xref: /openbmc/qemu/target/arm/helper.c (revision c53cd04e)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/cpu-timers.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/tcg.h"
30 #include "qemu/range.h"
31 #include "qapi/qapi-commands-machine-target.h"
32 #include "qapi/error.h"
33 #include "qemu/guest-random.h"
34 #ifdef CONFIG_TCG
35 #include "arm_ldst.h"
36 #include "exec/cpu_ldst.h"
37 #include "semihosting/common-semi.h"
38 #endif
39 
40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
41 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */
42 
43 #ifndef CONFIG_USER_ONLY
44 
45 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
46                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
47                                bool s1_is_el0,
48                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
49                                target_ulong *page_size_ptr,
50                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
51     __attribute__((nonnull));
52 #endif
53 
54 static void switch_mode(CPUARMState *env, int mode);
55 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
56 
57 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
58 {
59     ARMCPU *cpu = env_archcpu(env);
60     int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
61 
62     /* VFP data registers are always little-endian.  */
63     if (reg < nregs) {
64         return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
65     }
66     if (arm_feature(env, ARM_FEATURE_NEON)) {
67         /* Aliases for Q regs.  */
68         nregs += 16;
69         if (reg < nregs) {
70             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
71             return gdb_get_reg128(buf, q[0], q[1]);
72         }
73     }
74     switch (reg - nregs) {
75     case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
76     case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
77     case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
78     }
79     return 0;
80 }
81 
82 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
83 {
84     ARMCPU *cpu = env_archcpu(env);
85     int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
86 
87     if (reg < nregs) {
88         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
89         return 8;
90     }
91     if (arm_feature(env, ARM_FEATURE_NEON)) {
92         nregs += 16;
93         if (reg < nregs) {
94             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
95             q[0] = ldq_le_p(buf);
96             q[1] = ldq_le_p(buf + 8);
97             return 16;
98         }
99     }
100     switch (reg - nregs) {
101     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
102     case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
103     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
104     }
105     return 0;
106 }
107 
108 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
109 {
110     switch (reg) {
111     case 0 ... 31:
112     {
113         /* 128 bit FP register - quads are in LE order */
114         uint64_t *q = aa64_vfp_qreg(env, reg);
115         return gdb_get_reg128(buf, q[1], q[0]);
116     }
117     case 32:
118         /* FPSR */
119         return gdb_get_reg32(buf, vfp_get_fpsr(env));
120     case 33:
121         /* FPCR */
122         return gdb_get_reg32(buf,vfp_get_fpcr(env));
123     default:
124         return 0;
125     }
126 }
127 
128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
129 {
130     switch (reg) {
131     case 0 ... 31:
132         /* 128 bit FP register */
133         {
134             uint64_t *q = aa64_vfp_qreg(env, reg);
135             q[0] = ldq_le_p(buf);
136             q[1] = ldq_le_p(buf + 8);
137             return 16;
138         }
139     case 32:
140         /* FPSR */
141         vfp_set_fpsr(env, ldl_p(buf));
142         return 4;
143     case 33:
144         /* FPCR */
145         vfp_set_fpcr(env, ldl_p(buf));
146         return 4;
147     default:
148         return 0;
149     }
150 }
151 
152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
153 {
154     assert(ri->fieldoffset);
155     if (cpreg_field_is_64bit(ri)) {
156         return CPREG_FIELD64(env, ri);
157     } else {
158         return CPREG_FIELD32(env, ri);
159     }
160 }
161 
162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
163                       uint64_t value)
164 {
165     assert(ri->fieldoffset);
166     if (cpreg_field_is_64bit(ri)) {
167         CPREG_FIELD64(env, ri) = value;
168     } else {
169         CPREG_FIELD32(env, ri) = value;
170     }
171 }
172 
173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
174 {
175     return (char *)env + ri->fieldoffset;
176 }
177 
178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
179 {
180     /* Raw read of a coprocessor register (as needed for migration, etc). */
181     if (ri->type & ARM_CP_CONST) {
182         return ri->resetvalue;
183     } else if (ri->raw_readfn) {
184         return ri->raw_readfn(env, ri);
185     } else if (ri->readfn) {
186         return ri->readfn(env, ri);
187     } else {
188         return raw_read(env, ri);
189     }
190 }
191 
192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
193                              uint64_t v)
194 {
195     /* Raw write of a coprocessor register (as needed for migration, etc).
196      * Note that constant registers are treated as write-ignored; the
197      * caller should check for success by whether a readback gives the
198      * value written.
199      */
200     if (ri->type & ARM_CP_CONST) {
201         return;
202     } else if (ri->raw_writefn) {
203         ri->raw_writefn(env, ri, v);
204     } else if (ri->writefn) {
205         ri->writefn(env, ri, v);
206     } else {
207         raw_write(env, ri, v);
208     }
209 }
210 
211 /**
212  * arm_get/set_gdb_*: get/set a gdb register
213  * @env: the CPU state
214  * @buf: a buffer to copy to/from
215  * @reg: register number (offset from start of group)
216  *
217  * We return the number of bytes copied
218  */
219 
220 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
221 {
222     ARMCPU *cpu = env_archcpu(env);
223     const ARMCPRegInfo *ri;
224     uint32_t key;
225 
226     key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
227     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
228     if (ri) {
229         if (cpreg_field_is_64bit(ri)) {
230             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
231         } else {
232             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
233         }
234     }
235     return 0;
236 }
237 
238 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
239 {
240     return 0;
241 }
242 
243 #ifdef TARGET_AARCH64
244 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
245 {
246     ARMCPU *cpu = env_archcpu(env);
247 
248     switch (reg) {
249     /* The first 32 registers are the zregs */
250     case 0 ... 31:
251     {
252         int vq, len = 0;
253         for (vq = 0; vq < cpu->sve_max_vq; vq++) {
254             len += gdb_get_reg128(buf,
255                                   env->vfp.zregs[reg].d[vq * 2 + 1],
256                                   env->vfp.zregs[reg].d[vq * 2]);
257         }
258         return len;
259     }
260     case 32:
261         return gdb_get_reg32(buf, vfp_get_fpsr(env));
262     case 33:
263         return gdb_get_reg32(buf, vfp_get_fpcr(env));
264     /* then 16 predicates and the ffr */
265     case 34 ... 50:
266     {
267         int preg = reg - 34;
268         int vq, len = 0;
269         for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
270             len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
271         }
272         return len;
273     }
274     case 51:
275     {
276         /*
277          * We report in Vector Granules (VG) which is 64bit in a Z reg
278          * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
279          */
280         int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
281         return gdb_get_reg64(buf, vq * 2);
282     }
283     default:
284         /* gdbstub asked for something out our range */
285         qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
286         break;
287     }
288 
289     return 0;
290 }
291 
292 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
293 {
294     ARMCPU *cpu = env_archcpu(env);
295 
296     /* The first 32 registers are the zregs */
297     switch (reg) {
298     /* The first 32 registers are the zregs */
299     case 0 ... 31:
300     {
301         int vq, len = 0;
302         uint64_t *p = (uint64_t *) buf;
303         for (vq = 0; vq < cpu->sve_max_vq; vq++) {
304             env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
305             env->vfp.zregs[reg].d[vq * 2] = *p++;
306             len += 16;
307         }
308         return len;
309     }
310     case 32:
311         vfp_set_fpsr(env, *(uint32_t *)buf);
312         return 4;
313     case 33:
314         vfp_set_fpcr(env, *(uint32_t *)buf);
315         return 4;
316     case 34 ... 50:
317     {
318         int preg = reg - 34;
319         int vq, len = 0;
320         uint64_t *p = (uint64_t *) buf;
321         for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
322             env->vfp.pregs[preg].p[vq / 4] = *p++;
323             len += 8;
324         }
325         return len;
326     }
327     case 51:
328         /* cannot set vg via gdbstub */
329         return 0;
330     default:
331         /* gdbstub asked for something out our range */
332         break;
333     }
334 
335     return 0;
336 }
337 #endif /* TARGET_AARCH64 */
338 
339 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
340 {
341    /* Return true if the regdef would cause an assertion if you called
342     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
343     * program bug for it not to have the NO_RAW flag).
344     * NB that returning false here doesn't necessarily mean that calling
345     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
346     * read/write access functions which are safe for raw use" from "has
347     * read/write access functions which have side effects but has forgotten
348     * to provide raw access functions".
349     * The tests here line up with the conditions in read/write_raw_cp_reg()
350     * and assertions in raw_read()/raw_write().
351     */
352     if ((ri->type & ARM_CP_CONST) ||
353         ri->fieldoffset ||
354         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
355         return false;
356     }
357     return true;
358 }
359 
360 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
361 {
362     /* Write the coprocessor state from cpu->env to the (index,value) list. */
363     int i;
364     bool ok = true;
365 
366     for (i = 0; i < cpu->cpreg_array_len; i++) {
367         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
368         const ARMCPRegInfo *ri;
369         uint64_t newval;
370 
371         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
372         if (!ri) {
373             ok = false;
374             continue;
375         }
376         if (ri->type & ARM_CP_NO_RAW) {
377             continue;
378         }
379 
380         newval = read_raw_cp_reg(&cpu->env, ri);
381         if (kvm_sync) {
382             /*
383              * Only sync if the previous list->cpustate sync succeeded.
384              * Rather than tracking the success/failure state for every
385              * item in the list, we just recheck "does the raw write we must
386              * have made in write_list_to_cpustate() read back OK" here.
387              */
388             uint64_t oldval = cpu->cpreg_values[i];
389 
390             if (oldval == newval) {
391                 continue;
392             }
393 
394             write_raw_cp_reg(&cpu->env, ri, oldval);
395             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
396                 continue;
397             }
398 
399             write_raw_cp_reg(&cpu->env, ri, newval);
400         }
401         cpu->cpreg_values[i] = newval;
402     }
403     return ok;
404 }
405 
406 bool write_list_to_cpustate(ARMCPU *cpu)
407 {
408     int i;
409     bool ok = true;
410 
411     for (i = 0; i < cpu->cpreg_array_len; i++) {
412         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
413         uint64_t v = cpu->cpreg_values[i];
414         const ARMCPRegInfo *ri;
415 
416         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
417         if (!ri) {
418             ok = false;
419             continue;
420         }
421         if (ri->type & ARM_CP_NO_RAW) {
422             continue;
423         }
424         /* Write value and confirm it reads back as written
425          * (to catch read-only registers and partially read-only
426          * registers where the incoming migration value doesn't match)
427          */
428         write_raw_cp_reg(&cpu->env, ri, v);
429         if (read_raw_cp_reg(&cpu->env, ri) != v) {
430             ok = false;
431         }
432     }
433     return ok;
434 }
435 
436 static void add_cpreg_to_list(gpointer key, gpointer opaque)
437 {
438     ARMCPU *cpu = opaque;
439     uint64_t regidx;
440     const ARMCPRegInfo *ri;
441 
442     regidx = *(uint32_t *)key;
443     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
444 
445     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
446         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
447         /* The value array need not be initialized at this point */
448         cpu->cpreg_array_len++;
449     }
450 }
451 
452 static void count_cpreg(gpointer key, gpointer opaque)
453 {
454     ARMCPU *cpu = opaque;
455     uint64_t regidx;
456     const ARMCPRegInfo *ri;
457 
458     regidx = *(uint32_t *)key;
459     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
460 
461     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
462         cpu->cpreg_array_len++;
463     }
464 }
465 
466 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
467 {
468     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
469     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
470 
471     if (aidx > bidx) {
472         return 1;
473     }
474     if (aidx < bidx) {
475         return -1;
476     }
477     return 0;
478 }
479 
480 void init_cpreg_list(ARMCPU *cpu)
481 {
482     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
483      * Note that we require cpreg_tuples[] to be sorted by key ID.
484      */
485     GList *keys;
486     int arraylen;
487 
488     keys = g_hash_table_get_keys(cpu->cp_regs);
489     keys = g_list_sort(keys, cpreg_key_compare);
490 
491     cpu->cpreg_array_len = 0;
492 
493     g_list_foreach(keys, count_cpreg, cpu);
494 
495     arraylen = cpu->cpreg_array_len;
496     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
497     cpu->cpreg_values = g_new(uint64_t, arraylen);
498     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
499     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
500     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
501     cpu->cpreg_array_len = 0;
502 
503     g_list_foreach(keys, add_cpreg_to_list, cpu);
504 
505     assert(cpu->cpreg_array_len == arraylen);
506 
507     g_list_free(keys);
508 }
509 
510 /*
511  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
512  */
513 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
514                                         const ARMCPRegInfo *ri,
515                                         bool isread)
516 {
517     if (!is_a64(env) && arm_current_el(env) == 3 &&
518         arm_is_secure_below_el3(env)) {
519         return CP_ACCESS_TRAP_UNCATEGORIZED;
520     }
521     return CP_ACCESS_OK;
522 }
523 
524 /* Some secure-only AArch32 registers trap to EL3 if used from
525  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
526  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
527  * We assume that the .access field is set to PL1_RW.
528  */
529 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
530                                             const ARMCPRegInfo *ri,
531                                             bool isread)
532 {
533     if (arm_current_el(env) == 3) {
534         return CP_ACCESS_OK;
535     }
536     if (arm_is_secure_below_el3(env)) {
537         if (env->cp15.scr_el3 & SCR_EEL2) {
538             return CP_ACCESS_TRAP_EL2;
539         }
540         return CP_ACCESS_TRAP_EL3;
541     }
542     /* This will be EL1 NS and EL2 NS, which just UNDEF */
543     return CP_ACCESS_TRAP_UNCATEGORIZED;
544 }
545 
546 static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
547 {
548     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
549 }
550 
551 /* Check for traps to "powerdown debug" registers, which are controlled
552  * by MDCR.TDOSA
553  */
554 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
555                                    bool isread)
556 {
557     int el = arm_current_el(env);
558     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
559     bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
560         (arm_hcr_el2_eff(env) & HCR_TGE);
561 
562     if (el < 2 && mdcr_el2_tdosa) {
563         return CP_ACCESS_TRAP_EL2;
564     }
565     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
566         return CP_ACCESS_TRAP_EL3;
567     }
568     return CP_ACCESS_OK;
569 }
570 
571 /* Check for traps to "debug ROM" registers, which are controlled
572  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
573  */
574 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
575                                   bool isread)
576 {
577     int el = arm_current_el(env);
578     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
579     bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
580         (arm_hcr_el2_eff(env) & HCR_TGE);
581 
582     if (el < 2 && mdcr_el2_tdra) {
583         return CP_ACCESS_TRAP_EL2;
584     }
585     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
586         return CP_ACCESS_TRAP_EL3;
587     }
588     return CP_ACCESS_OK;
589 }
590 
591 /* Check for traps to general debug registers, which are controlled
592  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
593  */
594 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
595                                   bool isread)
596 {
597     int el = arm_current_el(env);
598     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
599     bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
600         (arm_hcr_el2_eff(env) & HCR_TGE);
601 
602     if (el < 2 && mdcr_el2_tda) {
603         return CP_ACCESS_TRAP_EL2;
604     }
605     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
606         return CP_ACCESS_TRAP_EL3;
607     }
608     return CP_ACCESS_OK;
609 }
610 
611 /* Check for traps to performance monitor registers, which are controlled
612  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
613  */
614 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
615                                  bool isread)
616 {
617     int el = arm_current_el(env);
618     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
619 
620     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
621         return CP_ACCESS_TRAP_EL2;
622     }
623     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
624         return CP_ACCESS_TRAP_EL3;
625     }
626     return CP_ACCESS_OK;
627 }
628 
629 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
630 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
631                                       bool isread)
632 {
633     if (arm_current_el(env) == 1) {
634         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
635         if (arm_hcr_el2_eff(env) & trap) {
636             return CP_ACCESS_TRAP_EL2;
637         }
638     }
639     return CP_ACCESS_OK;
640 }
641 
642 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
643 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
644                                  bool isread)
645 {
646     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
647         return CP_ACCESS_TRAP_EL2;
648     }
649     return CP_ACCESS_OK;
650 }
651 
652 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
653 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
654                                   bool isread)
655 {
656     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
657         return CP_ACCESS_TRAP_EL2;
658     }
659     return CP_ACCESS_OK;
660 }
661 
662 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
663 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
664                                   bool isread)
665 {
666     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
667         return CP_ACCESS_TRAP_EL2;
668     }
669     return CP_ACCESS_OK;
670 }
671 
672 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
673 {
674     ARMCPU *cpu = env_archcpu(env);
675 
676     raw_write(env, ri, value);
677     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
678 }
679 
680 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
681 {
682     ARMCPU *cpu = env_archcpu(env);
683 
684     if (raw_read(env, ri) != value) {
685         /* Unlike real hardware the qemu TLB uses virtual addresses,
686          * not modified virtual addresses, so this causes a TLB flush.
