event)) {
1362         uint16_t event_idx = supported_event_map[event];
1363         count = pm_events[event_idx].get_count(env);
1364     }
1365 
1366     if (pmu_counter_enabled(env, counter)) {
1367         uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1368         uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1369             1ULL << 63 : 1ULL << 31;
1370 
1371         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1372             env->cp15.c9_pmovsr |= (1 << counter);
1373             pmu_update_irq(env);
1374         }
1375         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1376     }
1377     env->cp15.c14_pmevcntr_delta[counter] = count;
1378 }
1379 
1380 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1381 {
1382     if (pmu_counter_enabled(env, counter)) {
1383 #ifndef CONFIG_USER_ONLY
1384         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1385         uint16_t event_idx = supported_event_map[event];
1386         uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1387         int64_t overflow_in;
1388 
1389         if (!pmevcntr_is_64_bit(env, counter)) {
1390             delta = (uint32_t)delta;
1391         }
1392         overflow_in = pm_events[event_idx].ns_per_count(delta);
1393 
1394         if (overflow_in > 0) {
1395             int64_t overflow_at;
1396 
1397             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1398                                  overflow_in, &overflow_at)) {
1399                 ARMCPU *cpu = env_archcpu(env);
1400                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1401             }
1402         }
1403 #endif
1404 
1405         env->cp15.c14_pmevcntr_delta[counter] -=
1406             env->cp15.c14_pmevcntr[counter];
1407     }
1408 }
1409 
1410 void pmu_op_start(CPUARMState *env)
1411 {
1412     unsigned int i;
1413     pmccntr_op_start(env);
1414     for (i = 0; i < pmu_num_counters(env); i++) {
1415         pmevcntr_op_start(env, i);
1416     }
1417 }
1418 
1419 void pmu_op_finish(CPUARMState *env)
1420 {
1421     unsigned int i;
1422     pmccntr_op_finish(env);
1423     for (i = 0; i < pmu_num_counters(env); i++) {
1424         pmevcntr_op_finish(env, i);
1425     }
1426 }
1427 
1428 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1429 {
1430     pmu_op_start(&cpu->env);
1431 }
1432 
1433 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1434 {
1435     pmu_op_finish(&cpu->env);
1436 }
1437 
1438 void arm_pmu_timer_cb(void *opaque)
1439 {
1440     ARMCPU *cpu = opaque;
1441 
1442     /*
1443      * Update all the counter values based on the current underlying counts,
1444      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1445      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1446      * counter may expire.
1447      */
1448     pmu_op_start(&cpu->env);
1449     pmu_op_finish(&cpu->env);
1450 }
1451 
1452 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1453                        uint64_t value)
1454 {
1455     pmu_op_start(env);
1456 
1457     if (value & PMCRC) {
1458         /* The counter has been reset */
1459         env->cp15.c15_ccnt = 0;
1460     }
1461 
1462     if (value & PMCRP) {
1463         unsigned int i;
1464         for (i = 0; i < pmu_num_counters(env); i++) {
1465             env->cp15.c14_pmevcntr[i] = 0;
1466         }
1467     }
1468 
1469     env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1470     env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1471 
1472     pmu_op_finish(env);
1473 }
1474 
1475 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1476                           uint64_t value)
1477 {
1478     unsigned int i;
1479     uint64_t overflow_mask, new_pmswinc;
1480 
1481     for (i = 0; i < pmu_num_counters(env); i++) {
1482         /* Increment a counter's count iff: */
1483         if ((value & (1 << i)) && /* counter's bit is set */
1484                 /* counter is enabled and not filtered */
1485                 pmu_counter_enabled(env, i) &&
1486                 /* counter is SW_INCR */
1487                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1488             pmevcntr_op_start(env, i);
1489 
1490             /*
1491              * Detect if this write causes an overflow since we can't predict
1492              * PMSWINC overflows like we can for other events
1493              */
1494             new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1495 
1496             overflow_mask = pmevcntr_is_64_bit(env, i) ?
1497                 1ULL << 63 : 1ULL << 31;
1498 
1499             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1500                 env->cp15.c9_pmovsr |= (1 << i);
1501                 pmu_update_irq(env);
1502             }
1503 
1504             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1505 
1506             pmevcntr_op_finish(env, i);
1507         }
1508     }
1509 }
1510 
1511 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1512 {
1513     uint64_t ret;
1514     pmccntr_op_start(env);
1515     ret = env->cp15.c15_ccnt;
1516     pmccntr_op_finish(env);
1517     return ret;
1518 }
1519 
1520 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1521                          uint64_t value)
1522 {
1523     /*
1524      * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1525      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1526      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1527      * accessed.
1528      */
1529     env->cp15.c9_pmselr = value & 0x1f;
1530 }
1531 
1532 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1533                         uint64_t value)
1534 {
1535     pmccntr_op_start(env);
1536     env->cp15.c15_ccnt = value;
1537     pmccntr_op_finish(env);
1538 }
1539 
1540 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1541                             uint64_t value)
1542 {
1543     uint64_t cur_val = pmccntr_read(env, NULL);
1544 
1545     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1546 }
1547 
1548 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1549                             uint64_t value)
1550 {
1551     pmccntr_op_start(env);
1552     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1553     pmccntr_op_finish(env);
1554 }
1555 
1556 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1557                             uint64_t value)
1558 {
1559     pmccntr_op_start(env);
1560     /* M is not accessible from AArch32 */
1561     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1562         (value & PMCCFILTR);
1563     pmccntr_op_finish(env);
1564 }
1565 
1566 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1567 {
1568     /* M is not visible in AArch32 */
1569     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1570 }
1571 
1572 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1573                             uint64_t value)
1574 {
1575     pmu_op_start(env);
1576     value &= pmu_counter_mask(env);
1577     env->cp15.c9_pmcnten |= value;
1578     pmu_op_finish(env);
1579 }
1580 
1581 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1582                              uint64_t value)
1583 {
1584     pmu_op_start(env);
1585     value &= pmu_counter_mask(env);
1586     env->cp15.c9_pmcnten &= ~value;
1587     pmu_op_finish(env);
1588 }
1589 
1590 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1591                          uint64_t value)
1592 {
1593     value &= pmu_counter_mask(env);
1594     env->cp15.c9_pmovsr &= ~value;
1595     pmu_update_irq(env);
1596 }
1597 
1598 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1599                          uint64_t value)
1600 {
1601     value &= pmu_counter_mask(env);
1602     env->cp15.c9_pmovsr |= value;
1603     pmu_update_irq(env);
1604 }
1605 
1606 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1607                              uint64_t value, const uint8_t counter)
1608 {
1609     if (counter == 31) {
1610         pmccfiltr_write(env, ri, value);
1611     } else if (counter < pmu_num_counters(env)) {
1612         pmevcntr_op_start(env, counter);
1613 
1614         /*
1615          * If this counter's event type is changing, store the current
1616          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1617          * pmevcntr_op_finish has the correct baseline when it converts back to
1618          * a delta.
1619          */
1620         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1621             PMXEVTYPER_EVTCOUNT;
1622         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1623         if (old_event != new_event) {
1624             uint64_t count = 0;
1625             if (event_supported(new_event)) {
1626                 uint16_t event_idx = supported_event_map[new_event];
1627                 count = pm_events[event_idx].get_count(env);
1628             }
1629             env->cp15.c14_pmevcntr_delta[counter] = count;
1630         }
1631 
1632         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1633         pmevcntr_op_finish(env, counter);
1634     }
1635     /*
1636      * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1637      * PMSELR value is equal to or greater than the number of implemented
1638      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1639      */
1640 }
1641 
1642 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1643                                const uint8_t counter)
1644 {
1645     if (counter == 31) {
1646         return env->cp15.pmccfiltr_el0;
1647     } else if (counter < pmu_num_counters(env)) {
1648         return env->cp15.c14_pmevtyper[counter];
1649     } else {
1650       /*
1651        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1652        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1653        */
1654         return 0;
1655     }
1656 }
1657 
1658 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1659                               uint64_t value)
1660 {
1661     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1662     pmevtyper_write(env, ri, value, counter);
1663 }
1664 
1665 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1666                                uint64_t value)
1667 {
1668     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1669     env->cp15.c14_pmevtyper[counter] = value;
1670 
1671     /*
1672      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1673      * pmu_op_finish calls when loading saved state for a migration. Because
1674      * we're potentially updating the type of event here, the value written to
1675      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1676      * different counter type. Therefore, we need to set this value to the
1677      * current count for the counter type we're writing so that pmu_op_finish
1678      * has the correct count for its calculation.
1679      */
1680     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1681     if (event_supported(event)) {
1682         uint16_t event_idx = supported_event_map[event];
1683         env->cp15.c14_pmevcntr_delta[counter] =
1684             pm_events[event_idx].get_count(env);
1685     }
1686 }
1687 
1688 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1689 {
1690     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1691     return pmevtyper_read(env, ri, counter);
1692 }
1693 
1694 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1695                              uint64_t value)
1696 {
1697     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1698 }
1699 
1700 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1701 {
1702     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1703 }
1704 
1705 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1706                              uint64_t value, uint8_t counter)
1707 {
1708     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1709         /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1710         value &= MAKE_64BIT_MASK(0, 32);
1711     }
1712     if (counter < pmu_num_counters(env)) {
1713         pmevcntr_op_start(env, counter);
1714         env->cp15.c14_pmevcntr[counter] = value;
1715         pmevcntr_op_finish(env, counter);
1716     }
1717     /*
1718      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1719      * are CONSTRAINED UNPREDICTABLE.
1720      */
1721 }
1722 
1723 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1724                               uint8_t counter)
1725 {
1726     if (counter < pmu_num_counters(env)) {
1727         uint64_t ret;
1728         pmevcntr_op_start(env, counter);
1729         ret = env->cp15.c14_pmevcntr[counter];
1730         pmevcntr_op_finish(env, counter);
1731         if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1732             /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1733             ret &= MAKE_64BIT_MASK(0, 32);
1734         }
1735         return ret;
1736     } else {
1737       /*
1738        * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1739        * are CONSTRAINED UNPREDICTABLE.
1740        */
1741         return 0;
1742     }
1743 }
1744 
1745 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1746                              uint64_t value)
1747 {
1748     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1749     pmevcntr_write(env, ri, value, counter);
1750 }
1751 
1752 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1753 {
1754     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1755     return pmevcntr_read(env, ri, counter);
1756 }
1757 
1758 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1759                              uint64_t value)
1760 {
1761     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1762     assert(counter < pmu_num_counters(env));
1763     env->cp15.c14_pmevcntr[counter] = value;
1764     pmevcntr_write(env, ri, value, counter);
1765 }
1766 
1767 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1768 {
1769     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1770     assert(counter < pmu_num_counters(env));
1771     return env->cp15.c14_pmevcntr[counter];
1772 }
1773 
1774 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1775                              uint64_t value)
1776 {
1777     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1778 }
1779 
1780 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1781 {
1782     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1783 }
1784 
1785 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1786                             uint64_t value)
1787 {
1788     if (arm_feature(env, ARM_FEATURE_V8)) {
1789         env->cp15.c9_pmuserenr = value & 0xf;
1790     } else {
1791         env->cp15.c9_pmuserenr = value & 1;
1792     }
1793 }
1794 
1795 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1796                              uint64_t value)
1797 {
1798     /* We have no event counters so only the C bit can be changed */
1799     value &= pmu_counter_mask(env);
1800     env->cp15.c9_pminten |= value;
1801     pmu_update_irq(env);
1802 }
1803 
1804 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1805                              uint64_t value)
1806 {
1807     value &= pmu_counter_mask(env);
1808     env->cp15.c9_pminten &= ~value;
1809     pmu_update_irq(env);
1810 }
1811 
1812 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1813                        uint64_t value)
1814 {
1815     /*
1816      * Note that even though the AArch64 view of this register has bits
1817      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1818      * architectural requirements for bits which are RES0 only in some
1819      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1820      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1821      */
1822     raw_write(env, ri, value & ~0x1FULL);
1823 }
1824 
1825 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1826 {
1827     /* Begin with base v8.0 state.  */
1828     uint64_t valid_mask = 0x3fff;
1829     ARMCPU *cpu = env_archcpu(env);
1830     uint64_t changed;
1831 
1832     /*
1833      * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1834      * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1835      * Instead, choose the format based on the mode of EL3.
1836      */
1837     if (arm_el_is_aa64(env, 3)) {
1838         value |= SCR_FW | SCR_AW;      /* RES1 */
1839         valid_mask &= ~SCR_NET;        /* RES0 */
1840 
1841         if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1842             !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1843             value |= SCR_RW;           /* RAO/WI */
1844         }
1845         if (cpu_isar_feature(aa64_ras, cpu)) {
1846             valid_mask |= SCR_TERR;
1847         }
1848         if (cpu_isar_feature(aa64_lor, cpu)) {
1849             valid_mask |= SCR_TLOR;
1850         }
1851         if (cpu_isar_feature(aa64_pauth, cpu)) {
1852             valid_mask |= SCR_API | SCR_APK;
1853         }
1854         if (cpu_isar_feature(aa64_sel2, cpu)) {
1855             valid_mask |= SCR_EEL2;
1856         }
1857         if (cpu_isar_feature(aa64_mte, cpu)) {
1858             valid_mask |= SCR_ATA;
1859         }
1860         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1861             valid_mask |= SCR_ENSCXT;
1862         }
1863         if (cpu_isar_feature(aa64_doublefault, cpu)) {
1864             valid_mask |= SCR_EASE | SCR_NMEA;
1865         }
1866         if (cpu_isar_feature(aa64_sme, cpu)) {
1867             valid_mask |= SCR_ENTP2;
1868         }
1869     } else {
1870         valid_mask &= ~(SCR_RW | SCR_ST);
1871         if (cpu_isar_feature(aa32_ras, cpu)) {
1872             valid_mask |= SCR_TERR;
1873         }
1874     }
1875 
1876     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1877         valid_mask &= ~SCR_HCE;
1878 
1879         /*
1880          * On ARMv7, SMD (or SCD as it is called in v7) is only
1881          * supported if EL2 exists. The bit is UNK/SBZP when
1882          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1883          * when EL2 is unavailable.
1884          * On ARMv8, this bit is always available.
1885          */
1886         if (arm_feature(env, ARM_FEATURE_V7) &&
1887             !arm_feature(env, ARM_FEATURE_V8)) {
1888             valid_mask &= ~SCR_SMD;
1889         }
1890     }
1891 
1892     /* Clear all-context RES0 bits.  */
1893     value &= valid_mask;
1894     changed = env->cp15.scr_el3 ^ value;
1895     env->cp15.scr_el3 = value;
1896 
1897     /*
1898      * If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then
1899      * we must invalidate all TLBs below EL3.
1900      */
1901     if (changed & SCR_NS) {
1902         tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1903                                            ARMMMUIdxBit_E20_0 |
1904                                            ARMMMUIdxBit_E10_1 |
1905                                            ARMMMUIdxBit_E20_2 |
1906                                            ARMMMUIdxBit_E10_1_PAN |
1907                                            ARMMMUIdxBit_E20_2_PAN |
1908                                            ARMMMUIdxBit_E2));
1909     }
1910 }
1911 
1912 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1913 {
1914     /*
1915      * scr_write will set the RES1 bits on an AArch64-only CPU.
1916      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1917      */
1918     scr_write(env, ri, 0);
1919 }
1920 
1921 static CPAccessResult access_tid4(CPUARMState *env,
1922                                   const ARMCPRegInfo *ri,
1923                                   bool isread)
1924 {
1925     if (arm_current_el(env) == 1 &&
1926         (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1927         return CP_ACCESS_TRAP_EL2;
1928     }
1929 
1930     return CP_ACCESS_OK;
1931 }
1932 
1933 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1934 {
1935     ARMCPU *cpu = env_archcpu(env);
1936 
1937     /*
1938      * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1939      * bank
1940      */
1941     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1942                                         ri->secure & ARM_CP_SECSTATE_S);
1943 
1944     return cpu->ccsidr[index];
1945 }
1946 
1947 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1948                          uint64_t value)
1949 {
1950     raw_write(env, ri, value & 0xf);
1951 }
1952 
1953 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1954 {
1955     CPUState *cs = env_cpu(env);
1956     bool el1 = arm_current_el(env) == 1;
1957     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1958     uint64_t ret = 0;
1959 
1960     if (hcr_el2 & HCR_IMO) {
1961         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1962             ret |= CPSR_I;
1963         }
1964     } else {
1965         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1966             ret |= CPSR_I;
1967         }
1968     }
1969 
1970     if (hcr_el2 & HCR_FMO) {
1971         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1972             ret |= CPSR_F;
1973         }
1974     } else {
1975         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1976             ret |= CPSR_F;
1977         }
1978     }
1979 
1980     if (hcr_el2 & HCR_AMO) {
1981         if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1982             ret |= CPSR_A;
1983         }
1984     }
1985 
1986     return ret;
1987 }
1988 
1989 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1990                                        bool isread)
1991 {
1992     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
1993         return CP_ACCESS_TRAP_EL2;
1994     }
1995 
1996     return CP_ACCESS_OK;
1997 }
1998 
1999 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2000                                        bool isread)
2001 {
2002     if (arm_feature(env, ARM_FEATURE_V8)) {
2003         return access_aa64_tid1(env, ri, isread);
2004     }
2005 
2006     return CP_ACCESS_OK;
2007 }
2008 
2009 static const ARMCPRegInfo v7_cp_reginfo[] = {
2010     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2011     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2012       .access = PL1_W, .type = ARM_CP_NOP },
2013     /*
2014      * Performance monitors are implementation defined in v7,
2015      * but with an ARM recommended set of registers, which we
2016      * follow.
2017      *
2018      * Performance registers fall into three categories:
2019      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2020      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2021      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2022      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2023      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2024      */
2025     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2026       .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2027       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2028       .writefn = pmcntenset_write,
2029       .accessfn = pmreg_access,
2030       .raw_writefn = raw_write },
2031     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2032       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2033       .access = PL0_RW, .accessfn = pmreg_access,
2034       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2035       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2036     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2037       .access = PL0_RW,
2038       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2039       .accessfn = pmreg_access,
2040       .writefn = pmcntenclr_write,
2041       .type = ARM_CP_ALIAS | ARM_CP_IO },
2042     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2043       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2044       .access = PL0_RW, .accessfn = pmreg_access,
2045       .type = ARM_CP_ALIAS | ARM_CP_IO,
2046       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2047       .writefn = pmcntenclr_write },
2048     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2049       .access = PL0_RW, .type = ARM_CP_IO,
2050       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2051       .accessfn = pmreg_access,
2052       .writefn = pmovsr_write,
2053       .raw_writefn = raw_write },
2054     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2055       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2056       .access = PL0_RW, .accessfn = pmreg_access,
2057       .type = ARM_CP_ALIAS | ARM_CP_IO,
2058       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2059       .writefn = pmovsr_write,
2060       .raw_writefn = raw_write },
2061     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2062       .access = PL0_W, .accessfn = pmreg_access_swinc,
2063       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2064       .writefn = pmswinc_write },
2065     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2066       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2067       .access = PL0_W, .accessfn = pmreg_access_swinc,
2068       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2069       .writefn = pmswinc_write },
2070     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2071       .access = PL0_RW, .type = ARM_CP_ALIAS,
2072       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2073       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2074       .raw_writefn = raw_write},
2075     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2076       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2077       .access = PL0_RW, .accessfn = pmreg_access_selr,
2078       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2079       .writefn = pmselr_write, .raw_writefn = raw_write, },
2080     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2081       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2082       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2083       .accessfn = pmreg_access_ccntr },
2084     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2085       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2086       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2087       .type = ARM_CP_IO,
2088       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2089       .readfn = pmccntr_read, .writefn = pmccntr_write,
2090       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2091     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2092       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2093       .access = PL0_RW, .accessfn = pmreg_access,
2094       .type = ARM_CP_ALIAS | ARM_CP_IO,
2095       .resetvalue = 0, },
2096     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2097       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2098       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2099       .access = PL0_RW, .accessfn = pmreg_access,
2100       .type = ARM_CP_IO,
2101       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2102       .resetvalue = 0, },
2103     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2104       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2105       .accessfn = pmreg_access,
2106       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2107     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2108       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2109       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2110       .accessfn = pmreg_access,
2111       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2112     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2113       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2114       .accessfn = pmreg_access_xevcntr,
2115       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2116     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2117       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2118       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2119       .accessfn = pmreg_access_xevcntr,
2120       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2121     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2122       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2123       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2124       .resetvalue = 0,
2125       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2126     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2127       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2128       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2129       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2130       .resetvalue = 0,
2131       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2132     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2133       .access = PL1_RW, .accessfn = access_tpm,
2134       .type = ARM_CP_ALIAS | ARM_CP_IO,
2135       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2136       .resetvalue = 0,
2137       .writefn = pmintenset_write, .raw_writefn = raw_write },
2138     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2139       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2140       .access = PL1_RW, .accessfn = access_tpm,
2141       .type = ARM_CP_IO,
2142       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2143       .writefn = pmintenset_write, .raw_writefn = raw_write,
2144       .resetvalue = 0x0 },
2145     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2146       .access = PL1_RW, .accessfn = access_tpm,
2147       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2148       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2149       .writefn = pmintenclr_write, },
2150     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2151       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2152       .access = PL1_RW, .accessfn = access_tpm,
2153       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2154       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2155       .writefn = pmintenclr_write },
2156     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2157       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2158       .access = PL1_R,
2159       .accessfn = access_tid4,
2160       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2161     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2162       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2163       .access = PL1_RW,
2164       .accessfn = access_tid4,
2165       .writefn = csselr_write, .resetvalue = 0,
2166       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2167                              offsetof(CPUARMState, cp15.csselr_ns) } },
2168     /*
2169      * Auxiliary ID register: this actually has an IMPDEF value but for now
2170      * just RAZ for all cores:
2171      */
2172     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2173       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2174       .access = PL1_R, .type = ARM_CP_CONST,
2175       .accessfn = access_aa64_tid1,
2176       .resetvalue = 0 },
2177     /*
2178      * Auxiliary fault status registers: these also are IMPDEF, and we
2179      * choose to RAZ/WI for all cores.
2180      */
2181     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2182       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2183       .access = PL1_RW, .accessfn = access_tvm_trvm,
2184       .type = ARM_CP_CONST, .resetvalue = 0 },
2185     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2186       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2187       .access = PL1_RW, .accessfn = access_tvm_trvm,
2188       .type = ARM_CP_CONST, .resetvalue = 0 },
2189     /*
2190      * MAIR can just read-as-written because we don't implement caches
2191      * and so don't need to care about memory attributes.
2192      */
2193     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2194       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2195       .access = PL1_RW, .accessfn = access_tvm_trvm,
2196       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2197       .resetvalue = 0 },
2198     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2199       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2200       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2201       .resetvalue = 0 },
2202     /*
2203      * For non-long-descriptor page tables these are PRRR and NMRR;
2204      * regardless they still act as reads-as-written for QEMU.
2205      */
2206      /*
2207       * MAIR0/1 are defined separately from their 64-bit counterpart which
2208       * allows them to assign the correct fieldoffset based on the endianness
2209       * handled in the field definitions.
2210       */
2211     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2212       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2213       .access = PL1_RW, .accessfn = access_tvm_trvm,
2214       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2215                              offsetof(CPUARMState, cp15.mair0_ns) },
2216       .resetfn = arm_cp_reset_ignore },
2217     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2218       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2219       .access = PL1_RW, .accessfn = access_tvm_trvm,
2220       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2221                              offsetof(CPUARMState, cp15.mair1_ns) },
2222       .resetfn = arm_cp_reset_ignore },
2223     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2224       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2225       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2226     /* 32 bit ITLB invalidates */
2227     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2228       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2229       .writefn = tlbiall_write },
2230     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2231       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2232       .writefn = tlbimva_write },
2233     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2234       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2235       .writefn = tlbiasid_write },
2236     /* 32 bit DTLB invalidates */
2237     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2238       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2239       .writefn = tlbiall_write },
2240     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2241       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2242       .writefn = tlbimva_write },
2243     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2244       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2245       .writefn = tlbiasid_write },
2246     /* 32 bit TLB invalidates */
2247     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2248       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2249       .writefn = tlbiall_write },
2250     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2251       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2252       .writefn = tlbimva_write },
2253     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2254       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2255       .writefn = tlbiasid_write },
2256     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2257       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2258       .writefn = tlbimvaa_write },
2259 };
2260 
2261 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2262     /* 32 bit TLB invalidates, Inner Shareable */
2263     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2264       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2265       .writefn = tlbiall_is_write },
2266     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2267       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2268       .writefn = tlbimva_is_write },
2269     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2270       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2271       .writefn = tlbiasid_is_write },
2272     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2273       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2274       .writefn = tlbimvaa_is_write },
2275 };
2276 
2277 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2278     /* PMOVSSET is not implemented in v7 before v7ve */
2279     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2280       .access = PL0_RW, .accessfn = pmreg_access,
2281       .type = ARM_CP_ALIAS | ARM_CP_IO,
2282       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2283       .writefn = pmovsset_write,
2284       .raw_writefn = raw_write },
2285     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2286       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2287       .access = PL0_RW, .accessfn = pmreg_access,
2288       .type = ARM_CP_ALIAS | ARM_CP_IO,
2289       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2290       .writefn = pmovsset_write,
2291       .raw_writefn = raw_write },
2292 };
2293 
2294 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2295                         uint64_t value)
2296 {
2297     value &= 1;
2298     env->teecr = value;
2299 }
2300 
2301 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2302                                    bool isread)
2303 {
2304     /*
2305      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2306      * at all, so we don't need to check whether we're v8A.
2307      */
2308     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2309         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2310         return CP_ACCESS_TRAP_EL2;
2311     }
2312     return CP_ACCESS_OK;
2313 }
2314 
2315 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2316                                     bool isread)
2317 {
2318     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2319         return CP_ACCESS_TRAP;
2320     }
2321     return teecr_access(env, ri, isread);
2322 }
2323 
2324 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2325     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2326       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2327       .resetvalue = 0,
2328       .writefn = teecr_write, .accessfn = teecr_access },
2329     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2330       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2331       .accessfn = teehbr_access, .resetvalue = 0 },
2332 };
2333 
2334 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2335     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2336       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2337       .access = PL0_RW,
2338       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2339     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2340       .access = PL0_RW,
2341       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2342                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2343       .resetfn = arm_cp_reset_ignore },
2344     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2345       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2346       .access = PL0_R | PL1_W,
2347       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2348       .resetvalue = 0},
2349     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2350       .access = PL0_R | PL1_W,
2351       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2352                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2353       .resetfn = arm_cp_reset_ignore },
2354     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2355       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2356       .access = PL1_RW,
2357       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2358     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2359       .access = PL1_RW,
2360       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2361                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2362       .resetvalue = 0 },
2363 };
2364 
2365 #ifndef CONFIG_USER_ONLY
2366 
2367 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2368                                        bool isread)
2369 {
2370     /*
2371      * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2372      * Writable only at the highest implemented exception level.
2373      */
2374     int el = arm_current_el(env);
2375     uint64_t hcr;
2376     uint32_t cntkctl;
2377 
2378     switch (el) {
2379     case 0:
2380         hcr = arm_hcr_el2_eff(env);
2381         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2382             cntkctl = env->cp15.cnthctl_el2;
2383         } else {
2384             cntkctl = env->cp15.c14_cntkctl;
2385         }
2386         if (!extract32(cntkctl, 0, 2)) {
2387             return CP_ACCESS_TRAP;
2388         }
2389         break;
2390     case 1:
2391         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2392             arm_is_secure_below_el3(env)) {
2393             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2394             return CP_ACCESS_TRAP_UNCATEGORIZED;
2395         }
2396         break;
2397     case 2:
2398     case 3:
2399         break;
2400     }
2401 
2402     if (!isread && el < arm_highest_el(env)) {
2403         return CP_ACCESS_TRAP_UNCATEGORIZED;
2404     }
2405 
2406     return CP_ACCESS_OK;
2407 }
2408 
2409 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2410                                         bool isread)
2411 {
2412     unsigned int cur_el = arm_current_el(env);
2413     bool has_el2 = arm_is_el2_enabled(env);
2414     uint64_t hcr = arm_hcr_el2_eff(env);
2415 
2416     switch (cur_el) {
2417     case 0:
2418         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2419         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2420             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2421                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2422         }
2423 
2424         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2425         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2426             return CP_ACCESS_TRAP;
2427         }
2428 
2429         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2430         if (hcr & HCR_E2H) {
2431             if (timeridx == GTIMER_PHYS &&
2432                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2433                 return CP_ACCESS_TRAP_EL2;
2434             }
2435         } else {
2436             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2437             if (has_el2 && timeridx == GTIMER_PHYS &&
2438                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2439                 return CP_ACCESS_TRAP_EL2;
2440             }
2441         }
2442         break;
2443 
2444     case 1:
2445         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2446         if (has_el2 && timeridx == GTIMER_PHYS &&
2447             (hcr & HCR_E2H
2448              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2449              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2450             return CP_ACCESS_TRAP_EL2;
2451         }
2452         break;
2453     }
2454     return CP_ACCESS_OK;
2455 }
2456 
2457 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2458                                       bool isread)
2459 {
2460     unsigned int cur_el = arm_current_el(env);
2461     bool has_el2 = arm_is_el2_enabled(env);
2462     uint64_t hcr = arm_hcr_el2_eff(env);
2463 
2464     switch (cur_el) {
2465     case 0:
2466         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2467             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2468             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2469                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2470         }
2471 
2472         /*
2473          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2474          * EL0 if EL0[PV]TEN is zero.
2475          */
2476         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2477             return CP_ACCESS_TRAP;
2478         }
2479         /* fall through */
2480 
2481     case 1:
2482         if (has_el2 && timeridx == GTIMER_PHYS) {
2483             if (hcr & HCR_E2H) {
2484                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2485                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2486                     return CP_ACCESS_TRAP_EL2;
2487                 }
2488             } else {
2489                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2490                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2491                     return CP_ACCESS_TRAP_EL2;
2492                 }
2493             }
2494         }
2495         break;
2496     }
2497     return CP_ACCESS_OK;
2498 }
2499 
2500 static CPAccessResult gt_pct_access(CPUARMState *env,
2501                                     const ARMCPRegInfo *ri,
2502                                     bool isread)
2503 {
2504     return gt_counter_access(env, GTIMER_PHYS, isread);
2505 }
2506 
2507 static CPAccessResult gt_vct_access(CPUARMState *env,
2508                                     const ARMCPRegInfo *ri,
2509                                     bool isread)
2510 {
2511     return gt_counter_access(env, GTIMER_VIRT, isread);
2512 }
2513 
2514 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2515                                        bool isread)
2516 {
2517     return gt_timer_access(env, GTIMER_PHYS, isread);
2518 }
2519 
2520 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2521                                        bool isread)
2522 {
2523     return gt_timer_access(env, GTIMER_VIRT, isread);
2524 }
2525 
2526 static CPAccessResult gt_stimer_access(CPUARMState *env,
2527                                        const ARMCPRegInfo *ri,
2528                                        bool isread)
2529 {
2530     /*
2531      * The AArch64 register view of the secure physical timer is
2532      * always accessible from EL3, and configurably accessible from
2533      * Secure EL1.
2534      */
2535     switch (arm_current_el(env)) {
2536     case 1:
2537         if (!arm_is_secure(env)) {
2538             return CP_ACCESS_TRAP;
2539         }
2540         if (!(env->cp15.scr_el3 & SCR_ST)) {
2541             return CP_ACCESS_TRAP_EL3;
2542         }
2543         return CP_ACCESS_OK;
2544     case 0:
2545     case 2:
2546         return CP_ACCESS_TRAP;
2547     case 3:
2548         return CP_ACCESS_OK;
2549     default:
2550         g_assert_not_reached();
2551     }
2552 }
2553 
2554 static uint64_t gt_get_countervalue(CPUARMState *env)
2555 {
2556     ARMCPU *cpu = env_archcpu(env);
2557 
2558     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2559 }
2560 
2561 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2562 {
2563     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2564 
2565     if (gt->ctl & 1) {
2566         /*
2567          * Timer enabled: calculate and set current ISTATUS, irq, and
2568          * reset timer to when ISTATUS next has to change
2569          */
2570         uint64_t offset = timeridx == GTIMER_VIRT ?
2571                                       cpu->env.cp15.cntvoff_el2 : 0;
2572         uint64_t count = gt_get_countervalue(&cpu->env);
2573         /* Note that this must be unsigned 64 bit arithmetic: */
2574         int istatus = count - offset >= gt->cval;
2575         uint64_t nexttick;
2576         int irqstate;
2577 
2578         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2579 
2580         irqstate = (istatus && !(gt->ctl & 2));
2581         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2582 
2583         if (istatus) {
2584             /* Next transition is when count rolls back over to zero */
2585             nexttick = UINT64_MAX;
2586         } else {
2587             /* Next transition is when we hit cval */
2588             nexttick = gt->cval + offset;
2589         }
2590         /*
2591          * Note that the desired next expiry time might be beyond the
2592          * signed-64-bit range of a QEMUTimer -- in this case we just
2593          * set the timer for as far in the future as possible. When the
2594          * timer expires we will reset the timer for any remaining period.
