1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/cpu-timers.h" 28 #include "sysemu/kvm.h" 29 #include "sysemu/tcg.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #include "semihosting/common-semi.h" 38 #endif 39 40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 41 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ 42 43 #ifndef CONFIG_USER_ONLY 44 45 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 46 MMUAccessType access_type, ARMMMUIdx mmu_idx, 47 bool s1_is_el0, 48 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 49 target_ulong *page_size_ptr, 50 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 51 __attribute__((nonnull)); 52 #endif 53 54 static void switch_mode(CPUARMState *env, int mode); 55 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 56 57 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 58 { 59 ARMCPU *cpu = env_archcpu(env); 60 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 61 62 /* VFP data registers are always little-endian. */ 63 if (reg < nregs) { 64 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg)); 65 } 66 if (arm_feature(env, ARM_FEATURE_NEON)) { 67 /* Aliases for Q regs. */ 68 nregs += 16; 69 if (reg < nregs) { 70 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 71 return gdb_get_reg128(buf, q[0], q[1]); 72 } 73 } 74 switch (reg - nregs) { 75 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break; 76 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break; 77 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break; 78 } 79 return 0; 80 } 81 82 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 83 { 84 ARMCPU *cpu = env_archcpu(env); 85 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 86 87 if (reg < nregs) { 88 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 89 return 8; 90 } 91 if (arm_feature(env, ARM_FEATURE_NEON)) { 92 nregs += 16; 93 if (reg < nregs) { 94 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 95 q[0] = ldq_le_p(buf); 96 q[1] = ldq_le_p(buf + 8); 97 return 16; 98 } 99 } 100 switch (reg - nregs) { 101 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 102 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 103 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 104 } 105 return 0; 106 } 107 108 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 109 { 110 switch (reg) { 111 case 0 ... 31: 112 { 113 /* 128 bit FP register - quads are in LE order */ 114 uint64_t *q = aa64_vfp_qreg(env, reg); 115 return gdb_get_reg128(buf, q[1], q[0]); 116 } 117 case 32: 118 /* FPSR */ 119 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 120 case 33: 121 /* FPCR */ 122 return gdb_get_reg32(buf,vfp_get_fpcr(env)); 123 default: 124 return 0; 125 } 126 } 127 128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 129 { 130 switch (reg) { 131 case 0 ... 31: 132 /* 128 bit FP register */ 133 { 134 uint64_t *q = aa64_vfp_qreg(env, reg); 135 q[0] = ldq_le_p(buf); 136 q[1] = ldq_le_p(buf + 8); 137 return 16; 138 } 139 case 32: 140 /* FPSR */ 141 vfp_set_fpsr(env, ldl_p(buf)); 142 return 4; 143 case 33: 144 /* FPCR */ 145 vfp_set_fpcr(env, ldl_p(buf)); 146 return 4; 147 default: 148 return 0; 149 } 150 } 151 152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 153 { 154 assert(ri->fieldoffset); 155 if (cpreg_field_is_64bit(ri)) { 156 return CPREG_FIELD64(env, ri); 157 } else { 158 return CPREG_FIELD32(env, ri); 159 } 160 } 161 162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 163 uint64_t value) 164 { 165 assert(ri->fieldoffset); 166 if (cpreg_field_is_64bit(ri)) { 167 CPREG_FIELD64(env, ri) = value; 168 } else { 169 CPREG_FIELD32(env, ri) = value; 170 } 171 } 172 173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 174 { 175 return (char *)env + ri->fieldoffset; 176 } 177 178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 179 { 180 /* Raw read of a coprocessor register (as needed for migration, etc). */ 181 if (ri->type & ARM_CP_CONST) { 182 return ri->resetvalue; 183 } else if (ri->raw_readfn) { 184 return ri->raw_readfn(env, ri); 185 } else if (ri->readfn) { 186 return ri->readfn(env, ri); 187 } else { 188 return raw_read(env, ri); 189 } 190 } 191 192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 193 uint64_t v) 194 { 195 /* Raw write of a coprocessor register (as needed for migration, etc). 196 * Note that constant registers are treated as write-ignored; the 197 * caller should check for success by whether a readback gives the 198 * value written. 199 */ 200 if (ri->type & ARM_CP_CONST) { 201 return; 202 } else if (ri->raw_writefn) { 203 ri->raw_writefn(env, ri, v); 204 } else if (ri->writefn) { 205 ri->writefn(env, ri, v); 206 } else { 207 raw_write(env, ri, v); 208 } 209 } 210 211 /** 212 * arm_get/set_gdb_*: get/set a gdb register 213 * @env: the CPU state 214 * @buf: a buffer to copy to/from 215 * @reg: register number (offset from start of group) 216 * 217 * We return the number of bytes copied 218 */ 219 220 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) 221 { 222 ARMCPU *cpu = env_archcpu(env); 223 const ARMCPRegInfo *ri; 224 uint32_t key; 225 226 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg]; 227 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 228 if (ri) { 229 if (cpreg_field_is_64bit(ri)) { 230 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 231 } else { 232 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 233 } 234 } 235 return 0; 236 } 237 238 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 239 { 240 return 0; 241 } 242 243 #ifdef TARGET_AARCH64 244 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg) 245 { 246 ARMCPU *cpu = env_archcpu(env); 247 248 switch (reg) { 249 /* The first 32 registers are the zregs */ 250 case 0 ... 31: 251 { 252 int vq, len = 0; 253 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 254 len += gdb_get_reg128(buf, 255 env->vfp.zregs[reg].d[vq * 2 + 1], 256 env->vfp.zregs[reg].d[vq * 2]); 257 } 258 return len; 259 } 260 case 32: 261 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 262 case 33: 263 return gdb_get_reg32(buf, vfp_get_fpcr(env)); 264 /* then 16 predicates and the ffr */ 265 case 34 ... 50: 266 { 267 int preg = reg - 34; 268 int vq, len = 0; 269 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 270 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]); 271 } 272 return len; 273 } 274 case 51: 275 { 276 /* 277 * We report in Vector Granules (VG) which is 64bit in a Z reg 278 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks. 279 */ 280 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1; 281 return gdb_get_reg64(buf, vq * 2); 282 } 283 default: 284 /* gdbstub asked for something out our range */ 285 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg); 286 break; 287 } 288 289 return 0; 290 } 291 292 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg) 293 { 294 ARMCPU *cpu = env_archcpu(env); 295 296 /* The first 32 registers are the zregs */ 297 switch (reg) { 298 /* The first 32 registers are the zregs */ 299 case 0 ... 31: 300 { 301 int vq, len = 0; 302 uint64_t *p = (uint64_t *) buf; 303 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 304 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++; 305 env->vfp.zregs[reg].d[vq * 2] = *p++; 306 len += 16; 307 } 308 return len; 309 } 310 case 32: 311 vfp_set_fpsr(env, *(uint32_t *)buf); 312 return 4; 313 case 33: 314 vfp_set_fpcr(env, *(uint32_t *)buf); 315 return 4; 316 case 34 ... 50: 317 { 318 int preg = reg - 34; 319 int vq, len = 0; 320 uint64_t *p = (uint64_t *) buf; 321 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 322 env->vfp.pregs[preg].p[vq / 4] = *p++; 323 len += 8; 324 } 325 return len; 326 } 327 case 51: 328 /* cannot set vg via gdbstub */ 329 return 0; 330 default: 331 /* gdbstub asked for something out our range */ 332 break; 333 } 334 335 return 0; 336 } 337 #endif /* TARGET_AARCH64 */ 338 339 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 340 { 341 /* Return true if the regdef would cause an assertion if you called 342 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 343 * program bug for it not to have the NO_RAW flag). 344 * NB that returning false here doesn't necessarily mean that calling 345 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 346 * read/write access functions which are safe for raw use" from "has 347 * read/write access functions which have side effects but has forgotten 348 * to provide raw access functions". 349 * The tests here line up with the conditions in read/write_raw_cp_reg() 350 * and assertions in raw_read()/raw_write(). 351 */ 352 if ((ri->type & ARM_CP_CONST) || 353 ri->fieldoffset || 354 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 355 return false; 356 } 357 return true; 358 } 359 360 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 361 { 362 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 363 int i; 364 bool ok = true; 365 366 for (i = 0; i < cpu->cpreg_array_len; i++) { 367 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 368 const ARMCPRegInfo *ri; 369 uint64_t newval; 370 371 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 372 if (!ri) { 373 ok = false; 374 continue; 375 } 376 if (ri->type & ARM_CP_NO_RAW) { 377 continue; 378 } 379 380 newval = read_raw_cp_reg(&cpu->env, ri); 381 if (kvm_sync) { 382 /* 383 * Only sync if the previous list->cpustate sync succeeded. 384 * Rather than tracking the success/failure state for every 385 * item in the list, we just recheck "does the raw write we must 386 * have made in write_list_to_cpustate() read back OK" here. 387 */ 388 uint64_t oldval = cpu->cpreg_values[i]; 389 390 if (oldval == newval) { 391 continue; 392 } 393 394 write_raw_cp_reg(&cpu->env, ri, oldval); 395 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 396 continue; 397 } 398 399 write_raw_cp_reg(&cpu->env, ri, newval); 400 } 401 cpu->cpreg_values[i] = newval; 402 } 403 return ok; 404 } 405 406 bool write_list_to_cpustate(ARMCPU *cpu) 407 { 408 int i; 409 bool ok = true; 410 411 for (i = 0; i < cpu->cpreg_array_len; i++) { 412 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 413 uint64_t v = cpu->cpreg_values[i]; 414 const ARMCPRegInfo *ri; 415 416 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 417 if (!ri) { 418 ok = false; 419 continue; 420 } 421 if (ri->type & ARM_CP_NO_RAW) { 422 continue; 423 } 424 /* Write value and confirm it reads back as written 425 * (to catch read-only registers and partially read-only 426 * registers where the incoming migration value doesn't match) 427 */ 428 write_raw_cp_reg(&cpu->env, ri, v); 429 if (read_raw_cp_reg(&cpu->env, ri) != v) { 430 ok = false; 431 } 432 } 433 return ok; 434 } 435 436 static void add_cpreg_to_list(gpointer key, gpointer opaque) 437 { 438 ARMCPU *cpu = opaque; 439 uint64_t regidx; 440 const ARMCPRegInfo *ri; 441 442 regidx = *(uint32_t *)key; 443 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 444 445 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 446 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 447 /* The value array need not be initialized at this point */ 448 cpu->cpreg_array_len++; 449 } 450 } 451 452 static void count_cpreg(gpointer key, gpointer opaque) 453 { 454 ARMCPU *cpu = opaque; 455 uint64_t regidx; 456 const ARMCPRegInfo *ri; 457 458 regidx = *(uint32_t *)key; 459 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 460 461 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 462 cpu->cpreg_array_len++; 463 } 464 } 465 466 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 467 { 468 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 469 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 470 471 if (aidx > bidx) { 472 return 1; 473 } 474 if (aidx < bidx) { 475 return -1; 476 } 477 return 0; 478 } 479 480 void init_cpreg_list(ARMCPU *cpu) 481 { 482 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 483 * Note that we require cpreg_tuples[] to be sorted by key ID. 484 */ 485 GList *keys; 486 int arraylen; 487 488 keys = g_hash_table_get_keys(cpu->cp_regs); 489 keys = g_list_sort(keys, cpreg_key_compare); 490 491 cpu->cpreg_array_len = 0; 492 493 g_list_foreach(keys, count_cpreg, cpu); 494 495 arraylen = cpu->cpreg_array_len; 496 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 497 cpu->cpreg_values = g_new(uint64_t, arraylen); 498 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 499 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 500 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 501 cpu->cpreg_array_len = 0; 502 503 g_list_foreach(keys, add_cpreg_to_list, cpu); 504 505 assert(cpu->cpreg_array_len == arraylen); 506 507 g_list_free(keys); 508 } 509 510 /* 511 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 512 */ 513 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 514 const ARMCPRegInfo *ri, 515 bool isread) 516 { 517 if (!is_a64(env) && arm_current_el(env) == 3 && 518 arm_is_secure_below_el3(env)) { 519 return CP_ACCESS_TRAP_UNCATEGORIZED; 520 } 521 return CP_ACCESS_OK; 522 } 523 524 /* Some secure-only AArch32 registers trap to EL3 if used from 525 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 526 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 527 * We assume that the .access field is set to PL1_RW. 528 */ 529 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 530 const ARMCPRegInfo *ri, 531 bool isread) 532 { 533 if (arm_current_el(env) == 3) { 534 return CP_ACCESS_OK; 535 } 536 if (arm_is_secure_below_el3(env)) { 537 if (env->cp15.scr_el3 & SCR_EEL2) { 538 return CP_ACCESS_TRAP_EL2; 539 } 540 return CP_ACCESS_TRAP_EL3; 541 } 542 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 543 return CP_ACCESS_TRAP_UNCATEGORIZED; 544 } 545 546 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 547 { 548 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 549 } 550 551 /* Check for traps to "powerdown debug" registers, which are controlled 552 * by MDCR.TDOSA 553 */ 554 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 555 bool isread) 556 { 557 int el = arm_current_el(env); 558 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 559 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 560 (arm_hcr_el2_eff(env) & HCR_TGE); 561 562 if (el < 2 && mdcr_el2_tdosa) { 563 return CP_ACCESS_TRAP_EL2; 564 } 565 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 566 return CP_ACCESS_TRAP_EL3; 567 } 568 return CP_ACCESS_OK; 569 } 570 571 /* Check for traps to "debug ROM" registers, which are controlled 572 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 573 */ 574 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 575 bool isread) 576 { 577 int el = arm_current_el(env); 578 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 579 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 580 (arm_hcr_el2_eff(env) & HCR_TGE); 581 582 if (el < 2 && mdcr_el2_tdra) { 583 return CP_ACCESS_TRAP_EL2; 584 } 585 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 586 return CP_ACCESS_TRAP_EL3; 587 } 588 return CP_ACCESS_OK; 589 } 590 591 /* Check for traps to general debug registers, which are controlled 592 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 593 */ 594 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 595 bool isread) 596 { 597 int el = arm_current_el(env); 598 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 599 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 600 (arm_hcr_el2_eff(env) & HCR_TGE); 601 602 if (el < 2 && mdcr_el2_tda) { 603 return CP_ACCESS_TRAP_EL2; 604 } 605 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 606 return CP_ACCESS_TRAP_EL3; 607 } 608 return CP_ACCESS_OK; 609 } 610 611 /* Check for traps to performance monitor registers, which are controlled 612 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 613 */ 614 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 615 bool isread) 616 { 617 int el = arm_current_el(env); 618 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 619 620 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 621 return CP_ACCESS_TRAP_EL2; 622 } 623 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 624 return CP_ACCESS_TRAP_EL3; 625 } 626 return CP_ACCESS_OK; 627 } 628 629 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 630 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 631 bool isread) 632 { 633 if (arm_current_el(env) == 1) { 634 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 635 if (arm_hcr_el2_eff(env) & trap) { 636 return CP_ACCESS_TRAP_EL2; 637 } 638 } 639 return CP_ACCESS_OK; 640 } 641 642 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 643 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 644 bool isread) 645 { 646 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 647 return CP_ACCESS_TRAP_EL2; 648 } 649 return CP_ACCESS_OK; 650 } 651 652 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 653 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 654 bool isread) 655 { 656 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 657 return CP_ACCESS_TRAP_EL2; 658 } 659 return CP_ACCESS_OK; 660 } 661 662 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 663 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 664 bool isread) 665 { 666 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 667 return CP_ACCESS_TRAP_EL2; 668 } 669 return CP_ACCESS_OK; 670 } 671 672 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 673 { 674 ARMCPU *cpu = env_archcpu(env); 675 676 raw_write(env, ri, value); 677 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 678 } 679 680 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 681 { 682 ARMCPU *cpu = env_archcpu(env); 683 684 if (raw_read(env, ri) != value) { 685 /* Unlike real hardware the qemu TLB uses virtual addresses, 686 * not modified virtual addresses, so this causes a TLB flush. 687 */ 688 tlb_flush(CPU(cpu)); 689 raw_write(env, ri, value); 690 } 691 } 692 693 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 694 uint64_t value) 695 { 696 ARMCPU *cpu = env_archcpu(env); 697 698 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 699 && !extended_addresses_enabled(env)) { 700 /* For VMSA (when not using the LPAE long descriptor page table 701 * format) this register includes the ASID, so do a TLB flush. 702 * For PMSA it is purely a process ID and no action is needed. 703 */ 704 tlb_flush(CPU(cpu)); 705 } 706 raw_write(env, ri, value); 707 } 708 709 /* IS variants of TLB operations must affect all cores */ 710 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 711 uint64_t value) 712 { 713 CPUState *cs = env_cpu(env); 714 715 tlb_flush_all_cpus_synced(cs); 716 } 717 718 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 719 uint64_t value) 720 { 721 CPUState *cs = env_cpu(env); 722 723 tlb_flush_all_cpus_synced(cs); 724 } 725 726 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 727 uint64_t value) 728 { 729 CPUState *cs = env_cpu(env); 730 731 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 732 } 733 734 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 735 uint64_t value) 736 { 737 CPUState *cs = env_cpu(env); 738 739 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 740 } 741 742 /* 743 * Non-IS variants of TLB operations are upgraded to 744 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 745 * force broadcast of these operations. 746 */ 747 static bool tlb_force_broadcast(CPUARMState *env) 748 { 749 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 750 } 751 752 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 753 uint64_t value) 754 { 755 /* Invalidate all (TLBIALL) */ 756 CPUState *cs = env_cpu(env); 757 758 if (tlb_force_broadcast(env)) { 759 tlb_flush_all_cpus_synced(cs); 760 } else { 761 tlb_flush(cs); 762 } 763 } 764 765 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 766 uint64_t value) 767 { 768 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 769 CPUState *cs = env_cpu(env); 770 771 value &= TARGET_PAGE_MASK; 772 if (tlb_force_broadcast(env)) { 773 tlb_flush_page_all_cpus_synced(cs, value); 774 } else { 775 tlb_flush_page(cs, value); 776 } 777 } 778 779 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 780 uint64_t value) 781 { 782 /* Invalidate by ASID (TLBIASID) */ 783 CPUState *cs = env_cpu(env); 784 785 if (tlb_force_broadcast(env)) { 786 tlb_flush_all_cpus_synced(cs); 787 } else { 788 tlb_flush(cs); 789 } 790 } 791 792 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 793 uint64_t value) 794 { 795 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 796 CPUState *cs = env_cpu(env); 797 798 value &= TARGET_PAGE_MASK; 799 if (tlb_force_broadcast(env)) { 800 tlb_flush_page_all_cpus_synced(cs, value); 801 } else { 802 tlb_flush_page(cs, value); 803 } 804 } 805 806 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 807 uint64_t value) 808 { 809 CPUState *cs = env_cpu(env); 810 811 tlb_flush_by_mmuidx(cs, 812 ARMMMUIdxBit_E10_1 | 813 ARMMMUIdxBit_E10_1_PAN | 814 ARMMMUIdxBit_E10_0); 815 } 816 817 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 818 uint64_t value) 819 { 820 CPUState *cs = env_cpu(env); 821 822 tlb_flush_by_mmuidx_all_cpus_synced(cs, 823 ARMMMUIdxBit_E10_1 | 824 ARMMMUIdxBit_E10_1_PAN | 825 ARMMMUIdxBit_E10_0); 826 } 827 828 829 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 830 uint64_t value) 831 { 832 CPUState *cs = env_cpu(env); 833 834 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 835 } 836 837 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 838 uint64_t value) 839 { 840 CPUState *cs = env_cpu(env); 841 842 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 843 } 844 845 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 846 uint64_t value) 847 { 848 CPUState *cs = env_cpu(env); 849 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 850 851 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 852 } 853 854 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 855 uint64_t value) 856 { 857 CPUState *cs = env_cpu(env); 858 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 859 860 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 861 ARMMMUIdxBit_E2); 862 } 863 864 static const ARMCPRegInfo cp_reginfo[] = { 865 /* Define the secure and non-secure FCSE identifier CP registers 866 * separately because there is no secure bank in V8 (no _EL3). This allows 867 * the secure register to be properly reset and migrated. There is also no 868 * v8 EL1 version of the register so the non-secure instance stands alone. 869 */ 870 { .name = "FCSEIDR", 871 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 872 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 873 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 874 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 875 { .name = "FCSEIDR_S", 876 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 877 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 878 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 879 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 880 /* Define the secure and non-secure context identifier CP registers 881 * separately because there is no secure bank in V8 (no _EL3). This allows 882 * the secure register to be properly reset and migrated. In the 883 * non-secure case, the 32-bit register will have reset and migration 884 * disabled during registration as it is handled by the 64-bit instance. 885 */ 886 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 887 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 888 .access = PL1_RW, .accessfn = access_tvm_trvm, 889 .secure = ARM_CP_SECSTATE_NS, 890 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 891 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 892 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 893 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 894 .access = PL1_RW, .accessfn = access_tvm_trvm, 895 .secure = ARM_CP_SECSTATE_S, 896 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 897 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 898 REGINFO_SENTINEL 899 }; 900 901 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 902 /* NB: Some of these registers exist in v8 but with more precise 903 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 904 */ 905 /* MMU Domain access control / MPU write buffer control */ 906 { .name = "DACR", 907 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 908 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 909 .writefn = dacr_write, .raw_writefn = raw_write, 910 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 911 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 912 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 913 * For v6 and v5, these mappings are overly broad. 914 */ 915 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 916 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 917 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 918 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 919 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 920 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 921 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 922 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 923 /* Cache maintenance ops; some of this space may be overridden later. */ 924 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 925 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 926 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 927 REGINFO_SENTINEL 928 }; 929 930 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 931 /* Not all pre-v6 cores implemented this WFI, so this is slightly 932 * over-broad. 933 */ 934 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 935 .access = PL1_W, .type = ARM_CP_WFI }, 936 REGINFO_SENTINEL 937 }; 938 939 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 940 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 941 * is UNPREDICTABLE; we choose to NOP as most implementations do). 942 */ 943 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 944 .access = PL1_W, .type = ARM_CP_WFI }, 945 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 946 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 947 * OMAPCP will override this space. 948 */ 949 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 950 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 951 .resetvalue = 0 }, 952 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 953 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 954 .resetvalue = 0 }, 955 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 956 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 957 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 958 .resetvalue = 0 }, 959 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 960 * implementing it as RAZ means the "debug architecture version" bits 961 * will read as a reserved value, which should cause Linux to not try 962 * to use the debug hardware. 963 */ 964 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 965 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 966 /* MMU TLB control. Note that the wildcarding means we cover not just 967 * the unified TLB ops but also the dside/iside/inner-shareable variants. 968 */ 969 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 970 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 971 .type = ARM_CP_NO_RAW }, 972 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 973 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 974 .type = ARM_CP_NO_RAW }, 975 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 976 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 977 .type = ARM_CP_NO_RAW }, 978 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 979 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 980 .type = ARM_CP_NO_RAW }, 981 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 982 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 983 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 984 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 985 REGINFO_SENTINEL 986 }; 987 988 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 989 uint64_t value) 990 { 991 uint32_t mask = 0; 992 993 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 994 if (!arm_feature(env, ARM_FEATURE_V8)) { 995 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 996 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 997 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 998 */ 999 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 1000 /* VFP coprocessor: cp10 & cp11 [23:20] */ 1001 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 1002 1003 if (!arm_feature(env, ARM_FEATURE_NEON)) { 1004 /* ASEDIS [31] bit is RAO/WI */ 1005 value |= (1 << 31); 1006 } 1007 1008 /* VFPv3 and upwards with NEON implement 32 double precision 1009 * registers (D0-D31). 1010 */ 1011 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 1012 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 1013 value |= (1 << 30); 1014 } 1015 } 1016 value &= mask; 1017 } 1018 1019 /* 1020 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1021 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1022 */ 1023 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1024 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1025 value &= ~(0xf << 20); 1026 value |= env->cp15.cpacr_el1 & (0xf << 20); 1027 } 1028 1029 env->cp15.cpacr_el1 = value; 1030 } 1031 1032 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1033 { 1034 /* 1035 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1036 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1037 */ 1038 uint64_t value = env->cp15.cpacr_el1; 1039 1040 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1041 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1042 value &= ~(0xf << 20); 1043 } 1044 return value; 1045 } 1046 1047 1048 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1049 { 1050 /* Call cpacr_write() so that we reset with the correct RAO bits set 1051 * for our CPU features. 1052 */ 1053 cpacr_write(env, ri, 0); 1054 } 1055 1056 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1057 bool isread) 1058 { 1059 if (arm_feature(env, ARM_FEATURE_V8)) { 1060 /* Check if CPACR accesses are to be trapped to EL2 */ 1061 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 1062 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 1063 return CP_ACCESS_TRAP_EL2; 1064 /* Check if CPACR accesses are to be trapped to EL3 */ 1065 } else if (arm_current_el(env) < 3 && 1066 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1067 return CP_ACCESS_TRAP_EL3; 1068 } 1069 } 1070 1071 return CP_ACCESS_OK; 1072 } 1073 1074 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1075 bool isread) 1076 { 1077 /* Check if CPTR accesses are set to trap to EL3 */ 1078 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1079 return CP_ACCESS_TRAP_EL3; 1080 } 1081 1082 return CP_ACCESS_OK; 1083 } 1084 1085 static const ARMCPRegInfo v6_cp_reginfo[] = { 1086 /* prefetch by MVA in v6, NOP in v7 */ 1087 { .name = "MVA_prefetch", 1088 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 1089 .access = PL1_W, .type = ARM_CP_NOP }, 1090 /* We need to break the TB after ISB to execute self-modifying code 1091 * correctly and also to take any pending interrupts immediately. 1092 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 1093 */ 1094 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 1095 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 1096 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 1097 .access = PL0_W, .type = ARM_CP_NOP }, 1098 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 1099 .access = PL0_W, .type = ARM_CP_NOP }, 1100 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 1101 .access = PL1_RW, .accessfn = access_tvm_trvm, 1102 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1103 offsetof(CPUARMState, cp15.ifar_ns) }, 1104 .resetvalue = 0, }, 1105 /* Watchpoint Fault Address Register : should actually only be present 1106 * for 1136, 1176, 11MPCore. 1107 */ 1108 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1109 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1110 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1111 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1112 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1113 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1114 REGINFO_SENTINEL 1115 }; 1116 1117 /* Definitions for the PMU registers */ 1118 #define PMCRN_MASK 0xf800 1119 #define PMCRN_SHIFT 11 1120 #define PMCRLC 0x40 1121 #define PMCRDP 0x20 1122 #define PMCRX 0x10 1123 #define PMCRD 0x8 1124 #define PMCRC 0x4 1125 #define PMCRP 0x2 1126 #define PMCRE 0x1 1127 /* 1128 * Mask of PMCR bits writeable by guest (not including WO bits like C, P, 1129 * which can be written as 1 to trigger behaviour but which stay RAZ). 1130 */ 1131 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1132 1133 #define PMXEVTYPER_P 0x80000000 1134 #define PMXEVTYPER_U 0x40000000 1135 #define PMXEVTYPER_NSK 0x20000000 1136 #define PMXEVTYPER_NSU 0x10000000 1137 #define PMXEVTYPER_NSH 0x08000000 1138 #define PMXEVTYPER_M 0x04000000 1139 #define PMXEVTYPER_MT 0x02000000 1140 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1141 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1142 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1143 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1144 PMXEVTYPER_EVTCOUNT) 1145 1146 #define PMCCFILTR 0xf8000000 1147 #define PMCCFILTR_M PMXEVTYPER_M 1148 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1149 1150 static inline uint32_t pmu_num_counters(CPUARMState *env) 1151 { 1152 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1153 } 1154 1155 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1156 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1157 { 1158 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1159 } 1160 1161 typedef struct pm_event { 1162 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1163 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1164 bool (*supported)(CPUARMState *); 1165 /* 1166 * Retrieve the current count of the underlying event. The programmed 1167 * counters hold a difference from the return value from this function 1168 */ 1169 uint64_t (*get_count)(CPUARMState *); 1170 /* 1171 * Return how many nanoseconds it will take (at a minimum) for count events 1172 * to occur. A negative value indicates the counter will never overflow, or 1173 * that the counter has otherwise arranged for the overflow bit to be set 1174 * and the PMU interrupt to be raised on overflow. 1175 */ 1176 int64_t (*ns_per_count)(uint64_t); 1177 } pm_event; 1178 1179 static bool event_always_supported(CPUARMState *env) 1180 { 1181 return true; 1182 } 1183 1184 static uint64_t swinc_get_count(CPUARMState *env) 1185 { 1186 /* 1187 * SW_INCR events are written directly to the pmevcntr's by writes to 1188 * PMSWINC, so there is no underlying count maintained by the PMU itself 1189 */ 1190 return 0; 1191 } 1192 1193 static int64_t swinc_ns_per(uint64_t ignored) 1194 { 1195 return -1; 1196 } 1197 1198 /* 1199 * Return the underlying cycle count for the PMU cycle counters. If we're in 1200 * usermode, simply return 0. 1201 */ 1202 static uint64_t cycles_get_count(CPUARMState *env) 1203 { 1204 #ifndef CONFIG_USER_ONLY 1205 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1206 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1207 #else 1208 return cpu_get_host_ticks(); 1209 #endif 1210 } 1211 1212 #ifndef CONFIG_USER_ONLY 1213 static int64_t cycles_ns_per(uint64_t cycles) 1214 { 1215 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1216 } 1217 1218 static bool instructions_supported(CPUARMState *env) 1219 { 1220 return icount_enabled() == 1; /* Precise instruction counting */ 1221 } 1222 1223 static uint64_t instructions_get_count(CPUARMState *env) 1224 { 1225 return (uint64_t)icount_get_raw(); 1226 } 1227 1228 static int64_t instructions_ns_per(uint64_t icount) 1229 { 1230 return icount_to_ns((int64_t)icount); 1231 } 1232 #endif 1233 1234 static bool pmu_8_1_events_supported(CPUARMState *env) 1235 { 1236 /* For events which are supported in any v8.1 PMU */ 1237 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 1238 } 1239 1240 static bool pmu_8_4_events_supported(CPUARMState *env) 1241 { 1242 /* For events which are supported in any v8.1 PMU */ 1243 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 1244 } 1245 1246 static uint64_t zero_event_get_count(CPUARMState *env) 1247 { 1248 /* For events which on QEMU never fire, so their count is always zero */ 1249 return 0; 1250 } 1251 1252 static int64_t zero_event_ns_per(uint64_t cycles) 1253 { 1254 /* An event which never fires can never overflow */ 1255 return -1; 1256 } 1257 1258 static const pm_event pm_events[] = { 1259 { .number = 0x000, /* SW_INCR */ 1260 .supported = event_always_supported, 1261 .get_count = swinc_get_count, 1262 .ns_per_count = swinc_ns_per, 1263 }, 1264 #ifndef CONFIG_USER_ONLY 1265 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1266 .supported = instructions_supported, 1267 .get_count = instructions_get_count, 1268 .ns_per_count = instructions_ns_per, 1269 }, 1270 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1271 .supported = event_always_supported, 1272 .get_count = cycles_get_count, 1273 .ns_per_count = cycles_ns_per, 1274 }, 1275 #endif 1276 { .number = 0x023, /* STALL_FRONTEND */ 1277 .supported = pmu_8_1_events_supported, 1278 .get_count = zero_event_get_count, 1279 .ns_per_count = zero_event_ns_per, 1280 }, 1281 { .number = 0x024, /* STALL_BACKEND */ 1282 .supported = pmu_8_1_events_supported, 1283 .get_count = zero_event_get_count, 1284 .ns_per_count = zero_event_ns_per, 1285 }, 1286 { .number = 0x03c, /* STALL */ 1287 .supported = pmu_8_4_events_supported, 1288 .get_count = zero_event_get_count, 1289 .ns_per_count = zero_event_ns_per, 1290 }, 1291 }; 1292 1293 /* 1294 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1295 * events (i.e. the statistical profiling extension), this implementation 1296 * should first be updated to something sparse instead of the current 1297 * supported_event_map[] array. 1298 */ 1299 #define MAX_EVENT_ID 0x3c 1300 #define UNSUPPORTED_EVENT UINT16_MAX 1301 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1302 1303 /* 1304 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1305 * of ARM event numbers to indices in our pm_events array. 1306 * 1307 * Note: Events in the 0x40XX range are not currently supported. 1308 */ 1309 void pmu_init(ARMCPU *cpu) 1310 { 1311 unsigned int i; 1312 1313 /* 1314 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1315 * events to them 1316 */ 1317 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1318 supported_event_map[i] = UNSUPPORTED_EVENT; 1319 } 1320 cpu->pmceid0 = 0; 1321 cpu->pmceid1 = 0; 1322 1323 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1324 const pm_event *cnt = &pm_events[i]; 1325 assert(cnt->number <= MAX_EVENT_ID); 1326 /* We do not currently support events in the 0x40xx range */ 1327 assert(cnt->number <= 0x3f); 1328 1329 if (cnt->supported(&cpu->env)) { 1330 supported_event_map[cnt->number] = i; 1331 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1332 if (cnt->number & 0x20) { 1333 cpu->pmceid1 |= event_mask; 1334 } else { 1335 cpu->pmceid0 |= event_mask; 1336 } 1337 } 1338 } 1339 } 1340 1341 /* 1342 * Check at runtime whether a PMU event is supported for the current machine 1343 */ 1344 static bool event_supported(uint16_t number) 1345 { 1346 if (number > MAX_EVENT_ID) { 1347 return false; 1348 } 1349 return supported_event_map[number] != UNSUPPORTED_EVENT; 1350 } 1351 1352 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1353 bool isread) 1354 { 1355 /* Performance monitor registers user accessibility is controlled 1356 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1357 * trapping to EL2 or EL3 for other accesses. 1358 */ 1359 int el = arm_current_el(env); 1360 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1361 1362 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1363 return CP_ACCESS_TRAP; 1364 } 1365 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1366 return CP_ACCESS_TRAP_EL2; 1367 } 1368 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1369 return CP_ACCESS_TRAP_EL3; 1370 } 1371 1372 return CP_ACCESS_OK; 1373 } 1374 1375 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1376 const ARMCPRegInfo *ri, 1377 bool isread) 1378 { 1379 /* ER: event counter read trap control */ 1380 if (arm_feature(env, ARM_FEATURE_V8) 1381 && arm_current_el(env) == 0 1382 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1383 && isread) { 1384 return CP_ACCESS_OK; 1385 } 1386 1387 return pmreg_access(env, ri, isread); 1388 } 1389 1390 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1391 const ARMCPRegInfo *ri, 1392 bool isread) 1393 { 1394 /* SW: software increment write trap control */ 1395 if (arm_feature(env, ARM_FEATURE_V8) 1396 && arm_current_el(env) == 0 1397 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1398 && !isread) { 1399 return CP_ACCESS_OK; 1400 } 1401 1402 return pmreg_access(env, ri, isread); 1403 } 1404 1405 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1406 const ARMCPRegInfo *ri, 1407 bool isread) 1408 { 1409 /* ER: event counter read trap control */ 1410 if (arm_feature(env, ARM_FEATURE_V8) 1411 && arm_current_el(env) == 0 1412 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1413 return CP_ACCESS_OK; 1414 } 1415 1416 return pmreg_access(env, ri, isread); 1417 } 1418 1419 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1420 const ARMCPRegInfo *ri, 1421 bool isread) 1422 { 1423 /* CR: cycle counter read trap control */ 1424 if (arm_feature(env, ARM_FEATURE_V8) 1425 && arm_current_el(env) == 0 1426 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1427 && isread) { 1428 return CP_ACCESS_OK; 1429 } 1430 1431 return pmreg_access(env, ri, isread); 1432 } 1433 1434 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1435 * the current EL, security state, and register configuration. 1436 */ 1437 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1438 { 1439 uint64_t filter; 1440 bool e, p, u, nsk, nsu, nsh, m; 1441 bool enabled, prohibited, filtered; 1442 bool secure = arm_is_secure(env); 1443 int el = arm_current_el(env); 1444 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1445 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1446 1447 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1448 return false; 1449 } 1450 1451 if (!arm_feature(env, ARM_FEATURE_EL2) || 1452 (counter < hpmn || counter == 31)) { 1453 e = env->cp15.c9_pmcr & PMCRE; 1454 } else { 1455 e = mdcr_el2 & MDCR_HPME; 1456 } 1457 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1458 1459 if (!secure) { 1460 if (el == 2 && (counter < hpmn || counter == 31)) { 1461 prohibited = mdcr_el2 & MDCR_HPMD; 1462 } else { 1463 prohibited = false; 1464 } 1465 } else { 1466 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1467 !(env->cp15.mdcr_el3 & MDCR_SPME); 1468 } 1469 1470 if (prohibited && counter == 31) { 1471 prohibited = env->cp15.c9_pmcr & PMCRDP; 1472 } 1473 1474 if (counter == 31) { 1475 filter = env->cp15.pmccfiltr_el0; 1476 } else { 1477 filter = env->cp15.c14_pmevtyper[counter]; 1478 } 1479 1480 p = filter & PMXEVTYPER_P; 1481 u = filter & PMXEVTYPER_U; 1482 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1483 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1484 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1485 m = arm_el_is_aa64(env, 1) && 1486 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1487 1488 if (el == 0) { 1489 filtered = secure ? u : u != nsu; 1490 } else if (el == 1) { 1491 filtered = secure ? p : p != nsk; 1492 } else if (el == 2) { 1493 filtered = !nsh; 1494 } else { /* EL3 */ 1495 filtered = m != p; 1496 } 1497 1498 if (counter != 31) { 1499 /* 1500 * If not checking PMCCNTR, ensure the counter is setup to an event we 1501 * support 1502 */ 1503 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1504 if (!event_supported(event)) { 1505 return false; 1506 } 1507 } 1508 1509 return enabled && !prohibited && !filtered; 1510 } 1511 1512 static void pmu_update_irq(CPUARMState *env) 1513 { 1514 ARMCPU *cpu = env_archcpu(env); 1515 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1516 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1517 } 1518 1519 /* 1520 * Ensure c15_ccnt is the guest-visible count so that operations such as 1521 * enabling/disabling the counter or filtering, modifying the count itself, 1522 * etc. can be done logically. This is essentially a no-op if the counter is 1523 * not enabled at the time of the call. 1524 */ 1525 static void pmccntr_op_start(CPUARMState *env) 1526 { 1527 uint64_t cycles = cycles_get_count(env); 1528 1529 if (pmu_counter_enabled(env, 31)) { 1530 uint64_t eff_cycles = cycles; 1531 if (env->cp15.c9_pmcr & PMCRD) { 1532 /* Increment once every 64 processor clock cycles */ 1533 eff_cycles /= 64; 1534 } 1535 1536 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1537 1538 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1539 1ull << 63 : 1ull << 31; 1540 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1541 env->cp15.c9_pmovsr |= (1 << 31); 1542 pmu_update_irq(env); 1543 } 1544 1545 env->cp15.c15_ccnt = new_pmccntr; 1546 } 1547 env->cp15.c15_ccnt_delta = cycles; 1548 } 1549 1550 /* 1551 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1552 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1553 * pmccntr_op_start. 1554 */ 1555 static void pmccntr_op_finish(CPUARMState *env) 1556 { 1557 if (pmu_counter_enabled(env, 31)) { 1558 #ifndef CONFIG_USER_ONLY 1559 /* Calculate when the counter will next overflow */ 1560 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1561 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1562 remaining_cycles = (uint32_t)remaining_cycles; 1563 } 1564 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1565 1566 if (overflow_in > 0) { 1567 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1568 overflow_in; 1569 ARMCPU *cpu = env_archcpu(env); 1570 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1571 } 1572 #endif 1573 1574 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1575 if (env->cp15.c9_pmcr & PMCRD) { 1576 /* Increment once every 64 processor clock cycles */ 1577 prev_cycles /= 64; 1578 } 1579 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1580 } 1581 } 1582 1583 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1584 { 1585 1586 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1587 uint64_t count = 0; 1588 if (event_supported(event)) { 1589 uint16_t event_idx = supported_event_map[event]; 1590 count = pm_events[event_idx].get_count(env); 1591 } 1592 1593 if (pmu_counter_enabled(env, counter)) { 1594 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1595 1596 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1597 env->cp15.c9_pmovsr |= (1 << counter); 1598 pmu_update_irq(env); 1599 } 1600 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1601 } 1602 env->cp15.c14_pmevcntr_delta[counter] = count; 1603 } 1604 1605 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1606 { 1607 if (pmu_counter_enabled(env, counter)) { 1608 #ifndef CONFIG_USER_ONLY 1609 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1610 uint16_t event_idx = supported_event_map[event]; 1611 uint64_t delta = UINT32_MAX - 1612 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1613 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1614 1615 if (overflow_in > 0) { 1616 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1617 overflow_in; 1618 ARMCPU *cpu = env_archcpu(env); 1619 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1620 } 1621 #endif 1622 1623 env->cp15.c14_pmevcntr_delta[counter] -= 1624 env->cp15.c14_pmevcntr[counter]; 1625 } 1626 } 1627 1628 void pmu_op_start(CPUARMState *env) 1629 { 1630 unsigned int i; 1631 pmccntr_op_start(env); 1632 for (i = 0; i < pmu_num_counters(env); i++) { 1633 pmevcntr_op_start(env, i); 1634 } 1635 } 1636 1637 void pmu_op_finish(CPUARMState *env) 1638 { 1639 unsigned int i; 1640 pmccntr_op_finish(env); 1641 for (i = 0; i < pmu_num_counters(env); i++) { 1642 pmevcntr_op_finish(env, i); 1643 } 1644 } 1645 1646 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1647 { 1648 pmu_op_start(&cpu->env); 1649 } 1650 1651 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1652 { 1653 pmu_op_finish(&cpu->env); 1654 } 1655 1656 void arm_pmu_timer_cb(void *opaque) 1657 { 1658 ARMCPU *cpu = opaque; 1659 1660 /* 1661 * Update all the counter values based on the current underlying counts, 1662 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1663 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1664 * counter may expire. 1665 */ 1666 pmu_op_start(&cpu->env); 1667 pmu_op_finish(&cpu->env); 1668 } 1669 1670 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1671 uint64_t value) 1672 { 1673 pmu_op_start(env); 1674 1675 if (value & PMCRC) { 1676 /* The counter has been reset */ 1677 env->cp15.c15_ccnt = 0; 1678 } 1679 1680 if (value & PMCRP) { 1681 unsigned int i; 1682 for (i = 0; i < pmu_num_counters(env); i++) { 1683 env->cp15.c14_pmevcntr[i] = 0; 1684 } 1685 } 1686 1687 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1688 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1689 1690 pmu_op_finish(env); 1691 } 1692 1693 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1694 uint64_t value) 1695 { 1696 unsigned int i; 1697 for (i = 0; i < pmu_num_counters(env); i++) { 1698 /* Increment a counter's count iff: */ 1699 if ((value & (1 << i)) && /* counter's bit is set */ 1700 /* counter is enabled and not filtered */ 1701 pmu_counter_enabled(env, i) && 1702 /* counter is SW_INCR */ 1703 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1704 pmevcntr_op_start(env, i); 1705 1706 /* 1707 * Detect if this write causes an overflow since we can't predict 1708 * PMSWINC overflows like we can for other events 1709 */ 1710 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1711 1712 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1713 env->cp15.c9_pmovsr |= (1 << i); 1714 pmu_update_irq(env); 1715 } 1716 1717 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1718 1719 pmevcntr_op_finish(env, i); 1720 } 1721 } 1722 } 1723 1724 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1725 { 1726 uint64_t ret; 1727 pmccntr_op_start(env); 1728 ret = env->cp15.c15_ccnt; 1729 pmccntr_op_finish(env); 1730 return ret; 1731 } 1732 1733 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1734 uint64_t value) 1735 { 1736 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1737 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1738 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1739 * accessed. 1740 */ 1741 env->cp15.c9_pmselr = value & 0x1f; 1742 } 1743 1744 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1745 uint64_t value) 1746 { 1747 pmccntr_op_start(env); 1748 env->cp15.c15_ccnt = value; 1749 pmccntr_op_finish(env); 1750 } 1751 1752 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1753 uint64_t value) 1754 { 1755 uint64_t cur_val = pmccntr_read(env, NULL); 1756 1757 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1758 } 1759 1760 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1761 uint64_t value) 1762 { 1763 pmccntr_op_start(env); 1764 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1765 pmccntr_op_finish(env); 1766 } 1767 1768 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1769 uint64_t value) 1770 { 1771 pmccntr_op_start(env); 1772 /* M is not accessible from AArch32 */ 1773 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1774 (value & PMCCFILTR); 1775 pmccntr_op_finish(env); 1776 } 1777 1778 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1779 { 1780 /* M is not visible in AArch32 */ 1781 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1782 } 1783 1784 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1785 uint64_t value) 1786 { 1787 value &= pmu_counter_mask(env); 1788 env->cp15.c9_pmcnten |= value; 1789 } 1790 1791 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1792 uint64_t value) 1793 { 1794 value &= pmu_counter_mask(env); 1795 env->cp15.c9_pmcnten &= ~value; 1796 } 1797 1798 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1799 uint64_t value) 1800 { 1801 value &= pmu_counter_mask(env); 1802 env->cp15.c9_pmovsr &= ~value; 1803 pmu_update_irq(env); 1804 } 1805 1806 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1807 uint64_t value) 1808 { 1809 value &= pmu_counter_mask(env); 1810 env->cp15.c9_pmovsr |= value; 1811 pmu_update_irq(env); 1812 } 1813 1814 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1815 uint64_t value, const uint8_t counter) 1816 { 1817 if (counter == 31) { 1818 pmccfiltr_write(env, ri, value); 1819 } else if (counter < pmu_num_counters(env)) { 1820 pmevcntr_op_start(env, counter); 1821 1822 /* 1823 * If this counter's event type is changing, store the current 1824 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1825 * pmevcntr_op_finish has the correct baseline when it converts back to 1826 * a delta. 1827 */ 1828 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1829 PMXEVTYPER_EVTCOUNT; 1830 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1831 if (old_event != new_event) { 1832 uint64_t count = 0; 1833 if (event_supported(new_event)) { 1834 uint16_t event_idx = supported_event_map[new_event]; 1835 count = pm_events[event_idx].get_count(env); 1836 } 1837 env->cp15.c14_pmevcntr_delta[counter] = count; 1838 } 1839 1840 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1841 pmevcntr_op_finish(env, counter); 1842 } 1843 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1844 * PMSELR value is equal to or greater than the number of implemented 1845 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1846 */ 1847 } 1848 1849 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1850 const uint8_t counter) 1851 { 1852 if (counter == 31) { 1853 return env->cp15.pmccfiltr_el0; 1854 } else if (counter < pmu_num_counters(env)) { 1855 return env->cp15.c14_pmevtyper[counter]; 1856 } else { 1857 /* 1858 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1859 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1860 */ 1861 return 0; 1862 } 1863 } 1864 1865 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1866 uint64_t value) 1867 { 1868 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1869 pmevtyper_write(env, ri, value, counter); 1870 } 1871 1872 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1873 uint64_t value) 1874 { 1875 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1876 env->cp15.c14_pmevtyper[counter] = value; 1877 1878 /* 1879 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1880 * pmu_op_finish calls when loading saved state for a migration. Because 1881 * we're potentially updating the type of event here, the value written to 1882 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1883 * different counter type. Therefore, we need to set this value to the 1884 * current count for the counter type we're writing so that pmu_op_finish 1885 * has the correct count for its calculation. 1886 */ 1887 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1888 if (event_supported(event)) { 1889 uint16_t event_idx = supported_event_map[event]; 1890 env->cp15.c14_pmevcntr_delta[counter] = 1891 pm_events[event_idx].get_count(env); 1892 } 1893 } 1894 1895 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1896 { 1897 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1898 return pmevtyper_read(env, ri, counter); 1899 } 1900 1901 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1902 uint64_t value) 1903 { 1904 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1905 } 1906 1907 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1908 { 1909 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1910 } 1911 1912 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1913 uint64_t value, uint8_t counter) 1914 { 1915 if (counter < pmu_num_counters(env)) { 1916 pmevcntr_op_start(env, counter); 1917 env->cp15.c14_pmevcntr[counter] = value; 1918 pmevcntr_op_finish(env, counter); 1919 } 1920 /* 1921 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1922 * are CONSTRAINED UNPREDICTABLE. 