687          */
688         tlb_flush(CPU(cpu));
689         raw_write(env, ri, value);
690     }
691 }
692 
693 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
694                              uint64_t value)
695 {
696     ARMCPU *cpu = env_archcpu(env);
697 
698     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
699         && !extended_addresses_enabled(env)) {
700         /* For VMSA (when not using the LPAE long descriptor page table
701          * format) this register includes the ASID, so do a TLB flush.
702          * For PMSA it is purely a process ID and no action is needed.
703          */
704         tlb_flush(CPU(cpu));
705     }
706     raw_write(env, ri, value);
707 }
708 
709 /* IS variants of TLB operations must affect all cores */
710 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
711                              uint64_t value)
712 {
713     CPUState *cs = env_cpu(env);
714 
715     tlb_flush_all_cpus_synced(cs);
716 }
717 
718 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
719                              uint64_t value)
720 {
721     CPUState *cs = env_cpu(env);
722 
723     tlb_flush_all_cpus_synced(cs);
724 }
725 
726 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
727                              uint64_t value)
728 {
729     CPUState *cs = env_cpu(env);
730 
731     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
732 }
733 
734 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
735                              uint64_t value)
736 {
737     CPUState *cs = env_cpu(env);
738 
739     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
740 }
741 
742 /*
743  * Non-IS variants of TLB operations are upgraded to
744  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
745  * force broadcast of these operations.
746  */
747 static bool tlb_force_broadcast(CPUARMState *env)
748 {
749     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
750 }
751 
752 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
753                           uint64_t value)
754 {
755     /* Invalidate all (TLBIALL) */
756     CPUState *cs = env_cpu(env);
757 
758     if (tlb_force_broadcast(env)) {
759         tlb_flush_all_cpus_synced(cs);
760     } else {
761         tlb_flush(cs);
762     }
763 }
764 
765 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
766                           uint64_t value)
767 {
768     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
769     CPUState *cs = env_cpu(env);
770 
771     value &= TARGET_PAGE_MASK;
772     if (tlb_force_broadcast(env)) {
773         tlb_flush_page_all_cpus_synced(cs, value);
774     } else {
775         tlb_flush_page(cs, value);
776     }
777 }
778 
779 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
780                            uint64_t value)
781 {
782     /* Invalidate by ASID (TLBIASID) */
783     CPUState *cs = env_cpu(env);
784 
785     if (tlb_force_broadcast(env)) {
786         tlb_flush_all_cpus_synced(cs);
787     } else {
788         tlb_flush(cs);
789     }
790 }
791 
792 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
793                            uint64_t value)
794 {
795     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
796     CPUState *cs = env_cpu(env);
797 
798     value &= TARGET_PAGE_MASK;
799     if (tlb_force_broadcast(env)) {
800         tlb_flush_page_all_cpus_synced(cs, value);
801     } else {
802         tlb_flush_page(cs, value);
803     }
804 }
805 
806 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
807                                uint64_t value)
808 {
809     CPUState *cs = env_cpu(env);
810 
811     tlb_flush_by_mmuidx(cs,
812                         ARMMMUIdxBit_E10_1 |
813                         ARMMMUIdxBit_E10_1_PAN |
814                         ARMMMUIdxBit_E10_0);
815 }
816 
817 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
818                                   uint64_t value)
819 {
820     CPUState *cs = env_cpu(env);
821 
822     tlb_flush_by_mmuidx_all_cpus_synced(cs,
823                                         ARMMMUIdxBit_E10_1 |
824                                         ARMMMUIdxBit_E10_1_PAN |
825                                         ARMMMUIdxBit_E10_0);
826 }
827 
828 
829 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
830                               uint64_t value)
831 {
832     CPUState *cs = env_cpu(env);
833 
834     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
835 }
836 
837 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
838                                  uint64_t value)
839 {
840     CPUState *cs = env_cpu(env);
841 
842     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
843 }
844 
845 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
846                               uint64_t value)
847 {
848     CPUState *cs = env_cpu(env);
849     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
850 
851     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
852 }
853 
854 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
855                                  uint64_t value)
856 {
857     CPUState *cs = env_cpu(env);
858     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
859 
860     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
861                                              ARMMMUIdxBit_E2);
862 }
863 
864 static const ARMCPRegInfo cp_reginfo[] = {
865     /* Define the secure and non-secure FCSE identifier CP registers
866      * separately because there is no secure bank in V8 (no _EL3).  This allows
867      * the secure register to be properly reset and migrated. There is also no
868      * v8 EL1 version of the register so the non-secure instance stands alone.
869      */
870     { .name = "FCSEIDR",
871       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
872       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
873       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
874       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
875     { .name = "FCSEIDR_S",
876       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
877       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
878       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
879       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
880     /* Define the secure and non-secure context identifier CP registers
881      * separately because there is no secure bank in V8 (no _EL3).  This allows
882      * the secure register to be properly reset and migrated.  In the
883      * non-secure case, the 32-bit register will have reset and migration
884      * disabled during registration as it is handled by the 64-bit instance.
885      */
886     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
887       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
888       .access = PL1_RW, .accessfn = access_tvm_trvm,
889       .secure = ARM_CP_SECSTATE_NS,
890       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
891       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
892     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
893       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
894       .access = PL1_RW, .accessfn = access_tvm_trvm,
895       .secure = ARM_CP_SECSTATE_S,
896       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
897       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
898     REGINFO_SENTINEL
899 };
900 
901 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
902     /* NB: Some of these registers exist in v8 but with more precise
903      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
904      */
905     /* MMU Domain access control / MPU write buffer control */
906     { .name = "DACR",
907       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
908       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
909       .writefn = dacr_write, .raw_writefn = raw_write,
910       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
911                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
912     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
913      * For v6 and v5, these mappings are overly broad.
914      */
915     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
916       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
917     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
918       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
919     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
920       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
921     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
922       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
923     /* Cache maintenance ops; some of this space may be overridden later. */
924     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
925       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
926       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
927     REGINFO_SENTINEL
928 };
929 
930 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
931     /* Not all pre-v6 cores implemented this WFI, so this is slightly
932      * over-broad.
933      */
934     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
935       .access = PL1_W, .type = ARM_CP_WFI },
936     REGINFO_SENTINEL
937 };
938 
939 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
940     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
941      * is UNPREDICTABLE; we choose to NOP as most implementations do).
942      */
943     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
944       .access = PL1_W, .type = ARM_CP_WFI },
945     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
946      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
947      * OMAPCP will override this space.
948      */
949     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
950       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
951       .resetvalue = 0 },
952     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
953       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
954       .resetvalue = 0 },
955     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
956     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
957       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
958       .resetvalue = 0 },
959     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
960      * implementing it as RAZ means the "debug architecture version" bits
961      * will read as a reserved value, which should cause Linux to not try
962      * to use the debug hardware.
963      */
964     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
965       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
966     /* MMU TLB control. Note that the wildcarding means we cover not just
967      * the unified TLB ops but also the dside/iside/inner-shareable variants.
968      */
969     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
970       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
971       .type = ARM_CP_NO_RAW },
972     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
973       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
974       .type = ARM_CP_NO_RAW },
975     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
976       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
977       .type = ARM_CP_NO_RAW },
978     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
979       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
980       .type = ARM_CP_NO_RAW },
981     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
982       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
983     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
984       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
985     REGINFO_SENTINEL
986 };
987 
988 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
989                         uint64_t value)
990 {
991     uint32_t mask = 0;
992 
993     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
994     if (!arm_feature(env, ARM_FEATURE_V8)) {
995         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
996          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
997          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
998          */
999         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
1000             /* VFP coprocessor: cp10 & cp11 [23:20] */
1001             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
1002 
1003             if (!arm_feature(env, ARM_FEATURE_NEON)) {
1004                 /* ASEDIS [31] bit is RAO/WI */
1005                 value |= (1 << 31);
1006             }
1007 
1008             /* VFPv3 and upwards with NEON implement 32 double precision
1009              * registers (D0-D31).
1010              */
1011             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
1012                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
1013                 value |= (1 << 30);
1014             }
1015         }
1016         value &= mask;
1017     }
1018 
1019     /*
1020      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1021      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1022      */
1023     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1024         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1025         value &= ~(0xf << 20);
1026         value |= env->cp15.cpacr_el1 & (0xf << 20);
1027     }
1028 
1029     env->cp15.cpacr_el1 = value;
1030 }
1031 
1032 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1033 {
1034     /*
1035      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1036      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1037      */
1038     uint64_t value = env->cp15.cpacr_el1;
1039 
1040     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1041         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1042         value &= ~(0xf << 20);
1043     }
1044     return value;
1045 }
1046 
1047 
1048 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1049 {
1050     /* Call cpacr_write() so that we reset with the correct RAO bits set
1051      * for our CPU features.
1052      */
1053     cpacr_write(env, ri, 0);
1054 }
1055 
1056 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1057                                    bool isread)
1058 {
1059     if (arm_feature(env, ARM_FEATURE_V8)) {
1060         /* Check if CPACR accesses are to be trapped to EL2 */
1061         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
1062             (env->cp15.cptr_el[2] & CPTR_TCPAC)) {
1063             return CP_ACCESS_TRAP_EL2;
1064         /* Check if CPACR accesses are to be trapped to EL3 */
1065         } else if (arm_current_el(env) < 3 &&
1066                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1067             return CP_ACCESS_TRAP_EL3;
1068         }
1069     }
1070 
1071     return CP_ACCESS_OK;
1072 }
1073 
1074 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1075                                   bool isread)
1076 {
1077     /* Check if CPTR accesses are set to trap to EL3 */
1078     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1079         return CP_ACCESS_TRAP_EL3;
1080     }
1081 
1082     return CP_ACCESS_OK;
1083 }
1084 
1085 static const ARMCPRegInfo v6_cp_reginfo[] = {
1086     /* prefetch by MVA in v6, NOP in v7 */
1087     { .name = "MVA_prefetch",
1088       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
1089       .access = PL1_W, .type = ARM_CP_NOP },
1090     /* We need to break the TB after ISB to execute self-modifying code
1091      * correctly and also to take any pending interrupts immediately.
1092      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
1093      */
1094     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
1095       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
1096     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
1097       .access = PL0_W, .type = ARM_CP_NOP },
1098     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
1099       .access = PL0_W, .type = ARM_CP_NOP },
1100     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
1101       .access = PL1_RW, .accessfn = access_tvm_trvm,
1102       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1103                              offsetof(CPUARMState, cp15.ifar_ns) },
1104       .resetvalue = 0, },
1105     /* Watchpoint Fault Address Register : should actually only be present
1106      * for 1136, 1176, 11MPCore.
1107      */
1108     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1109       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1110     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1111       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1112       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1113       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1114     REGINFO_SENTINEL
1115 };
1116 
1117 /* Definitions for the PMU registers */
1118 #define PMCRN_MASK  0xf800
1119 #define PMCRN_SHIFT 11
1120 #define PMCRLC  0x40
1121 #define PMCRDP  0x20
1122 #define PMCRX   0x10
1123 #define PMCRD   0x8
1124 #define PMCRC   0x4
1125 #define PMCRP   0x2
1126 #define PMCRE   0x1
1127 /*
1128  * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1129  * which can be written as 1 to trigger behaviour but which stay RAZ).
1130  */
1131 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1132 
1133 #define PMXEVTYPER_P          0x80000000
1134 #define PMXEVTYPER_U          0x40000000
1135 #define PMXEVTYPER_NSK        0x20000000
1136 #define PMXEVTYPER_NSU        0x10000000
1137 #define PMXEVTYPER_NSH        0x08000000
1138 #define PMXEVTYPER_M          0x04000000
1139 #define PMXEVTYPER_MT         0x02000000
1140 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1141 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1142                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1143                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1144                                PMXEVTYPER_EVTCOUNT)
1145 
1146 #define PMCCFILTR             0xf8000000
1147 #define PMCCFILTR_M           PMXEVTYPER_M
1148 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1149 
1150 static inline uint32_t pmu_num_counters(CPUARMState *env)
1151 {
1152   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1153 }
1154 
1155 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1156 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1157 {
1158   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1159 }
1160 
1161 typedef struct pm_event {
1162     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1163     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1164     bool (*supported)(CPUARMState *);
1165     /*
1166      * Retrieve the current count of the underlying event. The programmed
1167      * counters hold a difference from the return value from this function
1168      */
1169     uint64_t (*get_count)(CPUARMState *);
1170     /*
1171      * Return how many nanoseconds it will take (at a minimum) for count events
1172      * to occur. A negative value indicates the counter will never overflow, or
1173      * that the counter has otherwise arranged for the overflow bit to be set
1174      * and the PMU interrupt to be raised on overflow.
1175      */
1176     int64_t (*ns_per_count)(uint64_t);
1177 } pm_event;
1178 
1179 static bool event_always_supported(CPUARMState *env)
1180 {
1181     return true;
1182 }
1183 
1184 static uint64_t swinc_get_count(CPUARMState *env)
1185 {
1186     /*
1187      * SW_INCR events are written directly to the pmevcntr's by writes to
1188      * PMSWINC, so there is no underlying count maintained by the PMU itself
1189      */
1190     return 0;
1191 }
1192 
1193 static int64_t swinc_ns_per(uint64_t ignored)
1194 {
1195     return -1;
1196 }
1197 
1198 /*
1199  * Return the underlying cycle count for the PMU cycle counters. If we're in
1200  * usermode, simply return 0.
1201  */
1202 static uint64_t cycles_get_count(CPUARMState *env)
1203 {
1204 #ifndef CONFIG_USER_ONLY
1205     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1206                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1207 #else
1208     return cpu_get_host_ticks();
1209 #endif
1210 }
1211 
1212 #ifndef CONFIG_USER_ONLY
1213 static int64_t cycles_ns_per(uint64_t cycles)
1214 {
1215     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1216 }
1217 
1218 static bool instructions_supported(CPUARMState *env)
1219 {
1220     return icount_enabled() == 1; /* Precise instruction counting */
1221 }
1222 
1223 static uint64_t instructions_get_count(CPUARMState *env)
1224 {
1225     return (uint64_t)icount_get_raw();
1226 }
1227 
1228 static int64_t instructions_ns_per(uint64_t icount)
1229 {
1230     return icount_to_ns((int64_t)icount);
1231 }
1232 #endif
1233 
1234 static bool pmu_8_1_events_supported(CPUARMState *env)
1235 {
1236     /* For events which are supported in any v8.1 PMU */
1237     return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1238 }
1239 
1240 static bool pmu_8_4_events_supported(CPUARMState *env)
1241 {
1242     /* For events which are supported in any v8.1 PMU */
1243     return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1244 }
1245 
1246 static uint64_t zero_event_get_count(CPUARMState *env)
1247 {
1248     /* For events which on QEMU never fire, so their count is always zero */
1249     return 0;
1250 }
1251 
1252 static int64_t zero_event_ns_per(uint64_t cycles)
1253 {
1254     /* An event which never fires can never overflow */
1255     return -1;
1256 }
1257 
1258 static const pm_event pm_events[] = {
1259     { .number = 0x000, /* SW_INCR */
1260       .supported = event_always_supported,
1261       .get_count = swinc_get_count,
1262       .ns_per_count = swinc_ns_per,
1263     },
1264 #ifndef CONFIG_USER_ONLY
1265     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1266       .supported = instructions_supported,
1267       .get_count = instructions_get_count,
1268       .ns_per_count = instructions_ns_per,
1269     },
1270     { .number = 0x011, /* CPU_CYCLES, Cycle */
1271       .supported = event_always_supported,
1272       .get_count = cycles_get_count,
1273       .ns_per_count = cycles_ns_per,
1274     },
1275 #endif
1276     { .number = 0x023, /* STALL_FRONTEND */
1277       .supported = pmu_8_1_events_supported,
1278       .get_count = zero_event_get_count,
1279       .ns_per_count = zero_event_ns_per,
1280     },
1281     { .number = 0x024, /* STALL_BACKEND */
1282       .supported = pmu_8_1_events_supported,
1283       .get_count = zero_event_get_count,
1284       .ns_per_count = zero_event_ns_per,
1285     },
1286     { .number = 0x03c, /* STALL */
1287       .supported = pmu_8_4_events_supported,
1288       .get_count = zero_event_get_count,
1289       .ns_per_count = zero_event_ns_per,
1290     },
1291 };
1292 
1293 /*
1294  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1295  * events (i.e. the statistical profiling extension), this implementation
1296  * should first be updated to something sparse instead of the current
1297  * supported_event_map[] array.