2595          */
2596         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2597             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2598         } else {
2599             timer_mod(cpu->gt_timer[timeridx], nexttick);
2600         }
2601         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2602     } else {
2603         /* Timer disabled: ISTATUS and timer output always clear */
2604         gt->ctl &= ~4;
2605         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2606         timer_del(cpu->gt_timer[timeridx]);
2607         trace_arm_gt_recalc_disabled(timeridx);
2608     }
2609 }
2610 
2611 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2612                            int timeridx)
2613 {
2614     ARMCPU *cpu = env_archcpu(env);
2615 
2616     timer_del(cpu->gt_timer[timeridx]);
2617 }
2618 
2619 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2620 {
2621     return gt_get_countervalue(env);
2622 }
2623 
2624 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2625 {
2626     uint64_t hcr;
2627 
2628     switch (arm_current_el(env)) {
2629     case 2:
2630         hcr = arm_hcr_el2_eff(env);
2631         if (hcr & HCR_E2H) {
2632             return 0;
2633         }
2634         break;
2635     case 0:
2636         hcr = arm_hcr_el2_eff(env);
2637         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2638             return 0;
2639         }
2640         break;
2641     }
2642 
2643     return env->cp15.cntvoff_el2;
2644 }
2645 
2646 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2647 {
2648     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2649 }
2650 
2651 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2652                           int timeridx,
2653                           uint64_t value)
2654 {
2655     trace_arm_gt_cval_write(timeridx, value);
2656     env->cp15.c14_timer[timeridx].cval = value;
2657     gt_recalc_timer(env_archcpu(env), timeridx);
2658 }
2659 
2660 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2661                              int timeridx)
2662 {
2663     uint64_t offset = 0;
2664 
2665     switch (timeridx) {
2666     case GTIMER_VIRT:
2667     case GTIMER_HYPVIRT:
2668         offset = gt_virt_cnt_offset(env);
2669         break;
2670     }
2671 
2672     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2673                       (gt_get_countervalue(env) - offset));
2674 }
2675 
2676 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2677                           int timeridx,
2678                           uint64_t value)
2679 {
2680     uint64_t offset = 0;
2681 
2682     switch (timeridx) {
2683     case GTIMER_VIRT:
2684     case GTIMER_HYPVIRT:
2685         offset = gt_virt_cnt_offset(env);
2686         break;
2687     }
2688 
2689     trace_arm_gt_tval_write(timeridx, value);
2690     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2691                                          sextract64(value, 0, 32);
2692     gt_recalc_timer(env_archcpu(env), timeridx);
2693 }
2694 
2695 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2696                          int timeridx,
2697                          uint64_t value)
2698 {
2699     ARMCPU *cpu = env_archcpu(env);
2700     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2701 
2702     trace_arm_gt_ctl_write(timeridx, value);
2703     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2704     if ((oldval ^ value) & 1) {
2705         /* Enable toggled */
2706         gt_recalc_timer(cpu, timeridx);
2707     } else if ((oldval ^ value) & 2) {
2708         /*
2709          * IMASK toggled: don't need to recalculate,
2710          * just set the interrupt line based on ISTATUS
2711          */
2712         int irqstate = (oldval & 4) && !(value & 2);
2713 
2714         trace_arm_gt_imask_toggle(timeridx, irqstate);
2715         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2716     }
2717 }
2718 
2719 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2720 {
2721     gt_timer_reset(env, ri, GTIMER_PHYS);
2722 }
2723 
2724 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2725                                uint64_t value)
2726 {
2727     gt_cval_write(env, ri, GTIMER_PHYS, value);
2728 }
2729 
2730 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2731 {
2732     return gt_tval_read(env, ri, GTIMER_PHYS);
2733 }
2734 
2735 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2736                                uint64_t value)
2737 {
2738     gt_tval_write(env, ri, GTIMER_PHYS, value);
2739 }
2740 
2741 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2742                               uint64_t value)
2743 {
2744     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2745 }
2746 
2747 static int gt_phys_redir_timeridx(CPUARMState *env)
2748 {
2749     switch (arm_mmu_idx(env)) {
2750     case ARMMMUIdx_E20_0:
2751     case ARMMMUIdx_E20_2:
2752     case ARMMMUIdx_E20_2_PAN:
2753         return GTIMER_HYP;
2754     default:
2755         return GTIMER_PHYS;
2756     }
2757 }
2758 
2759 static int gt_virt_redir_timeridx(CPUARMState *env)
2760 {
2761     switch (arm_mmu_idx(env)) {
2762     case ARMMMUIdx_E20_0:
2763     case ARMMMUIdx_E20_2:
2764     case ARMMMUIdx_E20_2_PAN:
2765         return GTIMER_HYPVIRT;
2766     default:
2767         return GTIMER_VIRT;
2768     }
2769 }
2770 
2771 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2772                                         const ARMCPRegInfo *ri)
2773 {
2774     int timeridx = gt_phys_redir_timeridx(env);
2775     return env->cp15.c14_timer[timeridx].cval;
2776 }
2777 
2778 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2779                                      uint64_t value)
2780 {
2781     int timeridx = gt_phys_redir_timeridx(env);
2782     gt_cval_write(env, ri, timeridx, value);
2783 }
2784 
2785 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2786                                         const ARMCPRegInfo *ri)
2787 {
2788     int timeridx = gt_phys_redir_timeridx(env);
2789     return gt_tval_read(env, ri, timeridx);
2790 }
2791 
2792 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2793                                      uint64_t value)
2794 {
2795     int timeridx = gt_phys_redir_timeridx(env);
2796     gt_tval_write(env, ri, timeridx, value);
2797 }
2798 
2799 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2800                                        const ARMCPRegInfo *ri)
2801 {
2802     int timeridx = gt_phys_redir_timeridx(env);
2803     return env->cp15.c14_timer[timeridx].ctl;
2804 }
2805 
2806 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2807                                     uint64_t value)
2808 {
2809     int timeridx = gt_phys_redir_timeridx(env);
2810     gt_ctl_write(env, ri, timeridx, value);
2811 }
2812 
2813 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2814 {
2815     gt_timer_reset(env, ri, GTIMER_VIRT);
2816 }
2817 
2818 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2819                                uint64_t value)
2820 {
2821     gt_cval_write(env, ri, GTIMER_VIRT, value);
2822 }
2823 
2824 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2825 {
2826     return gt_tval_read(env, ri, GTIMER_VIRT);
2827 }
2828 
2829 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2830                                uint64_t value)
2831 {
2832     gt_tval_write(env, ri, GTIMER_VIRT, value);
2833 }
2834 
2835 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2836                               uint64_t value)
2837 {
2838     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2839 }
2840 
2841 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2842                               uint64_t value)
2843 {
2844     ARMCPU *cpu = env_archcpu(env);
2845 
2846     trace_arm_gt_cntvoff_write(value);
2847     raw_write(env, ri, value);
2848     gt_recalc_timer(cpu, GTIMER_VIRT);
2849 }
2850 
2851 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2852                                         const ARMCPRegInfo *ri)
2853 {
2854     int timeridx = gt_virt_redir_timeridx(env);
2855     return env->cp15.c14_timer[timeridx].cval;
2856 }
2857 
2858 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2859                                      uint64_t value)
2860 {
2861     int timeridx = gt_virt_redir_timeridx(env);
2862     gt_cval_write(env, ri, timeridx, value);
2863 }
2864 
2865 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2866                                         const ARMCPRegInfo *ri)
2867 {
2868     int timeridx = gt_virt_redir_timeridx(env);
2869     return gt_tval_read(env, ri, timeridx);
2870 }
2871 
2872 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2873                                      uint64_t value)
2874 {
2875     int timeridx = gt_virt_redir_timeridx(env);
2876     gt_tval_write(env, ri, timeridx, value);
2877 }
2878 
2879 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2880                                        const ARMCPRegInfo *ri)
2881 {
2882     int timeridx = gt_virt_redir_timeridx(env);
2883     return env->cp15.c14_timer[timeridx].ctl;
2884 }
2885 
2886 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2887                                     uint64_t value)
2888 {
2889     int timeridx = gt_virt_redir_timeridx(env);
2890     gt_ctl_write(env, ri, timeridx, value);
2891 }
2892 
2893 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2894 {
2895     gt_timer_reset(env, ri, GTIMER_HYP);
2896 }
2897 
2898 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2899                               uint64_t value)
2900 {
2901     gt_cval_write(env, ri, GTIMER_HYP, value);
2902 }
2903 
2904 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2905 {
2906     return gt_tval_read(env, ri, GTIMER_HYP);
2907 }
2908 
2909 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2910                               uint64_t value)
2911 {
2912     gt_tval_write(env, ri, GTIMER_HYP, value);
2913 }
2914 
2915 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2916                               uint64_t value)
2917 {
2918     gt_ctl_write(env, ri, GTIMER_HYP, value);
2919 }
2920 
2921 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2922 {
2923     gt_timer_reset(env, ri, GTIMER_SEC);
2924 }
2925 
2926 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2927                               uint64_t value)
2928 {
2929     gt_cval_write(env, ri, GTIMER_SEC, value);
2930 }
2931 
2932 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2933 {
2934     return gt_tval_read(env, ri, GTIMER_SEC);
2935 }
2936 
2937 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2938                               uint64_t value)
2939 {
2940     gt_tval_write(env, ri, GTIMER_SEC, value);
2941 }
2942 
2943 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2944                               uint64_t value)
2945 {
2946     gt_ctl_write(env, ri, GTIMER_SEC, value);
2947 }
2948 
2949 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2950 {
2951     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2952 }
2953 
2954 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2955                              uint64_t value)
2956 {
2957     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
2958 }
2959 
2960 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2961 {
2962     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
2963 }
2964 
2965 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2966                              uint64_t value)
2967 {
2968     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
2969 }
2970 
2971 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2972                             uint64_t value)
2973 {
2974     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
2975 }
2976 
2977 void arm_gt_ptimer_cb(void *opaque)
2978 {
2979     ARMCPU *cpu = opaque;
2980 
2981     gt_recalc_timer(cpu, GTIMER_PHYS);
2982 }
2983 
2984 void arm_gt_vtimer_cb(void *opaque)
2985 {
2986     ARMCPU *cpu = opaque;
2987 
2988     gt_recalc_timer(cpu, GTIMER_VIRT);
2989 }
2990 
2991 void arm_gt_htimer_cb(void *opaque)
2992 {
2993     ARMCPU *cpu = opaque;
2994 
2995     gt_recalc_timer(cpu, GTIMER_HYP);
2996 }
2997 
2998 void arm_gt_stimer_cb(void *opaque)
2999 {
3000     ARMCPU *cpu = opaque;
3001 
3002     gt_recalc_timer(cpu, GTIMER_SEC);
3003 }
3004 
3005 void arm_gt_hvtimer_cb(void *opaque)
3006 {
3007     ARMCPU *cpu = opaque;
3008 
3009     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3010 }
3011 
3012 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3013 {
3014     ARMCPU *cpu = env_archcpu(env);
3015 
3016     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3017 }
3018 
3019 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3020     /*
3021      * Note that CNTFRQ is purely reads-as-written for the benefit
3022      * of software; writing it doesn't actually change the timer frequency.
3023      * Our reset value matches the fixed frequency we implement the timer at.
3024      */
3025     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3026       .type = ARM_CP_ALIAS,
3027       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3028       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3029     },
3030     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3031       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3032       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3033       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3034       .resetfn = arm_gt_cntfrq_reset,
3035     },
3036     /* overall control: mostly access permissions */
3037     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3038       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3039       .access = PL1_RW,
3040       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3041       .resetvalue = 0,
3042     },
3043     /* per-timer control */
3044     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3045       .secure = ARM_CP_SECSTATE_NS,
3046       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3047       .accessfn = gt_ptimer_access,
3048       .fieldoffset = offsetoflow32(CPUARMState,
3049                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3050       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3051       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3052     },
3053     { .name = "CNTP_CTL_S",
3054       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3055       .secure = ARM_CP_SECSTATE_S,
3056       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3057       .accessfn = gt_ptimer_access,
3058       .fieldoffset = offsetoflow32(CPUARMState,
3059                                    cp15.c14_timer[GTIMER_SEC].ctl),
3060       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3061     },
3062     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3063       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3064       .type = ARM_CP_IO, .access = PL0_RW,
3065       .accessfn = gt_ptimer_access,
3066       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3067       .resetvalue = 0,
3068       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3069       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3070     },
3071     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3072       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3073       .accessfn = gt_vtimer_access,
3074       .fieldoffset = offsetoflow32(CPUARMState,
3075                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3076       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3077       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3078     },
3079     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3080       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3081       .type = ARM_CP_IO, .access = PL0_RW,
3082       .accessfn = gt_vtimer_access,
3083       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3084       .resetvalue = 0,
3085       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3086       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3087     },
3088     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3089     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3090       .secure = ARM_CP_SECSTATE_NS,
3091       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3092       .accessfn = gt_ptimer_access,
3093       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3094     },
3095     { .name = "CNTP_TVAL_S",
3096       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3097       .secure = ARM_CP_SECSTATE_S,
3098       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3099       .accessfn = gt_ptimer_access,
3100       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3101     },
3102     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3103       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3104       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3105       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3106       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3107     },
3108     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3109       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3110       .accessfn = gt_vtimer_access,
3111       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3112     },
3113     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3114       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3115       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3116       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3117       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3118     },
3119     /* The counter itself */
3120     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3121       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3122       .accessfn = gt_pct_access,
3123       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3124     },
3125     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3126       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3127       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3128       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3129     },
3130     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3131       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3132       .accessfn = gt_vct_access,
3133       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3134     },
3135     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3136       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3137       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3138       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3139     },
3140     /* Comparison value, indicating when the timer goes off */
3141     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3142       .secure = ARM_CP_SECSTATE_NS,
3143       .access = PL0_RW,
3144       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3145       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3146       .accessfn = gt_ptimer_access,
3147       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3148       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3149     },
3150     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3151       .secure = ARM_CP_SECSTATE_S,
3152       .access = PL0_RW,
3153       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3154       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3155       .accessfn = gt_ptimer_access,
3156       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3157     },
3158     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3159       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3160       .access = PL0_RW,
3161       .type = ARM_CP_IO,
3162       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3163       .resetvalue = 0, .accessfn = gt_ptimer_access,
3164       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3165       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3166     },
3167     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3168       .access = PL0_RW,
3169       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3170       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3171       .accessfn = gt_vtimer_access,
3172       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3173       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3174     },
3175     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3176       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3177       .access = PL0_RW,
3178       .type = ARM_CP_IO,
3179       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3180       .resetvalue = 0, .accessfn = gt_vtimer_access,
3181       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3182       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3183     },
3184     /*
3185      * Secure timer -- this is actually restricted to only EL3
3186      * and configurably Secure-EL1 via the accessfn.
3187      */
3188     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3189       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3190       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3191       .accessfn = gt_stimer_access,
3192       .readfn = gt_sec_tval_read,
3193       .writefn = gt_sec_tval_write,
3194       .resetfn = gt_sec_timer_reset,
3195     },
3196     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3197       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3198       .type = ARM_CP_IO, .access = PL1_RW,
3199       .accessfn = gt_stimer_access,
3200       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3201       .resetvalue = 0,
3202       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3203     },
3204     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3205       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3206       .type = ARM_CP_IO, .access = PL1_RW,
3207       .accessfn = gt_stimer_access,
3208       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3209       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3210     },
3211 };
3212 
3213 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3214                                  bool isread)
3215 {
3216     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3217         return CP_ACCESS_TRAP;
3218     }
3219     return CP_ACCESS_OK;
3220 }
3221 
3222 #else
3223 
3224 /*
3225  * In user-mode most of the generic timer registers are inaccessible
3226  * however modern kernels (4.12+) allow access to cntvct_el0
3227  */
3228 
3229 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3230 {
3231     ARMCPU *cpu = env_archcpu(env);
3232 
3233     /*
3234      * Currently we have no support for QEMUTimer in linux-user so we
3235      * can't call gt_get_countervalue(env), instead we directly
3236      * call the lower level functions.
3237      */
3238     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3239 }
3240 
3241 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3242     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3243       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3244       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3245       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3246       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3247     },
3248     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3249       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3250       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3251       .readfn = gt_virt_cnt_read,
3252     },
3253 };
3254 
3255 #endif
3256 
3257 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3258 {
3259     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3260         raw_write(env, ri, value);
3261     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3262         raw_write(env, ri, value & 0xfffff6ff);
3263     } else {
3264         raw_write(env, ri, value & 0xfffff1ff);
3265     }
3266 }
3267 
3268 #ifndef CONFIG_USER_ONLY
3269 /* get_phys_addr() isn't present for user-mode-only targets */
3270 
3271 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3272                                  bool isread)
3273 {
3274     if (ri->opc2 & 4) {
3275         /*
3276          * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3277          * Secure EL1 (which can only happen if EL3 is AArch64).
3278          * They are simply UNDEF if executed from NS EL1.
3279          * They function normally from EL2 or EL3.
3280          */
3281         if (arm_current_el(env) == 1) {
3282             if (arm_is_secure_below_el3(env)) {
3283                 if (env->cp15.scr_el3 & SCR_EEL2) {
3284                     return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3285                 }
3286                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3287             }
3288             return CP_ACCESS_TRAP_UNCATEGORIZED;
3289         }
3290     }
3291     return CP_ACCESS_OK;
3292 }
3293 
3294 #ifdef CONFIG_TCG
3295 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3296                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
3297                              bool is_secure)
3298 {
3299     bool ret;
3300     uint64_t par64;
3301     bool format64 = false;
3302     ARMMMUFaultInfo fi = {};
3303     GetPhysAddrResult res = {};
3304 
3305     ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx,
3306                                     is_secure, &res, &fi);
3307 
3308     /*
3309      * ATS operations only do S1 or S1+S2 translations, so we never
3310      * have to deal with the ARMCacheAttrs format for S2 only.
3311      */
3312     assert(!res.cacheattrs.is_s2_format);
3313 
3314     if (ret) {
3315         /*
3316          * Some kinds of translation fault must cause exceptions rather
3317          * than being reported in the PAR.
3318          */
3319         int current_el = arm_current_el(env);
3320         int target_el;
3321         uint32_t syn, fsr, fsc;
3322         bool take_exc = false;
3323 
3324         if (fi.s1ptw && current_el == 1
3325             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3326             /*
3327              * Synchronous stage 2 fault on an access made as part of the
3328              * translation table walk for AT S1E0* or AT S1E1* insn
3329              * executed from NS EL1. If this is a synchronous external abort
3330              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3331              * to EL3. Otherwise the fault is taken as an exception to EL2,
3332              * and HPFAR_EL2 holds the faulting IPA.
3333              */
3334             if (fi.type == ARMFault_SyncExternalOnWalk &&
3335                 (env->cp15.scr_el3 & SCR_EA)) {
3336                 target_el = 3;
3337             } else {
3338                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3339                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3340                     env->cp15.hpfar_el2 |= HPFAR_NS;
3341                 }
3342                 target_el = 2;
3343             }
3344             take_exc = true;
3345         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3346             /*
3347              * Synchronous external aborts during a translation table walk
3348              * are taken as Data Abort exceptions.
3349              */
3350             if (fi.stage2) {
3351                 if (current_el == 3) {
3352                     target_el = 3;
3353                 } else {
3354                     target_el = 2;
3355                 }
3356             } else {
3357                 target_el = exception_target_el(env);
3358             }
3359             take_exc = true;
3360         }
3361 
3362         if (take_exc) {
3363             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3364             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3365                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3366                 fsr = arm_fi_to_lfsc(&fi);
3367                 fsc = extract32(fsr, 0, 6);
3368             } else {
3369                 fsr = arm_fi_to_sfsc(&fi);
3370                 fsc = 0x3f;
3371             }
3372             /*
3373              * Report exception with ESR indicating a fault due to a
3374              * translation table walk for a cache maintenance instruction.
3375              */
3376             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3377                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3378             env->exception.vaddress = value;
3379             env->exception.fsr = fsr;
3380             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3381         }
3382     }
3383 
3384     if (is_a64(env)) {
3385         format64 = true;
3386     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3387         /*
3388          * ATS1Cxx:
3389          * * TTBCR.EAE determines whether the result is returned using the
3390          *   32-bit or the 64-bit PAR format
3391          * * Instructions executed in Hyp mode always use the 64bit format
3392          *
3393          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3394          * * The Non-secure TTBCR.EAE bit is set to 1
3395          * * The implementation includes EL2, and the value of HCR.VM is 1
3396          *
3397          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3398          *
3399          * ATS1Hx always uses the 64bit format.
3400          */
3401         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3402 
3403         if (arm_feature(env, ARM_FEATURE_EL2)) {
3404             if (mmu_idx == ARMMMUIdx_E10_0 ||
3405                 mmu_idx == ARMMMUIdx_E10_1 ||
3406                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3407                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3408             } else {
3409                 format64 |= arm_current_el(env) == 2;
3410             }
3411         }
3412     }
3413 
3414     if (format64) {
3415         /* Create a 64-bit PAR */
3416         par64 = (1 << 11); /* LPAE bit always set */
3417         if (!ret) {
3418             par64 |= res.f.phys_addr & ~0xfffULL;
3419             if (!res.f.attrs.secure) {
3420                 par64 |= (1 << 9); /* NS */
3421             }
3422             par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3423             par64 |= res.cacheattrs.shareability << 7; /* SH */
3424         } else {
3425             uint32_t fsr = arm_fi_to_lfsc(&fi);
3426 
3427             par64 |= 1; /* F */
3428             par64 |= (fsr & 0x3f) << 1; /* FS */
3429             if (fi.stage2) {
3430                 par64 |= (1 << 9); /* S */
3431             }
3432             if (fi.s1ptw) {
3433                 par64 |= (1 << 8); /* PTW */
3434             }
3435         }
3436     } else {
3437         /*
3438          * fsr is a DFSR/IFSR value for the short descriptor
3439          * translation table format (with WnR always clear).
3440          * Convert it to a 32-bit PAR.
3441          */
3442         if (!ret) {
3443             /* We do not set any attribute bits in the PAR */
3444             if (res.f.lg_page_size == 24
3445                 && arm_feature(env, ARM_FEATURE_V7)) {
3446                 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3447             } else {
3448                 par64 = res.f.phys_addr & 0xfffff000;
3449             }
3450             if (!res.f.attrs.secure) {
3451                 par64 |= (1 << 9); /* NS */
3452             }
3453         } else {
3454             uint32_t fsr = arm_fi_to_sfsc(&fi);
3455 
3456             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3457                     ((fsr & 0xf) << 1) | 1;
3458         }
3459     }
3460     return par64;
3461 }
3462 #endif /* CONFIG_TCG */
3463 
3464 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3465 {
3466 #ifdef CONFIG_TCG
3467     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3468     uint64_t par64;
3469     ARMMMUIdx mmu_idx;
3470     int el = arm_current_el(env);
3471     bool secure = arm_is_secure_below_el3(env);
3472 
3473     switch (ri->opc2 & 6) {
3474     case 0:
3475         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3476         switch (el) {
3477         case 3:
3478             mmu_idx = ARMMMUIdx_E3;
3479             secure = true;
3480             break;
3481         case 2:
3482             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3483             /* fall through */
3484         case 1:
3485             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3486                 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3487             } else {
3488                 mmu_idx = ARMMMUIdx_Stage1_E1;
3489             }
3490             break;
3491         default:
3492             g_assert_not_reached();
3493         }
3494         break;
3495     case 2:
3496         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3497         switch (el) {
3498         case 3:
3499             mmu_idx = ARMMMUIdx_E10_0;
3500             secure = true;
3501             break;
3502         case 2:
3503             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3504             mmu_idx = ARMMMUIdx_Stage1_E0;
3505             break;
3506         case 1:
3507             mmu_idx = ARMMMUIdx_Stage1_E0;
3508             break;
3509         default:
3510             g_assert_not_reached();
3511         }
3512         break;
3513     case 4:
3514         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3515         mmu_idx = ARMMMUIdx_E10_1;
3516         secure = false;
3517         break;
3518     case 6:
3519         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3520         mmu_idx = ARMMMUIdx_E10_0;
3521         secure = false;
3522         break;
3523     default:
3524         g_assert_not_reached();
3525     }
3526 
3527     par64 = do_ats_write(env, value, access_type, mmu_idx, secure);
3528 
3529     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3530 #else
3531     /* Handled by hardware accelerator. */
3532     g_assert_not_reached();
3533 #endif /* CONFIG_TCG */
3534 }
3535 
3536 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3537                         uint64_t value)
3538 {
3539 #ifdef CONFIG_TCG
3540     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3541     uint64_t par64;
3542 
3543     /* There is no SecureEL2 for AArch32. */
3544     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false);
3545 
3546     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3547 #else
3548     /* Handled by hardware accelerator. */
3549     g_assert_not_reached();
3550 #endif /* CONFIG_TCG */
3551 }
3552 
3553 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3554                                      bool isread)
3555 {
3556     if (arm_current_el(env) == 3 &&
3557         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3558         return CP_ACCESS_TRAP;
3559     }
3560     return CP_ACCESS_OK;
3561 }
3562 
3563 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3564                         uint64_t value)
3565 {
3566 #ifdef CONFIG_TCG
3567     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3568     ARMMMUIdx mmu_idx;
3569     int secure = arm_is_secure_below_el3(env);
3570     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3571     bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3572 
3573     switch (ri->opc2 & 6) {
3574     case 0:
3575         switch (ri->opc1) {
3576         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3577             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3578                 mmu_idx = regime_e20 ?
3579                           ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3580             } else {
3581                 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3582             }
3583             break;
3584         case 4: /* AT S1E2R, AT S1E2W */
3585             mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3586             break;
3587         case 6: /* AT S1E3R, AT S1E3W */
3588             mmu_idx = ARMMMUIdx_E3;
3589             secure = true;
3590             break;
3591         default:
3592             g_assert_not_reached();
3593         }
3594         break;
3595     case 2: /* AT S1E0R, AT S1E0W */
3596         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3597         break;
3598     case 4: /* AT S12E1R, AT S12E1W */
3599         mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3600         break;
3601     case 6: /* AT S12E0R, AT S12E0W */
3602         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3603         break;
3604     default:
3605         g_assert_not_reached();
3606     }
3607 
3608     env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3609                                        mmu_idx, secure);
3610 #else
3611     /* Handled by hardware accelerator. */
3612     g_assert_not_reached();
3613 #endif /* CONFIG_TCG */
3614 }
3615 #endif
3616 
3617 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3618     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3619       .access = PL1_RW, .resetvalue = 0,
3620       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3621                              offsetoflow32(CPUARMState, cp15.par_ns) },
3622       .writefn = par_write },
3623 #ifndef CONFIG_USER_ONLY
3624     /* This underdecoding is safe because the reginfo is NO_RAW. */
3625     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3626       .access = PL1_W, .accessfn = ats_access,
3627       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3628 #endif
3629 };
3630 
3631 /* Return basic MPU access permission bits.  */
3632 static uint32_t simple_mpu_ap_bits(uint32_t val)
3633 {
3634     uint32_t ret;
3635     uint32_t mask;
3636     int i;
3637     ret = 0;
3638     mask = 3;
3639     for (i = 0; i < 16; i += 2) {
3640         ret |= (val >> i) & mask;
3641         mask <<= 2;
3642     }
3643     return ret;
3644 }
3645 
3646 /* Pad basic MPU access permission bits to extended format.  */
3647 static uint32_t extended_mpu_ap_bits(uint32_t val)
3648 {
3649     uint32_t ret;
3650     uint32_t mask;
3651     int i;
3652     ret = 0;
3653     mask = 3;
3654     for (i = 0; i < 16; i += 2) {
3655         ret |= (val & mask) << i;
3656         mask <<= 2;
3657     }
3658     return ret;
3659 }
3660 
3661 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3662                                  uint64_t value)
3663 {
3664     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3665 }
3666 
3667 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3668 {
3669     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3670 }
3671 
3672 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3673                                  uint64_t value)
3674 {
3675     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3676 }
3677 
3678 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3679 {
3680     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3681 }
3682 
3683 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3684 {
3685     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3686 
3687     if (!u32p) {
3688         return 0;
3689     }
3690 
3691     u32p += env->pmsav7.rnr[M_REG_NS];
3692     return *u32p;
3693 }
3694 
3695 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3696                          uint64_t value)
3697 {
3698     ARMCPU *cpu = env_archcpu(env);
3699     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3700 
3701     if (!u32p) {
3702         return;
3703     }
3704 
3705     u32p += env->pmsav7.rnr[M_REG_NS];
3706     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3707     *u32p = value;
3708 }
3709 
3710 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3711                               uint64_t value)
3712 {
3713     ARMCPU *cpu = env_archcpu(env);
3714     uint32_t nrgs = cpu->pmsav7_dregion;
3715 
3716     if (value >= nrgs) {
3717         qemu_log_mask(LOG_GUEST_ERROR,
3718                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3719                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3720         return;
3721     }
3722 
3723     raw_write(env, ri, value);
3724 }
3725 
3726 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3727                           uint64_t value)
3728 {
3729     ARMCPU *cpu = env_archcpu(env);
3730 
3731     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3732     env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3733 }
3734 
3735 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3736 {
3737     return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3738 }
3739 
3740 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3741                           uint64_t value)
3742 {
3743     ARMCPU *cpu = env_archcpu(env);
3744 
3745     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3746     env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3747 }
3748 
3749 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3750 {
3751     return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3752 }
3753 
3754 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3755                            uint64_t value)
3756 {
3757     ARMCPU *cpu = env_archcpu(env);
3758 
3759     /*
3760      * Ignore writes that would select not implemented region.
3761      * This is architecturally UNPREDICTABLE.
3762      */
3763     if (value >= cpu->pmsav7_dregion) {
3764         return;
3765     }
3766 
3767     env->pmsav7.rnr[M_REG_NS] = value;
3768 }
3769 
3770 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3771                           uint64_t value)
3772 {
3773     ARMCPU *cpu = env_archcpu(env);
3774 
3775     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3776     env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3777 }
3778 
3779 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3780 {
3781     return env->pmsav8.hprbar[env->pmsav8.hprselr];
3782 }
3783 
3784 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3785                           uint64_t value)
3786 {
3787     ARMCPU *cpu = env_archcpu(env);
3788 
3789     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3790     env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3791 }
3792 
3793 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3794 {
3795     return env->pmsav8.hprlar[env->pmsav8.hprselr];
3796 }
3797 
3798 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3799                           uint64_t value)
3800 {
3801     uint32_t n;
3802     uint32_t bit;
3803     ARMCPU *cpu = env_archcpu(env);
3804 
3805     /* Ignore writes to unimplemented regions */
3806     int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3807     value &= MAKE_64BIT_MASK(0, rmax);
3808 
3809     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3810 
3811     /* Register alias is only valid for first 32 indexes */
3812     for (n = 0; n < rmax; ++n) {
3813         bit = extract32(value, n, 1);
3814         env->pmsav8.hprlar[n] = deposit32(
3815                     env->pmsav8.hprlar[n], 0, 1, bit);
3816     }
3817 }
3818 
3819 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3820 {
3821     uint32_t n;
3822     uint32_t result = 0x0;
3823     ARMCPU *cpu = env_archcpu(env);
3824 
3825     /* Register alias is only valid for first 32 indexes */
3826     for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3827         if (env->pmsav8.hprlar[n] & 0x1) {
3828             result |= (0x1 << n);
3829         }
3830     }
3831     return result;
3832 }
3833 
3834 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3835                            uint64_t value)
3836 {
3837     ARMCPU *cpu = env_archcpu(env);
3838 
3839     /*
3840      * Ignore writes that would select not implemented region.
3841      * This is architecturally UNPREDICTABLE.
3842      */
3843     if (value >= cpu->pmsav8r_hdregion) {
3844         return;
3845     }
3846 
3847     env->pmsav8.hprselr = value;
3848 }
3849 
3850 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3851                           uint64_t value)
3852 {
3853     ARMCPU *cpu = env_archcpu(env);
3854     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3855                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3856 
3857     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3858 
3859     if (ri->opc1 & 4) {
3860         if (index >= cpu->pmsav8r_hdregion) {
3861             return;
3862         }
3863         if (ri->opc2 & 0x1) {
3864             env->pmsav8.hprlar[index] = value;
3865         } else {
3866             env->pmsav8.hprbar[index] = value;
3867         }
3868     } else {
3869         if (index >= cpu->pmsav7_dregion) {
3870             return;
3871         }
3872         if (ri->opc2 & 0x1) {
3873             env->pmsav8.rlar[M_REG_NS][index] = value;
3874         } else {
3875             env->pmsav8.rbar[M_REG_NS][index] = value;
3876         }
3877     }
3878 }
3879 
3880 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
3881 {
3882     ARMCPU *cpu = env_archcpu(env);
3883     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3884                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3885 
3886     if (ri->opc1 & 4) {
3887         if (index >= cpu->pmsav8r_hdregion) {
3888             return 0x0;
3889         }
3890         if (ri->opc2 & 0x1) {
3891             return env->pmsav8.hprlar[index];
3892         } else {
3893             return env->pmsav8.hprbar[index];
3894         }
3895     } else {
3896         if (index >= cpu->pmsav7_dregion) {
3897             return 0x0;
3898         }
3899         if (ri->opc2 & 0x1) {
3900             return env->pmsav8.rlar[M_REG_NS][index];
3901         } else {
3902             return env->pmsav8.rbar[M_REG_NS][index];
3903         }
3904     }
3905 }
3906 
3907 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
3908     { .name = "PRBAR",
3909       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
3910       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3911       .accessfn = access_tvm_trvm,
3912       .readfn = prbar_read, .writefn = prbar_write },
3913     { .name = "PRLAR",
3914       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
3915       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3916       .accessfn = access_tvm_trvm,
3917       .readfn = prlar_read, .writefn = prlar_write },
3918     { .name = "PRSELR", .resetvalue = 0,
3919       .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
3920       .access = PL1_RW, .accessfn = access_tvm_trvm,
3921       .writefn = prselr_write,
3922       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
3923     { .name = "HPRBAR", .resetvalue = 0,
3924       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
3925       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3926       .readfn = hprbar_read, .writefn = hprbar_write },
3927     { .name = "HPRLAR",
3928       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
3929       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3930       .readfn = hprlar_read, .writefn = hprlar_write },
3931     { .name = "HPRSELR", .resetvalue = 0,
3932       .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
3933       .access = PL2_RW,
3934       .writefn = hprselr_write,
3935       .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
3936     { .name = "HPRENR",
3937       .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
3938       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3939       .readfn = hprenr_read, .writefn = hprenr_write },
3940 };
3941 
3942 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3943     /*
3944      * Reset for all these registers is handled in arm_cpu_reset(),
3945      * because the PMSAv7 is also used by M-profile CPUs, which do
3946      * not register cpregs but still need the state to be reset.
3947      */
3948     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3949       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3950       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3951       .readfn = pmsav7_read, .writefn = pmsav7_write,
3952       .resetfn = arm_cp_reset_ignore },
3953     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3954       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3955       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3956       .readfn = pmsav7_read, .writefn = pmsav7_write,
3957       .resetfn = arm_cp_reset_ignore },
3958     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3959       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3960       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3961       .readfn = pmsav7_read, .writefn = pmsav7_write,
3962       .resetfn = arm_cp_reset_ignore },
3963     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3964       .access = PL1_RW,
3965       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3966       .writefn = pmsav7_rgnr_write,
3967       .resetfn = arm_cp_reset_ignore },
3968 };
3969 
3970 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3971     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3972       .access = PL1_RW, .type = ARM_CP_ALIAS,
3973       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3974       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3975     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3976       .access = PL1_RW, .type = ARM_CP_ALIAS,
3977       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3978       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3979     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3980       .access = PL1_RW,
3981       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3982       .resetvalue = 0, },
3983     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3984       .access = PL1_RW,
3985       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3986       .resetvalue = 0, },
3987     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3988       .access = PL1_RW,
3989       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3990     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3991       .access = PL1_RW,
3992       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3993     /* Protection region base and size registers */
3994     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3995       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3996       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3997     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3998       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3999       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4000     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4001       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4002       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4003     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4004       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4005       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4006     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4007       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4008       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4009     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4010       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4011       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4012     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4013       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4014       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4015     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4016       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4017       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4018 };
4019 
4020 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4021                              uint64_t value)
4022 {
4023     ARMCPU *cpu = env_archcpu(env);
4024 
4025     if (!arm_feature(env, ARM_FEATURE_V8)) {
4026         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4027             /*
4028              * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4029              * using Long-descriptor translation table format
4030              */
4031             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4032         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4033             /*
4034              * In an implementation that includes the Security Extensions
4035              * TTBCR has additional fields PD0 [4] and PD1 [5] for
4036              * Short-descriptor translation table format.
4037              */
4038             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4039         } else {
4040             value &= TTBCR_N;
4041         }
4042     }
4043 
4044     if (arm_feature(env, ARM_FEATURE_LPAE)) {
4045         /*
4046          * With LPAE the TTBCR could result in a change of ASID
4047          * via the TTBCR.A1 bit, so do a TLB flush.
4048          */
4049         tlb_flush(CPU(cpu));
4050     }
4051     raw_write(env, ri, value);
4052 }
4053 
4054 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4055                                uint64_t value)
4056 {
4057     ARMCPU *cpu = env_archcpu(env);
4058 
4059     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4060     tlb_flush(CPU(cpu));
4061     raw_write(env, ri, value);
4062 }
4063 
4064 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4065                             uint64_t value)
4066 {
4067     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4068     if (cpreg_field_is_64bit(ri) &&
4069         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4070         ARMCPU *cpu = env_archcpu(env);
4071         tlb_flush(CPU(cpu));
4072     }
4073     raw_write(env, ri, value);
4074 }
4075 
4076 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4077                                     uint64_t value)
4078 {
4079     /*
4080      * If we are running with E2&0 regime, then an ASID is active.
4081      * Flush if that might be changing.  Note we're not checking
4082      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4083      * holds the active ASID, only checking the field that might.
4084      */
4085     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4086         (arm_hcr_el2_eff(env) & HCR_E2H)) {
4087         uint16_t mask = ARMMMUIdxBit_E20_2 |
4088                         ARMMMUIdxBit_E20_2_PAN |
4089                         ARMMMUIdxBit_E20_0;
4090         tlb_flush_by_mmuidx(env_cpu(env), mask);
4091     }
4092     raw_write(env, ri, value);
4093 }
4094 
4095 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4096                         uint64_t value)
4097 {
4098     ARMCPU *cpu = env_archcpu(env);
4099     CPUState *cs = CPU(cpu);
4100 
4101     /*
4102      * A change in VMID to the stage2 page table (Stage2) invalidates
4103      * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4104      */
4105     if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4106         tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4107     }
4108     raw_write(env, ri, value);
4109 }
4110 
4111 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4112     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4113       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4114       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4115                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4116     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4117       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4118       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4119                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4120     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4121       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4122       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4123                              offsetof(CPUARMState, cp15.dfar_ns) } },
4124     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4125       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4126       .access = PL1_RW, .accessfn = access_tvm_trvm,
4127       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4128       .resetvalue = 0, },
4129 };
4130 
4131 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4132     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4133       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4134       .access = PL1_RW, .accessfn = access_tvm_trvm,
4135       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4136     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4137       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4138       .access = PL1_RW, .accessfn = access_tvm_trvm,
4139       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4140       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4141                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4142     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4143       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4144       .access = PL1_RW, .accessfn = access_tvm_trvm,
4145       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4146       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4147                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4148     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4149       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4150       .access = PL1_RW, .accessfn = access_tvm_trvm,
4151       .writefn = vmsa_tcr_el12_write,
4152       .raw_writefn = raw_write,
4153       .resetvalue = 0,
4154       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4155     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4156       .access = PL1_RW, .accessfn = access_tvm_trvm,
4157       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4158       .raw_writefn = raw_write,
4159       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4160                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4161 };
4162 
4163 /*
4164  * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4165  * qemu tlbs nor adjusting cached masks.
4166  */
4167 static const ARMCPRegInfo ttbcr2_reginfo = {
4168     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4169     .access = PL1_RW, .accessfn = access_tvm_trvm,
4170     .type = ARM_CP_ALIAS,
4171     .bank_fieldoffsets = {
4172         offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4173         offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4174     },
4175 };
4176 
4177 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4178                                 uint64_t value)
4179 {
4180     env->cp15.c15_ticonfig = value & 0xe7;
4181     /* The OS_TYPE bit in this register changes the reported CPUID! */
4182     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4183         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4184 }
4185 
4186 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4187                                 uint64_t value)
4188 {
4189     env->cp15.c15_threadid = value & 0xffff;
4190 }
4191 
4192 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4193                            uint64_t value)
4194 {
4195     /* Wait-for-interrupt (deprecated) */
4196     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4197 }
4198 
4199 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4200                                   uint64_t value)
4201 {
4202     /*
4203      * On OMAP there are registers indicating the max/min index of dcache lines
4204      * containing a dirty line; cache flush operations have to reset these.
4205      */
4206     env->cp15.c15_i_max = 0x000;
4207     env->cp15.c15_i_min = 0xff0;
4208 }
4209 
4210 static const ARMCPRegInfo omap_cp_reginfo[] = {
4211     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4212       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4213       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4214       .resetvalue = 0, },
4215     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4216       .access = PL1_RW, .type = ARM_CP_NOP },
4217     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4218       .access = PL1_RW,
4219       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4220       .writefn = omap_ticonfig_write },
4221     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4222       .access = PL1_RW,
4223       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4224     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4225       .access = PL1_RW, .resetvalue = 0xff0,
4226       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4227     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4228       .access = PL1_RW,
4229       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4230       .writefn = omap_threadid_write },
4231     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4232       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4233       .type = ARM_CP_NO_RAW,
4234       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4235     /*
4236      * TODO: Peripheral port remap register:
4237      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4238      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4239      * when MMU is off.
4240      */
4241     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4242       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4243       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4244       .writefn = omap_cachemaint_write },
4245     { .name = "C9", .cp = 15, .crn = 9,
4246       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4247       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4248 };
4249 
4250 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4251                               uint64_t value)
4252 {
4253     env->cp15.c15_cpar = value & 0x3fff;
4254 }
4255 
4256 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4257     { .name = "XSCALE_CPAR",
4258       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4259       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4260       .writefn = xscale_cpar_write, },
4261     { .name = "XSCALE_AUXCR",
4262       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4263       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4264       .resetvalue = 0, },
4265     /*
4266      * XScale specific cache-lockdown: since we have no cache we NOP these
4267      * and hope the guest does not really rely on cache behaviour.
4268      */
4269     { .name = "XSCALE_LOCK_ICACHE_LINE",
4270       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4271       .access = PL1_W, .type = ARM_CP_NOP },
4272     { .name = "XSCALE_UNLOCK_ICACHE",
4273       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4274       .access = PL1_W, .type = ARM_CP_NOP },
4275     { .name = "XSCALE_DCACHE_LOCK",
4276       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4277       .access = PL1_RW, .type = ARM_CP_NOP },
4278     { .name = "XSCALE_UNLOCK_DCACHE",
4279       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4280       .access = PL1_W, .type = ARM_CP_NOP },
4281 };
4282 
4283 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4284     /*
4285      * RAZ/WI the whole crn=15 space, when we don't have a more specific
4286      * implementation of this implementation-defined space.
4287      * Ideally this should eventually disappear in favour of actually
4288      * implementing the correct behaviour for all cores.