1923 */ 1924 } 1925 1926 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1927 uint8_t counter) 1928 { 1929 if (counter < pmu_num_counters(env)) { 1930 uint64_t ret; 1931 pmevcntr_op_start(env, counter); 1932 ret = env->cp15.c14_pmevcntr[counter]; 1933 pmevcntr_op_finish(env, counter); 1934 return ret; 1935 } else { 1936 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1937 * are CONSTRAINED UNPREDICTABLE. */ 1938 return 0; 1939 } 1940 } 1941 1942 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1943 uint64_t value) 1944 { 1945 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1946 pmevcntr_write(env, ri, value, counter); 1947 } 1948 1949 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1950 { 1951 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1952 return pmevcntr_read(env, ri, counter); 1953 } 1954 1955 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1956 uint64_t value) 1957 { 1958 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1959 assert(counter < pmu_num_counters(env)); 1960 env->cp15.c14_pmevcntr[counter] = value; 1961 pmevcntr_write(env, ri, value, counter); 1962 } 1963 1964 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1965 { 1966 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1967 assert(counter < pmu_num_counters(env)); 1968 return env->cp15.c14_pmevcntr[counter]; 1969 } 1970 1971 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1972 uint64_t value) 1973 { 1974 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1975 } 1976 1977 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1978 { 1979 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1980 } 1981 1982 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1983 uint64_t value) 1984 { 1985 if (arm_feature(env, ARM_FEATURE_V8)) { 1986 env->cp15.c9_pmuserenr = value & 0xf; 1987 } else { 1988 env->cp15.c9_pmuserenr = value & 1; 1989 } 1990 } 1991 1992 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1993 uint64_t value) 1994 { 1995 /* We have no event counters so only the C bit can be changed */ 1996 value &= pmu_counter_mask(env); 1997 env->cp15.c9_pminten |= value; 1998 pmu_update_irq(env); 1999 } 2000 2001 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2002 uint64_t value) 2003 { 2004 value &= pmu_counter_mask(env); 2005 env->cp15.c9_pminten &= ~value; 2006 pmu_update_irq(env); 2007 } 2008 2009 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2010 uint64_t value) 2011 { 2012 /* Note that even though the AArch64 view of this register has bits 2013 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 2014 * architectural requirements for bits which are RES0 only in some 2015 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 2016 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 2017 */ 2018 raw_write(env, ri, value & ~0x1FULL); 2019 } 2020 2021 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2022 { 2023 /* Begin with base v8.0 state. */ 2024 uint32_t valid_mask = 0x3fff; 2025 ARMCPU *cpu = env_archcpu(env); 2026 2027 if (ri->state == ARM_CP_STATE_AA64) { 2028 if (arm_feature(env, ARM_FEATURE_AARCH64) && 2029 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 2030 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 2031 } 2032 valid_mask &= ~SCR_NET; 2033 2034 if (cpu_isar_feature(aa64_lor, cpu)) { 2035 valid_mask |= SCR_TLOR; 2036 } 2037 if (cpu_isar_feature(aa64_pauth, cpu)) { 2038 valid_mask |= SCR_API | SCR_APK; 2039 } 2040 if (cpu_isar_feature(aa64_sel2, cpu)) { 2041 valid_mask |= SCR_EEL2; 2042 } 2043 if (cpu_isar_feature(aa64_mte, cpu)) { 2044 valid_mask |= SCR_ATA; 2045 } 2046 } else { 2047 valid_mask &= ~(SCR_RW | SCR_ST); 2048 } 2049 2050 if (!arm_feature(env, ARM_FEATURE_EL2)) { 2051 valid_mask &= ~SCR_HCE; 2052 2053 /* On ARMv7, SMD (or SCD as it is called in v7) is only 2054 * supported if EL2 exists. The bit is UNK/SBZP when 2055 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 2056 * when EL2 is unavailable. 2057 * On ARMv8, this bit is always available. 2058 */ 2059 if (arm_feature(env, ARM_FEATURE_V7) && 2060 !arm_feature(env, ARM_FEATURE_V8)) { 2061 valid_mask &= ~SCR_SMD; 2062 } 2063 } 2064 2065 /* Clear all-context RES0 bits. */ 2066 value &= valid_mask; 2067 raw_write(env, ri, value); 2068 } 2069 2070 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2071 { 2072 /* 2073 * scr_write will set the RES1 bits on an AArch64-only CPU. 2074 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 2075 */ 2076 scr_write(env, ri, 0); 2077 } 2078 2079 static CPAccessResult access_aa64_tid2(CPUARMState *env, 2080 const ARMCPRegInfo *ri, 2081 bool isread) 2082 { 2083 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 2084 return CP_ACCESS_TRAP_EL2; 2085 } 2086 2087 return CP_ACCESS_OK; 2088 } 2089 2090 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2091 { 2092 ARMCPU *cpu = env_archcpu(env); 2093 2094 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 2095 * bank 2096 */ 2097 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2098 ri->secure & ARM_CP_SECSTATE_S); 2099 2100 return cpu->ccsidr[index]; 2101 } 2102 2103 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2104 uint64_t value) 2105 { 2106 raw_write(env, ri, value & 0xf); 2107 } 2108 2109 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2110 { 2111 CPUState *cs = env_cpu(env); 2112 bool el1 = arm_current_el(env) == 1; 2113 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 2114 uint64_t ret = 0; 2115 2116 if (hcr_el2 & HCR_IMO) { 2117 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2118 ret |= CPSR_I; 2119 } 2120 } else { 2121 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2122 ret |= CPSR_I; 2123 } 2124 } 2125 2126 if (hcr_el2 & HCR_FMO) { 2127 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2128 ret |= CPSR_F; 2129 } 2130 } else { 2131 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2132 ret |= CPSR_F; 2133 } 2134 } 2135 2136 /* External aborts are not possible in QEMU so A bit is always clear */ 2137 return ret; 2138 } 2139 2140 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2141 bool isread) 2142 { 2143 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2144 return CP_ACCESS_TRAP_EL2; 2145 } 2146 2147 return CP_ACCESS_OK; 2148 } 2149 2150 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2151 bool isread) 2152 { 2153 if (arm_feature(env, ARM_FEATURE_V8)) { 2154 return access_aa64_tid1(env, ri, isread); 2155 } 2156 2157 return CP_ACCESS_OK; 2158 } 2159 2160 static const ARMCPRegInfo v7_cp_reginfo[] = { 2161 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2162 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2163 .access = PL1_W, .type = ARM_CP_NOP }, 2164 /* Performance monitors are implementation defined in v7, 2165 * but with an ARM recommended set of registers, which we 2166 * follow. 2167 * 2168 * Performance registers fall into three categories: 2169 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2170 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2171 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2172 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2173 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2174 */ 2175 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2176 .access = PL0_RW, .type = ARM_CP_ALIAS, 2177 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2178 .writefn = pmcntenset_write, 2179 .accessfn = pmreg_access, 2180 .raw_writefn = raw_write }, 2181 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 2182 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2183 .access = PL0_RW, .accessfn = pmreg_access, 2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2185 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2186 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2187 .access = PL0_RW, 2188 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2189 .accessfn = pmreg_access, 2190 .writefn = pmcntenclr_write, 2191 .type = ARM_CP_ALIAS }, 2192 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2193 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2194 .access = PL0_RW, .accessfn = pmreg_access, 2195 .type = ARM_CP_ALIAS, 2196 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2197 .writefn = pmcntenclr_write }, 2198 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2199 .access = PL0_RW, .type = ARM_CP_IO, 2200 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2201 .accessfn = pmreg_access, 2202 .writefn = pmovsr_write, 2203 .raw_writefn = raw_write }, 2204 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2205 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2206 .access = PL0_RW, .accessfn = pmreg_access, 2207 .type = ARM_CP_ALIAS | ARM_CP_IO, 2208 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2209 .writefn = pmovsr_write, 2210 .raw_writefn = raw_write }, 2211 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2212 .access = PL0_W, .accessfn = pmreg_access_swinc, 2213 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2214 .writefn = pmswinc_write }, 2215 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2216 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2217 .access = PL0_W, .accessfn = pmreg_access_swinc, 2218 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2219 .writefn = pmswinc_write }, 2220 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2221 .access = PL0_RW, .type = ARM_CP_ALIAS, 2222 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2223 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2224 .raw_writefn = raw_write}, 2225 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2226 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2227 .access = PL0_RW, .accessfn = pmreg_access_selr, 2228 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2229 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2230 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2231 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2232 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2233 .accessfn = pmreg_access_ccntr }, 2234 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2235 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2236 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2237 .type = ARM_CP_IO, 2238 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2239 .readfn = pmccntr_read, .writefn = pmccntr_write, 2240 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2241 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2242 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2243 .access = PL0_RW, .accessfn = pmreg_access, 2244 .type = ARM_CP_ALIAS | ARM_CP_IO, 2245 .resetvalue = 0, }, 2246 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2247 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2248 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2249 .access = PL0_RW, .accessfn = pmreg_access, 2250 .type = ARM_CP_IO, 2251 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2252 .resetvalue = 0, }, 2253 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2254 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2255 .accessfn = pmreg_access, 2256 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2257 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2258 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2259 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2260 .accessfn = pmreg_access, 2261 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2262 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2263 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2264 .accessfn = pmreg_access_xevcntr, 2265 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2266 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2267 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2268 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2269 .accessfn = pmreg_access_xevcntr, 2270 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2271 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2272 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2273 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2274 .resetvalue = 0, 2275 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2276 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2277 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2278 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2279 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2280 .resetvalue = 0, 2281 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2282 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2283 .access = PL1_RW, .accessfn = access_tpm, 2284 .type = ARM_CP_ALIAS | ARM_CP_IO, 2285 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2286 .resetvalue = 0, 2287 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2288 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2289 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2290 .access = PL1_RW, .accessfn = access_tpm, 2291 .type = ARM_CP_IO, 2292 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2293 .writefn = pmintenset_write, .raw_writefn = raw_write, 2294 .resetvalue = 0x0 }, 2295 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2296 .access = PL1_RW, .accessfn = access_tpm, 2297 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2298 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2299 .writefn = pmintenclr_write, }, 2300 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2301 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2302 .access = PL1_RW, .accessfn = access_tpm, 2303 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2304 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2305 .writefn = pmintenclr_write }, 2306 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2307 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2308 .access = PL1_R, 2309 .accessfn = access_aa64_tid2, 2310 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2311 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2312 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2313 .access = PL1_RW, 2314 .accessfn = access_aa64_tid2, 2315 .writefn = csselr_write, .resetvalue = 0, 2316 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2317 offsetof(CPUARMState, cp15.csselr_ns) } }, 2318 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2319 * just RAZ for all cores: 2320 */ 2321 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2322 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2323 .access = PL1_R, .type = ARM_CP_CONST, 2324 .accessfn = access_aa64_tid1, 2325 .resetvalue = 0 }, 2326 /* Auxiliary fault status registers: these also are IMPDEF, and we 2327 * choose to RAZ/WI for all cores. 2328 */ 2329 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2330 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2331 .access = PL1_RW, .accessfn = access_tvm_trvm, 2332 .type = ARM_CP_CONST, .resetvalue = 0 }, 2333 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2334 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2335 .access = PL1_RW, .accessfn = access_tvm_trvm, 2336 .type = ARM_CP_CONST, .resetvalue = 0 }, 2337 /* MAIR can just read-as-written because we don't implement caches 2338 * and so don't need to care about memory attributes. 2339 */ 2340 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2341 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2342 .access = PL1_RW, .accessfn = access_tvm_trvm, 2343 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2344 .resetvalue = 0 }, 2345 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2346 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2347 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2348 .resetvalue = 0 }, 2349 /* For non-long-descriptor page tables these are PRRR and NMRR; 2350 * regardless they still act as reads-as-written for QEMU. 2351 */ 2352 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2353 * allows them to assign the correct fieldoffset based on the endianness 2354 * handled in the field definitions. 2355 */ 2356 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2357 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2358 .access = PL1_RW, .accessfn = access_tvm_trvm, 2359 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2360 offsetof(CPUARMState, cp15.mair0_ns) }, 2361 .resetfn = arm_cp_reset_ignore }, 2362 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2363 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2364 .access = PL1_RW, .accessfn = access_tvm_trvm, 2365 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2366 offsetof(CPUARMState, cp15.mair1_ns) }, 2367 .resetfn = arm_cp_reset_ignore }, 2368 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2369 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2370 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2371 /* 32 bit ITLB invalidates */ 2372 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2373 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2374 .writefn = tlbiall_write }, 2375 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2376 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2377 .writefn = tlbimva_write }, 2378 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2379 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2380 .writefn = tlbiasid_write }, 2381 /* 32 bit DTLB invalidates */ 2382 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2383 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2384 .writefn = tlbiall_write }, 2385 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2386 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2387 .writefn = tlbimva_write }, 2388 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2389 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2390 .writefn = tlbiasid_write }, 2391 /* 32 bit TLB invalidates */ 2392 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2393 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2394 .writefn = tlbiall_write }, 2395 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2396 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2397 .writefn = tlbimva_write }, 2398 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2399 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2400 .writefn = tlbiasid_write }, 2401 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2402 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2403 .writefn = tlbimvaa_write }, 2404 REGINFO_SENTINEL 2405 }; 2406 2407 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2408 /* 32 bit TLB invalidates, Inner Shareable */ 2409 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2410 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2411 .writefn = tlbiall_is_write }, 2412 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2413 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2414 .writefn = tlbimva_is_write }, 2415 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2416 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2417 .writefn = tlbiasid_is_write }, 2418 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2419 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2420 .writefn = tlbimvaa_is_write }, 2421 REGINFO_SENTINEL 2422 }; 2423 2424 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2425 /* PMOVSSET is not implemented in v7 before v7ve */ 2426 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2427 .access = PL0_RW, .accessfn = pmreg_access, 2428 .type = ARM_CP_ALIAS | ARM_CP_IO, 2429 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2430 .writefn = pmovsset_write, 2431 .raw_writefn = raw_write }, 2432 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2433 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2434 .access = PL0_RW, .accessfn = pmreg_access, 2435 .type = ARM_CP_ALIAS | ARM_CP_IO, 2436 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2437 .writefn = pmovsset_write, 2438 .raw_writefn = raw_write }, 2439 REGINFO_SENTINEL 2440 }; 2441 2442 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2443 uint64_t value) 2444 { 2445 value &= 1; 2446 env->teecr = value; 2447 } 2448 2449 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2450 bool isread) 2451 { 2452 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2453 return CP_ACCESS_TRAP; 2454 } 2455 return CP_ACCESS_OK; 2456 } 2457 2458 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2459 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2460 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2461 .resetvalue = 0, 2462 .writefn = teecr_write }, 2463 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2464 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2465 .accessfn = teehbr_access, .resetvalue = 0 }, 2466 REGINFO_SENTINEL 2467 }; 2468 2469 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2470 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2471 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2472 .access = PL0_RW, 2473 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2474 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2475 .access = PL0_RW, 2476 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2477 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2478 .resetfn = arm_cp_reset_ignore }, 2479 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2480 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2481 .access = PL0_R|PL1_W, 2482 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2483 .resetvalue = 0}, 2484 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2485 .access = PL0_R|PL1_W, 2486 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2487 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2488 .resetfn = arm_cp_reset_ignore }, 2489 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2490 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2491 .access = PL1_RW, 2492 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2493 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2494 .access = PL1_RW, 2495 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2496 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2497 .resetvalue = 0 }, 2498 REGINFO_SENTINEL 2499 }; 2500 2501 #ifndef CONFIG_USER_ONLY 2502 2503 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2504 bool isread) 2505 { 2506 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2507 * Writable only at the highest implemented exception level. 2508 */ 2509 int el = arm_current_el(env); 2510 uint64_t hcr; 2511 uint32_t cntkctl; 2512 2513 switch (el) { 2514 case 0: 2515 hcr = arm_hcr_el2_eff(env); 2516 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2517 cntkctl = env->cp15.cnthctl_el2; 2518 } else { 2519 cntkctl = env->cp15.c14_cntkctl; 2520 } 2521 if (!extract32(cntkctl, 0, 2)) { 2522 return CP_ACCESS_TRAP; 2523 } 2524 break; 2525 case 1: 2526 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2527 arm_is_secure_below_el3(env)) { 2528 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2529 return CP_ACCESS_TRAP_UNCATEGORIZED; 2530 } 2531 break; 2532 case 2: 2533 case 3: 2534 break; 2535 } 2536 2537 if (!isread && el < arm_highest_el(env)) { 2538 return CP_ACCESS_TRAP_UNCATEGORIZED; 2539 } 2540 2541 return CP_ACCESS_OK; 2542 } 2543 2544 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2545 bool isread) 2546 { 2547 unsigned int cur_el = arm_current_el(env); 2548 bool has_el2 = arm_is_el2_enabled(env); 2549 uint64_t hcr = arm_hcr_el2_eff(env); 2550 2551 switch (cur_el) { 2552 case 0: 2553 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2554 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2555 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2556 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2557 } 2558 2559 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2560 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2561 return CP_ACCESS_TRAP; 2562 } 2563 2564 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2565 if (hcr & HCR_E2H) { 2566 if (timeridx == GTIMER_PHYS && 2567 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2568 return CP_ACCESS_TRAP_EL2; 2569 } 2570 } else { 2571 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2572 if (has_el2 && timeridx == GTIMER_PHYS && 2573 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2574 return CP_ACCESS_TRAP_EL2; 2575 } 2576 } 2577 break; 2578 2579 case 1: 2580 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2581 if (has_el2 && timeridx == GTIMER_PHYS && 2582 (hcr & HCR_E2H 2583 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2584 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2585 return CP_ACCESS_TRAP_EL2; 2586 } 2587 break; 2588 } 2589 return CP_ACCESS_OK; 2590 } 2591 2592 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2593 bool isread) 2594 { 2595 unsigned int cur_el = arm_current_el(env); 2596 bool has_el2 = arm_is_el2_enabled(env); 2597 uint64_t hcr = arm_hcr_el2_eff(env); 2598 2599 switch (cur_el) { 2600 case 0: 2601 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2602 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2603 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2604 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2605 } 2606 2607 /* 2608 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2609 * EL0 if EL0[PV]TEN is zero. 2610 */ 2611 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2612 return CP_ACCESS_TRAP; 2613 } 2614 /* fall through */ 2615 2616 case 1: 2617 if (has_el2 && timeridx == GTIMER_PHYS) { 2618 if (hcr & HCR_E2H) { 2619 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2620 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2621 return CP_ACCESS_TRAP_EL2; 2622 } 2623 } else { 2624 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2625 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2626 return CP_ACCESS_TRAP_EL2; 2627 } 2628 } 2629 } 2630 break; 2631 } 2632 return CP_ACCESS_OK; 2633 } 2634 2635 static CPAccessResult gt_pct_access(CPUARMState *env, 2636 const ARMCPRegInfo *ri, 2637 bool isread) 2638 { 2639 return gt_counter_access(env, GTIMER_PHYS, isread); 2640 } 2641 2642 static CPAccessResult gt_vct_access(CPUARMState *env, 2643 const ARMCPRegInfo *ri, 2644 bool isread) 2645 { 2646 return gt_counter_access(env, GTIMER_VIRT, isread); 2647 } 2648 2649 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2650 bool isread) 2651 { 2652 return gt_timer_access(env, GTIMER_PHYS, isread); 2653 } 2654 2655 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2656 bool isread) 2657 { 2658 return gt_timer_access(env, GTIMER_VIRT, isread); 2659 } 2660 2661 static CPAccessResult gt_stimer_access(CPUARMState *env, 2662 const ARMCPRegInfo *ri, 2663 bool isread) 2664 { 2665 /* The AArch64 register view of the secure physical timer is 2666 * always accessible from EL3, and configurably accessible from 2667 * Secure EL1. 2668 */ 2669 switch (arm_current_el(env)) { 2670 case 1: 2671 if (!arm_is_secure(env)) { 2672 return CP_ACCESS_TRAP; 2673 } 2674 if (!(env->cp15.scr_el3 & SCR_ST)) { 2675 return CP_ACCESS_TRAP_EL3; 2676 } 2677 return CP_ACCESS_OK; 2678 case 0: 2679 case 2: 2680 return CP_ACCESS_TRAP; 2681 case 3: 2682 return CP_ACCESS_OK; 2683 default: 2684 g_assert_not_reached(); 2685 } 2686 } 2687 2688 static uint64_t gt_get_countervalue(CPUARMState *env) 2689 { 2690 ARMCPU *cpu = env_archcpu(env); 2691 2692 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2693 } 2694 2695 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2696 { 2697 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2698 2699 if (gt->ctl & 1) { 2700 /* Timer enabled: calculate and set current ISTATUS, irq, and 2701 * reset timer to when ISTATUS next has to change 2702 */ 2703 uint64_t offset = timeridx == GTIMER_VIRT ? 2704 cpu->env.cp15.cntvoff_el2 : 0; 2705 uint64_t count = gt_get_countervalue(&cpu->env); 2706 /* Note that this must be unsigned 64 bit arithmetic: */ 2707 int istatus = count - offset >= gt->cval; 2708 uint64_t nexttick; 2709 int irqstate; 2710 2711 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2712 2713 irqstate = (istatus && !(gt->ctl & 2)); 2714 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2715 2716 if (istatus) { 2717 /* Next transition is when count rolls back over to zero */ 2718 nexttick = UINT64_MAX; 2719 } else { 2720 /* Next transition is when we hit cval */ 2721 nexttick = gt->cval + offset; 2722 } 2723 /* Note that the desired next expiry time might be beyond the 2724 * signed-64-bit range of a QEMUTimer -- in this case we just 2725 * set the timer for as far in the future as possible. When the 2726 * timer expires we will reset the timer for any remaining period. 2727 */ 2728 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2729 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2730 } else { 2731 timer_mod(cpu->gt_timer[timeridx], nexttick); 2732 } 2733 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2734 } else { 2735 /* Timer disabled: ISTATUS and timer output always clear */ 2736 gt->ctl &= ~4; 2737 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2738 timer_del(cpu->gt_timer[timeridx]); 2739 trace_arm_gt_recalc_disabled(timeridx); 2740 } 2741 } 2742 2743 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2744 int timeridx) 2745 { 2746 ARMCPU *cpu = env_archcpu(env); 2747 2748 timer_del(cpu->gt_timer[timeridx]); 2749 } 2750 2751 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2752 { 2753 return gt_get_countervalue(env); 2754 } 2755 2756 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2757 { 2758 uint64_t hcr; 2759 2760 switch (arm_current_el(env)) { 2761 case 2: 2762 hcr = arm_hcr_el2_eff(env); 2763 if (hcr & HCR_E2H) { 2764 return 0; 2765 } 2766 break; 2767 case 0: 2768 hcr = arm_hcr_el2_eff(env); 2769 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2770 return 0; 2771 } 2772 break; 2773 } 2774 2775 return env->cp15.cntvoff_el2; 2776 } 2777 2778 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2779 { 2780 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2781 } 2782 2783 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2784 int timeridx, 2785 uint64_t value) 2786 { 2787 trace_arm_gt_cval_write(timeridx, value); 2788 env->cp15.c14_timer[timeridx].cval = value; 2789 gt_recalc_timer(env_archcpu(env), timeridx); 2790 } 2791 2792 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2793 int timeridx) 2794 { 2795 uint64_t offset = 0; 2796 2797 switch (timeridx) { 2798 case GTIMER_VIRT: 2799 case GTIMER_HYPVIRT: 2800 offset = gt_virt_cnt_offset(env); 2801 break; 2802 } 2803 2804 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2805 (gt_get_countervalue(env) - offset)); 2806 } 2807 2808 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2809 int timeridx, 2810 uint64_t value) 2811 { 2812 uint64_t offset = 0; 2813 2814 switch (timeridx) { 2815 case GTIMER_VIRT: 2816 case GTIMER_HYPVIRT: 2817 offset = gt_virt_cnt_offset(env); 2818 break; 2819 } 2820 2821 trace_arm_gt_tval_write(timeridx, value); 2822 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2823 sextract64(value, 0, 32); 2824 gt_recalc_timer(env_archcpu(env), timeridx); 2825 } 2826 2827 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2828 int timeridx, 2829 uint64_t value) 2830 { 2831 ARMCPU *cpu = env_archcpu(env); 2832 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2833 2834 trace_arm_gt_ctl_write(timeridx, value); 2835 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2836 if ((oldval ^ value) & 1) { 2837 /* Enable toggled */ 2838 gt_recalc_timer(cpu, timeridx); 2839 } else if ((oldval ^ value) & 2) { 2840 /* IMASK toggled: don't need to recalculate, 2841 * just set the interrupt line based on ISTATUS 2842 */ 2843 int irqstate = (oldval & 4) && !(value & 2); 2844 2845 trace_arm_gt_imask_toggle(timeridx, irqstate); 2846 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2847 } 2848 } 2849 2850 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2851 { 2852 gt_timer_reset(env, ri, GTIMER_PHYS); 2853 } 2854 2855 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2856 uint64_t value) 2857 { 2858 gt_cval_write(env, ri, GTIMER_PHYS, value); 2859 } 2860 2861 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2862 { 2863 return gt_tval_read(env, ri, GTIMER_PHYS); 2864 } 2865 2866 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2867 uint64_t value) 2868 { 2869 gt_tval_write(env, ri, GTIMER_PHYS, value); 2870 } 2871 2872 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2873 uint64_t value) 2874 { 2875 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2876 } 2877 2878 static int gt_phys_redir_timeridx(CPUARMState *env) 2879 { 2880 switch (arm_mmu_idx(env)) { 2881 case ARMMMUIdx_E20_0: 2882 case ARMMMUIdx_E20_2: 2883 case ARMMMUIdx_E20_2_PAN: 2884 case ARMMMUIdx_SE20_0: 2885 case ARMMMUIdx_SE20_2: 2886 case ARMMMUIdx_SE20_2_PAN: 2887 return GTIMER_HYP; 2888 default: 2889 return GTIMER_PHYS; 2890 } 2891 } 2892 2893 static int gt_virt_redir_timeridx(CPUARMState *env) 2894 { 2895 switch (arm_mmu_idx(env)) { 2896 case ARMMMUIdx_E20_0: 2897 case ARMMMUIdx_E20_2: 2898 case ARMMMUIdx_E20_2_PAN: 2899 case ARMMMUIdx_SE20_0: 2900 case ARMMMUIdx_SE20_2: 2901 case ARMMMUIdx_SE20_2_PAN: 2902 return GTIMER_HYPVIRT; 2903 default: 2904 return GTIMER_VIRT; 2905 } 2906 } 2907 2908 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2909 const ARMCPRegInfo *ri) 2910 { 2911 int timeridx = gt_phys_redir_timeridx(env); 2912 return env->cp15.c14_timer[timeridx].cval; 2913 } 2914 2915 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2916 uint64_t value) 2917 { 2918 int timeridx = gt_phys_redir_timeridx(env); 2919 gt_cval_write(env, ri, timeridx, value); 2920 } 2921 2922 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2923 const ARMCPRegInfo *ri) 2924 { 2925 int timeridx = gt_phys_redir_timeridx(env); 2926 return gt_tval_read(env, ri, timeridx); 2927 } 2928 2929 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2930 uint64_t value) 2931 { 2932 int timeridx = gt_phys_redir_timeridx(env); 2933 gt_tval_write(env, ri, timeridx, value); 2934 } 2935 2936 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2937 const ARMCPRegInfo *ri) 2938 { 2939 int timeridx = gt_phys_redir_timeridx(env); 2940 return env->cp15.c14_timer[timeridx].ctl; 2941 } 2942 2943 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2944 uint64_t value) 2945 { 2946 int timeridx = gt_phys_redir_timeridx(env); 2947 gt_ctl_write(env, ri, timeridx, value); 2948 } 2949 2950 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2951 { 2952 gt_timer_reset(env, ri, GTIMER_VIRT); 2953 } 2954 2955 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2956 uint64_t value) 2957 { 2958 gt_cval_write(env, ri, GTIMER_VIRT, value); 2959 } 2960 2961 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2962 { 2963 return gt_tval_read(env, ri, GTIMER_VIRT); 2964 } 2965 2966 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2967 uint64_t value) 2968 { 2969 gt_tval_write(env, ri, GTIMER_VIRT, value); 2970 } 2971 2972 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2973 uint64_t value) 2974 { 2975 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2976 } 2977 2978 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2979 uint64_t value) 2980 { 2981 ARMCPU *cpu = env_archcpu(env); 2982 2983 trace_arm_gt_cntvoff_write(value); 2984 raw_write(env, ri, value); 2985 gt_recalc_timer(cpu, GTIMER_VIRT); 2986 } 2987 2988 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2989 const ARMCPRegInfo *ri) 2990 { 2991 int timeridx = gt_virt_redir_timeridx(env); 2992 return env->cp15.c14_timer[timeridx].cval; 2993 } 2994 2995 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2996 uint64_t value) 2997 { 2998 int timeridx = gt_virt_redir_timeridx(env); 2999 gt_cval_write(env, ri, timeridx, value); 3000 } 3001 3002 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 3003 const ARMCPRegInfo *ri) 3004 { 3005 int timeridx = gt_virt_redir_timeridx(env); 3006 return gt_tval_read(env, ri, timeridx); 3007 } 3008 3009 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3010 uint64_t value) 3011 { 3012 int timeridx = gt_virt_redir_timeridx(env); 3013 gt_tval_write(env, ri, timeridx, value); 3014 } 3015 3016 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 3017 const ARMCPRegInfo *ri) 3018 { 3019 int timeridx = gt_virt_redir_timeridx(env); 3020 return env->cp15.c14_timer[timeridx].ctl; 3021 } 3022 3023 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3024 uint64_t value) 3025 { 3026 int timeridx = gt_virt_redir_timeridx(env); 3027 gt_ctl_write(env, ri, timeridx, value); 3028 } 3029 3030 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3031 { 3032 gt_timer_reset(env, ri, GTIMER_HYP); 3033 } 3034 3035 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3036 uint64_t value) 3037 { 3038 gt_cval_write(env, ri, GTIMER_HYP, value); 3039 } 3040 3041 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3042 { 3043 return gt_tval_read(env, ri, GTIMER_HYP); 3044 } 3045 3046 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3047 uint64_t value) 3048 { 3049 gt_tval_write(env, ri, GTIMER_HYP, value); 3050 } 3051 3052 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3053 uint64_t value) 3054 { 3055 gt_ctl_write(env, ri, GTIMER_HYP, value); 3056 } 3057 3058 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3059 { 3060 gt_timer_reset(env, ri, GTIMER_SEC); 3061 } 3062 3063 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3064 uint64_t value) 3065 { 3066 gt_cval_write(env, ri, GTIMER_SEC, value); 3067 } 3068 3069 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3070 { 3071 return gt_tval_read(env, ri, GTIMER_SEC); 3072 } 3073 3074 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3075 uint64_t value) 3076 { 3077 gt_tval_write(env, ri, GTIMER_SEC, value); 3078 } 3079 3080 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3081 uint64_t value) 3082 { 3083 gt_ctl_write(env, ri, GTIMER_SEC, value); 3084 } 3085 3086 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3087 { 3088 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3089 } 3090 3091 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3092 uint64_t value) 3093 { 3094 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3095 } 3096 3097 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3098 { 3099 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3100 } 3101 3102 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3103 uint64_t value) 3104 { 3105 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3106 } 3107 3108 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3109 uint64_t value) 3110 { 3111 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3112 } 3113 3114 void arm_gt_ptimer_cb(void *opaque) 3115 { 3116 ARMCPU *cpu = opaque; 3117 3118 gt_recalc_timer(cpu, GTIMER_PHYS); 3119 } 3120 3121 void arm_gt_vtimer_cb(void *opaque) 3122 { 3123 ARMCPU *cpu = opaque; 3124 3125 gt_recalc_timer(cpu, GTIMER_VIRT); 3126 } 3127 3128 void arm_gt_htimer_cb(void *opaque) 3129 { 3130 ARMCPU *cpu = opaque; 3131 3132 gt_recalc_timer(cpu, GTIMER_HYP); 3133 } 3134 3135 void arm_gt_stimer_cb(void *opaque) 3136 { 3137 ARMCPU *cpu = opaque; 3138 3139 gt_recalc_timer(cpu, GTIMER_SEC); 3140 } 3141 3142 void arm_gt_hvtimer_cb(void *opaque) 3143 { 3144 ARMCPU *cpu = opaque; 3145 3146 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3147 } 3148 3149 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3150 { 3151 ARMCPU *cpu = env_archcpu(env); 3152 3153 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3154 } 3155 3156 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3157 /* Note that CNTFRQ is purely reads-as-written for the benefit 3158 * of software; writing it doesn't actually change the timer frequency. 3159 * Our reset value matches the fixed frequency we implement the timer at. 3160 */ 3161 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3162 .type = ARM_CP_ALIAS, 3163 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3164 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3165 }, 3166 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3167 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3168 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3169 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3170 .resetfn = arm_gt_cntfrq_reset, 3171 }, 3172 /* overall control: mostly access permissions */ 3173 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3174 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3175 .access = PL1_RW, 3176 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3177 .resetvalue = 0, 3178 }, 3179 /* per-timer control */ 3180 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3181 .secure = ARM_CP_SECSTATE_NS, 3182 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3183 .accessfn = gt_ptimer_access, 3184 .fieldoffset = offsetoflow32(CPUARMState, 3185 cp15.c14_timer[GTIMER_PHYS].ctl), 3186 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3187 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3188 }, 3189 { .name = "CNTP_CTL_S", 3190 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3191 .secure = ARM_CP_SECSTATE_S, 3192 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3193 .accessfn = gt_ptimer_access, 3194 .fieldoffset = offsetoflow32(CPUARMState, 3195 cp15.c14_timer[GTIMER_SEC].ctl), 3196 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3197 }, 3198 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3199 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3200 .type = ARM_CP_IO, .access = PL0_RW, 3201 .accessfn = gt_ptimer_access, 3202 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3203 .resetvalue = 0, 3204 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3205 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3206 }, 3207 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3208 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3209 .accessfn = gt_vtimer_access, 3210 .fieldoffset = offsetoflow32(CPUARMState, 3211 cp15.c14_timer[GTIMER_VIRT].ctl), 3212 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3213 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3214 }, 3215 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3216 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3217 .type = ARM_CP_IO, .access = PL0_RW, 3218 .accessfn = gt_vtimer_access, 3219 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3220 .resetvalue = 0, 3221 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3222 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3223 }, 3224 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3225 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3226 .secure = ARM_CP_SECSTATE_NS, 3227 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3228 .accessfn = gt_ptimer_access, 3229 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3230 }, 3231 { .name = "CNTP_TVAL_S", 3232 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3233 .secure = ARM_CP_SECSTATE_S, 3234 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3235 .accessfn = gt_ptimer_access, 3236 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3237 }, 3238 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3239 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3240 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3241 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3242 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3243 }, 3244 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3245 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3246 .accessfn = gt_vtimer_access, 3247 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3248 }, 3249 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3250 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3251 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3252 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3253 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3254 }, 3255 /* The counter itself */ 3256 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3257 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3258 .accessfn = gt_pct_access, 3259 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3260 }, 3261 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3262 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3263 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3264 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3265 }, 3266 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3267 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3268 .accessfn = gt_vct_access, 3269 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3270 }, 3271 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3272 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3273 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3274 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3275 }, 3276 /* Comparison value, indicating when the timer goes off */ 3277 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3278 .secure = ARM_CP_SECSTATE_NS, 3279 .access = PL0_RW, 3280 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3281 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3282 .accessfn = gt_ptimer_access, 3283 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3284 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3285 }, 3286 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3287 .secure = ARM_CP_SECSTATE_S, 3288 .access = PL0_RW, 3289 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3290 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3291 .accessfn = gt_ptimer_access, 3292 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3293 }, 3294 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3295 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3296 .access = PL0_RW, 3297 .type = ARM_CP_IO, 3298 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3299 .resetvalue = 0, .accessfn = gt_ptimer_access, 3300 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3301 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3302 }, 3303 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3304 .access = PL0_RW, 3305 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3306 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3307 .accessfn = gt_vtimer_access, 3308 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3309 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3310 }, 3311 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3312 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3313 .access = PL0_RW, 3314 .type = ARM_CP_IO, 3315 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3316 .resetvalue = 0, .accessfn = gt_vtimer_access, 3317 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3318 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3319 }, 3320 /* Secure timer -- this is actually restricted to only EL3 3321 * and configurably Secure-EL1 via the accessfn. 3322 */ 3323 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3324 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3325 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3326 .accessfn = gt_stimer_access, 3327 .readfn = gt_sec_tval_read, 3328 .writefn = gt_sec_tval_write, 3329 .resetfn = gt_sec_timer_reset, 3330 }, 3331 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3332 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3333 .type = ARM_CP_IO, .access = PL1_RW, 3334 .accessfn = gt_stimer_access, 3335 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3336 .resetvalue = 0, 3337 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3338 }, 3339 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3340 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3341 .type = ARM_CP_IO, .access = PL1_RW, 3342 .accessfn = gt_stimer_access, 3343 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3344 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3345 }, 3346 REGINFO_SENTINEL 3347 }; 3348 3349 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3350 bool isread) 3351 { 3352 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3353 return CP_ACCESS_TRAP; 3354 } 3355 return CP_ACCESS_OK; 3356 } 3357 3358 #else 3359 3360 /* In user-mode most of the generic timer registers are inaccessible 3361 * however modern kernels (4.12+) allow access to cntvct_el0 3362 */ 3363 3364 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3365 { 3366 ARMCPU *cpu = env_archcpu(env); 3367 3368 /* Currently we have no support for QEMUTimer in linux-user so we 3369 * can't call gt_get_countervalue(env), instead we directly 3370 * call the lower level functions. 3371 */ 3372 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3373 } 3374 3375 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3376 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3377 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3378 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3379 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3380 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3381 }, 3382 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3383 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3384 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3385 .readfn = gt_virt_cnt_read, 3386 }, 3387 REGINFO_SENTINEL 3388 }; 3389 3390 #endif 3391 3392 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3393 { 3394 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3395 raw_write(env, ri, value); 3396 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3397 raw_write(env, ri, value & 0xfffff6ff); 3398 } else { 3399 raw_write(env, ri, value & 0xfffff1ff); 3400 } 3401 } 3402 3403 #ifndef CONFIG_USER_ONLY 3404 /* get_phys_addr() isn't present for user-mode-only targets */ 3405 3406 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3407 bool isread) 3408 { 3409 if (ri->opc2 & 4) { 3410 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3411 * Secure EL1 (which can only happen if EL3 is AArch64). 3412 * They are simply UNDEF if executed from NS EL1. 3413 * They function normally from EL2 or EL3. 3414 */ 3415 if (arm_current_el(env) == 1) { 3416 if (arm_is_secure_below_el3(env)) { 3417 if (env->cp15.scr_el3 & SCR_EEL2) { 3418 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3419 } 3420 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3421 } 3422 return CP_ACCESS_TRAP_UNCATEGORIZED; 3423 } 3424 } 3425 return CP_ACCESS_OK; 3426 } 3427 3428 #ifdef CONFIG_TCG 3429 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3430 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3431 { 3432 hwaddr phys_addr; 3433 target_ulong page_size; 3434 int prot; 3435 bool ret; 3436 uint64_t par64; 3437 bool format64 = false; 3438 MemTxAttrs attrs = {}; 3439 ARMMMUFaultInfo fi = {}; 3440 ARMCacheAttrs cacheattrs = {}; 3441 3442 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3443 &prot, &page_size, &fi, &cacheattrs); 3444 3445 if (ret) { 3446 /* 3447 * Some kinds of translation fault must cause exceptions rather 3448 * than being reported in the PAR. 3449 */ 3450 int current_el = arm_current_el(env); 3451 int target_el; 3452 uint32_t syn, fsr, fsc; 3453 bool take_exc = false; 3454 3455 if (fi.s1ptw && current_el == 1 3456 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3457 /* 3458 * Synchronous stage 2 fault on an access made as part of the 3459 * translation table walk for AT S1E0* or AT S1E1* insn 3460 * executed from NS EL1. If this is a synchronous external abort 3461 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3462 * to EL3. Otherwise the fault is taken as an exception to EL2, 3463 * and HPFAR_EL2 holds the faulting IPA. 3464 */ 3465 if (fi.type == ARMFault_SyncExternalOnWalk && 3466 (env->cp15.scr_el3 & SCR_EA)) { 3467 target_el = 3; 3468 } else { 3469 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3470 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3471 env->cp15.hpfar_el2 |= HPFAR_NS; 3472 } 3473 target_el = 2; 3474 } 3475 take_exc = true; 3476 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3477 /* 3478 * Synchronous external aborts during a translation table walk 3479 * are taken as Data Abort exceptions. 3480 */ 3481 if (fi.stage2) { 3482 if (current_el == 3) { 3483 target_el = 3; 3484 } else { 3485 target_el = 2; 3486 } 3487 } else { 3488 target_el = exception_target_el(env); 3489 } 3490 take_exc = true; 3491 } 3492 3493 if (take_exc) { 3494 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3495 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3496 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3497 fsr = arm_fi_to_lfsc(&fi); 3498 fsc = extract32(fsr, 0, 6); 3499 } else { 3500 fsr = arm_fi_to_sfsc(&fi); 3501 fsc = 0x3f; 3502 } 3503 /* 3504 * Report exception with ESR indicating a fault due to a 3505 * translation table walk for a cache maintenance instruction. 3506 */ 3507 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3508 fi.ea, 1, fi.s1ptw, 1, fsc); 3509 env->exception.vaddress = value; 3510 env->exception.fsr = fsr; 3511 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3512 } 3513 } 3514 3515 if (is_a64(env)) { 3516 format64 = true; 3517 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3518 /* 3519 * ATS1Cxx: 3520 * * TTBCR.EAE determines whether the result is returned using the 3521 * 32-bit or the 64-bit PAR format 3522 * * Instructions executed in Hyp mode always use the 64bit format 3523 * 3524 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3525 * * The Non-secure TTBCR.EAE bit is set to 1 3526 * * The implementation includes EL2, and the value of HCR.VM is 1 3527 * 3528 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3529 * 3530 * ATS1Hx always uses the 64bit format. 3531 */ 3532 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3533 3534 if (arm_feature(env, ARM_FEATURE_EL2)) { 3535 if (mmu_idx == ARMMMUIdx_E10_0 || 3536 mmu_idx == ARMMMUIdx_E10_1 || 3537 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3538 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3539 } else { 3540 format64 |= arm_current_el(env) == 2; 3541 } 3542 } 3543 } 3544 3545 if (format64) { 3546 /* Create a 64-bit PAR */ 3547 par64 = (1 << 11); /* LPAE bit always set */ 3548 if (!ret) { 3549 par64 |= phys_addr & ~0xfffULL; 3550 if (!attrs.secure) { 3551 par64 |= (1 << 9); /* NS */ 3552 } 3553 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3554 par64 |= cacheattrs.shareability << 7; /* SH */ 3555 } else { 3556 uint32_t fsr = arm_fi_to_lfsc(&fi); 3557 3558 par64 |= 1; /* F */ 3559 par64 |= (fsr & 0x3f) << 1; /* FS */ 3560 if (fi.stage2) { 3561 par64 |= (1 << 9); /* S */ 3562 } 3563 if (fi.s1ptw) { 3564 par64 |= (1 << 8); /* PTW */ 3565 } 3566 } 3567 } else { 3568 /* fsr is a DFSR/IFSR value for the short descriptor 3569 * translation table format (with WnR always clear). 3570 * Convert it to a 32-bit PAR. 3571 */ 3572 if (!ret) { 3573 /* We do not set any attribute bits in the PAR */ 3574 if (page_size == (1 << 24) 3575 && arm_feature(env, ARM_FEATURE_V7)) { 3576 par64 = (phys_addr & 0xff000000) | (1 << 1); 3577 } else { 3578 par64 = phys_addr & 0xfffff000; 3579 } 3580 if (!attrs.secure) { 3581 par64 |= (1 << 9); /* NS */ 3582 } 3583 } else { 3584 uint32_t fsr = arm_fi_to_sfsc(&fi); 3585 3586 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3587 ((fsr & 0xf) << 1) | 1; 3588 } 3589 } 3590 return par64; 3591 } 3592 #endif /* CONFIG_TCG */ 3593 3594 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3595 { 3596 #ifdef CONFIG_TCG 3597 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3598 uint64_t par64; 3599 ARMMMUIdx mmu_idx; 3600 int el = arm_current_el(env); 3601 bool secure = arm_is_secure_below_el3(env); 3602 3603 switch (ri->opc2 & 6) { 3604 case 0: 3605 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3606 switch (el) { 3607 case 3: 3608 mmu_idx = ARMMMUIdx_SE3; 3609 break; 3610 case 2: 3611 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3612 /* fall through */ 3613 case 1: 3614 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3615 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3616 : ARMMMUIdx_Stage1_E1_PAN); 3617 } else { 3618 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3619 } 3620 break; 3621 default: 3622 g_assert_not_reached(); 3623 } 3624 break; 3625 case 2: 3626 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3627 switch (el) { 3628 case 3: 3629 mmu_idx = ARMMMUIdx_SE10_0; 3630 break; 3631 case 2: 3632 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3633 mmu_idx = ARMMMUIdx_Stage1_E0; 3634 break; 3635 case 1: 3636 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3637 break; 3638 default: 3639 g_assert_not_reached(); 3640 } 3641 break; 3642 case 4: 3643 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3644 mmu_idx = ARMMMUIdx_E10_1; 3645 break; 3646 case 6: 3647 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3648 mmu_idx = ARMMMUIdx_E10_0; 3649 break; 3650 default: 3651 g_assert_not_reached(); 3652 } 3653 3654 par64 = do_ats_write(env, value, access_type, mmu_idx); 3655 3656 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3657 #else 3658 /* Handled by hardware accelerator. */ 3659 g_assert_not_reached(); 3660 #endif /* CONFIG_TCG */ 3661 } 3662 3663 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3664 uint64_t value) 3665 { 3666 #ifdef CONFIG_TCG 3667 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3668 uint64_t par64; 3669 3670 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3671 3672 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3673 #else 3674 /* Handled by hardware accelerator. */ 3675 g_assert_not_reached(); 3676 #endif /* CONFIG_TCG */ 3677 } 3678 3679 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3680 bool isread) 3681 { 3682 if (arm_current_el(env) == 3 && 3683 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3684 return CP_ACCESS_TRAP; 3685 } 3686 return CP_ACCESS_OK; 3687 } 3688 3689 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3690 uint64_t value) 3691 { 3692 #ifdef CONFIG_TCG 3693 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3694 ARMMMUIdx mmu_idx; 3695 int secure = arm_is_secure_below_el3(env); 3696 3697 switch (ri->opc2 & 6) { 3698 case 0: 3699 switch (ri->opc1) { 3700 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3701 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3702 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3703 : ARMMMUIdx_Stage1_E1_PAN); 3704 } else { 3705 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3706 } 3707 break; 3708 case 4: /* AT S1E2R, AT S1E2W */ 3709 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3710 break; 3711 case 6: /* AT S1E3R, AT S1E3W */ 3712 mmu_idx = ARMMMUIdx_SE3; 3713 break; 3714 default: 3715 g_assert_not_reached(); 3716 } 3717 break; 3718 case 2: /* AT S1E0R, AT S1E0W */ 3719 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3720 break; 3721 case 4: /* AT S12E1R, AT S12E1W */ 3722 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3723 break; 3724 case 6: /* AT S12E0R, AT S12E0W */ 3725 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3726 break; 3727 default: 3728 g_assert_not_reached(); 3729 } 3730 3731 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3732 #else 3733 /* Handled by hardware accelerator. */ 3734 g_assert_not_reached(); 3735 #endif /* CONFIG_TCG */ 3736 } 3737 #endif 3738 3739 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3740 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3741 .access = PL1_RW, .resetvalue = 0, 3742 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3743 offsetoflow32(CPUARMState, cp15.par_ns) }, 3744 .writefn = par_write }, 3745 #ifndef CONFIG_USER_ONLY 3746 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3747 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3748 .access = PL1_W, .accessfn = ats_access, 3749 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3750 #endif 3751 REGINFO_SENTINEL 3752 }; 3753 3754 /* Return basic MPU access permission bits. */ 3755 static uint32_t simple_mpu_ap_bits(uint32_t val) 3756 { 3757 uint32_t ret; 3758 uint32_t mask; 3759 int i; 3760 ret = 0; 3761 mask = 3; 3762 for (i = 0; i < 16; i += 2) { 3763 ret |= (val >> i) & mask; 3764 mask <<= 2; 3765 } 3766 return ret; 3767 } 3768 3769 /* Pad basic MPU access permission bits to extended format. */ 3770 static uint32_t extended_mpu_ap_bits(uint32_t val) 3771 { 3772 uint32_t ret; 3773 uint32_t mask; 3774 int i; 3775 ret = 0; 3776 mask = 3; 3777 for (i = 0; i < 16; i += 2) { 3778 ret |= (val & mask) << i; 3779 mask <<= 2; 3780 } 3781 return ret; 3782 } 3783 3784 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3785 uint64_t value) 3786 { 3787 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3788 } 3789 3790 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3791 { 3792 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3793 } 3794 3795 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3796 uint64_t value) 3797 { 3798 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3799 } 3800 3801 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3802 { 3803 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3804 } 3805 3806 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3807 { 3808 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3809 3810 if (!u32p) { 3811 return 0; 3812 } 3813 3814 u32p += env->pmsav7.rnr[M_REG_NS]; 3815 return *u32p; 3816 } 3817 3818 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3819 uint64_t value) 3820 { 3821 ARMCPU *cpu = env_archcpu(env); 3822 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3823 3824 if (!u32p) { 3825 return; 3826 } 3827 3828 u32p += env->pmsav7.rnr[M_REG_NS]; 3829 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3830 *u32p = value; 3831 } 3832 3833 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3834 uint64_t value) 3835 { 3836 ARMCPU *cpu = env_archcpu(env); 3837 uint32_t nrgs = cpu->pmsav7_dregion; 3838 3839 if (value >= nrgs) { 3840 qemu_log_mask(LOG_GUEST_ERROR, 3841 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3842 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3843 return; 3844 } 3845 3846 raw_write(env, ri, value); 3847 } 3848 3849 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3850 /* Reset for all these registers is handled in arm_cpu_reset(), 3851 * because the PMSAv7 is also used by M-profile CPUs, which do 3852 * not register cpregs but still need the state to be reset. 