1298  */
1299 #define MAX_EVENT_ID 0x3c
1300 #define UNSUPPORTED_EVENT UINT16_MAX
1301 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1302 
1303 /*
1304  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1305  * of ARM event numbers to indices in our pm_events array.
1306  *
1307  * Note: Events in the 0x40XX range are not currently supported.
1308  */
1309 void pmu_init(ARMCPU *cpu)
1310 {
1311     unsigned int i;
1312 
1313     /*
1314      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1315      * events to them
1316      */
1317     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1318         supported_event_map[i] = UNSUPPORTED_EVENT;
1319     }
1320     cpu->pmceid0 = 0;
1321     cpu->pmceid1 = 0;
1322 
1323     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1324         const pm_event *cnt = &pm_events[i];
1325         assert(cnt->number <= MAX_EVENT_ID);
1326         /* We do not currently support events in the 0x40xx range */
1327         assert(cnt->number <= 0x3f);
1328 
1329         if (cnt->supported(&cpu->env)) {
1330             supported_event_map[cnt->number] = i;
1331             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1332             if (cnt->number & 0x20) {
1333                 cpu->pmceid1 |= event_mask;
1334             } else {
1335                 cpu->pmceid0 |= event_mask;
1336             }
1337         }
1338     }
1339 }
1340 
1341 /*
1342  * Check at runtime whether a PMU event is supported for the current machine
1343  */
1344 static bool event_supported(uint16_t number)
1345 {
1346     if (number > MAX_EVENT_ID) {
1347         return false;
1348     }
1349     return supported_event_map[number] != UNSUPPORTED_EVENT;
1350 }
1351 
1352 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1353                                    bool isread)
1354 {
1355     /* Performance monitor registers user accessibility is controlled
1356      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1357      * trapping to EL2 or EL3 for other accesses.
1358      */
1359     int el = arm_current_el(env);
1360     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1361 
1362     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1363         return CP_ACCESS_TRAP;
1364     }
1365     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1366         return CP_ACCESS_TRAP_EL2;
1367     }
1368     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1369         return CP_ACCESS_TRAP_EL3;
1370     }
1371 
1372     return CP_ACCESS_OK;
1373 }
1374 
1375 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1376                                            const ARMCPRegInfo *ri,
1377                                            bool isread)
1378 {
1379     /* ER: event counter read trap control */
1380     if (arm_feature(env, ARM_FEATURE_V8)
1381         && arm_current_el(env) == 0
1382         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1383         && isread) {
1384         return CP_ACCESS_OK;
1385     }
1386 
1387     return pmreg_access(env, ri, isread);
1388 }
1389 
1390 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1391                                          const ARMCPRegInfo *ri,
1392                                          bool isread)
1393 {
1394     /* SW: software increment write trap control */
1395     if (arm_feature(env, ARM_FEATURE_V8)
1396         && arm_current_el(env) == 0
1397         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1398         && !isread) {
1399         return CP_ACCESS_OK;
1400     }
1401 
1402     return pmreg_access(env, ri, isread);
1403 }
1404 
1405 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1406                                         const ARMCPRegInfo *ri,
1407                                         bool isread)
1408 {
1409     /* ER: event counter read trap control */
1410     if (arm_feature(env, ARM_FEATURE_V8)
1411         && arm_current_el(env) == 0
1412         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1413         return CP_ACCESS_OK;
1414     }
1415 
1416     return pmreg_access(env, ri, isread);
1417 }
1418 
1419 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1420                                          const ARMCPRegInfo *ri,
1421                                          bool isread)
1422 {
1423     /* CR: cycle counter read trap control */
1424     if (arm_feature(env, ARM_FEATURE_V8)
1425         && arm_current_el(env) == 0
1426         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1427         && isread) {
1428         return CP_ACCESS_OK;
1429     }
1430 
1431     return pmreg_access(env, ri, isread);
1432 }
1433 
1434 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1435  * the current EL, security state, and register configuration.
1436  */
1437 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1438 {
1439     uint64_t filter;
1440     bool e, p, u, nsk, nsu, nsh, m;
1441     bool enabled, prohibited, filtered;
1442     bool secure = arm_is_secure(env);
1443     int el = arm_current_el(env);
1444     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1445     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1446 
1447     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1448         return false;
1449     }
1450 
1451     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1452             (counter < hpmn || counter == 31)) {
1453         e = env->cp15.c9_pmcr & PMCRE;
1454     } else {
1455         e = mdcr_el2 & MDCR_HPME;
1456     }
1457     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1458 
1459     if (!secure) {
1460         if (el == 2 && (counter < hpmn || counter == 31)) {
1461             prohibited = mdcr_el2 & MDCR_HPMD;
1462         } else {
1463             prohibited = false;
1464         }
1465     } else {
1466         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1467            !(env->cp15.mdcr_el3 & MDCR_SPME);
1468     }
1469 
1470     if (prohibited && counter == 31) {
1471         prohibited = env->cp15.c9_pmcr & PMCRDP;
1472     }
1473 
1474     if (counter == 31) {
1475         filter = env->cp15.pmccfiltr_el0;
1476     } else {
1477         filter = env->cp15.c14_pmevtyper[counter];
1478     }
1479 
1480     p   = filter & PMXEVTYPER_P;
1481     u   = filter & PMXEVTYPER_U;
1482     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1483     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1484     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1485     m   = arm_el_is_aa64(env, 1) &&
1486               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1487 
1488     if (el == 0) {
1489         filtered = secure ? u : u != nsu;
1490     } else if (el == 1) {
1491         filtered = secure ? p : p != nsk;
1492     } else if (el == 2) {
1493         filtered = !nsh;
1494     } else { /* EL3 */
1495         filtered = m != p;
1496     }
1497 
1498     if (counter != 31) {
1499         /*
1500          * If not checking PMCCNTR, ensure the counter is setup to an event we
1501          * support
1502          */
1503         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1504         if (!event_supported(event)) {
1505             return false;
1506         }
1507     }
1508 
1509     return enabled && !prohibited && !filtered;
1510 }
1511 
1512 static void pmu_update_irq(CPUARMState *env)
1513 {
1514     ARMCPU *cpu = env_archcpu(env);
1515     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1516             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1517 }
1518 
1519 /*
1520  * Ensure c15_ccnt is the guest-visible count so that operations such as
1521  * enabling/disabling the counter or filtering, modifying the count itself,
1522  * etc. can be done logically. This is essentially a no-op if the counter is
1523  * not enabled at the time of the call.
1524  */
1525 static void pmccntr_op_start(CPUARMState *env)
1526 {
1527     uint64_t cycles = cycles_get_count(env);
1528 
1529     if (pmu_counter_enabled(env, 31)) {
1530         uint64_t eff_cycles = cycles;
1531         if (env->cp15.c9_pmcr & PMCRD) {
1532             /* Increment once every 64 processor clock cycles */
1533             eff_cycles /= 64;
1534         }
1535 
1536         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1537 
1538         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1539                                  1ull << 63 : 1ull << 31;
1540         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1541             env->cp15.c9_pmovsr |= (1 << 31);
1542             pmu_update_irq(env);
1543         }
1544 
1545         env->cp15.c15_ccnt = new_pmccntr;
1546     }
1547     env->cp15.c15_ccnt_delta = cycles;
1548 }
1549 
1550 /*
1551  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1552  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1553  * pmccntr_op_start.
1554  */
1555 static void pmccntr_op_finish(CPUARMState *env)
1556 {
1557     if (pmu_counter_enabled(env, 31)) {
1558 #ifndef CONFIG_USER_ONLY
1559         /* Calculate when the counter will next overflow */
1560         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1561         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1562             remaining_cycles = (uint32_t)remaining_cycles;
1563         }
1564         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1565 
1566         if (overflow_in > 0) {
1567             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1568                 overflow_in;
1569             ARMCPU *cpu = env_archcpu(env);
1570             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1571         }
1572 #endif
1573 
1574         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1575         if (env->cp15.c9_pmcr & PMCRD) {
1576             /* Increment once every 64 processor clock cycles */
1577             prev_cycles /= 64;
1578         }
1579         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1580     }
1581 }
1582 
1583 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1584 {
1585 
1586     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1587     uint64_t count = 0;
1588     if (event_supported(event)) {
1589         uint16_t event_idx = supported_event_map[event];
1590         count = pm_events[event_idx].get_count(env);
1591     }
1592 
1593     if (pmu_counter_enabled(env, counter)) {
1594         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1595 
1596         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1597             env->cp15.c9_pmovsr |= (1 << counter);
1598             pmu_update_irq(env);
1599         }
1600         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1601     }
1602     env->cp15.c14_pmevcntr_delta[counter] = count;
1603 }
1604 
1605 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1606 {
1607     if (pmu_counter_enabled(env, counter)) {
1608 #ifndef CONFIG_USER_ONLY
1609         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1610         uint16_t event_idx = supported_event_map[event];
1611         uint64_t delta = UINT32_MAX -
1612             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1613         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1614 
1615         if (overflow_in > 0) {
1616             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1617                 overflow_in;
1618             ARMCPU *cpu = env_archcpu(env);
1619             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1620         }
1621 #endif
1622 
1623         env->cp15.c14_pmevcntr_delta[counter] -=
1624             env->cp15.c14_pmevcntr[counter];
1625     }
1626 }
1627 
1628 void pmu_op_start(CPUARMState *env)
1629 {
1630     unsigned int i;
1631     pmccntr_op_start(env);
1632     for (i = 0; i < pmu_num_counters(env); i++) {
1633         pmevcntr_op_start(env, i);
1634     }
1635 }
1636 
1637 void pmu_op_finish(CPUARMState *env)
1638 {
1639     unsigned int i;
1640     pmccntr_op_finish(env);
1641     for (i = 0; i < pmu_num_counters(env); i++) {
1642         pmevcntr_op_finish(env, i);
1643     }
1644 }
1645 
1646 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1647 {
1648     pmu_op_start(&cpu->env);
1649 }
1650 
1651 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1652 {
1653     pmu_op_finish(&cpu->env);
1654 }
1655 
1656 void arm_pmu_timer_cb(void *opaque)
1657 {
1658     ARMCPU *cpu = opaque;
1659 
1660     /*
1661      * Update all the counter values based on the current underlying counts,
1662      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1663      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1664      * counter may expire.
1665      */
1666     pmu_op_start(&cpu->env);
1667     pmu_op_finish(&cpu->env);
1668 }
1669 
1670 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1671                        uint64_t value)
1672 {
1673     pmu_op_start(env);
1674 
1675     if (value & PMCRC) {
1676         /* The counter has been reset */
1677         env->cp15.c15_ccnt = 0;
1678     }
1679 
1680     if (value & PMCRP) {
1681         unsigned int i;
1682         for (i = 0; i < pmu_num_counters(env); i++) {
1683             env->cp15.c14_pmevcntr[i] = 0;
1684         }
1685     }
1686 
1687     env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1688     env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1689 
1690     pmu_op_finish(env);
1691 }
1692 
1693 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1694                           uint64_t value)
1695 {
1696     unsigned int i;
1697     for (i = 0; i < pmu_num_counters(env); i++) {
1698         /* Increment a counter's count iff: */
1699         if ((value & (1 << i)) && /* counter's bit is set */
1700                 /* counter is enabled and not filtered */
1701                 pmu_counter_enabled(env, i) &&
1702                 /* counter is SW_INCR */
1703                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1704             pmevcntr_op_start(env, i);
1705 
1706             /*
1707              * Detect if this write causes an overflow since we can't predict
1708              * PMSWINC overflows like we can for other events
1709              */
1710             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1711 
1712             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1713                 env->cp15.c9_pmovsr |= (1 << i);
1714                 pmu_update_irq(env);
1715             }
1716 
1717             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1718 
1719             pmevcntr_op_finish(env, i);
1720         }
1721     }
1722 }
1723 
1724 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1725 {
1726     uint64_t ret;
1727     pmccntr_op_start(env);
1728     ret = env->cp15.c15_ccnt;
1729     pmccntr_op_finish(env);
1730     return ret;
1731 }
1732 
1733 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734                          uint64_t value)
1735 {
1736     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1737      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1738      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1739      * accessed.
1740      */
1741     env->cp15.c9_pmselr = value & 0x1f;
1742 }
1743 
1744 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1745                         uint64_t value)
1746 {
1747     pmccntr_op_start(env);
1748     env->cp15.c15_ccnt = value;
1749     pmccntr_op_finish(env);
1750 }
1751 
1752 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1753                             uint64_t value)
1754 {
1755     uint64_t cur_val = pmccntr_read(env, NULL);
1756 
1757     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1758 }
1759 
1760 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1761                             uint64_t value)
1762 {
1763     pmccntr_op_start(env);
1764     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1765     pmccntr_op_finish(env);
1766 }
1767 
1768 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1769                             uint64_t value)
1770 {
1771     pmccntr_op_start(env);
1772     /* M is not accessible from AArch32 */
1773     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1774         (value & PMCCFILTR);
1775     pmccntr_op_finish(env);
1776 }
1777 
1778 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1779 {
1780     /* M is not visible in AArch32 */
1781     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1782 }
1783 
1784 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1785                             uint64_t value)
1786 {
1787     value &= pmu_counter_mask(env);
1788     env->cp15.c9_pmcnten |= value;
1789 }
1790 
1791 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792                              uint64_t value)
1793 {
1794     value &= pmu_counter_mask(env);
1795     env->cp15.c9_pmcnten &= ~value;
1796 }
1797 
1798 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1799                          uint64_t value)
1800 {
1801     value &= pmu_counter_mask(env);
1802     env->cp15.c9_pmovsr &= ~value;
1803     pmu_update_irq(env);
1804 }
1805 
1806 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807                          uint64_t value)
1808 {
1809     value &= pmu_counter_mask(env);
1810     env->cp15.c9_pmovsr |= value;
1811     pmu_update_irq(env);
1812 }
1813 
1814 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815                              uint64_t value, const uint8_t counter)
1816 {
1817     if (counter == 31) {
1818         pmccfiltr_write(env, ri, value);
1819     } else if (counter < pmu_num_counters(env)) {
1820         pmevcntr_op_start(env, counter);
1821 
1822         /*
1823          * If this counter's event type is changing, store the current
1824          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1825          * pmevcntr_op_finish has the correct baseline when it converts back to
1826          * a delta.
1827          */
1828         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1829             PMXEVTYPER_EVTCOUNT;
1830         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1831         if (old_event != new_event) {
1832             uint64_t count = 0;
1833             if (event_supported(new_event)) {
1834                 uint16_t event_idx = supported_event_map[new_event];
1835                 count = pm_events[event_idx].get_count(env);
1836             }
1837             env->cp15.c14_pmevcntr_delta[counter] = count;
1838         }
1839 
1840         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1841         pmevcntr_op_finish(env, counter);
1842     }
1843     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1844      * PMSELR value is equal to or greater than the number of implemented
1845      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1846      */
1847 }
1848 
1849 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1850                                const uint8_t counter)
1851 {
1852     if (counter == 31) {
1853         return env->cp15.pmccfiltr_el0;
1854     } else if (counter < pmu_num_counters(env)) {
1855         return env->cp15.c14_pmevtyper[counter];
1856     } else {
1857       /*
1858        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1859        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1860        */
1861         return 0;
1862     }
1863 }
1864 
1865 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1866                               uint64_t value)
1867 {
1868     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1869     pmevtyper_write(env, ri, value, counter);
1870 }
1871 
1872 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1873                                uint64_t value)
1874 {
1875     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1876     env->cp15.c14_pmevtyper[counter] = value;
1877 
1878     /*
1879      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1880      * pmu_op_finish calls when loading saved state for a migration. Because
1881      * we're potentially updating the type of event here, the value written to
1882      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1883      * different counter type. Therefore, we need to set this value to the
1884      * current count for the counter type we're writing so that pmu_op_finish
1885      * has the correct count for its calculation.