4289      */
4290     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4291       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4292       .access = PL1_RW,
4293       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4294       .resetvalue = 0 },
4295 };
4296 
4297 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4298     /* Cache status: RAZ because we have no cache so it's always clean */
4299     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4300       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4301       .resetvalue = 0 },
4302 };
4303 
4304 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4305     /* We never have a block transfer operation in progress */
4306     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4307       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4308       .resetvalue = 0 },
4309     /* The cache ops themselves: these all NOP for QEMU */
4310     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4311       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4312     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4313       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4314     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4315       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4316     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4317       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4318     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4319       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4320     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4321       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4322 };
4323 
4324 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4325     /*
4326      * The cache test-and-clean instructions always return (1 << 30)
4327      * to indicate that there are no dirty cache lines.
4328      */
4329     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4330       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4331       .resetvalue = (1 << 30) },
4332     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4333       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4334       .resetvalue = (1 << 30) },
4335 };
4336 
4337 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4338     /* Ignore ReadBuffer accesses */
4339     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4340       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4341       .access = PL1_RW, .resetvalue = 0,
4342       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4343 };
4344 
4345 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4346 {
4347     unsigned int cur_el = arm_current_el(env);
4348 
4349     if (arm_is_el2_enabled(env) && cur_el == 1) {
4350         return env->cp15.vpidr_el2;
4351     }
4352     return raw_read(env, ri);
4353 }
4354 
4355 static uint64_t mpidr_read_val(CPUARMState *env)
4356 {
4357     ARMCPU *cpu = env_archcpu(env);
4358     uint64_t mpidr = cpu->mp_affinity;
4359 
4360     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4361         mpidr |= (1U << 31);
4362         /*
4363          * Cores which are uniprocessor (non-coherent)
4364          * but still implement the MP extensions set
4365          * bit 30. (For instance, Cortex-R5).
4366          */
4367         if (cpu->mp_is_up) {
4368             mpidr |= (1u << 30);
4369         }
4370     }
4371     return mpidr;
4372 }
4373 
4374 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4375 {
4376     unsigned int cur_el = arm_current_el(env);
4377 
4378     if (arm_is_el2_enabled(env) && cur_el == 1) {
4379         return env->cp15.vmpidr_el2;
4380     }
4381     return mpidr_read_val(env);
4382 }
4383 
4384 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4385     /* NOP AMAIR0/1 */
4386     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4387       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4388       .access = PL1_RW, .accessfn = access_tvm_trvm,
4389       .type = ARM_CP_CONST, .resetvalue = 0 },
4390     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4391     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4392       .access = PL1_RW, .accessfn = access_tvm_trvm,
4393       .type = ARM_CP_CONST, .resetvalue = 0 },
4394     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4395       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4396       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4397                              offsetof(CPUARMState, cp15.par_ns)} },
4398     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4399       .access = PL1_RW, .accessfn = access_tvm_trvm,
4400       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4401       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4402                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4403       .writefn = vmsa_ttbr_write, },
4404     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4405       .access = PL1_RW, .accessfn = access_tvm_trvm,
4406       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4407       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4408                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4409       .writefn = vmsa_ttbr_write, },
4410 };
4411 
4412 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4413 {
4414     return vfp_get_fpcr(env);
4415 }
4416 
4417 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4418                             uint64_t value)
4419 {
4420     vfp_set_fpcr(env, value);
4421 }
4422 
4423 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4424 {
4425     return vfp_get_fpsr(env);
4426 }
4427 
4428 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4429                             uint64_t value)
4430 {
4431     vfp_set_fpsr(env, value);
4432 }
4433 
4434 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4435                                        bool isread)
4436 {
4437     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4438         return CP_ACCESS_TRAP;
4439     }
4440     return CP_ACCESS_OK;
4441 }
4442 
4443 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4444                             uint64_t value)
4445 {
4446     env->daif = value & PSTATE_DAIF;
4447 }
4448 
4449 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4450 {
4451     return env->pstate & PSTATE_PAN;
4452 }
4453 
4454 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4455                            uint64_t value)
4456 {
4457     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4458 }
4459 
4460 static const ARMCPRegInfo pan_reginfo = {
4461     .name = "PAN", .state = ARM_CP_STATE_AA64,
4462     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4463     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4464     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4465 };
4466 
4467 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4468 {
4469     return env->pstate & PSTATE_UAO;
4470 }
4471 
4472 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4473                            uint64_t value)
4474 {
4475     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4476 }
4477 
4478 static const ARMCPRegInfo uao_reginfo = {
4479     .name = "UAO", .state = ARM_CP_STATE_AA64,
4480     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4481     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4482     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4483 };
4484 
4485 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4486 {
4487     return env->pstate & PSTATE_DIT;
4488 }
4489 
4490 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4491                            uint64_t value)
4492 {
4493     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4494 }
4495 
4496 static const ARMCPRegInfo dit_reginfo = {
4497     .name = "DIT", .state = ARM_CP_STATE_AA64,
4498     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4499     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4500     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4501 };
4502 
4503 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4504 {
4505     return env->pstate & PSTATE_SSBS;
4506 }
4507 
4508 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4509                            uint64_t value)
4510 {
4511     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4512 }
4513 
4514 static const ARMCPRegInfo ssbs_reginfo = {
4515     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4516     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4517     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4518     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4519 };
4520 
4521 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4522                                               const ARMCPRegInfo *ri,
4523                                               bool isread)
4524 {
4525     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4526     switch (arm_current_el(env)) {
4527     case 0:
4528         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4529         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4530             return CP_ACCESS_TRAP;
4531         }
4532         /* fall through */
4533     case 1:
4534         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4535         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4536             return CP_ACCESS_TRAP_EL2;
4537         }
4538         break;
4539     }
4540     return CP_ACCESS_OK;
4541 }
4542 
4543 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4544 {
4545     /* Cache invalidate/clean to Point of Unification... */
4546     switch (arm_current_el(env)) {
4547     case 0:
4548         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4549         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4550             return CP_ACCESS_TRAP;
4551         }
4552         /* fall through */
4553     case 1:
4554         /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set.  */
4555         if (arm_hcr_el2_eff(env) & hcrflags) {
4556             return CP_ACCESS_TRAP_EL2;
4557         }
4558         break;
4559     }
4560     return CP_ACCESS_OK;
4561 }
4562 
4563 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4564                                    bool isread)
4565 {
4566     return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4567 }
4568 
4569 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4570                                   bool isread)
4571 {
4572     return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4573 }
4574 
4575 /*
4576  * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4577  * Page D4-1736 (DDI0487A.b)
4578  */
4579 
4580 static int vae1_tlbmask(CPUARMState *env)
4581 {
4582     uint64_t hcr = arm_hcr_el2_eff(env);
4583     uint16_t mask;
4584 
4585     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4586         mask = ARMMMUIdxBit_E20_2 |
4587                ARMMMUIdxBit_E20_2_PAN |
4588                ARMMMUIdxBit_E20_0;
4589     } else {
4590         mask = ARMMMUIdxBit_E10_1 |
4591                ARMMMUIdxBit_E10_1_PAN |
4592                ARMMMUIdxBit_E10_0;
4593     }
4594     return mask;
4595 }
4596 
4597 /* Return 56 if TBI is enabled, 64 otherwise. */
4598 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4599                               uint64_t addr)
4600 {
4601     uint64_t tcr = regime_tcr(env, mmu_idx);
4602     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4603     int select = extract64(addr, 55, 1);
4604 
4605     return (tbi >> select) & 1 ? 56 : 64;
4606 }
4607 
4608 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4609 {
4610     uint64_t hcr = arm_hcr_el2_eff(env);
4611     ARMMMUIdx mmu_idx;
4612 
4613     /* Only the regime of the mmu_idx below is significant. */
4614     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4615         mmu_idx = ARMMMUIdx_E20_0;
4616     } else {
4617         mmu_idx = ARMMMUIdx_E10_0;
4618     }
4619 
4620     return tlbbits_for_regime(env, mmu_idx, addr);
4621 }
4622 
4623 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4624                                       uint64_t value)
4625 {
4626     CPUState *cs = env_cpu(env);
4627     int mask = vae1_tlbmask(env);
4628 
4629     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4630 }
4631 
4632 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4633                                     uint64_t value)
4634 {
4635     CPUState *cs = env_cpu(env);
4636     int mask = vae1_tlbmask(env);
4637 
4638     if (tlb_force_broadcast(env)) {
4639         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4640     } else {
4641         tlb_flush_by_mmuidx(cs, mask);
4642     }
4643 }
4644 
4645 static int e2_tlbmask(CPUARMState *env)
4646 {
4647     return (ARMMMUIdxBit_E20_0 |
4648             ARMMMUIdxBit_E20_2 |
4649             ARMMMUIdxBit_E20_2_PAN |
4650             ARMMMUIdxBit_E2);
4651 }
4652 
4653 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4654                                   uint64_t value)
4655 {
4656     CPUState *cs = env_cpu(env);
4657     int mask = alle1_tlbmask(env);
4658 
4659     tlb_flush_by_mmuidx(cs, mask);
4660 }
4661 
4662 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4663                                   uint64_t value)
4664 {
4665     CPUState *cs = env_cpu(env);
4666     int mask = e2_tlbmask(env);
4667 
4668     tlb_flush_by_mmuidx(cs, mask);
4669 }
4670 
4671 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4672                                   uint64_t value)
4673 {
4674     ARMCPU *cpu = env_archcpu(env);
4675     CPUState *cs = CPU(cpu);
4676 
4677     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4678 }
4679 
4680 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4681                                     uint64_t value)
4682 {
4683     CPUState *cs = env_cpu(env);
4684     int mask = alle1_tlbmask(env);
4685 
4686     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4687 }
4688 
4689 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4690                                     uint64_t value)
4691 {
4692     CPUState *cs = env_cpu(env);
4693     int mask = e2_tlbmask(env);
4694 
4695     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4696 }
4697 
4698 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4699                                     uint64_t value)
4700 {
4701     CPUState *cs = env_cpu(env);
4702 
4703     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4704 }
4705 
4706 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4707                                  uint64_t value)
4708 {
4709     /*
4710      * Invalidate by VA, EL2
4711      * Currently handles both VAE2 and VALE2, since we don't support
4712      * flush-last-level-only.
4713      */
4714     CPUState *cs = env_cpu(env);
4715     int mask = e2_tlbmask(env);
4716     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4717 
4718     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4719 }
4720 
4721 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4722                                  uint64_t value)
4723 {
4724     /*
4725      * Invalidate by VA, EL3
4726      * Currently handles both VAE3 and VALE3, since we don't support
4727      * flush-last-level-only.
4728      */
4729     ARMCPU *cpu = env_archcpu(env);
4730     CPUState *cs = CPU(cpu);
4731     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4732 
4733     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4734 }
4735 
4736 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4737                                    uint64_t value)
4738 {
4739     CPUState *cs = env_cpu(env);
4740     int mask = vae1_tlbmask(env);
4741     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4742     int bits = vae1_tlbbits(env, pageaddr);
4743 
4744     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4745 }
4746 
4747 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4748                                  uint64_t value)
4749 {
4750     /*
4751      * Invalidate by VA, EL1&0 (AArch64 version).
4752      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4753      * since we don't support flush-for-specific-ASID-only or
4754      * flush-last-level-only.
4755      */
4756     CPUState *cs = env_cpu(env);
4757     int mask = vae1_tlbmask(env);
4758     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4759     int bits = vae1_tlbbits(env, pageaddr);
4760 
4761     if (tlb_force_broadcast(env)) {
4762         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4763     } else {
4764         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4765     }
4766 }
4767 
4768 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4769                                    uint64_t value)
4770 {
4771     CPUState *cs = env_cpu(env);
4772     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4773     int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr);
4774 
4775     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4776                                                   ARMMMUIdxBit_E2, bits);
4777 }
4778 
4779 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4780                                    uint64_t value)
4781 {
4782     CPUState *cs = env_cpu(env);
4783     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4784     int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4785 
4786     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4787                                                   ARMMMUIdxBit_E3, bits);
4788 }
4789 
4790 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4791 {
4792     /*
4793      * The MSB of value is the NS field, which only applies if SEL2
4794      * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4795      */
4796     return (value >= 0
4797             && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4798             && arm_is_secure_below_el3(env)
4799             ? ARMMMUIdxBit_Stage2_S
4800             : ARMMMUIdxBit_Stage2);
4801 }
4802 
4803 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4804                                     uint64_t value)
4805 {
4806     CPUState *cs = env_cpu(env);
4807     int mask = ipas2e1_tlbmask(env, value);
4808     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4809 
4810     if (tlb_force_broadcast(env)) {
4811         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4812     } else {
4813         tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4814     }
4815 }
4816 
4817 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4818                                       uint64_t value)
4819 {
4820     CPUState *cs = env_cpu(env);
4821     int mask = ipas2e1_tlbmask(env, value);
4822     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4823 
4824     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4825 }
4826 
4827 #ifdef TARGET_AARCH64
4828 typedef struct {
4829     uint64_t base;
4830     uint64_t length;
4831 } TLBIRange;
4832 
4833 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
4834 {
4835     /*
4836      * Note that the TLBI range TG field encoding differs from both
4837      * TG0 and TG1 encodings.
4838      */
4839     switch (tg) {
4840     case 1:
4841         return Gran4K;
4842     case 2:
4843         return Gran16K;
4844     case 3:
4845         return Gran64K;
4846     default:
4847         return GranInvalid;
4848     }
4849 }
4850 
4851 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4852                                      uint64_t value)
4853 {
4854     unsigned int page_size_granule, page_shift, num, scale, exponent;
4855     /* Extract one bit to represent the va selector in use. */
4856     uint64_t select = sextract64(value, 36, 1);
4857     ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true);
4858     TLBIRange ret = { };
4859     ARMGranuleSize gran;
4860 
4861     page_size_granule = extract64(value, 46, 2);
4862     gran = tlbi_range_tg_to_gran_size(page_size_granule);
4863 
4864     /* The granule encoded in value must match the granule in use. */
4865     if (gran != param.gran) {
4866         qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4867                       page_size_granule);
4868         return ret;
4869     }
4870 
4871     page_shift = arm_granule_bits(gran);
4872     num = extract64(value, 39, 5);
4873     scale = extract64(value, 44, 2);
4874     exponent = (5 * scale) + 1;
4875 
4876     ret.length = (num + 1) << (exponent + page_shift);
4877 
4878     if (param.select) {
4879         ret.base = sextract64(value, 0, 37);
4880     } else {
4881         ret.base = extract64(value, 0, 37);
4882     }
4883     if (param.ds) {
4884         /*
4885          * With DS=1, BaseADDR is always shifted 16 so that it is able
4886          * to address all 52 va bits.  The input address is perforce
4887          * aligned on a 64k boundary regardless of translation granule.
4888          */
4889         page_shift = 16;
4890     }
4891     ret.base <<= page_shift;
4892 
4893     return ret;
4894 }
4895 
4896 static void do_rvae_write(CPUARMState *env, uint64_t value,
4897                           int idxmap, bool synced)
4898 {
4899     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4900     TLBIRange range;
4901     int bits;
4902 
4903     range = tlbi_aa64_get_range(env, one_idx, value);
4904     bits = tlbbits_for_regime(env, one_idx, range.base);
4905 
4906     if (synced) {
4907         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4908                                                   range.base,
4909                                                   range.length,
4910                                                   idxmap,
4911                                                   bits);
4912     } else {
4913         tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4914                                   range.length, idxmap, bits);
4915     }
4916 }
4917 
4918 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4919                                   const ARMCPRegInfo *ri,
4920                                   uint64_t value)
4921 {
4922     /*
4923      * Invalidate by VA range, EL1&0.
4924      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4925      * since we don't support flush-for-specific-ASID-only or
4926      * flush-last-level-only.
4927      */
4928 
4929     do_rvae_write(env, value, vae1_tlbmask(env),
4930                   tlb_force_broadcast(env));
4931 }
4932 
4933 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4934                                     const ARMCPRegInfo *ri,
4935                                     uint64_t value)
4936 {
4937     /*
4938      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4939      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4940      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4941      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4942      * shareable specific flushes.
4943      */
4944 
4945     do_rvae_write(env, value, vae1_tlbmask(env), true);
4946 }
4947 
4948 static int vae2_tlbmask(CPUARMState *env)
4949 {
4950     return ARMMMUIdxBit_E2;
4951 }
4952 
4953 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4954                                   const ARMCPRegInfo *ri,
4955                                   uint64_t value)
4956 {
4957     /*
4958      * Invalidate by VA range, EL2.
4959      * Currently handles all of RVAE2 and RVALE2,
4960      * since we don't support flush-for-specific-ASID-only or
4961      * flush-last-level-only.
4962      */
4963 
4964     do_rvae_write(env, value, vae2_tlbmask(env),
4965                   tlb_force_broadcast(env));
4966 
4967 
4968 }
4969 
4970 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4971                                     const ARMCPRegInfo *ri,
4972                                     uint64_t value)
4973 {
4974     /*
4975      * Invalidate by VA range, Inner/Outer Shareable, EL2.
4976      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4977      * since we don't support flush-for-specific-ASID-only,
4978      * flush-last-level-only or inner/outer shareable specific flushes.
4979      */
4980 
4981     do_rvae_write(env, value, vae2_tlbmask(env), true);
4982 
4983 }
4984 
4985 static void tlbi_aa64_rvae3_write(CPUARMState *env,
4986                                   const ARMCPRegInfo *ri,
4987                                   uint64_t value)
4988 {
4989     /*
4990      * Invalidate by VA range, EL3.
4991      * Currently handles all of RVAE3 and RVALE3,
4992      * since we don't support flush-for-specific-ASID-only or
4993      * flush-last-level-only.
4994      */
4995 
4996     do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
4997 }
4998 
4999 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5000                                     const ARMCPRegInfo *ri,
5001                                     uint64_t value)
5002 {
5003     /*
5004      * Invalidate by VA range, EL3, Inner/Outer Shareable.
5005      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5006      * since we don't support flush-for-specific-ASID-only,
5007      * flush-last-level-only or inner/outer specific flushes.
5008      */
5009 
5010     do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5011 }
5012 
5013 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5014                                      uint64_t value)
5015 {
5016     do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5017                   tlb_force_broadcast(env));
5018 }
5019 
5020 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5021                                        const ARMCPRegInfo *ri,
5022                                        uint64_t value)
5023 {
5024     do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5025 }
5026 #endif
5027 
5028 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5029                                       bool isread)
5030 {
5031     int cur_el = arm_current_el(env);
5032 
5033     if (cur_el < 2) {
5034         uint64_t hcr = arm_hcr_el2_eff(env);
5035 
5036         if (cur_el == 0) {
5037             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5038                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5039                     return CP_ACCESS_TRAP_EL2;
5040                 }
5041             } else {
5042                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5043                     return CP_ACCESS_TRAP;
5044                 }
5045                 if (hcr & HCR_TDZ) {
5046                     return CP_ACCESS_TRAP_EL2;
5047                 }
5048             }
5049         } else if (hcr & HCR_TDZ) {
5050             return CP_ACCESS_TRAP_EL2;
5051         }
5052     }
5053     return CP_ACCESS_OK;
5054 }
5055 
5056 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5057 {
5058     ARMCPU *cpu = env_archcpu(env);
5059     int dzp_bit = 1 << 4;
5060 
5061     /* DZP indicates whether DC ZVA access is allowed */
5062     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5063         dzp_bit = 0;
5064     }
5065     return cpu->dcz_blocksize | dzp_bit;
5066 }
5067 
5068 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5069                                     bool isread)
5070 {
5071     if (!(env->pstate & PSTATE_SP)) {
5072         /*
5073          * Access to SP_EL0 is undefined if it's being used as
5074          * the stack pointer.
5075          */
5076         return CP_ACCESS_TRAP_UNCATEGORIZED;
5077     }
5078     return CP_ACCESS_OK;
5079 }
5080 
5081 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5082 {
5083     return env->pstate & PSTATE_SP;
5084 }
5085 
5086 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5087 {
5088     update_spsel(env, val);
5089 }
5090 
5091 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5092                         uint64_t value)
5093 {
5094     ARMCPU *cpu = env_archcpu(env);
5095 
5096     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5097         /* M bit is RAZ/WI for PMSA with no MPU implemented */
5098         value &= ~SCTLR_M;
5099     }
5100 
5101     /* ??? Lots of these bits are not implemented.  */
5102 
5103     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5104         if (ri->opc1 == 6) { /* SCTLR_EL3 */
5105             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5106         } else {
5107             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5108                        SCTLR_ATA0 | SCTLR_ATA);
5109         }
5110     }
5111 
5112     if (raw_read(env, ri) == value) {
5113         /*
5114          * Skip the TLB flush if nothing actually changed; Linux likes
5115          * to do a lot of pointless SCTLR writes.
5116          */
5117         return;
5118     }
5119 
5120     raw_write(env, ri, value);
5121 
5122     /* This may enable/disable the MMU, so do a TLB flush.  */
5123     tlb_flush(CPU(cpu));
5124 
5125     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
5126         /*
5127          * Normally we would always end the TB on an SCTLR write; see the
5128          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5129          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5130          * of hflags from the translator, so do it here.
5131          */
5132         arm_rebuild_hflags(env);
5133     }
5134 }
5135 
5136 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5137                            uint64_t value)
5138 {
5139     /*
5140      * Some MDCR_EL3 bits affect whether PMU counters are running:
5141      * if we are trying to change any of those then we must
5142      * bracket this update with PMU start/finish calls.
5143      */
5144     bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5145 
5146     if (pmu_op) {
5147         pmu_op_start(env);
5148     }
5149     env->cp15.mdcr_el3 = value;
5150     if (pmu_op) {
5151         pmu_op_finish(env);
5152     }
5153 }
5154 
5155 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5156                        uint64_t value)
5157 {
5158     /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5159     mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5160 }
5161 
5162 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5163                            uint64_t value)
5164 {
5165     /*
5166      * Some MDCR_EL2 bits affect whether PMU counters are running:
5167      * if we are trying to change any of those then we must
5168      * bracket this update with PMU start/finish calls.
5169      */
5170     bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5171 
5172     if (pmu_op) {
5173         pmu_op_start(env);
5174     }
5175     env->cp15.mdcr_el2 = value;
5176     if (pmu_op) {
5177         pmu_op_finish(env);
5178     }
5179 }
5180 
5181 static const ARMCPRegInfo v8_cp_reginfo[] = {
5182     /*
5183      * Minimal set of EL0-visible registers. This will need to be expanded
5184      * significantly for system emulation of AArch64 CPUs.
5185      */
5186     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5187       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5188       .access = PL0_RW, .type = ARM_CP_NZCV },
5189     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5190       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5191       .type = ARM_CP_NO_RAW,
5192       .access = PL0_RW, .accessfn = aa64_daif_access,
5193       .fieldoffset = offsetof(CPUARMState, daif),
5194       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5195     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5196       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5197       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5198       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5199     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5200       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5201       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5202       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5203     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5204       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5205       .access = PL0_R, .type = ARM_CP_NO_RAW,
5206       .readfn = aa64_dczid_read },
5207     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5208       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5209       .access = PL0_W, .type = ARM_CP_DC_ZVA,
5210 #ifndef CONFIG_USER_ONLY
5211       /* Avoid overhead of an access check that always passes in user-mode */
5212       .accessfn = aa64_zva_access,
5213 #endif
5214     },
5215     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5216       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5217       .access = PL1_R, .type = ARM_CP_CURRENTEL },
5218     /* Cache ops: all NOPs since we don't emulate caches */
5219     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5220       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5221       .access = PL1_W, .type = ARM_CP_NOP,
5222       .accessfn = access_ticab },
5223     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5224       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5225       .access = PL1_W, .type = ARM_CP_NOP,
5226       .accessfn = access_tocu },
5227     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5228       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5229       .access = PL0_W, .type = ARM_CP_NOP,
5230       .accessfn = access_tocu },
5231     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5232       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5233       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5234       .type = ARM_CP_NOP },
5235     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5236       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5237       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5238     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5239       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5240       .access = PL0_W, .type = ARM_CP_NOP,
5241       .accessfn = aa64_cacheop_poc_access },
5242     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5243       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5244       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5245     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5246       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5247       .access = PL0_W, .type = ARM_CP_NOP,
5248       .accessfn = access_tocu },
5249     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5250       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5251       .access = PL0_W, .type = ARM_CP_NOP,
5252       .accessfn = aa64_cacheop_poc_access },
5253     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5254       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5255       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5256     /* TLBI operations */
5257     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5258       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5259       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5260       .writefn = tlbi_aa64_vmalle1is_write },
5261     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5262       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5263       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5264       .writefn = tlbi_aa64_vae1is_write },
5265     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5266       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5267       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5268       .writefn = tlbi_aa64_vmalle1is_write },
5269     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5270       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5271       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5272       .writefn = tlbi_aa64_vae1is_write },
5273     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5274       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5275       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5276       .writefn = tlbi_aa64_vae1is_write },
5277     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5278       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5279       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5280       .writefn = tlbi_aa64_vae1is_write },
5281     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5282       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5283       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5284       .writefn = tlbi_aa64_vmalle1_write },
5285     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5286       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5287       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5288       .writefn = tlbi_aa64_vae1_write },
5289     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5290       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5291       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5292       .writefn = tlbi_aa64_vmalle1_write },
5293     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5294       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5295       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5296       .writefn = tlbi_aa64_vae1_write },
5297     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5298       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5299       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5300       .writefn = tlbi_aa64_vae1_write },
5301     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5302       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5303       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5304       .writefn = tlbi_aa64_vae1_write },
5305     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5306       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5307       .access = PL2_W, .type = ARM_CP_NO_RAW,
5308       .writefn = tlbi_aa64_ipas2e1is_write },
5309     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5310       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5311       .access = PL2_W, .type = ARM_CP_NO_RAW,
5312       .writefn = tlbi_aa64_ipas2e1is_write },
5313     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5314       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5315       .access = PL2_W, .type = ARM_CP_NO_RAW,
5316       .writefn = tlbi_aa64_alle1is_write },
5317     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5318       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5319       .access = PL2_W, .type = ARM_CP_NO_RAW,
5320       .writefn = tlbi_aa64_alle1is_write },
5321     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5322       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5323       .access = PL2_W, .type = ARM_CP_NO_RAW,
5324       .writefn = tlbi_aa64_ipas2e1_write },
5325     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5326       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5327       .access = PL2_W, .type = ARM_CP_NO_RAW,
5328       .writefn = tlbi_aa64_ipas2e1_write },
5329     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5330       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5331       .access = PL2_W, .type = ARM_CP_NO_RAW,
5332       .writefn = tlbi_aa64_alle1_write },
5333     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5334       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5335       .access = PL2_W, .type = ARM_CP_NO_RAW,
5336       .writefn = tlbi_aa64_alle1is_write },
5337 #ifndef CONFIG_USER_ONLY
5338     /* 64 bit address translation operations */
5339     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5340       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5341       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5342       .writefn = ats_write64 },
5343     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5344       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5345       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5346       .writefn = ats_write64 },
5347     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5348       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5349       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5350       .writefn = ats_write64 },
5351     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5352       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5353       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5354       .writefn = ats_write64 },
5355     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5356       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5357       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5358       .writefn = ats_write64 },
5359     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5360       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5361       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5362       .writefn = ats_write64 },
5363     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5364       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5365       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5366       .writefn = ats_write64 },
5367     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5368       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5369       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5370       .writefn = ats_write64 },
5371     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5372     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5373       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5374       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5375       .writefn = ats_write64 },
5376     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5377       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5378       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5379       .writefn = ats_write64 },
5380     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5381       .type = ARM_CP_ALIAS,
5382       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5383       .access = PL1_RW, .resetvalue = 0,
5384       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5385       .writefn = par_write },
5386 #endif
5387     /* TLB invalidate last level of translation table walk */
5388     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5389       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5390       .writefn = tlbimva_is_write },
5391     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5392       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5393       .writefn = tlbimvaa_is_write },
5394     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5395       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5396       .writefn = tlbimva_write },
5397     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5398       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5399       .writefn = tlbimvaa_write },
5400     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5401       .type = ARM_CP_NO_RAW, .access = PL2_W,
5402       .writefn = tlbimva_hyp_write },
5403     { .name = "TLBIMVALHIS",
5404       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5405       .type = ARM_CP_NO_RAW, .access = PL2_W,
5406       .writefn = tlbimva_hyp_is_write },
5407     { .name = "TLBIIPAS2",
5408       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5409       .type = ARM_CP_NO_RAW, .access = PL2_W,
5410       .writefn = tlbiipas2_hyp_write },
5411     { .name = "TLBIIPAS2IS",
5412       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5413       .type = ARM_CP_NO_RAW, .access = PL2_W,
5414       .writefn = tlbiipas2is_hyp_write },
5415     { .name = "TLBIIPAS2L",
5416       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5417       .type = ARM_CP_NO_RAW, .access = PL2_W,
5418       .writefn = tlbiipas2_hyp_write },
5419     { .name = "TLBIIPAS2LIS",
5420       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5421       .type = ARM_CP_NO_RAW, .access = PL2_W,
5422       .writefn = tlbiipas2is_hyp_write },
5423     /* 32 bit cache operations */
5424     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5425       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5426     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5427       .type = ARM_CP_NOP, .access = PL1_W },
5428     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5429       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5430     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5431       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5432     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5433       .type = ARM_CP_NOP, .access = PL1_W },
5434     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5435       .type = ARM_CP_NOP, .access = PL1_W },
5436     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5437       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5438     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5439       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5440     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5441       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5442     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5443       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5444     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5445       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5446     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5447       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5448     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5449       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5450     /* MMU Domain access control / MPU write buffer control */
5451     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5452       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5453       .writefn = dacr_write, .raw_writefn = raw_write,
5454       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5455                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5456     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5457       .type = ARM_CP_ALIAS,
5458       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5459       .access = PL1_RW,
5460       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5461     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5462       .type = ARM_CP_ALIAS,
5463       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5464       .access = PL1_RW,
5465       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5466     /*
5467      * We rely on the access checks not allowing the guest to write to the
5468      * state field when SPSel indicates that it's being used as the stack
5469      * pointer.
5470      */
5471     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5472       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5473       .access = PL1_RW, .accessfn = sp_el0_access,
5474       .type = ARM_CP_ALIAS,
5475       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5476     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5477       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5478       .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5479       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5480     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5481       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5482       .type = ARM_CP_NO_RAW,
5483       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5484     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5485       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5486       .access = PL2_RW,
5487       .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5488       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5489     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5490       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5491       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5492       .writefn = dacr_write, .raw_writefn = raw_write,
5493       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5494     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5495       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5496       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5497       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5498     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5499       .type = ARM_CP_ALIAS,
5500       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5501       .access = PL2_RW,
5502       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5503     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5504       .type = ARM_CP_ALIAS,
5505       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5506       .access = PL2_RW,
5507       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5508     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5509       .type = ARM_CP_ALIAS,
5510       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5511       .access = PL2_RW,
5512       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5513     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5514       .type = ARM_CP_ALIAS,
5515       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5516       .access = PL2_RW,
5517       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5518     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5519       .type = ARM_CP_IO,
5520       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5521       .resetvalue = 0,
5522       .access = PL3_RW,
5523       .writefn = mdcr_el3_write,
5524       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5525     { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5526       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5527       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5528       .writefn = sdcr_write,
5529       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5530 };
5531 
5532 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5533 {
5534     ARMCPU *cpu = env_archcpu(env);
5535 
5536     if (arm_feature(env, ARM_FEATURE_V8)) {
5537         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5538     } else {
5539         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5540     }
5541 
5542     if (arm_feature(env, ARM_FEATURE_EL3)) {
5543         valid_mask &= ~HCR_HCD;
5544     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5545         /*
5546          * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5547          * However, if we're using the SMC PSCI conduit then QEMU is
5548          * effectively acting like EL3 firmware and so the guest at
5549          * EL2 should retain the ability to prevent EL1 from being
5550          * able to make SMC calls into the ersatz firmware, so in
5551          * that case HCR.TSC should be read/write.
5552          */
5553         valid_mask &= ~HCR_TSC;
5554     }
5555 
5556     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5557         if (cpu_isar_feature(aa64_vh, cpu)) {
5558             valid_mask |= HCR_E2H;
5559         }
5560         if (cpu_isar_feature(aa64_ras, cpu)) {
5561             valid_mask |= HCR_TERR | HCR_TEA;
5562         }
5563         if (cpu_isar_feature(aa64_lor, cpu)) {
5564             valid_mask |= HCR_TLOR;
5565         }
5566         if (cpu_isar_feature(aa64_pauth, cpu)) {
5567             valid_mask |= HCR_API | HCR_APK;
5568         }
5569         if (cpu_isar_feature(aa64_mte, cpu)) {
5570             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5571         }
5572         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5573             valid_mask |= HCR_ENSCXT;
5574         }
5575         if (cpu_isar_feature(aa64_fwb, cpu)) {
5576             valid_mask |= HCR_FWB;
5577         }
5578     }
5579 
5580     if (cpu_isar_feature(any_evt, cpu)) {
5581         valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5582     } else if (cpu_isar_feature(any_half_evt, cpu)) {
5583         valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5584     }
5585 
5586     /* Clear RES0 bits.  */
5587     value &= valid_mask;
5588 
5589     /*
5590      * These bits change the MMU setup:
5591      * HCR_VM enables stage 2 translation
5592      * HCR_PTW forbids certain page-table setups
5593      * HCR_DC disables stage1 and enables stage2 translation
5594      * HCR_DCT enables tagging on (disabled) stage1 translation
5595      * HCR_FWB changes the interpretation of stage2 descriptor bits
5596      */
5597     if ((env->cp15.hcr_el2 ^ value) &
5598         (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5599         tlb_flush(CPU(cpu));
5600     }
5601     env->cp15.hcr_el2 = value;
5602 
5603     /*
5604      * Updates to VI and VF require us to update the status of
5605      * virtual interrupts, which are the logical OR of these bits
5606      * and the state of the input lines from the GIC. (This requires
5607      * that we have the iothread lock, which is done by marking the
5608      * reginfo structs as ARM_CP_IO.)
5609      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5610      * possible for it to be taken immediately, because VIRQ and
5611      * VFIQ are masked unless running at EL0 or EL1, and HCR
5612      * can only be written at EL2.
5613      */
5614     g_assert(qemu_mutex_iothread_locked());
5615     arm_cpu_update_virq(cpu);
5616     arm_cpu_update_vfiq(cpu);
5617     arm_cpu_update_vserr(cpu);
5618 }
5619 
5620 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5621 {
5622     do_hcr_write(env, value, 0);
5623 }
5624 
5625 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5626                           uint64_t value)
5627 {
5628     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5629     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5630     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5631 }
5632 
5633 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5634                          uint64_t value)
5635 {
5636     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5637     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5638     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5639 }
5640 
5641 /*
5642  * Return the effective value of HCR_EL2, at the given security state.
5643  * Bits that are not included here:
5644  * RW       (read from SCR_EL3.RW as needed)
5645  */
5646 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure)
5647 {
5648     uint64_t ret = env->cp15.hcr_el2;
5649 
5650     if (!arm_is_el2_enabled_secstate(env, secure)) {
5651         /*
5652          * "This register has no effect if EL2 is not enabled in the
5653          * current Security state".  This is ARMv8.4-SecEL2 speak for
5654          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5655          *
5656          * Prior to that, the language was "In an implementation that
5657          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5658          * as if this field is 0 for all purposes other than a direct
5659          * read or write access of HCR_EL2".  With lots of enumeration
5660          * on a per-field basis.  In current QEMU, this is condition
5661          * is arm_is_secure_below_el3.
5662          *
5663          * Since the v8.4 language applies to the entire register, and
5664          * appears to be backward compatible, use that.
5665          */
5666         return 0;
5667     }
5668 
5669     /*
5670      * For a cpu that supports both aarch64 and aarch32, we can set bits
5671      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5672      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5673      */
5674     if (!arm_el_is_aa64(env, 2)) {
5675         uint64_t aa32_valid;
5676 
5677         /*
5678          * These bits are up-to-date as of ARMv8.6.
5679          * For HCR, it's easiest to list just the 2 bits that are invalid.
5680          * For HCR2, list those that are valid.
5681          */
5682         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5683         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5684                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5685         ret &= aa32_valid;
5686     }
5687 
5688     if (ret & HCR_TGE) {
5689         /* These bits are up-to-date as of ARMv8.6.  */
5690         if (ret & HCR_E2H) {
5691             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5692                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5693                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5694                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5695                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5696                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5697         } else {
5698             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5699         }
5700         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5701                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5702                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5703                  HCR_TLOR);
5704     }
5705 
5706     return ret;
5707 }
5708 
5709 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5710 {
5711     return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env));
5712 }
5713 
5714 /*
5715  * Corresponds to ARM pseudocode function ELIsInHost().
5716  */
5717 bool el_is_in_host(CPUARMState *env, int el)
5718 {
5719     uint64_t mask;
5720 
5721     /*
5722      * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5723      * Perform the simplest bit tests first, and validate EL2 afterward.
5724      */
5725     if (el & 1) {
5726         return false; /* EL1 or EL3 */
5727     }
5728 
5729     /*
5730      * Note that hcr_write() checks isar_feature_aa64_vh(),
5731      * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5732      */
5733     mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5734     if ((env->cp15.hcr_el2 & mask) != mask) {
5735         return false;
5736     }
5737 
5738     /* TGE and/or E2H set: double check those bits are currently legal. */
5739     return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5740 }
5741 
5742 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5743                        uint64_t value)
5744 {
5745     uint64_t valid_mask = 0;
5746 
5747     /* No features adding bits to HCRX are implemented. */
5748 
5749     /* Clear RES0 bits.  */
5750     env->cp15.hcrx_el2 = value & valid_mask;
5751 }
5752 
5753 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5754                                   bool isread)
5755 {
5756     if (arm_current_el(env) < 3
5757         && arm_feature(env, ARM_FEATURE_EL3)
5758         && !(env->cp15.scr_el3 & SCR_HXEN)) {
5759         return CP_ACCESS_TRAP_EL3;
5760     }
5761     return CP_ACCESS_OK;
5762 }
5763 
5764 static const ARMCPRegInfo hcrx_el2_reginfo = {
5765     .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5766     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5767     .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5768     .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5769 };
5770 
5771 /* Return the effective value of HCRX_EL2.  */
5772 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5773 {
5774     /*
5775      * The bits in this register behave as 0 for all purposes other than
5776      * direct reads of the register if:
5777      *   - EL2 is not enabled in the current security state,
5778      *   - SCR_EL3.HXEn is 0.