3853 */ 3854 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3855 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3856 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3857 .readfn = pmsav7_read, .writefn = pmsav7_write, 3858 .resetfn = arm_cp_reset_ignore }, 3859 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3860 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3861 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3862 .readfn = pmsav7_read, .writefn = pmsav7_write, 3863 .resetfn = arm_cp_reset_ignore }, 3864 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3865 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3866 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3867 .readfn = pmsav7_read, .writefn = pmsav7_write, 3868 .resetfn = arm_cp_reset_ignore }, 3869 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3870 .access = PL1_RW, 3871 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3872 .writefn = pmsav7_rgnr_write, 3873 .resetfn = arm_cp_reset_ignore }, 3874 REGINFO_SENTINEL 3875 }; 3876 3877 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3878 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3879 .access = PL1_RW, .type = ARM_CP_ALIAS, 3880 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3881 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3882 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3883 .access = PL1_RW, .type = ARM_CP_ALIAS, 3884 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3885 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3886 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3887 .access = PL1_RW, 3888 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3889 .resetvalue = 0, }, 3890 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3891 .access = PL1_RW, 3892 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3893 .resetvalue = 0, }, 3894 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3895 .access = PL1_RW, 3896 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3897 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3898 .access = PL1_RW, 3899 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3900 /* Protection region base and size registers */ 3901 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3902 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3903 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3904 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3905 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3906 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3907 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3908 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3909 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3910 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3911 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3912 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3913 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3914 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3915 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3916 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3917 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3918 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3919 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3920 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3921 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3922 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3923 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3924 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3925 REGINFO_SENTINEL 3926 }; 3927 3928 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3929 uint64_t value) 3930 { 3931 TCR *tcr = raw_ptr(env, ri); 3932 int maskshift = extract32(value, 0, 3); 3933 3934 if (!arm_feature(env, ARM_FEATURE_V8)) { 3935 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3936 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3937 * using Long-desciptor translation table format */ 3938 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3939 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3940 /* In an implementation that includes the Security Extensions 3941 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3942 * Short-descriptor translation table format. 3943 */ 3944 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3945 } else { 3946 value &= TTBCR_N; 3947 } 3948 } 3949 3950 /* Update the masks corresponding to the TCR bank being written 3951 * Note that we always calculate mask and base_mask, but 3952 * they are only used for short-descriptor tables (ie if EAE is 0); 3953 * for long-descriptor tables the TCR fields are used differently 3954 * and the mask and base_mask values are meaningless. 3955 */ 3956 tcr->raw_tcr = value; 3957 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3958 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3959 } 3960 3961 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3962 uint64_t value) 3963 { 3964 ARMCPU *cpu = env_archcpu(env); 3965 TCR *tcr = raw_ptr(env, ri); 3966 3967 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3968 /* With LPAE the TTBCR could result in a change of ASID 3969 * via the TTBCR.A1 bit, so do a TLB flush. 3970 */ 3971 tlb_flush(CPU(cpu)); 3972 } 3973 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3974 value = deposit64(tcr->raw_tcr, 0, 32, value); 3975 vmsa_ttbcr_raw_write(env, ri, value); 3976 } 3977 3978 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3979 { 3980 TCR *tcr = raw_ptr(env, ri); 3981 3982 /* Reset both the TCR as well as the masks corresponding to the bank of 3983 * the TCR being reset. 3984 */ 3985 tcr->raw_tcr = 0; 3986 tcr->mask = 0; 3987 tcr->base_mask = 0xffffc000u; 3988 } 3989 3990 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3991 uint64_t value) 3992 { 3993 ARMCPU *cpu = env_archcpu(env); 3994 TCR *tcr = raw_ptr(env, ri); 3995 3996 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3997 tlb_flush(CPU(cpu)); 3998 tcr->raw_tcr = value; 3999 } 4000 4001 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4002 uint64_t value) 4003 { 4004 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4005 if (cpreg_field_is_64bit(ri) && 4006 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4007 ARMCPU *cpu = env_archcpu(env); 4008 tlb_flush(CPU(cpu)); 4009 } 4010 raw_write(env, ri, value); 4011 } 4012 4013 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4014 uint64_t value) 4015 { 4016 /* 4017 * If we are running with E2&0 regime, then an ASID is active. 4018 * Flush if that might be changing. Note we're not checking 4019 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4020 * holds the active ASID, only checking the field that might. 4021 */ 4022 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4023 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4024 uint16_t mask = ARMMMUIdxBit_E20_2 | 4025 ARMMMUIdxBit_E20_2_PAN | 4026 ARMMMUIdxBit_E20_0; 4027 4028 if (arm_is_secure_below_el3(env)) { 4029 mask >>= ARM_MMU_IDX_A_NS; 4030 } 4031 4032 tlb_flush_by_mmuidx(env_cpu(env), mask); 4033 } 4034 raw_write(env, ri, value); 4035 } 4036 4037 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4038 uint64_t value) 4039 { 4040 ARMCPU *cpu = env_archcpu(env); 4041 CPUState *cs = CPU(cpu); 4042 4043 /* 4044 * A change in VMID to the stage2 page table (Stage2) invalidates 4045 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 4046 */ 4047 if (raw_read(env, ri) != value) { 4048 uint16_t mask = ARMMMUIdxBit_E10_1 | 4049 ARMMMUIdxBit_E10_1_PAN | 4050 ARMMMUIdxBit_E10_0; 4051 4052 if (arm_is_secure_below_el3(env)) { 4053 mask >>= ARM_MMU_IDX_A_NS; 4054 } 4055 4056 tlb_flush_by_mmuidx(cs, mask); 4057 raw_write(env, ri, value); 4058 } 4059 } 4060 4061 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4062 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4063 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4064 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4065 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4066 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4067 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4068 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4069 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4070 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4071 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4072 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4073 offsetof(CPUARMState, cp15.dfar_ns) } }, 4074 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4075 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4076 .access = PL1_RW, .accessfn = access_tvm_trvm, 4077 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4078 .resetvalue = 0, }, 4079 REGINFO_SENTINEL 4080 }; 4081 4082 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4083 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4084 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4085 .access = PL1_RW, .accessfn = access_tvm_trvm, 4086 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4087 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4088 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4089 .access = PL1_RW, .accessfn = access_tvm_trvm, 4090 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4091 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4092 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4093 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4094 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4095 .access = PL1_RW, .accessfn = access_tvm_trvm, 4096 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4097 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4098 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4099 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4100 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4101 .access = PL1_RW, .accessfn = access_tvm_trvm, 4102 .writefn = vmsa_tcr_el12_write, 4103 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 4104 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4105 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4106 .access = PL1_RW, .accessfn = access_tvm_trvm, 4107 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4108 .raw_writefn = vmsa_ttbcr_raw_write, 4109 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4110 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4111 REGINFO_SENTINEL 4112 }; 4113 4114 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4115 * qemu tlbs nor adjusting cached masks. 4116 */ 4117 static const ARMCPRegInfo ttbcr2_reginfo = { 4118 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4119 .access = PL1_RW, .accessfn = access_tvm_trvm, 4120 .type = ARM_CP_ALIAS, 4121 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4122 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 4123 }; 4124 4125 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4126 uint64_t value) 4127 { 4128 env->cp15.c15_ticonfig = value & 0xe7; 4129 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4130 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4131 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4132 } 4133 4134 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4135 uint64_t value) 4136 { 4137 env->cp15.c15_threadid = value & 0xffff; 4138 } 4139 4140 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4141 uint64_t value) 4142 { 4143 /* Wait-for-interrupt (deprecated) */ 4144 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4145 } 4146 4147 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4148 uint64_t value) 4149 { 4150 /* On OMAP there are registers indicating the max/min index of dcache lines 4151 * containing a dirty line; cache flush operations have to reset these. 4152 */ 4153 env->cp15.c15_i_max = 0x000; 4154 env->cp15.c15_i_min = 0xff0; 4155 } 4156 4157 static const ARMCPRegInfo omap_cp_reginfo[] = { 4158 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4159 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4160 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4161 .resetvalue = 0, }, 4162 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4163 .access = PL1_RW, .type = ARM_CP_NOP }, 4164 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4165 .access = PL1_RW, 4166 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4167 .writefn = omap_ticonfig_write }, 4168 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4169 .access = PL1_RW, 4170 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4171 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4172 .access = PL1_RW, .resetvalue = 0xff0, 4173 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4174 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4175 .access = PL1_RW, 4176 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4177 .writefn = omap_threadid_write }, 4178 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4179 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4180 .type = ARM_CP_NO_RAW, 4181 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4182 /* TODO: Peripheral port remap register: 4183 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4184 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4185 * when MMU is off. 4186 */ 4187 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4188 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4189 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4190 .writefn = omap_cachemaint_write }, 4191 { .name = "C9", .cp = 15, .crn = 9, 4192 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4193 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4194 REGINFO_SENTINEL 4195 }; 4196 4197 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4198 uint64_t value) 4199 { 4200 env->cp15.c15_cpar = value & 0x3fff; 4201 } 4202 4203 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4204 { .name = "XSCALE_CPAR", 4205 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4206 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4207 .writefn = xscale_cpar_write, }, 4208 { .name = "XSCALE_AUXCR", 4209 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4210 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4211 .resetvalue = 0, }, 4212 /* XScale specific cache-lockdown: since we have no cache we NOP these 4213 * and hope the guest does not really rely on cache behaviour. 4214 */ 4215 { .name = "XSCALE_LOCK_ICACHE_LINE", 4216 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4217 .access = PL1_W, .type = ARM_CP_NOP }, 4218 { .name = "XSCALE_UNLOCK_ICACHE", 4219 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4220 .access = PL1_W, .type = ARM_CP_NOP }, 4221 { .name = "XSCALE_DCACHE_LOCK", 4222 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4223 .access = PL1_RW, .type = ARM_CP_NOP }, 4224 { .name = "XSCALE_UNLOCK_DCACHE", 4225 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4226 .access = PL1_W, .type = ARM_CP_NOP }, 4227 REGINFO_SENTINEL 4228 }; 4229 4230 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4231 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 4232 * implementation of this implementation-defined space. 4233 * Ideally this should eventually disappear in favour of actually 4234 * implementing the correct behaviour for all cores. 4235 */ 4236 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4237 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4238 .access = PL1_RW, 4239 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4240 .resetvalue = 0 }, 4241 REGINFO_SENTINEL 4242 }; 4243 4244 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4245 /* Cache status: RAZ because we have no cache so it's always clean */ 4246 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4247 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4248 .resetvalue = 0 }, 4249 REGINFO_SENTINEL 4250 }; 4251 4252 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4253 /* We never have a a block transfer operation in progress */ 4254 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4255 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4256 .resetvalue = 0 }, 4257 /* The cache ops themselves: these all NOP for QEMU */ 4258 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4259 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4260 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4261 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4262 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4263 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4264 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4265 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4266 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4267 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4268 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4269 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4270 REGINFO_SENTINEL 4271 }; 4272 4273 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4274 /* The cache test-and-clean instructions always return (1 << 30) 4275 * to indicate that there are no dirty cache lines. 4276 */ 4277 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4278 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4279 .resetvalue = (1 << 30) }, 4280 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4281 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4282 .resetvalue = (1 << 30) }, 4283 REGINFO_SENTINEL 4284 }; 4285 4286 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4287 /* Ignore ReadBuffer accesses */ 4288 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4289 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4290 .access = PL1_RW, .resetvalue = 0, 4291 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4292 REGINFO_SENTINEL 4293 }; 4294 4295 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4296 { 4297 unsigned int cur_el = arm_current_el(env); 4298 4299 if (arm_is_el2_enabled(env) && cur_el == 1) { 4300 return env->cp15.vpidr_el2; 4301 } 4302 return raw_read(env, ri); 4303 } 4304 4305 static uint64_t mpidr_read_val(CPUARMState *env) 4306 { 4307 ARMCPU *cpu = env_archcpu(env); 4308 uint64_t mpidr = cpu->mp_affinity; 4309 4310 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4311 mpidr |= (1U << 31); 4312 /* Cores which are uniprocessor (non-coherent) 4313 * but still implement the MP extensions set 4314 * bit 30. (For instance, Cortex-R5). 4315 */ 4316 if (cpu->mp_is_up) { 4317 mpidr |= (1u << 30); 4318 } 4319 } 4320 return mpidr; 4321 } 4322 4323 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4324 { 4325 unsigned int cur_el = arm_current_el(env); 4326 4327 if (arm_is_el2_enabled(env) && cur_el == 1) { 4328 return env->cp15.vmpidr_el2; 4329 } 4330 return mpidr_read_val(env); 4331 } 4332 4333 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4334 /* NOP AMAIR0/1 */ 4335 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4336 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4337 .access = PL1_RW, .accessfn = access_tvm_trvm, 4338 .type = ARM_CP_CONST, .resetvalue = 0 }, 4339 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4340 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4341 .access = PL1_RW, .accessfn = access_tvm_trvm, 4342 .type = ARM_CP_CONST, .resetvalue = 0 }, 4343 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4344 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4345 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4346 offsetof(CPUARMState, cp15.par_ns)} }, 4347 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4348 .access = PL1_RW, .accessfn = access_tvm_trvm, 4349 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4350 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4351 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4352 .writefn = vmsa_ttbr_write, }, 4353 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4354 .access = PL1_RW, .accessfn = access_tvm_trvm, 4355 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4356 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4357 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4358 .writefn = vmsa_ttbr_write, }, 4359 REGINFO_SENTINEL 4360 }; 4361 4362 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4363 { 4364 return vfp_get_fpcr(env); 4365 } 4366 4367 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4368 uint64_t value) 4369 { 4370 vfp_set_fpcr(env, value); 4371 } 4372 4373 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4374 { 4375 return vfp_get_fpsr(env); 4376 } 4377 4378 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4379 uint64_t value) 4380 { 4381 vfp_set_fpsr(env, value); 4382 } 4383 4384 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4385 bool isread) 4386 { 4387 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4388 return CP_ACCESS_TRAP; 4389 } 4390 return CP_ACCESS_OK; 4391 } 4392 4393 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4394 uint64_t value) 4395 { 4396 env->daif = value & PSTATE_DAIF; 4397 } 4398 4399 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4400 { 4401 return env->pstate & PSTATE_PAN; 4402 } 4403 4404 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4405 uint64_t value) 4406 { 4407 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4408 } 4409 4410 static const ARMCPRegInfo pan_reginfo = { 4411 .name = "PAN", .state = ARM_CP_STATE_AA64, 4412 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4413 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4414 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4415 }; 4416 4417 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4418 { 4419 return env->pstate & PSTATE_UAO; 4420 } 4421 4422 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4423 uint64_t value) 4424 { 4425 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4426 } 4427 4428 static const ARMCPRegInfo uao_reginfo = { 4429 .name = "UAO", .state = ARM_CP_STATE_AA64, 4430 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4431 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4432 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4433 }; 4434 4435 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4436 { 4437 return env->pstate & PSTATE_DIT; 4438 } 4439 4440 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4441 uint64_t value) 4442 { 4443 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4444 } 4445 4446 static const ARMCPRegInfo dit_reginfo = { 4447 .name = "DIT", .state = ARM_CP_STATE_AA64, 4448 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4449 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4450 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4451 }; 4452 4453 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4454 { 4455 return env->pstate & PSTATE_SSBS; 4456 } 4457 4458 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4459 uint64_t value) 4460 { 4461 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4462 } 4463 4464 static const ARMCPRegInfo ssbs_reginfo = { 4465 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4466 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4467 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4468 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4469 }; 4470 4471 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4472 const ARMCPRegInfo *ri, 4473 bool isread) 4474 { 4475 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4476 switch (arm_current_el(env)) { 4477 case 0: 4478 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4479 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4480 return CP_ACCESS_TRAP; 4481 } 4482 /* fall through */ 4483 case 1: 4484 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4485 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4486 return CP_ACCESS_TRAP_EL2; 4487 } 4488 break; 4489 } 4490 return CP_ACCESS_OK; 4491 } 4492 4493 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4494 const ARMCPRegInfo *ri, 4495 bool isread) 4496 { 4497 /* Cache invalidate/clean to Point of Unification... */ 4498 switch (arm_current_el(env)) { 4499 case 0: 4500 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4501 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4502 return CP_ACCESS_TRAP; 4503 } 4504 /* fall through */ 4505 case 1: 4506 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4507 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4508 return CP_ACCESS_TRAP_EL2; 4509 } 4510 break; 4511 } 4512 return CP_ACCESS_OK; 4513 } 4514 4515 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4516 * Page D4-1736 (DDI0487A.b) 4517 */ 4518 4519 static int vae1_tlbmask(CPUARMState *env) 4520 { 4521 uint64_t hcr = arm_hcr_el2_eff(env); 4522 uint16_t mask; 4523 4524 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4525 mask = ARMMMUIdxBit_E20_2 | 4526 ARMMMUIdxBit_E20_2_PAN | 4527 ARMMMUIdxBit_E20_0; 4528 } else { 4529 mask = ARMMMUIdxBit_E10_1 | 4530 ARMMMUIdxBit_E10_1_PAN | 4531 ARMMMUIdxBit_E10_0; 4532 } 4533 4534 if (arm_is_secure_below_el3(env)) { 4535 mask >>= ARM_MMU_IDX_A_NS; 4536 } 4537 4538 return mask; 4539 } 4540 4541 /* Return 56 if TBI is enabled, 64 otherwise. */ 4542 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4543 uint64_t addr) 4544 { 4545 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4546 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4547 int select = extract64(addr, 55, 1); 4548 4549 return (tbi >> select) & 1 ? 56 : 64; 4550 } 4551 4552 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4553 { 4554 uint64_t hcr = arm_hcr_el2_eff(env); 4555 ARMMMUIdx mmu_idx; 4556 4557 /* Only the regime of the mmu_idx below is significant. */ 4558 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4559 mmu_idx = ARMMMUIdx_E20_0; 4560 } else { 4561 mmu_idx = ARMMMUIdx_E10_0; 4562 } 4563 4564 if (arm_is_secure_below_el3(env)) { 4565 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4566 } 4567 4568 return tlbbits_for_regime(env, mmu_idx, addr); 4569 } 4570 4571 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4572 uint64_t value) 4573 { 4574 CPUState *cs = env_cpu(env); 4575 int mask = vae1_tlbmask(env); 4576 4577 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4578 } 4579 4580 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4581 uint64_t value) 4582 { 4583 CPUState *cs = env_cpu(env); 4584 int mask = vae1_tlbmask(env); 4585 4586 if (tlb_force_broadcast(env)) { 4587 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4588 } else { 4589 tlb_flush_by_mmuidx(cs, mask); 4590 } 4591 } 4592 4593 static int alle1_tlbmask(CPUARMState *env) 4594 { 4595 /* 4596 * Note that the 'ALL' scope must invalidate both stage 1 and 4597 * stage 2 translations, whereas most other scopes only invalidate 4598 * stage 1 translations. 4599 */ 4600 if (arm_is_secure_below_el3(env)) { 4601 return ARMMMUIdxBit_SE10_1 | 4602 ARMMMUIdxBit_SE10_1_PAN | 4603 ARMMMUIdxBit_SE10_0; 4604 } else { 4605 return ARMMMUIdxBit_E10_1 | 4606 ARMMMUIdxBit_E10_1_PAN | 4607 ARMMMUIdxBit_E10_0; 4608 } 4609 } 4610 4611 static int e2_tlbmask(CPUARMState *env) 4612 { 4613 if (arm_is_secure_below_el3(env)) { 4614 return ARMMMUIdxBit_SE20_0 | 4615 ARMMMUIdxBit_SE20_2 | 4616 ARMMMUIdxBit_SE20_2_PAN | 4617 ARMMMUIdxBit_SE2; 4618 } else { 4619 return ARMMMUIdxBit_E20_0 | 4620 ARMMMUIdxBit_E20_2 | 4621 ARMMMUIdxBit_E20_2_PAN | 4622 ARMMMUIdxBit_E2; 4623 } 4624 } 4625 4626 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4627 uint64_t value) 4628 { 4629 CPUState *cs = env_cpu(env); 4630 int mask = alle1_tlbmask(env); 4631 4632 tlb_flush_by_mmuidx(cs, mask); 4633 } 4634 4635 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4636 uint64_t value) 4637 { 4638 CPUState *cs = env_cpu(env); 4639 int mask = e2_tlbmask(env); 4640 4641 tlb_flush_by_mmuidx(cs, mask); 4642 } 4643 4644 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4645 uint64_t value) 4646 { 4647 ARMCPU *cpu = env_archcpu(env); 4648 CPUState *cs = CPU(cpu); 4649 4650 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4651 } 4652 4653 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4654 uint64_t value) 4655 { 4656 CPUState *cs = env_cpu(env); 4657 int mask = alle1_tlbmask(env); 4658 4659 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4660 } 4661 4662 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4663 uint64_t value) 4664 { 4665 CPUState *cs = env_cpu(env); 4666 int mask = e2_tlbmask(env); 4667 4668 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4669 } 4670 4671 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4672 uint64_t value) 4673 { 4674 CPUState *cs = env_cpu(env); 4675 4676 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4677 } 4678 4679 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4680 uint64_t value) 4681 { 4682 /* Invalidate by VA, EL2 4683 * Currently handles both VAE2 and VALE2, since we don't support 4684 * flush-last-level-only. 4685 */ 4686 CPUState *cs = env_cpu(env); 4687 int mask = e2_tlbmask(env); 4688 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4689 4690 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4691 } 4692 4693 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4694 uint64_t value) 4695 { 4696 /* Invalidate by VA, EL3 4697 * Currently handles both VAE3 and VALE3, since we don't support 4698 * flush-last-level-only. 4699 */ 4700 ARMCPU *cpu = env_archcpu(env); 4701 CPUState *cs = CPU(cpu); 4702 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4703 4704 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4705 } 4706 4707 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4708 uint64_t value) 4709 { 4710 CPUState *cs = env_cpu(env); 4711 int mask = vae1_tlbmask(env); 4712 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4713 int bits = vae1_tlbbits(env, pageaddr); 4714 4715 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4716 } 4717 4718 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4719 uint64_t value) 4720 { 4721 /* Invalidate by VA, EL1&0 (AArch64 version). 4722 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4723 * since we don't support flush-for-specific-ASID-only or 4724 * flush-last-level-only. 4725 */ 4726 CPUState *cs = env_cpu(env); 4727 int mask = vae1_tlbmask(env); 4728 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4729 int bits = vae1_tlbbits(env, pageaddr); 4730 4731 if (tlb_force_broadcast(env)) { 4732 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4733 } else { 4734 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4735 } 4736 } 4737 4738 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4739 uint64_t value) 4740 { 4741 CPUState *cs = env_cpu(env); 4742 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4743 bool secure = arm_is_secure_below_el3(env); 4744 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4745 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4746 pageaddr); 4747 4748 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4749 } 4750 4751 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4752 uint64_t value) 4753 { 4754 CPUState *cs = env_cpu(env); 4755 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4756 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4757 4758 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4759 ARMMMUIdxBit_SE3, bits); 4760 } 4761 4762 #ifdef TARGET_AARCH64 4763 static uint64_t tlbi_aa64_range_get_length(CPUARMState *env, 4764 uint64_t value) 4765 { 4766 unsigned int page_shift; 4767 unsigned int page_size_granule; 4768 uint64_t num; 4769 uint64_t scale; 4770 uint64_t exponent; 4771 uint64_t length; 4772 4773 num = extract64(value, 39, 4); 4774 scale = extract64(value, 44, 2); 4775 page_size_granule = extract64(value, 46, 2); 4776 4777 page_shift = page_size_granule * 2 + 12; 4778 4779 if (page_size_granule == 0) { 4780 qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n", 4781 page_size_granule); 4782 return 0; 4783 } 4784 4785 exponent = (5 * scale) + 1; 4786 length = (num + 1) << (exponent + page_shift); 4787 4788 return length; 4789 } 4790 4791 static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value, 4792 bool two_ranges) 4793 { 4794 /* TODO: ARMv8.7 FEAT_LPA2 */ 4795 uint64_t pageaddr; 4796 4797 if (two_ranges) { 4798 pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS; 4799 } else { 4800 pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS; 4801 } 4802 4803 return pageaddr; 4804 } 4805 4806 static void do_rvae_write(CPUARMState *env, uint64_t value, 4807 int idxmap, bool synced) 4808 { 4809 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4810 bool two_ranges = regime_has_2_ranges(one_idx); 4811 uint64_t baseaddr, length; 4812 int bits; 4813 4814 baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges); 4815 length = tlbi_aa64_range_get_length(env, value); 4816 bits = tlbbits_for_regime(env, one_idx, baseaddr); 4817 4818 if (synced) { 4819 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4820 baseaddr, 4821 length, 4822 idxmap, 4823 bits); 4824 } else { 4825 tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr, 4826 length, idxmap, bits); 4827 } 4828 } 4829 4830 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4831 const ARMCPRegInfo *ri, 4832 uint64_t value) 4833 { 4834 /* 4835 * Invalidate by VA range, EL1&0. 4836 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4837 * since we don't support flush-for-specific-ASID-only or 4838 * flush-last-level-only. 4839 */ 4840 4841 do_rvae_write(env, value, vae1_tlbmask(env), 4842 tlb_force_broadcast(env)); 4843 } 4844 4845 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4846 const ARMCPRegInfo *ri, 4847 uint64_t value) 4848 { 4849 /* 4850 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4851 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4852 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4853 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4854 * shareable specific flushes. 4855 */ 4856 4857 do_rvae_write(env, value, vae1_tlbmask(env), true); 4858 } 4859 4860 static int vae2_tlbmask(CPUARMState *env) 4861 { 4862 return (arm_is_secure_below_el3(env) 4863 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4864 } 4865 4866 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4867 const ARMCPRegInfo *ri, 4868 uint64_t value) 4869 { 4870 /* 4871 * Invalidate by VA range, EL2. 4872 * Currently handles all of RVAE2 and RVALE2, 4873 * since we don't support flush-for-specific-ASID-only or 4874 * flush-last-level-only. 4875 */ 4876 4877 do_rvae_write(env, value, vae2_tlbmask(env), 4878 tlb_force_broadcast(env)); 4879 4880 4881 } 4882 4883 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4884 const ARMCPRegInfo *ri, 4885 uint64_t value) 4886 { 4887 /* 4888 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4889 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4890 * since we don't support flush-for-specific-ASID-only, 4891 * flush-last-level-only or inner/outer shareable specific flushes. 4892 */ 4893 4894 do_rvae_write(env, value, vae2_tlbmask(env), true); 4895 4896 } 4897 4898 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4899 const ARMCPRegInfo *ri, 4900 uint64_t value) 4901 { 4902 /* 4903 * Invalidate by VA range, EL3. 4904 * Currently handles all of RVAE3 and RVALE3, 4905 * since we don't support flush-for-specific-ASID-only or 4906 * flush-last-level-only. 4907 */ 4908 4909 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4910 tlb_force_broadcast(env)); 4911 } 4912 4913 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4914 const ARMCPRegInfo *ri, 4915 uint64_t value) 4916 { 4917 /* 4918 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4919 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4920 * since we don't support flush-for-specific-ASID-only, 4921 * flush-last-level-only or inner/outer specific flushes. 4922 */ 4923 4924 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4925 } 4926 #endif 4927 4928 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4929 bool isread) 4930 { 4931 int cur_el = arm_current_el(env); 4932 4933 if (cur_el < 2) { 4934 uint64_t hcr = arm_hcr_el2_eff(env); 4935 4936 if (cur_el == 0) { 4937 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4938 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4939 return CP_ACCESS_TRAP_EL2; 4940 } 4941 } else { 4942 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4943 return CP_ACCESS_TRAP; 4944 } 4945 if (hcr & HCR_TDZ) { 4946 return CP_ACCESS_TRAP_EL2; 4947 } 4948 } 4949 } else if (hcr & HCR_TDZ) { 4950 return CP_ACCESS_TRAP_EL2; 4951 } 4952 } 4953 return CP_ACCESS_OK; 4954 } 4955 4956 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4957 { 4958 ARMCPU *cpu = env_archcpu(env); 4959 int dzp_bit = 1 << 4; 4960 4961 /* DZP indicates whether DC ZVA access is allowed */ 4962 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4963 dzp_bit = 0; 4964 } 4965 return cpu->dcz_blocksize | dzp_bit; 4966 } 4967 4968 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4969 bool isread) 4970 { 4971 if (!(env->pstate & PSTATE_SP)) { 4972 /* Access to SP_EL0 is undefined if it's being used as 4973 * the stack pointer. 4974 */ 4975 return CP_ACCESS_TRAP_UNCATEGORIZED; 4976 } 4977 return CP_ACCESS_OK; 4978 } 4979 4980 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4981 { 4982 return env->pstate & PSTATE_SP; 4983 } 4984 4985 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4986 { 4987 update_spsel(env, val); 4988 } 4989 4990 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4991 uint64_t value) 4992 { 4993 ARMCPU *cpu = env_archcpu(env); 4994 4995 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4996 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4997 value &= ~SCTLR_M; 4998 } 4999 5000 /* ??? Lots of these bits are not implemented. */ 5001 5002 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5003 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5004 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5005 } else { 5006 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5007 SCTLR_ATA0 | SCTLR_ATA); 5008 } 5009 } 5010 5011 if (raw_read(env, ri) == value) { 5012 /* Skip the TLB flush if nothing actually changed; Linux likes 5013 * to do a lot of pointless SCTLR writes. 5014 */ 5015 return; 5016 } 5017 5018 raw_write(env, ri, value); 5019 5020 /* This may enable/disable the MMU, so do a TLB flush. */ 5021 tlb_flush(CPU(cpu)); 5022 5023 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 5024 /* 5025 * Normally we would always end the TB on an SCTLR write; see the 5026 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5027 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5028 * of hflags from the translator, so do it here. 5029 */ 5030 arm_rebuild_hflags(env); 5031 } 5032 } 5033 5034 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 5035 bool isread) 5036 { 5037 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 5038 return CP_ACCESS_TRAP_FP_EL2; 5039 } 5040 if (env->cp15.cptr_el[3] & CPTR_TFP) { 5041 return CP_ACCESS_TRAP_FP_EL3; 5042 } 5043 return CP_ACCESS_OK; 5044 } 5045 5046 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5047 uint64_t value) 5048 { 5049 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 5050 } 5051 5052 static const ARMCPRegInfo v8_cp_reginfo[] = { 5053 /* Minimal set of EL0-visible registers. This will need to be expanded 5054 * significantly for system emulation of AArch64 CPUs. 5055 */ 5056 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5057 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5058 .access = PL0_RW, .type = ARM_CP_NZCV }, 5059 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5060 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5061 .type = ARM_CP_NO_RAW, 5062 .access = PL0_RW, .accessfn = aa64_daif_access, 5063 .fieldoffset = offsetof(CPUARMState, daif), 5064 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5065 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5066 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5067 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5068 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5069 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5070 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5071 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5072 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5073 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5074 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5075 .access = PL0_R, .type = ARM_CP_NO_RAW, 5076 .readfn = aa64_dczid_read }, 5077 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5078 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5079 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5080 #ifndef CONFIG_USER_ONLY 5081 /* Avoid overhead of an access check that always passes in user-mode */ 5082 .accessfn = aa64_zva_access, 5083 #endif 5084 }, 5085 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5086 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5087 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5088 /* Cache ops: all NOPs since we don't emulate caches */ 5089 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5090 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5091 .access = PL1_W, .type = ARM_CP_NOP, 5092 .accessfn = aa64_cacheop_pou_access }, 5093 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5094 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5095 .access = PL1_W, .type = ARM_CP_NOP, 5096 .accessfn = aa64_cacheop_pou_access }, 5097 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5098 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5099 .access = PL0_W, .type = ARM_CP_NOP, 5100 .accessfn = aa64_cacheop_pou_access }, 5101 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5102 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5103 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5104 .type = ARM_CP_NOP }, 5105 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5106 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5107 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5108 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5109 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5110 .access = PL0_W, .type = ARM_CP_NOP, 5111 .accessfn = aa64_cacheop_poc_access }, 5112 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5113 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5114 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5115 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5116 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5117 .access = PL0_W, .type = ARM_CP_NOP, 5118 .accessfn = aa64_cacheop_pou_access }, 5119 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5120 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5121 .access = PL0_W, .type = ARM_CP_NOP, 5122 .accessfn = aa64_cacheop_poc_access }, 5123 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5124 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5125 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5126 /* TLBI operations */ 5127 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5128 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5129 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5130 .writefn = tlbi_aa64_vmalle1is_write }, 5131 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5132 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5133 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5134 .writefn = tlbi_aa64_vae1is_write }, 5135 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5136 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5137 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5138 .writefn = tlbi_aa64_vmalle1is_write }, 5139 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5140 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5141 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5142 .writefn = tlbi_aa64_vae1is_write }, 5143 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5144 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5145 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5146 .writefn = tlbi_aa64_vae1is_write }, 5147 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5148 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5149 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5150 .writefn = tlbi_aa64_vae1is_write }, 5151 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5152 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5153 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5154 .writefn = tlbi_aa64_vmalle1_write }, 5155 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5156 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5157 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5158 .writefn = tlbi_aa64_vae1_write }, 5159 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5160 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5161 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5162 .writefn = tlbi_aa64_vmalle1_write }, 5163 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5164 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5165 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5166 .writefn = tlbi_aa64_vae1_write }, 5167 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5168 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5169 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5170 .writefn = tlbi_aa64_vae1_write }, 5171 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5172 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5173 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5174 .writefn = tlbi_aa64_vae1_write }, 5175 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5176 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5177 .access = PL2_W, .type = ARM_CP_NOP }, 5178 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5179 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5180 .access = PL2_W, .type = ARM_CP_NOP }, 5181 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5182 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5183 .access = PL2_W, .type = ARM_CP_NO_RAW, 5184 .writefn = tlbi_aa64_alle1is_write }, 5185 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5186 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5187 .access = PL2_W, .type = ARM_CP_NO_RAW, 5188 .writefn = tlbi_aa64_alle1is_write }, 5189 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5190 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5191 .access = PL2_W, .type = ARM_CP_NOP }, 5192 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5193 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5194 .access = PL2_W, .type = ARM_CP_NOP }, 5195 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5196 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5197 .access = PL2_W, .type = ARM_CP_NO_RAW, 5198 .writefn = tlbi_aa64_alle1_write }, 5199 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5200 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5201 .access = PL2_W, .type = ARM_CP_NO_RAW, 5202 .writefn = tlbi_aa64_alle1is_write }, 5203 #ifndef CONFIG_USER_ONLY 5204 /* 64 bit address translation operations */ 5205 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5206 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5207 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5208 .writefn = ats_write64 }, 5209 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5210 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5211 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5212 .writefn = ats_write64 }, 5213 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5214 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5215 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5216 .writefn = ats_write64 }, 5217 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5218 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5219 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5220 .writefn = ats_write64 }, 5221 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5222 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5223 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5224 .writefn = ats_write64 }, 5225 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5226 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5227 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5228 .writefn = ats_write64 }, 5229 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5230 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5231 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5232 .writefn = ats_write64 }, 5233 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5234 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5235 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5236 .writefn = ats_write64 }, 5237 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5238 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5239 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5240 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5241 .writefn = ats_write64 }, 5242 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5243 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5244 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5245 .writefn = ats_write64 }, 5246 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5247 .type = ARM_CP_ALIAS, 5248 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5249 .access = PL1_RW, .resetvalue = 0, 5250 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5251 .writefn = par_write }, 5252 #endif 5253 /* TLB invalidate last level of translation table walk */ 5254 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5255 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5256 .writefn = tlbimva_is_write }, 5257 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5258 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5259 .writefn = tlbimvaa_is_write }, 5260 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5261 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5262 .writefn = tlbimva_write }, 5263 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5264 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5265 .writefn = tlbimvaa_write }, 5266 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5267 .type = ARM_CP_NO_RAW, .access = PL2_W, 5268 .writefn = tlbimva_hyp_write }, 5269 { .name = "TLBIMVALHIS", 5270 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5271 .type = ARM_CP_NO_RAW, .access = PL2_W, 5272 .writefn = tlbimva_hyp_is_write }, 5273 { .name = "TLBIIPAS2", 5274 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5275 .type = ARM_CP_NOP, .access = PL2_W }, 5276 { .name = "TLBIIPAS2IS", 5277 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5278 .type = ARM_CP_NOP, .access = PL2_W }, 5279 { .name = "TLBIIPAS2L", 5280 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5281 .type = ARM_CP_NOP, .access = PL2_W }, 5282 { .name = "TLBIIPAS2LIS", 5283 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5284 .type = ARM_CP_NOP, .access = PL2_W }, 5285 /* 32 bit cache operations */ 5286 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5287 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5288 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5289 .type = ARM_CP_NOP, .access = PL1_W }, 5290 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5291 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5292 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5293 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5294 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5295 .type = ARM_CP_NOP, .access = PL1_W }, 5296 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5297 .type = ARM_CP_NOP, .access = PL1_W }, 5298 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5299 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5300 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5301 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5302 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5303 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5304 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5305 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5306 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5307 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5308 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5309 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5310 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5311 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5312 /* MMU Domain access control / MPU write buffer control */ 5313 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5314 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5315 .writefn = dacr_write, .raw_writefn = raw_write, 5316 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5317 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5318 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5319 .type = ARM_CP_ALIAS, 5320 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5321 .access = PL1_RW, 5322 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5323 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5324 .type = ARM_CP_ALIAS, 5325 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5326 .access = PL1_RW, 5327 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5328 /* We rely on the access checks not allowing the guest to write to the 5329 * state field when SPSel indicates that it's being used as the stack 5330 * pointer. 