1886      */
1887     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1888     if (event_supported(event)) {
1889         uint16_t event_idx = supported_event_map[event];
1890         env->cp15.c14_pmevcntr_delta[counter] =
1891             pm_events[event_idx].get_count(env);
1892     }
1893 }
1894 
1895 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1896 {
1897     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1898     return pmevtyper_read(env, ri, counter);
1899 }
1900 
1901 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1902                              uint64_t value)
1903 {
1904     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1905 }
1906 
1907 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1908 {
1909     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1910 }
1911 
1912 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1913                              uint64_t value, uint8_t counter)
1914 {
1915     if (counter < pmu_num_counters(env)) {
1916         pmevcntr_op_start(env, counter);
1917         env->cp15.c14_pmevcntr[counter] = value;
1918         pmevcntr_op_finish(env, counter);
1919     }
1920     /*
1921      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1922      * are CONSTRAINED UNPREDICTABLE.
1923      */
1924 }
1925 
1926 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1927                               uint8_t counter)
1928 {
1929     if (counter < pmu_num_counters(env)) {
1930         uint64_t ret;
1931         pmevcntr_op_start(env, counter);
1932         ret = env->cp15.c14_pmevcntr[counter];
1933         pmevcntr_op_finish(env, counter);
1934         return ret;
1935     } else {
1936       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1937        * are CONSTRAINED UNPREDICTABLE. */
1938         return 0;
1939     }
1940 }
1941 
1942 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1943                              uint64_t value)
1944 {
1945     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1946     pmevcntr_write(env, ri, value, counter);
1947 }
1948 
1949 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1950 {
1951     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1952     return pmevcntr_read(env, ri, counter);
1953 }
1954 
1955 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1956                              uint64_t value)
1957 {
1958     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1959     assert(counter < pmu_num_counters(env));
1960     env->cp15.c14_pmevcntr[counter] = value;
1961     pmevcntr_write(env, ri, value, counter);
1962 }
1963 
1964 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1965 {
1966     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1967     assert(counter < pmu_num_counters(env));
1968     return env->cp15.c14_pmevcntr[counter];
1969 }
1970 
1971 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1972                              uint64_t value)
1973 {
1974     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1975 }
1976 
1977 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1978 {
1979     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1980 }
1981 
1982 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1983                             uint64_t value)
1984 {
1985     if (arm_feature(env, ARM_FEATURE_V8)) {
1986         env->cp15.c9_pmuserenr = value & 0xf;
1987     } else {
1988         env->cp15.c9_pmuserenr = value & 1;
1989     }
1990 }
1991 
1992 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1993                              uint64_t value)
1994 {
1995     /* We have no event counters so only the C bit can be changed */
1996     value &= pmu_counter_mask(env);
1997     env->cp15.c9_pminten |= value;
1998     pmu_update_irq(env);
1999 }
2000 
2001 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2002                              uint64_t value)
2003 {
2004     value &= pmu_counter_mask(env);
2005     env->cp15.c9_pminten &= ~value;
2006     pmu_update_irq(env);
2007 }
2008 
2009 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2010                        uint64_t value)
2011 {
2012     /* Note that even though the AArch64 view of this register has bits
2013      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
2014      * architectural requirements for bits which are RES0 only in some
2015      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
2016      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
2017      */
2018     raw_write(env, ri, value & ~0x1FULL);
2019 }
2020 
2021 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2022 {
2023     /* Begin with base v8.0 state.  */
2024     uint32_t valid_mask = 0x3fff;
2025     ARMCPU *cpu = env_archcpu(env);
2026 
2027     if (ri->state == ARM_CP_STATE_AA64) {
2028         if (arm_feature(env, ARM_FEATURE_AARCH64) &&
2029             !cpu_isar_feature(aa64_aa32_el1, cpu)) {
2030                 value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
2031         }
2032         valid_mask &= ~SCR_NET;
2033 
2034         if (cpu_isar_feature(aa64_lor, cpu)) {
2035             valid_mask |= SCR_TLOR;
2036         }
2037         if (cpu_isar_feature(aa64_pauth, cpu)) {
2038             valid_mask |= SCR_API | SCR_APK;
2039         }
2040         if (cpu_isar_feature(aa64_sel2, cpu)) {
2041             valid_mask |= SCR_EEL2;
2042         }
2043         if (cpu_isar_feature(aa64_mte, cpu)) {
2044             valid_mask |= SCR_ATA;
2045         }
2046     } else {
2047         valid_mask &= ~(SCR_RW | SCR_ST);
2048     }
2049 
2050     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2051         valid_mask &= ~SCR_HCE;
2052 
2053         /* On ARMv7, SMD (or SCD as it is called in v7) is only
2054          * supported if EL2 exists. The bit is UNK/SBZP when
2055          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
2056          * when EL2 is unavailable.
2057          * On ARMv8, this bit is always available.
2058          */
2059         if (arm_feature(env, ARM_FEATURE_V7) &&
2060             !arm_feature(env, ARM_FEATURE_V8)) {
2061             valid_mask &= ~SCR_SMD;
2062         }
2063     }
2064 
2065     /* Clear all-context RES0 bits.  */
2066     value &= valid_mask;
2067     raw_write(env, ri, value);
2068 }
2069 
2070 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2071 {
2072     /*
2073      * scr_write will set the RES1 bits on an AArch64-only CPU.
2074      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
2075      */
2076     scr_write(env, ri, 0);
2077 }
2078 
2079 static CPAccessResult access_aa64_tid2(CPUARMState *env,
2080                                        const ARMCPRegInfo *ri,
2081                                        bool isread)
2082 {
2083     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
2084         return CP_ACCESS_TRAP_EL2;
2085     }
2086 
2087     return CP_ACCESS_OK;
2088 }
2089 
2090 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2091 {
2092     ARMCPU *cpu = env_archcpu(env);
2093 
2094     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
2095      * bank
2096      */
2097     uint32_t index = A32_BANKED_REG_GET(env, csselr,
2098                                         ri->secure & ARM_CP_SECSTATE_S);
2099 
2100     return cpu->ccsidr[index];
2101 }
2102 
2103 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2104                          uint64_t value)
2105 {
2106     raw_write(env, ri, value & 0xf);
2107 }
2108 
2109 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2110 {
2111     CPUState *cs = env_cpu(env);
2112     bool el1 = arm_current_el(env) == 1;
2113     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2114     uint64_t ret = 0;
2115 
2116     if (hcr_el2 & HCR_IMO) {
2117         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2118             ret |= CPSR_I;
2119         }
2120     } else {
2121         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2122             ret |= CPSR_I;
2123         }
2124     }
2125 
2126     if (hcr_el2 & HCR_FMO) {
2127         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2128             ret |= CPSR_F;
2129         }
2130     } else {
2131         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2132             ret |= CPSR_F;
2133         }
2134     }
2135 
2136     /* External aborts are not possible in QEMU so A bit is always clear */
2137     return ret;
2138 }
2139 
2140 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2141                                        bool isread)
2142 {
2143     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2144         return CP_ACCESS_TRAP_EL2;
2145     }
2146 
2147     return CP_ACCESS_OK;
2148 }
2149 
2150 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2151                                        bool isread)
2152 {
2153     if (arm_feature(env, ARM_FEATURE_V8)) {
2154         return access_aa64_tid1(env, ri, isread);
2155     }
2156 
2157     return CP_ACCESS_OK;
2158 }
2159 
2160 static const ARMCPRegInfo v7_cp_reginfo[] = {
2161     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2162     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2163       .access = PL1_W, .type = ARM_CP_NOP },
2164     /* Performance monitors are implementation defined in v7,
2165      * but with an ARM recommended set of registers, which we
2166      * follow.
2167      *
2168      * Performance registers fall into three categories:
2169      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2170      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2171      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2172      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2173      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2174      */
2175     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2176       .access = PL0_RW, .type = ARM_CP_ALIAS,
2177       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2178       .writefn = pmcntenset_write,
2179       .accessfn = pmreg_access,
2180       .raw_writefn = raw_write },
2181     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2182       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2183       .access = PL0_RW, .accessfn = pmreg_access,
2184       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2185       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2186     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2187       .access = PL0_RW,
2188       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2189       .accessfn = pmreg_access,
2190       .writefn = pmcntenclr_write,
2191       .type = ARM_CP_ALIAS },
2192     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2193       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2194       .access = PL0_RW, .accessfn = pmreg_access,
2195       .type = ARM_CP_ALIAS,
2196       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2197       .writefn = pmcntenclr_write },
2198     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2199       .access = PL0_RW, .type = ARM_CP_IO,
2200       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2201       .accessfn = pmreg_access,
2202       .writefn = pmovsr_write,
2203       .raw_writefn = raw_write },
2204     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2205       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2206       .access = PL0_RW, .accessfn = pmreg_access,
2207       .type = ARM_CP_ALIAS | ARM_CP_IO,
2208       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2209       .writefn = pmovsr_write,
2210       .raw_writefn = raw_write },
2211     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2212       .access = PL0_W, .accessfn = pmreg_access_swinc,
2213       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2214       .writefn = pmswinc_write },
2215     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2216       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2217       .access = PL0_W, .accessfn = pmreg_access_swinc,
2218       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2219       .writefn = pmswinc_write },
2220     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2221       .access = PL0_RW, .type = ARM_CP_ALIAS,
2222       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2223       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2224       .raw_writefn = raw_write},
2225     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2226       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2227       .access = PL0_RW, .accessfn = pmreg_access_selr,
2228       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2229       .writefn = pmselr_write, .raw_writefn = raw_write, },
2230     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2231       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2232       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2233       .accessfn = pmreg_access_ccntr },
2234     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2235       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2236       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2237       .type = ARM_CP_IO,
2238       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2239       .readfn = pmccntr_read, .writefn = pmccntr_write,
2240       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2241     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2242       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2243       .access = PL0_RW, .accessfn = pmreg_access,
2244       .type = ARM_CP_ALIAS | ARM_CP_IO,
2245       .resetvalue = 0, },
2246     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2247       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2248       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2249       .access = PL0_RW, .accessfn = pmreg_access,
2250       .type = ARM_CP_IO,
2251       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2252       .resetvalue = 0, },
2253     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2254       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2255       .accessfn = pmreg_access,
2256       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2257     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2258       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2259       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2260       .accessfn = pmreg_access,
2261       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2262     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2263       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2264       .accessfn = pmreg_access_xevcntr,
2265       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2266     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2267       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2268       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2269       .accessfn = pmreg_access_xevcntr,
2270       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2271     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2272       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2273       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2274       .resetvalue = 0,
2275       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2276     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2277       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2278       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2279       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2280       .resetvalue = 0,
2281       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2282     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2283       .access = PL1_RW, .accessfn = access_tpm,
2284       .type = ARM_CP_ALIAS | ARM_CP_IO,
2285       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2286       .resetvalue = 0,
2287       .writefn = pmintenset_write, .raw_writefn = raw_write },
2288     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2289       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2290       .access = PL1_RW, .accessfn = access_tpm,
2291       .type = ARM_CP_IO,
2292       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2293       .writefn = pmintenset_write, .raw_writefn = raw_write,
2294       .resetvalue = 0x0 },
2295     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2296       .access = PL1_RW, .accessfn = access_tpm,
2297       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2298       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2299       .writefn = pmintenclr_write, },
2300     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2301       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2302       .access = PL1_RW, .accessfn = access_tpm,
2303       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2304       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2305       .writefn = pmintenclr_write },
2306     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2307       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2308       .access = PL1_R,
2309       .accessfn = access_aa64_tid2,
2310       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2311     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2312       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2313       .access = PL1_RW,
2314       .accessfn = access_aa64_tid2,
2315       .writefn = csselr_write, .resetvalue = 0,
2316       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2317                              offsetof(CPUARMState, cp15.csselr_ns) } },
2318     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2319      * just RAZ for all cores:
2320      */
2321     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2322       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2323       .access = PL1_R, .type = ARM_CP_CONST,
2324       .accessfn = access_aa64_tid1,
2325       .resetvalue = 0 },
2326     /* Auxiliary fault status registers: these also are IMPDEF, and we
2327      * choose to RAZ/WI for all cores.
2328      */
2329     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2330       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2331       .access = PL1_RW, .accessfn = access_tvm_trvm,
2332       .type = ARM_CP_CONST, .resetvalue = 0 },
2333     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2334       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2335       .access = PL1_RW, .accessfn = access_tvm_trvm,
2336       .type = ARM_CP_CONST, .resetvalue = 0 },
2337     /* MAIR can just read-as-written because we don't implement caches
2338      * and so don't need to care about memory attributes.
2339      */
2340     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2341       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2342       .access = PL1_RW, .accessfn = access_tvm_trvm,
2343       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2344       .resetvalue = 0 },
2345     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2346       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2347       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2348       .resetvalue = 0 },
2349     /* For non-long-descriptor page tables these are PRRR and NMRR;
2350      * regardless they still act as reads-as-written for QEMU.
2351      */
2352      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2353       * allows them to assign the correct fieldoffset based on the endianness
2354       * handled in the field definitions.
2355       */
2356     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2357       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2358       .access = PL1_RW, .accessfn = access_tvm_trvm,
2359       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2360                              offsetof(CPUARMState, cp15.mair0_ns) },
2361       .resetfn = arm_cp_reset_ignore },
2362     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2363       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2364       .access = PL1_RW, .accessfn = access_tvm_trvm,
2365       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2366                              offsetof(CPUARMState, cp15.mair1_ns) },
2367       .resetfn = arm_cp_reset_ignore },
2368     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2369       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2370       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2371     /* 32 bit ITLB invalidates */
2372     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2373       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2374       .writefn = tlbiall_write },
2375     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2376       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2377       .writefn = tlbimva_write },
2378     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2379       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2380       .writefn = tlbiasid_write },
2381     /* 32 bit DTLB invalidates */
2382     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2383       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2384       .writefn = tlbiall_write },
2385     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2386       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2387       .writefn = tlbimva_write },
2388     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2389       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2390       .writefn = tlbiasid_write },
2391     /* 32 bit TLB invalidates */
2392     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2393       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2394       .writefn = tlbiall_write },
2395     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2396       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2397       .writefn = tlbimva_write },
2398     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2399       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2400       .writefn = tlbiasid_write },
2401     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2402       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2403       .writefn = tlbimvaa_write },
2404     REGINFO_SENTINEL
2405 };
2406 
2407 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2408     /* 32 bit TLB invalidates, Inner Shareable */
2409     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2410       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2411       .writefn = tlbiall_is_write },
2412     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2413       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2414       .writefn = tlbimva_is_write },
2415     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2416       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2417       .writefn = tlbiasid_is_write },
2418     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2419       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2420       .writefn = tlbimvaa_is_write },
2421     REGINFO_SENTINEL
2422 };
2423 
2424 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2425     /* PMOVSSET is not implemented in v7 before v7ve */
2426     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2427       .access = PL0_RW, .accessfn = pmreg_access,
2428       .type = ARM_CP_ALIAS | ARM_CP_IO,
2429       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2430       .writefn = pmovsset_write,
2431       .raw_writefn = raw_write },
2432     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2433       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2434       .access = PL0_RW, .accessfn = pmreg_access,
2435       .type = ARM_CP_ALIAS | ARM_CP_IO,
2436       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2437       .writefn = pmovsset_write,
2438       .raw_writefn = raw_write },
2439     REGINFO_SENTINEL
2440 };
2441 
2442 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2443                         uint64_t value)
2444 {
2445     value &= 1;
2446     env->teecr = value;
2447 }
2448 
2449 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2450                                     bool isread)
2451 {
2452     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2453         return CP_ACCESS_TRAP;
2454     }
2455     return CP_ACCESS_OK;
2456 }
2457 
2458 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2459     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2460       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2461       .resetvalue = 0,
2462       .writefn = teecr_write },
2463     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2464       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2465       .accessfn = teehbr_access, .resetvalue = 0 },
2466     REGINFO_SENTINEL
2467 };
2468 
2469 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2470     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2471       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2472       .access = PL0_RW,
2473       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2474     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2475       .access = PL0_RW,
2476       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2477                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2478       .resetfn = arm_cp_reset_ignore },
2479     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2480       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2481       .access = PL0_R|PL1_W,
2482       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2483       .resetvalue = 0},
2484     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2485       .access = PL0_R|PL1_W,
2486       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2487                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2488       .resetfn = arm_cp_reset_ignore },
2489     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2490       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2491       .access = PL1_RW,
2492       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2493     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2494       .access = PL1_RW,
2495       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2496                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2497       .resetvalue = 0 },
2498     REGINFO_SENTINEL
2499 };
2500 
2501 #ifndef CONFIG_USER_ONLY
2502 
2503 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2504                                        bool isread)
2505 {
2506     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2507      * Writable only at the highest implemented exception level.