5779      */
5780     if (!arm_is_el2_enabled(env)
5781         || (arm_feature(env, ARM_FEATURE_EL3)
5782             && !(env->cp15.scr_el3 & SCR_HXEN))) {
5783         return 0;
5784     }
5785     return env->cp15.hcrx_el2;
5786 }
5787 
5788 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5789                            uint64_t value)
5790 {
5791     /*
5792      * For A-profile AArch32 EL3, if NSACR.CP10
5793      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5794      */
5795     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5796         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5797         uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5798         value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
5799     }
5800     env->cp15.cptr_el[2] = value;
5801 }
5802 
5803 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5804 {
5805     /*
5806      * For A-profile AArch32 EL3, if NSACR.CP10
5807      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5808      */
5809     uint64_t value = env->cp15.cptr_el[2];
5810 
5811     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5812         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5813         value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5814     }
5815     return value;
5816 }
5817 
5818 static const ARMCPRegInfo el2_cp_reginfo[] = {
5819     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5820       .type = ARM_CP_IO,
5821       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5822       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5823       .writefn = hcr_write },
5824     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5825       .type = ARM_CP_ALIAS | ARM_CP_IO,
5826       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5827       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5828       .writefn = hcr_writelow },
5829     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5830       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5831       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5832     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5833       .type = ARM_CP_ALIAS,
5834       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5835       .access = PL2_RW,
5836       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5837     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5838       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5839       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5840     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5841       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5842       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5843     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5844       .type = ARM_CP_ALIAS,
5845       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5846       .access = PL2_RW,
5847       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5848     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5849       .type = ARM_CP_ALIAS,
5850       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5851       .access = PL2_RW,
5852       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5853     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5854       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5855       .access = PL2_RW, .writefn = vbar_write,
5856       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5857       .resetvalue = 0 },
5858     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5859       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5860       .access = PL3_RW, .type = ARM_CP_ALIAS,
5861       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5862     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5863       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5864       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5865       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5866       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5867     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5868       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5869       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5870       .resetvalue = 0 },
5871     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5872       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5873       .access = PL2_RW, .type = ARM_CP_ALIAS,
5874       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5875     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5876       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5877       .access = PL2_RW, .type = ARM_CP_CONST,
5878       .resetvalue = 0 },
5879     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5880     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5881       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5882       .access = PL2_RW, .type = ARM_CP_CONST,
5883       .resetvalue = 0 },
5884     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5885       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5886       .access = PL2_RW, .type = ARM_CP_CONST,
5887       .resetvalue = 0 },
5888     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5889       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5890       .access = PL2_RW, .type = ARM_CP_CONST,
5891       .resetvalue = 0 },
5892     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5893       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5894       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5895       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5896     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5897       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5898       .type = ARM_CP_ALIAS,
5899       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5900       .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
5901     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5902       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5903       .access = PL2_RW,
5904       /* no .writefn needed as this can't cause an ASID change */
5905       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5906     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5907       .cp = 15, .opc1 = 6, .crm = 2,
5908       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5909       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5910       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5911       .writefn = vttbr_write },
5912     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5913       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5914       .access = PL2_RW, .writefn = vttbr_write,
5915       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5916     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5917       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5918       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5919       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5920     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5921       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5922       .access = PL2_RW, .resetvalue = 0,
5923       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5924     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5925       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5926       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5927       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5928     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5929       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5930       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5931     { .name = "TLBIALLNSNH",
5932       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5933       .type = ARM_CP_NO_RAW, .access = PL2_W,
5934       .writefn = tlbiall_nsnh_write },
5935     { .name = "TLBIALLNSNHIS",
5936       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5937       .type = ARM_CP_NO_RAW, .access = PL2_W,
5938       .writefn = tlbiall_nsnh_is_write },
5939     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5940       .type = ARM_CP_NO_RAW, .access = PL2_W,
5941       .writefn = tlbiall_hyp_write },
5942     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5943       .type = ARM_CP_NO_RAW, .access = PL2_W,
5944       .writefn = tlbiall_hyp_is_write },
5945     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5946       .type = ARM_CP_NO_RAW, .access = PL2_W,
5947       .writefn = tlbimva_hyp_write },
5948     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5949       .type = ARM_CP_NO_RAW, .access = PL2_W,
5950       .writefn = tlbimva_hyp_is_write },
5951     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5952       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5953       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5954       .writefn = tlbi_aa64_alle2_write },
5955     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5956       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5957       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5958       .writefn = tlbi_aa64_vae2_write },
5959     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5960       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5961       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5962       .writefn = tlbi_aa64_vae2_write },
5963     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5964       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5965       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5966       .writefn = tlbi_aa64_alle2is_write },
5967     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5968       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5969       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5970       .writefn = tlbi_aa64_vae2is_write },
5971     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5972       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5973       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5974       .writefn = tlbi_aa64_vae2is_write },
5975 #ifndef CONFIG_USER_ONLY
5976     /*
5977      * Unlike the other EL2-related AT operations, these must
5978      * UNDEF from EL3 if EL2 is not implemented, which is why we
5979      * define them here rather than with the rest of the AT ops.
5980      */
5981     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5982       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5983       .access = PL2_W, .accessfn = at_s1e2_access,
5984       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
5985       .writefn = ats_write64 },
5986     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5987       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5988       .access = PL2_W, .accessfn = at_s1e2_access,
5989       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
5990       .writefn = ats_write64 },
5991     /*
5992      * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5993      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5994      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5995      * to behave as if SCR.NS was 1.
5996      */
5997     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5998       .access = PL2_W,
5999       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6000     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6001       .access = PL2_W,
6002       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6003     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6004       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6005       /*
6006        * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6007        * reset values as IMPDEF. We choose to reset to 3 to comply with
6008        * both ARMv7 and ARMv8.
6009        */
6010       .access = PL2_RW, .resetvalue = 3,
6011       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6012     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6013       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6014       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6015       .writefn = gt_cntvoff_write,
6016       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6017     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6018       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6019       .writefn = gt_cntvoff_write,
6020       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6021     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6022       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6023       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6024       .type = ARM_CP_IO, .access = PL2_RW,
6025       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6026     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6027       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6028       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6029       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6030     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6031       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6032       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6033       .resetfn = gt_hyp_timer_reset,
6034       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6035     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6036       .type = ARM_CP_IO,
6037       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6038       .access = PL2_RW,
6039       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6040       .resetvalue = 0,
6041       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6042 #endif
6043     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6044       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6045       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6046       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6047     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6048       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6049       .access = PL2_RW,
6050       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6051     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6052       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6053       .access = PL2_RW,
6054       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6055 };
6056 
6057 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6058     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6059       .type = ARM_CP_ALIAS | ARM_CP_IO,
6060       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6061       .access = PL2_RW,
6062       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6063       .writefn = hcr_writehigh },
6064 };
6065 
6066 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6067                                   bool isread)
6068 {
6069     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6070         return CP_ACCESS_OK;
6071     }
6072     return CP_ACCESS_TRAP_UNCATEGORIZED;
6073 }
6074 
6075 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6076     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6077       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6078       .access = PL2_RW, .accessfn = sel2_access,
6079       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6080     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6081       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6082       .access = PL2_RW, .accessfn = sel2_access,
6083       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6084 };
6085 
6086 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6087                                    bool isread)
6088 {
6089     /*
6090      * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6091      * At Secure EL1 it traps to EL3 or EL2.
6092      */
6093     if (arm_current_el(env) == 3) {
6094         return CP_ACCESS_OK;
6095     }
6096     if (arm_is_secure_below_el3(env)) {
6097         if (env->cp15.scr_el3 & SCR_EEL2) {
6098             return CP_ACCESS_TRAP_EL2;
6099         }
6100         return CP_ACCESS_TRAP_EL3;
6101     }
6102     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6103     if (isread) {
6104         return CP_ACCESS_OK;
6105     }
6106     return CP_ACCESS_TRAP_UNCATEGORIZED;
6107 }
6108 
6109 static const ARMCPRegInfo el3_cp_reginfo[] = {
6110     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6111       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6112       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6113       .resetfn = scr_reset, .writefn = scr_write },
6114     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6115       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6116       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6117       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6118       .writefn = scr_write },
6119     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6120       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6121       .access = PL3_RW, .resetvalue = 0,
6122       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6123     { .name = "SDER",
6124       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6125       .access = PL3_RW, .resetvalue = 0,
6126       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6127     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6128       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6129       .writefn = vbar_write, .resetvalue = 0,
6130       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6131     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6132       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6133       .access = PL3_RW, .resetvalue = 0,
6134       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6135     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6136       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6137       .access = PL3_RW,
6138       /* no .writefn needed as this can't cause an ASID change */
6139       .resetvalue = 0,
6140       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6141     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6142       .type = ARM_CP_ALIAS,
6143       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6144       .access = PL3_RW,
6145       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6146     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6147       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6148       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6149     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6150       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6151       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6152     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6153       .type = ARM_CP_ALIAS,
6154       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6155       .access = PL3_RW,
6156       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6157     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6158       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6159       .access = PL3_RW, .writefn = vbar_write,
6160       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6161       .resetvalue = 0 },
6162     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6163       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6164       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6165       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6166     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6167       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6168       .access = PL3_RW, .resetvalue = 0,
6169       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6170     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6171       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6172       .access = PL3_RW, .type = ARM_CP_CONST,
6173       .resetvalue = 0 },
6174     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6175       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6176       .access = PL3_RW, .type = ARM_CP_CONST,
6177       .resetvalue = 0 },
6178     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6179       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6180       .access = PL3_RW, .type = ARM_CP_CONST,
6181       .resetvalue = 0 },
6182     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6183       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6184       .access = PL3_W, .type = ARM_CP_NO_RAW,
6185       .writefn = tlbi_aa64_alle3is_write },
6186     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6187       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6188       .access = PL3_W, .type = ARM_CP_NO_RAW,
6189       .writefn = tlbi_aa64_vae3is_write },
6190     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6191       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6192       .access = PL3_W, .type = ARM_CP_NO_RAW,
6193       .writefn = tlbi_aa64_vae3is_write },
6194     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6195       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6196       .access = PL3_W, .type = ARM_CP_NO_RAW,
6197       .writefn = tlbi_aa64_alle3_write },
6198     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6199       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6200       .access = PL3_W, .type = ARM_CP_NO_RAW,
6201       .writefn = tlbi_aa64_vae3_write },
6202     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6203       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6204       .access = PL3_W, .type = ARM_CP_NO_RAW,
6205       .writefn = tlbi_aa64_vae3_write },
6206 };
6207 
6208 #ifndef CONFIG_USER_ONLY
6209 /* Test if system register redirection is to occur in the current state.  */
6210 static bool redirect_for_e2h(CPUARMState *env)
6211 {
6212     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6213 }
6214 
6215 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6216 {
6217     CPReadFn *readfn;
6218 
6219     if (redirect_for_e2h(env)) {
6220         /* Switch to the saved EL2 version of the register.  */
6221         ri = ri->opaque;
6222         readfn = ri->readfn;
6223     } else {
6224         readfn = ri->orig_readfn;
6225     }
6226     if (readfn == NULL) {
6227         readfn = raw_read;
6228     }
6229     return readfn(env, ri);
6230 }
6231 
6232 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6233                           uint64_t value)
6234 {
6235     CPWriteFn *writefn;
6236 
6237     if (redirect_for_e2h(env)) {
6238         /* Switch to the saved EL2 version of the register.  */
6239         ri = ri->opaque;
6240         writefn = ri->writefn;
6241     } else {
6242         writefn = ri->orig_writefn;
6243     }
6244     if (writefn == NULL) {
6245         writefn = raw_write;
6246     }
6247     writefn(env, ri, value);
6248 }
6249 
6250 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6251 {
6252     struct E2HAlias {
6253         uint32_t src_key, dst_key, new_key;
6254         const char *src_name, *dst_name, *new_name;
6255         bool (*feature)(const ARMISARegisters *id);
6256     };
6257 
6258 #define K(op0, op1, crn, crm, op2) \
6259     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6260 
6261     static const struct E2HAlias aliases[] = {
6262         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
6263           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6264         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
6265           "CPACR", "CPTR_EL2", "CPACR_EL12" },
6266         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
6267           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6268         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
6269           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6270         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
6271           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6272         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6273           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6274         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6275           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6276         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6277           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6278         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6279           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6280         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6281           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6282         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6283           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6284         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6285           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6286         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6287           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6288         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6289           "VBAR", "VBAR_EL2", "VBAR_EL12" },
6290         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6291           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6292         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6293           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6294 
6295         /*
6296          * Note that redirection of ZCR is mentioned in the description
6297          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6298          * not in the summary table.
6299          */
6300         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6301           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6302         { K(3, 0,  1, 2, 6), K(3, 4,  1, 2, 6), K(3, 5, 1, 2, 6),
6303           "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6304 
6305         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6306           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6307 
6308         { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6309           "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6310           isar_feature_aa64_scxtnum },
6311 
6312         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6313         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6314     };
6315 #undef K
6316 
6317     size_t i;
6318 
6319     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6320         const struct E2HAlias *a = &aliases[i];
6321         ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6322         bool ok;
6323 
6324         if (a->feature && !a->feature(&cpu->isar)) {
6325             continue;
6326         }
6327 
6328         src_reg = g_hash_table_lookup(cpu->cp_regs,
6329                                       (gpointer)(uintptr_t)a->src_key);
6330         dst_reg = g_hash_table_lookup(cpu->cp_regs,
6331                                       (gpointer)(uintptr_t)a->dst_key);
6332         g_assert(src_reg != NULL);
6333         g_assert(dst_reg != NULL);
6334 
6335         /* Cross-compare names to detect typos in the keys.  */
6336         g_assert(strcmp(src_reg->name, a->src_name) == 0);
6337         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6338 
6339         /* None of the core system registers use opaque; we will.  */
6340         g_assert(src_reg->opaque == NULL);
6341 
6342         /* Create alias before redirection so we dup the right data. */
6343         new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6344 
6345         new_reg->name = a->new_name;
6346         new_reg->type |= ARM_CP_ALIAS;
6347         /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6348         new_reg->access &= PL2_RW | PL3_RW;
6349 
6350         ok = g_hash_table_insert(cpu->cp_regs,
6351                                  (gpointer)(uintptr_t)a->new_key, new_reg);
6352         g_assert(ok);
6353 
6354         src_reg->opaque = dst_reg;
6355         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6356         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6357         if (!src_reg->raw_readfn) {
6358             src_reg->raw_readfn = raw_read;
6359         }
6360         if (!src_reg->raw_writefn) {
6361             src_reg->raw_writefn = raw_write;
6362         }
6363         src_reg->readfn = el2_e2h_read;
6364         src_reg->writefn = el2_e2h_write;
6365     }
6366 }
6367 #endif
6368 
6369 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6370                                      bool isread)
6371 {
6372     int cur_el = arm_current_el(env);
6373 
6374     if (cur_el < 2) {
6375         uint64_t hcr = arm_hcr_el2_eff(env);
6376 
6377         if (cur_el == 0) {
6378             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6379                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6380                     return CP_ACCESS_TRAP_EL2;
6381                 }
6382             } else {
6383                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6384                     return CP_ACCESS_TRAP;
6385                 }
6386                 if (hcr & HCR_TID2) {
6387                     return CP_ACCESS_TRAP_EL2;
6388                 }
6389             }
6390         } else if (hcr & HCR_TID2) {
6391             return CP_ACCESS_TRAP_EL2;
6392         }
6393     }
6394 
6395     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6396         return CP_ACCESS_TRAP_EL2;
6397     }
6398 
6399     return CP_ACCESS_OK;
6400 }
6401 
6402 /*
6403  * Check for traps to RAS registers, which are controlled
6404  * by HCR_EL2.TERR and SCR_EL3.TERR.
6405  */
6406 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6407                                   bool isread)
6408 {
6409     int el = arm_current_el(env);
6410 
6411     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6412         return CP_ACCESS_TRAP_EL2;
6413     }
6414     if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6415         return CP_ACCESS_TRAP_EL3;
6416     }
6417     return CP_ACCESS_OK;
6418 }
6419 
6420 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6421 {
6422     int el = arm_current_el(env);
6423 
6424     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6425         return env->cp15.vdisr_el2;
6426     }
6427     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6428         return 0; /* RAZ/WI */
6429     }
6430     return env->cp15.disr_el1;
6431 }
6432 
6433 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6434 {
6435     int el = arm_current_el(env);
6436 
6437     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6438         env->cp15.vdisr_el2 = val;
6439         return;
6440     }
6441     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6442         return; /* RAZ/WI */
6443     }
6444     env->cp15.disr_el1 = val;
6445 }
6446 
6447 /*
6448  * Minimal RAS implementation with no Error Records.
6449  * Which means that all of the Error Record registers:
6450  *   ERXADDR_EL1
6451  *   ERXCTLR_EL1
6452  *   ERXFR_EL1
6453  *   ERXMISC0_EL1
6454  *   ERXMISC1_EL1
6455  *   ERXMISC2_EL1
6456  *   ERXMISC3_EL1
6457  *   ERXPFGCDN_EL1  (RASv1p1)
6458  *   ERXPFGCTL_EL1  (RASv1p1)
6459  *   ERXPFGF_EL1    (RASv1p1)
6460  *   ERXSTATUS_EL1
6461  * and
6462  *   ERRSELR_EL1
6463  * may generate UNDEFINED, which is the effect we get by not
6464  * listing them at all.
6465  */
6466 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6467     { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6468       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6469       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6470       .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6471     { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6472       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6473       .access = PL1_R, .accessfn = access_terr,
6474       .type = ARM_CP_CONST, .resetvalue = 0 },
6475     { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6476       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6477       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6478     { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6479       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6480       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6481 };
6482 
6483 /*
6484  * Return the exception level to which exceptions should be taken
6485  * via SVEAccessTrap.  This excludes the check for whether the exception
6486  * should be routed through AArch64.AdvSIMDFPAccessTrap.  That can easily
6487  * be found by testing 0 < fp_exception_el < sve_exception_el.
6488  *
6489  * C.f. the ARM pseudocode function CheckSVEEnabled.  Note that the
6490  * pseudocode does *not* separate out the FP trap checks, but has them
6491  * all in one function.
6492  */
6493 int sve_exception_el(CPUARMState *env, int el)
6494 {
6495 #ifndef CONFIG_USER_ONLY
6496     if (el <= 1 && !el_is_in_host(env, el)) {
6497         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6498         case 1:
6499             if (el != 0) {
6500                 break;
6501             }
6502             /* fall through */
6503         case 0:
6504         case 2:
6505             return 1;
6506         }
6507     }
6508 
6509     if (el <= 2 && arm_is_el2_enabled(env)) {
6510         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6511         if (env->cp15.hcr_el2 & HCR_E2H) {
6512             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6513             case 1:
6514                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6515                     break;
6516                 }
6517                 /* fall through */
6518             case 0:
6519             case 2:
6520                 return 2;
6521             }
6522         } else {
6523             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6524                 return 2;
6525             }
6526         }
6527     }
6528 
6529     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6530     if (arm_feature(env, ARM_FEATURE_EL3)
6531         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6532         return 3;
6533     }
6534 #endif
6535     return 0;
6536 }
6537 
6538 /*
6539  * Return the exception level to which exceptions should be taken for SME.
6540  * C.f. the ARM pseudocode function CheckSMEAccess.
6541  */
6542 int sme_exception_el(CPUARMState *env, int el)
6543 {
6544 #ifndef CONFIG_USER_ONLY
6545     if (el <= 1 && !el_is_in_host(env, el)) {
6546         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6547         case 1:
6548             if (el != 0) {
6549                 break;
6550             }
6551             /* fall through */
6552         case 0:
6553         case 2:
6554             return 1;
6555         }
6556     }
6557 
6558     if (el <= 2 && arm_is_el2_enabled(env)) {
6559         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6560         if (env->cp15.hcr_el2 & HCR_E2H) {
6561             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6562             case 1:
6563                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6564                     break;
6565                 }
6566                 /* fall through */
6567             case 0:
6568             case 2:
6569                 return 2;
6570             }
6571         } else {
6572             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6573                 return 2;
6574             }
6575         }
6576     }
6577 
6578     /* CPTR_EL3.  Since ESM is negative we must check for EL3.  */
6579     if (arm_feature(env, ARM_FEATURE_EL3)
6580         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6581         return 3;
6582     }
6583 #endif
6584     return 0;
6585 }
6586 
6587 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */
6588 static bool sme_fa64(CPUARMState *env, int el)
6589 {
6590     if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) {
6591         return false;
6592     }
6593 
6594     if (el <= 1 && !el_is_in_host(env, el)) {
6595         if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) {
6596             return false;
6597         }
6598     }
6599     if (el <= 2 && arm_is_el2_enabled(env)) {
6600         if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) {
6601             return false;
6602         }
6603     }
6604     if (arm_feature(env, ARM_FEATURE_EL3)) {
6605         if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) {
6606             return false;
6607         }
6608     }
6609 
6610     return true;
6611 }
6612 
6613 /*
6614  * Given that SVE is enabled, return the vector length for EL.
6615  */
6616 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6617 {
6618     ARMCPU *cpu = env_archcpu(env);
6619     uint64_t *cr = env->vfp.zcr_el;
6620     uint32_t map = cpu->sve_vq.map;
6621     uint32_t len = ARM_MAX_VQ - 1;
6622 
6623     if (sm) {
6624         cr = env->vfp.smcr_el;
6625         map = cpu->sme_vq.map;
6626     }
6627 
6628     if (el <= 1 && !el_is_in_host(env, el)) {
6629         len = MIN(len, 0xf & (uint32_t)cr[1]);
6630     }
6631     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6632         len = MIN(len, 0xf & (uint32_t)cr[2]);
6633     }
6634     if (arm_feature(env, ARM_FEATURE_EL3)) {
6635         len = MIN(len, 0xf & (uint32_t)cr[3]);
6636     }
6637 
6638     map &= MAKE_64BIT_MASK(0, len + 1);
6639     if (map != 0) {
6640         return 31 - clz32(map);
6641     }
6642 
6643     /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6644     assert(sm);
6645     return ctz32(cpu->sme_vq.map);
6646 }
6647 
6648 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6649 {
6650     return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6651 }
6652 
6653 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6654                       uint64_t value)
6655 {
6656     int cur_el = arm_current_el(env);
6657     int old_len = sve_vqm1_for_el(env, cur_el);
6658     int new_len;
6659 
6660     /* Bits other than [3:0] are RAZ/WI.  */
6661     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6662     raw_write(env, ri, value & 0xf);
6663 
6664     /*
6665      * Because we arrived here, we know both FP and SVE are enabled;
6666      * otherwise we would have trapped access to the ZCR_ELn register.
6667      */
6668     new_len = sve_vqm1_for_el(env, cur_el);
6669     if (new_len < old_len) {
6670         aarch64_sve_narrow_vq(env, new_len + 1);
6671     }
6672 }
6673 
6674 static const ARMCPRegInfo zcr_reginfo[] = {
6675     { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6676       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6677       .access = PL1_RW, .type = ARM_CP_SVE,
6678       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6679       .writefn = zcr_write, .raw_writefn = raw_write },
6680     { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6681       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6682       .access = PL2_RW, .type = ARM_CP_SVE,
6683       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6684       .writefn = zcr_write, .raw_writefn = raw_write },
6685     { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6686       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6687       .access = PL3_RW, .type = ARM_CP_SVE,
6688       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6689       .writefn = zcr_write, .raw_writefn = raw_write },
6690 };
6691 
6692 #ifdef TARGET_AARCH64
6693 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6694                                     bool isread)
6695 {
6696     int el = arm_current_el(env);
6697 
6698     if (el == 0) {
6699         uint64_t sctlr = arm_sctlr(env, el);
6700         if (!(sctlr & SCTLR_EnTP2)) {
6701             return CP_ACCESS_TRAP;
6702         }
6703     }
6704     /* TODO: FEAT_FGT */
6705     if (el < 3
6706         && arm_feature(env, ARM_FEATURE_EL3)
6707         && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6708         return CP_ACCESS_TRAP_EL3;
6709     }
6710     return CP_ACCESS_OK;
6711 }
6712 
6713 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6714                                  bool isread)
6715 {
6716     /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6717     if (arm_current_el(env) < 3
6718         && arm_feature(env, ARM_FEATURE_EL3)
6719         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6720         return CP_ACCESS_TRAP_EL3;
6721     }
6722     return CP_ACCESS_OK;
6723 }
6724 
6725 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6726                        uint64_t value)
6727 {
6728     helper_set_pstate_sm(env, FIELD_EX64(value, SVCR, SM));
6729     helper_set_pstate_za(env, FIELD_EX64(value, SVCR, ZA));
6730     arm_rebuild_hflags(env);
6731 }
6732 
6733 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6734                        uint64_t value)
6735 {
6736     int cur_el = arm_current_el(env);
6737     int old_len = sve_vqm1_for_el(env, cur_el);
6738     int new_len;
6739 
6740     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6741     value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6742     raw_write(env, ri, value);
6743 
6744     /*
6745      * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
6746      * when SVL is widened (old values kept, or zeros).  Choose to keep the
6747      * current values for simplicity.  But for QEMU internals, we must still
6748      * apply the narrower SVL to the Zregs and Pregs -- see the comment
6749      * above aarch64_sve_narrow_vq.
6750      */
6751     new_len = sve_vqm1_for_el(env, cur_el);
6752     if (new_len < old_len) {
6753         aarch64_sve_narrow_vq(env, new_len + 1);
6754     }
6755 }
6756 
6757 static const ARMCPRegInfo sme_reginfo[] = {
6758     { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
6759       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
6760       .access = PL0_RW, .accessfn = access_tpidr2,
6761       .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
6762     { .name = "SVCR", .state = ARM_CP_STATE_AA64,
6763       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
6764       .access = PL0_RW, .type = ARM_CP_SME,
6765       .fieldoffset = offsetof(CPUARMState, svcr),
6766       .writefn = svcr_write, .raw_writefn = raw_write },
6767     { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
6768       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
6769       .access = PL1_RW, .type = ARM_CP_SME,
6770       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
6771       .writefn = smcr_write, .raw_writefn = raw_write },
6772     { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
6773       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
6774       .access = PL2_RW, .type = ARM_CP_SME,
6775       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
6776       .writefn = smcr_write, .raw_writefn = raw_write },
6777     { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
6778       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
6779       .access = PL3_RW, .type = ARM_CP_SME,
6780       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
6781       .writefn = smcr_write, .raw_writefn = raw_write },
6782     { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
6783       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
6784       .access = PL1_R, .accessfn = access_aa64_tid1,
6785       /*
6786        * IMPLEMENTOR = 0 (software)
6787        * REVISION    = 0 (implementation defined)
6788        * SMPS        = 0 (no streaming execution priority in QEMU)
6789        * AFFINITY    = 0 (streaming sve mode not shared with other PEs)
6790        */
6791       .type = ARM_CP_CONST, .resetvalue = 0, },
6792     /*
6793      * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
6794      */
6795     { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
6796       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
6797       .access = PL1_RW, .accessfn = access_esm,
6798       .type = ARM_CP_CONST, .resetvalue = 0 },
6799     { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
6800       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
6801       .access = PL2_RW, .accessfn = access_esm,
6802       .type = ARM_CP_CONST, .resetvalue = 0 },
6803 };
6804 #endif /* TARGET_AARCH64 */
6805 
6806 static void define_pmu_regs(ARMCPU *cpu)
6807 {
6808     /*
6809      * v7 performance monitor control register: same implementor
6810      * field as main ID register, and we implement four counters in
6811      * addition to the cycle count register.
6812      */
6813     unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
6814     ARMCPRegInfo pmcr = {
6815         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6816         .access = PL0_RW,
6817         .type = ARM_CP_IO | ARM_CP_ALIAS,
6818         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6819         .accessfn = pmreg_access, .writefn = pmcr_write,
6820         .raw_writefn = raw_write,
6821     };
6822     ARMCPRegInfo pmcr64 = {
6823         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6824         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6825         .access = PL0_RW, .accessfn = pmreg_access,
6826         .type = ARM_CP_IO,
6827         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6828         .resetvalue = cpu->isar.reset_pmcr_el0,
6829         .writefn = pmcr_write, .raw_writefn = raw_write,
6830     };
6831 
6832     define_one_arm_cp_reg(cpu, &pmcr);
6833     define_one_arm_cp_reg(cpu, &pmcr64);
6834     for (i = 0; i < pmcrn; i++) {
6835         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6836         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6837         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6838         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6839         ARMCPRegInfo pmev_regs[] = {
6840             { .name = pmevcntr_name, .cp = 15, .crn = 14,
6841               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6842               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6843               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6844               .accessfn = pmreg_access_xevcntr },
6845             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6846               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6847               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
6848               .type = ARM_CP_IO,
6849               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6850               .raw_readfn = pmevcntr_rawread,
6851               .raw_writefn = pmevcntr_rawwrite },
6852             { .name = pmevtyper_name, .cp = 15, .crn = 14,
6853               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6854               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6855               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6856               .accessfn = pmreg_access },
6857             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6858               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6859               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6860               .type = ARM_CP_IO,
6861               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6862               .raw_writefn = pmevtyper_rawwrite },
6863         };
6864         define_arm_cp_regs(cpu, pmev_regs);
6865         g_free(pmevcntr_name);
6866         g_free(pmevcntr_el0_name);
6867         g_free(pmevtyper_name);
6868         g_free(pmevtyper_el0_name);
6869     }
6870     if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
6871         ARMCPRegInfo v81_pmu_regs[] = {
6872             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6873               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6874               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6875               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6876             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6877               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6878               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6879               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6880         };
6881         define_arm_cp_regs(cpu, v81_pmu_regs);
6882     }
6883     if (cpu_isar_feature(any_pmuv3p4, cpu)) {
6884         static const ARMCPRegInfo v84_pmmir = {
6885             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6886             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6887             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6888             .resetvalue = 0
6889         };
6890         define_one_arm_cp_reg(cpu, &v84_pmmir);
6891     }
6892 }
6893 
6894 /*
6895  * We don't know until after realize whether there's a GICv3
6896  * attached, and that is what registers the gicv3 sysregs.
6897  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6898  * at runtime.
6899  */
6900 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6901 {
6902     ARMCPU *cpu = env_archcpu(env);
6903     uint64_t pfr1 = cpu->isar.id_pfr1;
6904 
6905     if (env->gicv3state) {
6906         pfr1 |= 1 << 28;
6907     }
6908     return pfr1;
6909 }
6910 
6911 #ifndef CONFIG_USER_ONLY
6912 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6913 {
6914     ARMCPU *cpu = env_archcpu(env);
6915     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6916 
6917     if (env->gicv3state) {
6918         pfr0 |= 1 << 24;
6919     }
6920     return pfr0;
6921 }
6922 #endif
6923 
6924 /*
6925  * Shared logic between LORID and the rest of the LOR* registers.
6926  * Secure state exclusion has already been dealt with.
6927  */
6928 static CPAccessResult access_lor_ns(CPUARMState *env,
6929                                     const ARMCPRegInfo *ri, bool isread)
6930 {
6931     int el = arm_current_el(env);
6932 
6933     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6934         return CP_ACCESS_TRAP_EL2;
6935     }
6936     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6937         return CP_ACCESS_TRAP_EL3;
6938     }
6939     return CP_ACCESS_OK;
6940 }
6941 
6942 static CPAccessResult access_lor_other(CPUARMState *env,
6943                                        const ARMCPRegInfo *ri, bool isread)
6944 {
6945     if (arm_is_secure_below_el3(env)) {
6946         /* Access denied in secure mode.  */
6947         return CP_ACCESS_TRAP;
6948     }
6949     return access_lor_ns(env, ri, isread);
6950 }
6951 
6952 /*
6953  * A trivial implementation of ARMv8.1-LOR leaves all of these
6954  * registers fixed at 0, which indicates that there are zero
6955  * supported Limited Ordering regions.
6956  */
6957 static const ARMCPRegInfo lor_reginfo[] = {
6958     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6959       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6960       .access = PL1_RW, .accessfn = access_lor_other,
6961       .type = ARM_CP_CONST, .resetvalue = 0 },
6962     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6963       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6964       .access = PL1_RW, .accessfn = access_lor_other,
6965       .type = ARM_CP_CONST, .resetvalue = 0 },
6966     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6967       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6968       .access = PL1_RW, .accessfn = access_lor_other,
6969       .type = ARM_CP_CONST, .resetvalue = 0 },
6970     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6971       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6972       .access = PL1_RW, .accessfn = access_lor_other,
6973       .type = ARM_CP_CONST, .resetvalue = 0 },
6974     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6975       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6976       .access = PL1_R, .accessfn = access_lor_ns,
6977       .type = ARM_CP_CONST, .resetvalue = 0 },
6978 };
6979 
6980 #ifdef TARGET_AARCH64
6981 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6982                                    bool isread)
6983 {
6984     int el = arm_current_el(env);
6985 
6986     if (el < 2 &&
6987         arm_is_el2_enabled(env) &&
6988         !(arm_hcr_el2_eff(env) & HCR_APK)) {
6989         return CP_ACCESS_TRAP_EL2;
6990     }
6991     if (el < 3 &&
6992         arm_feature(env, ARM_FEATURE_EL3) &&
6993         !(env->cp15.scr_el3 & SCR_APK)) {
6994         return CP_ACCESS_TRAP_EL3;
6995     }
6996     return CP_ACCESS_OK;
6997 }
6998 
6999 static const ARMCPRegInfo pauth_reginfo[] = {
7000     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7001       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7002       .access = PL1_RW, .accessfn = access_pauth,
7003       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7004     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7005       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7006       .access = PL1_RW, .accessfn = access_pauth,
7007       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7008     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7009       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7010       .access = PL1_RW, .accessfn = access_pauth,
7011       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7012     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7013       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7014       .access = PL1_RW, .accessfn = access_pauth,
7015       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7016     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7017       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7018       .access = PL1_RW, .accessfn = access_pauth,
7019       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7020     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7021       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7022       .access = PL1_RW, .accessfn = access_pauth,
7023       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7024     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7025       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7026       .access = PL1_RW, .accessfn = access_pauth,
7027       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7028     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7029       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7030       .access = PL1_RW, .accessfn = access_pauth,
7031       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7032     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7033       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7034       .access = PL1_RW, .accessfn = access_pauth,
7035       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7036     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7037       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7038       .access = PL1_RW, .accessfn = access_pauth,
7039       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7040 };
7041 
7042 static const ARMCPRegInfo tlbirange_reginfo[] = {
7043     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7044       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7045       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7046       .writefn = tlbi_aa64_rvae1is_write },
7047     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7048       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7049       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7050       .writefn = tlbi_aa64_rvae1is_write },
7051    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7052       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7053       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7054       .writefn = tlbi_aa64_rvae1is_write },
7055     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7056       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7057       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7058       .writefn = tlbi_aa64_rvae1is_write },
7059     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7060       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7061       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7062       .writefn = tlbi_aa64_rvae1is_write },
7063     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7064       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7065       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7066       .writefn = tlbi_aa64_rvae1is_write },
7067    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7068       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7069       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7070       .writefn = tlbi_aa64_rvae1is_write },
7071     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7072       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7073       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7074       .writefn = tlbi_aa64_rvae1is_write },
7075     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7076       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7077       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7078       .writefn = tlbi_aa64_rvae1_write },
7079     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7080       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7081       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7082       .writefn = tlbi_aa64_rvae1_write },
7083    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7084       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7085       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7086       .writefn = tlbi_aa64_rvae1_write },
7087     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7088       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7089       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7090       .writefn = tlbi_aa64_rvae1_write },
7091     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7092       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7093       .access = PL2_W, .type = ARM_CP_NO_RAW,
7094       .writefn = tlbi_aa64_ripas2e1is_write },
7095     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7096       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7097       .access = PL2_W, .type = ARM_CP_NO_RAW,
7098       .writefn = tlbi_aa64_ripas2e1is_write },
7099     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7100       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7101       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7102       .writefn = tlbi_aa64_rvae2is_write },
7103    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7104       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7105       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7106       .writefn = tlbi_aa64_rvae2is_write },
7107     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7108       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7109       .access = PL2_W, .type = ARM_CP_NO_RAW,
7110       .writefn = tlbi_aa64_ripas2e1_write },
7111     { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7112       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7113       .access = PL2_W, .type = ARM_CP_NO_RAW,
7114       .writefn = tlbi_aa64_ripas2e1_write },
7115    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7116       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7117       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7118       .writefn = tlbi_aa64_rvae2is_write },
7119    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7120       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7121       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7122       .writefn = tlbi_aa64_rvae2is_write },
7123     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7124       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7125       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7126       .writefn = tlbi_aa64_rvae2_write },
7127    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7128       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7129       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7130       .writefn = tlbi_aa64_rvae2_write },
7131    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7132       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7133       .access = PL3_W, .type = ARM_CP_NO_RAW,
7134       .writefn = tlbi_aa64_rvae3is_write },
7135    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7136       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7137       .access = PL3_W, .type = ARM_CP_NO_RAW,
7138       .writefn = tlbi_aa64_rvae3is_write },
7139    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7140       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7141       .access = PL3_W, .type = ARM_CP_NO_RAW,
7142       .writefn = tlbi_aa64_rvae3is_write },
7143    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7144       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7145       .access = PL3_W, .type = ARM_CP_NO_RAW,
7146       .writefn = tlbi_aa64_rvae3is_write },
7147    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7148       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7149       .access = PL3_W, .type = ARM_CP_NO_RAW,
7150       .writefn = tlbi_aa64_rvae3_write },
7151    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7152       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7153       .access = PL3_W, .type = ARM_CP_NO_RAW,
7154       .writefn = tlbi_aa64_rvae3_write },
7155 };
7156 
7157 static const ARMCPRegInfo tlbios_reginfo[] = {
7158     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7159       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7160       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7161       .writefn = tlbi_aa64_vmalle1is_write },
7162     { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7163       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7164       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7165       .writefn = tlbi_aa64_vae1is_write },
7166     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7167       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7168       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7169       .writefn = tlbi_aa64_vmalle1is_write },
7170     { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7171       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7172       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7173       .writefn = tlbi_aa64_vae1is_write },
7174     { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7175       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7176       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7177       .writefn = tlbi_aa64_vae1is_write },
7178     { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7179       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7180       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7181       .writefn = tlbi_aa64_vae1is_write },
7182     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7183       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7184       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7185       .writefn = tlbi_aa64_alle2is_write },
7186     { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7187       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7188       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7189       .writefn = tlbi_aa64_vae2is_write },
7190    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7191       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7192       .access = PL2_W, .type = ARM_CP_NO_RAW,
7193       .writefn = tlbi_aa64_alle1is_write },
7194     { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7195       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7196       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7197       .writefn = tlbi_aa64_vae2is_write },
7198     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7199       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7200       .access = PL2_W, .type = ARM_CP_NO_RAW,
7201       .writefn = tlbi_aa64_alle1is_write },
7202     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7203       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7204       .access = PL2_W, .type = ARM_CP_NOP },
7205     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7206       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7207       .access = PL2_W, .type = ARM_CP_NOP },
7208     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7209       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7210       .access = PL2_W, .type = ARM_CP_NOP },
7211     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7212       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7213       .access = PL2_W, .type = ARM_CP_NOP },
7214     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7215       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7216       .access = PL3_W, .type = ARM_CP_NO_RAW,
7217       .writefn = tlbi_aa64_alle3is_write },
7218     { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7219       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7220       .access = PL3_W, .type = ARM_CP_NO_RAW,
7221       .writefn = tlbi_aa64_vae3is_write },
7222     { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7223       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7224       .access = PL3_W, .type = ARM_CP_NO_RAW,
7225       .writefn = tlbi_aa64_vae3is_write },
7226 };
7227 
7228 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7229 {
7230     Error *err = NULL;
7231     uint64_t ret;
7232 
7233     /* Success sets NZCV = 0000.  */
7234     env->NF = env->CF = env->VF = 0, env->ZF = 1;
7235 
7236     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7237         /*
7238          * ??? Failed, for unknown reasons in the crypto subsystem.