5331 */ 5332 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5333 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5334 .access = PL1_RW, .accessfn = sp_el0_access, 5335 .type = ARM_CP_ALIAS, 5336 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5337 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5338 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5339 .access = PL2_RW, .type = ARM_CP_ALIAS, 5340 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5341 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5342 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5343 .type = ARM_CP_NO_RAW, 5344 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5345 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5346 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5347 .type = ARM_CP_ALIAS, 5348 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5349 .access = PL2_RW, .accessfn = fpexc32_access }, 5350 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5351 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5352 .access = PL2_RW, .resetvalue = 0, 5353 .writefn = dacr_write, .raw_writefn = raw_write, 5354 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5355 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5356 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5357 .access = PL2_RW, .resetvalue = 0, 5358 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5359 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5360 .type = ARM_CP_ALIAS, 5361 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5362 .access = PL2_RW, 5363 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5364 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5365 .type = ARM_CP_ALIAS, 5366 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5367 .access = PL2_RW, 5368 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5369 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5370 .type = ARM_CP_ALIAS, 5371 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5372 .access = PL2_RW, 5373 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5374 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5375 .type = ARM_CP_ALIAS, 5376 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5377 .access = PL2_RW, 5378 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5379 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5380 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5381 .resetvalue = 0, 5382 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5383 { .name = "SDCR", .type = ARM_CP_ALIAS, 5384 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5385 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5386 .writefn = sdcr_write, 5387 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5388 REGINFO_SENTINEL 5389 }; 5390 5391 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5392 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5393 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5394 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5395 .access = PL2_RW, 5396 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5397 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5398 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5399 .access = PL2_RW, 5400 .type = ARM_CP_CONST, .resetvalue = 0 }, 5401 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5402 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5403 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5404 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5405 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5406 .access = PL2_RW, 5407 .type = ARM_CP_CONST, .resetvalue = 0 }, 5408 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5409 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5410 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5411 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5412 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5413 .access = PL2_RW, .type = ARM_CP_CONST, 5414 .resetvalue = 0 }, 5415 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5416 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5417 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5418 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5419 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5420 .access = PL2_RW, .type = ARM_CP_CONST, 5421 .resetvalue = 0 }, 5422 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5423 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5424 .access = PL2_RW, .type = ARM_CP_CONST, 5425 .resetvalue = 0 }, 5426 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5427 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5428 .access = PL2_RW, .type = ARM_CP_CONST, 5429 .resetvalue = 0 }, 5430 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5431 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5432 .access = PL2_RW, .type = ARM_CP_CONST, 5433 .resetvalue = 0 }, 5434 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5435 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5436 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5437 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5438 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5439 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5440 .type = ARM_CP_CONST, .resetvalue = 0 }, 5441 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5442 .cp = 15, .opc1 = 6, .crm = 2, 5443 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5444 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5445 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5446 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5447 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5448 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5449 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5450 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5451 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5452 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5453 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5454 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5455 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5456 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5457 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5458 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5459 .resetvalue = 0 }, 5460 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5461 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5462 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5463 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5464 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5465 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5466 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5467 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5468 .resetvalue = 0 }, 5469 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5470 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5471 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5472 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5473 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5474 .resetvalue = 0 }, 5475 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5476 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5477 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5478 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5479 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5480 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5481 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5482 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5483 .access = PL2_RW, .accessfn = access_tda, 5484 .type = ARM_CP_CONST, .resetvalue = 0 }, 5485 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5486 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5487 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5488 .type = ARM_CP_CONST, .resetvalue = 0 }, 5489 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5490 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5491 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5492 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5493 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5494 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5495 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5496 .type = ARM_CP_CONST, 5497 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5498 .access = PL2_RW, .resetvalue = 0 }, 5499 REGINFO_SENTINEL 5500 }; 5501 5502 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5503 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5504 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5505 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5506 .access = PL2_RW, 5507 .type = ARM_CP_CONST, .resetvalue = 0 }, 5508 REGINFO_SENTINEL 5509 }; 5510 5511 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5512 { 5513 ARMCPU *cpu = env_archcpu(env); 5514 5515 if (arm_feature(env, ARM_FEATURE_V8)) { 5516 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5517 } else { 5518 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5519 } 5520 5521 if (arm_feature(env, ARM_FEATURE_EL3)) { 5522 valid_mask &= ~HCR_HCD; 5523 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5524 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5525 * However, if we're using the SMC PSCI conduit then QEMU is 5526 * effectively acting like EL3 firmware and so the guest at 5527 * EL2 should retain the ability to prevent EL1 from being 5528 * able to make SMC calls into the ersatz firmware, so in 5529 * that case HCR.TSC should be read/write. 5530 */ 5531 valid_mask &= ~HCR_TSC; 5532 } 5533 5534 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5535 if (cpu_isar_feature(aa64_vh, cpu)) { 5536 valid_mask |= HCR_E2H; 5537 } 5538 if (cpu_isar_feature(aa64_lor, cpu)) { 5539 valid_mask |= HCR_TLOR; 5540 } 5541 if (cpu_isar_feature(aa64_pauth, cpu)) { 5542 valid_mask |= HCR_API | HCR_APK; 5543 } 5544 if (cpu_isar_feature(aa64_mte, cpu)) { 5545 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5546 } 5547 } 5548 5549 /* Clear RES0 bits. */ 5550 value &= valid_mask; 5551 5552 /* 5553 * These bits change the MMU setup: 5554 * HCR_VM enables stage 2 translation 5555 * HCR_PTW forbids certain page-table setups 5556 * HCR_DC disables stage1 and enables stage2 translation 5557 * HCR_DCT enables tagging on (disabled) stage1 translation 5558 */ 5559 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5560 tlb_flush(CPU(cpu)); 5561 } 5562 env->cp15.hcr_el2 = value; 5563 5564 /* 5565 * Updates to VI and VF require us to update the status of 5566 * virtual interrupts, which are the logical OR of these bits 5567 * and the state of the input lines from the GIC. (This requires 5568 * that we have the iothread lock, which is done by marking the 5569 * reginfo structs as ARM_CP_IO.) 5570 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5571 * possible for it to be taken immediately, because VIRQ and 5572 * VFIQ are masked unless running at EL0 or EL1, and HCR 5573 * can only be written at EL2. 5574 */ 5575 g_assert(qemu_mutex_iothread_locked()); 5576 arm_cpu_update_virq(cpu); 5577 arm_cpu_update_vfiq(cpu); 5578 } 5579 5580 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5581 { 5582 do_hcr_write(env, value, 0); 5583 } 5584 5585 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5586 uint64_t value) 5587 { 5588 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5589 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5590 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5591 } 5592 5593 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5594 uint64_t value) 5595 { 5596 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5597 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5598 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5599 } 5600 5601 /* 5602 * Return the effective value of HCR_EL2. 5603 * Bits that are not included here: 5604 * RW (read from SCR_EL3.RW as needed) 5605 */ 5606 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5607 { 5608 uint64_t ret = env->cp15.hcr_el2; 5609 5610 if (!arm_is_el2_enabled(env)) { 5611 /* 5612 * "This register has no effect if EL2 is not enabled in the 5613 * current Security state". This is ARMv8.4-SecEL2 speak for 5614 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5615 * 5616 * Prior to that, the language was "In an implementation that 5617 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5618 * as if this field is 0 for all purposes other than a direct 5619 * read or write access of HCR_EL2". With lots of enumeration 5620 * on a per-field basis. In current QEMU, this is condition 5621 * is arm_is_secure_below_el3. 5622 * 5623 * Since the v8.4 language applies to the entire register, and 5624 * appears to be backward compatible, use that. 5625 */ 5626 return 0; 5627 } 5628 5629 /* 5630 * For a cpu that supports both aarch64 and aarch32, we can set bits 5631 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5632 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5633 */ 5634 if (!arm_el_is_aa64(env, 2)) { 5635 uint64_t aa32_valid; 5636 5637 /* 5638 * These bits are up-to-date as of ARMv8.6. 5639 * For HCR, it's easiest to list just the 2 bits that are invalid. 5640 * For HCR2, list those that are valid. 5641 */ 5642 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5643 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5644 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5645 ret &= aa32_valid; 5646 } 5647 5648 if (ret & HCR_TGE) { 5649 /* These bits are up-to-date as of ARMv8.6. */ 5650 if (ret & HCR_E2H) { 5651 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5652 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5653 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5654 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5655 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5656 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5657 } else { 5658 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5659 } 5660 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5661 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5662 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5663 HCR_TLOR); 5664 } 5665 5666 return ret; 5667 } 5668 5669 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5670 uint64_t value) 5671 { 5672 /* 5673 * For A-profile AArch32 EL3, if NSACR.CP10 5674 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5675 */ 5676 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5677 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5678 value &= ~(0x3 << 10); 5679 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5680 } 5681 env->cp15.cptr_el[2] = value; 5682 } 5683 5684 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5685 { 5686 /* 5687 * For A-profile AArch32 EL3, if NSACR.CP10 5688 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5689 */ 5690 uint64_t value = env->cp15.cptr_el[2]; 5691 5692 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5693 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5694 value |= 0x3 << 10; 5695 } 5696 return value; 5697 } 5698 5699 static const ARMCPRegInfo el2_cp_reginfo[] = { 5700 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5701 .type = ARM_CP_IO, 5702 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5703 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5704 .writefn = hcr_write }, 5705 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5706 .type = ARM_CP_ALIAS | ARM_CP_IO, 5707 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5708 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5709 .writefn = hcr_writelow }, 5710 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5711 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5712 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5713 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5714 .type = ARM_CP_ALIAS, 5715 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5716 .access = PL2_RW, 5717 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5718 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5719 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5720 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5721 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5722 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5723 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5724 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5725 .type = ARM_CP_ALIAS, 5726 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5727 .access = PL2_RW, 5728 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5729 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5730 .type = ARM_CP_ALIAS, 5731 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5732 .access = PL2_RW, 5733 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5734 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5735 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5736 .access = PL2_RW, .writefn = vbar_write, 5737 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5738 .resetvalue = 0 }, 5739 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5740 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5741 .access = PL3_RW, .type = ARM_CP_ALIAS, 5742 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5743 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5744 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5745 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5746 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5747 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5748 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5749 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5750 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5751 .resetvalue = 0 }, 5752 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5753 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5754 .access = PL2_RW, .type = ARM_CP_ALIAS, 5755 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5756 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5757 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5758 .access = PL2_RW, .type = ARM_CP_CONST, 5759 .resetvalue = 0 }, 5760 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5761 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5762 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5763 .access = PL2_RW, .type = ARM_CP_CONST, 5764 .resetvalue = 0 }, 5765 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5766 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5767 .access = PL2_RW, .type = ARM_CP_CONST, 5768 .resetvalue = 0 }, 5769 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5770 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5771 .access = PL2_RW, .type = ARM_CP_CONST, 5772 .resetvalue = 0 }, 5773 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5774 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5775 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5776 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5777 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5778 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5779 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5780 .type = ARM_CP_ALIAS, 5781 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5782 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5783 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5784 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5785 .access = PL2_RW, 5786 /* no .writefn needed as this can't cause an ASID change; 5787 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5788 */ 5789 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5790 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5791 .cp = 15, .opc1 = 6, .crm = 2, 5792 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5793 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5794 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5795 .writefn = vttbr_write }, 5796 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5797 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5798 .access = PL2_RW, .writefn = vttbr_write, 5799 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5800 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5801 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5802 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5803 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5804 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5805 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5806 .access = PL2_RW, .resetvalue = 0, 5807 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5808 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5809 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5810 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5811 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5812 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5813 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5814 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5815 { .name = "TLBIALLNSNH", 5816 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5817 .type = ARM_CP_NO_RAW, .access = PL2_W, 5818 .writefn = tlbiall_nsnh_write }, 5819 { .name = "TLBIALLNSNHIS", 5820 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5821 .type = ARM_CP_NO_RAW, .access = PL2_W, 5822 .writefn = tlbiall_nsnh_is_write }, 5823 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5824 .type = ARM_CP_NO_RAW, .access = PL2_W, 5825 .writefn = tlbiall_hyp_write }, 5826 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5827 .type = ARM_CP_NO_RAW, .access = PL2_W, 5828 .writefn = tlbiall_hyp_is_write }, 5829 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5830 .type = ARM_CP_NO_RAW, .access = PL2_W, 5831 .writefn = tlbimva_hyp_write }, 5832 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5833 .type = ARM_CP_NO_RAW, .access = PL2_W, 5834 .writefn = tlbimva_hyp_is_write }, 5835 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5836 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5837 .type = ARM_CP_NO_RAW, .access = PL2_W, 5838 .writefn = tlbi_aa64_alle2_write }, 5839 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5840 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5841 .type = ARM_CP_NO_RAW, .access = PL2_W, 5842 .writefn = tlbi_aa64_vae2_write }, 5843 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5844 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5845 .access = PL2_W, .type = ARM_CP_NO_RAW, 5846 .writefn = tlbi_aa64_vae2_write }, 5847 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5848 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5849 .access = PL2_W, .type = ARM_CP_NO_RAW, 5850 .writefn = tlbi_aa64_alle2is_write }, 5851 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5852 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5853 .type = ARM_CP_NO_RAW, .access = PL2_W, 5854 .writefn = tlbi_aa64_vae2is_write }, 5855 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5856 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5857 .access = PL2_W, .type = ARM_CP_NO_RAW, 5858 .writefn = tlbi_aa64_vae2is_write }, 5859 #ifndef CONFIG_USER_ONLY 5860 /* Unlike the other EL2-related AT operations, these must 5861 * UNDEF from EL3 if EL2 is not implemented, which is why we 5862 * define them here rather than with the rest of the AT ops. 5863 */ 5864 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5865 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5866 .access = PL2_W, .accessfn = at_s1e2_access, 5867 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5868 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5869 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5870 .access = PL2_W, .accessfn = at_s1e2_access, 5871 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5872 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5873 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5874 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5875 * to behave as if SCR.NS was 1. 5876 */ 5877 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5878 .access = PL2_W, 5879 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5880 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5881 .access = PL2_W, 5882 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5883 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5884 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5885 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5886 * reset values as IMPDEF. We choose to reset to 3 to comply with 5887 * both ARMv7 and ARMv8. 5888 */ 5889 .access = PL2_RW, .resetvalue = 3, 5890 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5891 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5892 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5893 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5894 .writefn = gt_cntvoff_write, 5895 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5896 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5897 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5898 .writefn = gt_cntvoff_write, 5899 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5900 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5901 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5902 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5903 .type = ARM_CP_IO, .access = PL2_RW, 5904 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5905 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5906 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5907 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5908 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5909 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5910 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5911 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5912 .resetfn = gt_hyp_timer_reset, 5913 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5914 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5915 .type = ARM_CP_IO, 5916 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5917 .access = PL2_RW, 5918 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5919 .resetvalue = 0, 5920 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5921 #endif 5922 /* The only field of MDCR_EL2 that has a defined architectural reset value 5923 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 5924 */ 5925 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5926 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5927 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, 5928 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5929 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5930 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5931 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5932 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5933 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5934 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5935 .access = PL2_RW, 5936 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5937 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5938 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5939 .access = PL2_RW, 5940 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5941 REGINFO_SENTINEL 5942 }; 5943 5944 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5945 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5946 .type = ARM_CP_ALIAS | ARM_CP_IO, 5947 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5948 .access = PL2_RW, 5949 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5950 .writefn = hcr_writehigh }, 5951 REGINFO_SENTINEL 5952 }; 5953 5954 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5955 bool isread) 5956 { 5957 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5958 return CP_ACCESS_OK; 5959 } 5960 return CP_ACCESS_TRAP_UNCATEGORIZED; 5961 } 5962 5963 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5964 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5965 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5966 .access = PL2_RW, .accessfn = sel2_access, 5967 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5968 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5969 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5970 .access = PL2_RW, .accessfn = sel2_access, 5971 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5972 REGINFO_SENTINEL 5973 }; 5974 5975 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5976 bool isread) 5977 { 5978 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5979 * At Secure EL1 it traps to EL3 or EL2. 5980 */ 5981 if (arm_current_el(env) == 3) { 5982 return CP_ACCESS_OK; 5983 } 5984 if (arm_is_secure_below_el3(env)) { 5985 if (env->cp15.scr_el3 & SCR_EEL2) { 5986 return CP_ACCESS_TRAP_EL2; 5987 } 5988 return CP_ACCESS_TRAP_EL3; 5989 } 5990 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5991 if (isread) { 5992 return CP_ACCESS_OK; 5993 } 5994 return CP_ACCESS_TRAP_UNCATEGORIZED; 5995 } 5996 5997 static const ARMCPRegInfo el3_cp_reginfo[] = { 5998 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5999 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6000 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6001 .resetfn = scr_reset, .writefn = scr_write }, 6002 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6003 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6004 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6005 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6006 .writefn = scr_write }, 6007 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6008 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6009 .access = PL3_RW, .resetvalue = 0, 6010 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6011 { .name = "SDER", 6012 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6013 .access = PL3_RW, .resetvalue = 0, 6014 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6015 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6016 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6017 .writefn = vbar_write, .resetvalue = 0, 6018 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6019 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6020 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6021 .access = PL3_RW, .resetvalue = 0, 6022 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6023 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6024 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6025 .access = PL3_RW, 6026 /* no .writefn needed as this can't cause an ASID change; 6027 * we must provide a .raw_writefn and .resetfn because we handle 6028 * reset and migration for the AArch32 TTBCR(S), which might be 6029 * using mask and base_mask. 6030 */ 6031 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 6032 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6033 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6034 .type = ARM_CP_ALIAS, 6035 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6036 .access = PL3_RW, 6037 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6038 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6039 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6040 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6041 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6042 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6043 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6044 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6045 .type = ARM_CP_ALIAS, 6046 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6047 .access = PL3_RW, 6048 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6049 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6050 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6051 .access = PL3_RW, .writefn = vbar_write, 6052 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6053 .resetvalue = 0 }, 6054 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6055 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6056 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6057 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6058 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6059 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6060 .access = PL3_RW, .resetvalue = 0, 6061 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6062 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6063 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6064 .access = PL3_RW, .type = ARM_CP_CONST, 6065 .resetvalue = 0 }, 6066 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6067 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6068 .access = PL3_RW, .type = ARM_CP_CONST, 6069 .resetvalue = 0 }, 6070 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6071 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6072 .access = PL3_RW, .type = ARM_CP_CONST, 6073 .resetvalue = 0 }, 6074 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6075 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6076 .access = PL3_W, .type = ARM_CP_NO_RAW, 6077 .writefn = tlbi_aa64_alle3is_write }, 6078 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6079 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6080 .access = PL3_W, .type = ARM_CP_NO_RAW, 6081 .writefn = tlbi_aa64_vae3is_write }, 6082 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6083 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6084 .access = PL3_W, .type = ARM_CP_NO_RAW, 6085 .writefn = tlbi_aa64_vae3is_write }, 6086 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6087 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6088 .access = PL3_W, .type = ARM_CP_NO_RAW, 6089 .writefn = tlbi_aa64_alle3_write }, 6090 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6091 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6092 .access = PL3_W, .type = ARM_CP_NO_RAW, 6093 .writefn = tlbi_aa64_vae3_write }, 6094 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6095 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6096 .access = PL3_W, .type = ARM_CP_NO_RAW, 6097 .writefn = tlbi_aa64_vae3_write }, 6098 REGINFO_SENTINEL 6099 }; 6100 6101 #ifndef CONFIG_USER_ONLY 6102 /* Test if system register redirection is to occur in the current state. */ 6103 static bool redirect_for_e2h(CPUARMState *env) 6104 { 6105 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6106 } 6107 6108 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6109 { 6110 CPReadFn *readfn; 6111 6112 if (redirect_for_e2h(env)) { 6113 /* Switch to the saved EL2 version of the register. */ 6114 ri = ri->opaque; 6115 readfn = ri->readfn; 6116 } else { 6117 readfn = ri->orig_readfn; 6118 } 6119 if (readfn == NULL) { 6120 readfn = raw_read; 6121 } 6122 return readfn(env, ri); 6123 } 6124 6125 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6126 uint64_t value) 6127 { 6128 CPWriteFn *writefn; 6129 6130 if (redirect_for_e2h(env)) { 6131 /* Switch to the saved EL2 version of the register. */ 6132 ri = ri->opaque; 6133 writefn = ri->writefn; 6134 } else { 6135 writefn = ri->orig_writefn; 6136 } 6137 if (writefn == NULL) { 6138 writefn = raw_write; 6139 } 6140 writefn(env, ri, value); 6141 } 6142 6143 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6144 { 6145 struct E2HAlias { 6146 uint32_t src_key, dst_key, new_key; 6147 const char *src_name, *dst_name, *new_name; 6148 bool (*feature)(const ARMISARegisters *id); 6149 }; 6150 6151 #define K(op0, op1, crn, crm, op2) \ 6152 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6153 6154 static const struct E2HAlias aliases[] = { 6155 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6156 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6157 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6158 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6159 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6160 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6161 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6162 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6163 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6164 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6165 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6166 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6167 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6168 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6169 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6170 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6171 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6172 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6173 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6174 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6175 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6176 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6177 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6178 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6179 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6180 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6181 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6182 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6183 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6184 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6185 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6186 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6187 6188 /* 6189 * Note that redirection of ZCR is mentioned in the description 6190 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6191 * not in the summary table. 6192 */ 6193 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6194 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6195 6196 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6197 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6198 6199 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6200 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6201 }; 6202 #undef K 6203 6204 size_t i; 6205 6206 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6207 const struct E2HAlias *a = &aliases[i]; 6208 ARMCPRegInfo *src_reg, *dst_reg; 6209 6210 if (a->feature && !a->feature(&cpu->isar)) { 6211 continue; 6212 } 6213 6214 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 6215 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 6216 g_assert(src_reg != NULL); 6217 g_assert(dst_reg != NULL); 6218 6219 /* Cross-compare names to detect typos in the keys. */ 6220 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6221 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6222 6223 /* None of the core system registers use opaque; we will. */ 6224 g_assert(src_reg->opaque == NULL); 6225 6226 /* Create alias before redirection so we dup the right data. */ 6227 if (a->new_key) { 6228 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6229 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 6230 bool ok; 6231 6232 new_reg->name = a->new_name; 6233 new_reg->type |= ARM_CP_ALIAS; 6234 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6235 new_reg->access &= PL2_RW | PL3_RW; 6236 6237 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 6238 g_assert(ok); 6239 } 6240 6241 src_reg->opaque = dst_reg; 6242 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6243 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6244 if (!src_reg->raw_readfn) { 6245 src_reg->raw_readfn = raw_read; 6246 } 6247 if (!src_reg->raw_writefn) { 6248 src_reg->raw_writefn = raw_write; 6249 } 6250 src_reg->readfn = el2_e2h_read; 6251 src_reg->writefn = el2_e2h_write; 6252 } 6253 } 6254 #endif 6255 6256 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6257 bool isread) 6258 { 6259 int cur_el = arm_current_el(env); 6260 6261 if (cur_el < 2) { 6262 uint64_t hcr = arm_hcr_el2_eff(env); 6263 6264 if (cur_el == 0) { 6265 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6266 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6267 return CP_ACCESS_TRAP_EL2; 6268 } 6269 } else { 6270 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6271 return CP_ACCESS_TRAP; 6272 } 6273 if (hcr & HCR_TID2) { 6274 return CP_ACCESS_TRAP_EL2; 6275 } 6276 } 6277 } else if (hcr & HCR_TID2) { 6278 return CP_ACCESS_TRAP_EL2; 6279 } 6280 } 6281 6282 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6283 return CP_ACCESS_TRAP_EL2; 6284 } 6285 6286 return CP_ACCESS_OK; 6287 } 6288 6289 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6290 uint64_t value) 6291 { 6292 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6293 * read via a bit in OSLSR_EL1. 6294 */ 6295 int oslock; 6296 6297 if (ri->state == ARM_CP_STATE_AA32) { 6298 oslock = (value == 0xC5ACCE55); 6299 } else { 6300 oslock = value & 1; 6301 } 6302 6303 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6304 } 6305 6306 static const ARMCPRegInfo debug_cp_reginfo[] = { 6307 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6308 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6309 * unlike DBGDRAR it is never accessible from EL0. 6310 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6311 * accessor. 6312 */ 6313 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6314 .access = PL0_R, .accessfn = access_tdra, 6315 .type = ARM_CP_CONST, .resetvalue = 0 }, 6316 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6317 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6318 .access = PL1_R, .accessfn = access_tdra, 6319 .type = ARM_CP_CONST, .resetvalue = 0 }, 6320 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6321 .access = PL0_R, .accessfn = access_tdra, 6322 .type = ARM_CP_CONST, .resetvalue = 0 }, 6323 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6324 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6325 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6326 .access = PL1_RW, .accessfn = access_tda, 6327 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6328 .resetvalue = 0 }, 6329 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 6330 * We don't implement the configurable EL0 access. 6331 */ 6332 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 6333 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6334 .type = ARM_CP_ALIAS, 6335 .access = PL1_R, .accessfn = access_tda, 6336 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6337 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6338 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6339 .access = PL1_W, .type = ARM_CP_NO_RAW, 6340 .accessfn = access_tdosa, 6341 .writefn = oslar_write }, 6342 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6343 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6344 .access = PL1_R, .resetvalue = 10, 6345 .accessfn = access_tdosa, 6346 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6347 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6348 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6349 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6350 .access = PL1_RW, .accessfn = access_tdosa, 6351 .type = ARM_CP_NOP }, 6352 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6353 * implement vector catch debug events yet. 6354 */ 6355 { .name = "DBGVCR", 6356 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6357 .access = PL1_RW, .accessfn = access_tda, 6358 .type = ARM_CP_NOP }, 6359 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6360 * to save and restore a 32-bit guest's DBGVCR) 6361 */ 6362 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6363 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6364 .access = PL2_RW, .accessfn = access_tda, 6365 .type = ARM_CP_NOP }, 6366 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6367 * Channel but Linux may try to access this register. The 32-bit 6368 * alias is DBGDCCINT. 6369 */ 6370 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6371 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6372 .access = PL1_RW, .accessfn = access_tda, 6373 .type = ARM_CP_NOP }, 6374 REGINFO_SENTINEL 6375 }; 6376 6377 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6378 /* 64 bit access versions of the (dummy) debug registers */ 6379 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6380 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6381 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6382 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6383 REGINFO_SENTINEL 6384 }; 6385 6386 /* Return the exception level to which exceptions should be taken 6387 * via SVEAccessTrap. If an exception should be routed through 6388 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6389 * take care of raising that exception. 6390 * C.f. the ARM pseudocode function CheckSVEEnabled. 6391 */ 6392 int sve_exception_el(CPUARMState *env, int el) 6393 { 6394 #ifndef CONFIG_USER_ONLY 6395 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6396 6397 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6398 bool disabled = false; 6399 6400 /* The CPACR.ZEN controls traps to EL1: 6401 * 0, 2 : trap EL0 and EL1 accesses 6402 * 1 : trap only EL0 accesses 6403 * 3 : trap no accesses 6404 */ 6405 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 6406 disabled = true; 6407 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 6408 disabled = el == 0; 6409 } 6410 if (disabled) { 6411 /* route_to_el2 */ 6412 return hcr_el2 & HCR_TGE ? 2 : 1; 6413 } 6414 6415 /* Check CPACR.FPEN. */ 6416 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 6417 disabled = true; 6418 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 6419 disabled = el == 0; 6420 } 6421 if (disabled) { 6422 return 0; 6423 } 6424 } 6425 6426 /* CPTR_EL2. Since TZ and TFP are positive, 6427 * they will be zero when EL2 is not present. 6428 */ 6429 if (el <= 2 && arm_is_el2_enabled(env)) { 6430 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6431 return 2; 6432 } 6433 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6434 return 0; 6435 } 6436 } 6437 6438 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6439 if (arm_feature(env, ARM_FEATURE_EL3) 6440 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6441 return 3; 6442 } 6443 #endif 6444 return 0; 6445 } 6446 6447 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6448 { 6449 uint32_t end_len; 6450 6451 end_len = start_len &= 0xf; 6452 if (!test_bit(start_len, cpu->sve_vq_map)) { 6453 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6454 assert(end_len < start_len); 6455 } 6456 return end_len; 6457 } 6458 6459 /* 6460 * Given that SVE is enabled, return the vector length for EL. 6461 */ 6462 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6463 { 6464 ARMCPU *cpu = env_archcpu(env); 6465 uint32_t zcr_len = cpu->sve_max_vq - 1; 6466 6467 if (el <= 1) { 6468 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6469 } 6470 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6471 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6472 } 6473 if (arm_feature(env, ARM_FEATURE_EL3)) { 6474 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6475 } 6476 6477 return sve_zcr_get_valid_len(cpu, zcr_len); 6478 } 6479 6480 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6481 uint64_t value) 6482 { 6483 int cur_el = arm_current_el(env); 6484 int old_len = sve_zcr_len_for_el(env, cur_el); 6485 int new_len; 6486 6487 /* Bits other than [3:0] are RAZ/WI. */ 6488 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6489 raw_write(env, ri, value & 0xf); 6490 6491 /* 6492 * Because we arrived here, we know both FP and SVE are enabled; 6493 * otherwise we would have trapped access to the ZCR_ELn register. 6494 */ 6495 new_len = sve_zcr_len_for_el(env, cur_el); 6496 if (new_len < old_len) { 6497 aarch64_sve_narrow_vq(env, new_len + 1); 6498 } 6499 } 6500 6501 static const ARMCPRegInfo zcr_el1_reginfo = { 6502 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6503 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6504 .access = PL1_RW, .type = ARM_CP_SVE, 6505 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6506 .writefn = zcr_write, .raw_writefn = raw_write 6507 }; 6508 6509 static const ARMCPRegInfo zcr_el2_reginfo = { 6510 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6511 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6512 .access = PL2_RW, .type = ARM_CP_SVE, 6513 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6514 .writefn = zcr_write, .raw_writefn = raw_write 6515 }; 6516 6517 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6518 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6519 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6520 .access = PL2_RW, .type = ARM_CP_SVE, 6521 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6522 }; 6523 6524 static const ARMCPRegInfo zcr_el3_reginfo = { 6525 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6526 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6527 .access = PL3_RW, .type = ARM_CP_SVE, 6528 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6529 .writefn = zcr_write, .raw_writefn = raw_write 6530 }; 6531 6532 void hw_watchpoint_update(ARMCPU *cpu, int n) 6533 { 6534 CPUARMState *env = &cpu->env; 6535 vaddr len = 0; 6536 vaddr wvr = env->cp15.dbgwvr[n]; 6537 uint64_t wcr = env->cp15.dbgwcr[n]; 6538 int mask; 6539 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6540 6541 if (env->cpu_watchpoint[n]) { 6542 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6543 env->cpu_watchpoint[n] = NULL; 6544 } 6545 6546 if (!extract64(wcr, 0, 1)) { 6547 /* E bit clear : watchpoint disabled */ 6548 return; 6549 } 6550 6551 switch (extract64(wcr, 3, 2)) { 6552 case 0: 6553 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6554 return; 6555 case 1: 6556 flags |= BP_MEM_READ; 6557 break; 6558 case 2: 6559 flags |= BP_MEM_WRITE; 6560 break; 6561 case 3: 6562 flags |= BP_MEM_ACCESS; 6563 break; 6564 } 6565 6566 /* Attempts to use both MASK and BAS fields simultaneously are 6567 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6568 * thus generating a watchpoint for every byte in the masked region. 6569 */ 6570 mask = extract64(wcr, 24, 4); 6571 if (mask == 1 || mask == 2) { 6572 /* Reserved values of MASK; we must act as if the mask value was 6573 * some non-reserved value, or as if the watchpoint were disabled. 6574 * We choose the latter. 6575 */ 6576 return; 6577 } else if (mask) { 6578 /* Watchpoint covers an aligned area up to 2GB in size */ 6579 len = 1ULL << mask; 6580 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6581 * whether the watchpoint fires when the unmasked bits match; we opt 6582 * to generate the exceptions. 6583 */ 6584 wvr &= ~(len - 1); 6585 } else { 6586 /* Watchpoint covers bytes defined by the byte address select bits */ 6587 int bas = extract64(wcr, 5, 8); 6588 int basstart; 6589 6590 if (extract64(wvr, 2, 1)) { 6591 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6592 * ignored, and BAS[3:0] define which bytes to watch. 6593 */ 6594 bas &= 0xf; 6595 } 6596 6597 if (bas == 0) { 6598 /* This must act as if the watchpoint is disabled */ 6599 return; 6600 } 6601 6602 /* The BAS bits are supposed to be programmed to indicate a contiguous 6603 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6604 * we fire for each byte in the word/doubleword addressed by the WVR. 6605 * We choose to ignore any non-zero bits after the first range of 1s. 6606 */ 6607 basstart = ctz32(bas); 6608 len = cto32(bas >> basstart); 6609 wvr += basstart; 6610 } 6611 6612 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6613 &env->cpu_watchpoint[n]); 6614 } 6615 6616 void hw_watchpoint_update_all(ARMCPU *cpu) 6617 { 6618 int i; 6619 CPUARMState *env = &cpu->env; 6620 6621 /* Completely clear out existing QEMU watchpoints and our array, to 6622 * avoid possible stale entries following migration load. 6623 */ 6624 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6625 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6626 6627 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6628 hw_watchpoint_update(cpu, i); 6629 } 6630 } 6631 6632 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6633 uint64_t value) 6634 { 6635 ARMCPU *cpu = env_archcpu(env); 6636 int i = ri->crm; 6637 6638 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6639 * register reads and behaves as if values written are sign extended. 6640 * Bits [1:0] are RES0. 6641 */ 6642 value = sextract64(value, 0, 49) & ~3ULL; 6643 6644 raw_write(env, ri, value); 6645 hw_watchpoint_update(cpu, i); 6646 } 6647 6648 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6649 uint64_t value) 6650 { 6651 ARMCPU *cpu = env_archcpu(env); 6652 int i = ri->crm; 6653 6654 raw_write(env, ri, value); 6655 hw_watchpoint_update(cpu, i); 6656 } 6657 6658 void hw_breakpoint_update(ARMCPU *cpu, int n) 6659 { 6660 CPUARMState *env = &cpu->env; 6661 uint64_t bvr = env->cp15.dbgbvr[n]; 6662 uint64_t bcr = env->cp15.dbgbcr[n]; 6663 vaddr addr; 6664 int bt; 6665 int flags = BP_CPU; 6666 6667 if (env->cpu_breakpoint[n]) { 6668 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6669 env->cpu_breakpoint[n] = NULL; 6670 } 6671 6672 if (!extract64(bcr, 0, 1)) { 6673 /* E bit clear : watchpoint disabled */ 6674 return; 6675 } 6676 6677 bt = extract64(bcr, 20, 4); 6678 6679 switch (bt) { 6680 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6681 case 5: /* linked address mismatch (reserved if AArch64) */ 6682 qemu_log_mask(LOG_UNIMP, 6683 "arm: address mismatch breakpoint types not implemented\n"); 6684 return; 6685 case 0: /* unlinked address match */ 6686 case 1: /* linked address match */ 6687 { 6688 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6689 * we behave as if the register was sign extended. Bits [1:0] are 6690 * RES0. The BAS field is used to allow setting breakpoints on 16 6691 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6692 * a bp will fire if the addresses covered by the bp and the addresses 6693 * covered by the insn overlap but the insn doesn't start at the 6694 * start of the bp address range. We choose to require the insn and 6695 * the bp to have the same address. The constraints on writing to 6696 * BAS enforced in dbgbcr_write mean we have only four cases: 6697 * 0b0000 => no breakpoint 6698 * 0b0011 => breakpoint on addr 6699 * 0b1100 => breakpoint on addr + 2 6700 * 0b1111 => breakpoint on addr 6701 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6702 */ 6703 int bas = extract64(bcr, 5, 4); 6704 addr = sextract64(bvr, 0, 49) & ~3ULL; 6705 if (bas == 0) { 6706 return; 6707 } 6708 if (bas == 0xc) { 6709 addr += 2; 6710 } 6711 break; 6712 } 6713 case 2: /* unlinked context ID match */ 6714 case 8: /* unlinked VMID match (reserved if no EL2) */ 6715 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6716 qemu_log_mask(LOG_UNIMP, 6717 "arm: unlinked context breakpoint types not implemented\n"); 6718 return; 6719 case 9: /* linked VMID match (reserved if no EL2) */ 6720 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6721 case 3: /* linked context ID match */ 6722 default: 6723 /* We must generate no events for Linked context matches (unless 6724 * they are linked to by some other bp/wp, which is handled in 6725 * updates for the linking bp/wp). We choose to also generate no events 6726 * for reserved values. 6727 */ 6728 return; 6729 } 6730 6731 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6732 } 6733 6734 void hw_breakpoint_update_all(ARMCPU *cpu) 6735 { 6736 int i; 6737 CPUARMState *env = &cpu->env; 6738 6739 /* Completely clear out existing QEMU breakpoints and our array, to 6740 * avoid possible stale entries following migration load. 6741 */ 6742 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6743 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6744 6745 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6746 hw_breakpoint_update(cpu, i); 6747 } 6748 } 6749 6750 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6751 uint64_t value) 6752 { 6753 ARMCPU *cpu = env_archcpu(env); 6754 int i = ri->crm; 6755 6756 raw_write(env, ri, value); 6757 hw_breakpoint_update(cpu, i); 6758 } 6759 6760 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6761 uint64_t value) 6762 { 6763 ARMCPU *cpu = env_archcpu(env); 6764 int i = ri->crm; 6765 6766 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6767 * copy of BAS[0]. 6768 */ 6769 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6770 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6771 6772 raw_write(env, ri, value); 6773 hw_breakpoint_update(cpu, i); 6774 } 6775 6776 static void define_debug_regs(ARMCPU *cpu) 6777 { 6778 /* Define v7 and v8 architectural debug registers. 6779 * These are just dummy implementations for now. 6780 */ 6781 int i; 6782 int wrps, brps, ctx_cmps; 6783 6784 /* 6785 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6786 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6787 * the register must not exist for this cpu. 6788 */ 6789 if (cpu->isar.dbgdidr != 0) { 6790 ARMCPRegInfo dbgdidr = { 6791 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6792 .opc1 = 0, .opc2 = 0, 6793 .access = PL0_R, .accessfn = access_tda, 6794 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6795 }; 6796 define_one_arm_cp_reg(cpu, &dbgdidr); 6797 } 6798 6799 /* Note that all these register fields hold "number of Xs minus 1". */ 6800 brps = arm_num_brps(cpu); 6801 wrps = arm_num_wrps(cpu); 6802 ctx_cmps = arm_num_ctx_cmps(cpu); 6803 6804 assert(ctx_cmps <= brps); 6805 6806 define_arm_cp_regs(cpu, debug_cp_reginfo); 6807 6808 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6809 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6810 } 6811 6812 for (i = 0; i < brps; i++) { 6813 ARMCPRegInfo dbgregs[] = { 6814 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6815 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6816 .access = PL1_RW, .accessfn = access_tda, 6817 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6818 .writefn = dbgbvr_write, .raw_writefn = raw_write 6819 }, 6820 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6821 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6822 .access = PL1_RW, .accessfn = access_tda, 6823 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6824 .writefn = dbgbcr_write, .raw_writefn = raw_write 6825 }, 6826 REGINFO_SENTINEL 6827 }; 6828 define_arm_cp_regs(cpu, dbgregs); 6829 } 6830 6831 for (i = 0; i < wrps; i++) { 6832 ARMCPRegInfo dbgregs[] = { 6833 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6834 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6835 .access = PL1_RW, .accessfn = access_tda, 6836 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6837 .writefn = dbgwvr_write, .raw_writefn = raw_write 6838 }, 6839 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6840 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6841 .access = PL1_RW, .accessfn = access_tda, 6842 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6843 .writefn = dbgwcr_write, .raw_writefn = raw_write 6844 }, 6845 REGINFO_SENTINEL 6846 }; 6847 define_arm_cp_regs(cpu, dbgregs); 6848 } 6849 } 6850 6851 static void define_pmu_regs(ARMCPU *cpu) 6852 { 6853 /* 6854 * v7 performance monitor control register: same implementor 6855 * field as main ID register, and we implement four counters in 6856 * addition to the cycle count register. 