2508      */
2509     int el = arm_current_el(env);
2510     uint64_t hcr;
2511     uint32_t cntkctl;
2512 
2513     switch (el) {
2514     case 0:
2515         hcr = arm_hcr_el2_eff(env);
2516         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2517             cntkctl = env->cp15.cnthctl_el2;
2518         } else {
2519             cntkctl = env->cp15.c14_cntkctl;
2520         }
2521         if (!extract32(cntkctl, 0, 2)) {
2522             return CP_ACCESS_TRAP;
2523         }
2524         break;
2525     case 1:
2526         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2527             arm_is_secure_below_el3(env)) {
2528             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2529             return CP_ACCESS_TRAP_UNCATEGORIZED;
2530         }
2531         break;
2532     case 2:
2533     case 3:
2534         break;
2535     }
2536 
2537     if (!isread && el < arm_highest_el(env)) {
2538         return CP_ACCESS_TRAP_UNCATEGORIZED;
2539     }
2540 
2541     return CP_ACCESS_OK;
2542 }
2543 
2544 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2545                                         bool isread)
2546 {
2547     unsigned int cur_el = arm_current_el(env);
2548     bool has_el2 = arm_is_el2_enabled(env);
2549     uint64_t hcr = arm_hcr_el2_eff(env);
2550 
2551     switch (cur_el) {
2552     case 0:
2553         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2554         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2555             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2556                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2557         }
2558 
2559         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2560         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2561             return CP_ACCESS_TRAP;
2562         }
2563 
2564         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2565         if (hcr & HCR_E2H) {
2566             if (timeridx == GTIMER_PHYS &&
2567                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2568                 return CP_ACCESS_TRAP_EL2;
2569             }
2570         } else {
2571             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2572             if (has_el2 && timeridx == GTIMER_PHYS &&
2573                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2574                 return CP_ACCESS_TRAP_EL2;
2575             }
2576         }
2577         break;
2578 
2579     case 1:
2580         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2581         if (has_el2 && timeridx == GTIMER_PHYS &&
2582             (hcr & HCR_E2H
2583              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2584              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2585             return CP_ACCESS_TRAP_EL2;
2586         }
2587         break;
2588     }
2589     return CP_ACCESS_OK;
2590 }
2591 
2592 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2593                                       bool isread)
2594 {
2595     unsigned int cur_el = arm_current_el(env);
2596     bool has_el2 = arm_is_el2_enabled(env);
2597     uint64_t hcr = arm_hcr_el2_eff(env);
2598 
2599     switch (cur_el) {
2600     case 0:
2601         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2602             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2603             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2604                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2605         }
2606 
2607         /*
2608          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2609          * EL0 if EL0[PV]TEN is zero.
2610          */
2611         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2612             return CP_ACCESS_TRAP;
2613         }
2614         /* fall through */
2615 
2616     case 1:
2617         if (has_el2 && timeridx == GTIMER_PHYS) {
2618             if (hcr & HCR_E2H) {
2619                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2620                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2621                     return CP_ACCESS_TRAP_EL2;
2622                 }
2623             } else {
2624                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2625                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2626                     return CP_ACCESS_TRAP_EL2;
2627                 }
2628             }
2629         }
2630         break;
2631     }
2632     return CP_ACCESS_OK;
2633 }
2634 
2635 static CPAccessResult gt_pct_access(CPUARMState *env,
2636                                     const ARMCPRegInfo *ri,
2637                                     bool isread)
2638 {
2639     return gt_counter_access(env, GTIMER_PHYS, isread);
2640 }
2641 
2642 static CPAccessResult gt_vct_access(CPUARMState *env,
2643                                     const ARMCPRegInfo *ri,
2644                                     bool isread)
2645 {
2646     return gt_counter_access(env, GTIMER_VIRT, isread);
2647 }
2648 
2649 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2650                                        bool isread)
2651 {
2652     return gt_timer_access(env, GTIMER_PHYS, isread);
2653 }
2654 
2655 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2656                                        bool isread)
2657 {
2658     return gt_timer_access(env, GTIMER_VIRT, isread);
2659 }
2660 
2661 static CPAccessResult gt_stimer_access(CPUARMState *env,
2662                                        const ARMCPRegInfo *ri,
2663                                        bool isread)
2664 {
2665     /* The AArch64 register view of the secure physical timer is
2666      * always accessible from EL3, and configurably accessible from
2667      * Secure EL1.
2668      */
2669     switch (arm_current_el(env)) {
2670     case 1:
2671         if (!arm_is_secure(env)) {
2672             return CP_ACCESS_TRAP;
2673         }
2674         if (!(env->cp15.scr_el3 & SCR_ST)) {
2675             return CP_ACCESS_TRAP_EL3;
2676         }
2677         return CP_ACCESS_OK;
2678     case 0:
2679     case 2:
2680         return CP_ACCESS_TRAP;
2681     case 3:
2682         return CP_ACCESS_OK;
2683     default:
2684         g_assert_not_reached();
2685     }
2686 }
2687 
2688 static uint64_t gt_get_countervalue(CPUARMState *env)
2689 {
2690     ARMCPU *cpu = env_archcpu(env);
2691 
2692     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2693 }
2694 
2695 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2696 {
2697     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2698 
2699     if (gt->ctl & 1) {
2700         /* Timer enabled: calculate and set current ISTATUS, irq, and
2701          * reset timer to when ISTATUS next has to change
2702          */
2703         uint64_t offset = timeridx == GTIMER_VIRT ?
2704                                       cpu->env.cp15.cntvoff_el2 : 0;
2705         uint64_t count = gt_get_countervalue(&cpu->env);
2706         /* Note that this must be unsigned 64 bit arithmetic: */
2707         int istatus = count - offset >= gt->cval;
2708         uint64_t nexttick;
2709         int irqstate;
2710 
2711         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2712 
2713         irqstate = (istatus && !(gt->ctl & 2));
2714         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2715 
2716         if (istatus) {
2717             /* Next transition is when count rolls back over to zero */
2718             nexttick = UINT64_MAX;
2719         } else {
2720             /* Next transition is when we hit cval */
2721             nexttick = gt->cval + offset;
2722         }
2723         /* Note that the desired next expiry time might be beyond the
2724          * signed-64-bit range of a QEMUTimer -- in this case we just
2725          * set the timer for as far in the future as possible. When the
2726          * timer expires we will reset the timer for any remaining period.
2727          */
2728         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2729             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2730         } else {
2731             timer_mod(cpu->gt_timer[timeridx], nexttick);
2732         }
2733         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2734     } else {
2735         /* Timer disabled: ISTATUS and timer output always clear */
2736         gt->ctl &= ~4;
2737         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2738         timer_del(cpu->gt_timer[timeridx]);
2739         trace_arm_gt_recalc_disabled(timeridx);
2740     }
2741 }
2742 
2743 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2744                            int timeridx)
2745 {
2746     ARMCPU *cpu = env_archcpu(env);
2747 
2748     timer_del(cpu->gt_timer[timeridx]);
2749 }
2750 
2751 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2752 {
2753     return gt_get_countervalue(env);
2754 }
2755 
2756 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2757 {
2758     uint64_t hcr;
2759 
2760     switch (arm_current_el(env)) {
2761     case 2:
2762         hcr = arm_hcr_el2_eff(env);
2763         if (hcr & HCR_E2H) {
2764             return 0;
2765         }
2766         break;
2767     case 0:
2768         hcr = arm_hcr_el2_eff(env);
2769         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2770             return 0;
2771         }
2772         break;
2773     }
2774 
2775     return env->cp15.cntvoff_el2;
2776 }
2777 
2778 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2779 {
2780     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2781 }
2782 
2783 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2784                           int timeridx,
2785                           uint64_t value)
2786 {
2787     trace_arm_gt_cval_write(timeridx, value);
2788     env->cp15.c14_timer[timeridx].cval = value;
2789     gt_recalc_timer(env_archcpu(env), timeridx);
2790 }
2791 
2792 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2793                              int timeridx)
2794 {
2795     uint64_t offset = 0;
2796 
2797     switch (timeridx) {
2798     case GTIMER_VIRT:
2799     case GTIMER_HYPVIRT:
2800         offset = gt_virt_cnt_offset(env);
2801         break;
2802     }
2803 
2804     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2805                       (gt_get_countervalue(env) - offset));
2806 }
2807 
2808 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2809                           int timeridx,
2810                           uint64_t value)
2811 {
2812     uint64_t offset = 0;
2813 
2814     switch (timeridx) {
2815     case GTIMER_VIRT:
2816     case GTIMER_HYPVIRT:
2817         offset = gt_virt_cnt_offset(env);
2818         break;
2819     }
2820 
2821     trace_arm_gt_tval_write(timeridx, value);
2822     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2823                                          sextract64(value, 0, 32);
2824     gt_recalc_timer(env_archcpu(env), timeridx);
2825 }
2826 
2827 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2828                          int timeridx,
2829                          uint64_t value)
2830 {
2831     ARMCPU *cpu = env_archcpu(env);
2832     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2833 
2834     trace_arm_gt_ctl_write(timeridx, value);
2835     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2836     if ((oldval ^ value) & 1) {
2837         /* Enable toggled */
2838         gt_recalc_timer(cpu, timeridx);
2839     } else if ((oldval ^ value) & 2) {
2840         /* IMASK toggled: don't need to recalculate,
2841          * just set the interrupt line based on ISTATUS
2842          */
2843         int irqstate = (oldval & 4) && !(value & 2);
2844 
2845         trace_arm_gt_imask_toggle(timeridx, irqstate);
2846         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2847     }
2848 }
2849 
2850 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2851 {
2852     gt_timer_reset(env, ri, GTIMER_PHYS);
2853 }
2854 
2855 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856                                uint64_t value)
2857 {
2858     gt_cval_write(env, ri, GTIMER_PHYS, value);
2859 }
2860 
2861 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2862 {
2863     return gt_tval_read(env, ri, GTIMER_PHYS);
2864 }
2865 
2866 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2867                                uint64_t value)
2868 {
2869     gt_tval_write(env, ri, GTIMER_PHYS, value);
2870 }
2871 
2872 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2873                               uint64_t value)
2874 {
2875     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2876 }
2877 
2878 static int gt_phys_redir_timeridx(CPUARMState *env)
2879 {
2880     switch (arm_mmu_idx(env)) {
2881     case ARMMMUIdx_E20_0:
2882     case ARMMMUIdx_E20_2:
2883     case ARMMMUIdx_E20_2_PAN:
2884     case ARMMMUIdx_SE20_0:
2885     case ARMMMUIdx_SE20_2:
2886     case ARMMMUIdx_SE20_2_PAN:
2887         return GTIMER_HYP;
2888     default:
2889         return GTIMER_PHYS;
2890     }
2891 }
2892 
2893 static int gt_virt_redir_timeridx(CPUARMState *env)
2894 {
2895     switch (arm_mmu_idx(env)) {
2896     case ARMMMUIdx_E20_0:
2897     case ARMMMUIdx_E20_2:
2898     case ARMMMUIdx_E20_2_PAN:
2899     case ARMMMUIdx_SE20_0:
2900     case ARMMMUIdx_SE20_2:
2901     case ARMMMUIdx_SE20_2_PAN:
2902         return GTIMER_HYPVIRT;
2903     default:
2904         return GTIMER_VIRT;
2905     }
2906 }
2907 
2908 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2909                                         const ARMCPRegInfo *ri)
2910 {
2911     int timeridx = gt_phys_redir_timeridx(env);
2912     return env->cp15.c14_timer[timeridx].cval;
2913 }
2914 
2915 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2916                                      uint64_t value)
2917 {
2918     int timeridx = gt_phys_redir_timeridx(env);
2919     gt_cval_write(env, ri, timeridx, value);
2920 }
2921 
2922 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2923                                         const ARMCPRegInfo *ri)
2924 {
2925     int timeridx = gt_phys_redir_timeridx(env);
2926     return gt_tval_read(env, ri, timeridx);
2927 }
2928 
2929 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2930                                      uint64_t value)
2931 {
2932     int timeridx = gt_phys_redir_timeridx(env);
2933     gt_tval_write(env, ri, timeridx, value);
2934 }
2935 
2936 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2937                                        const ARMCPRegInfo *ri)
2938 {
2939     int timeridx = gt_phys_redir_timeridx(env);
2940     return env->cp15.c14_timer[timeridx].ctl;
2941 }
2942 
2943 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2944                                     uint64_t value)
2945 {
2946     int timeridx = gt_phys_redir_timeridx(env);
2947     gt_ctl_write(env, ri, timeridx, value);
2948 }
2949 
2950 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2951 {
2952     gt_timer_reset(env, ri, GTIMER_VIRT);
2953 }
2954 
2955 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2956                                uint64_t value)
2957 {
2958     gt_cval_write(env, ri, GTIMER_VIRT, value);
2959 }
2960 
2961 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2962 {
2963     return gt_tval_read(env, ri, GTIMER_VIRT);
2964 }
2965 
2966 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2967                                uint64_t value)
2968 {
2969     gt_tval_write(env, ri, GTIMER_VIRT, value);
2970 }
2971 
2972 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2973                               uint64_t value)
2974 {
2975     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2976 }
2977 
2978 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2979                               uint64_t value)
2980 {
2981     ARMCPU *cpu = env_archcpu(env);
2982 
2983     trace_arm_gt_cntvoff_write(value);
2984     raw_write(env, ri, value);
2985     gt_recalc_timer(cpu, GTIMER_VIRT);
2986 }
2987 
2988 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2989                                         const ARMCPRegInfo *ri)
2990 {
2991     int timeridx = gt_virt_redir_timeridx(env);
2992     return env->cp15.c14_timer[timeridx].cval;
2993 }
2994 
2995 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2996                                      uint64_t value)
2997 {
2998     int timeridx = gt_virt_redir_timeridx(env);
2999     gt_cval_write(env, ri, timeridx, value);
3000 }
3001 
3002 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
3003                                         const ARMCPRegInfo *ri)
3004 {
3005     int timeridx = gt_virt_redir_timeridx(env);
3006     return gt_tval_read(env, ri, timeridx);
3007 }
3008 
3009 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3010                                      uint64_t value)
3011 {
3012     int timeridx = gt_virt_redir_timeridx(env);
3013     gt_tval_write(env, ri, timeridx, value);
3014 }
3015 
3016 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3017                                        const ARMCPRegInfo *ri)
3018 {
3019     int timeridx = gt_virt_redir_timeridx(env);
3020     return env->cp15.c14_timer[timeridx].ctl;
3021 }
3022 
3023 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3024                                     uint64_t value)
3025 {
3026     int timeridx = gt_virt_redir_timeridx(env);
3027     gt_ctl_write(env, ri, timeridx, value);
3028 }
3029 
3030 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3031 {
3032     gt_timer_reset(env, ri, GTIMER_HYP);
3033 }
3034 
3035 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3036                               uint64_t value)
3037 {
3038     gt_cval_write(env, ri, GTIMER_HYP, value);
3039 }
3040 
3041 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3042 {
3043     return gt_tval_read(env, ri, GTIMER_HYP);
3044 }
3045 
3046 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3047                               uint64_t value)
3048 {
3049     gt_tval_write(env, ri, GTIMER_HYP, value);
3050 }
3051 
3052 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3053                               uint64_t value)
3054 {
3055     gt_ctl_write(env, ri, GTIMER_HYP, value);
3056 }
3057 
3058 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3059 {
3060     gt_timer_reset(env, ri, GTIMER_SEC);
3061 }
3062 
3063 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064                               uint64_t value)
3065 {
3066     gt_cval_write(env, ri, GTIMER_SEC, value);
3067 }
3068 
3069 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3070 {
3071     return gt_tval_read(env, ri, GTIMER_SEC);
3072 }
3073 
3074 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3075                               uint64_t value)
3076 {
3077     gt_tval_write(env, ri, GTIMER_SEC, value);
3078 }
3079 
3080 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3081                               uint64_t value)
3082 {
3083     gt_ctl_write(env, ri, GTIMER_SEC, value);
3084 }
3085 
3086 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3087 {
3088     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3089 }
3090 
3091 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3092                              uint64_t value)
3093 {
3094     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3095 }
3096 
3097 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3098 {
3099     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3100 }
3101 
3102 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3103                              uint64_t value)
3104 {
3105     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3106 }
3107 
3108 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3109                             uint64_t value)
3110 {
3111     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3112 }
3113 
3114 void arm_gt_ptimer_cb(void *opaque)
3115 {
3116     ARMCPU *cpu = opaque;
3117 
3118     gt_recalc_timer(cpu, GTIMER_PHYS);
3119 }
3120 
3121 void arm_gt_vtimer_cb(void *opaque)
3122 {
3123     ARMCPU *cpu = opaque;
3124 
3125     gt_recalc_timer(cpu, GTIMER_VIRT);
3126 }
3127 
3128 void arm_gt_htimer_cb(void *opaque)
3129 {
3130     ARMCPU *cpu = opaque;
3131 
3132     gt_recalc_timer(cpu, GTIMER_HYP);
3133 }
3134 
3135 void arm_gt_stimer_cb(void *opaque)
3136 {
3137     ARMCPU *cpu = opaque;
3138 
3139     gt_recalc_timer(cpu, GTIMER_SEC);
3140 }
3141 
3142 void arm_gt_hvtimer_cb(void *opaque)
3143 {
3144     ARMCPU *cpu = opaque;
3145 
3146     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3147 }
3148 
3149 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3150 {
3151     ARMCPU *cpu = env_archcpu(env);
3152 
3153     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3154 }
3155 
3156 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3157     /* Note that CNTFRQ is purely reads-as-written for the benefit
3158      * of software; writing it doesn't actually change the timer frequency.