7239          * The best we can do is log the reason and return the
7240          * timed-out indication to the guest.  There is no reason
7241          * we know to expect this failure to be transitory, so the
7242          * guest may well hang retrying the operation.
7243          */
7244         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7245                       ri->name, error_get_pretty(err));
7246         error_free(err);
7247 
7248         env->ZF = 0; /* NZCF = 0100 */
7249         return 0;
7250     }
7251     return ret;
7252 }
7253 
7254 /* We do not support re-seeding, so the two registers operate the same.  */
7255 static const ARMCPRegInfo rndr_reginfo[] = {
7256     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7257       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7258       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7259       .access = PL0_R, .readfn = rndr_readfn },
7260     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7261       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7262       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7263       .access = PL0_R, .readfn = rndr_readfn },
7264 };
7265 
7266 #ifndef CONFIG_USER_ONLY
7267 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7268                           uint64_t value)
7269 {
7270     ARMCPU *cpu = env_archcpu(env);
7271     /* CTR_EL0 System register -> DminLine, bits [19:16] */
7272     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7273     uint64_t vaddr_in = (uint64_t) value;
7274     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7275     void *haddr;
7276     int mem_idx = cpu_mmu_index(env, false);
7277 
7278     /* This won't be crossing page boundaries */
7279     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7280     if (haddr) {
7281 
7282         ram_addr_t offset;
7283         MemoryRegion *mr;
7284 
7285         /* RCU lock is already being held */
7286         mr = memory_region_from_host(haddr, &offset);
7287 
7288         if (mr) {
7289             memory_region_writeback(mr, offset, dline_size);
7290         }
7291     }
7292 }
7293 
7294 static const ARMCPRegInfo dcpop_reg[] = {
7295     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7296       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7297       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7298       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7299 };
7300 
7301 static const ARMCPRegInfo dcpodp_reg[] = {
7302     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7303       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7304       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7305       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7306 };
7307 #endif /*CONFIG_USER_ONLY*/
7308 
7309 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7310                                        bool isread)
7311 {
7312     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7313         return CP_ACCESS_TRAP_EL2;
7314     }
7315 
7316     return CP_ACCESS_OK;
7317 }
7318 
7319 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7320                                  bool isread)
7321 {
7322     int el = arm_current_el(env);
7323 
7324     if (el < 2 && arm_is_el2_enabled(env)) {
7325         uint64_t hcr = arm_hcr_el2_eff(env);
7326         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7327             return CP_ACCESS_TRAP_EL2;
7328         }
7329     }
7330     if (el < 3 &&
7331         arm_feature(env, ARM_FEATURE_EL3) &&
7332         !(env->cp15.scr_el3 & SCR_ATA)) {
7333         return CP_ACCESS_TRAP_EL3;
7334     }
7335     return CP_ACCESS_OK;
7336 }
7337 
7338 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7339 {
7340     return env->pstate & PSTATE_TCO;
7341 }
7342 
7343 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7344 {
7345     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7346 }
7347 
7348 static const ARMCPRegInfo mte_reginfo[] = {
7349     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7350       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7351       .access = PL1_RW, .accessfn = access_mte,
7352       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7353     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7354       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7355       .access = PL1_RW, .accessfn = access_mte,
7356       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7357     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7358       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7359       .access = PL2_RW, .accessfn = access_mte,
7360       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7361     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7362       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7363       .access = PL3_RW,
7364       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7365     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7366       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7367       .access = PL1_RW, .accessfn = access_mte,
7368       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7369     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7370       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7371       .access = PL1_RW, .accessfn = access_mte,
7372       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7373     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7374       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7375       .access = PL1_R, .accessfn = access_aa64_tid5,
7376       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7377     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7378       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7379       .type = ARM_CP_NO_RAW,
7380       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7381     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7382       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7383       .type = ARM_CP_NOP, .access = PL1_W,
7384       .accessfn = aa64_cacheop_poc_access },
7385     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7386       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7387       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7388     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7389       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7390       .type = ARM_CP_NOP, .access = PL1_W,
7391       .accessfn = aa64_cacheop_poc_access },
7392     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7393       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7394       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7395     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7396       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7397       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7398     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7399       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7400       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7401     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7402       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7403       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7404     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7405       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7406       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7407 };
7408 
7409 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7410     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7411       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7412       .type = ARM_CP_CONST, .access = PL0_RW, },
7413 };
7414 
7415 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7416     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7417       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7418       .type = ARM_CP_NOP, .access = PL0_W,
7419       .accessfn = aa64_cacheop_poc_access },
7420     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7421       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7422       .type = ARM_CP_NOP, .access = PL0_W,
7423       .accessfn = aa64_cacheop_poc_access },
7424     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7425       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7426       .type = ARM_CP_NOP, .access = PL0_W,
7427       .accessfn = aa64_cacheop_poc_access },
7428     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7429       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7430       .type = ARM_CP_NOP, .access = PL0_W,
7431       .accessfn = aa64_cacheop_poc_access },
7432     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7433       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7434       .type = ARM_CP_NOP, .access = PL0_W,
7435       .accessfn = aa64_cacheop_poc_access },
7436     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7437       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7438       .type = ARM_CP_NOP, .access = PL0_W,
7439       .accessfn = aa64_cacheop_poc_access },
7440     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7441       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7442       .type = ARM_CP_NOP, .access = PL0_W,
7443       .accessfn = aa64_cacheop_poc_access },
7444     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7445       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7446       .type = ARM_CP_NOP, .access = PL0_W,
7447       .accessfn = aa64_cacheop_poc_access },
7448     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7449       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7450       .access = PL0_W, .type = ARM_CP_DC_GVA,
7451 #ifndef CONFIG_USER_ONLY
7452       /* Avoid overhead of an access check that always passes in user-mode */
7453       .accessfn = aa64_zva_access,
7454 #endif
7455     },
7456     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7457       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7458       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7459 #ifndef CONFIG_USER_ONLY
7460       /* Avoid overhead of an access check that always passes in user-mode */
7461       .accessfn = aa64_zva_access,
7462 #endif
7463     },
7464 };
7465 
7466 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7467                                      bool isread)
7468 {
7469     uint64_t hcr = arm_hcr_el2_eff(env);
7470     int el = arm_current_el(env);
7471 
7472     if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7473         if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7474             if (hcr & HCR_TGE) {
7475                 return CP_ACCESS_TRAP_EL2;
7476             }
7477             return CP_ACCESS_TRAP;
7478         }
7479     } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7480         return CP_ACCESS_TRAP_EL2;
7481     }
7482     if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7483         return CP_ACCESS_TRAP_EL2;
7484     }
7485     if (el < 3
7486         && arm_feature(env, ARM_FEATURE_EL3)
7487         && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7488         return CP_ACCESS_TRAP_EL3;
7489     }
7490     return CP_ACCESS_OK;
7491 }
7492 
7493 static const ARMCPRegInfo scxtnum_reginfo[] = {
7494     { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7495       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7496       .access = PL0_RW, .accessfn = access_scxtnum,
7497       .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7498     { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7499       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7500       .access = PL1_RW, .accessfn = access_scxtnum,
7501       .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7502     { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7503       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7504       .access = PL2_RW, .accessfn = access_scxtnum,
7505       .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7506     { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7507       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7508       .access = PL3_RW,
7509       .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7510 };
7511 #endif /* TARGET_AARCH64 */
7512 
7513 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7514                                      bool isread)
7515 {
7516     int el = arm_current_el(env);
7517 
7518     if (el == 0) {
7519         uint64_t sctlr = arm_sctlr(env, el);
7520         if (!(sctlr & SCTLR_EnRCTX)) {
7521             return CP_ACCESS_TRAP;
7522         }
7523     } else if (el == 1) {
7524         uint64_t hcr = arm_hcr_el2_eff(env);
7525         if (hcr & HCR_NV) {
7526             return CP_ACCESS_TRAP_EL2;
7527         }
7528     }
7529     return CP_ACCESS_OK;
7530 }
7531 
7532 static const ARMCPRegInfo predinv_reginfo[] = {
7533     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7534       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7535       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7536     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7537       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7538       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7539     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7540       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7541       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7542     /*
7543      * Note the AArch32 opcodes have a different OPC1.
7544      */
7545     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7546       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7547       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7548     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7549       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7550       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7551     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7552       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7553       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7554 };
7555 
7556 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7557 {
7558     /* Read the high 32 bits of the current CCSIDR */
7559     return extract64(ccsidr_read(env, ri), 32, 32);
7560 }
7561 
7562 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7563     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7564       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7565       .access = PL1_R,
7566       .accessfn = access_tid4,
7567       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7568 };
7569 
7570 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7571                                        bool isread)
7572 {
7573     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7574         return CP_ACCESS_TRAP_EL2;
7575     }
7576 
7577     return CP_ACCESS_OK;
7578 }
7579 
7580 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7581                                        bool isread)
7582 {
7583     if (arm_feature(env, ARM_FEATURE_V8)) {
7584         return access_aa64_tid3(env, ri, isread);
7585     }
7586 
7587     return CP_ACCESS_OK;
7588 }
7589 
7590 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7591                                      bool isread)
7592 {
7593     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7594         return CP_ACCESS_TRAP_EL2;
7595     }
7596 
7597     return CP_ACCESS_OK;
7598 }
7599 
7600 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7601                                         const ARMCPRegInfo *ri, bool isread)
7602 {
7603     /*
7604      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7605      * in v7A, not in v8A.
7606      */
7607     if (!arm_feature(env, ARM_FEATURE_V8) &&
7608         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7609         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7610         return CP_ACCESS_TRAP_EL2;
7611     }
7612     return CP_ACCESS_OK;
7613 }
7614 
7615 static const ARMCPRegInfo jazelle_regs[] = {
7616     { .name = "JIDR",
7617       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7618       .access = PL1_R, .accessfn = access_jazelle,
7619       .type = ARM_CP_CONST, .resetvalue = 0 },
7620     { .name = "JOSCR",
7621       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7622       .accessfn = access_joscr_jmcr,
7623       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7624     { .name = "JMCR",
7625       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7626       .accessfn = access_joscr_jmcr,
7627       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7628 };
7629 
7630 static const ARMCPRegInfo contextidr_el2 = {
7631     .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7632     .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7633     .access = PL2_RW,
7634     .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
7635 };
7636 
7637 static const ARMCPRegInfo vhe_reginfo[] = {
7638     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7639       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7640       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7641       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7642 #ifndef CONFIG_USER_ONLY
7643     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7644       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7645       .fieldoffset =
7646         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7647       .type = ARM_CP_IO, .access = PL2_RW,
7648       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7649     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7650       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7651       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7652       .resetfn = gt_hv_timer_reset,
7653       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7654     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7655       .type = ARM_CP_IO,
7656       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7657       .access = PL2_RW,
7658       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7659       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7660     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7661       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7662       .type = ARM_CP_IO | ARM_CP_ALIAS,
7663       .access = PL2_RW, .accessfn = e2h_access,
7664       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7665       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7666     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7667       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7668       .type = ARM_CP_IO | ARM_CP_ALIAS,
7669       .access = PL2_RW, .accessfn = e2h_access,
7670       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7671       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7672     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7673       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7674       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7675       .access = PL2_RW, .accessfn = e2h_access,
7676       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7677     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7678       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7679       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7680       .access = PL2_RW, .accessfn = e2h_access,
7681       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7682     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7683       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7684       .type = ARM_CP_IO | ARM_CP_ALIAS,
7685       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7686       .access = PL2_RW, .accessfn = e2h_access,
7687       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7688     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7689       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7690       .type = ARM_CP_IO | ARM_CP_ALIAS,
7691       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7692       .access = PL2_RW, .accessfn = e2h_access,
7693       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7694 #endif
7695 };
7696 
7697 #ifndef CONFIG_USER_ONLY
7698 static const ARMCPRegInfo ats1e1_reginfo[] = {
7699     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7700       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7701       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7702       .writefn = ats_write64 },
7703     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7704       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7705       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7706       .writefn = ats_write64 },
7707 };
7708 
7709 static const ARMCPRegInfo ats1cp_reginfo[] = {
7710     { .name = "ATS1CPRP",
7711       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7712       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7713       .writefn = ats_write },
7714     { .name = "ATS1CPWP",
7715       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7716       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7717       .writefn = ats_write },
7718 };
7719 #endif
7720 
7721 /*
7722  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7723  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7724  * is non-zero, which is never for ARMv7, optionally in ARMv8
7725  * and mandatorily for ARMv8.2 and up.
7726  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7727  * implementation is RAZ/WI we can ignore this detail, as we
7728  * do for ACTLR.
7729  */
7730 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7731     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7732       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7733       .access = PL1_RW, .accessfn = access_tacr,
7734       .type = ARM_CP_CONST, .resetvalue = 0 },
7735     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7736       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7737       .access = PL2_RW, .type = ARM_CP_CONST,
7738       .resetvalue = 0 },
7739 };
7740 
7741 void register_cp_regs_for_features(ARMCPU *cpu)
7742 {
7743     /* Register all the coprocessor registers based on feature bits */
7744     CPUARMState *env = &cpu->env;
7745     if (arm_feature(env, ARM_FEATURE_M)) {
7746         /* M profile has no coprocessor registers */
7747         return;
7748     }
7749 
7750     define_arm_cp_regs(cpu, cp_reginfo);
7751     if (!arm_feature(env, ARM_FEATURE_V8)) {
7752         /*
7753          * Must go early as it is full of wildcards that may be
7754          * overridden by later definitions.
7755          */
7756         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7757     }
7758 
7759     if (arm_feature(env, ARM_FEATURE_V6)) {
7760         /* The ID registers all have impdef reset values */
7761         ARMCPRegInfo v6_idregs[] = {
7762             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7763               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7764               .access = PL1_R, .type = ARM_CP_CONST,
7765               .accessfn = access_aa32_tid3,
7766               .resetvalue = cpu->isar.id_pfr0 },
7767             /*
7768              * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7769              * the value of the GIC field until after we define these regs.
7770              */
7771             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7772               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7773               .access = PL1_R, .type = ARM_CP_NO_RAW,
7774               .accessfn = access_aa32_tid3,
7775               .readfn = id_pfr1_read,
7776               .writefn = arm_cp_write_ignore },
7777             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7778               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7779               .access = PL1_R, .type = ARM_CP_CONST,
7780               .accessfn = access_aa32_tid3,
7781               .resetvalue = cpu->isar.id_dfr0 },
7782             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7783               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7784               .access = PL1_R, .type = ARM_CP_CONST,
7785               .accessfn = access_aa32_tid3,
7786               .resetvalue = cpu->id_afr0 },
7787             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7788               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7789               .access = PL1_R, .type = ARM_CP_CONST,
7790               .accessfn = access_aa32_tid3,
7791               .resetvalue = cpu->isar.id_mmfr0 },
7792             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7793               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7794               .access = PL1_R, .type = ARM_CP_CONST,
7795               .accessfn = access_aa32_tid3,
7796               .resetvalue = cpu->isar.id_mmfr1 },
7797             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7798               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7799               .access = PL1_R, .type = ARM_CP_CONST,
7800               .accessfn = access_aa32_tid3,
7801               .resetvalue = cpu->isar.id_mmfr2 },
7802             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7803               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7804               .access = PL1_R, .type = ARM_CP_CONST,
7805               .accessfn = access_aa32_tid3,
7806               .resetvalue = cpu->isar.id_mmfr3 },
7807             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7808               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7809               .access = PL1_R, .type = ARM_CP_CONST,
7810               .accessfn = access_aa32_tid3,
7811               .resetvalue = cpu->isar.id_isar0 },
7812             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7813               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7814               .access = PL1_R, .type = ARM_CP_CONST,
7815               .accessfn = access_aa32_tid3,
7816               .resetvalue = cpu->isar.id_isar1 },
7817             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7818               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7819               .access = PL1_R, .type = ARM_CP_CONST,
7820               .accessfn = access_aa32_tid3,
7821               .resetvalue = cpu->isar.id_isar2 },
7822             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7823               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7824               .access = PL1_R, .type = ARM_CP_CONST,
7825               .accessfn = access_aa32_tid3,
7826               .resetvalue = cpu->isar.id_isar3 },
7827             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7828               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7829               .access = PL1_R, .type = ARM_CP_CONST,
7830               .accessfn = access_aa32_tid3,
7831               .resetvalue = cpu->isar.id_isar4 },
7832             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7833               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7834               .access = PL1_R, .type = ARM_CP_CONST,
7835               .accessfn = access_aa32_tid3,
7836               .resetvalue = cpu->isar.id_isar5 },
7837             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7838               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7839               .access = PL1_R, .type = ARM_CP_CONST,
7840               .accessfn = access_aa32_tid3,
7841               .resetvalue = cpu->isar.id_mmfr4 },
7842             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7843               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7844               .access = PL1_R, .type = ARM_CP_CONST,
7845               .accessfn = access_aa32_tid3,
7846               .resetvalue = cpu->isar.id_isar6 },
7847         };
7848         define_arm_cp_regs(cpu, v6_idregs);
7849         define_arm_cp_regs(cpu, v6_cp_reginfo);
7850     } else {
7851         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7852     }
7853     if (arm_feature(env, ARM_FEATURE_V6K)) {
7854         define_arm_cp_regs(cpu, v6k_cp_reginfo);
7855     }
7856     if (arm_feature(env, ARM_FEATURE_V7MP) &&
7857         !arm_feature(env, ARM_FEATURE_PMSA)) {
7858         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7859     }
7860     if (arm_feature(env, ARM_FEATURE_V7VE)) {
7861         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7862     }
7863     if (arm_feature(env, ARM_FEATURE_V7)) {
7864         ARMCPRegInfo clidr = {
7865             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7866             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7867             .access = PL1_R, .type = ARM_CP_CONST,
7868             .accessfn = access_tid4,
7869             .resetvalue = cpu->clidr
7870         };
7871         define_one_arm_cp_reg(cpu, &clidr);
7872         define_arm_cp_regs(cpu, v7_cp_reginfo);
7873         define_debug_regs(cpu);
7874         define_pmu_regs(cpu);
7875     } else {
7876         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7877     }
7878     if (arm_feature(env, ARM_FEATURE_V8)) {
7879         /*
7880          * v8 ID registers, which all have impdef reset values.
7881          * Note that within the ID register ranges the unused slots
7882          * must all RAZ, not UNDEF; future architecture versions may
7883          * define new registers here.
7884          * ID registers which are AArch64 views of the AArch32 ID registers
7885          * which already existed in v6 and v7 are handled elsewhere,
7886          * in v6_idregs[].
7887          */
7888         int i;
7889         ARMCPRegInfo v8_idregs[] = {
7890             /*
7891              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7892              * emulation because we don't know the right value for the
7893              * GIC field until after we define these regs.
7894              */
7895             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7896               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7897               .access = PL1_R,
7898 #ifdef CONFIG_USER_ONLY
7899               .type = ARM_CP_CONST,
7900               .resetvalue = cpu->isar.id_aa64pfr0
7901 #else
7902               .type = ARM_CP_NO_RAW,
7903               .accessfn = access_aa64_tid3,
7904               .readfn = id_aa64pfr0_read,
7905               .writefn = arm_cp_write_ignore
7906 #endif
7907             },
7908             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7909               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7910               .access = PL1_R, .type = ARM_CP_CONST,
7911               .accessfn = access_aa64_tid3,
7912               .resetvalue = cpu->isar.id_aa64pfr1},
7913             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7914               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7915               .access = PL1_R, .type = ARM_CP_CONST,
7916               .accessfn = access_aa64_tid3,
7917               .resetvalue = 0 },
7918             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7919               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7920               .access = PL1_R, .type = ARM_CP_CONST,
7921               .accessfn = access_aa64_tid3,
7922               .resetvalue = 0 },
7923             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7924               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7925               .access = PL1_R, .type = ARM_CP_CONST,
7926               .accessfn = access_aa64_tid3,
7927               .resetvalue = cpu->isar.id_aa64zfr0 },
7928             { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
7929               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7930               .access = PL1_R, .type = ARM_CP_CONST,
7931               .accessfn = access_aa64_tid3,
7932               .resetvalue = cpu->isar.id_aa64smfr0 },
7933             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7934               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7935               .access = PL1_R, .type = ARM_CP_CONST,
7936               .accessfn = access_aa64_tid3,
7937               .resetvalue = 0 },
7938             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7939               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7940               .access = PL1_R, .type = ARM_CP_CONST,
7941               .accessfn = access_aa64_tid3,
7942               .resetvalue = 0 },
7943             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7944               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7945               .access = PL1_R, .type = ARM_CP_CONST,
7946               .accessfn = access_aa64_tid3,
7947               .resetvalue = cpu->isar.id_aa64dfr0 },
7948             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7949               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7950               .access = PL1_R, .type = ARM_CP_CONST,
7951               .accessfn = access_aa64_tid3,
7952               .resetvalue = cpu->isar.id_aa64dfr1 },
7953             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7954               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7955               .access = PL1_R, .type = ARM_CP_CONST,
7956               .accessfn = access_aa64_tid3,
7957               .resetvalue = 0 },
7958             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7959               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7960               .access = PL1_R, .type = ARM_CP_CONST,
7961               .accessfn = access_aa64_tid3,
7962               .resetvalue = 0 },
7963             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7964               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7965               .access = PL1_R, .type = ARM_CP_CONST,
7966               .accessfn = access_aa64_tid3,
7967               .resetvalue = cpu->id_aa64afr0 },
7968             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7969               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7970               .access = PL1_R, .type = ARM_CP_CONST,
7971               .accessfn = access_aa64_tid3,
7972               .resetvalue = cpu->id_aa64afr1 },
7973             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7974               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7975               .access = PL1_R, .type = ARM_CP_CONST,
7976               .accessfn = access_aa64_tid3,
7977               .resetvalue = 0 },
7978             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7979               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7980               .access = PL1_R, .type = ARM_CP_CONST,
7981               .accessfn = access_aa64_tid3,
7982               .resetvalue = 0 },
7983             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7984               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7985               .access = PL1_R, .type = ARM_CP_CONST,
7986               .accessfn = access_aa64_tid3,
7987               .resetvalue = cpu->isar.id_aa64isar0 },
7988             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7989               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7990               .access = PL1_R, .type = ARM_CP_CONST,
7991               .accessfn = access_aa64_tid3,
7992               .resetvalue = cpu->isar.id_aa64isar1 },
7993             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7994               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7995               .access = PL1_R, .type = ARM_CP_CONST,
7996               .accessfn = access_aa64_tid3,
7997               .resetvalue = 0 },
7998             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7999               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8000               .access = PL1_R, .type = ARM_CP_CONST,
8001               .accessfn = access_aa64_tid3,
8002               .resetvalue = 0 },
8003             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8004               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8005               .access = PL1_R, .type = ARM_CP_CONST,
8006               .accessfn = access_aa64_tid3,
8007               .resetvalue = 0 },
8008             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8009               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8010               .access = PL1_R, .type = ARM_CP_CONST,
8011               .accessfn = access_aa64_tid3,
8012               .resetvalue = 0 },
8013             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8014               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8015               .access = PL1_R, .type = ARM_CP_CONST,
8016               .accessfn = access_aa64_tid3,
8017               .resetvalue = 0 },
8018             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8019               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8020               .access = PL1_R, .type = ARM_CP_CONST,
8021               .accessfn = access_aa64_tid3,
8022               .resetvalue = 0 },
8023             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8024               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8025               .access = PL1_R, .type = ARM_CP_CONST,
8026               .accessfn = access_aa64_tid3,
8027               .resetvalue = cpu->isar.id_aa64mmfr0 },
8028             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8029               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8030               .access = PL1_R, .type = ARM_CP_CONST,
8031               .accessfn = access_aa64_tid3,
8032               .resetvalue = cpu->isar.id_aa64mmfr1 },
8033             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8034               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8035               .access = PL1_R, .type = ARM_CP_CONST,
8036               .accessfn = access_aa64_tid3,
8037               .resetvalue = cpu->isar.id_aa64mmfr2 },
8038             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8039               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8040               .access = PL1_R, .type = ARM_CP_CONST,
8041               .accessfn = access_aa64_tid3,
8042               .resetvalue = 0 },
8043             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8044               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8045               .access = PL1_R, .type = ARM_CP_CONST,
8046               .accessfn = access_aa64_tid3,
8047               .resetvalue = 0 },
8048             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8049               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8050               .access = PL1_R, .type = ARM_CP_CONST,
8051               .accessfn = access_aa64_tid3,
8052               .resetvalue = 0 },
8053             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8054               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8055               .access = PL1_R, .type = ARM_CP_CONST,
8056               .accessfn = access_aa64_tid3,
8057               .resetvalue = 0 },
8058             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8059               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8060               .access = PL1_R, .type = ARM_CP_CONST,
8061               .accessfn = access_aa64_tid3,
8062               .resetvalue = 0 },
8063             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8064               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8065               .access = PL1_R, .type = ARM_CP_CONST,
8066               .accessfn = access_aa64_tid3,
8067               .resetvalue = cpu->isar.mvfr0 },
8068             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8069               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8070               .access = PL1_R, .type = ARM_CP_CONST,
8071               .accessfn = access_aa64_tid3,
8072               .resetvalue = cpu->isar.mvfr1 },
8073             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8074               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8075               .access = PL1_R, .type = ARM_CP_CONST,
8076               .accessfn = access_aa64_tid3,
8077               .resetvalue = cpu->isar.mvfr2 },
8078             /*
8079              * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8080              * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8081              * as RAZ, since it is in the "reserved for future ID
8082              * registers, RAZ" part of the AArch32 encoding space.
8083              */
8084             { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8085               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8086               .access = PL1_R, .type = ARM_CP_CONST,
8087               .accessfn = access_aa64_tid3,
8088               .resetvalue = 0 },
8089             { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8090               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8091               .access = PL1_R, .type = ARM_CP_CONST,
8092               .accessfn = access_aa64_tid3,
8093               .resetvalue = 0 },
8094             { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8095               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8096               .access = PL1_R, .type = ARM_CP_CONST,
8097               .accessfn = access_aa64_tid3,
8098               .resetvalue = 0 },
8099             /*
8100              * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8101              * they're also RAZ for AArch64, and in v8 are gradually
8102              * being filled with AArch64-view-of-AArch32-ID-register
8103              * for new ID registers.
8104              */
8105             { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8106               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8107               .access = PL1_R, .type = ARM_CP_CONST,
8108               .accessfn = access_aa64_tid3,
8109               .resetvalue = 0 },
8110             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8111               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8112               .access = PL1_R, .type = ARM_CP_CONST,
8113               .accessfn = access_aa64_tid3,
8114               .resetvalue = cpu->isar.id_pfr2 },
8115             { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8116               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8117               .access = PL1_R, .type = ARM_CP_CONST,
8118               .accessfn = access_aa64_tid3,
8119               .resetvalue = cpu->isar.id_dfr1 },
8120             { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8121               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8122               .access = PL1_R, .type = ARM_CP_CONST,
8123               .accessfn = access_aa64_tid3,
8124               .resetvalue = cpu->isar.id_mmfr5 },
8125             { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8126               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8127               .access = PL1_R, .type = ARM_CP_CONST,
8128               .accessfn = access_aa64_tid3,
8129               .resetvalue = 0 },
8130             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8131               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8132               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8133               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8134             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8135               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8136               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8137               .resetvalue = cpu->pmceid0 },
8138             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8139               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8140               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8141               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8142             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8143               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8144               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8145               .resetvalue = cpu->pmceid1 },
8146         };
8147 #ifdef CONFIG_USER_ONLY
8148         static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8149             { .name = "ID_AA64PFR0_EL1",
8150               .exported_bits = R_ID_AA64PFR0_FP_MASK |
8151                                R_ID_AA64PFR0_ADVSIMD_MASK |
8152                                R_ID_AA64PFR0_SVE_MASK |
8153                                R_ID_AA64PFR0_DIT_MASK,
8154               .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8155                             (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8156             { .name = "ID_AA64PFR1_EL1",
8157               .exported_bits = R_ID_AA64PFR1_BT_MASK |
8158                                R_ID_AA64PFR1_SSBS_MASK |
8159                                R_ID_AA64PFR1_MTE_MASK |
8160                                R_ID_AA64PFR1_SME_MASK },
8161             { .name = "ID_AA64PFR*_EL1_RESERVED",
8162               .is_glob = true },
8163             { .name = "ID_AA64ZFR0_EL1",
8164               .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8165                                R_ID_AA64ZFR0_AES_MASK |
8166                                R_ID_AA64ZFR0_BITPERM_MASK |
8167                                R_ID_AA64ZFR0_BFLOAT16_MASK |
8168                                R_ID_AA64ZFR0_SHA3_MASK |
8169                                R_ID_AA64ZFR0_SM4_MASK |
8170                                R_ID_AA64ZFR0_I8MM_MASK |
8171                                R_ID_AA64ZFR0_F32MM_MASK |
8172                                R_ID_AA64ZFR0_F64MM_MASK },
8173             { .name = "ID_AA64SMFR0_EL1",
8174               .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8175                                R_ID_AA64SMFR0_B16F32_MASK |
8176                                R_ID_AA64SMFR0_F16F32_MASK |
8177                                R_ID_AA64SMFR0_I8I32_MASK |
8178                                R_ID_AA64SMFR0_F64F64_MASK |
8179                                R_ID_AA64SMFR0_I16I64_MASK |
8180                                R_ID_AA64SMFR0_FA64_MASK },
8181             { .name = "ID_AA64MMFR0_EL1",
8182               .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8183               .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8184                             (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8185             { .name = "ID_AA64MMFR1_EL1",
8186               .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8187             { .name = "ID_AA64MMFR2_EL1",
8188               .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8189             { .name = "ID_AA64MMFR*_EL1_RESERVED",
8190               .is_glob = true },
8191             { .name = "ID_AA64DFR0_EL1",
8192               .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8193             { .name = "ID_AA64DFR1_EL1" },
8194             { .name = "ID_AA64DFR*_EL1_RESERVED",
8195               .is_glob = true },
8196             { .name = "ID_AA64AFR*",
8197               .is_glob = true },
8198             { .name = "ID_AA64ISAR0_EL1",
8199               .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8200                                R_ID_AA64ISAR0_SHA1_MASK |
8201                                R_ID_AA64ISAR0_SHA2_MASK |
8202                                R_ID_AA64ISAR0_CRC32_MASK |
8203                                R_ID_AA64ISAR0_ATOMIC_MASK |
8204                                R_ID_AA64ISAR0_RDM_MASK |
8205                                R_ID_AA64ISAR0_SHA3_MASK |
8206                                R_ID_AA64ISAR0_SM3_MASK |
8207                                R_ID_AA64ISAR0_SM4_MASK |
8208                                R_ID_AA64ISAR0_DP_MASK |
8209                                R_ID_AA64ISAR0_FHM_MASK |
8210                                R_ID_AA64ISAR0_TS_MASK |
8211                                R_ID_AA64ISAR0_RNDR_MASK },
8212             { .name = "ID_AA64ISAR1_EL1",
8213               .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8214                                R_ID_AA64ISAR1_APA_MASK |
8215                                R_ID_AA64ISAR1_API_MASK |
8216                                R_ID_AA64ISAR1_JSCVT_MASK |
8217                                R_ID_AA64ISAR1_FCMA_MASK |
8218                                R_ID_AA64ISAR1_LRCPC_MASK |
8219                                R_ID_AA64ISAR1_GPA_MASK |
8220                                R_ID_AA64ISAR1_GPI_MASK |
8221                                R_ID_AA64ISAR1_FRINTTS_MASK |
8222                                R_ID_AA64ISAR1_SB_MASK |
8223                                R_ID_AA64ISAR1_BF16_MASK |
8224                                R_ID_AA64ISAR1_DGH_MASK |
8225                                R_ID_AA64ISAR1_I8MM_MASK },
8226             { .name = "ID_AA64ISAR2_EL1",
8227               .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8228                                R_ID_AA64ISAR2_RPRES_MASK |
8229                                R_ID_AA64ISAR2_GPA3_MASK |
8230                                R_ID_AA64ISAR2_APA3_MASK },
8231             { .name = "ID_AA64ISAR*_EL1_RESERVED",
8232               .is_glob = true },
8233         };
8234         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8235 #endif
8236         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
8237         if (!arm_feature(env, ARM_FEATURE_EL3) &&
8238             !arm_feature(env, ARM_FEATURE_EL2)) {
8239             ARMCPRegInfo rvbar = {
8240                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8241                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8242                 .access = PL1_R,
8243                 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8244             };
8245             define_one_arm_cp_reg(cpu, &rvbar);
8246         }
8247         define_arm_cp_regs(cpu, v8_idregs);
8248         define_arm_cp_regs(cpu, v8_cp_reginfo);
8249 
8250         for (i = 4; i < 16; i++) {
8251             /*
8252              * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8253              * For pre-v8 cores there are RAZ patterns for these in
8254              * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8255              * v8 extends the "must RAZ" part of the ID register space
8256              * to also cover c0, 0, c{8-15}, {0-7}.
8257              * These are STATE_AA32 because in the AArch64 sysreg space
8258              * c4-c7 is where the AArch64 ID registers live (and we've
8259              * already defined those in v8_idregs[]), and c8-c15 are not
8260              * "must RAZ" for AArch64.
8261              */
8262             g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8263             ARMCPRegInfo v8_aa32_raz_idregs = {
8264                 .name = name,
8265                 .state = ARM_CP_STATE_AA32,
8266                 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8267                 .access = PL1_R, .type = ARM_CP_CONST,
8268                 .accessfn = access_aa64_tid3,
8269                 .resetvalue = 0 };
8270             define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8271         }
8272     }
8273 
8274     /*
8275      * Register the base EL2 cpregs.
8276      * Pre v8, these registers are implemented only as part of the
8277      * Virtualization Extensions (EL2 present).  Beginning with v8,
8278      * if EL2 is missing but EL3 is enabled, mostly these become
8279      * RES0 from EL3, with some specific exceptions.