6857 */ 6858 unsigned int i, pmcrn = PMCR_NUM_COUNTERS; 6859 ARMCPRegInfo pmcr = { 6860 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6861 .access = PL0_RW, 6862 .type = ARM_CP_IO | ARM_CP_ALIAS, 6863 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6864 .accessfn = pmreg_access, .writefn = pmcr_write, 6865 .raw_writefn = raw_write, 6866 }; 6867 ARMCPRegInfo pmcr64 = { 6868 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6869 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6870 .access = PL0_RW, .accessfn = pmreg_access, 6871 .type = ARM_CP_IO, 6872 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6873 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6874 PMCRLC, 6875 .writefn = pmcr_write, .raw_writefn = raw_write, 6876 }; 6877 define_one_arm_cp_reg(cpu, &pmcr); 6878 define_one_arm_cp_reg(cpu, &pmcr64); 6879 for (i = 0; i < pmcrn; i++) { 6880 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6881 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6882 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6883 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6884 ARMCPRegInfo pmev_regs[] = { 6885 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6886 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6887 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6888 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6889 .accessfn = pmreg_access }, 6890 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6891 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6892 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6893 .type = ARM_CP_IO, 6894 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6895 .raw_readfn = pmevcntr_rawread, 6896 .raw_writefn = pmevcntr_rawwrite }, 6897 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6898 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6899 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6900 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6901 .accessfn = pmreg_access }, 6902 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6903 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6904 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6905 .type = ARM_CP_IO, 6906 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6907 .raw_writefn = pmevtyper_rawwrite }, 6908 REGINFO_SENTINEL 6909 }; 6910 define_arm_cp_regs(cpu, pmev_regs); 6911 g_free(pmevcntr_name); 6912 g_free(pmevcntr_el0_name); 6913 g_free(pmevtyper_name); 6914 g_free(pmevtyper_el0_name); 6915 } 6916 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6917 ARMCPRegInfo v81_pmu_regs[] = { 6918 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6919 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6920 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6921 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6922 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6923 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6924 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6925 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6926 REGINFO_SENTINEL 6927 }; 6928 define_arm_cp_regs(cpu, v81_pmu_regs); 6929 } 6930 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6931 static const ARMCPRegInfo v84_pmmir = { 6932 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6933 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6934 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6935 .resetvalue = 0 6936 }; 6937 define_one_arm_cp_reg(cpu, &v84_pmmir); 6938 } 6939 } 6940 6941 /* We don't know until after realize whether there's a GICv3 6942 * attached, and that is what registers the gicv3 sysregs. 6943 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6944 * at runtime. 6945 */ 6946 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6947 { 6948 ARMCPU *cpu = env_archcpu(env); 6949 uint64_t pfr1 = cpu->isar.id_pfr1; 6950 6951 if (env->gicv3state) { 6952 pfr1 |= 1 << 28; 6953 } 6954 return pfr1; 6955 } 6956 6957 #ifndef CONFIG_USER_ONLY 6958 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6959 { 6960 ARMCPU *cpu = env_archcpu(env); 6961 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6962 6963 if (env->gicv3state) { 6964 pfr0 |= 1 << 24; 6965 } 6966 return pfr0; 6967 } 6968 #endif 6969 6970 /* Shared logic between LORID and the rest of the LOR* registers. 6971 * Secure state exclusion has already been dealt with. 6972 */ 6973 static CPAccessResult access_lor_ns(CPUARMState *env, 6974 const ARMCPRegInfo *ri, bool isread) 6975 { 6976 int el = arm_current_el(env); 6977 6978 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6979 return CP_ACCESS_TRAP_EL2; 6980 } 6981 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6982 return CP_ACCESS_TRAP_EL3; 6983 } 6984 return CP_ACCESS_OK; 6985 } 6986 6987 static CPAccessResult access_lor_other(CPUARMState *env, 6988 const ARMCPRegInfo *ri, bool isread) 6989 { 6990 if (arm_is_secure_below_el3(env)) { 6991 /* Access denied in secure mode. */ 6992 return CP_ACCESS_TRAP; 6993 } 6994 return access_lor_ns(env, ri, isread); 6995 } 6996 6997 /* 6998 * A trivial implementation of ARMv8.1-LOR leaves all of these 6999 * registers fixed at 0, which indicates that there are zero 7000 * supported Limited Ordering regions. 7001 */ 7002 static const ARMCPRegInfo lor_reginfo[] = { 7003 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7004 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7005 .access = PL1_RW, .accessfn = access_lor_other, 7006 .type = ARM_CP_CONST, .resetvalue = 0 }, 7007 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7008 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7009 .access = PL1_RW, .accessfn = access_lor_other, 7010 .type = ARM_CP_CONST, .resetvalue = 0 }, 7011 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7012 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7013 .access = PL1_RW, .accessfn = access_lor_other, 7014 .type = ARM_CP_CONST, .resetvalue = 0 }, 7015 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7016 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7017 .access = PL1_RW, .accessfn = access_lor_other, 7018 .type = ARM_CP_CONST, .resetvalue = 0 }, 7019 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7020 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7021 .access = PL1_R, .accessfn = access_lor_ns, 7022 .type = ARM_CP_CONST, .resetvalue = 0 }, 7023 REGINFO_SENTINEL 7024 }; 7025 7026 #ifdef TARGET_AARCH64 7027 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7028 bool isread) 7029 { 7030 int el = arm_current_el(env); 7031 7032 if (el < 2 && 7033 arm_feature(env, ARM_FEATURE_EL2) && 7034 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7035 return CP_ACCESS_TRAP_EL2; 7036 } 7037 if (el < 3 && 7038 arm_feature(env, ARM_FEATURE_EL3) && 7039 !(env->cp15.scr_el3 & SCR_APK)) { 7040 return CP_ACCESS_TRAP_EL3; 7041 } 7042 return CP_ACCESS_OK; 7043 } 7044 7045 static const ARMCPRegInfo pauth_reginfo[] = { 7046 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7047 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7048 .access = PL1_RW, .accessfn = access_pauth, 7049 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7050 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7051 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7052 .access = PL1_RW, .accessfn = access_pauth, 7053 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7054 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7055 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7056 .access = PL1_RW, .accessfn = access_pauth, 7057 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7058 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7059 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7060 .access = PL1_RW, .accessfn = access_pauth, 7061 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7062 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7063 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7064 .access = PL1_RW, .accessfn = access_pauth, 7065 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7066 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7067 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7068 .access = PL1_RW, .accessfn = access_pauth, 7069 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7070 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7071 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7072 .access = PL1_RW, .accessfn = access_pauth, 7073 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7074 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7075 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7076 .access = PL1_RW, .accessfn = access_pauth, 7077 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7078 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7079 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7080 .access = PL1_RW, .accessfn = access_pauth, 7081 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7082 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7083 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7084 .access = PL1_RW, .accessfn = access_pauth, 7085 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7086 REGINFO_SENTINEL 7087 }; 7088 7089 static const ARMCPRegInfo tlbirange_reginfo[] = { 7090 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7091 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7092 .access = PL1_W, .type = ARM_CP_NO_RAW, 7093 .writefn = tlbi_aa64_rvae1is_write }, 7094 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7095 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7096 .access = PL1_W, .type = ARM_CP_NO_RAW, 7097 .writefn = tlbi_aa64_rvae1is_write }, 7098 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7099 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7100 .access = PL1_W, .type = ARM_CP_NO_RAW, 7101 .writefn = tlbi_aa64_rvae1is_write }, 7102 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7103 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7104 .access = PL1_W, .type = ARM_CP_NO_RAW, 7105 .writefn = tlbi_aa64_rvae1is_write }, 7106 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7107 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7108 .access = PL1_W, .type = ARM_CP_NO_RAW, 7109 .writefn = tlbi_aa64_rvae1is_write }, 7110 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7111 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7112 .access = PL1_W, .type = ARM_CP_NO_RAW, 7113 .writefn = tlbi_aa64_rvae1is_write }, 7114 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7115 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7116 .access = PL1_W, .type = ARM_CP_NO_RAW, 7117 .writefn = tlbi_aa64_rvae1is_write }, 7118 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7119 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7120 .access = PL1_W, .type = ARM_CP_NO_RAW, 7121 .writefn = tlbi_aa64_rvae1is_write }, 7122 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7123 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7124 .access = PL1_W, .type = ARM_CP_NO_RAW, 7125 .writefn = tlbi_aa64_rvae1_write }, 7126 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7127 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7128 .access = PL1_W, .type = ARM_CP_NO_RAW, 7129 .writefn = tlbi_aa64_rvae1_write }, 7130 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7131 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7132 .access = PL1_W, .type = ARM_CP_NO_RAW, 7133 .writefn = tlbi_aa64_rvae1_write }, 7134 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7135 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7136 .access = PL1_W, .type = ARM_CP_NO_RAW, 7137 .writefn = tlbi_aa64_rvae1_write }, 7138 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7139 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7140 .access = PL2_W, .type = ARM_CP_NOP }, 7141 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7142 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7143 .access = PL2_W, .type = ARM_CP_NOP }, 7144 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7145 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7146 .access = PL2_W, .type = ARM_CP_NO_RAW, 7147 .writefn = tlbi_aa64_rvae2is_write }, 7148 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7149 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7150 .access = PL2_W, .type = ARM_CP_NO_RAW, 7151 .writefn = tlbi_aa64_rvae2is_write }, 7152 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7153 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7154 .access = PL2_W, .type = ARM_CP_NOP }, 7155 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7156 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7157 .access = PL2_W, .type = ARM_CP_NOP }, 7158 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7159 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7160 .access = PL2_W, .type = ARM_CP_NO_RAW, 7161 .writefn = tlbi_aa64_rvae2is_write }, 7162 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7163 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7164 .access = PL2_W, .type = ARM_CP_NO_RAW, 7165 .writefn = tlbi_aa64_rvae2is_write }, 7166 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7167 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7168 .access = PL2_W, .type = ARM_CP_NO_RAW, 7169 .writefn = tlbi_aa64_rvae2_write }, 7170 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7171 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7172 .access = PL2_W, .type = ARM_CP_NO_RAW, 7173 .writefn = tlbi_aa64_rvae2_write }, 7174 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7175 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7176 .access = PL3_W, .type = ARM_CP_NO_RAW, 7177 .writefn = tlbi_aa64_rvae3is_write }, 7178 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7179 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7180 .access = PL3_W, .type = ARM_CP_NO_RAW, 7181 .writefn = tlbi_aa64_rvae3is_write }, 7182 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7183 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7184 .access = PL3_W, .type = ARM_CP_NO_RAW, 7185 .writefn = tlbi_aa64_rvae3is_write }, 7186 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7187 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7188 .access = PL3_W, .type = ARM_CP_NO_RAW, 7189 .writefn = tlbi_aa64_rvae3is_write }, 7190 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7191 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7192 .access = PL3_W, .type = ARM_CP_NO_RAW, 7193 .writefn = tlbi_aa64_rvae3_write }, 7194 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7195 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7196 .access = PL3_W, .type = ARM_CP_NO_RAW, 7197 .writefn = tlbi_aa64_rvae3_write }, 7198 REGINFO_SENTINEL 7199 }; 7200 7201 static const ARMCPRegInfo tlbios_reginfo[] = { 7202 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7203 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7204 .access = PL1_W, .type = ARM_CP_NO_RAW, 7205 .writefn = tlbi_aa64_vmalle1is_write }, 7206 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7207 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7208 .access = PL1_W, .type = ARM_CP_NO_RAW, 7209 .writefn = tlbi_aa64_vmalle1is_write }, 7210 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7211 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7212 .access = PL2_W, .type = ARM_CP_NO_RAW, 7213 .writefn = tlbi_aa64_alle2is_write }, 7214 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7215 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7216 .access = PL2_W, .type = ARM_CP_NO_RAW, 7217 .writefn = tlbi_aa64_alle1is_write }, 7218 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7219 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7220 .access = PL2_W, .type = ARM_CP_NO_RAW, 7221 .writefn = tlbi_aa64_alle1is_write }, 7222 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7223 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7224 .access = PL2_W, .type = ARM_CP_NOP }, 7225 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7226 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7227 .access = PL2_W, .type = ARM_CP_NOP }, 7228 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7229 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7230 .access = PL2_W, .type = ARM_CP_NOP }, 7231 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7232 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7233 .access = PL2_W, .type = ARM_CP_NOP }, 7234 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7235 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7236 .access = PL3_W, .type = ARM_CP_NO_RAW, 7237 .writefn = tlbi_aa64_alle3is_write }, 7238 REGINFO_SENTINEL 7239 }; 7240 7241 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7242 { 7243 Error *err = NULL; 7244 uint64_t ret; 7245 7246 /* Success sets NZCV = 0000. */ 7247 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7248 7249 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7250 /* 7251 * ??? Failed, for unknown reasons in the crypto subsystem. 7252 * The best we can do is log the reason and return the 7253 * timed-out indication to the guest. There is no reason 7254 * we know to expect this failure to be transitory, so the 7255 * guest may well hang retrying the operation. 7256 */ 7257 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7258 ri->name, error_get_pretty(err)); 7259 error_free(err); 7260 7261 env->ZF = 0; /* NZCF = 0100 */ 7262 return 0; 7263 } 7264 return ret; 7265 } 7266 7267 /* We do not support re-seeding, so the two registers operate the same. */ 7268 static const ARMCPRegInfo rndr_reginfo[] = { 7269 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7270 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7271 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7272 .access = PL0_R, .readfn = rndr_readfn }, 7273 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7274 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7275 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7276 .access = PL0_R, .readfn = rndr_readfn }, 7277 REGINFO_SENTINEL 7278 }; 7279 7280 #ifndef CONFIG_USER_ONLY 7281 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7282 uint64_t value) 7283 { 7284 ARMCPU *cpu = env_archcpu(env); 7285 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7286 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7287 uint64_t vaddr_in = (uint64_t) value; 7288 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7289 void *haddr; 7290 int mem_idx = cpu_mmu_index(env, false); 7291 7292 /* This won't be crossing page boundaries */ 7293 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7294 if (haddr) { 7295 7296 ram_addr_t offset; 7297 MemoryRegion *mr; 7298 7299 /* RCU lock is already being held */ 7300 mr = memory_region_from_host(haddr, &offset); 7301 7302 if (mr) { 7303 memory_region_writeback(mr, offset, dline_size); 7304 } 7305 } 7306 } 7307 7308 static const ARMCPRegInfo dcpop_reg[] = { 7309 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7310 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7311 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7312 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7313 REGINFO_SENTINEL 7314 }; 7315 7316 static const ARMCPRegInfo dcpodp_reg[] = { 7317 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7318 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7319 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7320 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7321 REGINFO_SENTINEL 7322 }; 7323 #endif /*CONFIG_USER_ONLY*/ 7324 7325 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7326 bool isread) 7327 { 7328 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7329 return CP_ACCESS_TRAP_EL2; 7330 } 7331 7332 return CP_ACCESS_OK; 7333 } 7334 7335 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7336 bool isread) 7337 { 7338 int el = arm_current_el(env); 7339 7340 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 7341 uint64_t hcr = arm_hcr_el2_eff(env); 7342 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7343 return CP_ACCESS_TRAP_EL2; 7344 } 7345 } 7346 if (el < 3 && 7347 arm_feature(env, ARM_FEATURE_EL3) && 7348 !(env->cp15.scr_el3 & SCR_ATA)) { 7349 return CP_ACCESS_TRAP_EL3; 7350 } 7351 return CP_ACCESS_OK; 7352 } 7353 7354 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7355 { 7356 return env->pstate & PSTATE_TCO; 7357 } 7358 7359 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7360 { 7361 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7362 } 7363 7364 static const ARMCPRegInfo mte_reginfo[] = { 7365 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7366 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7367 .access = PL1_RW, .accessfn = access_mte, 7368 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7369 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7370 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7371 .access = PL1_RW, .accessfn = access_mte, 7372 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7373 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7374 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7375 .access = PL2_RW, .accessfn = access_mte, 7376 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7377 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7378 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7379 .access = PL3_RW, 7380 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7381 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7382 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7383 .access = PL1_RW, .accessfn = access_mte, 7384 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7385 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7386 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7387 .access = PL1_RW, .accessfn = access_mte, 7388 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7389 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7390 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7391 .access = PL1_R, .accessfn = access_aa64_tid5, 7392 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7393 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7394 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7395 .type = ARM_CP_NO_RAW, 7396 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7397 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7398 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7399 .type = ARM_CP_NOP, .access = PL1_W, 7400 .accessfn = aa64_cacheop_poc_access }, 7401 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7402 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7403 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7404 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7405 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7406 .type = ARM_CP_NOP, .access = PL1_W, 7407 .accessfn = aa64_cacheop_poc_access }, 7408 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7409 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7410 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7411 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7412 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7413 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7414 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7415 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7416 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7417 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7418 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7419 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7420 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7421 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7422 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7423 REGINFO_SENTINEL 7424 }; 7425 7426 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7427 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7428 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7429 .type = ARM_CP_CONST, .access = PL0_RW, }, 7430 REGINFO_SENTINEL 7431 }; 7432 7433 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7434 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7435 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7436 .type = ARM_CP_NOP, .access = PL0_W, 7437 .accessfn = aa64_cacheop_poc_access }, 7438 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7439 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7440 .type = ARM_CP_NOP, .access = PL0_W, 7441 .accessfn = aa64_cacheop_poc_access }, 7442 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7443 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7444 .type = ARM_CP_NOP, .access = PL0_W, 7445 .accessfn = aa64_cacheop_poc_access }, 7446 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7447 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7448 .type = ARM_CP_NOP, .access = PL0_W, 7449 .accessfn = aa64_cacheop_poc_access }, 7450 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7451 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7452 .type = ARM_CP_NOP, .access = PL0_W, 7453 .accessfn = aa64_cacheop_poc_access }, 7454 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7455 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7456 .type = ARM_CP_NOP, .access = PL0_W, 7457 .accessfn = aa64_cacheop_poc_access }, 7458 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7459 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7460 .type = ARM_CP_NOP, .access = PL0_W, 7461 .accessfn = aa64_cacheop_poc_access }, 7462 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7463 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7464 .type = ARM_CP_NOP, .access = PL0_W, 7465 .accessfn = aa64_cacheop_poc_access }, 7466 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7467 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7468 .access = PL0_W, .type = ARM_CP_DC_GVA, 7469 #ifndef CONFIG_USER_ONLY 7470 /* Avoid overhead of an access check that always passes in user-mode */ 7471 .accessfn = aa64_zva_access, 7472 #endif 7473 }, 7474 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7475 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7476 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7477 #ifndef CONFIG_USER_ONLY 7478 /* Avoid overhead of an access check that always passes in user-mode */ 7479 .accessfn = aa64_zva_access, 7480 #endif 7481 }, 7482 REGINFO_SENTINEL 7483 }; 7484 7485 #endif 7486 7487 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7488 bool isread) 7489 { 7490 int el = arm_current_el(env); 7491 7492 if (el == 0) { 7493 uint64_t sctlr = arm_sctlr(env, el); 7494 if (!(sctlr & SCTLR_EnRCTX)) { 7495 return CP_ACCESS_TRAP; 7496 } 7497 } else if (el == 1) { 7498 uint64_t hcr = arm_hcr_el2_eff(env); 7499 if (hcr & HCR_NV) { 7500 return CP_ACCESS_TRAP_EL2; 7501 } 7502 } 7503 return CP_ACCESS_OK; 7504 } 7505 7506 static const ARMCPRegInfo predinv_reginfo[] = { 7507 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7508 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7509 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7510 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7511 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7512 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7513 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7514 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7515 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7516 /* 7517 * Note the AArch32 opcodes have a different OPC1. 7518 */ 7519 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7520 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7521 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7522 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7523 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7524 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7525 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7526 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7527 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7528 REGINFO_SENTINEL 7529 }; 7530 7531 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7532 { 7533 /* Read the high 32 bits of the current CCSIDR */ 7534 return extract64(ccsidr_read(env, ri), 32, 32); 7535 } 7536 7537 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7538 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7539 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7540 .access = PL1_R, 7541 .accessfn = access_aa64_tid2, 7542 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7543 REGINFO_SENTINEL 7544 }; 7545 7546 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7547 bool isread) 7548 { 7549 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7550 return CP_ACCESS_TRAP_EL2; 7551 } 7552 7553 return CP_ACCESS_OK; 7554 } 7555 7556 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7557 bool isread) 7558 { 7559 if (arm_feature(env, ARM_FEATURE_V8)) { 7560 return access_aa64_tid3(env, ri, isread); 7561 } 7562 7563 return CP_ACCESS_OK; 7564 } 7565 7566 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7567 bool isread) 7568 { 7569 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7570 return CP_ACCESS_TRAP_EL2; 7571 } 7572 7573 return CP_ACCESS_OK; 7574 } 7575 7576 static const ARMCPRegInfo jazelle_regs[] = { 7577 { .name = "JIDR", 7578 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7579 .access = PL1_R, .accessfn = access_jazelle, 7580 .type = ARM_CP_CONST, .resetvalue = 0 }, 7581 { .name = "JOSCR", 7582 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7583 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7584 { .name = "JMCR", 7585 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7586 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7587 REGINFO_SENTINEL 7588 }; 7589 7590 static const ARMCPRegInfo vhe_reginfo[] = { 7591 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7592 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7593 .access = PL2_RW, 7594 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7595 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7596 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7597 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7598 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7599 #ifndef CONFIG_USER_ONLY 7600 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7601 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7602 .fieldoffset = 7603 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7604 .type = ARM_CP_IO, .access = PL2_RW, 7605 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7606 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7607 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7608 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7609 .resetfn = gt_hv_timer_reset, 7610 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7611 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7612 .type = ARM_CP_IO, 7613 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7614 .access = PL2_RW, 7615 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7616 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7617 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7618 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7619 .type = ARM_CP_IO | ARM_CP_ALIAS, 7620 .access = PL2_RW, .accessfn = e2h_access, 7621 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7622 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7623 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7624 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7625 .type = ARM_CP_IO | ARM_CP_ALIAS, 7626 .access = PL2_RW, .accessfn = e2h_access, 7627 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7628 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7629 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7630 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7631 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7632 .access = PL2_RW, .accessfn = e2h_access, 7633 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7634 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7635 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7636 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7637 .access = PL2_RW, .accessfn = e2h_access, 7638 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7639 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7640 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7641 .type = ARM_CP_IO | ARM_CP_ALIAS, 7642 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7643 .access = PL2_RW, .accessfn = e2h_access, 7644 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7645 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7646 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7647 .type = ARM_CP_IO | ARM_CP_ALIAS, 7648 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7649 .access = PL2_RW, .accessfn = e2h_access, 7650 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7651 #endif 7652 REGINFO_SENTINEL 7653 }; 7654 7655 #ifndef CONFIG_USER_ONLY 7656 static const ARMCPRegInfo ats1e1_reginfo[] = { 7657 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7658 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7659 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7660 .writefn = ats_write64 }, 7661 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7662 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7663 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7664 .writefn = ats_write64 }, 7665 REGINFO_SENTINEL 7666 }; 7667 7668 static const ARMCPRegInfo ats1cp_reginfo[] = { 7669 { .name = "ATS1CPRP", 7670 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7671 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7672 .writefn = ats_write }, 7673 { .name = "ATS1CPWP", 7674 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7675 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7676 .writefn = ats_write }, 7677 REGINFO_SENTINEL 7678 }; 7679 #endif 7680 7681 /* 7682 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7683 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7684 * is non-zero, which is never for ARMv7, optionally in ARMv8 7685 * and mandatorily for ARMv8.2 and up. 7686 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7687 * implementation is RAZ/WI we can ignore this detail, as we 7688 * do for ACTLR. 7689 */ 7690 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7691 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7692 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7693 .access = PL1_RW, .accessfn = access_tacr, 7694 .type = ARM_CP_CONST, .resetvalue = 0 }, 7695 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7696 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7697 .access = PL2_RW, .type = ARM_CP_CONST, 7698 .resetvalue = 0 }, 7699 REGINFO_SENTINEL 7700 }; 7701 7702 void register_cp_regs_for_features(ARMCPU *cpu) 7703 { 7704 /* Register all the coprocessor registers based on feature bits */ 7705 CPUARMState *env = &cpu->env; 7706 if (arm_feature(env, ARM_FEATURE_M)) { 7707 /* M profile has no coprocessor registers */ 7708 return; 7709 } 7710 7711 define_arm_cp_regs(cpu, cp_reginfo); 7712 if (!arm_feature(env, ARM_FEATURE_V8)) { 7713 /* Must go early as it is full of wildcards that may be 7714 * overridden by later definitions. 7715 */ 7716 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7717 } 7718 7719 if (arm_feature(env, ARM_FEATURE_V6)) { 7720 /* The ID registers all have impdef reset values */ 7721 ARMCPRegInfo v6_idregs[] = { 7722 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7723 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7724 .access = PL1_R, .type = ARM_CP_CONST, 7725 .accessfn = access_aa32_tid3, 7726 .resetvalue = cpu->isar.id_pfr0 }, 7727 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7728 * the value of the GIC field until after we define these regs. 7729 */ 7730 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7732 .access = PL1_R, .type = ARM_CP_NO_RAW, 7733 .accessfn = access_aa32_tid3, 7734 .readfn = id_pfr1_read, 7735 .writefn = arm_cp_write_ignore }, 7736 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7737 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7738 .access = PL1_R, .type = ARM_CP_CONST, 7739 .accessfn = access_aa32_tid3, 7740 .resetvalue = cpu->isar.id_dfr0 }, 7741 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7742 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7743 .access = PL1_R, .type = ARM_CP_CONST, 7744 .accessfn = access_aa32_tid3, 7745 .resetvalue = cpu->id_afr0 }, 7746 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7747 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7748 .access = PL1_R, .type = ARM_CP_CONST, 7749 .accessfn = access_aa32_tid3, 7750 .resetvalue = cpu->isar.id_mmfr0 }, 7751 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7752 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7753 .access = PL1_R, .type = ARM_CP_CONST, 7754 .accessfn = access_aa32_tid3, 7755 .resetvalue = cpu->isar.id_mmfr1 }, 7756 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7757 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7758 .access = PL1_R, .type = ARM_CP_CONST, 7759 .accessfn = access_aa32_tid3, 7760 .resetvalue = cpu->isar.id_mmfr2 }, 7761 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7762 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7763 .access = PL1_R, .type = ARM_CP_CONST, 7764 .accessfn = access_aa32_tid3, 7765 .resetvalue = cpu->isar.id_mmfr3 }, 7766 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7767 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7768 .access = PL1_R, .type = ARM_CP_CONST, 7769 .accessfn = access_aa32_tid3, 7770 .resetvalue = cpu->isar.id_isar0 }, 7771 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7773 .access = PL1_R, .type = ARM_CP_CONST, 7774 .accessfn = access_aa32_tid3, 7775 .resetvalue = cpu->isar.id_isar1 }, 7776 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7777 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7778 .access = PL1_R, .type = ARM_CP_CONST, 7779 .accessfn = access_aa32_tid3, 7780 .resetvalue = cpu->isar.id_isar2 }, 7781 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7783 .access = PL1_R, .type = ARM_CP_CONST, 7784 .accessfn = access_aa32_tid3, 7785 .resetvalue = cpu->isar.id_isar3 }, 7786 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7788 .access = PL1_R, .type = ARM_CP_CONST, 7789 .accessfn = access_aa32_tid3, 7790 .resetvalue = cpu->isar.id_isar4 }, 7791 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7793 .access = PL1_R, .type = ARM_CP_CONST, 7794 .accessfn = access_aa32_tid3, 7795 .resetvalue = cpu->isar.id_isar5 }, 7796 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7797 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7798 .access = PL1_R, .type = ARM_CP_CONST, 7799 .accessfn = access_aa32_tid3, 7800 .resetvalue = cpu->isar.id_mmfr4 }, 7801 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7803 .access = PL1_R, .type = ARM_CP_CONST, 7804 .accessfn = access_aa32_tid3, 7805 .resetvalue = cpu->isar.id_isar6 }, 7806 REGINFO_SENTINEL 7807 }; 7808 define_arm_cp_regs(cpu, v6_idregs); 7809 define_arm_cp_regs(cpu, v6_cp_reginfo); 7810 } else { 7811 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7812 } 7813 if (arm_feature(env, ARM_FEATURE_V6K)) { 7814 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7815 } 7816 if (arm_feature(env, ARM_FEATURE_V7MP) && 7817 !arm_feature(env, ARM_FEATURE_PMSA)) { 7818 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7819 } 7820 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7821 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7822 } 7823 if (arm_feature(env, ARM_FEATURE_V7)) { 7824 ARMCPRegInfo clidr = { 7825 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7826 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7827 .access = PL1_R, .type = ARM_CP_CONST, 7828 .accessfn = access_aa64_tid2, 7829 .resetvalue = cpu->clidr 7830 }; 7831 define_one_arm_cp_reg(cpu, &clidr); 7832 define_arm_cp_regs(cpu, v7_cp_reginfo); 7833 define_debug_regs(cpu); 7834 define_pmu_regs(cpu); 7835 } else { 7836 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7837 } 7838 if (arm_feature(env, ARM_FEATURE_V8)) { 7839 /* AArch64 ID registers, which all have impdef reset values. 7840 * Note that within the ID register ranges the unused slots 7841 * must all RAZ, not UNDEF; future architecture versions may 7842 * define new registers here. 7843 */ 7844 ARMCPRegInfo v8_idregs[] = { 7845 /* 7846 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7847 * emulation because we don't know the right value for the 7848 * GIC field until after we define these regs. 7849 */ 7850 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7851 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7852 .access = PL1_R, 7853 #ifdef CONFIG_USER_ONLY 7854 .type = ARM_CP_CONST, 7855 .resetvalue = cpu->isar.id_aa64pfr0 7856 #else 7857 .type = ARM_CP_NO_RAW, 7858 .accessfn = access_aa64_tid3, 7859 .readfn = id_aa64pfr0_read, 7860 .writefn = arm_cp_write_ignore 7861 #endif 7862 }, 7863 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7864 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7865 .access = PL1_R, .type = ARM_CP_CONST, 7866 .accessfn = access_aa64_tid3, 7867 .resetvalue = cpu->isar.id_aa64pfr1}, 7868 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7869 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7870 .access = PL1_R, .type = ARM_CP_CONST, 7871 .accessfn = access_aa64_tid3, 7872 .resetvalue = 0 }, 7873 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7874 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7875 .access = PL1_R, .type = ARM_CP_CONST, 7876 .accessfn = access_aa64_tid3, 7877 .resetvalue = 0 }, 7878 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7879 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7880 .access = PL1_R, .type = ARM_CP_CONST, 7881 .accessfn = access_aa64_tid3, 7882 .resetvalue = cpu->isar.id_aa64zfr0 }, 7883 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7884 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7885 .access = PL1_R, .type = ARM_CP_CONST, 7886 .accessfn = access_aa64_tid3, 7887 .resetvalue = 0 }, 7888 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7889 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7890 .access = PL1_R, .type = ARM_CP_CONST, 7891 .accessfn = access_aa64_tid3, 7892 .resetvalue = 0 }, 7893 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7894 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7895 .access = PL1_R, .type = ARM_CP_CONST, 7896 .accessfn = access_aa64_tid3, 7897 .resetvalue = 0 }, 7898 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7899 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7900 .access = PL1_R, .type = ARM_CP_CONST, 7901 .accessfn = access_aa64_tid3, 7902 .resetvalue = cpu->isar.id_aa64dfr0 }, 7903 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7904 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7905 .access = PL1_R, .type = ARM_CP_CONST, 7906 .accessfn = access_aa64_tid3, 7907 .resetvalue = cpu->isar.id_aa64dfr1 }, 7908 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7909 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7910 .access = PL1_R, .type = ARM_CP_CONST, 7911 .accessfn = access_aa64_tid3, 7912 .resetvalue = 0 }, 7913 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7914 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7915 .access = PL1_R, .type = ARM_CP_CONST, 7916 .accessfn = access_aa64_tid3, 7917 .resetvalue = 0 }, 7918 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7919 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7920 .access = PL1_R, .type = ARM_CP_CONST, 7921 .accessfn = access_aa64_tid3, 7922 .resetvalue = cpu->id_aa64afr0 }, 7923 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7924 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7925 .access = PL1_R, .type = ARM_CP_CONST, 7926 .accessfn = access_aa64_tid3, 7927 .resetvalue = cpu->id_aa64afr1 }, 7928 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7929 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7930 .access = PL1_R, .type = ARM_CP_CONST, 7931 .accessfn = access_aa64_tid3, 7932 .resetvalue = 0 }, 7933 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7934 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7935 .access = PL1_R, .type = ARM_CP_CONST, 7936 .accessfn = access_aa64_tid3, 7937 .resetvalue = 0 }, 7938 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7939 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7940 .access = PL1_R, .type = ARM_CP_CONST, 7941 .accessfn = access_aa64_tid3, 7942 .resetvalue = cpu->isar.id_aa64isar0 }, 7943 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7944 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7945 .access = PL1_R, .type = ARM_CP_CONST, 7946 .accessfn = access_aa64_tid3, 7947 .resetvalue = cpu->isar.id_aa64isar1 }, 7948 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7949 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7950 .access = PL1_R, .type = ARM_CP_CONST, 7951 .accessfn = access_aa64_tid3, 7952 .resetvalue = 0 }, 7953 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7954 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7955 .access = PL1_R, .type = ARM_CP_CONST, 7956 .accessfn = access_aa64_tid3, 7957 .resetvalue = 0 }, 7958 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7959 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7960 .access = PL1_R, .type = ARM_CP_CONST, 7961 .accessfn = access_aa64_tid3, 7962 .resetvalue = 0 }, 7963 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7964 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7965 .access = PL1_R, .type = ARM_CP_CONST, 7966 .accessfn = access_aa64_tid3, 7967 .resetvalue = 0 }, 7968 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7969 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7970 .access = PL1_R, .type = ARM_CP_CONST, 7971 .accessfn = access_aa64_tid3, 7972 .resetvalue = 0 }, 7973 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7974 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7975 .access = PL1_R, .type = ARM_CP_CONST, 7976 .accessfn = access_aa64_tid3, 7977 .resetvalue = 0 }, 7978 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7979 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7980 .access = PL1_R, .type = ARM_CP_CONST, 7981 .accessfn = access_aa64_tid3, 7982 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7983 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7984 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7985 .access = PL1_R, .type = ARM_CP_CONST, 7986 .accessfn = access_aa64_tid3, 7987 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7988 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7989 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7990 .access = PL1_R, .type = ARM_CP_CONST, 7991 .accessfn = access_aa64_tid3, 7992 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7993 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7994 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7995 .access = PL1_R, .type = ARM_CP_CONST, 7996 .accessfn = access_aa64_tid3, 7997 .resetvalue = 0 }, 7998 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7999 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8000 .access = PL1_R, .type = ARM_CP_CONST, 8001 .accessfn = access_aa64_tid3, 8002 .resetvalue = 0 }, 8003 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8004 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8005 .access = PL1_R, .type = ARM_CP_CONST, 8006 .accessfn = access_aa64_tid3, 8007 .resetvalue = 0 }, 8008 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8009 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8010 .access = PL1_R, .type = ARM_CP_CONST, 8011 .accessfn = access_aa64_tid3, 8012 .resetvalue = 0 }, 8013 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8014 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8015 .access = PL1_R, .type = ARM_CP_CONST, 8016 .accessfn = access_aa64_tid3, 8017 .resetvalue = 0 }, 8018 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8019 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8020 .access = PL1_R, .type = ARM_CP_CONST, 8021 .accessfn = access_aa64_tid3, 8022 .resetvalue = cpu->isar.mvfr0 }, 8023 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8024 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8025 .access = PL1_R, .type = ARM_CP_CONST, 8026 .accessfn = access_aa64_tid3, 8027 .resetvalue = cpu->isar.mvfr1 }, 8028 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8029 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8030 .access = PL1_R, .type = ARM_CP_CONST, 8031 .accessfn = access_aa64_tid3, 8032 .resetvalue = cpu->isar.mvfr2 }, 8033 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8034 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8035 .access = PL1_R, .type = ARM_CP_CONST, 8036 .accessfn = access_aa64_tid3, 8037 .resetvalue = 0 }, 8038 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8039 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8040 .access = PL1_R, .type = ARM_CP_CONST, 8041 .accessfn = access_aa64_tid3, 8042 .resetvalue = cpu->isar.id_pfr2 }, 8043 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8044 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8045 .access = PL1_R, .type = ARM_CP_CONST, 8046 .accessfn = access_aa64_tid3, 8047 .resetvalue = 0 }, 8048 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8049 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8050 .access = PL1_R, .type = ARM_CP_CONST, 8051 .accessfn = access_aa64_tid3, 8052 .resetvalue = 0 }, 8053 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8055 .access = PL1_R, .type = ARM_CP_CONST, 8056 .accessfn = access_aa64_tid3, 8057 .resetvalue = 0 }, 8058 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8059 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8060 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8061 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8062 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8063 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8064 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8065 .resetvalue = cpu->pmceid0 }, 8066 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8067 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8068 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8069 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8070 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8071 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8072 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8073 .resetvalue = cpu->pmceid1 }, 8074 REGINFO_SENTINEL 8075 }; 8076 #ifdef CONFIG_USER_ONLY 8077 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8078 { .name = "ID_AA64PFR0_EL1", 8079 .exported_bits = 0x000f000f00ff0000, 8080 .fixed_bits = 0x0000000000000011 }, 8081 { .name = "ID_AA64PFR1_EL1", 8082 .exported_bits = 0x00000000000000f0 }, 8083 { .name = "ID_AA64PFR*_EL1_RESERVED", 8084 .is_glob = true }, 8085 { .name = "ID_AA64ZFR0_EL1" }, 8086 { .name = "ID_AA64MMFR0_EL1", 8087 .fixed_bits = 0x00000000ff000000 }, 8088 { .name = "ID_AA64MMFR1_EL1" }, 8089 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8090 .is_glob = true }, 8091 { .name = "ID_AA64DFR0_EL1", 8092 .fixed_bits = 0x0000000000000006 }, 8093 { .name = "ID_AA64DFR1_EL1" }, 8094 { .name = "ID_AA64DFR*_EL1_RESERVED", 8095 .is_glob = true }, 8096 { .name = "ID_AA64AFR*", 8097 .is_glob = true }, 8098 { .name = "ID_AA64ISAR0_EL1", 8099 .exported_bits = 0x00fffffff0fffff0 }, 8100 { .name = "ID_AA64ISAR1_EL1", 8101 .exported_bits = 0x000000f0ffffffff }, 8102 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8103 .is_glob = true }, 8104 REGUSERINFO_SENTINEL 8105 }; 8106 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8107 #endif 8108 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 8109 if (!arm_feature(env, ARM_FEATURE_EL3) && 8110 !arm_feature(env, ARM_FEATURE_EL2)) { 8111 ARMCPRegInfo rvbar = { 8112 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 8113 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8114 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 8115 }; 8116 define_one_arm_cp_reg(cpu, &rvbar); 8117 } 8118 define_arm_cp_regs(cpu, v8_idregs); 8119 define_arm_cp_regs(cpu, v8_cp_reginfo); 8120 } 8121 if (arm_feature(env, ARM_FEATURE_EL2)) { 8122 uint64_t vmpidr_def = mpidr_read_val(env); 8123 ARMCPRegInfo vpidr_regs[] = { 8124 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8125 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8126 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8127 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 8128 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8129 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8130 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8131 .access = PL2_RW, .resetvalue = cpu->midr, 8132 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8133 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8134 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8135 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8136 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 8137 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8138 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8139 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8140 .access = PL2_RW, 8141 .resetvalue = vmpidr_def, 8142 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8143 REGINFO_SENTINEL 8144 }; 8145 define_arm_cp_regs(cpu, vpidr_regs); 8146 define_arm_cp_regs(cpu, el2_cp_reginfo); 8147 if (arm_feature(env, ARM_FEATURE_V8)) { 8148 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8149 } 8150 if (cpu_isar_feature(aa64_sel2, cpu)) { 8151 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8152 } 8153 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 8154 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8155 ARMCPRegInfo rvbar = { 8156 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8157 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8158 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 8159 }; 8160 define_one_arm_cp_reg(cpu, &rvbar); 8161 } 8162 } else { 8163 /* If EL2 is missing but higher ELs are enabled, we need to 8164 * register the no_el2 reginfos. 8165 */ 8166 if (arm_feature(env, ARM_FEATURE_EL3)) { 8167 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 8168 * of MIDR_EL1 and MPIDR_EL1. 8169 */ 8170 ARMCPRegInfo vpidr_regs[] = { 8171 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8172 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8173 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8174 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 8175 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8176 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8177 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8178 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8179 .type = ARM_CP_NO_RAW, 8180 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 8181 REGINFO_SENTINEL 8182 }; 8183 define_arm_cp_regs(cpu, vpidr_regs); 8184 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 8185 if (arm_feature(env, ARM_FEATURE_V8)) { 8186 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 8187 } 8188 } 8189 } 8190 if (arm_feature(env, ARM_FEATURE_EL3)) { 8191 define_arm_cp_regs(cpu, el3_cp_reginfo); 8192 ARMCPRegInfo el3_regs[] = { 8193 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8194 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8195 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 8196 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8197 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8198 .access = PL3_RW, 8199 .raw_writefn = raw_write, .writefn = sctlr_write, 8200 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8201 .resetvalue = cpu->reset_sctlr }, 8202 REGINFO_SENTINEL 8203 }; 8204 8205 define_arm_cp_regs(cpu, el3_regs); 8206 } 8207 /* The behaviour of NSACR is sufficiently various that we don't 8208 * try to describe it in a single reginfo: 8209 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8210 * reads as constant 0xc00 from NS EL1 and NS EL2 8211 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8212 * if v7 without EL3, register doesn't exist 8213 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8214 */ 8215 if (arm_feature(env, ARM_FEATURE_EL3)) { 8216 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8217 ARMCPRegInfo nsacr = { 8218 .name = "NSACR", .type = ARM_CP_CONST, 8219 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8220 .access = PL1_RW, .accessfn = nsacr_access, 8221 .resetvalue = 0xc00 8222 }; 8223 define_one_arm_cp_reg(cpu, &nsacr); 8224 } else { 8225 ARMCPRegInfo nsacr = { 8226 .name = "NSACR", 8227 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8228 .access = PL3_RW | PL1_R, 8229 .resetvalue = 0, 8230 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8231 }; 8232 define_one_arm_cp_reg(cpu, &nsacr); 8233 } 8234 } else { 8235 if (arm_feature(env, ARM_FEATURE_V8)) { 8236 ARMCPRegInfo nsacr = { 8237 .name = "NSACR", .type = ARM_CP_CONST, 8238 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8239 .access = PL1_R, 8240 .resetvalue = 0xc00 8241 }; 8242 define_one_arm_cp_reg(cpu, &nsacr); 8243 } 8244 } 8245 8246 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8247 if (arm_feature(env, ARM_FEATURE_V6)) { 8248 /* PMSAv6 not implemented */ 8249 assert(arm_feature(env, ARM_FEATURE_V7)); 8250 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8251 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8252 } else { 8253 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8254 } 8255 } else { 8256 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8257 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8258 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8259 if (cpu_isar_feature(aa32_hpd, cpu)) { 8260 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8261 } 8262 } 8263 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8264 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8265 } 8266 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8267 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8268 } 8269 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8270 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8271 } 8272 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8273 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8274 } 8275 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8276 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8277 } 8278 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8279 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8280 } 8281 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8282 define_arm_cp_regs(cpu, omap_cp_reginfo); 8283 } 8284 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8285 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8286 } 8287 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8288 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8289 } 8290 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8291 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8292 } 8293 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8294 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8295 } 8296 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8297 define_arm_cp_regs(cpu, jazelle_regs); 8298 } 8299 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8300 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8301 * be read-only (ie write causes UNDEF exception). 