3159      * Our reset value matches the fixed frequency we implement the timer at.
3160      */
3161     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3162       .type = ARM_CP_ALIAS,
3163       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3164       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3165     },
3166     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3167       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3168       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3169       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3170       .resetfn = arm_gt_cntfrq_reset,
3171     },
3172     /* overall control: mostly access permissions */
3173     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3174       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3175       .access = PL1_RW,
3176       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3177       .resetvalue = 0,
3178     },
3179     /* per-timer control */
3180     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3181       .secure = ARM_CP_SECSTATE_NS,
3182       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3183       .accessfn = gt_ptimer_access,
3184       .fieldoffset = offsetoflow32(CPUARMState,
3185                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3186       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3187       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3188     },
3189     { .name = "CNTP_CTL_S",
3190       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3191       .secure = ARM_CP_SECSTATE_S,
3192       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3193       .accessfn = gt_ptimer_access,
3194       .fieldoffset = offsetoflow32(CPUARMState,
3195                                    cp15.c14_timer[GTIMER_SEC].ctl),
3196       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3197     },
3198     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3199       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3200       .type = ARM_CP_IO, .access = PL0_RW,
3201       .accessfn = gt_ptimer_access,
3202       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3203       .resetvalue = 0,
3204       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3205       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3206     },
3207     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3208       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3209       .accessfn = gt_vtimer_access,
3210       .fieldoffset = offsetoflow32(CPUARMState,
3211                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3212       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3213       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3214     },
3215     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3216       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3217       .type = ARM_CP_IO, .access = PL0_RW,
3218       .accessfn = gt_vtimer_access,
3219       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3220       .resetvalue = 0,
3221       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3222       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3223     },
3224     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3225     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3226       .secure = ARM_CP_SECSTATE_NS,
3227       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3228       .accessfn = gt_ptimer_access,
3229       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3230     },
3231     { .name = "CNTP_TVAL_S",
3232       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3233       .secure = ARM_CP_SECSTATE_S,
3234       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3235       .accessfn = gt_ptimer_access,
3236       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3237     },
3238     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3239       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3240       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3241       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3242       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3243     },
3244     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3245       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3246       .accessfn = gt_vtimer_access,
3247       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3248     },
3249     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3250       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3251       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3252       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3253       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3254     },
3255     /* The counter itself */
3256     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3257       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3258       .accessfn = gt_pct_access,
3259       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3260     },
3261     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3262       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3263       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3264       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3265     },
3266     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3267       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3268       .accessfn = gt_vct_access,
3269       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3270     },
3271     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3272       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3273       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3274       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3275     },
3276     /* Comparison value, indicating when the timer goes off */
3277     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3278       .secure = ARM_CP_SECSTATE_NS,
3279       .access = PL0_RW,
3280       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3281       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3282       .accessfn = gt_ptimer_access,
3283       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3284       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3285     },
3286     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3287       .secure = ARM_CP_SECSTATE_S,
3288       .access = PL0_RW,
3289       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3290       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3291       .accessfn = gt_ptimer_access,
3292       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3293     },
3294     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3295       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3296       .access = PL0_RW,
3297       .type = ARM_CP_IO,
3298       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3299       .resetvalue = 0, .accessfn = gt_ptimer_access,
3300       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3301       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3302     },
3303     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3304       .access = PL0_RW,
3305       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3306       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3307       .accessfn = gt_vtimer_access,
3308       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3309       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3310     },
3311     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3312       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3313       .access = PL0_RW,
3314       .type = ARM_CP_IO,
3315       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3316       .resetvalue = 0, .accessfn = gt_vtimer_access,
3317       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3318       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3319     },
3320     /* Secure timer -- this is actually restricted to only EL3
3321      * and configurably Secure-EL1 via the accessfn.
3322      */
3323     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3324       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3325       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3326       .accessfn = gt_stimer_access,
3327       .readfn = gt_sec_tval_read,
3328       .writefn = gt_sec_tval_write,
3329       .resetfn = gt_sec_timer_reset,
3330     },
3331     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3332       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3333       .type = ARM_CP_IO, .access = PL1_RW,
3334       .accessfn = gt_stimer_access,
3335       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3336       .resetvalue = 0,
3337       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3338     },
3339     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3340       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3341       .type = ARM_CP_IO, .access = PL1_RW,
3342       .accessfn = gt_stimer_access,
3343       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3344       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3345     },
3346     REGINFO_SENTINEL
3347 };
3348 
3349 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3350                                  bool isread)
3351 {
3352     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3353         return CP_ACCESS_TRAP;
3354     }
3355     return CP_ACCESS_OK;
3356 }
3357 
3358 #else
3359 
3360 /* In user-mode most of the generic timer registers are inaccessible
3361  * however modern kernels (4.12+) allow access to cntvct_el0
3362  */
3363 
3364 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3365 {
3366     ARMCPU *cpu = env_archcpu(env);
3367 
3368     /* Currently we have no support for QEMUTimer in linux-user so we
3369      * can't call gt_get_countervalue(env), instead we directly
3370      * call the lower level functions.
3371      */
3372     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3373 }
3374 
3375 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3376     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3377       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3378       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3379       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3380       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3381     },
3382     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3383       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3384       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3385       .readfn = gt_virt_cnt_read,
3386     },
3387     REGINFO_SENTINEL
3388 };
3389 
3390 #endif
3391 
3392 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3393 {
3394     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3395         raw_write(env, ri, value);
3396     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3397         raw_write(env, ri, value & 0xfffff6ff);
3398     } else {
3399         raw_write(env, ri, value & 0xfffff1ff);
3400     }
3401 }
3402 
3403 #ifndef CONFIG_USER_ONLY
3404 /* get_phys_addr() isn't present for user-mode-only targets */
3405 
3406 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3407                                  bool isread)
3408 {
3409     if (ri->opc2 & 4) {
3410         /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3411          * Secure EL1 (which can only happen if EL3 is AArch64).
3412          * They are simply UNDEF if executed from NS EL1.
3413          * They function normally from EL2 or EL3.
3414          */
3415         if (arm_current_el(env) == 1) {
3416             if (arm_is_secure_below_el3(env)) {
3417                 if (env->cp15.scr_el3 & SCR_EEL2) {
3418                     return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3419                 }
3420                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3421             }
3422             return CP_ACCESS_TRAP_UNCATEGORIZED;
3423         }
3424     }
3425     return CP_ACCESS_OK;
3426 }
3427 
3428 #ifdef CONFIG_TCG
3429 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3430                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
3431 {
3432     hwaddr phys_addr;
3433     target_ulong page_size;
3434     int prot;
3435     bool ret;
3436     uint64_t par64;
3437     bool format64 = false;
3438     MemTxAttrs attrs = {};
3439     ARMMMUFaultInfo fi = {};
3440     ARMCacheAttrs cacheattrs = {};
3441 
3442     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3443                         &prot, &page_size, &fi, &cacheattrs);
3444 
3445     if (ret) {
3446         /*
3447          * Some kinds of translation fault must cause exceptions rather
3448          * than being reported in the PAR.
3449          */
3450         int current_el = arm_current_el(env);
3451         int target_el;
3452         uint32_t syn, fsr, fsc;
3453         bool take_exc = false;
3454 
3455         if (fi.s1ptw && current_el == 1
3456             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3457             /*
3458              * Synchronous stage 2 fault on an access made as part of the
3459              * translation table walk for AT S1E0* or AT S1E1* insn
3460              * executed from NS EL1. If this is a synchronous external abort
3461              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3462              * to EL3. Otherwise the fault is taken as an exception to EL2,
3463              * and HPFAR_EL2 holds the faulting IPA.
3464              */
3465             if (fi.type == ARMFault_SyncExternalOnWalk &&
3466                 (env->cp15.scr_el3 & SCR_EA)) {
3467                 target_el = 3;
3468             } else {
3469                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3470                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3471                     env->cp15.hpfar_el2 |= HPFAR_NS;
3472                 }
3473                 target_el = 2;
3474             }
3475             take_exc = true;
3476         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3477             /*
3478              * Synchronous external aborts during a translation table walk
3479              * are taken as Data Abort exceptions.
3480              */
3481             if (fi.stage2) {
3482                 if (current_el == 3) {
3483                     target_el = 3;
3484                 } else {
3485                     target_el = 2;
3486                 }
3487             } else {
3488                 target_el = exception_target_el(env);
3489             }
3490             take_exc = true;
3491         }
3492 
3493         if (take_exc) {
3494             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3495             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3496                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3497                 fsr = arm_fi_to_lfsc(&fi);
3498                 fsc = extract32(fsr, 0, 6);
3499             } else {
3500                 fsr = arm_fi_to_sfsc(&fi);
3501                 fsc = 0x3f;
3502             }
3503             /*
3504              * Report exception with ESR indicating a fault due to a
3505              * translation table walk for a cache maintenance instruction.
3506              */
3507             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3508                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3509             env->exception.vaddress = value;
3510             env->exception.fsr = fsr;
3511             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3512         }
3513     }
3514 
3515     if (is_a64(env)) {
3516         format64 = true;
3517     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3518         /*
3519          * ATS1Cxx:
3520          * * TTBCR.EAE determines whether the result is returned using the
3521          *   32-bit or the 64-bit PAR format
3522          * * Instructions executed in Hyp mode always use the 64bit format
3523          *
3524          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3525          * * The Non-secure TTBCR.EAE bit is set to 1
3526          * * The implementation includes EL2, and the value of HCR.VM is 1
3527          *
3528          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3529          *
3530          * ATS1Hx always uses the 64bit format.
3531          */
3532         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3533 
3534         if (arm_feature(env, ARM_FEATURE_EL2)) {
3535             if (mmu_idx == ARMMMUIdx_E10_0 ||
3536                 mmu_idx == ARMMMUIdx_E10_1 ||
3537                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3538                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3539             } else {
3540                 format64 |= arm_current_el(env) == 2;
3541             }
3542         }
3543     }
3544 
3545     if (format64) {
3546         /* Create a 64-bit PAR */
3547         par64 = (1 << 11); /* LPAE bit always set */
3548         if (!ret) {
3549             par64 |= phys_addr & ~0xfffULL;
3550             if (!attrs.secure) {
3551                 par64 |= (1 << 9); /* NS */
3552             }
3553             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3554             par64 |= cacheattrs.shareability << 7; /* SH */
3555         } else {
3556             uint32_t fsr = arm_fi_to_lfsc(&fi);
3557 
3558             par64 |= 1; /* F */
3559             par64 |= (fsr & 0x3f) << 1; /* FS */
3560             if (fi.stage2) {
3561                 par64 |= (1 << 9); /* S */
3562             }
3563             if (fi.s1ptw) {
3564                 par64 |= (1 << 8); /* PTW */
3565             }
3566         }
3567     } else {
3568         /* fsr is a DFSR/IFSR value for the short descriptor
3569          * translation table format (with WnR always clear).
3570          * Convert it to a 32-bit PAR.
3571          */
3572         if (!ret) {
3573             /* We do not set any attribute bits in the PAR */
3574             if (page_size == (1 << 24)
3575                 && arm_feature(env, ARM_FEATURE_V7)) {
3576                 par64 = (phys_addr & 0xff000000) | (1 << 1);
3577             } else {
3578                 par64 = phys_addr & 0xfffff000;
3579             }
3580             if (!attrs.secure) {
3581                 par64 |= (1 << 9); /* NS */
3582             }
3583         } else {
3584             uint32_t fsr = arm_fi_to_sfsc(&fi);
3585 
3586             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3587                     ((fsr & 0xf) << 1) | 1;
3588         }
3589     }
3590     return par64;
3591 }
3592 #endif /* CONFIG_TCG */
3593 
3594 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3595 {
3596 #ifdef CONFIG_TCG
3597     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3598     uint64_t par64;
3599     ARMMMUIdx mmu_idx;
3600     int el = arm_current_el(env);
3601     bool secure = arm_is_secure_below_el3(env);
3602 
3603     switch (ri->opc2 & 6) {
3604     case 0:
3605         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3606         switch (el) {
3607         case 3:
3608             mmu_idx = ARMMMUIdx_SE3;
3609             break;
3610         case 2:
3611             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3612             /* fall through */
3613         case 1:
3614             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3615                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3616                            : ARMMMUIdx_Stage1_E1_PAN);
3617             } else {
3618                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3619             }
3620             break;
3621         default:
3622             g_assert_not_reached();
3623         }
3624         break;
3625     case 2:
3626         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3627         switch (el) {
3628         case 3:
3629             mmu_idx = ARMMMUIdx_SE10_0;
3630             break;
3631         case 2:
3632             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3633             mmu_idx = ARMMMUIdx_Stage1_E0;
3634             break;
3635         case 1:
3636             mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3637             break;
3638         default:
3639             g_assert_not_reached();
3640         }
3641         break;
3642     case 4:
3643         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3644         mmu_idx = ARMMMUIdx_E10_1;
3645         break;
3646     case 6:
3647         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3648         mmu_idx = ARMMMUIdx_E10_0;
3649         break;
3650     default:
3651         g_assert_not_reached();
3652     }
3653 
3654     par64 = do_ats_write(env, value, access_type, mmu_idx);
3655 
3656     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3657 #else
3658     /* Handled by hardware accelerator. */
3659     g_assert_not_reached();
3660 #endif /* CONFIG_TCG */
3661 }
3662 
3663 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3664                         uint64_t value)
3665 {
3666 #ifdef CONFIG_TCG
3667     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3668     uint64_t par64;
3669 
3670     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3671 
3672     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3673 #else
3674     /* Handled by hardware accelerator. */
3675     g_assert_not_reached();
3676 #endif /* CONFIG_TCG */
3677 }
3678 
3679 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3680                                      bool isread)
3681 {
3682     if (arm_current_el(env) == 3 &&
3683         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3684         return CP_ACCESS_TRAP;
3685     }
3686     return CP_ACCESS_OK;
3687 }
3688 
3689 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3690                         uint64_t value)
3691 {
3692 #ifdef CONFIG_TCG
3693     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3694     ARMMMUIdx mmu_idx;
3695     int secure = arm_is_secure_below_el3(env);
3696 
3697     switch (ri->opc2 & 6) {
3698     case 0:
3699         switch (ri->opc1) {
3700         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3701             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3702                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3703                            : ARMMMUIdx_Stage1_E1_PAN);
3704             } else {
3705                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3706             }
3707             break;
3708         case 4: /* AT S1E2R, AT S1E2W */
3709             mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3710             break;
3711         case 6: /* AT S1E3R, AT S1E3W */
3712             mmu_idx = ARMMMUIdx_SE3;
3713             break;
3714         default:
3715             g_assert_not_reached();
3716         }
3717         break;
3718     case 2: /* AT S1E0R, AT S1E0W */
3719         mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3720         break;
3721     case 4: /* AT S12E1R, AT S12E1W */
3722         mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3723         break;
3724     case 6: /* AT S12E0R, AT S12E0W */
3725         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3726         break;
3727     default:
3728         g_assert_not_reached();
3729     }
3730 
3731     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3732 #else
3733     /* Handled by hardware accelerator. */
3734     g_assert_not_reached();
3735 #endif /* CONFIG_TCG */
3736 }
3737 #endif
3738 
3739 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3740     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3741       .access = PL1_RW, .resetvalue = 0,
3742       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3743                              offsetoflow32(CPUARMState, cp15.par_ns) },
3744       .writefn = par_write },
3745 #ifndef CONFIG_USER_ONLY
3746     /* This underdecoding is safe because the reginfo is NO_RAW. */
3747     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3748       .access = PL1_W, .accessfn = ats_access,
3749       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3750 #endif
3751     REGINFO_SENTINEL
3752 };
3753 
3754 /* Return basic MPU access permission bits.  */
3755 static uint32_t simple_mpu_ap_bits(uint32_t val)
3756 {
3757     uint32_t ret;
3758     uint32_t mask;
3759     int i;
3760     ret = 0;
3761     mask = 3;
3762     for (i = 0; i < 16; i += 2) {
3763         ret |= (val >> i) & mask;
3764         mask <<= 2;
3765     }
3766     return ret;
3767 }
3768 
3769 /* Pad basic MPU access permission bits to extended format.  */
3770 static uint32_t extended_mpu_ap_bits(uint32_t val)
3771 {
3772     uint32_t ret;
3773     uint32_t mask;
3774     int i;
3775     ret = 0;
3776     mask = 3;
3777     for (i = 0; i < 16; i += 2) {
3778         ret |= (val & mask) << i;
3779         mask <<= 2;
3780     }
3781     return ret;
3782 }
3783 
3784 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3785                                  uint64_t value)
3786 {
3787     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3788 }
3789 
3790 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3791 {
3792     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3793 }
3794 
3795 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3796                                  uint64_t value)
3797 {
3798     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3799 }
3800 
3801 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3802 {
3803     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3804 }
3805 
3806 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3807 {
3808     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3809 
3810     if (!u32p) {
3811         return 0;
3812     }
3813 
3814     u32p += env->pmsav7.rnr[M_REG_NS];
3815     return *u32p;
3816 }
3817 
3818 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3819                          uint64_t value)
3820 {
3821     ARMCPU *cpu = env_archcpu(env);
3822     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3823 
3824     if (!u32p) {
3825         return;
3826     }
3827 
3828     u32p += env->pmsav7.rnr[M_REG_NS];
3829     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3830     *u32p = value;
3831 }
3832 
3833 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3834                               uint64_t value)
3835 {
3836     ARMCPU *cpu = env_archcpu(env);
3837     uint32_t nrgs = cpu->pmsav7_dregion;
3838 
3839     if (value >= nrgs) {
3840         qemu_log_mask(LOG_GUEST_ERROR,
3841                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3842                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3843         return;
3844     }
3845 
3846     raw_write(env, ri, value);
3847 }
3848 
3849 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3850     /* Reset for all these registers is handled in arm_cpu_reset(),
3851      * because the PMSAv7 is also used by M-profile CPUs, which do
3852      * not register cpregs but still need the state to be reset.