8280      */
8281     if (arm_feature(env, ARM_FEATURE_EL2)
8282         || (arm_feature(env, ARM_FEATURE_EL3)
8283             && arm_feature(env, ARM_FEATURE_V8))) {
8284         uint64_t vmpidr_def = mpidr_read_val(env);
8285         ARMCPRegInfo vpidr_regs[] = {
8286             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8287               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8288               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8289               .resetvalue = cpu->midr,
8290               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8291               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8292             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8293               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8294               .access = PL2_RW, .resetvalue = cpu->midr,
8295               .type = ARM_CP_EL3_NO_EL2_C_NZ,
8296               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8297             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8298               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8299               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8300               .resetvalue = vmpidr_def,
8301               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8302               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8303             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8304               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8305               .access = PL2_RW, .resetvalue = vmpidr_def,
8306               .type = ARM_CP_EL3_NO_EL2_C_NZ,
8307               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8308         };
8309         /*
8310          * The only field of MDCR_EL2 that has a defined architectural reset
8311          * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8312          */
8313         ARMCPRegInfo mdcr_el2 = {
8314             .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
8315             .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8316             .writefn = mdcr_el2_write,
8317             .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8318             .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8319         };
8320         define_one_arm_cp_reg(cpu, &mdcr_el2);
8321         define_arm_cp_regs(cpu, vpidr_regs);
8322         define_arm_cp_regs(cpu, el2_cp_reginfo);
8323         if (arm_feature(env, ARM_FEATURE_V8)) {
8324             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8325         }
8326         if (cpu_isar_feature(aa64_sel2, cpu)) {
8327             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8328         }
8329         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8330         if (!arm_feature(env, ARM_FEATURE_EL3)) {
8331             ARMCPRegInfo rvbar[] = {
8332                 {
8333                     .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8334                     .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8335                     .access = PL2_R,
8336                     .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8337                 },
8338                 {   .name = "RVBAR", .type = ARM_CP_ALIAS,
8339                     .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8340                     .access = PL2_R,
8341                     .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8342                 },
8343             };
8344             define_arm_cp_regs(cpu, rvbar);
8345         }
8346     }
8347 
8348     /* Register the base EL3 cpregs. */
8349     if (arm_feature(env, ARM_FEATURE_EL3)) {
8350         define_arm_cp_regs(cpu, el3_cp_reginfo);
8351         ARMCPRegInfo el3_regs[] = {
8352             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8353               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8354               .access = PL3_R,
8355               .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8356             },
8357             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8358               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8359               .access = PL3_RW,
8360               .raw_writefn = raw_write, .writefn = sctlr_write,
8361               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8362               .resetvalue = cpu->reset_sctlr },
8363         };
8364 
8365         define_arm_cp_regs(cpu, el3_regs);
8366     }
8367     /*
8368      * The behaviour of NSACR is sufficiently various that we don't
8369      * try to describe it in a single reginfo:
8370      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
8371      *     reads as constant 0xc00 from NS EL1 and NS EL2
8372      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8373      *  if v7 without EL3, register doesn't exist
8374      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8375      */
8376     if (arm_feature(env, ARM_FEATURE_EL3)) {
8377         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8378             static const ARMCPRegInfo nsacr = {
8379                 .name = "NSACR", .type = ARM_CP_CONST,
8380                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8381                 .access = PL1_RW, .accessfn = nsacr_access,
8382                 .resetvalue = 0xc00
8383             };
8384             define_one_arm_cp_reg(cpu, &nsacr);
8385         } else {
8386             static const ARMCPRegInfo nsacr = {
8387                 .name = "NSACR",
8388                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8389                 .access = PL3_RW | PL1_R,
8390                 .resetvalue = 0,
8391                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8392             };
8393             define_one_arm_cp_reg(cpu, &nsacr);
8394         }
8395     } else {
8396         if (arm_feature(env, ARM_FEATURE_V8)) {
8397             static const ARMCPRegInfo nsacr = {
8398                 .name = "NSACR", .type = ARM_CP_CONST,
8399                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8400                 .access = PL1_R,
8401                 .resetvalue = 0xc00
8402             };
8403             define_one_arm_cp_reg(cpu, &nsacr);
8404         }
8405     }
8406 
8407     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8408         if (arm_feature(env, ARM_FEATURE_V6)) {
8409             /* PMSAv6 not implemented */
8410             assert(arm_feature(env, ARM_FEATURE_V7));
8411             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8412             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8413         } else {
8414             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8415         }
8416     } else {
8417         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8418         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8419         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8420         if (cpu_isar_feature(aa32_hpd, cpu)) {
8421             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8422         }
8423     }
8424     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8425         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8426     }
8427     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8428         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8429     }
8430     if (arm_feature(env, ARM_FEATURE_VAPA)) {
8431         define_arm_cp_regs(cpu, vapa_cp_reginfo);
8432     }
8433     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8434         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8435     }
8436     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8437         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8438     }
8439     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8440         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8441     }
8442     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8443         define_arm_cp_regs(cpu, omap_cp_reginfo);
8444     }
8445     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8446         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8447     }
8448     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8449         define_arm_cp_regs(cpu, xscale_cp_reginfo);
8450     }
8451     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8452         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8453     }
8454     if (arm_feature(env, ARM_FEATURE_LPAE)) {
8455         define_arm_cp_regs(cpu, lpae_cp_reginfo);
8456     }
8457     if (cpu_isar_feature(aa32_jazelle, cpu)) {
8458         define_arm_cp_regs(cpu, jazelle_regs);
8459     }
8460     /*
8461      * Slightly awkwardly, the OMAP and StrongARM cores need all of
8462      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8463      * be read-only (ie write causes UNDEF exception).
8464      */
8465     {
8466         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8467             /*
8468              * Pre-v8 MIDR space.
8469              * Note that the MIDR isn't a simple constant register because
8470              * of the TI925 behaviour where writes to another register can
8471              * cause the MIDR value to change.
8472              *
8473              * Unimplemented registers in the c15 0 0 0 space default to
8474              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8475              * and friends override accordingly.
8476              */
8477             { .name = "MIDR",
8478               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8479               .access = PL1_R, .resetvalue = cpu->midr,
8480               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8481               .readfn = midr_read,
8482               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8483               .type = ARM_CP_OVERRIDE },
8484             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8485             { .name = "DUMMY",
8486               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8487               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8488             { .name = "DUMMY",
8489               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8490               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8491             { .name = "DUMMY",
8492               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8493               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8494             { .name = "DUMMY",
8495               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8496               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8497             { .name = "DUMMY",
8498               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8499               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8500         };
8501         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8502             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8503               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8504               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8505               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8506               .readfn = midr_read },
8507             /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
8508             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8509               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8510               .access = PL1_R, .resetvalue = cpu->midr },
8511             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8512               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8513               .access = PL1_R,
8514               .accessfn = access_aa64_tid1,
8515               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8516         };
8517         ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
8518             .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8519             .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8520             .access = PL1_R, .resetvalue = cpu->midr
8521         };
8522         ARMCPRegInfo id_cp_reginfo[] = {
8523             /* These are common to v8 and pre-v8 */
8524             { .name = "CTR",
8525               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8526               .access = PL1_R, .accessfn = ctr_el0_access,
8527               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8528             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8529               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8530               .access = PL0_R, .accessfn = ctr_el0_access,
8531               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8532             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8533             { .name = "TCMTR",
8534               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8535               .access = PL1_R,
8536               .accessfn = access_aa32_tid1,
8537               .type = ARM_CP_CONST, .resetvalue = 0 },
8538         };
8539         /* TLBTR is specific to VMSA */
8540         ARMCPRegInfo id_tlbtr_reginfo = {
8541               .name = "TLBTR",
8542               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8543               .access = PL1_R,
8544               .accessfn = access_aa32_tid1,
8545               .type = ARM_CP_CONST, .resetvalue = 0,
8546         };
8547         /* MPUIR is specific to PMSA V6+ */
8548         ARMCPRegInfo id_mpuir_reginfo = {
8549               .name = "MPUIR",
8550               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8551               .access = PL1_R, .type = ARM_CP_CONST,
8552               .resetvalue = cpu->pmsav7_dregion << 8
8553         };
8554         /* HMPUIR is specific to PMSA V8 */
8555         ARMCPRegInfo id_hmpuir_reginfo = {
8556             .name = "HMPUIR",
8557             .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
8558             .access = PL2_R, .type = ARM_CP_CONST,
8559             .resetvalue = cpu->pmsav8r_hdregion
8560         };
8561         static const ARMCPRegInfo crn0_wi_reginfo = {
8562             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8563             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8564             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8565         };
8566 #ifdef CONFIG_USER_ONLY
8567         static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8568             { .name = "MIDR_EL1",
8569               .exported_bits = R_MIDR_EL1_REVISION_MASK |
8570                                R_MIDR_EL1_PARTNUM_MASK |
8571                                R_MIDR_EL1_ARCHITECTURE_MASK |
8572                                R_MIDR_EL1_VARIANT_MASK |
8573                                R_MIDR_EL1_IMPLEMENTER_MASK },
8574             { .name = "REVIDR_EL1" },
8575         };
8576         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8577 #endif
8578         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8579             arm_feature(env, ARM_FEATURE_STRONGARM)) {
8580             size_t i;
8581             /*
8582              * Register the blanket "writes ignored" value first to cover the
8583              * whole space. Then update the specific ID registers to allow write
8584              * access, so that they ignore writes rather than causing them to
8585              * UNDEF.
8586              */
8587             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8588             for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
8589                 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
8590             }
8591             for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
8592                 id_cp_reginfo[i].access = PL1_RW;
8593             }
8594             id_mpuir_reginfo.access = PL1_RW;
8595             id_tlbtr_reginfo.access = PL1_RW;
8596         }
8597         if (arm_feature(env, ARM_FEATURE_V8)) {
8598             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8599             if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8600                 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
8601             }
8602         } else {
8603             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8604         }
8605         define_arm_cp_regs(cpu, id_cp_reginfo);
8606         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8607             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8608         } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
8609                    arm_feature(env, ARM_FEATURE_V8)) {
8610             uint32_t i = 0;
8611             char *tmp_string;
8612 
8613             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8614             define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
8615             define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
8616 
8617             /* Register alias is only valid for first 32 indexes */
8618             for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
8619                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8620                 uint8_t opc1 = extract32(i, 4, 1);
8621                 uint8_t opc2 = extract32(i, 0, 1) << 2;
8622 
8623                 tmp_string = g_strdup_printf("PRBAR%u", i);
8624                 ARMCPRegInfo tmp_prbarn_reginfo = {
8625                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8626                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8627                     .access = PL1_RW, .resetvalue = 0,
8628                     .accessfn = access_tvm_trvm,
8629                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8630                 };
8631                 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
8632                 g_free(tmp_string);
8633 
8634                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8635                 tmp_string = g_strdup_printf("PRLAR%u", i);
8636                 ARMCPRegInfo tmp_prlarn_reginfo = {
8637                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8638                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8639                     .access = PL1_RW, .resetvalue = 0,
8640                     .accessfn = access_tvm_trvm,
8641                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8642                 };
8643                 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
8644                 g_free(tmp_string);
8645             }
8646 
8647             /* Register alias is only valid for first 32 indexes */
8648             for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
8649                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8650                 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
8651                 uint8_t opc2 = extract32(i, 0, 1) << 2;
8652 
8653                 tmp_string = g_strdup_printf("HPRBAR%u", i);
8654                 ARMCPRegInfo tmp_hprbarn_reginfo = {
8655                     .name = tmp_string,
8656                     .type = ARM_CP_NO_RAW,
8657                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8658                     .access = PL2_RW, .resetvalue = 0,
8659                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8660                 };
8661                 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
8662                 g_free(tmp_string);
8663 
8664                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8665                 tmp_string = g_strdup_printf("HPRLAR%u", i);
8666                 ARMCPRegInfo tmp_hprlarn_reginfo = {
8667                     .name = tmp_string,
8668                     .type = ARM_CP_NO_RAW,
8669                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8670                     .access = PL2_RW, .resetvalue = 0,
8671                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8672                 };
8673                 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
8674                 g_free(tmp_string);
8675             }
8676         } else if (arm_feature(env, ARM_FEATURE_V7)) {
8677             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8678         }
8679     }
8680 
8681     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8682         ARMCPRegInfo mpidr_cp_reginfo[] = {
8683             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8684               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8685               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8686         };
8687 #ifdef CONFIG_USER_ONLY
8688         static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8689             { .name = "MPIDR_EL1",
8690               .fixed_bits = 0x0000000080000000 },
8691         };
8692         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8693 #endif
8694         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8695     }
8696 
8697     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8698         ARMCPRegInfo auxcr_reginfo[] = {
8699             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8700               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8701               .access = PL1_RW, .accessfn = access_tacr,
8702               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8703             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8704               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8705               .access = PL2_RW, .type = ARM_CP_CONST,
8706               .resetvalue = 0 },
8707             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8708               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8709               .access = PL3_RW, .type = ARM_CP_CONST,
8710               .resetvalue = 0 },
8711         };
8712         define_arm_cp_regs(cpu, auxcr_reginfo);
8713         if (cpu_isar_feature(aa32_ac2, cpu)) {
8714             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8715         }
8716     }
8717 
8718     if (arm_feature(env, ARM_FEATURE_CBAR)) {
8719         /*
8720          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8721          * There are two flavours:
8722          *  (1) older 32-bit only cores have a simple 32-bit CBAR
8723          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8724          *      32-bit register visible to AArch32 at a different encoding
8725          *      to the "flavour 1" register and with the bits rearranged to
8726          *      be able to squash a 64-bit address into the 32-bit view.
8727          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8728          * in future if we support AArch32-only configs of some of the
8729          * AArch64 cores we might need to add a specific feature flag
8730          * to indicate cores with "flavour 2" CBAR.
8731          */
8732         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8733             /* 32 bit view is [31:18] 0...0 [43:32]. */
8734             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8735                 | extract64(cpu->reset_cbar, 32, 12);
8736             ARMCPRegInfo cbar_reginfo[] = {
8737                 { .name = "CBAR",
8738                   .type = ARM_CP_CONST,
8739                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8740                   .access = PL1_R, .resetvalue = cbar32 },
8741                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8742                   .type = ARM_CP_CONST,
8743                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8744                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
8745             };
8746             /* We don't implement a r/w 64 bit CBAR currently */
8747             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8748             define_arm_cp_regs(cpu, cbar_reginfo);
8749         } else {
8750             ARMCPRegInfo cbar = {
8751                 .name = "CBAR",
8752                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8753                 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
8754                 .fieldoffset = offsetof(CPUARMState,
8755                                         cp15.c15_config_base_address)
8756             };
8757             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8758                 cbar.access = PL1_R;
8759                 cbar.fieldoffset = 0;
8760                 cbar.type = ARM_CP_CONST;
8761             }
8762             define_one_arm_cp_reg(cpu, &cbar);
8763         }
8764     }
8765 
8766     if (arm_feature(env, ARM_FEATURE_VBAR)) {
8767         static const ARMCPRegInfo vbar_cp_reginfo[] = {
8768             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8769               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8770               .access = PL1_RW, .writefn = vbar_write,
8771               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8772                                      offsetof(CPUARMState, cp15.vbar_ns) },
8773               .resetvalue = 0 },
8774         };
8775         define_arm_cp_regs(cpu, vbar_cp_reginfo);
8776     }
8777 
8778     /* Generic registers whose values depend on the implementation */
8779     {
8780         ARMCPRegInfo sctlr = {
8781             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8782             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8783             .access = PL1_RW, .accessfn = access_tvm_trvm,
8784             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8785                                    offsetof(CPUARMState, cp15.sctlr_ns) },
8786             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8787             .raw_writefn = raw_write,
8788         };
8789         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8790             /*
8791              * Normally we would always end the TB on an SCTLR write, but Linux
8792              * arch/arm/mach-pxa/sleep.S expects two instructions following
8793              * an MMU enable to execute from cache.  Imitate this behaviour.
8794              */
8795             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8796         }
8797         define_one_arm_cp_reg(cpu, &sctlr);
8798 
8799         if (arm_feature(env, ARM_FEATURE_PMSA) &&
8800             arm_feature(env, ARM_FEATURE_V8)) {
8801             ARMCPRegInfo vsctlr = {
8802                 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
8803                 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
8804                 .access = PL2_RW, .resetvalue = 0x0,
8805                 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
8806             };
8807             define_one_arm_cp_reg(cpu, &vsctlr);
8808         }
8809     }
8810 
8811     if (cpu_isar_feature(aa64_lor, cpu)) {
8812         define_arm_cp_regs(cpu, lor_reginfo);
8813     }
8814     if (cpu_isar_feature(aa64_pan, cpu)) {
8815         define_one_arm_cp_reg(cpu, &pan_reginfo);
8816     }
8817 #ifndef CONFIG_USER_ONLY
8818     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8819         define_arm_cp_regs(cpu, ats1e1_reginfo);
8820     }
8821     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8822         define_arm_cp_regs(cpu, ats1cp_reginfo);
8823     }
8824 #endif
8825     if (cpu_isar_feature(aa64_uao, cpu)) {
8826         define_one_arm_cp_reg(cpu, &uao_reginfo);
8827     }
8828 
8829     if (cpu_isar_feature(aa64_dit, cpu)) {
8830         define_one_arm_cp_reg(cpu, &dit_reginfo);
8831     }
8832     if (cpu_isar_feature(aa64_ssbs, cpu)) {
8833         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8834     }
8835     if (cpu_isar_feature(any_ras, cpu)) {
8836         define_arm_cp_regs(cpu, minimal_ras_reginfo);
8837     }
8838 
8839     if (cpu_isar_feature(aa64_vh, cpu) ||
8840         cpu_isar_feature(aa64_debugv8p2, cpu)) {
8841         define_one_arm_cp_reg(cpu, &contextidr_el2);
8842     }
8843     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8844         define_arm_cp_regs(cpu, vhe_reginfo);
8845     }
8846 
8847     if (cpu_isar_feature(aa64_sve, cpu)) {
8848         define_arm_cp_regs(cpu, zcr_reginfo);
8849     }
8850 
8851     if (cpu_isar_feature(aa64_hcx, cpu)) {
8852         define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
8853     }
8854 
8855 #ifdef TARGET_AARCH64
8856     if (cpu_isar_feature(aa64_sme, cpu)) {
8857         define_arm_cp_regs(cpu, sme_reginfo);
8858     }
8859     if (cpu_isar_feature(aa64_pauth, cpu)) {
8860         define_arm_cp_regs(cpu, pauth_reginfo);
8861     }
8862     if (cpu_isar_feature(aa64_rndr, cpu)) {
8863         define_arm_cp_regs(cpu, rndr_reginfo);
8864     }
8865     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8866         define_arm_cp_regs(cpu, tlbirange_reginfo);
8867     }
8868     if (cpu_isar_feature(aa64_tlbios, cpu)) {
8869         define_arm_cp_regs(cpu, tlbios_reginfo);
8870     }
8871 #ifndef CONFIG_USER_ONLY
8872     /* Data Cache clean instructions up to PoP */
8873     if (cpu_isar_feature(aa64_dcpop, cpu)) {
8874         define_one_arm_cp_reg(cpu, dcpop_reg);
8875 
8876         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8877             define_one_arm_cp_reg(cpu, dcpodp_reg);
8878         }
8879     }
8880 #endif /*CONFIG_USER_ONLY*/
8881 
8882     /*
8883      * If full MTE is enabled, add all of the system registers.
8884      * If only "instructions available at EL0" are enabled,
8885      * then define only a RAZ/WI version of PSTATE.TCO.
8886      */
8887     if (cpu_isar_feature(aa64_mte, cpu)) {
8888         define_arm_cp_regs(cpu, mte_reginfo);
8889         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8890     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8891         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8892         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8893     }
8894 
8895     if (cpu_isar_feature(aa64_scxtnum, cpu)) {
8896         define_arm_cp_regs(cpu, scxtnum_reginfo);
8897     }
8898 #endif
8899 
8900     if (cpu_isar_feature(any_predinv, cpu)) {
8901         define_arm_cp_regs(cpu, predinv_reginfo);
8902     }
8903 
8904     if (cpu_isar_feature(any_ccidx, cpu)) {
8905         define_arm_cp_regs(cpu, ccsidr2_reginfo);
8906     }
8907 
8908 #ifndef CONFIG_USER_ONLY
8909     /*
8910      * Register redirections and aliases must be done last,
8911      * after the registers from the other extensions have been defined.
8912      */
8913     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8914         define_arm_vh_e2h_redirects_aliases(cpu);
8915     }
8916 #endif
8917 }
8918 
8919 /* Sort alphabetically by type name, except for "any". */
8920 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8921 {
8922     ObjectClass *class_a = (ObjectClass *)a;
8923     ObjectClass *class_b = (ObjectClass *)b;
8924     const char *name_a, *name_b;
8925 
8926     name_a = object_class_get_name(class_a);
8927     name_b = object_class_get_name(class_b);
8928     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8929         return 1;
8930     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8931         return -1;
8932     } else {
8933         return strcmp(name_a, name_b);
8934     }
8935 }
8936 
8937 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8938 {
8939     ObjectClass *oc = data;
8940     CPUClass *cc = CPU_CLASS(oc);
8941     const char *typename;
8942     char *name;
8943 
8944     typename = object_class_get_name(oc);
8945     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8946     if (cc->deprecation_note) {
8947         qemu_printf("  %s (deprecated)\n", name);
8948     } else {
8949         qemu_printf("  %s\n", name);
8950     }
8951     g_free(name);
8952 }
8953 
8954 void arm_cpu_list(void)
8955 {
8956     GSList *list;
8957 
8958     list = object_class_get_list(TYPE_ARM_CPU, false);
8959     list = g_slist_sort(list, arm_cpu_list_compare);
8960     qemu_printf("Available CPUs:\n");
8961     g_slist_foreach(list, arm_cpu_list_entry, NULL);
8962     g_slist_free(list);
8963 }
8964 
8965 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8966 {
8967     ObjectClass *oc = data;
8968     CpuDefinitionInfoList **cpu_list = user_data;
8969     CpuDefinitionInfo *info;
8970     const char *typename;
8971 
8972     typename = object_class_get_name(oc);
8973     info = g_malloc0(sizeof(*info));
8974     info->name = g_strndup(typename,
8975                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
8976     info->q_typename = g_strdup(typename);
8977 
8978     QAPI_LIST_PREPEND(*cpu_list, info);
8979 }
8980 
8981 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8982 {
8983     CpuDefinitionInfoList *cpu_list = NULL;
8984     GSList *list;
8985 
8986     list = object_class_get_list(TYPE_ARM_CPU, false);
8987     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8988     g_slist_free(list);
8989 
8990     return cpu_list;
8991 }
8992 
8993 /*
8994  * Private utility function for define_one_arm_cp_reg_with_opaque():
8995  * add a single reginfo struct to the hash table.
8996  */
8997 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8998                                    void *opaque, CPState state,
8999                                    CPSecureState secstate,
9000                                    int crm, int opc1, int opc2,
9001                                    const char *name)
9002 {
9003     CPUARMState *env = &cpu->env;
9004     uint32_t key;
9005     ARMCPRegInfo *r2;
9006     bool is64 = r->type & ARM_CP_64BIT;
9007     bool ns = secstate & ARM_CP_SECSTATE_NS;
9008     int cp = r->cp;
9009     size_t name_len;
9010     bool make_const;
9011 
9012     switch (state) {
9013     case ARM_CP_STATE_AA32:
9014         /* We assume it is a cp15 register if the .cp field is left unset. */
9015         if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9016             cp = 15;
9017         }
9018         key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9019         break;
9020     case ARM_CP_STATE_AA64:
9021         /*
9022          * To allow abbreviation of ARMCPRegInfo definitions, we treat
9023          * cp == 0 as equivalent to the value for "standard guest-visible
9024          * sysreg".  STATE_BOTH definitions are also always "standard sysreg"
9025          * in their AArch64 view (the .cp value may be non-zero for the
9026          * benefit of the AArch32 view).
9027          */
9028         if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9029             cp = CP_REG_ARM64_SYSREG_CP;
9030         }
9031         key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9032         break;
9033     default:
9034         g_assert_not_reached();
9035     }
9036 
9037     /* Overriding of an existing definition must be explicitly requested. */
9038     if (!(r->type & ARM_CP_OVERRIDE)) {
9039         const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9040         if (oldreg) {
9041             assert(oldreg->type & ARM_CP_OVERRIDE);
9042         }
9043     }
9044 
9045     /*
9046      * Eliminate registers that are not present because the EL is missing.
9047      * Doing this here makes it easier to put all registers for a given
9048      * feature into the same ARMCPRegInfo array and define them all at once.
9049      */
9050     make_const = false;
9051     if (arm_feature(env, ARM_FEATURE_EL3)) {
9052         /*
9053          * An EL2 register without EL2 but with EL3 is (usually) RES0.
9054          * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9055          */
9056         int min_el = ctz32(r->access) / 2;
9057         if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9058             if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9059                 return;
9060             }
9061             make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9062         }
9063     } else {
9064         CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9065                                  ? PL2_RW : PL1_RW);
9066         if ((r->access & max_el) == 0) {
9067             return;
9068         }
9069     }
9070 
9071     /* Combine cpreg and name into one allocation. */
9072     name_len = strlen(name) + 1;
9073     r2 = g_malloc(sizeof(*r2) + name_len);
9074     *r2 = *r;
9075     r2->name = memcpy(r2 + 1, name, name_len);
9076 
9077     /*
9078      * Update fields to match the instantiation, overwiting wildcards
9079      * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9080      */
9081     r2->cp = cp;
9082     r2->crm = crm;
9083     r2->opc1 = opc1;
9084     r2->opc2 = opc2;
9085     r2->state = state;
9086     r2->secure = secstate;
9087     if (opaque) {
9088         r2->opaque = opaque;
9089     }
9090 
9091     if (make_const) {
9092         /* This should not have been a very special register to begin. */
9093         int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9094         assert(old_special == 0 || old_special == ARM_CP_NOP);
9095         /*
9096          * Set the special function to CONST, retaining the other flags.
9097          * This is important for e.g. ARM_CP_SVE so that we still
9098          * take the SVE trap if CPTR_EL3.EZ == 0.
9099          */
9100         r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9101         /*
9102          * Usually, these registers become RES0, but there are a few
9103          * special cases like VPIDR_EL2 which have a constant non-zero
9104          * value with writes ignored.
9105          */
9106         if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9107             r2->resetvalue = 0;
9108         }
9109         /*
9110          * ARM_CP_CONST has precedence, so removing the callbacks and
9111          * offsets are not strictly necessary, but it is potentially
9112          * less confusing to debug later.
9113          */
9114         r2->readfn = NULL;
9115         r2->writefn = NULL;
9116         r2->raw_readfn = NULL;
9117         r2->raw_writefn = NULL;
9118         r2->resetfn = NULL;
9119         r2->fieldoffset = 0;
9120         r2->bank_fieldoffsets[0] = 0;
9121         r2->bank_fieldoffsets[1] = 0;
9122     } else {
9123         bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9124 
9125         if (isbanked) {
9126             /*
9127              * Register is banked (using both entries in array).
9128              * Overwriting fieldoffset as the array is only used to define
9129              * banked registers but later only fieldoffset is used.
9130              */
9131             r2->fieldoffset = r->bank_fieldoffsets[ns];
9132         }
9133         if (state == ARM_CP_STATE_AA32) {
9134             if (isbanked) {
9135                 /*
9136                  * If the register is banked then we don't need to migrate or
9137                  * reset the 32-bit instance in certain cases:
9138                  *
9139                  * 1) If the register has both 32-bit and 64-bit instances
9140                  *    then we can count on the 64-bit instance taking care
9141                  *    of the non-secure bank.
9142                  * 2) If ARMv8 is enabled then we can count on a 64-bit
9143                  *    version taking care of the secure bank.  This requires
9144                  *    that separate 32 and 64-bit definitions are provided.
9145                  */
9146                 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9147                     (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9148                     r2->type |= ARM_CP_ALIAS;
9149                 }
9150             } else if ((secstate != r->secure) && !ns) {
9151                 /*
9152                  * The register is not banked so we only want to allow
9153                  * migration of the non-secure instance.
9154                  */
9155                 r2->type |= ARM_CP_ALIAS;
9156             }
9157 
9158             if (HOST_BIG_ENDIAN &&
9159                 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9160                 r2->fieldoffset += sizeof(uint32_t);
9161             }
9162         }
9163     }
9164 
9165     /*
9166      * By convention, for wildcarded registers only the first
9167      * entry is used for migration; the others are marked as
9168      * ALIAS so we don't try to transfer the register
9169      * multiple times. Special registers (ie NOP/WFI) are
9170      * never migratable and not even raw-accessible.
9171      */
9172     if (r2->type & ARM_CP_SPECIAL_MASK) {
9173         r2->type |= ARM_CP_NO_RAW;
9174     }
9175     if (((r->crm == CP_ANY) && crm != 0) ||
9176         ((r->opc1 == CP_ANY) && opc1 != 0) ||
9177         ((r->opc2 == CP_ANY) && opc2 != 0)) {
9178         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9179     }
9180 
9181     /*
9182      * Check that raw accesses are either forbidden or handled. Note that
9183      * we can't assert this earlier because the setup of fieldoffset for
9184      * banked registers has to be done first.
9185      */
9186     if (!(r2->type & ARM_CP_NO_RAW)) {
9187         assert(!raw_accessors_invalid(r2));
9188     }
9189 
9190     g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9191 }
9192 
9193 
9194 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9195                                        const ARMCPRegInfo *r, void *opaque)
9196 {
9197     /*
9198      * Define implementations of coprocessor registers.
9199      * We store these in a hashtable because typically
9200      * there are less than 150 registers in a space which
9201      * is 16*16*16*8*8 = 262144 in size.
9202      * Wildcarding is supported for the crm, opc1 and opc2 fields.
9203      * If a register is defined twice then the second definition is
9204      * used, so this can be used to define some generic registers and
9205      * then override them with implementation specific variations.
9206      * At least one of the original and the second definition should
9207      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9208      * against accidental use.
9209      *
9210      * The state field defines whether the register is to be
9211      * visible in the AArch32 or AArch64 execution state. If the
9212      * state is set to ARM_CP_STATE_BOTH then we synthesise a
9213      * reginfo structure for the AArch32 view, which sees the lower
9214      * 32 bits of the 64 bit register.
9215      *
9216      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9217      * be wildcarded. AArch64 registers are always considered to be 64
9218      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9219      * the register, if any.
9220      */
9221     int crm, opc1, opc2;
9222     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9223     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9224     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9225     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9226     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9227     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9228     CPState state;
9229 
9230     /* 64 bit registers have only CRm and Opc1 fields */
9231     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9232     /* op0 only exists in the AArch64 encodings */
9233     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9234     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9235     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9236     /*
9237      * This API is only for Arm's system coprocessors (14 and 15) or
9238      * (M-profile or v7A-and-earlier only) for implementation defined
9239      * coprocessors in the range 0..7.  Our decode assumes this, since
9240      * 8..13 can be used for other insns including VFP and Neon. See
9241      * valid_cp() in translate.c.  Assert here that we haven't tried
9242      * to use an invalid coprocessor number.
9243      */
9244     switch (r->state) {
9245     case ARM_CP_STATE_BOTH:
9246         /* 0 has a special meaning, but otherwise the same rules as AA32. */
9247         if (r->cp == 0) {
9248             break;
9249         }
9250         /* fall through */
9251     case ARM_CP_STATE_AA32:
9252         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9253             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9254             assert(r->cp >= 14 && r->cp <= 15);
9255         } else {
9256             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9257         }
9258         break;
9259     case ARM_CP_STATE_AA64:
9260         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9261         break;
9262     default:
9263         g_assert_not_reached();
9264     }
9265     /*
9266      * The AArch64 pseudocode CheckSystemAccess() specifies that op1
9267      * encodes a minimum access level for the register. We roll this
9268      * runtime check into our general permission check code, so check
9269      * here that the reginfo's specified permissions are strict enough
9270      * to encompass the generic architectural permission check.
9271      */
9272     if (r->state != ARM_CP_STATE_AA32) {
9273         CPAccessRights mask;
9274         switch (r->opc1) {
9275         case 0:
9276             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9277             mask = PL0U_R | PL1_RW;
9278             break;
9279         case 1: case 2:
9280             /* min_EL EL1 */
9281             mask = PL1_RW;
9282             break;
9283         case 3:
9284             /* min_EL EL0 */
9285             mask = PL0_RW;
9286             break;
9287         case 4:
9288         case 5:
9289             /* min_EL EL2 */
9290             mask = PL2_RW;
9291             break;
9292         case 6:
9293             /* min_EL EL3 */
9294             mask = PL3_RW;
9295             break;
9296         case 7:
9297             /* min_EL EL1, secure mode only (we don't check the latter) */
9298             mask = PL1_RW;
9299             break;
9300         default:
9301             /* broken reginfo with out-of-range opc1 */
9302             g_assert_not_reached();
9303         }
9304         /* assert our permissions are not too lax (stricter is fine) */
9305         assert((r->access & ~mask) == 0);
9306     }
9307 
9308     /*
9309      * Check that the register definition has enough info to handle
9310      * reads and writes if they are permitted.
9311      */
9312     if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
9313         if (r->access & PL3_R) {
9314             assert((r->fieldoffset ||
9315                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9316                    r->readfn);
9317         }
9318         if (r->access & PL3_W) {
9319             assert((r->fieldoffset ||
9320                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9321                    r->writefn);
9322         }
9323     }
9324 
9325     for (crm = crmmin; crm <= crmmax; crm++) {
9326         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9327             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9328                 for (state = ARM_CP_STATE_AA32;
9329                      state <= ARM_CP_STATE_AA64; state++) {
9330                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9331                         continue;
9332                     }
9333                     if (state == ARM_CP_STATE_AA32) {
9334                         /*
9335                          * Under AArch32 CP registers can be common
9336                          * (same for secure and non-secure world) or banked.
9337                          */
9338                         char *name;
9339 
9340                         switch (r->secure) {
9341                         case ARM_CP_SECSTATE_S:
9342                         case ARM_CP_SECSTATE_NS:
9343                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9344                                                    r->secure, crm, opc1, opc2,
9345                                                    r->name);
9346                             break;
9347                         case ARM_CP_SECSTATE_BOTH:
9348                             name = g_strdup_printf("%s_S", r->name);
9349                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9350                                                    ARM_CP_SECSTATE_S,
9351                                                    crm, opc1, opc2, name);
9352                             g_free(name);
9353                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9354                                                    ARM_CP_SECSTATE_NS,
9355                                                    crm, opc1, opc2, r->name);
9356                             break;
9357                         default:
9358                             g_assert_not_reached();
9359                         }
9360                     } else {
9361                         /*
9362                          * AArch64 registers get mapped to non-secure instance
9363                          * of AArch32
9364                          */
9365                         add_cpreg_to_hashtable(cpu, r, opaque, state,
9366                                                ARM_CP_SECSTATE_NS,
9367                                                crm, opc1, opc2, r->name);
9368                     }
9369                 }
9370             }
9371         }
9372     }
9373 }
9374 
9375 /* Define a whole list of registers */
9376 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9377                                         void *opaque, size_t len)
9378 {
9379     size_t i;
9380     for (i = 0; i < len; ++i) {
9381         define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
9382     }
9383 }
9384 
9385 /*
9386  * Modify ARMCPRegInfo for access from userspace.
9387  *
9388  * This is a data driven modification directed by
9389  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9390  * user-space cannot alter any values and dynamic values pertaining to
9391  * execution state are hidden from user space view anyway.
9392  */
9393 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9394                                  const ARMCPRegUserSpaceInfo *mods,
9395                                  size_t mods_len)
9396 {
9397     for (size_t mi = 0; mi < mods_len; ++mi) {
9398         const ARMCPRegUserSpaceInfo *m = mods + mi;
9399         GPatternSpec *pat = NULL;
9400 
9401         if (m->is_glob) {
9402             pat = g_pattern_spec_new(m->name);
9403         }
9404         for (size_t ri = 0; ri < regs_len; ++ri) {
9405             ARMCPRegInfo *r = regs + ri;
9406 
9407             if (pat && g_pattern_match_string(pat, r->name)) {
9408                 r->type = ARM_CP_CONST;
9409                 r->access = PL0U_R;
9410                 r->resetvalue = 0;
9411                 /* continue */
9412             } else if (strcmp(r->name, m->name) == 0) {
9413                 r->type = ARM_CP_CONST;
9414                 r->access = PL0U_R;
9415                 r->resetvalue &= m->exported_bits;
9416                 r->resetvalue |= m->fixed_bits;
9417                 break;
9418             }
9419         }
9420         if (pat) {
9421             g_pattern_spec_free(pat);
9422         }
9423     }
9424 }
9425 
9426 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9427 {
9428     return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9429 }
9430 
9431 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9432                          uint64_t value)
9433 {
9434     /* Helper coprocessor write function for write-ignore registers */
9435 }
9436 
9437 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9438 {
9439     /* Helper coprocessor write function for read-as-zero registers */
9440     return 0;
9441 }
9442 
9443 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9444 {
9445     /* Helper coprocessor reset function for do-nothing-on-reset registers */
9446 }
9447 
9448 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9449 {
9450     /*
9451      * Return true if it is not valid for us to switch to
9452      * this CPU mode (ie all the UNPREDICTABLE cases in
9453      * the ARM ARM CPSRWriteByInstr pseudocode).
9454      */
9455 
9456     /* Changes to or from Hyp via MSR and CPS are illegal. */
9457     if (write_type == CPSRWriteByInstr &&
9458         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9459          mode == ARM_CPU_MODE_HYP)) {
9460         return 1;
9461     }
9462 
9463     switch (mode) {
9464     case ARM_CPU_MODE_USR:
9465         return 0;
9466     case ARM_CPU_MODE_SYS:
9467     case ARM_CPU_MODE_SVC:
9468     case ARM_CPU_MODE_ABT:
9469     case ARM_CPU_MODE_UND:
9470     case ARM_CPU_MODE_IRQ:
9471     case ARM_CPU_MODE_FIQ:
9472         /*
9473          * Note that we don't implement the IMPDEF NSACR.RFR which in v7
9474          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9475          */
9476         /*
9477          * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9478          * and CPS are treated as illegal mode changes.
9479          */
9480         if (write_type == CPSRWriteByInstr &&
9481             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9482             (arm_hcr_el2_eff(env) & HCR_TGE)) {
9483             return 1;
9484         }
9485         return 0;
9486     case ARM_CPU_MODE_HYP:
9487         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9488     case ARM_CPU_MODE_MON:
9489         return arm_current_el(env) < 3;
9490     default:
9491         return 1;
9492     }
9493 }
9494 
9495 uint32_t cpsr_read(CPUARMState *env)
9496 {
9497     int ZF;
9498     ZF = (env->ZF == 0);
9499     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9500         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9501         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9502         | ((env->condexec_bits & 0xfc) << 8)
9503         | (env->GE << 16) | (env->daif & CPSR_AIF);
9504 }
9505 
9506 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9507                 CPSRWriteType write_type)
9508 {
9509     uint32_t changed_daif;
9510     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9511         (mask & (CPSR_M | CPSR_E | CPSR_IL));
9512 
9513     if (mask & CPSR_NZCV) {
9514         env->ZF = (~val) & CPSR_Z;
9515         env->NF = val;
9516         env->CF = (val >> 29) & 1;
9517         env->VF = (val << 3) & 0x80000000;
9518     }
9519     if (mask & CPSR_Q) {
9520         env->QF = ((val & CPSR_Q) != 0);
9521     }
9522     if (mask & CPSR_T) {
9523         env->thumb = ((val & CPSR_T) != 0);
9524     }
9525     if (mask & CPSR_IT_0_1) {
9526         env->condexec_bits &= ~3;
9527         env->condexec_bits |= (val >> 25) & 3;
9528     }
9529     if (mask & CPSR_IT_2_7) {
9530         env->condexec_bits &= 3;
9531         env->condexec_bits |= (val >> 8) & 0xfc;
9532     }
9533     if (mask & CPSR_GE) {
9534         env->GE = (val >> 16) & 0xf;
9535     }
9536 
9537     /*
9538      * In a V7 implementation that includes the security extensions but does
9539      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9540      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9541      * bits respectively.
9542      *
9543      * In a V8 implementation, it is permitted for privileged software to
9544      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9545      */
9546     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9547         arm_feature(env, ARM_FEATURE_EL3) &&
9548         !arm_feature(env, ARM_FEATURE_EL2) &&
9549         !arm_is_secure(env)) {
9550 
9551         changed_daif = (env->daif ^ val) & mask;
9552 
9553         if (changed_daif & CPSR_A) {
9554             /*
9555              * Check to see if we are allowed to change the masking of async
9556              * abort exceptions from a non-secure state.