8302 */ 8303 { 8304 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8305 /* Pre-v8 MIDR space. 8306 * Note that the MIDR isn't a simple constant register because 8307 * of the TI925 behaviour where writes to another register can 8308 * cause the MIDR value to change. 8309 * 8310 * Unimplemented registers in the c15 0 0 0 space default to 8311 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8312 * and friends override accordingly. 8313 */ 8314 { .name = "MIDR", 8315 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8316 .access = PL1_R, .resetvalue = cpu->midr, 8317 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8318 .readfn = midr_read, 8319 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8320 .type = ARM_CP_OVERRIDE }, 8321 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8322 { .name = "DUMMY", 8323 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8324 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8325 { .name = "DUMMY", 8326 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8327 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8328 { .name = "DUMMY", 8329 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8330 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8331 { .name = "DUMMY", 8332 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8333 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8334 { .name = "DUMMY", 8335 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8336 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8337 REGINFO_SENTINEL 8338 }; 8339 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8340 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8341 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8342 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8343 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8344 .readfn = midr_read }, 8345 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8346 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8347 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8348 .access = PL1_R, .resetvalue = cpu->midr }, 8349 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8350 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8351 .access = PL1_R, .resetvalue = cpu->midr }, 8352 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8353 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8354 .access = PL1_R, 8355 .accessfn = access_aa64_tid1, 8356 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8357 REGINFO_SENTINEL 8358 }; 8359 ARMCPRegInfo id_cp_reginfo[] = { 8360 /* These are common to v8 and pre-v8 */ 8361 { .name = "CTR", 8362 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8363 .access = PL1_R, .accessfn = ctr_el0_access, 8364 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8365 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8366 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8367 .access = PL0_R, .accessfn = ctr_el0_access, 8368 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8369 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8370 { .name = "TCMTR", 8371 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8372 .access = PL1_R, 8373 .accessfn = access_aa32_tid1, 8374 .type = ARM_CP_CONST, .resetvalue = 0 }, 8375 REGINFO_SENTINEL 8376 }; 8377 /* TLBTR is specific to VMSA */ 8378 ARMCPRegInfo id_tlbtr_reginfo = { 8379 .name = "TLBTR", 8380 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8381 .access = PL1_R, 8382 .accessfn = access_aa32_tid1, 8383 .type = ARM_CP_CONST, .resetvalue = 0, 8384 }; 8385 /* MPUIR is specific to PMSA V6+ */ 8386 ARMCPRegInfo id_mpuir_reginfo = { 8387 .name = "MPUIR", 8388 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8389 .access = PL1_R, .type = ARM_CP_CONST, 8390 .resetvalue = cpu->pmsav7_dregion << 8 8391 }; 8392 ARMCPRegInfo crn0_wi_reginfo = { 8393 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8394 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8395 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8396 }; 8397 #ifdef CONFIG_USER_ONLY 8398 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8399 { .name = "MIDR_EL1", 8400 .exported_bits = 0x00000000ffffffff }, 8401 { .name = "REVIDR_EL1" }, 8402 REGUSERINFO_SENTINEL 8403 }; 8404 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8405 #endif 8406 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8407 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8408 ARMCPRegInfo *r; 8409 /* Register the blanket "writes ignored" value first to cover the 8410 * whole space. Then update the specific ID registers to allow write 8411 * access, so that they ignore writes rather than causing them to 8412 * UNDEF. 8413 */ 8414 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8415 for (r = id_pre_v8_midr_cp_reginfo; 8416 r->type != ARM_CP_SENTINEL; r++) { 8417 r->access = PL1_RW; 8418 } 8419 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 8420 r->access = PL1_RW; 8421 } 8422 id_mpuir_reginfo.access = PL1_RW; 8423 id_tlbtr_reginfo.access = PL1_RW; 8424 } 8425 if (arm_feature(env, ARM_FEATURE_V8)) { 8426 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8427 } else { 8428 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8429 } 8430 define_arm_cp_regs(cpu, id_cp_reginfo); 8431 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8432 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8433 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8434 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8435 } 8436 } 8437 8438 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8439 ARMCPRegInfo mpidr_cp_reginfo[] = { 8440 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8441 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8442 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8443 REGINFO_SENTINEL 8444 }; 8445 #ifdef CONFIG_USER_ONLY 8446 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8447 { .name = "MPIDR_EL1", 8448 .fixed_bits = 0x0000000080000000 }, 8449 REGUSERINFO_SENTINEL 8450 }; 8451 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8452 #endif 8453 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8454 } 8455 8456 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8457 ARMCPRegInfo auxcr_reginfo[] = { 8458 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8459 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8460 .access = PL1_RW, .accessfn = access_tacr, 8461 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8462 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8463 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8464 .access = PL2_RW, .type = ARM_CP_CONST, 8465 .resetvalue = 0 }, 8466 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8467 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8468 .access = PL3_RW, .type = ARM_CP_CONST, 8469 .resetvalue = 0 }, 8470 REGINFO_SENTINEL 8471 }; 8472 define_arm_cp_regs(cpu, auxcr_reginfo); 8473 if (cpu_isar_feature(aa32_ac2, cpu)) { 8474 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8475 } 8476 } 8477 8478 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8479 /* 8480 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8481 * There are two flavours: 8482 * (1) older 32-bit only cores have a simple 32-bit CBAR 8483 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8484 * 32-bit register visible to AArch32 at a different encoding 8485 * to the "flavour 1" register and with the bits rearranged to 8486 * be able to squash a 64-bit address into the 32-bit view. 8487 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8488 * in future if we support AArch32-only configs of some of the 8489 * AArch64 cores we might need to add a specific feature flag 8490 * to indicate cores with "flavour 2" CBAR. 8491 */ 8492 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8493 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8494 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8495 | extract64(cpu->reset_cbar, 32, 12); 8496 ARMCPRegInfo cbar_reginfo[] = { 8497 { .name = "CBAR", 8498 .type = ARM_CP_CONST, 8499 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8500 .access = PL1_R, .resetvalue = cbar32 }, 8501 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8502 .type = ARM_CP_CONST, 8503 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8504 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8505 REGINFO_SENTINEL 8506 }; 8507 /* We don't implement a r/w 64 bit CBAR currently */ 8508 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8509 define_arm_cp_regs(cpu, cbar_reginfo); 8510 } else { 8511 ARMCPRegInfo cbar = { 8512 .name = "CBAR", 8513 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8514 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8515 .fieldoffset = offsetof(CPUARMState, 8516 cp15.c15_config_base_address) 8517 }; 8518 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8519 cbar.access = PL1_R; 8520 cbar.fieldoffset = 0; 8521 cbar.type = ARM_CP_CONST; 8522 } 8523 define_one_arm_cp_reg(cpu, &cbar); 8524 } 8525 } 8526 8527 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8528 ARMCPRegInfo vbar_cp_reginfo[] = { 8529 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8530 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8531 .access = PL1_RW, .writefn = vbar_write, 8532 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8533 offsetof(CPUARMState, cp15.vbar_ns) }, 8534 .resetvalue = 0 }, 8535 REGINFO_SENTINEL 8536 }; 8537 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8538 } 8539 8540 /* Generic registers whose values depend on the implementation */ 8541 { 8542 ARMCPRegInfo sctlr = { 8543 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8544 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8545 .access = PL1_RW, .accessfn = access_tvm_trvm, 8546 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8547 offsetof(CPUARMState, cp15.sctlr_ns) }, 8548 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8549 .raw_writefn = raw_write, 8550 }; 8551 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8552 /* Normally we would always end the TB on an SCTLR write, but Linux 8553 * arch/arm/mach-pxa/sleep.S expects two instructions following 8554 * an MMU enable to execute from cache. Imitate this behaviour. 8555 */ 8556 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8557 } 8558 define_one_arm_cp_reg(cpu, &sctlr); 8559 } 8560 8561 if (cpu_isar_feature(aa64_lor, cpu)) { 8562 define_arm_cp_regs(cpu, lor_reginfo); 8563 } 8564 if (cpu_isar_feature(aa64_pan, cpu)) { 8565 define_one_arm_cp_reg(cpu, &pan_reginfo); 8566 } 8567 #ifndef CONFIG_USER_ONLY 8568 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8569 define_arm_cp_regs(cpu, ats1e1_reginfo); 8570 } 8571 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8572 define_arm_cp_regs(cpu, ats1cp_reginfo); 8573 } 8574 #endif 8575 if (cpu_isar_feature(aa64_uao, cpu)) { 8576 define_one_arm_cp_reg(cpu, &uao_reginfo); 8577 } 8578 8579 if (cpu_isar_feature(aa64_dit, cpu)) { 8580 define_one_arm_cp_reg(cpu, &dit_reginfo); 8581 } 8582 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8583 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8584 } 8585 8586 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8587 define_arm_cp_regs(cpu, vhe_reginfo); 8588 } 8589 8590 if (cpu_isar_feature(aa64_sve, cpu)) { 8591 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8592 if (arm_feature(env, ARM_FEATURE_EL2)) { 8593 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8594 } else { 8595 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8596 } 8597 if (arm_feature(env, ARM_FEATURE_EL3)) { 8598 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8599 } 8600 } 8601 8602 #ifdef TARGET_AARCH64 8603 if (cpu_isar_feature(aa64_pauth, cpu)) { 8604 define_arm_cp_regs(cpu, pauth_reginfo); 8605 } 8606 if (cpu_isar_feature(aa64_rndr, cpu)) { 8607 define_arm_cp_regs(cpu, rndr_reginfo); 8608 } 8609 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8610 define_arm_cp_regs(cpu, tlbirange_reginfo); 8611 } 8612 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8613 define_arm_cp_regs(cpu, tlbios_reginfo); 8614 } 8615 #ifndef CONFIG_USER_ONLY 8616 /* Data Cache clean instructions up to PoP */ 8617 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8618 define_one_arm_cp_reg(cpu, dcpop_reg); 8619 8620 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8621 define_one_arm_cp_reg(cpu, dcpodp_reg); 8622 } 8623 } 8624 #endif /*CONFIG_USER_ONLY*/ 8625 8626 /* 8627 * If full MTE is enabled, add all of the system registers. 8628 * If only "instructions available at EL0" are enabled, 8629 * then define only a RAZ/WI version of PSTATE.TCO. 8630 */ 8631 if (cpu_isar_feature(aa64_mte, cpu)) { 8632 define_arm_cp_regs(cpu, mte_reginfo); 8633 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8634 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8635 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8636 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8637 } 8638 #endif 8639 8640 if (cpu_isar_feature(any_predinv, cpu)) { 8641 define_arm_cp_regs(cpu, predinv_reginfo); 8642 } 8643 8644 if (cpu_isar_feature(any_ccidx, cpu)) { 8645 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8646 } 8647 8648 #ifndef CONFIG_USER_ONLY 8649 /* 8650 * Register redirections and aliases must be done last, 8651 * after the registers from the other extensions have been defined. 8652 */ 8653 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8654 define_arm_vh_e2h_redirects_aliases(cpu); 8655 } 8656 #endif 8657 } 8658 8659 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 8660 { 8661 CPUState *cs = CPU(cpu); 8662 CPUARMState *env = &cpu->env; 8663 8664 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8665 /* 8666 * The lower part of each SVE register aliases to the FPU 8667 * registers so we don't need to include both. 8668 */ 8669 #ifdef TARGET_AARCH64 8670 if (isar_feature_aa64_sve(&cpu->isar)) { 8671 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg, 8672 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs), 8673 "sve-registers.xml", 0); 8674 } else 8675 #endif 8676 { 8677 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 8678 aarch64_fpu_gdb_set_reg, 8679 34, "aarch64-fpu.xml", 0); 8680 } 8681 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 8682 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8683 51, "arm-neon.xml", 0); 8684 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { 8685 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8686 35, "arm-vfp3.xml", 0); 8687 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 8688 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8689 19, "arm-vfp.xml", 0); 8690 } 8691 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 8692 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs), 8693 "system-registers.xml", 0); 8694 8695 } 8696 8697 /* Sort alphabetically by type name, except for "any". */ 8698 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8699 { 8700 ObjectClass *class_a = (ObjectClass *)a; 8701 ObjectClass *class_b = (ObjectClass *)b; 8702 const char *name_a, *name_b; 8703 8704 name_a = object_class_get_name(class_a); 8705 name_b = object_class_get_name(class_b); 8706 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8707 return 1; 8708 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8709 return -1; 8710 } else { 8711 return strcmp(name_a, name_b); 8712 } 8713 } 8714 8715 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8716 { 8717 ObjectClass *oc = data; 8718 const char *typename; 8719 char *name; 8720 8721 typename = object_class_get_name(oc); 8722 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8723 qemu_printf(" %s\n", name); 8724 g_free(name); 8725 } 8726 8727 void arm_cpu_list(void) 8728 { 8729 GSList *list; 8730 8731 list = object_class_get_list(TYPE_ARM_CPU, false); 8732 list = g_slist_sort(list, arm_cpu_list_compare); 8733 qemu_printf("Available CPUs:\n"); 8734 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8735 g_slist_free(list); 8736 } 8737 8738 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8739 { 8740 ObjectClass *oc = data; 8741 CpuDefinitionInfoList **cpu_list = user_data; 8742 CpuDefinitionInfo *info; 8743 const char *typename; 8744 8745 typename = object_class_get_name(oc); 8746 info = g_malloc0(sizeof(*info)); 8747 info->name = g_strndup(typename, 8748 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8749 info->q_typename = g_strdup(typename); 8750 8751 QAPI_LIST_PREPEND(*cpu_list, info); 8752 } 8753 8754 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8755 { 8756 CpuDefinitionInfoList *cpu_list = NULL; 8757 GSList *list; 8758 8759 list = object_class_get_list(TYPE_ARM_CPU, false); 8760 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8761 g_slist_free(list); 8762 8763 return cpu_list; 8764 } 8765 8766 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8767 void *opaque, int state, int secstate, 8768 int crm, int opc1, int opc2, 8769 const char *name) 8770 { 8771 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8772 * add a single reginfo struct to the hash table. 8773 */ 8774 uint32_t *key = g_new(uint32_t, 1); 8775 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8776 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8777 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8778 8779 r2->name = g_strdup(name); 8780 /* Reset the secure state to the specific incoming state. This is 8781 * necessary as the register may have been defined with both states. 8782 */ 8783 r2->secure = secstate; 8784 8785 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8786 /* Register is banked (using both entries in array). 8787 * Overwriting fieldoffset as the array is only used to define 8788 * banked registers but later only fieldoffset is used. 8789 */ 8790 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8791 } 8792 8793 if (state == ARM_CP_STATE_AA32) { 8794 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8795 /* If the register is banked then we don't need to migrate or 8796 * reset the 32-bit instance in certain cases: 8797 * 8798 * 1) If the register has both 32-bit and 64-bit instances then we 8799 * can count on the 64-bit instance taking care of the 8800 * non-secure bank. 8801 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8802 * taking care of the secure bank. This requires that separate 8803 * 32 and 64-bit definitions are provided. 8804 */ 8805 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8806 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8807 r2->type |= ARM_CP_ALIAS; 8808 } 8809 } else if ((secstate != r->secure) && !ns) { 8810 /* The register is not banked so we only want to allow migration of 8811 * the non-secure instance. 8812 */ 8813 r2->type |= ARM_CP_ALIAS; 8814 } 8815 8816 if (r->state == ARM_CP_STATE_BOTH) { 8817 /* We assume it is a cp15 register if the .cp field is left unset. 8818 */ 8819 if (r2->cp == 0) { 8820 r2->cp = 15; 8821 } 8822 8823 #ifdef HOST_WORDS_BIGENDIAN 8824 if (r2->fieldoffset) { 8825 r2->fieldoffset += sizeof(uint32_t); 8826 } 8827 #endif 8828 } 8829 } 8830 if (state == ARM_CP_STATE_AA64) { 8831 /* To allow abbreviation of ARMCPRegInfo 8832 * definitions, we treat cp == 0 as equivalent to 8833 * the value for "standard guest-visible sysreg". 8834 * STATE_BOTH definitions are also always "standard 8835 * sysreg" in their AArch64 view (the .cp value may 8836 * be non-zero for the benefit of the AArch32 view). 8837 */ 8838 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8839 r2->cp = CP_REG_ARM64_SYSREG_CP; 8840 } 8841 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8842 r2->opc0, opc1, opc2); 8843 } else { 8844 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8845 } 8846 if (opaque) { 8847 r2->opaque = opaque; 8848 } 8849 /* reginfo passed to helpers is correct for the actual access, 8850 * and is never ARM_CP_STATE_BOTH: 8851 */ 8852 r2->state = state; 8853 /* Make sure reginfo passed to helpers for wildcarded regs 8854 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8855 */ 8856 r2->crm = crm; 8857 r2->opc1 = opc1; 8858 r2->opc2 = opc2; 8859 /* By convention, for wildcarded registers only the first 8860 * entry is used for migration; the others are marked as 8861 * ALIAS so we don't try to transfer the register 8862 * multiple times. Special registers (ie NOP/WFI) are 8863 * never migratable and not even raw-accessible. 8864 */ 8865 if ((r->type & ARM_CP_SPECIAL)) { 8866 r2->type |= ARM_CP_NO_RAW; 8867 } 8868 if (((r->crm == CP_ANY) && crm != 0) || 8869 ((r->opc1 == CP_ANY) && opc1 != 0) || 8870 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8871 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8872 } 8873 8874 /* Check that raw accesses are either forbidden or handled. Note that 8875 * we can't assert this earlier because the setup of fieldoffset for 8876 * banked registers has to be done first. 8877 */ 8878 if (!(r2->type & ARM_CP_NO_RAW)) { 8879 assert(!raw_accessors_invalid(r2)); 8880 } 8881 8882 /* Overriding of an existing definition must be explicitly 8883 * requested. 8884 */ 8885 if (!(r->type & ARM_CP_OVERRIDE)) { 8886 ARMCPRegInfo *oldreg; 8887 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8888 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8889 fprintf(stderr, "Register redefined: cp=%d %d bit " 8890 "crn=%d crm=%d opc1=%d opc2=%d, " 8891 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8892 r2->crn, r2->crm, r2->opc1, r2->opc2, 8893 oldreg->name, r2->name); 8894 g_assert_not_reached(); 8895 } 8896 } 8897 g_hash_table_insert(cpu->cp_regs, key, r2); 8898 } 8899 8900 8901 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8902 const ARMCPRegInfo *r, void *opaque) 8903 { 8904 /* Define implementations of coprocessor registers. 8905 * We store these in a hashtable because typically 8906 * there are less than 150 registers in a space which 8907 * is 16*16*16*8*8 = 262144 in size. 8908 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8909 * If a register is defined twice then the second definition is 8910 * used, so this can be used to define some generic registers and 8911 * then override them with implementation specific variations. 8912 * At least one of the original and the second definition should 8913 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8914 * against accidental use. 8915 * 8916 * The state field defines whether the register is to be 8917 * visible in the AArch32 or AArch64 execution state. If the 8918 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8919 * reginfo structure for the AArch32 view, which sees the lower 8920 * 32 bits of the 64 bit register. 8921 * 8922 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8923 * be wildcarded. AArch64 registers are always considered to be 64 8924 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8925 * the register, if any. 8926 */ 8927 int crm, opc1, opc2, state; 8928 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8929 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8930 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8931 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8932 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8933 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8934 /* 64 bit registers have only CRm and Opc1 fields */ 8935 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8936 /* op0 only exists in the AArch64 encodings */ 8937 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8938 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8939 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8940 /* 8941 * This API is only for Arm's system coprocessors (14 and 15) or 8942 * (M-profile or v7A-and-earlier only) for implementation defined 8943 * coprocessors in the range 0..7. Our decode assumes this, since 8944 * 8..13 can be used for other insns including VFP and Neon. See 8945 * valid_cp() in translate.c. Assert here that we haven't tried 8946 * to use an invalid coprocessor number. 8947 */ 8948 switch (r->state) { 8949 case ARM_CP_STATE_BOTH: 8950 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8951 if (r->cp == 0) { 8952 break; 8953 } 8954 /* fall through */ 8955 case ARM_CP_STATE_AA32: 8956 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8957 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8958 assert(r->cp >= 14 && r->cp <= 15); 8959 } else { 8960 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8961 } 8962 break; 8963 case ARM_CP_STATE_AA64: 8964 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8965 break; 8966 default: 8967 g_assert_not_reached(); 8968 } 8969 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8970 * encodes a minimum access level for the register. We roll this 8971 * runtime check into our general permission check code, so check 8972 * here that the reginfo's specified permissions are strict enough 8973 * to encompass the generic architectural permission check. 8974 */ 8975 if (r->state != ARM_CP_STATE_AA32) { 8976 int mask = 0; 8977 switch (r->opc1) { 8978 case 0: 8979 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8980 mask = PL0U_R | PL1_RW; 8981 break; 8982 case 1: case 2: 8983 /* min_EL EL1 */ 8984 mask = PL1_RW; 8985 break; 8986 case 3: 8987 /* min_EL EL0 */ 8988 mask = PL0_RW; 8989 break; 8990 case 4: 8991 case 5: 8992 /* min_EL EL2 */ 8993 mask = PL2_RW; 8994 break; 8995 case 6: 8996 /* min_EL EL3 */ 8997 mask = PL3_RW; 8998 break; 8999 case 7: 9000 /* min_EL EL1, secure mode only (we don't check the latter) */ 9001 mask = PL1_RW; 9002 break; 9003 default: 9004 /* broken reginfo with out-of-range opc1 */ 9005 assert(false); 9006 break; 9007 } 9008 /* assert our permissions are not too lax (stricter is fine) */ 9009 assert((r->access & ~mask) == 0); 9010 } 9011 9012 /* Check that the register definition has enough info to handle 9013 * reads and writes if they are permitted. 9014 */ 9015 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 9016 if (r->access & PL3_R) { 9017 assert((r->fieldoffset || 9018 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9019 r->readfn); 9020 } 9021 if (r->access & PL3_W) { 9022 assert((r->fieldoffset || 9023 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9024 r->writefn); 9025 } 9026 } 9027 /* Bad type field probably means missing sentinel at end of reg list */ 9028 assert(cptype_valid(r->type)); 9029 for (crm = crmmin; crm <= crmmax; crm++) { 9030 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9031 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9032 for (state = ARM_CP_STATE_AA32; 9033 state <= ARM_CP_STATE_AA64; state++) { 9034 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9035 continue; 9036 } 9037 if (state == ARM_CP_STATE_AA32) { 9038 /* Under AArch32 CP registers can be common 9039 * (same for secure and non-secure world) or banked. 9040 */ 9041 char *name; 9042 9043 switch (r->secure) { 9044 case ARM_CP_SECSTATE_S: 9045 case ARM_CP_SECSTATE_NS: 9046 add_cpreg_to_hashtable(cpu, r, opaque, state, 9047 r->secure, crm, opc1, opc2, 9048 r->name); 9049 break; 9050 default: 9051 name = g_strdup_printf("%s_S", r->name); 9052 add_cpreg_to_hashtable(cpu, r, opaque, state, 9053 ARM_CP_SECSTATE_S, 9054 crm, opc1, opc2, name); 9055 g_free(name); 9056 add_cpreg_to_hashtable(cpu, r, opaque, state, 9057 ARM_CP_SECSTATE_NS, 9058 crm, opc1, opc2, r->name); 9059 break; 9060 } 9061 } else { 9062 /* AArch64 registers get mapped to non-secure instance 9063 * of AArch32 */ 9064 add_cpreg_to_hashtable(cpu, r, opaque, state, 9065 ARM_CP_SECSTATE_NS, 9066 crm, opc1, opc2, r->name); 9067 } 9068 } 9069 } 9070 } 9071 } 9072 } 9073 9074 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 9075 const ARMCPRegInfo *regs, void *opaque) 9076 { 9077 /* Define a whole list of registers */ 9078 const ARMCPRegInfo *r; 9079 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 9080 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 9081 } 9082 } 9083 9084 /* 9085 * Modify ARMCPRegInfo for access from userspace. 9086 * 9087 * This is a data driven modification directed by 9088 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9089 * user-space cannot alter any values and dynamic values pertaining to 9090 * execution state are hidden from user space view anyway. 9091 */ 9092 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 9093 { 9094 const ARMCPRegUserSpaceInfo *m; 9095 ARMCPRegInfo *r; 9096 9097 for (m = mods; m->name; m++) { 9098 GPatternSpec *pat = NULL; 9099 if (m->is_glob) { 9100 pat = g_pattern_spec_new(m->name); 9101 } 9102 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 9103 if (pat && g_pattern_match_string(pat, r->name)) { 9104 r->type = ARM_CP_CONST; 9105 r->access = PL0U_R; 9106 r->resetvalue = 0; 9107 /* continue */ 9108 } else if (strcmp(r->name, m->name) == 0) { 9109 r->type = ARM_CP_CONST; 9110 r->access = PL0U_R; 9111 r->resetvalue &= m->exported_bits; 9112 r->resetvalue |= m->fixed_bits; 9113 break; 9114 } 9115 } 9116 if (pat) { 9117 g_pattern_spec_free(pat); 9118 } 9119 } 9120 } 9121 9122 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9123 { 9124 return g_hash_table_lookup(cpregs, &encoded_cp); 9125 } 9126 9127 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9128 uint64_t value) 9129 { 9130 /* Helper coprocessor write function for write-ignore registers */ 9131 } 9132 9133 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9134 { 9135 /* Helper coprocessor write function for read-as-zero registers */ 9136 return 0; 9137 } 9138 9139 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9140 { 9141 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9142 } 9143 9144 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9145 { 9146 /* Return true if it is not valid for us to switch to 9147 * this CPU mode (ie all the UNPREDICTABLE cases in 9148 * the ARM ARM CPSRWriteByInstr pseudocode). 9149 */ 9150 9151 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9152 if (write_type == CPSRWriteByInstr && 9153 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9154 mode == ARM_CPU_MODE_HYP)) { 9155 return 1; 9156 } 9157 9158 switch (mode) { 9159 case ARM_CPU_MODE_USR: 9160 return 0; 9161 case ARM_CPU_MODE_SYS: 9162 case ARM_CPU_MODE_SVC: 9163 case ARM_CPU_MODE_ABT: 9164 case ARM_CPU_MODE_UND: 9165 case ARM_CPU_MODE_IRQ: 9166 case ARM_CPU_MODE_FIQ: 9167 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 9168 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9169 */ 9170 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9171 * and CPS are treated as illegal mode changes. 9172 */ 9173 if (write_type == CPSRWriteByInstr && 9174 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9175 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9176 return 1; 9177 } 9178 return 0; 9179 case ARM_CPU_MODE_HYP: 9180 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9181 case ARM_CPU_MODE_MON: 9182 return arm_current_el(env) < 3; 9183 default: 9184 return 1; 9185 } 9186 } 9187 9188 uint32_t cpsr_read(CPUARMState *env) 9189 { 9190 int ZF; 9191 ZF = (env->ZF == 0); 9192 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9193 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9194 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9195 | ((env->condexec_bits & 0xfc) << 8) 9196 | (env->GE << 16) | (env->daif & CPSR_AIF); 9197 } 9198 9199 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9200 CPSRWriteType write_type) 9201 { 9202 uint32_t changed_daif; 9203 9204 if (mask & CPSR_NZCV) { 9205 env->ZF = (~val) & CPSR_Z; 9206 env->NF = val; 9207 env->CF = (val >> 29) & 1; 9208 env->VF = (val << 3) & 0x80000000; 9209 } 9210 if (mask & CPSR_Q) 9211 env->QF = ((val & CPSR_Q) != 0); 9212 if (mask & CPSR_T) 9213 env->thumb = ((val & CPSR_T) != 0); 9214 if (mask & CPSR_IT_0_1) { 9215 env->condexec_bits &= ~3; 9216 env->condexec_bits |= (val >> 25) & 3; 9217 } 9218 if (mask & CPSR_IT_2_7) { 9219 env->condexec_bits &= 3; 9220 env->condexec_bits |= (val >> 8) & 0xfc; 9221 } 9222 if (mask & CPSR_GE) { 9223 env->GE = (val >> 16) & 0xf; 9224 } 9225 9226 /* In a V7 implementation that includes the security extensions but does 9227 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9228 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9229 * bits respectively. 9230 * 9231 * In a V8 implementation, it is permitted for privileged software to 9232 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9233 */ 9234 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9235 arm_feature(env, ARM_FEATURE_EL3) && 9236 !arm_feature(env, ARM_FEATURE_EL2) && 9237 !arm_is_secure(env)) { 9238 9239 changed_daif = (env->daif ^ val) & mask; 9240 9241 if (changed_daif & CPSR_A) { 9242 /* Check to see if we are allowed to change the masking of async 9243 * abort exceptions from a non-secure state. 9244 */ 9245 if (!(env->cp15.scr_el3 & SCR_AW)) { 9246 qemu_log_mask(LOG_GUEST_ERROR, 9247 "Ignoring attempt to switch CPSR_A flag from " 9248 "non-secure world with SCR.AW bit clear\n"); 9249 mask &= ~CPSR_A; 9250 } 9251 } 9252 9253 if (changed_daif & CPSR_F) { 9254 /* Check to see if we are allowed to change the masking of FIQ 9255 * exceptions from a non-secure state. 9256 */ 9257 if (!(env->cp15.scr_el3 & SCR_FW)) { 9258 qemu_log_mask(LOG_GUEST_ERROR, 9259 "Ignoring attempt to switch CPSR_F flag from " 9260 "non-secure world with SCR.FW bit clear\n"); 9261 mask &= ~CPSR_F; 9262 } 9263 9264 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9265 * If this bit is set software is not allowed to mask 9266 * FIQs, but is allowed to set CPSR_F to 0. 9267 */ 9268 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9269 (val & CPSR_F)) { 9270 qemu_log_mask(LOG_GUEST_ERROR, 9271 "Ignoring attempt to enable CPSR_F flag " 9272 "(non-maskable FIQ [NMFI] support enabled)\n"); 9273 mask &= ~CPSR_F; 9274 } 9275 } 9276 } 9277 9278 env->daif &= ~(CPSR_AIF & mask); 9279 env->daif |= val & CPSR_AIF & mask; 9280 9281 if (write_type != CPSRWriteRaw && 9282 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9283 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9284 /* Note that we can only get here in USR mode if this is a 9285 * gdb stub write; for this case we follow the architectural 9286 * behaviour for guest writes in USR mode of ignoring an attempt 9287 * to switch mode. (Those are caught by translate.c for writes 9288 * triggered by guest instructions.) 9289 */ 9290 mask &= ~CPSR_M; 9291 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9292 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9293 * v7, and has defined behaviour in v8: 9294 * + leave CPSR.M untouched 9295 * + allow changes to the other CPSR fields 9296 * + set PSTATE.IL 9297 * For user changes via the GDB stub, we don't set PSTATE.IL, 9298 * as this would be unnecessarily harsh for a user error. 9299 */ 9300 mask &= ~CPSR_M; 9301 if (write_type != CPSRWriteByGDBStub && 9302 arm_feature(env, ARM_FEATURE_V8)) { 9303 mask |= CPSR_IL; 9304 val |= CPSR_IL; 9305 } 9306 qemu_log_mask(LOG_GUEST_ERROR, 9307 "Illegal AArch32 mode switch attempt from %s to %s\n", 9308 aarch32_mode_name(env->uncached_cpsr), 9309 aarch32_mode_name(val)); 9310 } else { 9311 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9312 write_type == CPSRWriteExceptionReturn ? 9313 "Exception return from AArch32" : 9314 "AArch32 mode switch from", 9315 aarch32_mode_name(env->uncached_cpsr), 9316 aarch32_mode_name(val), env->regs[15]); 9317 switch_mode(env, val & CPSR_M); 9318 } 9319 } 9320 mask &= ~CACHED_CPSR_BITS; 9321 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9322 } 9323 9324 /* Sign/zero extend */ 9325 uint32_t HELPER(sxtb16)(uint32_t x) 9326 { 9327 uint32_t res; 9328 res = (uint16_t)(int8_t)x; 9329 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9330 return res; 9331 } 9332 9333 uint32_t HELPER(uxtb16)(uint32_t x) 9334 { 9335 uint32_t res; 9336 res = (uint16_t)(uint8_t)x; 9337 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9338 return res; 9339 } 9340 9341 int32_t HELPER(sdiv)(int32_t num, int32_t den) 9342 { 9343 if (den == 0) 9344 return 0; 9345 if (num == INT_MIN && den == -1) 9346 return INT_MIN; 9347 return num / den; 9348 } 9349 9350 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 9351 { 9352 if (den == 0) 9353 return 0; 9354 return num / den; 9355 } 9356 9357 uint32_t HELPER(rbit)(uint32_t x) 9358 { 9359 return revbit32(x); 9360 } 9361 9362 #ifdef CONFIG_USER_ONLY 9363 9364 static void switch_mode(CPUARMState *env, int mode) 9365 { 9366 ARMCPU *cpu = env_archcpu(env); 9367 9368 if (mode != ARM_CPU_MODE_USR) { 9369 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9370 } 9371 } 9372 9373 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9374 uint32_t cur_el, bool secure) 9375 { 9376 return 1; 9377 } 9378 9379 void aarch64_sync_64_to_32(CPUARMState *env) 9380 { 9381 g_assert_not_reached(); 9382 } 9383 9384 #else 9385 9386 static void switch_mode(CPUARMState *env, int mode) 9387 { 9388 int old_mode; 9389 int i; 9390 9391 old_mode = env->uncached_cpsr & CPSR_M; 9392 if (mode == old_mode) 9393 return; 9394 9395 if (old_mode == ARM_CPU_MODE_FIQ) { 9396 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9397 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9398 } else if (mode == ARM_CPU_MODE_FIQ) { 9399 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9400 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9401 } 9402 9403 i = bank_number(old_mode); 9404 env->banked_r13[i] = env->regs[13]; 9405 env->banked_spsr[i] = env->spsr; 9406 9407 i = bank_number(mode); 9408 env->regs[13] = env->banked_r13[i]; 9409 env->spsr = env->banked_spsr[i]; 9410 9411 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9412 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9413 } 9414 9415 /* Physical Interrupt Target EL Lookup Table 9416 * 9417 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9418 * 9419 * The below multi-dimensional table is used for looking up the target 9420 * exception level given numerous condition criteria. Specifically, the 9421 * target EL is based on SCR and HCR routing controls as well as the 9422 * currently executing EL and secure state. 9423 * 9424 * Dimensions: 9425 * target_el_table[2][2][2][2][2][4] 9426 * | | | | | +--- Current EL 9427 * | | | | +------ Non-secure(0)/Secure(1) 9428 * | | | +--------- HCR mask override 9429 * | | +------------ SCR exec state control 9430 * | +--------------- SCR mask override 9431 * +------------------ 32-bit(0)/64-bit(1) EL3 9432 * 9433 * The table values are as such: 9434 * 0-3 = EL0-EL3 9435 * -1 = Cannot occur 9436 * 9437 * The ARM ARM target EL table includes entries indicating that an "exception 9438 * is not taken". The two cases where this is applicable are: 9439 * 1) An exception is taken from EL3 but the SCR does not have the exception 9440 * routed to EL3. 9441 * 2) An exception is taken from EL2 but the HCR does not have the exception 9442 * routed to EL2. 9443 * In these two cases, the below table contain a target of EL1. This value is 9444 * returned as it is expected that the consumer of the table data will check 9445 * for "target EL >= current EL" to ensure the exception is not taken. 9446 * 9447 * SCR HCR 9448 * 64 EA AMO From 9449 * BIT IRQ IMO Non-secure Secure 9450 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9451 */ 9452 static const int8_t target_el_table[2][2][2][2][2][4] = { 9453 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9454 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9455 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9456 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9457 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9458 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9459 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9460 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9461 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9462 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9463 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9464 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9465 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9466 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9467 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9468 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9469 }; 9470 9471 /* 9472 * Determine the target EL for physical exceptions 9473 */ 9474 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9475 uint32_t cur_el, bool secure) 9476 { 9477 CPUARMState *env = cs->env_ptr; 9478 bool rw; 9479 bool scr; 9480 bool hcr; 9481 int target_el; 9482 /* Is the highest EL AArch64? */ 9483 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9484 uint64_t hcr_el2; 9485 9486 if (arm_feature(env, ARM_FEATURE_EL3)) { 9487 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9488 } else { 9489 /* Either EL2 is the highest EL (and so the EL2 register width 9490 * is given by is64); or there is no EL2 or EL3, in which case 9491 * the value of 'rw' does not affect the table lookup anyway. 9492 */ 9493 rw = is64; 9494 } 9495 9496 hcr_el2 = arm_hcr_el2_eff(env); 9497 switch (excp_idx) { 9498 case EXCP_IRQ: 9499 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9500 hcr = hcr_el2 & HCR_IMO; 9501 break; 9502 case EXCP_FIQ: 9503 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9504 hcr = hcr_el2 & HCR_FMO; 9505 break; 9506 default: 9507 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9508 hcr = hcr_el2 & HCR_AMO; 9509 break; 9510 }; 9511 9512 /* 9513 * For these purposes, TGE and AMO/IMO/FMO both force the 9514 * interrupt to EL2. Fold TGE into the bit extracted above. 9515 */ 9516 hcr |= (hcr_el2 & HCR_TGE) != 0; 9517 9518 /* Perform a table-lookup for the target EL given the current state */ 9519 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9520 9521 assert(target_el > 0); 9522 9523 return target_el; 9524 } 9525 9526 void arm_log_exception(int idx) 9527 { 9528 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9529 const char *exc = NULL; 9530 static const char * const excnames[] = { 9531 [EXCP_UDEF] = "Undefined Instruction", 9532 [EXCP_SWI] = "SVC", 9533 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9534 [EXCP_DATA_ABORT] = "Data Abort", 9535 [EXCP_IRQ] = "IRQ", 9536 [EXCP_FIQ] = "FIQ", 9537 [EXCP_BKPT] = "Breakpoint", 9538 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9539 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9540 [EXCP_HVC] = "Hypervisor Call", 9541 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9542 [EXCP_SMC] = "Secure Monitor Call", 9543 [EXCP_VIRQ] = "Virtual IRQ", 9544 [EXCP_VFIQ] = "Virtual FIQ", 9545 [EXCP_SEMIHOST] = "Semihosting call", 9546 [EXCP_NOCP] = "v7M NOCP UsageFault", 9547 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9548 [EXCP_STKOF] = "v8M STKOF UsageFault", 9549 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9550 [EXCP_LSERR] = "v8M LSERR UsageFault", 9551 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9552 }; 9553 9554 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9555 exc = excnames[idx]; 9556 } 9557 if (!exc) { 9558 exc = "unknown"; 9559 } 9560 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 9561 } 9562 } 9563 9564 /* 9565 * Function used to synchronize QEMU's AArch64 register set with AArch32 9566 * register set. This is necessary when switching between AArch32 and AArch64 9567 * execution state. 9568 */ 9569 void aarch64_sync_32_to_64(CPUARMState *env) 9570 { 9571 int i; 9572 uint32_t mode = env->uncached_cpsr & CPSR_M; 9573 9574 /* We can blanket copy R[0:7] to X[0:7] */ 9575 for (i = 0; i < 8; i++) { 9576 env->xregs[i] = env->regs[i]; 9577 } 9578 9579 /* 9580 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9581 * Otherwise, they come from the banked user regs. 9582 */ 9583 if (mode == ARM_CPU_MODE_FIQ) { 9584 for (i = 8; i < 13; i++) { 9585 env->xregs[i] = env->usr_regs[i - 8]; 9586 } 9587 } else { 9588 for (i = 8; i < 13; i++) { 9589 env->xregs[i] = env->regs[i]; 9590 } 9591 } 9592 9593 /* 9594 * Registers x13-x23 are the various mode SP and FP registers. Registers 9595 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9596 * from the mode banked register. 9597 */ 9598 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9599 env->xregs[13] = env->regs[13]; 9600 env->xregs[14] = env->regs[14]; 9601 } else { 9602 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9603 /* HYP is an exception in that it is copied from r14 */ 9604 if (mode == ARM_CPU_MODE_HYP) { 9605 env->xregs[14] = env->regs[14]; 9606 } else { 9607 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9608 } 9609 } 9610 9611 if (mode == ARM_CPU_MODE_HYP) { 9612 env->xregs[15] = env->regs[13]; 9613 } else { 9614 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9615 } 9616 9617 if (mode == ARM_CPU_MODE_IRQ) { 9618 env->xregs[16] = env->regs[14]; 9619 env->xregs[17] = env->regs[13]; 9620 } else { 9621 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9622 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9623 } 9624 9625 if (mode == ARM_CPU_MODE_SVC) { 9626 env->xregs[18] = env->regs[14]; 9627 env->xregs[19] = env->regs[13]; 9628 } else { 9629 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9630 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9631 } 9632 9633 if (mode == ARM_CPU_MODE_ABT) { 9634 env->xregs[20] = env->regs[14]; 9635 env->xregs[21] = env->regs[13]; 9636 } else { 9637 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9638 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9639 } 9640 9641 if (mode == ARM_CPU_MODE_UND) { 9642 env->xregs[22] = env->regs[14]; 9643 env->xregs[23] = env->regs[13]; 9644 } else { 9645 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9646 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9647 } 9648 9649 /* 9650 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9651 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9652 * FIQ bank for r8-r14. 9653 */ 9654 if (mode == ARM_CPU_MODE_FIQ) { 9655 for (i = 24; i < 31; i++) { 9656 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9657 } 9658 } else { 9659 for (i = 24; i < 29; i++) { 9660 env->xregs[i] = env->fiq_regs[i - 24]; 9661 } 9662 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9663 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9664 } 9665 9666 env->pc = env->regs[15]; 9667 } 9668 9669 /* 9670 * Function used to synchronize QEMU's AArch32 register set with AArch64 9671 * register set. This is necessary when switching between AArch32 and AArch64 9672 * execution state. 9673 */ 9674 void aarch64_sync_64_to_32(CPUARMState *env) 9675 { 9676 int i; 9677 uint32_t mode = env->uncached_cpsr & CPSR_M; 9678 9679 /* We can blanket copy X[0:7] to R[0:7] */ 9680 for (i = 0; i < 8; i++) { 9681 env->regs[i] = env->xregs[i]; 9682 } 9683 9684 /* 9685 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9686 * Otherwise, we copy x8-x12 into the banked user regs. 9687 */ 9688 if (mode == ARM_CPU_MODE_FIQ) { 9689 for (i = 8; i < 13; i++) { 9690 env->usr_regs[i - 8] = env->xregs[i]; 9691 } 9692 } else { 9693 for (i = 8; i < 13; i++) { 9694 env->regs[i] = env->xregs[i]; 9695 } 9696 } 9697 9698 /* 9699 * Registers r13 & r14 depend on the current mode. 9700 * If we are in a given mode, we copy the corresponding x registers to r13 9701 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9702 * for the mode. 9703 */ 9704 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9705 env->regs[13] = env->xregs[13]; 9706 env->regs[14] = env->xregs[14]; 9707 } else { 9708 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9709 9710 /* 9711 * HYP is an exception in that it does not have its own banked r14 but 9712 * shares the USR r14 9713 */ 9714 if (mode == ARM_CPU_MODE_HYP) { 9715 env->regs[14] = env->xregs[14]; 9716 } else { 9717 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9718 } 9719 } 9720 9721 if (mode == ARM_CPU_MODE_HYP) { 9722 env->regs[13] = env->xregs[15]; 9723 } else { 9724 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9725 } 9726 9727 if (mode == ARM_CPU_MODE_IRQ) { 9728 env->regs[14] = env->xregs[16]; 9729 env->regs[13] = env->xregs[17]; 9730 } else { 9731 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9732 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9733 } 9734 9735 if (mode == ARM_CPU_MODE_SVC) { 9736 env->regs[14] = env->xregs[18]; 9737 env->regs[13] = env->xregs[19]; 9738 } else { 9739 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9740 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9741 } 9742 9743 if (mode == ARM_CPU_MODE_ABT) { 9744 env->regs[14] = env->xregs[20]; 9745 env->regs[13] = env->xregs[21]; 9746 } else { 9747 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9748 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9749 } 9750 9751 if (mode == ARM_CPU_MODE_UND) { 9752 env->regs[14] = env->xregs[22]; 9753 env->regs[13] = env->xregs[23]; 9754 } else { 9755 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9756 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9757 } 9758 9759 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9760 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9761 * FIQ bank for r8-r14. 9762 */ 9763 if (mode == ARM_CPU_MODE_FIQ) { 9764 for (i = 24; i < 31; i++) { 9765 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9766 } 9767 } else { 9768 for (i = 24; i < 29; i++) { 9769 env->fiq_regs[i - 24] = env->xregs[i]; 9770 } 9771 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9772 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9773 } 9774 9775 env->regs[15] = env->pc; 9776 } 9777 9778 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9779 uint32_t mask, uint32_t offset, 9780 uint32_t newpc) 9781 { 9782 int new_el; 9783 9784 /* Change the CPU state so as to actually take the exception. */ 9785 switch_mode(env, new_mode); 9786 9787 /* 9788 * For exceptions taken to AArch32 we must clear the SS bit in both 9789 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9790 */ 9791 env->pstate &= ~PSTATE_SS; 9792 env->spsr = cpsr_read(env); 9793 /* Clear IT bits. */ 9794 env->condexec_bits = 0; 9795 /* Switch to the new mode, and to the correct instruction set. */ 9796 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9797 9798 /* This must be after mode switching. */ 9799 new_el = arm_current_el(env); 9800 9801 /* Set new mode endianness */ 9802 env->uncached_cpsr &= ~CPSR_E; 9803 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9804 env->uncached_cpsr |= CPSR_E; 9805 } 9806 /* J and IL must always be cleared for exception entry */ 9807 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9808 env->daif |= mask; 9809 9810 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9811 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9812 env->uncached_cpsr |= CPSR_SSBS; 9813 } else { 9814 env->uncached_cpsr &= ~CPSR_SSBS; 9815 } 9816 } 9817 9818 if (new_mode == ARM_CPU_MODE_HYP) { 9819 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9820 env->elr_el[2] = env->regs[15]; 9821 } else { 9822 /* CPSR.PAN is normally preserved preserved unless... */ 9823 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9824 switch (new_el) { 9825 case 3: 9826 if (!arm_is_secure_below_el3(env)) { 9827 /* ... the target is EL3, from non-secure state. */ 9828 env->uncached_cpsr &= ~CPSR_PAN; 9829 break; 9830 } 9831 /* ... the target is EL3, from secure state ... */ 9832 /* fall through */ 9833 case 1: 9834 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9835 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9836 env->uncached_cpsr |= CPSR_PAN; 9837 } 9838 break; 9839 } 9840 } 9841 /* 9842 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9843 * and we should just guard the thumb mode on V4 9844 */ 9845 if (arm_feature(env, ARM_FEATURE_V4T)) { 9846 env->thumb = 9847 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9848 } 9849 env->regs[14] = env->regs[15] + offset; 9850 } 9851 env->regs[15] = newpc; 9852 arm_rebuild_hflags(env); 9853 } 9854 9855 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9856 { 9857 /* 9858 * Handle exception entry to Hyp mode; this is sufficiently 9859 * different to entry to other AArch32 modes that we handle it 9860 * separately here. 9861 * 9862 * The vector table entry used is always the 0x14 Hyp mode entry point, 9863 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 9864 * The offset applied to the preferred return address is always zero 9865 * (see DDI0487C.a section G1.12.3). 9866 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9867 */ 9868 uint32_t addr, mask; 9869 ARMCPU *cpu = ARM_CPU(cs); 9870 CPUARMState *env = &cpu->env; 9871 9872 switch (cs->exception_index) { 9873 case EXCP_UDEF: 9874 addr = 0x04; 9875 break; 9876 case EXCP_SWI: 9877 addr = 0x14; 9878 break; 9879 case EXCP_BKPT: 9880 /* Fall through to prefetch abort. */ 9881 case EXCP_PREFETCH_ABORT: 9882 env->cp15.ifar_s = env->exception.vaddress; 9883 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9884 (uint32_t)env->exception.vaddress); 9885 addr = 0x0c; 9886 break; 9887 case EXCP_DATA_ABORT: 9888 env->cp15.dfar_s = env->exception.vaddress; 9889 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9890 (uint32_t)env->exception.vaddress); 9891 addr = 0x10; 9892 break; 9893 case EXCP_IRQ: 9894 addr = 0x18; 9895 break; 9896 case EXCP_FIQ: 9897 addr = 0x1c; 9898 break; 9899 case EXCP_HVC: 9900 addr = 0x08; 9901 break; 9902 case EXCP_HYP_TRAP: 9903 addr = 0x14; 9904 break; 9905 default: 9906 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9907 } 9908 9909 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9910 if (!arm_feature(env, ARM_FEATURE_V8)) { 9911 /* 9912 * QEMU syndrome values are v8-style. v7 has the IL bit 9913 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9914 * If this is a v7 CPU, squash the IL bit in those cases. 9915 */ 9916 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9917 (cs->exception_index == EXCP_DATA_ABORT && 9918 !(env->exception.syndrome & ARM_EL_ISV)) || 9919 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9920 env->exception.syndrome &= ~ARM_EL_IL; 9921 } 9922 } 9923 env->cp15.esr_el[2] = env->exception.syndrome; 9924 } 9925 9926 if (arm_current_el(env) != 2 && addr < 0x14) { 9927 addr = 0x14; 9928 } 9929 9930 mask = 0; 9931 if (!