3853      */
3854     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3855       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3856       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3857       .readfn = pmsav7_read, .writefn = pmsav7_write,
3858       .resetfn = arm_cp_reset_ignore },
3859     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3860       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3861       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3862       .readfn = pmsav7_read, .writefn = pmsav7_write,
3863       .resetfn = arm_cp_reset_ignore },
3864     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3865       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3866       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3867       .readfn = pmsav7_read, .writefn = pmsav7_write,
3868       .resetfn = arm_cp_reset_ignore },
3869     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3870       .access = PL1_RW,
3871       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3872       .writefn = pmsav7_rgnr_write,
3873       .resetfn = arm_cp_reset_ignore },
3874     REGINFO_SENTINEL
3875 };
3876 
3877 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3878     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3879       .access = PL1_RW, .type = ARM_CP_ALIAS,
3880       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3881       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3882     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3883       .access = PL1_RW, .type = ARM_CP_ALIAS,
3884       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3885       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3886     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3887       .access = PL1_RW,
3888       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3889       .resetvalue = 0, },
3890     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3891       .access = PL1_RW,
3892       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3893       .resetvalue = 0, },
3894     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3895       .access = PL1_RW,
3896       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3897     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3898       .access = PL1_RW,
3899       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3900     /* Protection region base and size registers */
3901     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3902       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3903       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3904     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3905       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3906       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3907     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3908       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3909       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3910     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3911       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3912       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3913     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3914       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3915       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3916     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3917       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3918       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3919     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3920       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3921       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3922     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3923       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3924       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3925     REGINFO_SENTINEL
3926 };
3927 
3928 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3929                                  uint64_t value)
3930 {
3931     TCR *tcr = raw_ptr(env, ri);
3932     int maskshift = extract32(value, 0, 3);
3933 
3934     if (!arm_feature(env, ARM_FEATURE_V8)) {
3935         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3936             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3937              * using Long-desciptor translation table format */
3938             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3939         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3940             /* In an implementation that includes the Security Extensions
3941              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3942              * Short-descriptor translation table format.
3943              */
3944             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3945         } else {
3946             value &= TTBCR_N;
3947         }
3948     }
3949 
3950     /* Update the masks corresponding to the TCR bank being written
3951      * Note that we always calculate mask and base_mask, but
3952      * they are only used for short-descriptor tables (ie if EAE is 0);
3953      * for long-descriptor tables the TCR fields are used differently
3954      * and the mask and base_mask values are meaningless.
3955      */
3956     tcr->raw_tcr = value;
3957     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3958     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3959 }
3960 
3961 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3962                              uint64_t value)
3963 {
3964     ARMCPU *cpu = env_archcpu(env);
3965     TCR *tcr = raw_ptr(env, ri);
3966 
3967     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3968         /* With LPAE the TTBCR could result in a change of ASID
3969          * via the TTBCR.A1 bit, so do a TLB flush.
3970          */
3971         tlb_flush(CPU(cpu));
3972     }
3973     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3974     value = deposit64(tcr->raw_tcr, 0, 32, value);
3975     vmsa_ttbcr_raw_write(env, ri, value);
3976 }
3977 
3978 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3979 {
3980     TCR *tcr = raw_ptr(env, ri);
3981 
3982     /* Reset both the TCR as well as the masks corresponding to the bank of
3983      * the TCR being reset.
3984      */
3985     tcr->raw_tcr = 0;
3986     tcr->mask = 0;
3987     tcr->base_mask = 0xffffc000u;
3988 }
3989 
3990 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3991                                uint64_t value)
3992 {
3993     ARMCPU *cpu = env_archcpu(env);
3994     TCR *tcr = raw_ptr(env, ri);
3995 
3996     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3997     tlb_flush(CPU(cpu));
3998     tcr->raw_tcr = value;
3999 }
4000 
4001 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4002                             uint64_t value)
4003 {
4004     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4005     if (cpreg_field_is_64bit(ri) &&
4006         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4007         ARMCPU *cpu = env_archcpu(env);
4008         tlb_flush(CPU(cpu));
4009     }
4010     raw_write(env, ri, value);
4011 }
4012 
4013 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4014                                     uint64_t value)
4015 {
4016     /*
4017      * If we are running with E2&0 regime, then an ASID is active.
4018      * Flush if that might be changing.  Note we're not checking
4019      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4020      * holds the active ASID, only checking the field that might.
4021      */
4022     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4023         (arm_hcr_el2_eff(env) & HCR_E2H)) {
4024         uint16_t mask = ARMMMUIdxBit_E20_2 |
4025                         ARMMMUIdxBit_E20_2_PAN |
4026                         ARMMMUIdxBit_E20_0;
4027 
4028         if (arm_is_secure_below_el3(env)) {
4029             mask >>= ARM_MMU_IDX_A_NS;
4030         }
4031 
4032         tlb_flush_by_mmuidx(env_cpu(env), mask);
4033     }
4034     raw_write(env, ri, value);
4035 }
4036 
4037 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4038                         uint64_t value)
4039 {
4040     ARMCPU *cpu = env_archcpu(env);
4041     CPUState *cs = CPU(cpu);
4042 
4043     /*
4044      * A change in VMID to the stage2 page table (Stage2) invalidates
4045      * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
4046      */
4047     if (raw_read(env, ri) != value) {
4048         uint16_t mask = ARMMMUIdxBit_E10_1 |
4049                         ARMMMUIdxBit_E10_1_PAN |
4050                         ARMMMUIdxBit_E10_0;
4051 
4052         if (arm_is_secure_below_el3(env)) {
4053             mask >>= ARM_MMU_IDX_A_NS;
4054         }
4055 
4056         tlb_flush_by_mmuidx(cs, mask);
4057         raw_write(env, ri, value);
4058     }
4059 }
4060 
4061 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4062     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4063       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4064       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4065                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4066     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4067       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4068       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4069                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4070     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4071       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4072       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4073                              offsetof(CPUARMState, cp15.dfar_ns) } },
4074     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4075       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4076       .access = PL1_RW, .accessfn = access_tvm_trvm,
4077       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4078       .resetvalue = 0, },
4079     REGINFO_SENTINEL
4080 };
4081 
4082 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4083     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4084       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4085       .access = PL1_RW, .accessfn = access_tvm_trvm,
4086       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4087     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4088       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4089       .access = PL1_RW, .accessfn = access_tvm_trvm,
4090       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4091       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4092                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4093     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4094       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4095       .access = PL1_RW, .accessfn = access_tvm_trvm,
4096       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4097       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4098                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4099     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4100       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4101       .access = PL1_RW, .accessfn = access_tvm_trvm,
4102       .writefn = vmsa_tcr_el12_write,
4103       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
4104       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4105     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4106       .access = PL1_RW, .accessfn = access_tvm_trvm,
4107       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4108       .raw_writefn = vmsa_ttbcr_raw_write,
4109       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4110                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4111     REGINFO_SENTINEL
4112 };
4113 
4114 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4115  * qemu tlbs nor adjusting cached masks.
4116  */
4117 static const ARMCPRegInfo ttbcr2_reginfo = {
4118     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4119     .access = PL1_RW, .accessfn = access_tvm_trvm,
4120     .type = ARM_CP_ALIAS,
4121     .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4122                            offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
4123 };
4124 
4125 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4126                                 uint64_t value)
4127 {
4128     env->cp15.c15_ticonfig = value & 0xe7;
4129     /* The OS_TYPE bit in this register changes the reported CPUID! */
4130     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4131         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4132 }
4133 
4134 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4135                                 uint64_t value)
4136 {
4137     env->cp15.c15_threadid = value & 0xffff;
4138 }
4139 
4140 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4141                            uint64_t value)
4142 {
4143     /* Wait-for-interrupt (deprecated) */
4144     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4145 }
4146 
4147 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4148                                   uint64_t value)
4149 {
4150     /* On OMAP there are registers indicating the max/min index of dcache lines
4151      * containing a dirty line; cache flush operations have to reset these.
4152      */
4153     env->cp15.c15_i_max = 0x000;
4154     env->cp15.c15_i_min = 0xff0;
4155 }
4156 
4157 static const ARMCPRegInfo omap_cp_reginfo[] = {
4158     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4159       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4160       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4161       .resetvalue = 0, },
4162     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4163       .access = PL1_RW, .type = ARM_CP_NOP },
4164     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4165       .access = PL1_RW,
4166       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4167       .writefn = omap_ticonfig_write },
4168     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4169       .access = PL1_RW,
4170       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4171     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4172       .access = PL1_RW, .resetvalue = 0xff0,
4173       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4174     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4175       .access = PL1_RW,
4176       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4177       .writefn = omap_threadid_write },
4178     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4179       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4180       .type = ARM_CP_NO_RAW,
4181       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4182     /* TODO: Peripheral port remap register:
4183      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4184      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4185      * when MMU is off.
4186      */
4187     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4188       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4189       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4190       .writefn = omap_cachemaint_write },
4191     { .name = "C9", .cp = 15, .crn = 9,
4192       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4193       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4194     REGINFO_SENTINEL
4195 };
4196 
4197 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4198                               uint64_t value)
4199 {
4200     env->cp15.c15_cpar = value & 0x3fff;
4201 }
4202 
4203 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4204     { .name = "XSCALE_CPAR",
4205       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4206       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4207       .writefn = xscale_cpar_write, },
4208     { .name = "XSCALE_AUXCR",
4209       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4210       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4211       .resetvalue = 0, },
4212     /* XScale specific cache-lockdown: since we have no cache we NOP these
4213      * and hope the guest does not really rely on cache behaviour.
4214      */
4215     { .name = "XSCALE_LOCK_ICACHE_LINE",
4216       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4217       .access = PL1_W, .type = ARM_CP_NOP },
4218     { .name = "XSCALE_UNLOCK_ICACHE",
4219       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4220       .access = PL1_W, .type = ARM_CP_NOP },
4221     { .name = "XSCALE_DCACHE_LOCK",
4222       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4223       .access = PL1_RW, .type = ARM_CP_NOP },
4224     { .name = "XSCALE_UNLOCK_DCACHE",
4225       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4226       .access = PL1_W, .type = ARM_CP_NOP },
4227     REGINFO_SENTINEL
4228 };
4229 
4230 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4231     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4232      * implementation of this implementation-defined space.
4233      * Ideally this should eventually disappear in favour of actually
4234      * implementing the correct behaviour for all cores.
4235      */
4236     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4237       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4238       .access = PL1_RW,
4239       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4240       .resetvalue = 0 },
4241     REGINFO_SENTINEL
4242 };
4243 
4244 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4245     /* Cache status: RAZ because we have no cache so it's always clean */
4246     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4247       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4248       .resetvalue = 0 },
4249     REGINFO_SENTINEL
4250 };
4251 
4252 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4253     /* We never have a a block transfer operation in progress */
4254     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4255       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4256       .resetvalue = 0 },
4257     /* The cache ops themselves: these all NOP for QEMU */
4258     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4259       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4260     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4261       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4262     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4263       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4264     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4265       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4266     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4267       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4268     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4269       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4270     REGINFO_SENTINEL
4271 };
4272 
4273 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4274     /* The cache test-and-clean instructions always return (1 << 30)
4275      * to indicate that there are no dirty cache lines.
4276      */
4277     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4278       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4279       .resetvalue = (1 << 30) },
4280     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4281       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4282       .resetvalue = (1 << 30) },
4283     REGINFO_SENTINEL
4284 };
4285 
4286 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4287     /* Ignore ReadBuffer accesses */
4288     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4289       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4290       .access = PL1_RW, .resetvalue = 0,
4291       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4292     REGINFO_SENTINEL
4293 };
4294 
4295 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4296 {
4297     unsigned int cur_el = arm_current_el(env);
4298 
4299     if (arm_is_el2_enabled(env) && cur_el == 1) {
4300         return env->cp15.vpidr_el2;
4301     }
4302     return raw_read(env, ri);
4303 }
4304 
4305 static uint64_t mpidr_read_val(CPUARMState *env)
4306 {
4307     ARMCPU *cpu = env_archcpu(env);
4308     uint64_t mpidr = cpu->mp_affinity;
4309 
4310     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4311         mpidr |= (1U << 31);
4312         /* Cores which are uniprocessor (non-coherent)
4313          * but still implement the MP extensions set
4314          * bit 30. (For instance, Cortex-R5).