9557              */
9558             if (!(env->cp15.scr_el3 & SCR_AW)) {
9559                 qemu_log_mask(LOG_GUEST_ERROR,
9560                               "Ignoring attempt to switch CPSR_A flag from "
9561                               "non-secure world with SCR.AW bit clear\n");
9562                 mask &= ~CPSR_A;
9563             }
9564         }
9565 
9566         if (changed_daif & CPSR_F) {
9567             /*
9568              * Check to see if we are allowed to change the masking of FIQ
9569              * exceptions from a non-secure state.
9570              */
9571             if (!(env->cp15.scr_el3 & SCR_FW)) {
9572                 qemu_log_mask(LOG_GUEST_ERROR,
9573                               "Ignoring attempt to switch CPSR_F flag from "
9574                               "non-secure world with SCR.FW bit clear\n");
9575                 mask &= ~CPSR_F;
9576             }
9577 
9578             /*
9579              * Check whether non-maskable FIQ (NMFI) support is enabled.
9580              * If this bit is set software is not allowed to mask
9581              * FIQs, but is allowed to set CPSR_F to 0.
9582              */
9583             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9584                 (val & CPSR_F)) {
9585                 qemu_log_mask(LOG_GUEST_ERROR,
9586                               "Ignoring attempt to enable CPSR_F flag "
9587                               "(non-maskable FIQ [NMFI] support enabled)\n");
9588                 mask &= ~CPSR_F;
9589             }
9590         }
9591     }
9592 
9593     env->daif &= ~(CPSR_AIF & mask);
9594     env->daif |= val & CPSR_AIF & mask;
9595 
9596     if (write_type != CPSRWriteRaw &&
9597         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9598         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9599             /*
9600              * Note that we can only get here in USR mode if this is a
9601              * gdb stub write; for this case we follow the architectural
9602              * behaviour for guest writes in USR mode of ignoring an attempt
9603              * to switch mode. (Those are caught by translate.c for writes
9604              * triggered by guest instructions.)
9605              */
9606             mask &= ~CPSR_M;
9607         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9608             /*
9609              * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9610              * v7, and has defined behaviour in v8:
9611              *  + leave CPSR.M untouched
9612              *  + allow changes to the other CPSR fields
9613              *  + set PSTATE.IL
9614              * For user changes via the GDB stub, we don't set PSTATE.IL,
9615              * as this would be unnecessarily harsh for a user error.
9616              */
9617             mask &= ~CPSR_M;
9618             if (write_type != CPSRWriteByGDBStub &&
9619                 arm_feature(env, ARM_FEATURE_V8)) {
9620                 mask |= CPSR_IL;
9621                 val |= CPSR_IL;
9622             }
9623             qemu_log_mask(LOG_GUEST_ERROR,
9624                           "Illegal AArch32 mode switch attempt from %s to %s\n",
9625                           aarch32_mode_name(env->uncached_cpsr),
9626                           aarch32_mode_name(val));
9627         } else {
9628             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9629                           write_type == CPSRWriteExceptionReturn ?
9630                           "Exception return from AArch32" :
9631                           "AArch32 mode switch from",
9632                           aarch32_mode_name(env->uncached_cpsr),
9633                           aarch32_mode_name(val), env->regs[15]);
9634             switch_mode(env, val & CPSR_M);
9635         }
9636     }
9637     mask &= ~CACHED_CPSR_BITS;
9638     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9639     if (rebuild_hflags) {
9640         arm_rebuild_hflags(env);
9641     }
9642 }
9643 
9644 /* Sign/zero extend */
9645 uint32_t HELPER(sxtb16)(uint32_t x)
9646 {
9647     uint32_t res;
9648     res = (uint16_t)(int8_t)x;
9649     res |= (uint32_t)(int8_t)(x >> 16) << 16;
9650     return res;
9651 }
9652 
9653 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9654 {
9655     /*
9656      * Take a division-by-zero exception if necessary; otherwise return
9657      * to get the usual non-trapping division behaviour (result of 0)
9658      */
9659     if (arm_feature(env, ARM_FEATURE_M)
9660         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9661         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9662     }
9663 }
9664 
9665 uint32_t HELPER(uxtb16)(uint32_t x)
9666 {
9667     uint32_t res;
9668     res = (uint16_t)(uint8_t)x;
9669     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9670     return res;
9671 }
9672 
9673 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9674 {
9675     if (den == 0) {
9676         handle_possible_div0_trap(env, GETPC());
9677         return 0;
9678     }
9679     if (num == INT_MIN && den == -1) {
9680         return INT_MIN;
9681     }
9682     return num / den;
9683 }
9684 
9685 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9686 {
9687     if (den == 0) {
9688         handle_possible_div0_trap(env, GETPC());
9689         return 0;
9690     }
9691     return num / den;
9692 }
9693 
9694 uint32_t HELPER(rbit)(uint32_t x)
9695 {
9696     return revbit32(x);
9697 }
9698 
9699 #ifdef CONFIG_USER_ONLY
9700 
9701 static void switch_mode(CPUARMState *env, int mode)
9702 {
9703     ARMCPU *cpu = env_archcpu(env);
9704 
9705     if (mode != ARM_CPU_MODE_USR) {
9706         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9707     }
9708 }
9709 
9710 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9711                                  uint32_t cur_el, bool secure)
9712 {
9713     return 1;
9714 }
9715 
9716 void aarch64_sync_64_to_32(CPUARMState *env)
9717 {
9718     g_assert_not_reached();
9719 }
9720 
9721 #else
9722 
9723 static void switch_mode(CPUARMState *env, int mode)
9724 {
9725     int old_mode;
9726     int i;
9727 
9728     old_mode = env->uncached_cpsr & CPSR_M;
9729     if (mode == old_mode) {
9730         return;
9731     }
9732 
9733     if (old_mode == ARM_CPU_MODE_FIQ) {
9734         memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9735         memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9736     } else if (mode == ARM_CPU_MODE_FIQ) {
9737         memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9738         memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9739     }
9740 
9741     i = bank_number(old_mode);
9742     env->banked_r13[i] = env->regs[13];
9743     env->banked_spsr[i] = env->spsr;
9744 
9745     i = bank_number(mode);
9746     env->regs[13] = env->banked_r13[i];
9747     env->spsr = env->banked_spsr[i];
9748 
9749     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9750     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9751 }
9752 
9753 /*
9754  * Physical Interrupt Target EL Lookup Table
9755  *
9756  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9757  *
9758  * The below multi-dimensional table is used for looking up the target
9759  * exception level given numerous condition criteria.  Specifically, the
9760  * target EL is based on SCR and HCR routing controls as well as the
9761  * currently executing EL and secure state.
9762  *
9763  *    Dimensions:
9764  *    target_el_table[2][2][2][2][2][4]
9765  *                    |  |  |  |  |  +--- Current EL
9766  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
9767  *                    |  |  |  +--------- HCR mask override
9768  *                    |  |  +------------ SCR exec state control
9769  *                    |  +--------------- SCR mask override
9770  *                    +------------------ 32-bit(0)/64-bit(1) EL3
9771  *
9772  *    The table values are as such:
9773  *    0-3 = EL0-EL3
9774  *     -1 = Cannot occur
9775  *
9776  * The ARM ARM target EL table includes entries indicating that an "exception
9777  * is not taken".  The two cases where this is applicable are:
9778  *    1) An exception is taken from EL3 but the SCR does not have the exception
9779  *    routed to EL3.
9780  *    2) An exception is taken from EL2 but the HCR does not have the exception
9781  *    routed to EL2.
9782  * In these two cases, the below table contain a target of EL1.  This value is
9783  * returned as it is expected that the consumer of the table data will check
9784  * for "target EL >= current EL" to ensure the exception is not taken.
9785  *
9786  *            SCR     HCR
9787  *         64  EA     AMO                 From
9788  *        BIT IRQ     IMO      Non-secure         Secure
9789  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
9790  */
9791 static const int8_t target_el_table[2][2][2][2][2][4] = {
9792     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9793        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
9794       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9795        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
9796      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9797        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
9798       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9799        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
9800     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
9801        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
9802       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
9803        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
9804      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
9805        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
9806       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
9807        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
9808 };
9809 
9810 /*
9811  * Determine the target EL for physical exceptions
9812  */
9813 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9814                                  uint32_t cur_el, bool secure)
9815 {
9816     CPUARMState *env = cs->env_ptr;
9817     bool rw;
9818     bool scr;
9819     bool hcr;
9820     int target_el;
9821     /* Is the highest EL AArch64? */
9822     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9823     uint64_t hcr_el2;
9824 
9825     if (arm_feature(env, ARM_FEATURE_EL3)) {
9826         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9827     } else {
9828         /*
9829          * Either EL2 is the highest EL (and so the EL2 register width
9830          * is given by is64); or there is no EL2 or EL3, in which case
9831          * the value of 'rw' does not affect the table lookup anyway.
9832          */
9833         rw = is64;
9834     }
9835 
9836     hcr_el2 = arm_hcr_el2_eff(env);
9837     switch (excp_idx) {
9838     case EXCP_IRQ:
9839         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9840         hcr = hcr_el2 & HCR_IMO;
9841         break;
9842     case EXCP_FIQ:
9843         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9844         hcr = hcr_el2 & HCR_FMO;
9845         break;
9846     default:
9847         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9848         hcr = hcr_el2 & HCR_AMO;
9849         break;
9850     };
9851 
9852     /*
9853      * For these purposes, TGE and AMO/IMO/FMO both force the
9854      * interrupt to EL2.  Fold TGE into the bit extracted above.
9855      */
9856     hcr |= (hcr_el2 & HCR_TGE) != 0;
9857 
9858     /* Perform a table-lookup for the target EL given the current state */
9859     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9860 
9861     assert(target_el > 0);
9862 
9863     return target_el;
9864 }
9865 
9866 void arm_log_exception(CPUState *cs)
9867 {
9868     int idx = cs->exception_index;
9869 
9870     if (qemu_loglevel_mask(CPU_LOG_INT)) {
9871         const char *exc = NULL;
9872         static const char * const excnames[] = {
9873             [EXCP_UDEF] = "Undefined Instruction",
9874             [EXCP_SWI] = "SVC",
9875             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9876             [EXCP_DATA_ABORT] = "Data Abort",
9877             [EXCP_IRQ] = "IRQ",
9878             [EXCP_FIQ] = "FIQ",
9879             [EXCP_BKPT] = "Breakpoint",
9880             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9881             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9882             [EXCP_HVC] = "Hypervisor Call",
9883             [EXCP_HYP_TRAP] = "Hypervisor Trap",
9884             [EXCP_SMC] = "Secure Monitor Call",
9885             [EXCP_VIRQ] = "Virtual IRQ",
9886             [EXCP_VFIQ] = "Virtual FIQ",
9887             [EXCP_SEMIHOST] = "Semihosting call",
9888             [EXCP_NOCP] = "v7M NOCP UsageFault",
9889             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9890             [EXCP_STKOF] = "v8M STKOF UsageFault",
9891             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9892             [EXCP_LSERR] = "v8M LSERR UsageFault",
9893             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9894             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
9895             [EXCP_VSERR] = "Virtual SERR",
9896         };
9897 
9898         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9899             exc = excnames[idx];
9900         }
9901         if (!exc) {
9902             exc = "unknown";
9903         }
9904         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
9905                       idx, exc, cs->cpu_index);
9906     }
9907 }
9908 
9909 /*
9910  * Function used to synchronize QEMU's AArch64 register set with AArch32
9911  * register set.  This is necessary when switching between AArch32 and AArch64
9912  * execution state.
9913  */
9914 void aarch64_sync_32_to_64(CPUARMState *env)
9915 {
9916     int i;
9917     uint32_t mode = env->uncached_cpsr & CPSR_M;
9918 
9919     /* We can blanket copy R[0:7] to X[0:7] */
9920     for (i = 0; i < 8; i++) {
9921         env->xregs[i] = env->regs[i];
9922     }
9923 
9924     /*
9925      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9926      * Otherwise, they come from the banked user regs.
9927      */
9928     if (mode == ARM_CPU_MODE_FIQ) {
9929         for (i = 8; i < 13; i++) {
9930             env->xregs[i] = env->usr_regs[i - 8];
9931         }
9932     } else {
9933         for (i = 8; i < 13; i++) {
9934             env->xregs[i] = env->regs[i];
9935         }
9936     }
9937 
9938     /*
9939      * Registers x13-x23 are the various mode SP and FP registers. Registers
9940      * r13 and r14 are only copied if we are in that mode, otherwise we copy
9941      * from the mode banked register.
9942      */
9943     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9944         env->xregs[13] = env->regs[13];
9945         env->xregs[14] = env->regs[14];
9946     } else {
9947         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9948         /* HYP is an exception in that it is copied from r14 */
9949         if (mode == ARM_CPU_MODE_HYP) {
9950             env->xregs[14] = env->regs[14];
9951         } else {
9952             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9953         }
9954     }
9955 
9956     if (mode == ARM_CPU_MODE_HYP) {
9957         env->xregs[15] = env->regs[13];
9958     } else {
9959         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9960     }
9961 
9962     if (mode == ARM_CPU_MODE_IRQ) {
9963         env->xregs[16] = env->regs[14];
9964         env->xregs[17] = env->regs[13];
9965     } else {
9966         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9967         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9968     }
9969 
9970     if (mode == ARM_CPU_MODE_SVC) {
9971         env->xregs[18] = env->regs[14];
9972         env->xregs[19] = env->regs[13];
9973     } else {
9974         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9975         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9976     }
9977 
9978     if (mode == ARM_CPU_MODE_ABT) {
9979         env->xregs[20] = env->regs[14];
9980         env->xregs[21] = env->regs[13];
9981     } else {
9982         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9983         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9984     }
9985 
9986     if (mode == ARM_CPU_MODE_UND) {
9987         env->xregs[22] = env->regs[14];
9988         env->xregs[23] = env->regs[13];
9989     } else {
9990         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9991         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9992     }
9993 
9994     /*
9995      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9996      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9997      * FIQ bank for r8-r14.
9998      */
9999     if (mode == ARM_CPU_MODE_FIQ) {
10000         for (i = 24; i < 31; i++) {
10001             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
10002         }
10003     } else {
10004         for (i = 24; i < 29; i++) {
10005             env->xregs[i] = env->fiq_regs[i - 24];
10006         }
10007         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10008         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10009     }
10010 
10011     env->pc = env->regs[15];
10012 }
10013 
10014 /*
10015  * Function used to synchronize QEMU's AArch32 register set with AArch64
10016  * register set.  This is necessary when switching between AArch32 and AArch64
10017  * execution state.
10018  */
10019 void aarch64_sync_64_to_32(CPUARMState *env)
10020 {
10021     int i;
10022     uint32_t mode = env->uncached_cpsr & CPSR_M;
10023 
10024     /* We can blanket copy X[0:7] to R[0:7] */
10025     for (i = 0; i < 8; i++) {
10026         env->regs[i] = env->xregs[i];
10027     }
10028 
10029     /*
10030      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10031      * Otherwise, we copy x8-x12 into the banked user regs.
10032      */
10033     if (mode == ARM_CPU_MODE_FIQ) {
10034         for (i = 8; i < 13; i++) {
10035             env->usr_regs[i - 8] = env->xregs[i];
10036         }
10037     } else {
10038         for (i = 8; i < 13; i++) {
10039             env->regs[i] = env->xregs[i];
10040         }
10041     }
10042 
10043     /*
10044      * Registers r13 & r14 depend on the current mode.
10045      * If we are in a given mode, we copy the corresponding x registers to r13
10046      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
10047      * for the mode.
10048      */
10049     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10050         env->regs[13] = env->xregs[13];
10051         env->regs[14] = env->xregs[14];
10052     } else {
10053         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10054 
10055         /*
10056          * HYP is an exception in that it does not have its own banked r14 but
10057          * shares the USR r14
10058          */
10059         if (mode == ARM_CPU_MODE_HYP) {
10060             env->regs[14] = env->xregs[14];
10061         } else {
10062             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10063         }
10064     }
10065 
10066     if (mode == ARM_CPU_MODE_HYP) {
10067         env->regs[13] = env->xregs[15];
10068     } else {
10069         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10070     }
10071 
10072     if (mode == ARM_CPU_MODE_IRQ) {
10073         env->regs[14] = env->xregs[16];
10074         env->regs[13] = env->xregs[17];
10075     } else {
10076         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10077         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10078     }
10079 
10080     if (mode == ARM_CPU_MODE_SVC) {
10081         env->regs[14] = env->xregs[18];
10082         env->regs[13] = env->xregs[19];
10083     } else {
10084         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10085         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10086     }
10087 
10088     if (mode == ARM_CPU_MODE_ABT) {
10089         env->regs[14] = env->xregs[20];
10090         env->regs[13] = env->xregs[21];
10091     } else {
10092         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10093         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10094     }
10095 
10096     if (mode == ARM_CPU_MODE_UND) {
10097         env->regs[14] = env->xregs[22];
10098         env->regs[13] = env->xregs[23];
10099     } else {
10100         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10101         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10102     }
10103 
10104     /*
10105      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10106      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
10107      * FIQ bank for r8-r14.
10108      */
10109     if (mode == ARM_CPU_MODE_FIQ) {
10110         for (i = 24; i < 31; i++) {
10111             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
10112         }
10113     } else {
10114         for (i = 24; i < 29; i++) {
10115             env->fiq_regs[i - 24] = env->xregs[i];
10116         }
10117         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10118         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10119     }
10120 
10121     env->regs[15] = env->pc;
10122 }
10123 
10124 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10125                                    uint32_t mask, uint32_t offset,
10126                                    uint32_t newpc)
10127 {
10128     int new_el;
10129 
10130     /* Change the CPU state so as to actually take the exception. */
10131     switch_mode(env, new_mode);
10132 
10133     /*
10134      * For exceptions taken to AArch32 we must clear the SS bit in both
10135      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10136      */
10137     env->pstate &= ~PSTATE_SS;
10138     env->spsr = cpsr_read(env);
10139     /* Clear IT bits.  */
10140     env->condexec_bits = 0;
10141     /* Switch to the new mode, and to the correct instruction set.  */
10142     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10143 
10144     /* This must be after mode switching. */
10145     new_el = arm_current_el(env);
10146 
10147     /* Set new mode endianness */
10148     env->uncached_cpsr &= ~CPSR_E;
10149     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10150         env->uncached_cpsr |= CPSR_E;
10151     }
10152     /* J and IL must always be cleared for exception entry */
10153     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10154     env->daif |= mask;
10155 
10156     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10157         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10158             env->uncached_cpsr |= CPSR_SSBS;
10159         } else {
10160             env->uncached_cpsr &= ~CPSR_SSBS;
10161         }
10162     }
10163 
10164     if (new_mode == ARM_CPU_MODE_HYP) {
10165         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10166         env->elr_el[2] = env->regs[15];
10167     } else {
10168         /* CPSR.PAN is normally preserved preserved unless...  */
10169         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10170             switch (new_el) {
10171             case 3:
10172                 if (!arm_is_secure_below_el3(env)) {
10173                     /* ... the target is EL3, from non-secure state.  */
10174                     env->uncached_cpsr &= ~CPSR_PAN;
10175                     break;
10176                 }
10177                 /* ... the target is EL3, from secure state ... */
10178                 /* fall through */
10179             case 1:
10180                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
10181                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10182                     env->uncached_cpsr |= CPSR_PAN;
10183                 }
10184                 break;
10185             }
10186         }
10187         /*
10188          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10189          * and we should just guard the thumb mode on V4
10190          */
10191         if (arm_feature(env, ARM_FEATURE_V4T)) {
10192             env->thumb =
10193                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10194         }
10195         env->regs[14] = env->regs[15] + offset;
10196     }
10197     env->regs[15] = newpc;
10198     arm_rebuild_hflags(env);
10199 }
10200 
10201 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10202 {
10203     /*
10204      * Handle exception entry to Hyp mode; this is sufficiently
10205      * different to entry to other AArch32 modes that we handle it
10206      * separately here.
10207      *
10208      * The vector table entry used is always the 0x14 Hyp mode entry point,
10209      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10210      * The offset applied to the preferred return address is always zero
10211      * (see DDI0487C.a section G1.12.3).
10212      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10213      */
10214     uint32_t addr, mask;
10215     ARMCPU *cpu = ARM_CPU(cs);
10216     CPUARMState *env = &cpu->env;
10217 
10218     switch (cs->exception_index) {
10219     case EXCP_UDEF:
10220         addr = 0x04;
10221         break;
10222     case EXCP_SWI:
10223         addr = 0x08;
10224         break;
10225     case EXCP_BKPT:
10226         /* Fall through to prefetch abort.  */
10227     case EXCP_PREFETCH_ABORT:
10228         env->cp15.ifar_s = env->exception.vaddress;
10229         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10230                       (uint32_t)env->exception.vaddress);
10231         addr = 0x0c;
10232         break;
10233     case EXCP_DATA_ABORT:
10234         env->cp15.dfar_s = env->exception.vaddress;
10235         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10236                       (uint32_t)env->exception.vaddress);
10237         addr = 0x10;
10238         break;
10239     case EXCP_IRQ:
10240         addr = 0x18;
10241         break;
10242     case EXCP_FIQ:
10243         addr = 0x1c;
10244         break;
10245     case EXCP_HVC:
10246         addr = 0x08;
10247         break;
10248     case EXCP_HYP_TRAP:
10249         addr = 0x14;
10250         break;
10251     default:
10252         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10253     }
10254 
10255     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10256         if (!arm_feature(env, ARM_FEATURE_V8)) {
10257             /*
10258              * QEMU syndrome values are v8-style. v7 has the IL bit
10259              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10260              * If this is a v7 CPU, squash the IL bit in those cases.
10261              */
10262             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10263                 (cs->exception_index == EXCP_DATA_ABORT &&
10264                  !(env->exception.syndrome & ARM_EL_ISV)) ||
10265                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10266                 env->exception.syndrome &= ~ARM_EL_IL;
10267             }
10268         }
10269         env->cp15.esr_el[2] = env->exception.syndrome;
10270     }
10271 
10272     if (arm_current_el(env) != 2 && addr < 0x14) {
10273         addr = 0x14;
10274     }
10275 
10276     mask = 0;
10277     if (!(env->cp15.scr_el3 & SCR_EA)) {
10278         mask |= CPSR_A;
10279     }
10280     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10281         mask |= CPSR_I;
10282     }
10283     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10284         mask |= CPSR_F;
10285     }
10286 
10287     addr += env->cp15.hvbar;
10288 
10289     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10290 }
10291 
10292 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10293 {
10294     ARMCPU *cpu = ARM_CPU(cs);
10295     CPUARMState *env = &cpu->env;
10296     uint32_t addr;
10297     uint32_t mask;
10298     int new_mode;
10299     uint32_t offset;
10300     uint32_t moe;
10301 
10302     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10303     switch (syn_get_ec(env->exception.syndrome)) {
10304     case EC_BREAKPOINT:
10305     case EC_BREAKPOINT_SAME_EL:
10306         moe = 1;
10307         break;
10308     case EC_WATCHPOINT:
10309     case EC_WATCHPOINT_SAME_EL:
10310         moe = 10;
10311         break;
10312     case EC_AA32_BKPT:
10313         moe = 3;
10314         break;
10315     case EC_VECTORCATCH:
10316         moe = 5;
10317         break;
10318     default:
10319         moe = 0;
10320         break;
10321     }
10322 
10323     if (moe) {
10324         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10325     }
10326 
10327     if (env->exception.target_el == 2) {
10328         arm_cpu_do_interrupt_aarch32_hyp(cs);
10329         return;
10330     }
10331 
10332     switch (cs->exception_index) {
10333     case EXCP_UDEF:
10334         new_mode = ARM_CPU_MODE_UND;
10335         addr = 0x04;
10336         mask = CPSR_I;
10337         if (env->thumb) {
10338             offset = 2;
10339         } else {
10340             offset = 4;
10341         }
10342         break;
10343     case EXCP_SWI:
10344         new_mode = ARM_CPU_MODE_SVC;
10345         addr = 0x08;
10346         mask = CPSR_I;
10347         /* The PC already points to the next instruction.  */
10348         offset = 0;
10349         break;
10350     case EXCP_BKPT:
10351         /* Fall through to prefetch abort.  */
10352     case EXCP_PREFETCH_ABORT:
10353         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10354         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10355         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10356                       env->exception.fsr, (uint32_t)env->exception.vaddress);
10357         new_mode = ARM_CPU_MODE_ABT;
10358         addr = 0x0c;
10359         mask = CPSR_A | CPSR_I;
10360         offset = 4;
10361         break;
10362     case EXCP_DATA_ABORT:
10363         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10364         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10365         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10366                       env->exception.fsr,
10367                       (uint32_t)env->exception.vaddress);
10368         new_mode = ARM_CPU_MODE_ABT;
10369         addr = 0x10;
10370         mask = CPSR_A | CPSR_I;
10371         offset = 8;
10372         break;
10373     case EXCP_IRQ:
10374         new_mode = ARM_CPU_MODE_IRQ;
10375         addr = 0x18;
10376         /* Disable IRQ and imprecise data aborts.  */
10377         mask = CPSR_A | CPSR_I;
10378         offset = 4;
10379         if (env->cp15.scr_el3 & SCR_IRQ) {
10380             /* IRQ routed to monitor mode */
10381             new_mode = ARM_CPU_MODE_MON;
10382             mask |= CPSR_F;
10383         }
10384         break;
10385     case EXCP_FIQ:
10386         new_mode = ARM_CPU_MODE_FIQ;
10387         addr = 0x1c;
10388         /* Disable FIQ, IRQ and imprecise data aborts.  */
10389         mask = CPSR_A | CPSR_I | CPSR_F;
10390         if (env->cp15.scr_el3 & SCR_FIQ) {
10391             /* FIQ routed to monitor mode */
10392             new_mode = ARM_CPU_MODE_MON;
10393         }
10394         offset = 4;
10395         break;
10396     case EXCP_VIRQ:
10397         new_mode = ARM_CPU_MODE_IRQ;
10398         addr = 0x18;
10399         /* Disable IRQ and imprecise data aborts.  */
10400         mask = CPSR_A | CPSR_I;
10401         offset = 4;
10402         break;
10403     case EXCP_VFIQ:
10404         new_mode = ARM_CPU_MODE_FIQ;
10405         addr = 0x1c;
10406         /* Disable FIQ, IRQ and imprecise data aborts.  */
10407         mask = CPSR_A | CPSR_I | CPSR_F;
10408         offset = 4;
10409         break;
10410     case EXCP_VSERR:
10411         {
10412             /*
10413              * Note that this is reported as a data abort, but the DFAR
10414              * has an UNKNOWN value.  Construct the SError syndrome from
10415              * AET and ExT fields.
10416              */
10417             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10418 
10419             if (extended_addresses_enabled(env)) {
10420                 env->exception.fsr = arm_fi_to_lfsc(&fi);
10421             } else {
10422                 env->exception.fsr = arm_fi_to_sfsc(&fi);
10423             }
10424             env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10425             A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10426             qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10427                           env->exception.fsr);
10428 
10429             new_mode = ARM_CPU_MODE_ABT;
10430             addr = 0x10;
10431             mask = CPSR_A | CPSR_I;
10432             offset = 8;
10433         }
10434         break;
10435     case EXCP_SMC:
10436         new_mode = ARM_CPU_MODE_MON;
10437         addr = 0x08;
10438         mask = CPSR_A | CPSR_I | CPSR_F;
10439         offset = 0;
10440         break;
10441     default:
10442         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10443         return; /* Never happens.  Keep compiler happy.  */
10444     }
10445 
10446     if (new_mode == ARM_CPU_MODE_MON) {
10447         addr += env->cp15.mvbar;
10448     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10449         /* High vectors. When enabled, base address cannot be remapped. */
10450         addr += 0xffff0000;
10451     } else {
10452         /*
10453          * ARM v7 architectures provide a vector base address register to remap
10454          * the interrupt vector table.
10455          * This register is only followed in non-monitor mode, and is banked.
10456          * Note: only bits 31:5 are valid.
10457          */
10458         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10459     }
10460 
10461     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10462         env->cp15.scr_el3 &= ~SCR_NS;
10463     }
10464 
10465     take_aarch32_exception(env, new_mode, mask, offset, addr);
10466 }
10467 
10468 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10469 {
10470     /*
10471      * Return the register number of the AArch64 view of the AArch32
10472      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10473      * be that of the AArch32 mode the exception came from.
10474      */
10475     int mode = env->uncached_cpsr & CPSR_M;
10476 
10477     switch (aarch32_reg) {
10478     case 0 ... 7:
10479         return aarch32_reg;
10480     case 8 ... 12:
10481         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10482     case 13:
10483         switch (mode) {
10484         case ARM_CPU_MODE_USR:
10485         case ARM_CPU_MODE_SYS:
10486             return 13;
10487         case ARM_CPU_MODE_HYP:
10488             return 15;
10489         case ARM_CPU_MODE_IRQ:
10490             return 17;
10491         case ARM_CPU_MODE_SVC:
10492             return 19;
10493         case ARM_CPU_MODE_ABT:
10494             return 21;
10495         case ARM_CPU_MODE_UND:
10496             return 23;
10497         case ARM_CPU_MODE_FIQ:
10498             return 29;
10499         default:
10500             g_assert_not_reached();
10501         }
10502     case 14:
10503         switch (mode) {
10504         case ARM_CPU_MODE_USR:
10505         case ARM_CPU_MODE_SYS:
10506         case ARM_CPU_MODE_HYP:
10507             return 14;
10508         case ARM_CPU_MODE_IRQ:
10509             return 16;
10510         case ARM_CPU_MODE_SVC:
10511             return 18;
10512         case ARM_CPU_MODE_ABT:
10513             return 20;
10514         case ARM_CPU_MODE_UND:
10515             return 22;
10516         case ARM_CPU_MODE_FIQ:
10517             return 30;
10518         default:
10519             g_assert_not_reached();
10520         }
10521     case 15:
10522         return 31;
10523     default:
10524         g_assert_not_reached();
10525     }
10526 }
10527 
10528 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10529 {
10530     uint32_t ret = cpsr_read(env);
10531 
10532     /* Move DIT to the correct location for SPSR_ELx */
10533     if (ret & CPSR_DIT) {
10534         ret &= ~CPSR_DIT;
10535         ret |= PSTATE_DIT;
10536     }
10537     /* Merge PSTATE.SS into SPSR_ELx */
10538     ret |= env->pstate & PSTATE_SS;
10539 
10540     return ret;
10541 }
10542 
10543 static bool syndrome_is_sync_extabt(uint32_t syndrome)
10544 {
10545     /* Return true if this syndrome value is a synchronous external abort */
10546     switch (syn_get_ec(syndrome)) {
10547     case EC_INSNABORT:
10548     case EC_INSNABORT_SAME_EL:
10549     case EC_DATAABORT:
10550     case EC_DATAABORT_SAME_EL:
10551         /* Look at fault status code for all the synchronous ext abort cases */
10552         switch (syndrome & 0x3f) {
10553         case 0x10:
10554         case 0x13:
10555         case 0x14:
10556         case 0x15:
10557         case 0x16:
10558         case 0x17:
10559             return true;
10560         default:
10561             return false;
10562         }
10563     default:
10564         return false;
10565     }
10566 }
10567 
10568 /* Handle exception entry to a target EL which is using AArch64 */
10569 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10570 {
10571     ARMCPU *cpu = ARM_CPU(cs);
10572     CPUARMState *env = &cpu->env;
10573     unsigned int new_el = env->exception.target_el;
10574     target_ulong addr = env->cp15.vbar_el[new_el];
10575     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10576     unsigned int old_mode;
10577     unsigned int cur_el = arm_current_el(env);
10578     int rt;
10579 
10580     /*
10581      * Note that new_el can never be 0.  If cur_el is 0, then
10582      * el0_a64 is is_a64(), else el0_a64 is ignored.
10583      */
10584     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10585 
10586     if (cur_el < new_el) {
10587         /*
10588          * Entry vector offset depends on whether the implemented EL
10589          * immediately lower than the target level is using AArch32 or AArch64
10590          */
10591         bool is_aa64;
10592         uint64_t hcr;
10593 
10594         switch (new_el) {
10595         case 3:
10596             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10597             break;
10598         case 2:
10599             hcr = arm_hcr_el2_eff(env);
10600             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10601                 is_aa64 = (hcr & HCR_RW) != 0;
10602                 break;
10603             }
10604             /* fall through */
10605         case 1:
10606             is_aa64 = is_a64(env);
10607             break;
10608         default:
10609             g_assert_not_reached();
10610         }
10611 
10612         if (is_aa64) {
10613             addr += 0x400;
10614         } else {
10615             addr += 0x600;
10616         }
10617     } else if (pstate_read(env) & PSTATE_SP) {
10618         addr += 0x200;
10619     }
10620 
10621     switch (cs->exception_index) {
10622     case EXCP_PREFETCH_ABORT:
10623     case EXCP_DATA_ABORT:
10624         /*
10625          * FEAT_DoubleFault allows synchronous external aborts taken to EL3
10626          * to be taken to the SError vector entrypoint.
10627          */
10628         if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
10629             syndrome_is_sync_extabt(env->exception.syndrome)) {
10630             addr += 0x180;
10631         }
10632         env->cp15.far_el[new_el] = env->exception.vaddress;
10633         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10634                       env->cp15.far_el[new_el]);
10635         /* fall through */
10636     case EXCP_BKPT:
10637     case EXCP_UDEF:
10638     case EXCP_SWI:
10639     case EXCP_HVC:
10640     case EXCP_HYP_TRAP:
10641     case EXCP_SMC:
10642         switch (syn_get_ec(env->exception.syndrome)) {
10643         case EC_ADVSIMDFPACCESSTRAP:
10644             /*
10645              * QEMU internal FP/SIMD syndromes from AArch32 include the
10646              * TA and coproc fields which are only exposed if the exception
10647              * is taken to AArch32 Hyp mode. Mask them out to get a valid
10648              * AArch64 format syndrome.
10649              */
10650             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10651             break;
10652         case EC_CP14RTTRAP:
10653         case EC_CP15RTTRAP:
10654         case EC_CP14DTTRAP:
10655             /*
10656              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10657              * the raw register field from the insn; when taking this to
10658              * AArch64 we must convert it to the AArch64 view of the register
10659              * number. Notice that we read a 4-bit AArch32 register number and
10660              * write back a 5-bit AArch64 one.
10661              */
10662             rt = extract32(env->exception.syndrome, 5, 4);
10663             rt = aarch64_regnum(env, rt);
10664             env->exception.syndrome = deposit32(env->exception.syndrome,
10665                                                 5, 5, rt);
10666             break;
10667         case EC_CP15RRTTRAP:
10668         case EC_CP14RRTTRAP:
10669             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10670             rt = extract32(env->exception.syndrome, 5, 4);
10671             rt = aarch64_regnum(env, rt);
10672             env->exception.syndrome = deposit32(env->exception.syndrome,
10673                                                 5, 5, rt);
10674             rt = extract32(env->exception.syndrome, 10, 4);
10675             rt = aarch64_regnum(env, rt);
10676             env->exception.syndrome = deposit32(env->exception.syndrome,
10677                                                 10, 5, rt);
10678             break;
10679         }
10680         env->cp15.esr_el[new_el] = env->exception.syndrome;
10681         break;
10682     case EXCP_IRQ:
10683     case EXCP_VIRQ:
10684         addr += 0x80;
10685         break;
10686     case EXCP_FIQ:
10687     case EXCP_VFIQ:
10688         addr += 0x100;
10689         break;
10690     case EXCP_VSERR:
10691         addr += 0x180;
10692         /* Construct the SError syndrome from IDS and ISS fields. */
10693         env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
10694         env->cp15.esr_el[new_el] = env->exception.syndrome;
10695         break;
10696     default:
10697         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10698     }
10699 
10700     if (is_a64(env)) {
10701         old_mode = pstate_read(env);
10702         aarch64_save_sp(env, arm_current_el(env));
10703         env->elr_el[new_el] = env->pc;
10704     } else {
10705         old_mode = cpsr_read_for_spsr_elx(env);
10706         env->elr_el[new_el] = env->regs[15];
10707 
10708         aarch64_sync_32_to_64(env);
10709 
10710         env->condexec_bits = 0;
10711     }
10712     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10713 
10714     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10715                   env->elr_el[new_el]);
10716 
10717     if (cpu_isar_feature(aa64_pan, cpu)) {
10718         /* The value of PSTATE.PAN is normally preserved, except when ... */
10719         new_mode |= old_mode & PSTATE_PAN;
10720         switch (new_el) {
10721         case 2:
10722             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
10723             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10724                 != (HCR_E2H | HCR_TGE)) {
10725                 break;
10726             }
10727             /* fall through */
10728         case 1:
10729             /* ... the target is EL1 ... */
10730             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
10731             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10732                 new_mode |= PSTATE_PAN;
10733             }
10734             break;
10735         }
10736     }
10737     if (cpu_isar_feature(aa64_mte, cpu)) {
10738         new_mode |= PSTATE_TCO;
10739     }
10740 
10741     if (cpu_isar_feature(aa64_ssbs, cpu)) {
10742         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10743             new_mode |= PSTATE_SSBS;
10744         } else {
10745             new_mode &= ~PSTATE_SSBS;
10746         }
10747     }
10748 
10749     pstate_write(env, PSTATE_DAIF | new_mode);
10750     env->aarch64 = true;
10751     aarch64_restore_sp(env, new_el);
10752     helper_rebuild_hflags_a64(env, new_el);
10753 
10754     env->pc = addr;
10755 
10756     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10757                   new_el, env->pc, pstate_read(env));
10758 }
10759 
10760 /*
10761  * Do semihosting call and set the appropriate return value. All the
10762  * permission and validity checks have been done at translate time.
10763  *
10764  * We only see semihosting exceptions in TCG only as they are not
10765  * trapped to the hypervisor in KVM.
10766  */
10767 #ifdef CONFIG_TCG
10768 static void handle_semihosting(CPUState *cs)
10769 {
10770     ARMCPU *cpu = ARM_CPU(cs);
10771     CPUARMState *env = &cpu->env;
10772 
10773     if (is_a64(env)) {
10774         qemu_log_mask(CPU_LOG_INT,
10775                       "...handling as semihosting call 0x%" PRIx64 "\n",
10776                       env->xregs[0]);
10777         do_common_semihosting(cs);
10778         env->pc += 4;
10779     } else {
10780         qemu_log_mask(CPU_LOG_INT,
10781                       "...handling as semihosting call 0x%x\n",
10782                       env->regs[0]);
10783         do_common_semihosting(cs);
10784         env->regs[15] += env->thumb ? 2 : 4;
10785     }
10786 }
10787 #endif
10788 
10789 /*
10790  * Handle a CPU exception for A and R profile CPUs.