(env->cp15.scr_el3 & SCR_EA)) { 9932 mask |= CPSR_A; 9933 } 9934 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9935 mask |= CPSR_I; 9936 } 9937 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9938 mask |= CPSR_F; 9939 } 9940 9941 addr += env->cp15.hvbar; 9942 9943 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9944 } 9945 9946 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9947 { 9948 ARMCPU *cpu = ARM_CPU(cs); 9949 CPUARMState *env = &cpu->env; 9950 uint32_t addr; 9951 uint32_t mask; 9952 int new_mode; 9953 uint32_t offset; 9954 uint32_t moe; 9955 9956 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9957 switch (syn_get_ec(env->exception.syndrome)) { 9958 case EC_BREAKPOINT: 9959 case EC_BREAKPOINT_SAME_EL: 9960 moe = 1; 9961 break; 9962 case EC_WATCHPOINT: 9963 case EC_WATCHPOINT_SAME_EL: 9964 moe = 10; 9965 break; 9966 case EC_AA32_BKPT: 9967 moe = 3; 9968 break; 9969 case EC_VECTORCATCH: 9970 moe = 5; 9971 break; 9972 default: 9973 moe = 0; 9974 break; 9975 } 9976 9977 if (moe) { 9978 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9979 } 9980 9981 if (env->exception.target_el == 2) { 9982 arm_cpu_do_interrupt_aarch32_hyp(cs); 9983 return; 9984 } 9985 9986 switch (cs->exception_index) { 9987 case EXCP_UDEF: 9988 new_mode = ARM_CPU_MODE_UND; 9989 addr = 0x04; 9990 mask = CPSR_I; 9991 if (env->thumb) 9992 offset = 2; 9993 else 9994 offset = 4; 9995 break; 9996 case EXCP_SWI: 9997 new_mode = ARM_CPU_MODE_SVC; 9998 addr = 0x08; 9999 mask = CPSR_I; 10000 /* The PC already points to the next instruction. */ 10001 offset = 0; 10002 break; 10003 case EXCP_BKPT: 10004 /* Fall through to prefetch abort. */ 10005 case EXCP_PREFETCH_ABORT: 10006 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10007 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10008 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10009 env->exception.fsr, (uint32_t)env->exception.vaddress); 10010 new_mode = ARM_CPU_MODE_ABT; 10011 addr = 0x0c; 10012 mask = CPSR_A | CPSR_I; 10013 offset = 4; 10014 break; 10015 case EXCP_DATA_ABORT: 10016 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10017 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10018 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10019 env->exception.fsr, 10020 (uint32_t)env->exception.vaddress); 10021 new_mode = ARM_CPU_MODE_ABT; 10022 addr = 0x10; 10023 mask = CPSR_A | CPSR_I; 10024 offset = 8; 10025 break; 10026 case EXCP_IRQ: 10027 new_mode = ARM_CPU_MODE_IRQ; 10028 addr = 0x18; 10029 /* Disable IRQ and imprecise data aborts. */ 10030 mask = CPSR_A | CPSR_I; 10031 offset = 4; 10032 if (env->cp15.scr_el3 & SCR_IRQ) { 10033 /* IRQ routed to monitor mode */ 10034 new_mode = ARM_CPU_MODE_MON; 10035 mask |= CPSR_F; 10036 } 10037 break; 10038 case EXCP_FIQ: 10039 new_mode = ARM_CPU_MODE_FIQ; 10040 addr = 0x1c; 10041 /* Disable FIQ, IRQ and imprecise data aborts. */ 10042 mask = CPSR_A | CPSR_I | CPSR_F; 10043 if (env->cp15.scr_el3 & SCR_FIQ) { 10044 /* FIQ routed to monitor mode */ 10045 new_mode = ARM_CPU_MODE_MON; 10046 } 10047 offset = 4; 10048 break; 10049 case EXCP_VIRQ: 10050 new_mode = ARM_CPU_MODE_IRQ; 10051 addr = 0x18; 10052 /* Disable IRQ and imprecise data aborts. */ 10053 mask = CPSR_A | CPSR_I; 10054 offset = 4; 10055 break; 10056 case EXCP_VFIQ: 10057 new_mode = ARM_CPU_MODE_FIQ; 10058 addr = 0x1c; 10059 /* Disable FIQ, IRQ and imprecise data aborts. */ 10060 mask = CPSR_A | CPSR_I | CPSR_F; 10061 offset = 4; 10062 break; 10063 case EXCP_SMC: 10064 new_mode = ARM_CPU_MODE_MON; 10065 addr = 0x08; 10066 mask = CPSR_A | CPSR_I | CPSR_F; 10067 offset = 0; 10068 break; 10069 default: 10070 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10071 return; /* Never happens. Keep compiler happy. */ 10072 } 10073 10074 if (new_mode == ARM_CPU_MODE_MON) { 10075 addr += env->cp15.mvbar; 10076 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10077 /* High vectors. When enabled, base address cannot be remapped. */ 10078 addr += 0xffff0000; 10079 } else { 10080 /* ARM v7 architectures provide a vector base address register to remap 10081 * the interrupt vector table. 10082 * This register is only followed in non-monitor mode, and is banked. 10083 * Note: only bits 31:5 are valid. 10084 */ 10085 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10086 } 10087 10088 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10089 env->cp15.scr_el3 &= ~SCR_NS; 10090 } 10091 10092 take_aarch32_exception(env, new_mode, mask, offset, addr); 10093 } 10094 10095 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10096 { 10097 /* 10098 * Return the register number of the AArch64 view of the AArch32 10099 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10100 * be that of the AArch32 mode the exception came from. 10101 */ 10102 int mode = env->uncached_cpsr & CPSR_M; 10103 10104 switch (aarch32_reg) { 10105 case 0 ... 7: 10106 return aarch32_reg; 10107 case 8 ... 12: 10108 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10109 case 13: 10110 switch (mode) { 10111 case ARM_CPU_MODE_USR: 10112 case ARM_CPU_MODE_SYS: 10113 return 13; 10114 case ARM_CPU_MODE_HYP: 10115 return 15; 10116 case ARM_CPU_MODE_IRQ: 10117 return 17; 10118 case ARM_CPU_MODE_SVC: 10119 return 19; 10120 case ARM_CPU_MODE_ABT: 10121 return 21; 10122 case ARM_CPU_MODE_UND: 10123 return 23; 10124 case ARM_CPU_MODE_FIQ: 10125 return 29; 10126 default: 10127 g_assert_not_reached(); 10128 } 10129 case 14: 10130 switch (mode) { 10131 case ARM_CPU_MODE_USR: 10132 case ARM_CPU_MODE_SYS: 10133 case ARM_CPU_MODE_HYP: 10134 return 14; 10135 case ARM_CPU_MODE_IRQ: 10136 return 16; 10137 case ARM_CPU_MODE_SVC: 10138 return 18; 10139 case ARM_CPU_MODE_ABT: 10140 return 20; 10141 case ARM_CPU_MODE_UND: 10142 return 22; 10143 case ARM_CPU_MODE_FIQ: 10144 return 30; 10145 default: 10146 g_assert_not_reached(); 10147 } 10148 case 15: 10149 return 31; 10150 default: 10151 g_assert_not_reached(); 10152 } 10153 } 10154 10155 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10156 { 10157 uint32_t ret = cpsr_read(env); 10158 10159 /* Move DIT to the correct location for SPSR_ELx */ 10160 if (ret & CPSR_DIT) { 10161 ret &= ~CPSR_DIT; 10162 ret |= PSTATE_DIT; 10163 } 10164 /* Merge PSTATE.SS into SPSR_ELx */ 10165 ret |= env->pstate & PSTATE_SS; 10166 10167 return ret; 10168 } 10169 10170 /* Handle exception entry to a target EL which is using AArch64 */ 10171 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10172 { 10173 ARMCPU *cpu = ARM_CPU(cs); 10174 CPUARMState *env = &cpu->env; 10175 unsigned int new_el = env->exception.target_el; 10176 target_ulong addr = env->cp15.vbar_el[new_el]; 10177 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10178 unsigned int old_mode; 10179 unsigned int cur_el = arm_current_el(env); 10180 int rt; 10181 10182 /* 10183 * Note that new_el can never be 0. If cur_el is 0, then 10184 * el0_a64 is is_a64(), else el0_a64 is ignored. 10185 */ 10186 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10187 10188 if (cur_el < new_el) { 10189 /* Entry vector offset depends on whether the implemented EL 10190 * immediately lower than the target level is using AArch32 or AArch64 10191 */ 10192 bool is_aa64; 10193 uint64_t hcr; 10194 10195 switch (new_el) { 10196 case 3: 10197 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10198 break; 10199 case 2: 10200 hcr = arm_hcr_el2_eff(env); 10201 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10202 is_aa64 = (hcr & HCR_RW) != 0; 10203 break; 10204 } 10205 /* fall through */ 10206 case 1: 10207 is_aa64 = is_a64(env); 10208 break; 10209 default: 10210 g_assert_not_reached(); 10211 } 10212 10213 if (is_aa64) { 10214 addr += 0x400; 10215 } else { 10216 addr += 0x600; 10217 } 10218 } else if (pstate_read(env) & PSTATE_SP) { 10219 addr += 0x200; 10220 } 10221 10222 switch (cs->exception_index) { 10223 case EXCP_PREFETCH_ABORT: 10224 case EXCP_DATA_ABORT: 10225 env->cp15.far_el[new_el] = env->exception.vaddress; 10226 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10227 env->cp15.far_el[new_el]); 10228 /* fall through */ 10229 case EXCP_BKPT: 10230 case EXCP_UDEF: 10231 case EXCP_SWI: 10232 case EXCP_HVC: 10233 case EXCP_HYP_TRAP: 10234 case EXCP_SMC: 10235 switch (syn_get_ec(env->exception.syndrome)) { 10236 case EC_ADVSIMDFPACCESSTRAP: 10237 /* 10238 * QEMU internal FP/SIMD syndromes from AArch32 include the 10239 * TA and coproc fields which are only exposed if the exception 10240 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10241 * AArch64 format syndrome. 10242 */ 10243 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10244 break; 10245 case EC_CP14RTTRAP: 10246 case EC_CP15RTTRAP: 10247 case EC_CP14DTTRAP: 10248 /* 10249 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10250 * the raw register field from the insn; when taking this to 10251 * AArch64 we must convert it to the AArch64 view of the register 10252 * number. Notice that we read a 4-bit AArch32 register number and 10253 * write back a 5-bit AArch64 one. 10254 */ 10255 rt = extract32(env->exception.syndrome, 5, 4); 10256 rt = aarch64_regnum(env, rt); 10257 env->exception.syndrome = deposit32(env->exception.syndrome, 10258 5, 5, rt); 10259 break; 10260 case EC_CP15RRTTRAP: 10261 case EC_CP14RRTTRAP: 10262 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10263 rt = extract32(env->exception.syndrome, 5, 4); 10264 rt = aarch64_regnum(env, rt); 10265 env->exception.syndrome = deposit32(env->exception.syndrome, 10266 5, 5, rt); 10267 rt = extract32(env->exception.syndrome, 10, 4); 10268 rt = aarch64_regnum(env, rt); 10269 env->exception.syndrome = deposit32(env->exception.syndrome, 10270 10, 5, rt); 10271 break; 10272 } 10273 env->cp15.esr_el[new_el] = env->exception.syndrome; 10274 break; 10275 case EXCP_IRQ: 10276 case EXCP_VIRQ: 10277 addr += 0x80; 10278 break; 10279 case EXCP_FIQ: 10280 case EXCP_VFIQ: 10281 addr += 0x100; 10282 break; 10283 default: 10284 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10285 } 10286 10287 if (is_a64(env)) { 10288 old_mode = pstate_read(env); 10289 aarch64_save_sp(env, arm_current_el(env)); 10290 env->elr_el[new_el] = env->pc; 10291 } else { 10292 old_mode = cpsr_read_for_spsr_elx(env); 10293 env->elr_el[new_el] = env->regs[15]; 10294 10295 aarch64_sync_32_to_64(env); 10296 10297 env->condexec_bits = 0; 10298 } 10299 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10300 10301 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10302 env->elr_el[new_el]); 10303 10304 if (cpu_isar_feature(aa64_pan, cpu)) { 10305 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10306 new_mode |= old_mode & PSTATE_PAN; 10307 switch (new_el) { 10308 case 2: 10309 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10310 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10311 != (HCR_E2H | HCR_TGE)) { 10312 break; 10313 } 10314 /* fall through */ 10315 case 1: 10316 /* ... the target is EL1 ... */ 10317 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10318 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10319 new_mode |= PSTATE_PAN; 10320 } 10321 break; 10322 } 10323 } 10324 if (cpu_isar_feature(aa64_mte, cpu)) { 10325 new_mode |= PSTATE_TCO; 10326 } 10327 10328 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10329 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10330 new_mode |= PSTATE_SSBS; 10331 } else { 10332 new_mode &= ~PSTATE_SSBS; 10333 } 10334 } 10335 10336 pstate_write(env, PSTATE_DAIF | new_mode); 10337 env->aarch64 = 1; 10338 aarch64_restore_sp(env, new_el); 10339 helper_rebuild_hflags_a64(env, new_el); 10340 10341 env->pc = addr; 10342 10343 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10344 new_el, env->pc, pstate_read(env)); 10345 } 10346 10347 /* 10348 * Do semihosting call and set the appropriate return value. All the 10349 * permission and validity checks have been done at translate time. 10350 * 10351 * We only see semihosting exceptions in TCG only as they are not 10352 * trapped to the hypervisor in KVM. 10353 */ 10354 #ifdef CONFIG_TCG 10355 static void handle_semihosting(CPUState *cs) 10356 { 10357 ARMCPU *cpu = ARM_CPU(cs); 10358 CPUARMState *env = &cpu->env; 10359 10360 if (is_a64(env)) { 10361 qemu_log_mask(CPU_LOG_INT, 10362 "...handling as semihosting call 0x%" PRIx64 "\n", 10363 env->xregs[0]); 10364 env->xregs[0] = do_common_semihosting(cs); 10365 env->pc += 4; 10366 } else { 10367 qemu_log_mask(CPU_LOG_INT, 10368 "...handling as semihosting call 0x%x\n", 10369 env->regs[0]); 10370 env->regs[0] = do_common_semihosting(cs); 10371 env->regs[15] += env->thumb ? 2 : 4; 10372 } 10373 } 10374 #endif 10375 10376 /* Handle a CPU exception for A and R profile CPUs. 10377 * Do any appropriate logging, handle PSCI calls, and then hand off 10378 * to the AArch64-entry or AArch32-entry function depending on the 10379 * target exception level's register width. 10380 * 10381 * Note: this is used for both TCG (as the do_interrupt tcg op), 10382 * and KVM to re-inject guest debug exceptions, and to 10383 * inject a Synchronous-External-Abort. 10384 */ 10385 void arm_cpu_do_interrupt(CPUState *cs) 10386 { 10387 ARMCPU *cpu = ARM_CPU(cs); 10388 CPUARMState *env = &cpu->env; 10389 unsigned int new_el = env->exception.target_el; 10390 10391 assert(!arm_feature(env, ARM_FEATURE_M)); 10392 10393 arm_log_exception(cs->exception_index); 10394 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10395 new_el); 10396 if (qemu_loglevel_mask(CPU_LOG_INT) 10397 && !excp_is_internal(cs->exception_index)) { 10398 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10399 syn_get_ec(env->exception.syndrome), 10400 env->exception.syndrome); 10401 } 10402 10403 if (arm_is_psci_call(cpu, cs->exception_index)) { 10404 arm_handle_psci_call(cpu); 10405 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10406 return; 10407 } 10408 10409 /* 10410 * Semihosting semantics depend on the register width of the code 10411 * that caused the exception, not the target exception level, so 10412 * must be handled here. 10413 */ 10414 #ifdef CONFIG_TCG 10415 if (cs->exception_index == EXCP_SEMIHOST) { 10416 handle_semihosting(cs); 10417 return; 10418 } 10419 #endif 10420 10421 /* Hooks may change global state so BQL should be held, also the 10422 * BQL needs to be held for any modification of 10423 * cs->interrupt_request. 10424 */ 10425 g_assert(qemu_mutex_iothread_locked()); 10426 10427 arm_call_pre_el_change_hook(cpu); 10428 10429 assert(!excp_is_internal(cs->exception_index)); 10430 if (arm_el_is_aa64(env, new_el)) { 10431 arm_cpu_do_interrupt_aarch64(cs); 10432 } else { 10433 arm_cpu_do_interrupt_aarch32(cs); 10434 } 10435 10436 arm_call_el_change_hook(cpu); 10437 10438 if (!kvm_enabled()) { 10439 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10440 } 10441 } 10442 #endif /* !CONFIG_USER_ONLY */ 10443 10444 uint64_t arm_sctlr(CPUARMState *env, int el) 10445 { 10446 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10447 if (el == 0) { 10448 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10449 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10450 ? 2 : 1; 10451 } 10452 return env->cp15.sctlr_el[el]; 10453 } 10454 10455 /* Return the SCTLR value which controls this address translation regime */ 10456 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10457 { 10458 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10459 } 10460 10461 #ifndef CONFIG_USER_ONLY 10462 10463 /* Return true if the specified stage of address translation is disabled */ 10464 static inline bool regime_translation_disabled(CPUARMState *env, 10465 ARMMMUIdx mmu_idx) 10466 { 10467 uint64_t hcr_el2; 10468 10469 if (arm_feature(env, ARM_FEATURE_M)) { 10470 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10471 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10472 case R_V7M_MPU_CTRL_ENABLE_MASK: 10473 /* Enabled, but not for HardFault and NMI */ 10474 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10475 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10476 /* Enabled for all cases */ 10477 return false; 10478 case 0: 10479 default: 10480 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10481 * we warned about that in armv7m_nvic.c when the guest set it. 10482 */ 10483 return true; 10484 } 10485 } 10486 10487 hcr_el2 = arm_hcr_el2_eff(env); 10488 10489 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10490 /* HCR.DC means HCR.VM behaves as 1 */ 10491 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10492 } 10493 10494 if (hcr_el2 & HCR_TGE) { 10495 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10496 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10497 return true; 10498 } 10499 } 10500 10501 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10502 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10503 return true; 10504 } 10505 10506 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10507 } 10508 10509 static inline bool regime_translation_big_endian(CPUARMState *env, 10510 ARMMMUIdx mmu_idx) 10511 { 10512 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10513 } 10514 10515 /* Return the TTBR associated with this translation regime */ 10516 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10517 int ttbrn) 10518 { 10519 if (mmu_idx == ARMMMUIdx_Stage2) { 10520 return env->cp15.vttbr_el2; 10521 } 10522 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10523 return env->cp15.vsttbr_el2; 10524 } 10525 if (ttbrn == 0) { 10526 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10527 } else { 10528 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10529 } 10530 } 10531 10532 #endif /* !CONFIG_USER_ONLY */ 10533 10534 /* Convert a possible stage1+2 MMU index into the appropriate 10535 * stage 1 MMU index 10536 */ 10537 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10538 { 10539 switch (mmu_idx) { 10540 case ARMMMUIdx_SE10_0: 10541 return ARMMMUIdx_Stage1_SE0; 10542 case ARMMMUIdx_SE10_1: 10543 return ARMMMUIdx_Stage1_SE1; 10544 case ARMMMUIdx_SE10_1_PAN: 10545 return ARMMMUIdx_Stage1_SE1_PAN; 10546 case ARMMMUIdx_E10_0: 10547 return ARMMMUIdx_Stage1_E0; 10548 case ARMMMUIdx_E10_1: 10549 return ARMMMUIdx_Stage1_E1; 10550 case ARMMMUIdx_E10_1_PAN: 10551 return ARMMMUIdx_Stage1_E1_PAN; 10552 default: 10553 return mmu_idx; 10554 } 10555 } 10556 10557 /* Return true if the translation regime is using LPAE format page tables */ 10558 static inline bool regime_using_lpae_format(CPUARMState *env, 10559 ARMMMUIdx mmu_idx) 10560 { 10561 int el = regime_el(env, mmu_idx); 10562 if (el == 2 || arm_el_is_aa64(env, el)) { 10563 return true; 10564 } 10565 if (arm_feature(env, ARM_FEATURE_LPAE) 10566 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10567 return true; 10568 } 10569 return false; 10570 } 10571 10572 /* Returns true if the stage 1 translation regime is using LPAE format page 10573 * tables. Used when raising alignment exceptions, whose FSR changes depending 10574 * on whether the long or short descriptor format is in use. */ 10575 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10576 { 10577 mmu_idx = stage_1_mmu_idx(mmu_idx); 10578 10579 return regime_using_lpae_format(env, mmu_idx); 10580 } 10581 10582 #ifndef CONFIG_USER_ONLY 10583 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10584 { 10585 switch (mmu_idx) { 10586 case ARMMMUIdx_SE10_0: 10587 case ARMMMUIdx_E20_0: 10588 case ARMMMUIdx_SE20_0: 10589 case ARMMMUIdx_Stage1_E0: 10590 case ARMMMUIdx_Stage1_SE0: 10591 case ARMMMUIdx_MUser: 10592 case ARMMMUIdx_MSUser: 10593 case ARMMMUIdx_MUserNegPri: 10594 case ARMMMUIdx_MSUserNegPri: 10595 return true; 10596 default: 10597 return false; 10598 case ARMMMUIdx_E10_0: 10599 case ARMMMUIdx_E10_1: 10600 case ARMMMUIdx_E10_1_PAN: 10601 g_assert_not_reached(); 10602 } 10603 } 10604 10605 /* Translate section/page access permissions to page 10606 * R/W protection flags 10607 * 10608 * @env: CPUARMState 10609 * @mmu_idx: MMU index indicating required translation regime 10610 * @ap: The 3-bit access permissions (AP[2:0]) 10611 * @domain_prot: The 2-bit domain access permissions 10612 */ 10613 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10614 int ap, int domain_prot) 10615 { 10616 bool is_user = regime_is_user(env, mmu_idx); 10617 10618 if (domain_prot == 3) { 10619 return PAGE_READ | PAGE_WRITE; 10620 } 10621 10622 switch (ap) { 10623 case 0: 10624 if (arm_feature(env, ARM_FEATURE_V7)) { 10625 return 0; 10626 } 10627 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10628 case SCTLR_S: 10629 return is_user ? 0 : PAGE_READ; 10630 case SCTLR_R: 10631 return PAGE_READ; 10632 default: 10633 return 0; 10634 } 10635 case 1: 10636 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10637 case 2: 10638 if (is_user) { 10639 return PAGE_READ; 10640 } else { 10641 return PAGE_READ | PAGE_WRITE; 10642 } 10643 case 3: 10644 return PAGE_READ | PAGE_WRITE; 10645 case 4: /* Reserved. */ 10646 return 0; 10647 case 5: 10648 return is_user ? 0 : PAGE_READ; 10649 case 6: 10650 return PAGE_READ; 10651 case 7: 10652 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10653 return 0; 10654 } 10655 return PAGE_READ; 10656 default: 10657 g_assert_not_reached(); 10658 } 10659 } 10660 10661 /* Translate section/page access permissions to page 10662 * R/W protection flags. 10663 * 10664 * @ap: The 2-bit simple AP (AP[2:1]) 10665 * @is_user: TRUE if accessing from PL0 10666 */ 10667 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10668 { 10669 switch (ap) { 10670 case 0: 10671 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10672 case 1: 10673 return PAGE_READ | PAGE_WRITE; 10674 case 2: 10675 return is_user ? 0 : PAGE_READ; 10676 case 3: 10677 return PAGE_READ; 10678 default: 10679 g_assert_not_reached(); 10680 } 10681 } 10682 10683 static inline int 10684 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10685 { 10686 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10687 } 10688 10689 /* Translate S2 section/page access permissions to protection flags 10690 * 10691 * @env: CPUARMState 10692 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10693 * @xn: XN (execute-never) bits 10694 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10695 */ 10696 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10697 { 10698 int prot = 0; 10699 10700 if (s2ap & 1) { 10701 prot |= PAGE_READ; 10702 } 10703 if (s2ap & 2) { 10704 prot |= PAGE_WRITE; 10705 } 10706 10707 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10708 switch (xn) { 10709 case 0: 10710 prot |= PAGE_EXEC; 10711 break; 10712 case 1: 10713 if (s1_is_el0) { 10714 prot |= PAGE_EXEC; 10715 } 10716 break; 10717 case 2: 10718 break; 10719 case 3: 10720 if (!s1_is_el0) { 10721 prot |= PAGE_EXEC; 10722 } 10723 break; 10724 default: 10725 g_assert_not_reached(); 10726 } 10727 } else { 10728 if (!extract32(xn, 1, 1)) { 10729 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10730 prot |= PAGE_EXEC; 10731 } 10732 } 10733 } 10734 return prot; 10735 } 10736 10737 /* Translate section/page access permissions to protection flags 10738 * 10739 * @env: CPUARMState 10740 * @mmu_idx: MMU index indicating required translation regime 10741 * @is_aa64: TRUE if AArch64 10742 * @ap: The 2-bit simple AP (AP[2:1]) 10743 * @ns: NS (non-secure) bit 10744 * @xn: XN (execute-never) bit 10745 * @pxn: PXN (privileged execute-never) bit 10746 */ 10747 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10748 int ap, int ns, int xn, int pxn) 10749 { 10750 bool is_user = regime_is_user(env, mmu_idx); 10751 int prot_rw, user_rw; 10752 bool have_wxn; 10753 int wxn = 0; 10754 10755 assert(mmu_idx != ARMMMUIdx_Stage2); 10756 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10757 10758 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10759 if (is_user) { 10760 prot_rw = user_rw; 10761 } else { 10762 if (user_rw && regime_is_pan(env, mmu_idx)) { 10763 /* PAN forbids data accesses but doesn't affect insn fetch */ 10764 prot_rw = 0; 10765 } else { 10766 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10767 } 10768 } 10769 10770 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10771 return prot_rw; 10772 } 10773 10774 /* TODO have_wxn should be replaced with 10775 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10776 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10777 * compatible processors have EL2, which is required for [U]WXN. 10778 */ 10779 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10780 10781 if (have_wxn) { 10782 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10783 } 10784 10785 if (is_aa64) { 10786 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10787 xn = pxn || (user_rw & PAGE_WRITE); 10788 } 10789 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10790 switch (regime_el(env, mmu_idx)) { 10791 case 1: 10792 case 3: 10793 if (is_user) { 10794 xn = xn || !(user_rw & PAGE_READ); 10795 } else { 10796 int uwxn = 0; 10797 if (have_wxn) { 10798 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10799 } 10800 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10801 (uwxn && (user_rw & PAGE_WRITE)); 10802 } 10803 break; 10804 case 2: 10805 break; 10806 } 10807 } else { 10808 xn = wxn = 0; 10809 } 10810 10811 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10812 return prot_rw; 10813 } 10814 return prot_rw | PAGE_EXEC; 10815 } 10816 10817 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10818 uint32_t *table, uint32_t address) 10819 { 10820 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10821 TCR *tcr = regime_tcr(env, mmu_idx); 10822 10823 if (address & tcr->mask) { 10824 if (tcr->raw_tcr & TTBCR_PD1) { 10825 /* Translation table walk disabled for TTBR1 */ 10826 return false; 10827 } 10828 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10829 } else { 10830 if (tcr->raw_tcr & TTBCR_PD0) { 10831 /* Translation table walk disabled for TTBR0 */ 10832 return false; 10833 } 10834 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10835 } 10836 *table |= (address >> 18) & 0x3ffc; 10837 return true; 10838 } 10839 10840 /* Translate a S1 pagetable walk through S2 if needed. */ 10841 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10842 hwaddr addr, bool *is_secure, 10843 ARMMMUFaultInfo *fi) 10844 { 10845 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10846 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10847 target_ulong s2size; 10848 hwaddr s2pa; 10849 int s2prot; 10850 int ret; 10851 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10852 : ARMMMUIdx_Stage2; 10853 ARMCacheAttrs cacheattrs = {}; 10854 MemTxAttrs txattrs = {}; 10855 10856 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10857 &s2pa, &txattrs, &s2prot, &s2size, fi, 10858 &cacheattrs); 10859 if (ret) { 10860 assert(fi->type != ARMFault_None); 10861 fi->s2addr = addr; 10862 fi->stage2 = true; 10863 fi->s1ptw = true; 10864 fi->s1ns = !*is_secure; 10865 return ~0; 10866 } 10867 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10868 (cacheattrs.attrs & 0xf0) == 0) { 10869 /* 10870 * PTW set and S1 walk touched S2 Device memory: 10871 * generate Permission fault. 10872 */ 10873 fi->type = ARMFault_Permission; 10874 fi->s2addr = addr; 10875 fi->stage2 = true; 10876 fi->s1ptw = true; 10877 fi->s1ns = !*is_secure; 10878 return ~0; 10879 } 10880 10881 if (arm_is_secure_below_el3(env)) { 10882 /* Check if page table walk is to secure or non-secure PA space. */ 10883 if (*is_secure) { 10884 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10885 } else { 10886 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10887 } 10888 } else { 10889 assert(!*is_secure); 10890 } 10891 10892 addr = s2pa; 10893 } 10894 return addr; 10895 } 10896 10897 /* All loads done in the course of a page table walk go through here. */ 10898 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10899 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10900 { 10901 ARMCPU *cpu = ARM_CPU(cs); 10902 CPUARMState *env = &cpu->env; 10903 MemTxAttrs attrs = {}; 10904 MemTxResult result = MEMTX_OK; 10905 AddressSpace *as; 10906 uint32_t data; 10907 10908 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10909 attrs.secure = is_secure; 10910 as = arm_addressspace(cs, attrs); 10911 if (fi->s1ptw) { 10912 return 0; 10913 } 10914 if (regime_translation_big_endian(env, mmu_idx)) { 10915 data = address_space_ldl_be(as, addr, attrs, &result); 10916 } else { 10917 data = address_space_ldl_le(as, addr, attrs, &result); 10918 } 10919 if (result == MEMTX_OK) { 10920 return data; 10921 } 10922 fi->type = ARMFault_SyncExternalOnWalk; 10923 fi->ea = arm_extabort_type(result); 10924 return 0; 10925 } 10926 10927 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10928 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10929 { 10930 ARMCPU *cpu = ARM_CPU(cs); 10931 CPUARMState *env = &cpu->env; 10932 MemTxAttrs attrs = {}; 10933 MemTxResult result = MEMTX_OK; 10934 AddressSpace *as; 10935 uint64_t data; 10936 10937 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10938 attrs.secure = is_secure; 10939 as = arm_addressspace(cs, attrs); 10940 if (fi->s1ptw) { 10941 return 0; 10942 } 10943 if (regime_translation_big_endian(env, mmu_idx)) { 10944 data = address_space_ldq_be(as, addr, attrs, &result); 10945 } else { 10946 data = address_space_ldq_le(as, addr, attrs, &result); 10947 } 10948 if (result == MEMTX_OK) { 10949 return data; 10950 } 10951 fi->type = ARMFault_SyncExternalOnWalk; 10952 fi->ea = arm_extabort_type(result); 10953 return 0; 10954 } 10955 10956 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10957 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10958 hwaddr *phys_ptr, int *prot, 10959 target_ulong *page_size, 10960 ARMMMUFaultInfo *fi) 10961 { 10962 CPUState *cs = env_cpu(env); 10963 int level = 1; 10964 uint32_t table; 10965 uint32_t desc; 10966 int type; 10967 int ap; 10968 int domain = 0; 10969 int domain_prot; 10970 hwaddr phys_addr; 10971 uint32_t dacr; 10972 10973 /* Pagetable walk. */ 10974 /* Lookup l1 descriptor. */ 10975 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10976 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10977 fi->type = ARMFault_Translation; 10978 goto do_fault; 10979 } 10980 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10981 mmu_idx, fi); 10982 if (fi->type != ARMFault_None) { 10983 goto do_fault; 10984 } 10985 type = (desc & 3); 10986 domain = (desc >> 5) & 0x0f; 10987 if (regime_el(env, mmu_idx) == 1) { 10988 dacr = env->cp15.dacr_ns; 10989 } else { 10990 dacr = env->cp15.dacr_s; 10991 } 10992 domain_prot = (dacr >> (domain * 2)) & 3; 10993 if (type == 0) { 10994 /* Section translation fault. */ 10995 fi->type = ARMFault_Translation; 10996 goto do_fault; 10997 } 10998 if (type != 2) { 10999 level = 2; 11000 } 11001 if (domain_prot == 0 || domain_prot == 2) { 11002 fi->type = ARMFault_Domain; 11003 goto do_fault; 11004 } 11005 if (type == 2) { 11006 /* 1Mb section. */ 11007 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 11008 ap = (desc >> 10) & 3; 11009 *page_size = 1024 * 1024; 11010 } else { 11011 /* Lookup l2 entry. */ 11012 if (type == 1) { 11013 /* Coarse pagetable. */ 11014 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 11015 } else { 11016 /* Fine pagetable. */ 11017 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 11018 } 11019 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11020 mmu_idx, fi); 11021 if (fi->type != ARMFault_None) { 11022 goto do_fault; 11023 } 11024 switch (desc & 3) { 11025 case 0: /* Page translation fault. */ 11026 fi->type = ARMFault_Translation; 11027 goto do_fault; 11028 case 1: /* 64k page. */ 11029 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11030 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 11031 *page_size = 0x10000; 11032 break; 11033 case 2: /* 4k page. */ 11034 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11035 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 11036 *page_size = 0x1000; 11037 break; 11038 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 11039 if (type == 1) { 11040 /* ARMv6/XScale extended small page format */ 11041 if (arm_feature(env, ARM_FEATURE_XSCALE) 11042 || arm_feature(env, ARM_FEATURE_V6)) { 11043 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11044 *page_size = 0x1000; 11045 } else { 11046 /* UNPREDICTABLE in ARMv5; we choose to take a 11047 * page translation fault. 11048 */ 11049 fi->type = ARMFault_Translation; 11050 goto do_fault; 11051 } 11052 } else { 11053 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 11054 *page_size = 0x400; 11055 } 11056 ap = (desc >> 4) & 3; 11057 break; 11058 default: 11059 /* Never happens, but compiler isn't smart enough to tell. */ 11060 abort(); 11061 } 11062 } 11063 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11064 *prot |= *prot ? PAGE_EXEC : 0; 11065 if (!(*prot & (1 << access_type))) { 11066 /* Access permission fault. */ 11067 fi->type = ARMFault_Permission; 11068 goto do_fault; 11069 } 11070 *phys_ptr = phys_addr; 11071 return false; 11072 do_fault: 11073 fi->domain = domain; 11074 fi->level = level; 11075 return true; 11076 } 11077 11078 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 11079 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11080 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 11081 target_ulong *page_size, ARMMMUFaultInfo *fi) 11082 { 11083 CPUState *cs = env_cpu(env); 11084 ARMCPU *cpu = env_archcpu(env); 11085 int level = 1; 11086 uint32_t table; 11087 uint32_t desc; 11088 uint32_t xn; 11089 uint32_t pxn = 0; 11090 int type; 11091 int ap; 11092 int domain = 0; 11093 int domain_prot; 11094 hwaddr phys_addr; 11095 uint32_t dacr; 11096 bool ns; 11097 11098 /* Pagetable walk. */ 11099 /* Lookup l1 descriptor. */ 11100 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 11101 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 11102 fi->type = ARMFault_Translation; 11103 goto do_fault; 11104 } 11105 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11106 mmu_idx, fi); 11107 if (fi->type != ARMFault_None) { 11108 goto do_fault; 11109 } 11110 type = (desc & 3); 11111 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 11112 /* Section translation fault, or attempt to use the encoding 11113 * which is Reserved on implementations without PXN. 11114 */ 11115 fi->type = ARMFault_Translation; 11116 goto do_fault; 11117 } 11118 if ((type == 1) || !(desc & (1 << 18))) { 11119 /* Page or Section. */ 11120 domain = (desc >> 5) & 0x0f; 11121 } 11122 if (regime_el(env, mmu_idx) == 1) { 11123 dacr = env->cp15.dacr_ns; 11124 } else { 11125 dacr = env->cp15.dacr_s; 11126 } 11127 if (type == 1) { 11128 level = 2; 11129 } 11130 domain_prot = (dacr >> (domain * 2)) & 3; 11131 if (domain_prot == 0 || domain_prot == 2) { 11132 /* Section or Page domain fault */ 11133 fi->type = ARMFault_Domain; 11134 goto do_fault; 11135 } 11136 if (type != 1) { 11137 if (desc & (1 << 18)) { 11138 /* Supersection. */ 11139 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 11140 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 11141 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 11142 *page_size = 0x1000000; 11143 } else { 11144 /* Section. */ 11145 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 11146 *page_size = 0x100000; 11147 } 11148 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 11149 xn = desc & (1 << 4); 11150 pxn = desc & 1; 11151 ns = extract32(desc, 19, 1); 11152 } else { 11153 if (cpu_isar_feature(aa32_pxn, cpu)) { 11154 pxn = (desc >> 2) & 1; 11155 } 11156 ns = extract32(desc, 3, 1); 11157 /* Lookup l2 entry. */ 11158 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 11159 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11160 mmu_idx, fi); 11161 if (fi->type != ARMFault_None) { 11162 goto do_fault; 11163 } 11164 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 11165 switch (desc & 3) { 11166 case 0: /* Page translation fault. */ 11167 fi->type = ARMFault_Translation; 11168 goto do_fault; 11169 case 1: /* 64k page. */ 11170 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11171 xn = desc & (1 << 15); 11172 *page_size = 0x10000; 11173 break; 11174 case 2: case 3: /* 4k page. */ 11175 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11176 xn = desc & 1; 11177 *page_size = 0x1000; 11178 break; 11179 default: 11180 /* Never happens, but compiler isn't smart enough to tell. */ 11181 abort(); 11182 } 11183 } 11184 if (domain_prot == 3) { 11185 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11186 } else { 11187 if (pxn && !regime_is_user(env, mmu_idx)) { 11188 xn = 1; 11189 } 11190 if (xn && access_type == MMU_INST_FETCH) { 11191 fi->type = ARMFault_Permission; 11192 goto do_fault; 11193 } 11194 11195 if (arm_feature(env, ARM_FEATURE_V6K) && 11196 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 11197 /* The simplified model uses AP[0] as an access control bit. */ 11198 if ((ap & 1) == 0) { 11199 /* Access flag fault. */ 11200 fi->type = ARMFault_AccessFlag; 11201 goto do_fault; 11202 } 11203 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 11204 } else { 11205 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11206 } 11207 if (*prot && !xn) { 11208 *prot |= PAGE_EXEC; 11209 } 11210 if (!(*prot & (1 << access_type))) { 11211 /* Access permission fault. */ 11212 fi->type = ARMFault_Permission; 11213 goto do_fault; 11214 } 11215 } 11216 if (ns) { 11217 /* The NS bit will (as required by the architecture) have no effect if 11218 * the CPU doesn't support TZ or this is a non-secure translation 11219 * regime, because the attribute will already be non-secure. 11220 */ 11221 attrs->secure = false; 11222 } 11223 *phys_ptr = phys_addr; 11224 return false; 11225 do_fault: 11226 fi->domain = domain; 11227 fi->level = level; 11228 return true; 11229 } 11230 11231 /* 11232 * check_s2_mmu_setup 11233 * @cpu: ARMCPU 11234 * @is_aa64: True if the translation regime is in AArch64 state 11235 * @startlevel: Suggested starting level 11236 * @inputsize: Bitsize of IPAs 11237 * @stride: Page-table stride (See the ARM ARM) 11238 * 11239 * Returns true if the suggested S2 translation parameters are OK and 11240 * false otherwise. 11241 */ 11242 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 11243 int inputsize, int stride) 11244 { 11245 const int grainsize = stride + 3; 11246 int startsizecheck; 11247 11248 /* Negative levels are never allowed. */ 11249 if (level < 0) { 11250 return false; 11251 } 11252 11253 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 11254 if (startsizecheck < 1 || startsizecheck > stride + 4) { 11255 return false; 11256 } 11257 11258 if (is_aa64) { 11259 CPUARMState *env = &cpu->env; 11260 unsigned int pamax = arm_pamax(cpu); 11261 11262 switch (stride) { 11263 case 13: /* 64KB Pages. */ 11264 if (level == 0 || (level == 1 && pamax <= 42)) { 11265 return false; 11266 } 11267 break; 11268 case 11: /* 16KB Pages. */ 11269 if (level == 0 || (level == 1 && pamax <= 40)) { 11270 return false; 11271 } 11272 break; 11273 case 9: /* 4KB Pages. */ 11274 if (level == 0 && pamax <= 42) { 11275 return false; 11276 } 11277 break; 11278 default: 11279 g_assert_not_reached(); 11280 } 11281 11282 /* Inputsize checks. */ 11283 if (inputsize > pamax && 11284 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 11285 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 11286 return false; 11287 } 11288 } else { 11289 /* AArch32 only supports 4KB pages. Assert on that. */ 11290 assert(stride == 9); 11291 11292 if (level == 0) { 11293 return false; 11294 } 11295 } 11296 return true; 11297 } 11298 11299 /* Translate from the 4-bit stage 2 representation of 11300 * memory attributes (without cache-allocation hints) to 11301 * the 8-bit representation of the stage 1 MAIR registers 11302 * (which includes allocation hints). 11303 * 11304 * ref: shared/translation/attrs/S2AttrDecode() 11305 * .../S2ConvertAttrsHints() 11306 */ 11307 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11308 { 11309 uint8_t hiattr = extract32(s2attrs, 2, 2); 11310 uint8_t loattr = extract32(s2attrs, 0, 2); 11311 uint8_t hihint = 0, lohint = 0; 11312 11313 if (hiattr != 0) { /* normal memory */ 11314 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 11315 hiattr = loattr = 1; /* non-cacheable */ 11316 } else { 11317 if (hiattr != 1) { /* Write-through or write-back */ 11318 hihint = 3; /* RW allocate */ 11319 } 11320 if (loattr != 1) { /* Write-through or write-back */ 11321 lohint = 3; /* RW allocate */ 11322 } 11323 } 11324 } 11325 11326 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11327 } 11328 #endif /* !CONFIG_USER_ONLY */ 11329 11330 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11331 { 11332 if (regime_has_2_ranges(mmu_idx)) { 11333 return extract64(tcr, 37, 2); 11334 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11335 return 0; /* VTCR_EL2 */ 11336 } else { 11337 /* Replicate the single TBI bit so we always have 2 bits. */ 11338 return extract32(tcr, 20, 1) * 3; 11339 } 11340 } 11341 11342 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11343 { 11344 if (regime_has_2_ranges(mmu_idx)) { 11345 return extract64(tcr, 51, 2); 11346 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11347 return 0; /* VTCR_EL2 */ 11348 } else { 11349 /* Replicate the single TBID bit so we always have 2 bits. */ 11350 return extract32(tcr, 29, 1) * 3; 11351 } 11352 } 11353 11354 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11355 { 11356 if (regime_has_2_ranges(mmu_idx)) { 11357 return extract64(tcr, 57, 2); 11358 } else { 11359 /* Replicate the single TCMA bit so we always have 2 bits. */ 11360 return extract32(tcr, 30, 1) * 3; 11361 } 11362 } 11363 11364 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11365 ARMMMUIdx mmu_idx, bool data) 11366 { 11367 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11368 bool epd, hpd, using16k, using64k; 11369 int select, tsz, tbi, max_tsz; 11370 11371 if (!regime_has_2_ranges(mmu_idx)) { 11372 select = 0; 11373 tsz = extract32(tcr, 0, 6); 11374 using64k = extract32(tcr, 14, 1); 11375 using16k = extract32(tcr, 15, 1); 11376 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11377 /* VTCR_EL2 */ 11378 hpd = false; 11379 } else { 11380 hpd = extract32(tcr, 24, 1); 11381 } 11382 epd = false; 11383 } else { 11384 /* 11385 * Bit 55 is always between the two regions, and is canonical for 11386 * determining if address tagging is enabled. 11387 */ 11388 select = extract64(va, 55, 1); 11389 if (!select) { 11390 tsz = extract32(tcr, 0, 6); 11391 epd = extract32(tcr, 7, 1); 11392 using64k = extract32(tcr, 14, 1); 11393 using16k = extract32(tcr, 15, 1); 11394 hpd = extract64(tcr, 41, 1); 11395 } else { 11396 int tg = extract32(tcr, 30, 2); 11397 using16k = tg == 1; 11398 using64k = tg == 3; 11399 tsz = extract32(tcr, 16, 6); 11400 epd = extract32(tcr, 23, 1); 11401 hpd = extract64(tcr, 42, 1); 11402 } 11403 } 11404 11405 if (cpu_isar_feature(aa64_st, env_archcpu(env))) { 11406 max_tsz = 48 - using64k; 11407 } else { 11408 max_tsz = 39; 11409 } 11410 11411 tsz = MIN(tsz, max_tsz); 11412 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 11413 11414 /* Present TBI as a composite with TBID. */ 11415 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11416 if (!data) { 11417 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11418 } 11419 tbi = (tbi >> select) & 1; 11420 11421 return (ARMVAParameters) { 11422 .tsz = tsz, 11423 .select = select, 11424 .tbi = tbi, 11425 .epd = epd, 11426 .hpd = hpd, 11427 .using16k = using16k, 11428 .using64k = using64k, 11429 }; 11430 } 11431 11432 #ifndef CONFIG_USER_ONLY 11433 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11434 ARMMMUIdx mmu_idx) 11435 { 11436 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11437 uint32_t el = regime_el(env, mmu_idx); 11438 int select, tsz; 11439 bool epd, hpd; 11440 11441 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11442 11443 if (mmu_idx == ARMMMUIdx_Stage2) { 11444 /* VTCR */ 11445 bool sext = extract32(tcr, 4, 1); 11446 bool sign = extract32(tcr, 3, 1); 11447 11448 /* 11449 * If the sign-extend bit is not the same as t0sz[3], the result 11450 * is unpredictable. Flag this as a guest error. 11451 */ 11452 if (sign != sext) { 11453 qemu_log_mask(LOG_GUEST_ERROR, 11454 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11455 } 11456 tsz = sextract32(tcr, 0, 4) + 8; 11457 select = 0; 11458 hpd = false; 11459 epd = false; 11460 } else if (el == 2) { 11461 /* HTCR */ 11462 tsz = extract32(tcr, 0, 3); 11463 select = 0; 11464 hpd = extract64(tcr, 24, 1); 11465 epd = false; 11466 } else { 11467 int t0sz = extract32(tcr, 0, 3); 11468 int t1sz = extract32(tcr, 16, 3); 11469 11470 if (t1sz == 0) { 11471 select = va > (0xffffffffu >> t0sz); 11472 } else { 11473 /* Note that we will detect errors later. */ 11474 select = va >= ~(0xffffffffu >> t1sz); 11475 } 11476 if (!select) { 11477 tsz = t0sz; 11478 epd = extract32(tcr, 7, 1); 11479 hpd = extract64(tcr, 41, 1); 11480 } else { 11481 tsz = t1sz; 11482 epd = extract32(tcr, 23, 1); 11483 hpd = extract64(tcr, 42, 1); 11484 } 11485 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11486 hpd &= extract32(tcr, 6, 1); 11487 } 11488 11489 return (ARMVAParameters) { 11490 .tsz = tsz, 11491 .select = select, 11492 .epd = epd, 11493 .hpd = hpd, 11494 }; 11495 } 11496 11497 /** 11498 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11499 * 11500 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11501 * prot and page_size may not be filled in, and the populated fsr value provides 11502 * information on why the translation aborted, in the format of a long-format 11503 * DFSR/IFSR fault register, with the following caveats: 11504 * * the WnR bit is never set (the caller must do this). 11505 * 11506 * @env: CPUARMState 11507 * @address: virtual address to get physical address for 11508 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11509 * @mmu_idx: MMU index indicating required translation regime 11510 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11511 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11512 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11513 * @phys_ptr: set to the physical address corresponding to the virtual address 11514 * @attrs: set to the memory transaction attributes to use 11515 * @prot: set to the permissions for the page containing phys_ptr 11516 * @page_size_ptr: set to the size of the page containing phys_ptr 11517 * @fi: set to fault info if the translation fails 11518 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11519 */ 11520 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11521 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11522 bool s1_is_el0, 11523 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11524 target_ulong *page_size_ptr, 11525 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11526 { 11527 ARMCPU *cpu = env_archcpu(env); 11528 CPUState *cs = CPU(cpu); 11529 /* Read an LPAE long-descriptor translation table. */ 11530 ARMFaultType fault_type = ARMFault_Translation; 11531 uint32_t level; 11532 ARMVAParameters param; 11533 uint64_t ttbr; 11534 hwaddr descaddr, indexmask, indexmask_grainsize; 11535 uint32_t tableattrs; 11536 target_ulong page_size; 11537 uint32_t attrs; 11538 int32_t stride; 11539 int addrsize, inputsize; 11540 TCR *tcr = regime_tcr(env, mmu_idx); 11541 int ap, ns, xn, pxn; 11542 uint32_t el = regime_el(env, mmu_idx); 11543 uint64_t descaddrmask; 11544 bool aarch64 = arm_el_is_aa64(env, el); 11545 bool guarded = false; 11546 11547 /* TODO: This code does not support shareability levels. */ 11548 if (aarch64) { 11549 param = aa64_va_parameters(env, address, mmu_idx, 11550 access_type != MMU_INST_FETCH); 11551 level = 0; 11552 addrsize = 64 - 8 * param.tbi; 11553 inputsize = 64 - param.tsz; 11554 } else { 11555 param = aa32_va_parameters(env, address, mmu_idx); 11556 level = 1; 11557 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11558 inputsize = addrsize - param.tsz; 11559 } 11560 11561 /* 11562 * We determined the region when collecting the parameters, but we 11563 * have not yet validated that the address is valid for the region. 11564 * Extract the top bits and verify that they all match select. 11565 * 11566 * For aa32, if inputsize == addrsize, then we have selected the 11567 * region by exclusion in aa32_va_parameters and there is no more 11568 * validation to do here. 11569 */ 11570 if (inputsize < addrsize) { 11571 target_ulong top_bits = sextract64(address, inputsize, 11572 addrsize - inputsize); 11573 if (-top_bits != param.select) { 11574 /* The gap between the two regions is a Translation fault */ 11575 fault_type = ARMFault_Translation; 11576 goto do_fault; 11577 } 11578 } 11579 11580 if (param.using64k) { 11581 stride = 13; 11582 } else if (param.using16k) { 11583 stride = 11; 11584 } else { 11585 stride = 9; 11586 } 11587 11588 /* Note that QEMU ignores shareability and cacheability attributes, 11589 * so we don't need to do anything with the SH, ORGN, IRGN fields 11590 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11591 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11592 * implement any ASID-like capability so we can ignore it (instead 11593 * we will always flush the TLB any time the ASID is changed). 11594 */ 11595 ttbr = regime_ttbr(env, mmu_idx, param.select); 11596 11597 /* Here we should have set up all the parameters for the translation: 11598 * inputsize, ttbr, epd, stride, tbi 11599 */ 11600 11601 if (param.epd) { 11602 /* Translation table walk disabled => Translation fault on TLB miss 11603 * Note: This is always 0 on 64-bit EL2 and EL3. 11604 */ 11605 goto do_fault; 11606 } 11607 11608 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11609 /* The starting level depends on the virtual address size (which can 11610 * be up to 48 bits) and the translation granule size. It indicates 11611 * the number of strides (stride bits at a time) needed to 11612 * consume the bits of the input address. In the pseudocode this is: 11613 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11614 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11615 * our 'stride + 3' and 'stride' is our 'stride'. 11616 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11617 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11618 * = 4 - (inputsize - 4) / stride; 11619 */ 11620 level = 4 - (inputsize - 4) / stride; 11621 } else { 11622 /* For stage 2 translations the starting level is specified by the 11623 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11624 */ 11625 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11626 uint32_t startlevel; 11627 bool ok; 11628 11629 if (!aarch64 || stride == 9) { 11630 /* AArch32 or 4KB pages */ 11631 startlevel = 2 - sl0; 11632 11633 if (cpu_isar_feature(aa64_st, cpu)) { 11634 startlevel &= 3; 11635 } 11636 } else { 11637 /* 16KB or 64KB pages */ 11638 startlevel = 3 - sl0; 11639 } 11640 11641 /* Check that the starting level is valid. */ 11642 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11643 inputsize, stride); 11644 if (!ok) { 11645 fault_type = ARMFault_Translation; 11646 goto do_fault; 11647 } 11648 level = startlevel; 11649 } 11650 11651 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 11652 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 11653 11654 /* Now we can extract the actual base address from the TTBR */ 11655 descaddr = extract64(ttbr, 0, 48); 11656 /* 11657 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11658 * and also to mask out CnP (bit 0) which could validly be non-zero. 11659 */ 11660 descaddr &= ~indexmask; 11661 11662 /* The address field in the descriptor goes up to bit 39 for ARMv7 11663 * but up to bit 47 for ARMv8, but we use the descaddrmask 11664 * up to bit 39 for AArch32, because we don't need other bits in that case 11665 * to construct next descriptor address (anyway they should be all zeroes). 11666 */ 11667 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 11668 ~indexmask_grainsize; 11669 11670 /* Secure accesses start with the page table in secure memory and 11671 * can be downgraded to non-secure at any step. Non-secure accesses 11672 * remain non-secure. We implement this by just ORing in the NSTable/NS 11673 * bits at each step. 11674 */ 11675 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11676 for (;;) { 11677 uint64_t descriptor; 11678 bool nstable; 11679 11680 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11681 descaddr &= ~7ULL; 11682 nstable = extract32(tableattrs, 4, 1); 11683 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11684 if (fi->type != ARMFault_None) { 11685 goto do_fault; 11686 } 11687 11688 if (!(descriptor & 1) || 11689 (!(descriptor & 2) && (level == 3))) { 11690 /* Invalid, or the Reserved level 3 encoding */ 11691 goto do_fault; 11692 } 11693 descaddr = descriptor & descaddrmask; 11694 11695 if ((descriptor & 2) && (level < 3)) { 11696 /* Table entry. The top five bits are attributes which may 11697 * propagate down through lower levels of the table (and 11698 * which are all arranged so that 0 means "no effect", so 11699 * we can gather them up by ORing in the bits at each level). 11700 */ 11701 tableattrs |= extract64(descriptor, 59, 5); 11702 level++; 11703 indexmask = indexmask_grainsize; 11704 continue; 11705 } 11706 /* Block entry at level 1 or 2, or page entry at level 3. 11707 * These are basically the same thing, although the number 11708 * of bits we pull in from the vaddr varies. 11709 */ 11710 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11711 descaddr |= (address & (page_size - 1)); 11712 /* Extract attributes from the descriptor */ 11713 attrs = extract64(descriptor, 2, 10) 11714 | (extract64(descriptor, 52, 12) << 10); 11715 11716 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11717 /* Stage 2 table descriptors do not include any attribute fields */ 11718 break; 11719 } 11720 /* Merge in attributes from table descriptors */ 11721 attrs |= nstable << 3; /* NS */ 11722 guarded = extract64(descriptor, 50, 1); /* GP */ 11723 if (param.hpd) { 11724 /* HPD disables all the table attributes except NSTable. */ 11725 break; 11726 } 11727 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11728 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11729 * means "force PL1 access only", which means forcing AP[1] to 0. 11730 */ 11731 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11732 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11733 break; 11734 } 11735 /* Here descaddr is the final physical address, and attributes 11736 * are all in attrs. 11737 */ 11738 fault_type = ARMFault_AccessFlag; 11739 if ((attrs & (1 << 8)) == 0) { 11740 /* Access flag */ 11741 goto do_fault; 11742 } 11743 11744 ap = extract32(attrs, 4, 2); 11745 11746 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11747 ns = mmu_idx == ARMMMUIdx_Stage2; 11748 xn = extract32(attrs, 11, 2); 11749 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11750 } else { 11751 ns = extract32(attrs, 3, 1); 11752 xn = extract32(attrs, 12, 1); 11753 pxn = extract32(attrs, 11, 1); 11754 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11755 } 11756 11757 fault_type = ARMFault_Permission; 11758 if (!(*prot & (1 << access_type))) { 11759 goto do_fault; 11760 } 11761 11762 if (ns) { 11763 /* The NS bit will (as required by the architecture) have no effect if 11764 * the CPU doesn't support TZ or this is a non-secure translation 11765 * regime, because the attribute will already be non-secure. 11766 */ 11767 txattrs->secure = false; 11768 } 11769 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11770 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11771 arm_tlb_bti_gp(txattrs) = true; 11772 } 11773 11774 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11775 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11776 } else { 11777 /* Index into MAIR registers for cache attributes */ 11778 uint8_t attrindx = extract32(attrs, 0, 3); 11779 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11780 assert(attrindx <= 7); 11781 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11782 } 11783 cacheattrs->shareability = extract32(attrs, 6, 2); 11784 11785 *phys_ptr = descaddr; 11786 *page_size_ptr = page_size; 11787 return false; 11788 11789 do_fault: 11790 fi->type = fault_type; 11791 fi->level = level; 11792 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11793 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11794 mmu_idx == ARMMMUIdx_Stage2_S); 11795 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11796 return true; 11797 } 11798 11799 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11800 ARMMMUIdx mmu_idx, 11801 int32_t address, int *prot) 11802 { 11803 if (!arm_feature(env, ARM_FEATURE_M)) { 11804 *prot = PAGE_READ | PAGE_WRITE; 11805 switch (address) { 11806 case 0xF0000000 ... 0xFFFFFFFF: 11807 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11808 /* hivecs execing is ok */ 11809 *prot |= PAGE_EXEC; 11810 } 11811 break; 11812 case 0x00000000 ... 0x7FFFFFFF: 11813 *prot |= PAGE_EXEC; 11814 break; 11815 } 11816 } else { 11817 /* Default system address map for M profile cores. 11818 * The architecture specifies which regions are execute-never; 11819 * at the MPU level no other checks are defined. 11820 */ 11821 switch (address) { 11822 case 0x00000000 ... 0x1fffffff: /* ROM */ 11823 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11824 case 0x60000000 ... 0x7fffffff: /* RAM */ 11825 case 0x80000000 ... 0x9fffffff: /* RAM */ 11826 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11827 break; 11828 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11829 case 0xa0000000 ... 0xbfffffff: /* Device */ 11830 case 0xc0000000 ... 0xdfffffff: /* Device */ 11831 case 0xe0000000 ... 0xffffffff: /* System */ 11832 *prot = PAGE_READ | PAGE_WRITE; 11833 break; 11834 default: 11835 g_assert_not_reached(); 11836 } 11837 } 11838 } 11839 11840 static bool pmsav7_use_background_region(ARMCPU *cpu, 11841 ARMMMUIdx mmu_idx, bool is_user) 11842 { 11843 /* Return true if we should use the default memory map as a 11844 * "background" region if there are no hits against any MPU regions. 11845 */ 11846 CPUARMState *env = &cpu->env; 11847 11848 if (is_user) { 11849 return false; 11850 } 11851 11852 if (arm_feature(env, ARM_FEATURE_M)) { 11853 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11854 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11855 } else { 11856 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11857 } 11858 } 11859 11860 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11861 { 11862 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11863 return arm_feature(env, ARM_FEATURE_M) && 11864 extract32(address, 20, 12) == 0xe00; 11865 } 11866 11867 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11868 { 11869 /* True if address is in the M profile system region 11870 * 0xe0000000 - 0xffffffff 11871 */ 11872 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11873 } 11874 11875 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11876 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11877 hwaddr *phys_ptr, int *prot, 11878 target_ulong *page_size, 11879 ARMMMUFaultInfo *fi) 11880 { 11881 ARMCPU *cpu = env_archcpu(env); 11882 int n; 11883 bool is_user = regime_is_user(env, mmu_idx); 11884 11885 *phys_ptr = address; 11886 *page_size = TARGET_PAGE_SIZE; 11887 *prot = 0; 11888 11889 if (regime_translation_disabled(env, mmu_idx) || 11890 m_is_ppb_region(env, address)) { 11891 /* MPU disabled or M profile PPB access: use default memory map. 11892 * The other case which uses the default memory map in the 11893 * v7M ARM ARM pseudocode is exception vector reads from the vector 11894 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11895 * which always does a direct read using address_space_ldl(), rather 11896 * than going via this function, so we don't need to check that here. 11897 */ 11898 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11899 } else { /* MPU enabled */ 11900 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11901 /* region search */ 11902 uint32_t base = env->pmsav7.drbar[n]; 11903 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11904 uint32_t rmask; 11905 bool srdis = false; 11906 11907 if (!