10791  * Do any appropriate logging, handle PSCI calls, and then hand off
10792  * to the AArch64-entry or AArch32-entry function depending on the
10793  * target exception level's register width.
10794  *
10795  * Note: this is used for both TCG (as the do_interrupt tcg op),
10796  *       and KVM to re-inject guest debug exceptions, and to
10797  *       inject a Synchronous-External-Abort.
10798  */
10799 void arm_cpu_do_interrupt(CPUState *cs)
10800 {
10801     ARMCPU *cpu = ARM_CPU(cs);
10802     CPUARMState *env = &cpu->env;
10803     unsigned int new_el = env->exception.target_el;
10804 
10805     assert(!arm_feature(env, ARM_FEATURE_M));
10806 
10807     arm_log_exception(cs);
10808     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10809                   new_el);
10810     if (qemu_loglevel_mask(CPU_LOG_INT)
10811         && !excp_is_internal(cs->exception_index)) {
10812         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10813                       syn_get_ec(env->exception.syndrome),
10814                       env->exception.syndrome);
10815     }
10816 
10817     if (arm_is_psci_call(cpu, cs->exception_index)) {
10818         arm_handle_psci_call(cpu);
10819         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10820         return;
10821     }
10822 
10823     /*
10824      * Semihosting semantics depend on the register width of the code
10825      * that caused the exception, not the target exception level, so
10826      * must be handled here.
10827      */
10828 #ifdef CONFIG_TCG
10829     if (cs->exception_index == EXCP_SEMIHOST) {
10830         handle_semihosting(cs);
10831         return;
10832     }
10833 #endif
10834 
10835     /*
10836      * Hooks may change global state so BQL should be held, also the
10837      * BQL needs to be held for any modification of
10838      * cs->interrupt_request.
10839      */
10840     g_assert(qemu_mutex_iothread_locked());
10841 
10842     arm_call_pre_el_change_hook(cpu);
10843 
10844     assert(!excp_is_internal(cs->exception_index));
10845     if (arm_el_is_aa64(env, new_el)) {
10846         arm_cpu_do_interrupt_aarch64(cs);
10847     } else {
10848         arm_cpu_do_interrupt_aarch32(cs);
10849     }
10850 
10851     arm_call_el_change_hook(cpu);
10852 
10853     if (!kvm_enabled()) {
10854         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10855     }
10856 }
10857 #endif /* !CONFIG_USER_ONLY */
10858 
10859 uint64_t arm_sctlr(CPUARMState *env, int el)
10860 {
10861     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10862     if (el == 0) {
10863         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10864         el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
10865     }
10866     return env->cp15.sctlr_el[el];
10867 }
10868 
10869 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
10870 {
10871     if (regime_has_2_ranges(mmu_idx)) {
10872         return extract64(tcr, 37, 2);
10873     } else if (regime_is_stage2(mmu_idx)) {
10874         return 0; /* VTCR_EL2 */
10875     } else {
10876         /* Replicate the single TBI bit so we always have 2 bits.  */
10877         return extract32(tcr, 20, 1) * 3;
10878     }
10879 }
10880 
10881 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
10882 {
10883     if (regime_has_2_ranges(mmu_idx)) {
10884         return extract64(tcr, 51, 2);
10885     } else if (regime_is_stage2(mmu_idx)) {
10886         return 0; /* VTCR_EL2 */
10887     } else {
10888         /* Replicate the single TBID bit so we always have 2 bits.  */
10889         return extract32(tcr, 29, 1) * 3;
10890     }
10891 }
10892 
10893 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
10894 {
10895     if (regime_has_2_ranges(mmu_idx)) {
10896         return extract64(tcr, 57, 2);
10897     } else {
10898         /* Replicate the single TCMA bit so we always have 2 bits.  */
10899         return extract32(tcr, 30, 1) * 3;
10900     }
10901 }
10902 
10903 static ARMGranuleSize tg0_to_gran_size(int tg)
10904 {
10905     switch (tg) {
10906     case 0:
10907         return Gran4K;
10908     case 1:
10909         return Gran64K;
10910     case 2:
10911         return Gran16K;
10912     default:
10913         return GranInvalid;
10914     }
10915 }
10916 
10917 static ARMGranuleSize tg1_to_gran_size(int tg)
10918 {
10919     switch (tg) {
10920     case 1:
10921         return Gran16K;
10922     case 2:
10923         return Gran4K;
10924     case 3:
10925         return Gran64K;
10926     default:
10927         return GranInvalid;
10928     }
10929 }
10930 
10931 static inline bool have4k(ARMCPU *cpu, bool stage2)
10932 {
10933     return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
10934         : cpu_isar_feature(aa64_tgran4, cpu);
10935 }
10936 
10937 static inline bool have16k(ARMCPU *cpu, bool stage2)
10938 {
10939     return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
10940         : cpu_isar_feature(aa64_tgran16, cpu);
10941 }
10942 
10943 static inline bool have64k(ARMCPU *cpu, bool stage2)
10944 {
10945     return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
10946         : cpu_isar_feature(aa64_tgran64, cpu);
10947 }
10948 
10949 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
10950                                          bool stage2)
10951 {
10952     switch (gran) {
10953     case Gran4K:
10954         if (have4k(cpu, stage2)) {
10955             return gran;
10956         }
10957         break;
10958     case Gran16K:
10959         if (have16k(cpu, stage2)) {
10960             return gran;
10961         }
10962         break;
10963     case Gran64K:
10964         if (have64k(cpu, stage2)) {
10965             return gran;
10966         }
10967         break;
10968     case GranInvalid:
10969         break;
10970     }
10971     /*
10972      * If the guest selects a granule size that isn't implemented,
10973      * the architecture requires that we behave as if it selected one
10974      * that is (with an IMPDEF choice of which one to pick). We choose
10975      * to implement the smallest supported granule size.
10976      */
10977     if (have4k(cpu, stage2)) {
10978         return Gran4K;
10979     }
10980     if (have16k(cpu, stage2)) {
10981         return Gran16K;
10982     }
10983     assert(have64k(cpu, stage2));
10984     return Gran64K;
10985 }
10986 
10987 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10988                                    ARMMMUIdx mmu_idx, bool data)
10989 {
10990     uint64_t tcr = regime_tcr(env, mmu_idx);
10991     bool epd, hpd, tsz_oob, ds, ha, hd;
10992     int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
10993     ARMGranuleSize gran;
10994     ARMCPU *cpu = env_archcpu(env);
10995     bool stage2 = regime_is_stage2(mmu_idx);
10996 
10997     if (!regime_has_2_ranges(mmu_idx)) {
10998         select = 0;
10999         tsz = extract32(tcr, 0, 6);
11000         gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11001         if (stage2) {
11002             /* VTCR_EL2 */
11003             hpd = false;
11004         } else {
11005             hpd = extract32(tcr, 24, 1);
11006         }
11007         epd = false;
11008         sh = extract32(tcr, 12, 2);
11009         ps = extract32(tcr, 16, 3);
11010         ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11011         hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11012         ds = extract64(tcr, 32, 1);
11013     } else {
11014         bool e0pd;
11015 
11016         /*
11017          * Bit 55 is always between the two regions, and is canonical for
11018          * determining if address tagging is enabled.
11019          */
11020         select = extract64(va, 55, 1);
11021         if (!select) {
11022             tsz = extract32(tcr, 0, 6);
11023             gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11024             epd = extract32(tcr, 7, 1);
11025             sh = extract32(tcr, 12, 2);
11026             hpd = extract64(tcr, 41, 1);
11027             e0pd = extract64(tcr, 55, 1);
11028         } else {
11029             tsz = extract32(tcr, 16, 6);
11030             gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11031             epd = extract32(tcr, 23, 1);
11032             sh = extract32(tcr, 28, 2);
11033             hpd = extract64(tcr, 42, 1);
11034             e0pd = extract64(tcr, 56, 1);
11035         }
11036         ps = extract64(tcr, 32, 3);
11037         ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11038         hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11039         ds = extract64(tcr, 59, 1);
11040 
11041         if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11042             regime_is_user(env, mmu_idx)) {
11043             epd = true;
11044         }
11045     }
11046 
11047     gran = sanitize_gran_size(cpu, gran, stage2);
11048 
11049     if (cpu_isar_feature(aa64_st, cpu)) {
11050         max_tsz = 48 - (gran == Gran64K);
11051     } else {
11052         max_tsz = 39;
11053     }
11054 
11055     /*
11056      * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11057      * adjust the effective value of DS, as documented.
11058      */
11059     min_tsz = 16;
11060     if (gran == Gran64K) {
11061         if (cpu_isar_feature(aa64_lva, cpu)) {
11062             min_tsz = 12;
11063         }
11064         ds = false;
11065     } else if (ds) {
11066         if (regime_is_stage2(mmu_idx)) {
11067             if (gran == Gran16K) {
11068                 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11069             } else {
11070                 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11071             }
11072         } else {
11073             if (gran == Gran16K) {
11074                 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11075             } else {
11076                 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11077             }
11078         }
11079         if (ds) {
11080             min_tsz = 12;
11081         }
11082     }
11083 
11084     if (tsz > max_tsz) {
11085         tsz = max_tsz;
11086         tsz_oob = true;
11087     } else if (tsz < min_tsz) {
11088         tsz = min_tsz;
11089         tsz_oob = true;
11090     } else {
11091         tsz_oob = false;
11092     }
11093 
11094     /* Present TBI as a composite with TBID.  */
11095     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11096     if (!data) {
11097         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11098     }
11099     tbi = (tbi >> select) & 1;
11100 
11101     return (ARMVAParameters) {
11102         .tsz = tsz,
11103         .ps = ps,
11104         .sh = sh,
11105         .select = select,
11106         .tbi = tbi,
11107         .epd = epd,
11108         .hpd = hpd,
11109         .tsz_oob = tsz_oob,
11110         .ds = ds,
11111         .ha = ha,
11112         .hd = ha && hd,
11113         .gran = gran,
11114     };
11115 }
11116 
11117 /*
11118  * Note that signed overflow is undefined in C.  The following routines are
11119  * careful to use unsigned types where modulo arithmetic is required.
11120  * Failure to do so _will_ break on newer gcc.
11121  */
11122 
11123 /* Signed saturating arithmetic.  */
11124 
11125 /* Perform 16-bit signed saturating addition.  */
11126 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11127 {
11128     uint16_t res;
11129 
11130     res = a + b;
11131     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11132         if (a & 0x8000) {
11133             res = 0x8000;
11134         } else {
11135             res = 0x7fff;
11136         }
11137     }
11138     return res;
11139 }
11140 
11141 /* Perform 8-bit signed saturating addition.  */
11142 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11143 {
11144     uint8_t res;
11145 
11146     res = a + b;
11147     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11148         if (a & 0x80) {
11149             res = 0x80;
11150         } else {
11151             res = 0x7f;
11152         }
11153     }
11154     return res;
11155 }
11156 
11157 /* Perform 16-bit signed saturating subtraction.  */
11158 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11159 {
11160     uint16_t res;
11161 
11162     res = a - b;
11163     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11164         if (a & 0x8000) {
11165             res = 0x8000;
11166         } else {
11167             res = 0x7fff;
11168         }
11169     }
11170     return res;
11171 }
11172 
11173 /* Perform 8-bit signed saturating subtraction.  */
11174 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11175 {
11176     uint8_t res;
11177 
11178     res = a - b;
11179     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11180         if (a & 0x80) {
11181             res = 0x80;
11182         } else {
11183             res = 0x7f;
11184         }
11185     }
11186     return res;
11187 }
11188 
11189 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11190 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11191 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
11192 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
11193 #define PFX q
11194 
11195 #include "op_addsub.h"
11196 
11197 /* Unsigned saturating arithmetic.  */
11198 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11199 {
11200     uint16_t res;
11201     res = a + b;
11202     if (res < a) {
11203         res = 0xffff;
11204     }
11205     return res;
11206 }
11207 
11208 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11209 {
11210     if (a > b) {
11211         return a - b;
11212     } else {
11213         return 0;
11214     }
11215 }
11216 
11217 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11218 {
11219     uint8_t res;
11220     res = a + b;
11221     if (res < a) {
11222         res = 0xff;
11223     }
11224     return res;
11225 }
11226 
11227 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11228 {
11229     if (a > b) {
11230         return a - b;
11231     } else {
11232         return 0;
11233     }
11234 }
11235 
11236 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11237 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11238 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
11239 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
11240 #define PFX uq
11241 
11242 #include "op_addsub.h"
11243 
11244 /* Signed modulo arithmetic.  */
11245 #define SARITH16(a, b, n, op) do { \
11246     int32_t sum; \
11247     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11248     RESULT(sum, n, 16); \
11249     if (sum >= 0) \
11250         ge |= 3 << (n * 2); \
11251     } while (0)
11252 
11253 #define SARITH8(a, b, n, op) do { \
11254     int32_t sum; \
11255     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11256     RESULT(sum, n, 8); \
11257     if (sum >= 0) \
11258         ge |= 1 << n; \
11259     } while (0)
11260 
11261 
11262 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11263 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11264 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
11265 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
11266 #define PFX s
11267 #define ARITH_GE
11268 
11269 #include "op_addsub.h"
11270 
11271 /* Unsigned modulo arithmetic.  */
11272 #define ADD16(a, b, n) do { \
11273     uint32_t sum; \
11274     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11275     RESULT(sum, n, 16); \
11276     if ((sum >> 16) == 1) \
11277         ge |= 3 << (n * 2); \
11278     } while (0)
11279 
11280 #define ADD8(a, b, n) do { \
11281     uint32_t sum; \
11282     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11283     RESULT(sum, n, 8); \
11284     if ((sum >> 8) == 1) \
11285         ge |= 1 << n; \
11286     } while (0)
11287 
11288 #define SUB16(a, b, n) do { \
11289     uint32_t sum; \
11290     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11291     RESULT(sum, n, 16); \
11292     if ((sum >> 16) == 0) \
11293         ge |= 3 << (n * 2); \
11294     } while (0)
11295 
11296 #define SUB8(a, b, n) do { \
11297     uint32_t sum; \
11298     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11299     RESULT(sum, n, 8); \
11300     if ((sum >> 8) == 0) \
11301         ge |= 1 << n; \
11302     } while (0)
11303 
11304 #define PFX u
11305 #define ARITH_GE
11306 
11307 #include "op_addsub.h"
11308 
11309 /* Halved signed arithmetic.  */
11310 #define ADD16(a, b, n) \
11311   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11312 #define SUB16(a, b, n) \
11313   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11314 #define ADD8(a, b, n) \
11315   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11316 #define SUB8(a, b, n) \
11317   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11318 #define PFX sh
11319 
11320 #include "op_addsub.h"
11321 
11322 /* Halved unsigned arithmetic.  */
11323 #define ADD16(a, b, n) \
11324   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11325 #define SUB16(a, b, n) \
11326   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11327 #define ADD8(a, b, n) \
11328   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11329 #define SUB8(a, b, n) \
11330   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11331 #define PFX uh
11332 
11333 #include "op_addsub.h"
11334 
11335 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11336 {
11337     if (a > b) {
11338         return a - b;
11339     } else {
11340         return b - a;
11341     }
11342 }
11343 
11344 /* Unsigned sum of absolute byte differences.  */
11345 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11346 {
11347     uint32_t sum;
11348     sum = do_usad(a, b);
11349     sum += do_usad(a >> 8, b >> 8);
11350     sum += do_usad(a >> 16, b >> 16);
11351     sum += do_usad(a >> 24, b >> 24);
11352     return sum;
11353 }
11354 
11355 /* For ARMv6 SEL instruction.  */
11356 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11357 {
11358     uint32_t mask;
11359 
11360     mask = 0;
11361     if (flags & 1) {
11362         mask |= 0xff;
11363     }
11364     if (flags & 2) {
11365         mask |= 0xff00;
11366     }
11367     if (flags & 4) {
11368         mask |= 0xff0000;
11369     }
11370     if (flags & 8) {
11371         mask |= 0xff000000;
11372     }
11373     return (a & mask) | (b & ~mask);
11374 }
11375 
11376 /*
11377  * CRC helpers.
11378  * The upper bytes of val (above the number specified by 'bytes') must have
11379  * been zeroed out by the caller.
11380  */
11381 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11382 {
11383     uint8_t buf[4];
11384 
11385     stl_le_p(buf, val);
11386 
11387     /* zlib crc32 converts the accumulator and output to one's complement.  */
11388     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11389 }
11390 
11391 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11392 {
11393     uint8_t buf[4];
11394 
11395     stl_le_p(buf, val);
11396 
11397     /* Linux crc32c converts the output to one's complement.  */
11398     return crc32c(acc, buf, bytes) ^ 0xffffffff;
11399 }
11400 
11401 /*
11402  * Return the exception level to which FP-disabled exceptions should
11403  * be taken, or 0 if FP is enabled.
11404  */
11405 int fp_exception_el(CPUARMState *env, int cur_el)
11406 {
11407 #ifndef CONFIG_USER_ONLY
11408     uint64_t hcr_el2;
11409 
11410     /*
11411      * CPACR and the CPTR registers don't exist before v6, so FP is
11412      * always accessible
11413      */
11414     if (!arm_feature(env, ARM_FEATURE_V6)) {
11415         return 0;
11416     }
11417 
11418     if (arm_feature(env, ARM_FEATURE_M)) {
11419         /* CPACR can cause a NOCP UsageFault taken to current security state */
11420         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11421             return 1;
11422         }
11423 
11424         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11425             if (!extract32(env->v7m.nsacr, 10, 1)) {
11426                 /* FP insns cause a NOCP UsageFault taken to Secure */
11427                 return 3;
11428             }
11429         }
11430 
11431         return 0;
11432     }
11433 
11434     hcr_el2 = arm_hcr_el2_eff(env);
11435 
11436     /*
11437      * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11438      * 0, 2 : trap EL0 and EL1/PL1 accesses
11439      * 1    : trap only EL0 accesses
11440      * 3    : trap no accesses
11441      * This register is ignored if E2H+TGE are both set.
11442      */
11443     if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11444         int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
11445 
11446         switch (fpen) {
11447         case 1:
11448             if (cur_el != 0) {
11449                 break;
11450             }
11451             /* fall through */
11452         case 0:
11453         case 2:
11454             /* Trap from Secure PL0 or PL1 to Secure PL1. */
11455             if (!arm_el_is_aa64(env, 3)
11456                 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
11457                 return 3;
11458             }
11459             if (cur_el <= 1) {
11460                 return 1;
11461             }
11462             break;
11463         }
11464     }
11465 
11466     /*
11467      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11468      * to control non-secure access to the FPU. It doesn't have any
11469      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11470      */
11471     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11472          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11473         if (!extract32(env->cp15.nsacr, 10, 1)) {
11474             /* FP insns act as UNDEF */
11475             return cur_el == 2 ? 2 : 1;
11476         }
11477     }
11478 
11479     /*
11480      * CPTR_EL2 is present in v7VE or v8, and changes format
11481      * with HCR_EL2.E2H (regardless of TGE).
11482      */
11483     if (cur_el <= 2) {
11484         if (hcr_el2 & HCR_E2H) {
11485             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
11486             case 1:
11487                 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
11488                     break;
11489                 }
11490                 /* fall through */
11491             case 0:
11492             case 2:
11493                 return 2;
11494             }
11495         } else if (arm_is_el2_enabled(env)) {
11496             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
11497                 return 2;
11498             }
11499         }
11500     }
11501 
11502     /* CPTR_EL3 : present in v8 */
11503     if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
11504         /* Trap all FP ops to EL3 */
11505         return 3;
11506     }
11507 #endif
11508     return 0;
11509 }
11510 
11511 /* Return the exception level we're running at if this is our mmu_idx */
11512 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
11513 {
11514     if (mmu_idx & ARM_MMU_IDX_M) {
11515         return mmu_idx & ARM_MMU_IDX_M_PRIV;
11516     }
11517 
11518     switch (mmu_idx) {
11519     case ARMMMUIdx_E10_0:
11520     case ARMMMUIdx_E20_0:
11521         return 0;
11522     case ARMMMUIdx_E10_1:
11523     case ARMMMUIdx_E10_1_PAN:
11524         return 1;
11525     case ARMMMUIdx_E2:
11526     case ARMMMUIdx_E20_2:
11527     case ARMMMUIdx_E20_2_PAN:
11528         return 2;
11529     case ARMMMUIdx_E3:
11530         return 3;
11531     default:
11532         g_assert_not_reached();
11533     }
11534 }
11535 
11536 #ifndef CONFIG_TCG
11537 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11538 {
11539     g_assert_not_reached();
11540 }
11541 #endif
11542 
11543 static bool arm_pan_enabled(CPUARMState *env)
11544 {
11545     if (is_a64(env)) {
11546         return env->pstate & PSTATE_PAN;
11547     } else {
11548         return env->uncached_cpsr & CPSR_PAN;
11549     }
11550 }
11551 
11552 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
11553 {
11554     ARMMMUIdx idx;
11555     uint64_t hcr;
11556 
11557     if (arm_feature(env, ARM_FEATURE_M)) {
11558         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
11559     }
11560 
11561     /* See ARM pseudo-function ELIsInHost.  */
11562     switch (el) {
11563     case 0:
11564         hcr = arm_hcr_el2_eff(env);
11565         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
11566             idx = ARMMMUIdx_E20_0;
11567         } else {
11568             idx = ARMMMUIdx_E10_0;
11569         }
11570         break;
11571     case 1:
11572         if (arm_pan_enabled(env)) {
11573             idx = ARMMMUIdx_E10_1_PAN;
11574         } else {
11575             idx = ARMMMUIdx_E10_1;
11576         }
11577         break;
11578     case 2:
11579         /* Note that TGE does not apply at EL2.  */
11580         if (arm_hcr_el2_eff(env) & HCR_E2H) {
11581             if (arm_pan_enabled(env)) {
11582                 idx = ARMMMUIdx_E20_2_PAN;
11583             } else {
11584                 idx = ARMMMUIdx_E20_2;
11585             }
11586         } else {
11587             idx = ARMMMUIdx_E2;
11588         }
11589         break;
11590     case 3:
11591         return ARMMMUIdx_E3;
11592     default:
11593         g_assert_not_reached();
11594     }
11595 
11596     return idx;
11597 }
11598 
11599 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
11600 {
11601     return arm_mmu_idx_el(env, arm_current_el(env));
11602 }
11603 
11604 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
11605                                            ARMMMUIdx mmu_idx,
11606                                            CPUARMTBFlags flags)
11607 {
11608     DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
11609     DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
11610 
11611     if (arm_singlestep_active(env)) {
11612         DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
11613     }
11614     return flags;
11615 }
11616 
11617 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
11618                                               ARMMMUIdx mmu_idx,
11619                                               CPUARMTBFlags flags)
11620 {
11621     bool sctlr_b = arm_sctlr_b(env);
11622 
11623     if (sctlr_b) {
11624         DP_TBFLAG_A32(flags, SCTLR__B, 1);
11625     }
11626     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
11627         DP_TBFLAG_ANY(flags, BE_DATA, 1);
11628     }
11629     DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
11630 
11631     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11632 }
11633 
11634 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
11635                                         ARMMMUIdx mmu_idx)
11636 {
11637     CPUARMTBFlags flags = {};
11638     uint32_t ccr = env->v7m.ccr[env->v7m.secure];
11639 
11640     /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
11641     if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
11642         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
11643     }
11644 
11645     if (arm_v7m_is_handler_mode(env)) {
11646         DP_TBFLAG_M32(flags, HANDLER, 1);
11647     }
11648 
11649     /*
11650      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
11651      * is suppressing them because the requested execution priority
11652      * is less than 0.
11653      */
11654     if (arm_feature(env, ARM_FEATURE_V8) &&
11655         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
11656           (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
11657         DP_TBFLAG_M32(flags, STACKCHECK, 1);
11658     }
11659 
11660     if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) {
11661         DP_TBFLAG_M32(flags, SECURE, 1);
11662     }
11663 
11664     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
11665 }
11666 
11667 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
11668                                         ARMMMUIdx mmu_idx)
11669 {
11670     CPUARMTBFlags flags = {};
11671     int el = arm_current_el(env);
11672 
11673     if (arm_sctlr(env, el) & SCTLR_A) {
11674         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
11675     }
11676 
11677     if (arm_el_is_aa64(env, 1)) {
11678         DP_TBFLAG_A32(flags, VFPEN, 1);
11679     }
11680 
11681     if (el < 2 && env->cp15.hstr_el2 &&
11682         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11683         DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
11684     }
11685 
11686     if (env->uncached_cpsr & CPSR_IL) {
11687         DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
11688     }
11689 
11690     /*
11691      * The SME exception we are testing for is raised via
11692      * AArch64.CheckFPAdvSIMDEnabled(), as called from
11693      * AArch32.CheckAdvSIMDOrFPEnabled().
11694      */
11695     if (el == 0
11696         && FIELD_EX64(env->svcr, SVCR, SM)
11697         && (!arm_is_el2_enabled(env)
11698             || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE)))
11699         && arm_el_is_aa64(env, 1)
11700         && !sme_fa64(env, el)) {
11701         DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1);
11702     }
11703 
11704     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
11705 }
11706 
11707 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
11708                                         ARMMMUIdx mmu_idx)
11709 {
11710     CPUARMTBFlags flags = {};
11711     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
11712     uint64_t tcr = regime_tcr(env, mmu_idx);
11713     uint64_t sctlr;
11714     int tbii, tbid;
11715 
11716     DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
11717 
11718     /* Get control bits for tagged addresses.  */
11719     tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
11720     tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
11721 
11722     DP_TBFLAG_A64(flags, TBII, tbii);
11723     DP_TBFLAG_A64(flags, TBID, tbid);
11724 
11725     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
11726         int sve_el = sve_exception_el(env, el);
11727 
11728         /*
11729          * If either FP or SVE are disabled, translator does not need len.
11730          * If SVE EL > FP EL, FP exception has precedence, and translator
11731          * does not need SVE EL.  Save potential re-translations by forcing
11732          * the unneeded data to zero.
11733          */
11734         if (fp_el != 0) {
11735             if (sve_el > fp_el) {
11736                 sve_el = 0;
11737             }
11738         } else if (sve_el == 0) {
11739             DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el));
11740         }
11741         DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
11742     }
11743     if (cpu_isar_feature(aa64_sme, env_archcpu(env))) {
11744         int sme_el = sme_exception_el(env, el);
11745         bool sm = FIELD_EX64(env->svcr, SVCR, SM);
11746 
11747         DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el);
11748         if (sme_el == 0) {
11749             /* Similarly, do not compute SVL if SME is disabled. */
11750             int svl = sve_vqm1_for_el_sm(env, el, true);
11751             DP_TBFLAG_A64(flags, SVL, svl);
11752             if (sm) {
11753                 /* If SVE is disabled, we will not have set VL above. */
11754                 DP_TBFLAG_A64(flags, VL, svl);
11755             }
11756         }
11757         if (sm) {
11758             DP_TBFLAG_A64(flags, PSTATE_SM, 1);
11759             DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el));
11760         }
11761         DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA));
11762     }
11763 
11764     sctlr = regime_sctlr(env, stage1);
11765 
11766     if (sctlr & SCTLR_A) {
11767         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
11768     }
11769 
11770     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
11771         DP_TBFLAG_ANY(flags, BE_DATA, 1);
11772     }
11773 
11774     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
11775         /*
11776          * In order to save space in flags, we record only whether
11777          * pauth is "inactive", meaning all insns are implemented as
11778          * a nop, or "active" when some action must be performed.
11779          * The decision of which action to take is left to a helper.
11780          */
11781         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
11782             DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
11783         }
11784     }
11785 
11786     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11787         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
11788         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
11789             DP_TBFLAG_A64(flags, BT, 1);
11790         }
11791     }
11792 
11793     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
11794     if (!(env->pstate & PSTATE_UAO)) {
11795         switch (mmu_idx) {
11796         case ARMMMUIdx_E10_1:
11797         case ARMMMUIdx_E10_1_PAN:
11798             /* TODO: ARMv8.3-NV */
11799             DP_TBFLAG_A64(flags, UNPRIV, 1);
11800             break;
11801         case ARMMMUIdx_E20_2:
11802         case ARMMMUIdx_E20_2_PAN:
11803             /*
11804              * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
11805              * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
11806              */
11807             if (env->cp15.hcr_el2 & HCR_TGE) {
11808                 DP_TBFLAG_A64(flags, UNPRIV, 1);
11809             }
11810             break;
11811         default:
11812             break;
11813         }
11814     }
11815 
11816     if (env->pstate & PSTATE_IL) {
11817         DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
11818     }
11819 
11820     if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
11821         /*
11822          * Set MTE_ACTIVE if any access may be Checked, and leave clear
11823          * if all accesses must be Unchecked:
11824          * 1) If no TBI, then there are no tags in the address to check,
11825          * 2) If Tag Check Override, then all accesses are Unchecked,
11826          * 3) If Tag Check Fail == 0, then Checked access have no effect,
11827          * 4) If no Allocation Tag Access, then all accesses are Unchecked.
11828          */
11829         if (allocation_tag_access_enabled(env, el, sctlr)) {
11830             DP_TBFLAG_A64(flags, ATA, 1);
11831             if (tbid
11832                 && !(env->pstate & PSTATE_TCO)
11833                 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
11834                 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
11835             }
11836         }
11837         /* And again for unprivileged accesses, if required.  */
11838         if (EX_TBFLAG_A64(flags, UNPRIV)
11839             && tbid
11840             && !(env->pstate & PSTATE_TCO)
11841             && (sctlr & SCTLR_TCF0)
11842             && allocation_tag_access_enabled(env, 0, sctlr)) {
11843             DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
11844         }
11845         /* Cache TCMA as well as TBI. */
11846         DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
11847     }
11848 
11849     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11850 }
11851 
11852 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
11853 {
11854     int el = arm_current_el(env);
11855     int fp_el = fp_exception_el(env, el);
11856     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11857 
11858     if (is_a64(env)) {
11859         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11860     } else if (arm_feature(env, ARM_FEATURE_M)) {
11861         return rebuild_hflags_m32(env, fp_el, mmu_idx);
11862     } else {
11863         return rebuild_hflags_a32(env, fp_el, mmu_idx);
11864     }
11865 }
11866 
11867 void arm_rebuild_hflags(CPUARMState *env)
11868 {
11869     env->hflags = rebuild_hflags_internal(env);
11870 }
11871 
11872 /*
11873  * If we have triggered a EL state change we can't rely on the
11874  * translator having passed it to us, we need to recompute.
11875  */
11876 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
11877 {
11878     int el = arm_current_el(env);
11879     int fp_el = fp_exception_el(env, el);
11880     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11881 
11882     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
11883 }
11884 
11885 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
11886 {
11887     int fp_el = fp_exception_el(env, el);
11888     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11889 
11890     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
11891 }
11892 
11893 /*
11894  * If we have triggered a EL state change we can't rely on the
11895  * translator having passed it to us, we need to recompute.
11896  */
11897 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
11898 {
11899     int el = arm_current_el(env);
11900     int fp_el = fp_exception_el(env, el);
11901     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11902     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
11903 }
11904 
11905 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
11906 {
11907     int fp_el = fp_exception_el(env, el);
11908     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11909 
11910     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
11911 }
11912 
11913 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
11914 {
11915     int fp_el = fp_exception_el(env, el);
11916     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11917 
11918     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11919 }
11920 
11921 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
11922 {
11923 #ifdef CONFIG_DEBUG_TCG
11924     CPUARMTBFlags c = env->hflags;
11925     CPUARMTBFlags r = rebuild_hflags_internal(env);
11926 
11927     if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
11928         fprintf(stderr, "TCG hflags mismatch "
11929                         "(current:(0x%08x,0x" TARGET_FMT_lx ")"
11930                         " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
11931                 c.flags, c.flags2, r.flags, r.flags2);
11932         abort();
11933     }
11934 #endif
11935 }
11936 
11937 static bool mve_no_pred(CPUARMState *env)
11938 {
11939     /*
11940      * Return true if there is definitely no predication of MVE
11941      * instructions by VPR or LTPSIZE. (Returning false even if there
11942      * isn't any predication is OK; generated code will just be
11943      * a little worse.)
11944      * If the CPU does not implement MVE then this TB flag is always 0.
11945      *
11946      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
11947      * logic in gen_update_fp_context() needs to be updated to match.
11948      *
11949      * We do not include the effect of the ECI bits here -- they are
11950      * tracked in other TB flags. This simplifies the logic for
11951      * "when did we emit code that changes the MVE_NO_PRED TB flag
11952      * and thus need to end the TB?".
11953      */
11954     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
11955         return false;
11956     }
11957     if (env->v7m.vpr) {
11958         return false;
11959     }
11960     if (env->v7m.ltpsize < 4) {
11961         return false;
11962     }
11963     return true;
11964 }
11965 
11966 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
11967                           target_ulong *cs_base, uint32_t *pflags)
11968 {
11969     CPUARMTBFlags flags;
11970 
11971     assert_hflags_rebuild_correctly(env);
11972     flags = env->hflags;
11973 
11974     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
11975         *pc = env->pc;
11976         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11977             DP_TBFLAG_A64(flags, BTYPE, env->btype);
11978         }
11979     } else {
11980         *pc = env->regs[15];
11981 
11982         if (arm_feature(env, ARM_FEATURE_M)) {
11983             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
11984                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
11985                 != env->v7m.secure) {
11986                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
11987             }
11988 
11989             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
11990                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
11991                  (env->v7m.secure &&
11992                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
11993                 /*
11994                  * ASPEN is set, but FPCA/SFPA indicate that there is no
11995                  * active FP context; we must create a new FP context before
11996                  * executing any FP insn.
11997                  */
11998                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
11999             }
12000 
12001             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12002             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12003                 DP_TBFLAG_M32(flags, LSPACT, 1);
12004             }
12005 
12006             if (mve_no_pred(env)) {
12007                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12008             }
12009         } else {
12010             /*
12011              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12012              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12013              */
12014             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12015                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12016             } else {
12017                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12018                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12019             }
12020             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12021                 DP_TBFLAG_A32(flags, VFPEN, 1);
12022             }
12023         }
12024 
12025         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12026         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12027     }
12028 
12029     /*
12030      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12031      * states defined in the ARM ARM for software singlestep:
12032      *  SS_ACTIVE   PSTATE.SS   State
12033      *     0            x       Inactive (the TB flag for SS is always 0)
12034      *     1            0       Active-pending
12035      *     1            1       Active-not-pending
12036      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12037      */
12038     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12039         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12040     }
12041 
12042     *pflags = flags.flags;
12043     *cs_base = flags.flags2;
12044 }
12045 
12046 #ifdef TARGET_AARCH64
12047 /*
12048  * The manual says that when SVE is enabled and VQ is widened the
12049  * implementation is allowed to zero the previously inaccessible
12050  * portion of the registers.  The corollary to that is that when
12051  * SVE is enabled and VQ is narrowed we are also allowed to zero
12052  * the now inaccessible portion of the registers.
12053  *
12054  * The intent of this is that no predicate bit beyond VQ is ever set.
12055  * Which means that some operations on predicate registers themselves
12056  * may operate on full uint64_t or even unrolled across the maximum
12057  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
12058  * may well be cheaper than conditionals to restrict the operation
12059  * to the relevant portion of a uint16_t[16].
12060  */
12061 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12062 {
12063     int i, j;
12064     uint64_t pmask;
12065 
12066     assert(vq >= 1 && vq <= ARM_MAX_VQ);
12067     assert(vq <= env_archcpu(env)->sve_max_vq);
12068 
12069     /* Zap the high bits of the zregs.  */
12070     for (i = 0; i < 32; i++) {
12071         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12072     }
12073 
12074     /* Zap the high bits of the pregs and ffr.  */
12075     pmask = 0;
12076     if (vq & 3) {
12077         pmask = ~(-1ULL << (16 * (vq & 3)));
12078     }
12079     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12080         for (i = 0; i < 17; ++i) {
12081             env->vfp.pregs[i].p[j] &= pmask;
12082         }
12083         pmask = 0;
12084     }
12085 }
12086 
12087 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12088 {
12089     int exc_el;
12090 
12091     if (sm) {
12092         exc_el = sme_exception_el(env, el);
12093     } else {
12094         exc_el = sve_exception_el(env, el);
12095     }
12096     if (exc_el) {
12097         return 0; /* disabled */
12098     }
12099     return sve_vqm1_for_el_sm(env, el, sm);
12100 }
12101 
12102 /*
12103  * Notice a change in SVE vector size when changing EL.
12104  */
12105 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12106                            int new_el, bool el0_a64)
12107 {
12108     ARMCPU *cpu = env_archcpu(env);
12109     int old_len, new_len;
12110     bool old_a64, new_a64, sm;
12111 
12112     /* Nothing to do if no SVE.  */
12113     if (!cpu_isar_feature(aa64_sve, cpu)) {
12114         return;
12115     }
12116 
12117     /* Nothing to do if FP is disabled in either EL.  */
12118     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12119         return;
12120     }
12121 
12122     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12123     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12124 
12125     /*
12126      * Both AArch64.TakeException and AArch64.ExceptionReturn
12127      * invoke ResetSVEState when taking an exception from, or
12128      * returning to, AArch32 state when PSTATE.SM is enabled.
12129      */
12130     sm = FIELD_EX64(env->svcr, SVCR, SM);
12131     if (old_a64 != new_a64 && sm) {
12132         arm_reset_sve_state(env);
12133         return;
12134     }
12135 
12136     /*
12137      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12138      * at ELx, or not available because the EL is in AArch32 state, then
12139      * for all purposes other than a direct read, the ZCR_ELx.LEN field
12140      * has an effective value of 0".
12141      *
12142      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12143      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12144      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
12145      * we already have the correct register contents when encountering the
12146      * vq0->vq0 transition between EL0->EL1.
12147      */
12148     old_len = new_len = 0;
12149     if (old_a64) {
12150         old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12151     }
12152     if (new_a64) {
12153         new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12154     }
12155 
12156     /* When changing vector length, clear inaccessible state.  */
12157     if (new_len < old_len) {
12158         aarch64_sve_narrow_vq(env, new_len + 1);
12159     }
12160 }
12161 #endif
12162