(env->pmsav7.drsr[n] & 0x1)) { 11908 continue; 11909 } 11910 11911 if (!rsize) { 11912 qemu_log_mask(LOG_GUEST_ERROR, 11913 "DRSR[%d]: Rsize field cannot be 0\n", n); 11914 continue; 11915 } 11916 rsize++; 11917 rmask = (1ull << rsize) - 1; 11918 11919 if (base & rmask) { 11920 qemu_log_mask(LOG_GUEST_ERROR, 11921 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11922 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11923 n, base, rmask); 11924 continue; 11925 } 11926 11927 if (address < base || address > base + rmask) { 11928 /* 11929 * Address not in this region. We must check whether the 11930 * region covers addresses in the same page as our address. 11931 * In that case we must not report a size that covers the 11932 * whole page for a subsequent hit against a different MPU 11933 * region or the background region, because it would result in 11934 * incorrect TLB hits for subsequent accesses to addresses that 11935 * are in this MPU region. 11936 */ 11937 if (ranges_overlap(base, rmask, 11938 address & TARGET_PAGE_MASK, 11939 TARGET_PAGE_SIZE)) { 11940 *page_size = 1; 11941 } 11942 continue; 11943 } 11944 11945 /* Region matched */ 11946 11947 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11948 int i, snd; 11949 uint32_t srdis_mask; 11950 11951 rsize -= 3; /* sub region size (power of 2) */ 11952 snd = ((address - base) >> rsize) & 0x7; 11953 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11954 11955 srdis_mask = srdis ? 0x3 : 0x0; 11956 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11957 /* This will check in groups of 2, 4 and then 8, whether 11958 * the subregion bits are consistent. rsize is incremented 11959 * back up to give the region size, considering consistent 11960 * adjacent subregions as one region. Stop testing if rsize 11961 * is already big enough for an entire QEMU page. 11962 */ 11963 int snd_rounded = snd & ~(i - 1); 11964 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11965 snd_rounded + 8, i); 11966 if (srdis_mask ^ srdis_multi) { 11967 break; 11968 } 11969 srdis_mask = (srdis_mask << i) | srdis_mask; 11970 rsize++; 11971 } 11972 } 11973 if (srdis) { 11974 continue; 11975 } 11976 if (rsize < TARGET_PAGE_BITS) { 11977 *page_size = 1 << rsize; 11978 } 11979 break; 11980 } 11981 11982 if (n == -1) { /* no hits */ 11983 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11984 /* background fault */ 11985 fi->type = ARMFault_Background; 11986 return true; 11987 } 11988 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11989 } else { /* a MPU hit! */ 11990 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11991 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11992 11993 if (m_is_system_region(env, address)) { 11994 /* System space is always execute never */ 11995 xn = 1; 11996 } 11997 11998 if (is_user) { /* User mode AP bit decoding */ 11999 switch (ap) { 12000 case 0: 12001 case 1: 12002 case 5: 12003 break; /* no access */ 12004 case 3: 12005 *prot |= PAGE_WRITE; 12006 /* fall through */ 12007 case 2: 12008 case 6: 12009 *prot |= PAGE_READ | PAGE_EXEC; 12010 break; 12011 case 7: 12012 /* for v7M, same as 6; for R profile a reserved value */ 12013 if (arm_feature(env, ARM_FEATURE_M)) { 12014 *prot |= PAGE_READ | PAGE_EXEC; 12015 break; 12016 } 12017 /* fall through */ 12018 default: 12019 qemu_log_mask(LOG_GUEST_ERROR, 12020 "DRACR[%d]: Bad value for AP bits: 0x%" 12021 PRIx32 "\n", n, ap); 12022 } 12023 } else { /* Priv. mode AP bits decoding */ 12024 switch (ap) { 12025 case 0: 12026 break; /* no access */ 12027 case 1: 12028 case 2: 12029 case 3: 12030 *prot |= PAGE_WRITE; 12031 /* fall through */ 12032 case 5: 12033 case 6: 12034 *prot |= PAGE_READ | PAGE_EXEC; 12035 break; 12036 case 7: 12037 /* for v7M, same as 6; for R profile a reserved value */ 12038 if (arm_feature(env, ARM_FEATURE_M)) { 12039 *prot |= PAGE_READ | PAGE_EXEC; 12040 break; 12041 } 12042 /* fall through */ 12043 default: 12044 qemu_log_mask(LOG_GUEST_ERROR, 12045 "DRACR[%d]: Bad value for AP bits: 0x%" 12046 PRIx32 "\n", n, ap); 12047 } 12048 } 12049 12050 /* execute never */ 12051 if (xn) { 12052 *prot &= ~PAGE_EXEC; 12053 } 12054 } 12055 } 12056 12057 fi->type = ARMFault_Permission; 12058 fi->level = 1; 12059 return !(*prot & (1 << access_type)); 12060 } 12061 12062 static bool v8m_is_sau_exempt(CPUARMState *env, 12063 uint32_t address, MMUAccessType access_type) 12064 { 12065 /* The architecture specifies that certain address ranges are 12066 * exempt from v8M SAU/IDAU checks. 12067 */ 12068 return 12069 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 12070 (address >= 0xe0000000 && address <= 0xe0002fff) || 12071 (address >= 0xe000e000 && address <= 0xe000efff) || 12072 (address >= 0xe002e000 && address <= 0xe002efff) || 12073 (address >= 0xe0040000 && address <= 0xe0041fff) || 12074 (address >= 0xe00ff000 && address <= 0xe00fffff); 12075 } 12076 12077 void v8m_security_lookup(CPUARMState *env, uint32_t address, 12078 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12079 V8M_SAttributes *sattrs) 12080 { 12081 /* Look up the security attributes for this address. Compare the 12082 * pseudocode SecurityCheck() function. 12083 * We assume the caller has zero-initialized *sattrs. 12084 */ 12085 ARMCPU *cpu = env_archcpu(env); 12086 int r; 12087 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 12088 int idau_region = IREGION_NOTVALID; 12089 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12090 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12091 12092 if (cpu->idau) { 12093 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 12094 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 12095 12096 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 12097 &idau_nsc); 12098 } 12099 12100 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 12101 /* 0xf0000000..0xffffffff is always S for insn fetches */ 12102 return; 12103 } 12104 12105 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 12106 sattrs->ns = !regime_is_secure(env, mmu_idx); 12107 return; 12108 } 12109 12110 if (idau_region != IREGION_NOTVALID) { 12111 sattrs->irvalid = true; 12112 sattrs->iregion = idau_region; 12113 } 12114 12115 switch (env->sau.ctrl & 3) { 12116 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 12117 break; 12118 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 12119 sattrs->ns = true; 12120 break; 12121 default: /* SAU.ENABLE == 1 */ 12122 for (r = 0; r < cpu->sau_sregion; r++) { 12123 if (env->sau.rlar[r] & 1) { 12124 uint32_t base = env->sau.rbar[r] & ~0x1f; 12125 uint32_t limit = env->sau.rlar[r] | 0x1f; 12126 12127 if (base <= address && limit >= address) { 12128 if (base > addr_page_base || limit < addr_page_limit) { 12129 sattrs->subpage = true; 12130 } 12131 if (sattrs->srvalid) { 12132 /* If we hit in more than one region then we must report 12133 * as Secure, not NS-Callable, with no valid region 12134 * number info. 12135 */ 12136 sattrs->ns = false; 12137 sattrs->nsc = false; 12138 sattrs->sregion = 0; 12139 sattrs->srvalid = false; 12140 break; 12141 } else { 12142 if (env->sau.rlar[r] & 2) { 12143 sattrs->nsc = true; 12144 } else { 12145 sattrs->ns = true; 12146 } 12147 sattrs->srvalid = true; 12148 sattrs->sregion = r; 12149 } 12150 } else { 12151 /* 12152 * Address not in this region. We must check whether the 12153 * region covers addresses in the same page as our address. 12154 * In that case we must not report a size that covers the 12155 * whole page for a subsequent hit against a different MPU 12156 * region or the background region, because it would result 12157 * in incorrect TLB hits for subsequent accesses to 12158 * addresses that are in this MPU region. 12159 */ 12160 if (limit >= base && 12161 ranges_overlap(base, limit - base + 1, 12162 addr_page_base, 12163 TARGET_PAGE_SIZE)) { 12164 sattrs->subpage = true; 12165 } 12166 } 12167 } 12168 } 12169 break; 12170 } 12171 12172 /* 12173 * The IDAU will override the SAU lookup results if it specifies 12174 * higher security than the SAU does. 12175 */ 12176 if (!idau_ns) { 12177 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 12178 sattrs->ns = false; 12179 sattrs->nsc = idau_nsc; 12180 } 12181 } 12182 } 12183 12184 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 12185 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12186 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12187 int *prot, bool *is_subpage, 12188 ARMMMUFaultInfo *fi, uint32_t *mregion) 12189 { 12190 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 12191 * that a full phys-to-virt translation does). 12192 * mregion is (if not NULL) set to the region number which matched, 12193 * or -1 if no region number is returned (MPU off, address did not 12194 * hit a region, address hit in multiple regions). 12195 * We set is_subpage to true if the region hit doesn't cover the 12196 * entire TARGET_PAGE the address is within. 12197 */ 12198 ARMCPU *cpu = env_archcpu(env); 12199 bool is_user = regime_is_user(env, mmu_idx); 12200 uint32_t secure = regime_is_secure(env, mmu_idx); 12201 int n; 12202 int matchregion = -1; 12203 bool hit = false; 12204 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12205 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12206 12207 *is_subpage = false; 12208 *phys_ptr = address; 12209 *prot = 0; 12210 if (mregion) { 12211 *mregion = -1; 12212 } 12213 12214 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 12215 * was an exception vector read from the vector table (which is always 12216 * done using the default system address map), because those accesses 12217 * are done in arm_v7m_load_vector(), which always does a direct 12218 * read using address_space_ldl(), rather than going via this function. 12219 */ 12220 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 12221 hit = true; 12222 } else if (m_is_ppb_region(env, address)) { 12223 hit = true; 12224 } else { 12225 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12226 hit = true; 12227 } 12228 12229 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12230 /* region search */ 12231 /* Note that the base address is bits [31:5] from the register 12232 * with bits [4:0] all zeroes, but the limit address is bits 12233 * [31:5] from the register with bits [4:0] all ones. 12234 */ 12235 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 12236 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12237 12238 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12239 /* Region disabled */ 12240 continue; 12241 } 12242 12243 if (address < base || address > limit) { 12244 /* 12245 * Address not in this region. We must check whether the 12246 * region covers addresses in the same page as our address. 12247 * In that case we must not report a size that covers the 12248 * whole page for a subsequent hit against a different MPU 12249 * region or the background region, because it would result in 12250 * incorrect TLB hits for subsequent accesses to addresses that 12251 * are in this MPU region. 12252 */ 12253 if (limit >= base && 12254 ranges_overlap(base, limit - base + 1, 12255 addr_page_base, 12256 TARGET_PAGE_SIZE)) { 12257 *is_subpage = true; 12258 } 12259 continue; 12260 } 12261 12262 if (base > addr_page_base || limit < addr_page_limit) { 12263 *is_subpage = true; 12264 } 12265 12266 if (matchregion != -1) { 12267 /* Multiple regions match -- always a failure (unlike 12268 * PMSAv7 where highest-numbered-region wins) 12269 */ 12270 fi->type = ARMFault_Permission; 12271 fi->level = 1; 12272 return true; 12273 } 12274 12275 matchregion = n; 12276 hit = true; 12277 } 12278 } 12279 12280 if (!hit) { 12281 /* background fault */ 12282 fi->type = ARMFault_Background; 12283 return true; 12284 } 12285 12286 if (matchregion == -1) { 12287 /* hit using the background region */ 12288 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12289 } else { 12290 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12291 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12292 bool pxn = false; 12293 12294 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 12295 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 12296 } 12297 12298 if (m_is_system_region(env, address)) { 12299 /* System space is always execute never */ 12300 xn = 1; 12301 } 12302 12303 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12304 if (*prot && !xn && !(pxn && !is_user)) { 12305 *prot |= PAGE_EXEC; 12306 } 12307 /* We don't need to look the attribute up in the MAIR0/MAIR1 12308 * registers because that only tells us about cacheability. 12309 */ 12310 if (mregion) { 12311 *mregion = matchregion; 12312 } 12313 } 12314 12315 fi->type = ARMFault_Permission; 12316 fi->level = 1; 12317 return !(*prot & (1 << access_type)); 12318 } 12319 12320 12321 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12322 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12323 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12324 int *prot, target_ulong *page_size, 12325 ARMMMUFaultInfo *fi) 12326 { 12327 uint32_t secure = regime_is_secure(env, mmu_idx); 12328 V8M_SAttributes sattrs = {}; 12329 bool ret; 12330 bool mpu_is_subpage; 12331 12332 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12333 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12334 if (access_type == MMU_INST_FETCH) { 12335 /* Instruction fetches always use the MMU bank and the 12336 * transaction attribute determined by the fetch address, 12337 * regardless of CPU state. This is painful for QEMU 12338 * to handle, because it would mean we need to encode 12339 * into the mmu_idx not just the (user, negpri) information 12340 * for the current security state but also that for the 12341 * other security state, which would balloon the number 12342 * of mmu_idx values needed alarmingly. 12343 * Fortunately we can avoid this because it's not actually 12344 * possible to arbitrarily execute code from memory with 12345 * the wrong security attribute: it will always generate 12346 * an exception of some kind or another, apart from the 12347 * special case of an NS CPU executing an SG instruction 12348 * in S&NSC memory. So we always just fail the translation 12349 * here and sort things out in the exception handler 12350 * (including possibly emulating an SG instruction). 12351 */ 12352 if (sattrs.ns != !secure) { 12353 if (sattrs.nsc) { 12354 fi->type = ARMFault_QEMU_NSCExec; 12355 } else { 12356 fi->type = ARMFault_QEMU_SFault; 12357 } 12358 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12359 *phys_ptr = address; 12360 *prot = 0; 12361 return true; 12362 } 12363 } else { 12364 /* For data accesses we always use the MMU bank indicated 12365 * by the current CPU state, but the security attributes 12366 * might downgrade a secure access to nonsecure. 12367 */ 12368 if (sattrs.ns) { 12369 txattrs->secure = false; 12370 } else if (!secure) { 12371 /* NS access to S memory must fault. 12372 * Architecturally we should first check whether the 12373 * MPU information for this address indicates that we 12374 * are doing an unaligned access to Device memory, which 12375 * should generate a UsageFault instead. QEMU does not 12376 * currently check for that kind of unaligned access though. 12377 * If we added it we would need to do so as a special case 12378 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12379 */ 12380 fi->type = ARMFault_QEMU_SFault; 12381 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12382 *phys_ptr = address; 12383 *prot = 0; 12384 return true; 12385 } 12386 } 12387 } 12388 12389 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12390 txattrs, prot, &mpu_is_subpage, fi, NULL); 12391 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12392 return ret; 12393 } 12394 12395 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12396 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12397 hwaddr *phys_ptr, int *prot, 12398 ARMMMUFaultInfo *fi) 12399 { 12400 int n; 12401 uint32_t mask; 12402 uint32_t base; 12403 bool is_user = regime_is_user(env, mmu_idx); 12404 12405 if (regime_translation_disabled(env, mmu_idx)) { 12406 /* MPU disabled. */ 12407 *phys_ptr = address; 12408 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12409 return false; 12410 } 12411 12412 *phys_ptr = address; 12413 for (n = 7; n >= 0; n--) { 12414 base = env->cp15.c6_region[n]; 12415 if ((base & 1) == 0) { 12416 continue; 12417 } 12418 mask = 1 << ((base >> 1) & 0x1f); 12419 /* Keep this shift separate from the above to avoid an 12420 (undefined) << 32. */ 12421 mask = (mask << 1) - 1; 12422 if (((base ^ address) & ~mask) == 0) { 12423 break; 12424 } 12425 } 12426 if (n < 0) { 12427 fi->type = ARMFault_Background; 12428 return true; 12429 } 12430 12431 if (access_type == MMU_INST_FETCH) { 12432 mask = env->cp15.pmsav5_insn_ap; 12433 } else { 12434 mask = env->cp15.pmsav5_data_ap; 12435 } 12436 mask = (mask >> (n * 4)) & 0xf; 12437 switch (mask) { 12438 case 0: 12439 fi->type = ARMFault_Permission; 12440 fi->level = 1; 12441 return true; 12442 case 1: 12443 if (is_user) { 12444 fi->type = ARMFault_Permission; 12445 fi->level = 1; 12446 return true; 12447 } 12448 *prot = PAGE_READ | PAGE_WRITE; 12449 break; 12450 case 2: 12451 *prot = PAGE_READ; 12452 if (!is_user) { 12453 *prot |= PAGE_WRITE; 12454 } 12455 break; 12456 case 3: 12457 *prot = PAGE_READ | PAGE_WRITE; 12458 break; 12459 case 5: 12460 if (is_user) { 12461 fi->type = ARMFault_Permission; 12462 fi->level = 1; 12463 return true; 12464 } 12465 *prot = PAGE_READ; 12466 break; 12467 case 6: 12468 *prot = PAGE_READ; 12469 break; 12470 default: 12471 /* Bad permission. */ 12472 fi->type = ARMFault_Permission; 12473 fi->level = 1; 12474 return true; 12475 } 12476 *prot |= PAGE_EXEC; 12477 return false; 12478 } 12479 12480 /* Combine either inner or outer cacheability attributes for normal 12481 * memory, according to table D4-42 and pseudocode procedure 12482 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12483 * 12484 * NB: only stage 1 includes allocation hints (RW bits), leading to 12485 * some asymmetry. 12486 */ 12487 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12488 { 12489 if (s1 == 4 || s2 == 4) { 12490 /* non-cacheable has precedence */ 12491 return 4; 12492 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12493 /* stage 1 write-through takes precedence */ 12494 return s1; 12495 } else if (extract32(s2, 2, 2) == 2) { 12496 /* stage 2 write-through takes precedence, but the allocation hint 12497 * is still taken from stage 1 12498 */ 12499 return (2 << 2) | extract32(s1, 0, 2); 12500 } else { /* write-back */ 12501 return s1; 12502 } 12503 } 12504 12505 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12506 * and CombineS1S2Desc() 12507 * 12508 * @s1: Attributes from stage 1 walk 12509 * @s2: Attributes from stage 2 walk 12510 */ 12511 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12512 { 12513 uint8_t s1lo, s2lo, s1hi, s2hi; 12514 ARMCacheAttrs ret; 12515 bool tagged = false; 12516 12517 if (s1.attrs == 0xf0) { 12518 tagged = true; 12519 s1.attrs = 0xff; 12520 } 12521 12522 s1lo = extract32(s1.attrs, 0, 4); 12523 s2lo = extract32(s2.attrs, 0, 4); 12524 s1hi = extract32(s1.attrs, 4, 4); 12525 s2hi = extract32(s2.attrs, 4, 4); 12526 12527 /* Combine shareability attributes (table D4-43) */ 12528 if (s1.shareability == 2 || s2.shareability == 2) { 12529 /* if either are outer-shareable, the result is outer-shareable */ 12530 ret.shareability = 2; 12531 } else if (s1.shareability == 3 || s2.shareability == 3) { 12532 /* if either are inner-shareable, the result is inner-shareable */ 12533 ret.shareability = 3; 12534 } else { 12535 /* both non-shareable */ 12536 ret.shareability = 0; 12537 } 12538 12539 /* Combine memory type and cacheability attributes */ 12540 if (s1hi == 0 || s2hi == 0) { 12541 /* Device has precedence over normal */ 12542 if (s1lo == 0 || s2lo == 0) { 12543 /* nGnRnE has precedence over anything */ 12544 ret.attrs = 0; 12545 } else if (s1lo == 4 || s2lo == 4) { 12546 /* non-Reordering has precedence over Reordering */ 12547 ret.attrs = 4; /* nGnRE */ 12548 } else if (s1lo == 8 || s2lo == 8) { 12549 /* non-Gathering has precedence over Gathering */ 12550 ret.attrs = 8; /* nGRE */ 12551 } else { 12552 ret.attrs = 0xc; /* GRE */ 12553 } 12554 12555 /* Any location for which the resultant memory type is any 12556 * type of Device memory is always treated as Outer Shareable. 12557 */ 12558 ret.shareability = 2; 12559 } else { /* Normal memory */ 12560 /* Outer/inner cacheability combine independently */ 12561 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12562 | combine_cacheattr_nibble(s1lo, s2lo); 12563 12564 if (ret.attrs == 0x44) { 12565 /* Any location for which the resultant memory type is Normal 12566 * Inner Non-cacheable, Outer Non-cacheable is always treated 12567 * as Outer Shareable. 12568 */ 12569 ret.shareability = 2; 12570 } 12571 } 12572 12573 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12574 if (tagged && ret.attrs == 0xff) { 12575 ret.attrs = 0xf0; 12576 } 12577 12578 return ret; 12579 } 12580 12581 12582 /* get_phys_addr - get the physical address for this virtual address 12583 * 12584 * Find the physical address corresponding to the given virtual address, 12585 * by doing a translation table walk on MMU based systems or using the 12586 * MPU state on MPU based systems. 12587 * 12588 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12589 * prot and page_size may not be filled in, and the populated fsr value provides 12590 * information on why the translation aborted, in the format of a 12591 * DFSR/IFSR fault register, with the following caveats: 12592 * * we honour the short vs long DFSR format differences. 12593 * * the WnR bit is never set (the caller must do this). 12594 * * for PSMAv5 based systems we don't bother to return a full FSR format 12595 * value. 12596 * 12597 * @env: CPUARMState 12598 * @address: virtual address to get physical address for 12599 * @access_type: 0 for read, 1 for write, 2 for execute 12600 * @mmu_idx: MMU index indicating required translation regime 12601 * @phys_ptr: set to the physical address corresponding to the virtual address 12602 * @attrs: set to the memory transaction attributes to use 12603 * @prot: set to the permissions for the page containing phys_ptr 12604 * @page_size: set to the size of the page containing phys_ptr 12605 * @fi: set to fault info if the translation fails 12606 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12607 */ 12608 bool get_phys_addr(CPUARMState *env, target_ulong address, 12609 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12610 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12611 target_ulong *page_size, 12612 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12613 { 12614 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12615 12616 if (mmu_idx != s1_mmu_idx) { 12617 /* Call ourselves recursively to do the stage 1 and then stage 2 12618 * translations if mmu_idx is a two-stage regime. 12619 */ 12620 if (arm_feature(env, ARM_FEATURE_EL2)) { 12621 hwaddr ipa; 12622 int s2_prot; 12623 int ret; 12624 ARMCacheAttrs cacheattrs2 = {}; 12625 ARMMMUIdx s2_mmu_idx; 12626 bool is_el0; 12627 12628 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12629 attrs, prot, page_size, fi, cacheattrs); 12630 12631 /* If S1 fails or S2 is disabled, return early. */ 12632 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12633 *phys_ptr = ipa; 12634 return ret; 12635 } 12636 12637 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12638 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12639 12640 /* S1 is done. Now do S2 translation. */ 12641 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12642 phys_ptr, attrs, &s2_prot, 12643 page_size, fi, &cacheattrs2); 12644 fi->s2addr = ipa; 12645 /* Combine the S1 and S2 perms. */ 12646 *prot &= s2_prot; 12647 12648 /* If S2 fails, return early. */ 12649 if (ret) { 12650 return ret; 12651 } 12652 12653 /* Combine the S1 and S2 cache attributes. */ 12654 if (arm_hcr_el2_eff(env) & HCR_DC) { 12655 /* 12656 * HCR.DC forces the first stage attributes to 12657 * Normal Non-Shareable, 12658 * Inner Write-Back Read-Allocate Write-Allocate, 12659 * Outer Write-Back Read-Allocate Write-Allocate. 12660 * Do not overwrite Tagged within attrs. 12661 */ 12662 if (cacheattrs->attrs != 0xf0) { 12663 cacheattrs->attrs = 0xff; 12664 } 12665 cacheattrs->shareability = 0; 12666 } 12667 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12668 12669 /* Check if IPA translates to secure or non-secure PA space. */ 12670 if (arm_is_secure_below_el3(env)) { 12671 if (attrs->secure) { 12672 attrs->secure = 12673 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12674 } else { 12675 attrs->secure = 12676 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12677 || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA)); 12678 } 12679 } 12680 return 0; 12681 } else { 12682 /* 12683 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12684 */ 12685 mmu_idx = stage_1_mmu_idx(mmu_idx); 12686 } 12687 } 12688 12689 /* The page table entries may downgrade secure to non-secure, but 12690 * cannot upgrade an non-secure translation regime's attributes 12691 * to secure. 12692 */ 12693 attrs->secure = regime_is_secure(env, mmu_idx); 12694 attrs->user = regime_is_user(env, mmu_idx); 12695 12696 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12697 * In v7 and earlier it affects all stage 1 translations. 12698 */ 12699 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12700 && !arm_feature(env, ARM_FEATURE_V8)) { 12701 if (regime_el(env, mmu_idx) == 3) { 12702 address += env->cp15.fcseidr_s; 12703 } else { 12704 address += env->cp15.fcseidr_ns; 12705 } 12706 } 12707 12708 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12709 bool ret; 12710 *page_size = TARGET_PAGE_SIZE; 12711 12712 if (arm_feature(env, ARM_FEATURE_V8)) { 12713 /* PMSAv8 */ 12714 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12715 phys_ptr, attrs, prot, page_size, fi); 12716 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12717 /* PMSAv7 */ 12718 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12719 phys_ptr, prot, page_size, fi); 12720 } else { 12721 /* Pre-v7 MPU */ 12722 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12723 phys_ptr, prot, fi); 12724 } 12725 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12726 " mmu_idx %u -> %s (prot %c%c%c)\n", 12727 access_type == MMU_DATA_LOAD ? "reading" : 12728 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12729 (uint32_t)address, mmu_idx, 12730 ret ? "Miss" : "Hit", 12731 *prot & PAGE_READ ? 'r' : '-', 12732 *prot & PAGE_WRITE ? 'w' : '-', 12733 *prot & PAGE_EXEC ? 'x' : '-'); 12734 12735 return ret; 12736 } 12737 12738 /* Definitely a real MMU, not an MPU */ 12739 12740 if (regime_translation_disabled(env, mmu_idx)) { 12741 uint64_t hcr; 12742 uint8_t memattr; 12743 12744 /* 12745 * MMU disabled. S1 addresses within aa64 translation regimes are 12746 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12747 */ 12748 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12749 int r_el = regime_el(env, mmu_idx); 12750 if (arm_el_is_aa64(env, r_el)) { 12751 int pamax = arm_pamax(env_archcpu(env)); 12752 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12753 int addrtop, tbi; 12754 12755 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12756 if (access_type == MMU_INST_FETCH) { 12757 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12758 } 12759 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12760 addrtop = (tbi ? 55 : 63); 12761 12762 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12763 fi->type = ARMFault_AddressSize; 12764 fi->level = 0; 12765 fi->stage2 = false; 12766 return 1; 12767 } 12768 12769 /* 12770 * When TBI is disabled, we've just validated that all of the 12771 * bits above PAMax are zero, so logically we only need to 12772 * clear the top byte for TBI. But it's clearer to follow 12773 * the pseudocode set of addrdesc.paddress. 12774 */ 12775 address = extract64(address, 0, 52); 12776 } 12777 } 12778 *phys_ptr = address; 12779 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12780 *page_size = TARGET_PAGE_SIZE; 12781 12782 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12783 hcr = arm_hcr_el2_eff(env); 12784 cacheattrs->shareability = 0; 12785 if (hcr & HCR_DC) { 12786 if (hcr & HCR_DCT) { 12787 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12788 } else { 12789 memattr = 0xff; /* Normal, WB, RWA */ 12790 } 12791 } else if (access_type == MMU_INST_FETCH) { 12792 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12793 memattr = 0xee; /* Normal, WT, RA, NT */ 12794 } else { 12795 memattr = 0x44; /* Normal, NC, No */ 12796 } 12797 cacheattrs->shareability = 2; /* outer sharable */ 12798 } else { 12799 memattr = 0x00; /* Device, nGnRnE */ 12800 } 12801 cacheattrs->attrs = memattr; 12802 return 0; 12803 } 12804 12805 if (regime_using_lpae_format(env, mmu_idx)) { 12806 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12807 phys_ptr, attrs, prot, page_size, 12808 fi, cacheattrs); 12809 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12810 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12811 phys_ptr, attrs, prot, page_size, fi); 12812 } else { 12813 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12814 phys_ptr, prot, page_size, fi); 12815 } 12816 } 12817 12818 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12819 MemTxAttrs *attrs) 12820 { 12821 ARMCPU *cpu = ARM_CPU(cs); 12822 CPUARMState *env = &cpu->env; 12823 hwaddr phys_addr; 12824 target_ulong page_size; 12825 int prot; 12826 bool ret; 12827 ARMMMUFaultInfo fi = {}; 12828 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12829 ARMCacheAttrs cacheattrs = {}; 12830 12831 *attrs = (MemTxAttrs) {}; 12832 12833 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 12834 attrs, &prot, &page_size, &fi, &cacheattrs); 12835 12836 if (ret) { 12837 return -1; 12838 } 12839 return phys_addr; 12840 } 12841 12842 #endif 12843 12844 /* Note that signed overflow is undefined in C. The following routines are 12845 careful to use unsigned types where modulo arithmetic is required. 12846 Failure to do so _will_ break on newer gcc. */ 12847 12848 /* Signed saturating arithmetic. */ 12849 12850 /* Perform 16-bit signed saturating addition. */ 12851 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12852 { 12853 uint16_t res; 12854 12855 res = a + b; 12856 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12857 if (a & 0x8000) 12858 res = 0x8000; 12859 else 12860 res = 0x7fff; 12861 } 12862 return res; 12863 } 12864 12865 /* Perform 8-bit signed saturating addition. */ 12866 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12867 { 12868 uint8_t res; 12869 12870 res = a + b; 12871 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12872 if (a & 0x80) 12873 res = 0x80; 12874 else 12875 res = 0x7f; 12876 } 12877 return res; 12878 } 12879 12880 /* Perform 16-bit signed saturating subtraction. */ 12881 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12882 { 12883 uint16_t res; 12884 12885 res = a - b; 12886 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12887 if (a & 0x8000) 12888 res = 0x8000; 12889 else 12890 res = 0x7fff; 12891 } 12892 return res; 12893 } 12894 12895 /* Perform 8-bit signed saturating subtraction. */ 12896 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12897 { 12898 uint8_t res; 12899 12900 res = a - b; 12901 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12902 if (a & 0x80) 12903 res = 0x80; 12904 else 12905 res = 0x7f; 12906 } 12907 return res; 12908 } 12909 12910 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12911 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12912 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12913 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12914 #define PFX q 12915 12916 #include "op_addsub.h" 12917 12918 /* Unsigned saturating arithmetic. */ 12919 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12920 { 12921 uint16_t res; 12922 res = a + b; 12923 if (res < a) 12924 res = 0xffff; 12925 return res; 12926 } 12927 12928 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12929 { 12930 if (a > b) 12931 return a - b; 12932 else 12933 return 0; 12934 } 12935 12936 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12937 { 12938 uint8_t res; 12939 res = a + b; 12940 if (res < a) 12941 res = 0xff; 12942 return res; 12943 } 12944 12945 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12946 { 12947 if (a > b) 12948 return a - b; 12949 else 12950 return 0; 12951 } 12952 12953 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12954 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12955 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12956 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12957 #define PFX uq 12958 12959 #include "op_addsub.h" 12960 12961 /* Signed modulo arithmetic. */ 12962 #define SARITH16(a, b, n, op) do { \ 12963 int32_t sum; \ 12964 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12965 RESULT(sum, n, 16); \ 12966 if (sum >= 0) \ 12967 ge |= 3 << (n * 2); \ 12968 } while(0) 12969 12970 #define SARITH8(a, b, n, op) do { \ 12971 int32_t sum; \ 12972 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12973 RESULT(sum, n, 8); \ 12974 if (sum >= 0) \ 12975 ge |= 1 << n; \ 12976 } while(0) 12977 12978 12979 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12980 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12981 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12982 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12983 #define PFX s 12984 #define ARITH_GE 12985 12986 #include "op_addsub.h" 12987 12988 /* Unsigned modulo arithmetic. */ 12989 #define ADD16(a, b, n) do { \ 12990 uint32_t sum; \ 12991 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12992 RESULT(sum, n, 16); \ 12993 if ((sum >> 16) == 1) \ 12994 ge |= 3 << (n * 2); \ 12995 } while(0) 12996 12997 #define ADD8(a, b, n) do { \ 12998 uint32_t sum; \ 12999 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 13000 RESULT(sum, n, 8); \ 13001 if ((sum >> 8) == 1) \ 13002 ge |= 1 << n; \ 13003 } while(0) 13004 13005 #define SUB16(a, b, n) do { \ 13006 uint32_t sum; \ 13007 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 13008 RESULT(sum, n, 16); \ 13009 if ((sum >> 16) == 0) \ 13010 ge |= 3 << (n * 2); \ 13011 } while(0) 13012 13013 #define SUB8(a, b, n) do { \ 13014 uint32_t sum; \ 13015 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 13016 RESULT(sum, n, 8); \ 13017 if ((sum >> 8) == 0) \ 13018 ge |= 1 << n; \ 13019 } while(0) 13020 13021 #define PFX u 13022 #define ARITH_GE 13023 13024 #include "op_addsub.h" 13025 13026 /* Halved signed arithmetic. */ 13027 #define ADD16(a, b, n) \ 13028 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 13029 #define SUB16(a, b, n) \ 13030 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 13031 #define ADD8(a, b, n) \ 13032 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 13033 #define SUB8(a, b, n) \ 13034 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 13035 #define PFX sh 13036 13037 #include "op_addsub.h" 13038 13039 /* Halved unsigned arithmetic. */ 13040 #define ADD16(a, b, n) \ 13041 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13042 #define SUB16(a, b, n) \ 13043 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13044 #define ADD8(a, b, n) \ 13045 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13046 #define SUB8(a, b, n) \ 13047 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13048 #define PFX uh 13049 13050 #include "op_addsub.h" 13051 13052 static inline uint8_t do_usad(uint8_t a, uint8_t b) 13053 { 13054 if (a > b) 13055 return a - b; 13056 else 13057 return b - a; 13058 } 13059 13060 /* Unsigned sum of absolute byte differences. */ 13061 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 13062 { 13063 uint32_t sum; 13064 sum = do_usad(a, b); 13065 sum += do_usad(a >> 8, b >> 8); 13066 sum += do_usad(a >> 16, b >> 16); 13067 sum += do_usad(a >> 24, b >> 24); 13068 return sum; 13069 } 13070 13071 /* For ARMv6 SEL instruction. */ 13072 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 13073 { 13074 uint32_t mask; 13075 13076 mask = 0; 13077 if (flags & 1) 13078 mask |= 0xff; 13079 if (flags & 2) 13080 mask |= 0xff00; 13081 if (flags & 4) 13082 mask |= 0xff0000; 13083 if (flags & 8) 13084 mask |= 0xff000000; 13085 return (a & mask) | (b & ~mask); 13086 } 13087 13088 /* CRC helpers. 13089 * The upper bytes of val (above the number specified by 'bytes') must have 13090 * been zeroed out by the caller. 13091 */ 13092 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 13093 { 13094 uint8_t buf[4]; 13095 13096 stl_le_p(buf, val); 13097 13098 /* zlib crc32 converts the accumulator and output to one's complement. */ 13099 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 13100 } 13101 13102 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 13103 { 13104 uint8_t buf[4]; 13105 13106 stl_le_p(buf, val); 13107 13108 /* Linux crc32c converts the output to one's complement. */ 13109 return crc32c(acc, buf, bytes) ^ 0xffffffff; 13110 } 13111 13112 /* Return the exception level to which FP-disabled exceptions should 13113 * be taken, or 0 if FP is enabled. 13114 */ 13115 int fp_exception_el(CPUARMState *env, int cur_el) 13116 { 13117 #ifndef CONFIG_USER_ONLY 13118 /* CPACR and the CPTR registers don't exist before v6, so FP is 13119 * always accessible 13120 */ 13121 if (!arm_feature(env, ARM_FEATURE_V6)) { 13122 return 0; 13123 } 13124 13125 if (arm_feature(env, ARM_FEATURE_M)) { 13126 /* CPACR can cause a NOCP UsageFault taken to current security state */ 13127 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 13128 return 1; 13129 } 13130 13131 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 13132 if (!extract32(env->v7m.nsacr, 10, 1)) { 13133 /* FP insns cause a NOCP UsageFault taken to Secure */ 13134 return 3; 13135 } 13136 } 13137 13138 return 0; 13139 } 13140 13141 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 13142 * 0, 2 : trap EL0 and EL1/PL1 accesses 13143 * 1 : trap only EL0 accesses 13144 * 3 : trap no accesses 13145 * This register is ignored if E2H+TGE are both set. 13146 */ 13147 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13148 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 13149 13150 switch (fpen) { 13151 case 0: 13152 case 2: 13153 if (cur_el == 0 || cur_el == 1) { 13154 /* Trap to PL1, which might be EL1 or EL3 */ 13155 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 13156 return 3; 13157 } 13158 return 1; 13159 } 13160 if (cur_el == 3 && !is_a64(env)) { 13161 /* Secure PL1 running at EL3 */ 13162 return 3; 13163 } 13164 break; 13165 case 1: 13166 if (cur_el == 0) { 13167 return 1; 13168 } 13169 break; 13170 case 3: 13171 break; 13172 } 13173 } 13174 13175 /* 13176 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 13177 * to control non-secure access to the FPU. It doesn't have any 13178 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 13179 */ 13180 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 13181 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 13182 if (!extract32(env->cp15.nsacr, 10, 1)) { 13183 /* FP insns act as UNDEF */ 13184 return cur_el == 2 ? 2 : 1; 13185 } 13186 } 13187 13188 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 13189 * check because zero bits in the registers mean "don't trap". 13190 */ 13191 13192 /* CPTR_EL2 : present in v7VE or v8 */ 13193 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 13194 && arm_is_el2_enabled(env)) { 13195 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 13196 return 2; 13197 } 13198 13199 /* CPTR_EL3 : present in v8 */ 13200 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 13201 /* Trap all FP ops to EL3 */ 13202 return 3; 13203 } 13204 #endif 13205 return 0; 13206 } 13207 13208 /* Return the exception level we're running at if this is our mmu_idx */ 13209 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 13210 { 13211 if (mmu_idx & ARM_MMU_IDX_M) { 13212 return mmu_idx & ARM_MMU_IDX_M_PRIV; 13213 } 13214 13215 switch (mmu_idx) { 13216 case ARMMMUIdx_E10_0: 13217 case ARMMMUIdx_E20_0: 13218 case ARMMMUIdx_SE10_0: 13219 case ARMMMUIdx_SE20_0: 13220 return 0; 13221 case ARMMMUIdx_E10_1: 13222 case ARMMMUIdx_E10_1_PAN: 13223 case ARMMMUIdx_SE10_1: 13224 case ARMMMUIdx_SE10_1_PAN: 13225 return 1; 13226 case ARMMMUIdx_E2: 13227 case ARMMMUIdx_E20_2: 13228 case ARMMMUIdx_E20_2_PAN: 13229 case ARMMMUIdx_SE2: 13230 case ARMMMUIdx_SE20_2: 13231 case ARMMMUIdx_SE20_2_PAN: 13232 return 2; 13233 case ARMMMUIdx_SE3: 13234 return 3; 13235 default: 13236 g_assert_not_reached(); 13237 } 13238 } 13239 13240 #ifndef CONFIG_TCG 13241 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13242 { 13243 g_assert_not_reached(); 13244 } 13245 #endif 13246 13247 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 13248 { 13249 ARMMMUIdx idx; 13250 uint64_t hcr; 13251 13252 if (arm_feature(env, ARM_FEATURE_M)) { 13253 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13254 } 13255 13256 /* See ARM pseudo-function ELIsInHost. */ 13257 switch (el) { 13258 case 0: 13259 hcr = arm_hcr_el2_eff(env); 13260 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 13261 idx = ARMMMUIdx_E20_0; 13262 } else { 13263 idx = ARMMMUIdx_E10_0; 13264 } 13265 break; 13266 case 1: 13267 if (env->pstate & PSTATE_PAN) { 13268 idx = ARMMMUIdx_E10_1_PAN; 13269 } else { 13270 idx = ARMMMUIdx_E10_1; 13271 } 13272 break; 13273 case 2: 13274 /* Note that TGE does not apply at EL2. */ 13275 if (arm_hcr_el2_eff(env) & HCR_E2H) { 13276 if (env->pstate & PSTATE_PAN) { 13277 idx = ARMMMUIdx_E20_2_PAN; 13278 } else { 13279 idx = ARMMMUIdx_E20_2; 13280 } 13281 } else { 13282 idx = ARMMMUIdx_E2; 13283 } 13284 break; 13285 case 3: 13286 return ARMMMUIdx_SE3; 13287 default: 13288 g_assert_not_reached(); 13289 } 13290 13291 if (arm_is_secure_below_el3(env)) { 13292 idx &= ~ARM_MMU_IDX_A_NS; 13293 } 13294 13295 return idx; 13296 } 13297 13298 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13299 { 13300 return arm_mmu_idx_el(env, arm_current_el(env)); 13301 } 13302 13303 #ifndef CONFIG_USER_ONLY 13304 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13305 { 13306 return stage_1_mmu_idx(arm_mmu_idx(env)); 13307 } 13308 #endif 13309 13310 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 13311 ARMMMUIdx mmu_idx, 13312 CPUARMTBFlags flags) 13313 { 13314 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 13315 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13316 13317 if (arm_singlestep_active(env)) { 13318 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 13319 } 13320 return flags; 13321 } 13322 13323 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13324 ARMMMUIdx mmu_idx, 13325 CPUARMTBFlags flags) 13326 { 13327 bool sctlr_b = arm_sctlr_b(env); 13328 13329 if (sctlr_b) { 13330 DP_TBFLAG_A32(flags, SCTLR__B, 1); 13331 } 13332 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13333 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13334 } 13335 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 13336 13337 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13338 } 13339 13340 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 13341 ARMMMUIdx mmu_idx) 13342 { 13343 CPUARMTBFlags flags = {}; 13344 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 13345 13346 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 13347 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 13348 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13349 } 13350 13351 if (arm_v7m_is_handler_mode(env)) { 13352 DP_TBFLAG_M32(flags, HANDLER, 1); 13353 } 13354 13355 /* 13356 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13357 * is suppressing them because the requested execution priority 13358 * is less than 0. 13359 */ 13360 if (arm_feature(env, ARM_FEATURE_V8) && 13361 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13362 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13363 DP_TBFLAG_M32(flags, STACKCHECK, 1); 13364 } 13365 13366 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13367 } 13368 13369 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) 13370 { 13371 CPUARMTBFlags flags = {}; 13372 13373 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); 13374 return flags; 13375 } 13376 13377 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 13378 ARMMMUIdx mmu_idx) 13379 { 13380 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13381 int el = arm_current_el(env); 13382 13383 if (arm_sctlr(env, el) & SCTLR_A) { 13384 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13385 } 13386 13387 if (arm_el_is_aa64(env, 1)) { 13388 DP_TBFLAG_A32(flags, VFPEN, 1); 13389 } 13390 13391 if (el < 2 && env->cp15.hstr_el2 && 13392 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13393 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 13394 } 13395 13396 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13397 } 13398 13399 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13400 ARMMMUIdx mmu_idx) 13401 { 13402 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13403 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13404 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13405 uint64_t sctlr; 13406 int tbii, tbid; 13407 13408 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 13409 13410 /* Get control bits for tagged addresses. */ 13411 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13412 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13413 13414 DP_TBFLAG_A64(flags, TBII, tbii); 13415 DP_TBFLAG_A64(flags, TBID, tbid); 13416 13417 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13418 int sve_el = sve_exception_el(env, el); 13419 uint32_t zcr_len; 13420 13421 /* 13422 * If SVE is disabled, but FP is enabled, 13423 * then the effective len is 0. 13424 */ 13425 if (sve_el != 0 && fp_el == 0) { 13426 zcr_len = 0; 13427 } else { 13428 zcr_len = sve_zcr_len_for_el(env, el); 13429 } 13430 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 13431 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len); 13432 } 13433 13434 sctlr = regime_sctlr(env, stage1); 13435 13436 if (sctlr & SCTLR_A) { 13437 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13438 } 13439 13440 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13441 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13442 } 13443 13444 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13445 /* 13446 * In order to save space in flags, we record only whether 13447 * pauth is "inactive", meaning all insns are implemented as 13448 * a nop, or "active" when some action must be performed. 13449 * The decision of which action to take is left to a helper. 13450 */ 13451 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13452 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 13453 } 13454 } 13455 13456 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13457 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13458 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13459 DP_TBFLAG_A64(flags, BT, 1); 13460 } 13461 } 13462 13463 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13464 if (!(env->pstate & PSTATE_UAO)) { 13465 switch (mmu_idx) { 13466 case ARMMMUIdx_E10_1: 13467 case ARMMMUIdx_E10_1_PAN: 13468 case ARMMMUIdx_SE10_1: 13469 case ARMMMUIdx_SE10_1_PAN: 13470 /* TODO: ARMv8.3-NV */ 13471 DP_TBFLAG_A64(flags, UNPRIV, 1); 13472 break; 13473 case ARMMMUIdx_E20_2: 13474 case ARMMMUIdx_E20_2_PAN: 13475 case ARMMMUIdx_SE20_2: 13476 case ARMMMUIdx_SE20_2_PAN: 13477 /* 13478 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13479 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13480 */ 13481 if (env->cp15.hcr_el2 & HCR_TGE) { 13482 DP_TBFLAG_A64(flags, UNPRIV, 1); 13483 } 13484 break; 13485 default: 13486 break; 13487 } 13488 } 13489 13490 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13491 /* 13492 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13493 * if all accesses must be Unchecked: 13494 * 1) If no TBI, then there are no tags in the address to check, 13495 * 2) If Tag Check Override, then all accesses are Unchecked, 13496 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13497 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13498 */ 13499 if (allocation_tag_access_enabled(env, el, sctlr)) { 13500 DP_TBFLAG_A64(flags, ATA, 1); 13501 if (tbid 13502 && !(env->pstate & PSTATE_TCO) 13503 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13504 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 13505 } 13506 } 13507 /* And again for unprivileged accesses, if required. */ 13508 if (EX_TBFLAG_A64(flags, UNPRIV) 13509 && tbid 13510 && !(env->pstate & PSTATE_TCO) 13511 && (sctlr & SCTLR_TCF0) 13512 && allocation_tag_access_enabled(env, 0, sctlr)) { 13513 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 13514 } 13515 /* Cache TCMA as well as TBI. */ 13516 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 13517 } 13518 13519 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13520 } 13521 13522 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 13523 { 13524 int el = arm_current_el(env); 13525 int fp_el = fp_exception_el(env, el); 13526 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13527 13528 if (is_a64(env)) { 13529 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13530 } else if (arm_feature(env, ARM_FEATURE_M)) { 13531 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13532 } else { 13533 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13534 } 13535 } 13536 13537 void arm_rebuild_hflags(CPUARMState *env) 13538 { 13539 env->hflags = rebuild_hflags_internal(env); 13540 } 13541 13542 /* 13543 * If we have triggered a EL state change we can't rely on the 13544 * translator having passed it to us, we need to recompute. 13545 */ 13546 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13547 { 13548 int el = arm_current_el(env); 13549 int fp_el = fp_exception_el(env, el); 13550 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13551 13552 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13553 } 13554 13555 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13556 { 13557 int fp_el = fp_exception_el(env, el); 13558 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13559 13560 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13561 } 13562 13563 /* 13564 * If we have triggered a EL state change we can't rely on the 13565 * translator having passed it to us, we need to recompute. 13566 */ 13567 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13568 { 13569 int el = arm_current_el(env); 13570 int fp_el = fp_exception_el(env, el); 13571 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13572 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13573 } 13574 13575 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13576 { 13577 int fp_el = fp_exception_el(env, el); 13578 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13579 13580 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13581 } 13582 13583 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13584 { 13585 int fp_el = fp_exception_el(env, el); 13586 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13587 13588 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13589 } 13590 13591 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13592 { 13593 #ifdef CONFIG_DEBUG_TCG 13594 CPUARMTBFlags c = env->hflags; 13595 CPUARMTBFlags r = rebuild_hflags_internal(env); 13596 13597 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 13598 fprintf(stderr, "TCG hflags mismatch " 13599 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 13600 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 13601 c.flags, c.flags2, r.flags, r.flags2); 13602 abort(); 13603 } 13604 #endif 13605 } 13606 13607 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13608 target_ulong *cs_base, uint32_t *pflags) 13609 { 13610 CPUARMTBFlags flags; 13611 13612 assert_hflags_rebuild_correctly(env); 13613 flags = env->hflags; 13614 13615 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 13616 *pc = env->pc; 13617 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13618 DP_TBFLAG_A64(flags, BTYPE, env->btype); 13619 } 13620 } else { 13621 *pc = env->regs[15]; 13622 13623 if (arm_feature(env, ARM_FEATURE_M)) { 13624 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13625 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13626 != env->v7m.secure) { 13627 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 13628 } 13629 13630 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13631 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13632 (env->v7m.secure && 13633 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13634 /* 13635 * ASPEN is set, but FPCA/SFPA indicate that there is no 13636 * active FP context; we must create a new FP context before 13637 * executing any FP insn. 13638 */ 13639 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 13640 } 13641 13642 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13643 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13644 DP_TBFLAG_M32(flags, LSPACT, 1); 13645 } 13646 } else { 13647 /* 13648 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13649 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13650 */ 13651 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13652 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 13653 } else { 13654 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 13655 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 13656 } 13657 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13658 DP_TBFLAG_A32(flags, VFPEN, 1); 13659 } 13660 } 13661 13662 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 13663 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 13664 } 13665 13666 /* 13667 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13668 * states defined in the ARM ARM for software singlestep: 13669 * SS_ACTIVE PSTATE.SS State 13670 * 0 x Inactive (the TB flag for SS is always 0) 13671 * 1 0 Active-pending 13672 * 1 1 Active-not-pending 13673 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 13674 */ 13675 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 13676 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 13677 } 13678 13679 *pflags = flags.flags; 13680 *cs_base = flags.flags2; 13681 } 13682 13683 #ifdef TARGET_AARCH64 13684 /* 13685 * The manual says that when SVE is enabled and VQ is widened the 13686 * implementation is allowed to zero the previously inaccessible 13687 * portion of the registers. The corollary to that is that when 13688 * SVE is enabled and VQ is narrowed we are also allowed to zero 13689 * the now inaccessible portion of the registers. 13690 * 13691 * The intent of this is that no predicate bit beyond VQ is ever set. 13692 * Which means that some operations on predicate registers themselves 13693 * may operate on full uint64_t or even unrolled across the maximum 13694 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13695 * may well be cheaper than conditionals to restrict the operation 13696 * to the relevant portion of a uint16_t[16]. 13697 */ 13698 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13699 { 13700 int i, j; 13701 uint64_t pmask; 13702 13703 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13704 assert(vq <= env_archcpu(env)->sve_max_vq); 13705 13706 /* Zap the high bits of the zregs. */ 13707 for (i = 0; i < 32; i++) { 13708 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13709 } 13710 13711 /* Zap the high bits of the pregs and ffr. */ 13712 pmask = 0; 13713 if (vq & 3) { 13714 pmask = ~(-1ULL << (16 * (vq & 3))); 13715 } 13716 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13717 for (i = 0; i < 17; ++i) { 13718 env->vfp.pregs[i].p[j] &= pmask; 13719 } 13720 pmask = 0; 13721 } 13722 } 13723 13724 /* 13725 * Notice a change in SVE vector size when changing EL. 13726 */ 13727 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13728 int new_el, bool el0_a64) 13729 { 13730 ARMCPU *cpu = env_archcpu(env); 13731 int old_len, new_len; 13732 bool old_a64, new_a64; 13733 13734 /* Nothing to do if no SVE. */ 13735 if (!cpu_isar_feature(aa64_sve, cpu)) { 13736 return; 13737 } 13738 13739 /* Nothing to do if FP is disabled in either EL. */ 13740 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13741 return; 13742 } 13743 13744 /* 13745 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13746 * at ELx, or not available because the EL is in AArch32 state, then 13747 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13748 * has an effective value of 0". 13749 * 13750 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13751 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13752 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13753 * we already have the correct register contents when encountering the 13754 * vq0->vq0 transition between EL0->EL1. 13755 */ 13756 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13757 old_len = (old_a64 && !sve_exception_el(env, old_el) 13758 ? sve_zcr_len_for_el(env, old_el) : 0); 13759 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13760 new_len = (new_a64 && !sve_exception_el(env, new_el) 13761 ? sve_zcr_len_for_el(env, new_el) : 0); 13762 13763 /* When changing vector length, clear inaccessible state. */ 13764 if (new_len < old_len) { 13765 aarch64_sve_narrow_vq(env, new_len + 1); 13766 } 13767 } 13768 #endif 13769