4315          */
4316         if (cpu->mp_is_up) {
4317             mpidr |= (1u << 30);
4318         }
4319     }
4320     return mpidr;
4321 }
4322 
4323 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4324 {
4325     unsigned int cur_el = arm_current_el(env);
4326 
4327     if (arm_is_el2_enabled(env) && cur_el == 1) {
4328         return env->cp15.vmpidr_el2;
4329     }
4330     return mpidr_read_val(env);
4331 }
4332 
4333 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4334     /* NOP AMAIR0/1 */
4335     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4336       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4337       .access = PL1_RW, .accessfn = access_tvm_trvm,
4338       .type = ARM_CP_CONST, .resetvalue = 0 },
4339     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4340     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4341       .access = PL1_RW, .accessfn = access_tvm_trvm,
4342       .type = ARM_CP_CONST, .resetvalue = 0 },
4343     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4344       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4345       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4346                              offsetof(CPUARMState, cp15.par_ns)} },
4347     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4348       .access = PL1_RW, .accessfn = access_tvm_trvm,
4349       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4350       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4351                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4352       .writefn = vmsa_ttbr_write, },
4353     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4354       .access = PL1_RW, .accessfn = access_tvm_trvm,
4355       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4356       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4357                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4358       .writefn = vmsa_ttbr_write, },
4359     REGINFO_SENTINEL
4360 };
4361 
4362 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4363 {
4364     return vfp_get_fpcr(env);
4365 }
4366 
4367 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4368                             uint64_t value)
4369 {
4370     vfp_set_fpcr(env, value);
4371 }
4372 
4373 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4374 {
4375     return vfp_get_fpsr(env);
4376 }
4377 
4378 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4379                             uint64_t value)
4380 {
4381     vfp_set_fpsr(env, value);
4382 }
4383 
4384 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4385                                        bool isread)
4386 {
4387     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4388         return CP_ACCESS_TRAP;
4389     }
4390     return CP_ACCESS_OK;
4391 }
4392 
4393 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4394                             uint64_t value)
4395 {
4396     env->daif = value & PSTATE_DAIF;
4397 }
4398 
4399 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4400 {
4401     return env->pstate & PSTATE_PAN;
4402 }
4403 
4404 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4405                            uint64_t value)
4406 {
4407     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4408 }
4409 
4410 static const ARMCPRegInfo pan_reginfo = {
4411     .name = "PAN", .state = ARM_CP_STATE_AA64,
4412     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4413     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4414     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4415 };
4416 
4417 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4418 {
4419     return env->pstate & PSTATE_UAO;
4420 }
4421 
4422 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4423                            uint64_t value)
4424 {
4425     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4426 }
4427 
4428 static const ARMCPRegInfo uao_reginfo = {
4429     .name = "UAO", .state = ARM_CP_STATE_AA64,
4430     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4431     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4432     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4433 };
4434 
4435 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4436 {
4437     return env->pstate & PSTATE_DIT;
4438 }
4439 
4440 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4441                            uint64_t value)
4442 {
4443     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4444 }
4445 
4446 static const ARMCPRegInfo dit_reginfo = {
4447     .name = "DIT", .state = ARM_CP_STATE_AA64,
4448     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4449     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4450     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4451 };
4452 
4453 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4454 {
4455     return env->pstate & PSTATE_SSBS;
4456 }
4457 
4458 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4459                            uint64_t value)
4460 {
4461     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4462 }
4463 
4464 static const ARMCPRegInfo ssbs_reginfo = {
4465     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4466     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4467     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4468     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4469 };
4470 
4471 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4472                                               const ARMCPRegInfo *ri,
4473                                               bool isread)
4474 {
4475     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4476     switch (arm_current_el(env)) {
4477     case 0:
4478         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4479         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4480             return CP_ACCESS_TRAP;
4481         }
4482         /* fall through */
4483     case 1:
4484         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4485         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4486             return CP_ACCESS_TRAP_EL2;
4487         }
4488         break;
4489     }
4490     return CP_ACCESS_OK;
4491 }
4492 
4493 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4494                                               const ARMCPRegInfo *ri,
4495                                               bool isread)
4496 {
4497     /* Cache invalidate/clean to Point of Unification... */
4498     switch (arm_current_el(env)) {
4499     case 0:
4500         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4501         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4502             return CP_ACCESS_TRAP;
4503         }
4504         /* fall through */
4505     case 1:
4506         /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set.  */
4507         if (arm_hcr_el2_eff(env) & HCR_TPU) {
4508             return CP_ACCESS_TRAP_EL2;
4509         }
4510         break;
4511     }
4512     return CP_ACCESS_OK;
4513 }
4514 
4515 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4516  * Page D4-1736 (DDI0487A.b)
4517  */
4518 
4519 static int vae1_tlbmask(CPUARMState *env)
4520 {
4521     uint64_t hcr = arm_hcr_el2_eff(env);
4522     uint16_t mask;
4523 
4524     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4525         mask = ARMMMUIdxBit_E20_2 |
4526                ARMMMUIdxBit_E20_2_PAN |
4527                ARMMMUIdxBit_E20_0;
4528     } else {
4529         mask = ARMMMUIdxBit_E10_1 |
4530                ARMMMUIdxBit_E10_1_PAN |
4531                ARMMMUIdxBit_E10_0;
4532     }
4533 
4534     if (arm_is_secure_below_el3(env)) {
4535         mask >>= ARM_MMU_IDX_A_NS;
4536     }
4537 
4538     return mask;
4539 }
4540 
4541 /* Return 56 if TBI is enabled, 64 otherwise. */
4542 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4543                               uint64_t addr)
4544 {
4545     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4546     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4547     int select = extract64(addr, 55, 1);
4548 
4549     return (tbi >> select) & 1 ? 56 : 64;
4550 }
4551 
4552 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4553 {
4554     uint64_t hcr = arm_hcr_el2_eff(env);
4555     ARMMMUIdx mmu_idx;
4556 
4557     /* Only the regime of the mmu_idx below is significant. */
4558     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4559         mmu_idx = ARMMMUIdx_E20_0;
4560     } else {
4561         mmu_idx = ARMMMUIdx_E10_0;
4562     }
4563 
4564     if (arm_is_secure_below_el3(env)) {
4565         mmu_idx &= ~ARM_MMU_IDX_A_NS;
4566     }
4567 
4568     return tlbbits_for_regime(env, mmu_idx, addr);
4569 }
4570 
4571 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4572                                       uint64_t value)
4573 {
4574     CPUState *cs = env_cpu(env);
4575     int mask = vae1_tlbmask(env);
4576 
4577     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4578 }
4579 
4580 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4581                                     uint64_t value)
4582 {
4583     CPUState *cs = env_cpu(env);
4584     int mask = vae1_tlbmask(env);
4585 
4586     if (tlb_force_broadcast(env)) {
4587         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4588     } else {
4589         tlb_flush_by_mmuidx(cs, mask);
4590     }
4591 }
4592 
4593 static int alle1_tlbmask(CPUARMState *env)
4594 {
4595     /*
4596      * Note that the 'ALL' scope must invalidate both stage 1 and
4597      * stage 2 translations, whereas most other scopes only invalidate
4598      * stage 1 translations.
4599      */
4600     if (arm_is_secure_below_el3(env)) {
4601         return ARMMMUIdxBit_SE10_1 |
4602                ARMMMUIdxBit_SE10_1_PAN |
4603                ARMMMUIdxBit_SE10_0;
4604     } else {
4605         return ARMMMUIdxBit_E10_1 |
4606                ARMMMUIdxBit_E10_1_PAN |
4607                ARMMMUIdxBit_E10_0;
4608     }
4609 }
4610 
4611 static int e2_tlbmask(CPUARMState *env)
4612 {
4613     if (arm_is_secure_below_el3(env)) {
4614         return ARMMMUIdxBit_SE20_0 |
4615                ARMMMUIdxBit_SE20_2 |
4616                ARMMMUIdxBit_SE20_2_PAN |
4617                ARMMMUIdxBit_SE2;
4618     } else {
4619         return ARMMMUIdxBit_E20_0 |
4620                ARMMMUIdxBit_E20_2 |
4621                ARMMMUIdxBit_E20_2_PAN |
4622                ARMMMUIdxBit_E2;
4623     }
4624 }
4625 
4626 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4627                                   uint64_t value)
4628 {
4629     CPUState *cs = env_cpu(env);
4630     int mask = alle1_tlbmask(env);
4631 
4632     tlb_flush_by_mmuidx(cs, mask);
4633 }
4634 
4635 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4636                                   uint64_t value)
4637 {
4638     CPUState *cs = env_cpu(env);
4639     int mask = e2_tlbmask(env);
4640 
4641     tlb_flush_by_mmuidx(cs, mask);
4642 }
4643 
4644 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4645                                   uint64_t value)
4646 {
4647     ARMCPU *cpu = env_archcpu(env);
4648     CPUState *cs = CPU(cpu);
4649 
4650     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4651 }
4652 
4653 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4654                                     uint64_t value)
4655 {
4656     CPUState *cs = env_cpu(env);
4657     int mask = alle1_tlbmask(env);
4658 
4659     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4660 }
4661 
4662 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4663                                     uint64_t value)
4664 {
4665     CPUState *cs = env_cpu(env);
4666     int mask = e2_tlbmask(env);
4667 
4668     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4669 }
4670 
4671 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4672                                     uint64_t value)
4673 {
4674     CPUState *cs = env_cpu(env);
4675 
4676     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4677 }
4678 
4679 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4680                                  uint64_t value)
4681 {
4682     /* Invalidate by VA, EL2
4683      * Currently handles both VAE2 and VALE2, since we don't support
4684      * flush-last-level-only.
4685      */
4686     CPUState *cs = env_cpu(env);
4687     int mask = e2_tlbmask(env);
4688     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4689 
4690     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4691 }
4692 
4693 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4694                                  uint64_t value)
4695 {
4696     /* Invalidate by VA, EL3
4697      * Currently handles both VAE3 and VALE3, since we don't support
4698      * flush-last-level-only.
4699      */
4700     ARMCPU *cpu = env_archcpu(env);
4701     CPUState *cs = CPU(cpu);
4702     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4703 
4704     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4705 }
4706 
4707 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4708                                    uint64_t value)
4709 {
4710     CPUState *cs = env_cpu(env);
4711     int mask = vae1_tlbmask(env);
4712     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4713     int bits = vae1_tlbbits(env, pageaddr);
4714 
4715     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4716 }
4717 
4718 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4719                                  uint64_t value)
4720 {
4721     /* Invalidate by VA, EL1&0 (AArch64 version).
4722      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4723      * since we don't support flush-for-specific-ASID-only or
4724      * flush-last-level-only.
4725      */
4726     CPUState *cs = env_cpu(env);
4727     int mask = vae1_tlbmask(env);
4728     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4729     int bits = vae1_tlbbits(env, pageaddr);
4730 
4731     if (tlb_force_broadcast(env)) {
4732         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4733     } else {
4734         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4735     }
4736 }
4737 
4738 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4739                                    uint64_t value)
4740 {
4741     CPUState *cs = env_cpu(env);
4742     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4743     bool secure = arm_is_secure_below_el3(env);
4744     int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4745     int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4746                                   pageaddr);
4747 
4748     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4749 }
4750 
4751 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4752                                    uint64_t value)
4753 {
4754     CPUState *cs = env_cpu(env);
4755     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4756     int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4757 
4758     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4759                                                   ARMMMUIdxBit_SE3, bits);
4760 }
4761 
4762 #ifdef TARGET_AARCH64
4763 static uint64_t tlbi_aa64_range_get_length(CPUARMState *env,
4764                                            uint64_t value)
4765 {
4766     unsigned int page_shift;
4767     unsigned int page_size_granule;
4768     uint64_t num;
4769     uint64_t scale;
4770     uint64_t exponent;
4771     uint64_t length;
4772 
4773     num = extract64(value, 39, 4);
4774     scale = extract64(value, 44, 2);
4775     page_size_granule = extract64(value, 46, 2);
4776 
4777     page_shift = page_size_granule * 2 + 12;
4778 
4779     if (page_size_granule == 0) {
4780         qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n",
4781                       page_size_granule);
4782         return 0;
4783     }
4784 
4785     exponent = (5 * scale) + 1;
4786     length = (num + 1) << (exponent + page_shift);
4787 
4788     return length;
4789 }
4790 
4791 static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value,
4792                                         bool two_ranges)
4793 {
4794     /* TODO: ARMv8.7 FEAT_LPA2 */
4795     uint64_t pageaddr;
4796 
4797     if (two_ranges) {
4798         pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS;
4799     } else {
4800         pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS;
4801     }
4802 
4803     return pageaddr;
4804 }
4805 
4806 static void do_rvae_write(CPUARMState *env, uint64_t value,
4807                           int idxmap, bool synced)
4808 {
4809     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4810     bool two_ranges = regime_has_2_ranges(one_idx);
4811     uint64_t baseaddr, length;
4812     int bits;
4813 
4814     baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges);
4815     length = tlbi_aa64_range_get_length(env, value);
4816     bits = tlbbits_for_regime(env, one_idx, baseaddr);
4817 
4818     if (synced) {
4819         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4820                                                   baseaddr,
4821                                                   length,
4822                                                   idxmap,
4823                                                   bits);
4824     } else {
4825         tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr,
4826                                   length, idxmap, bits);
4827     }
4828 }
4829 
4830 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4831                                   const ARMCPRegInfo *ri,
4832                                   uint64_t value)
4833 {
4834     /*
4835      * Invalidate by VA range, EL1&0.
4836      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4837      * since we don't support flush-for-specific-ASID-only or
4838      * flush-last-level-only.
4839      */
4840 
4841     do_rvae_write(env, value, vae1_tlbmask(env),
4842                   tlb_force_broadcast(env));
4843 }
4844 
4845 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4846                                     const ARMCPRegInfo *ri,
4847                                     uint64_t value)
4848 {
4849     /*
4850      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4851      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4852      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4853      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4854      * shareable specific flushes.
4855      */
4856 
4857     do_rvae_write(env, value, vae1_tlbmask(env), true);
4858 }
4859 
4860 static int vae2_tlbmask(CPUARMState *env)
4861 {
4862     return (arm_is_secure_below_el3(env)
4863             ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4864 }
4865 
4866 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4867                                   const ARMCPRegInfo *ri,
4868                                   uint64_t value)
4869 {
4870     /*
4871      * Invalidate by VA range, EL2.
4872      * Currently handles all of RVAE2 and RVALE2,
4873      * since we don't support flush-for-specific-ASID-only or
4874      * flush-last-level-only.
4875      */
4876 
4877     do_rvae_write(env, value, vae2_tlbmask(env),
4878                   tlb_force_broadcast(env));
4879 
4880 
4881 }
4882 
4883 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4884                                     const ARMCPRegInfo *ri,
4885                                     uint64_t value)
4886 {
4887     /*
4888      * Invalidate by VA range, Inner/Outer Shareable, EL2.
4889      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4890      * since we don't support flush-for-specific-ASID-only,
4891      * flush-last-level-only or inner/outer shareable specific flushes.
4892      */
4893 
4894     do_rvae_write(env, value, vae2_tlbmask(env), true);
4895 
4896 }
4897 
4898 static void tlbi_aa64_rvae3_write(CPUARMState *env,
4899                                   const ARMCPRegInfo *ri,
4900                                   uint64_t value)
4901 {
4902     /*
4903      * Invalidate by VA range, EL3.
4904      * Currently handles all of RVAE3 and RVALE3,
4905      * since we don't support flush-for-specific-ASID-only or
4906      * flush-last-level-only.
4907      */
4908 
4909     do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4910                   tlb_force_broadcast(env));
4911 }
4912 
4913 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4914                                     const ARMCPRegInfo *ri,
4915                                     uint64_t value)
4916 {
4917     /*
4918      * Invalidate by VA range, EL3, Inner/Outer Shareable.
4919      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4920      * since we don't support flush-for-specific-ASID-only,
4921      * flush-last-level-only or inner/outer specific flushes.
4922      */
4923 
4924     do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4925 }
4926 #endif
4927 
4928 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4929                                       bool isread)
4930 {
4931     int cur_el = arm_current_el(env);
4932 
4933     if (cur_el < 2) {
4934         uint64_t hcr = arm_hcr_el2_eff(env);
4935 
4936         if (cur_el == 0) {
4937             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4938                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4939                     return CP_ACCESS_TRAP_EL2;
4940                 }
4941             } else {
4942                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4943                     return CP_ACCESS_TRAP;
4944                 }
4945                 if (hcr & HCR_TDZ) {
4946                     return CP_ACCESS_TRAP_EL2;
4947                 }
4948             }
4949         } else if (hcr & HCR_TDZ) {
4950             return CP_ACCESS_TRAP_EL2;
4951         }
4952     }
4953     return CP_ACCESS_OK;
4954 }
4955 
4956 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4957 {
4958     ARMCPU *cpu = env_archcpu(env);
4959     int dzp_bit = 1 << 4;
4960 
4961     /* DZP indicates whether DC ZVA access is allowed */
4962     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4963         dzp_bit = 0;
4964     }
4965     return cpu->dcz_blocksize | dzp_bit;
4966 }
4967 
4968 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4969                                     bool isread)
4970 {
4971     if (!(env->pstate & PSTATE_SP)) {
4972         /* Access to SP_EL0 is undefined if it's being used as
4973          * the stack pointer.
4974          */
4975         return CP_ACCESS_TRAP_UNCATEGORIZED;
4976     }
4977     return CP_ACCESS_OK;
4978 }
4979 
4980 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4981 {
4982     return env->pstate & PSTATE_SP;
4983 }
4984 
4985 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4986 {
4987     update_spsel(env, val);
4988 }
4989 
4990 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4991                         uint64_t value)
4992 {
4993     ARMCPU *cpu = env_archcpu(env);
4994 
4995     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4996         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4997         value &= ~SCTLR_M;
4998     }
4999 
5000     /* ??? Lots of these bits are not implemented.  */
5001 
5002     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5003         if (ri->opc1 == 6) { /* SCTLR_EL3 */
5004             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5005         } else {
5006             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5007                        SCTLR_ATA0 | SCTLR_ATA);
5008         }
5009     }
5010 
5011     if (raw_read(env, ri) == value) {
5012         /* Skip the TLB flush if nothing actually changed; Linux likes
5013          * to do a lot of pointless SCTLR writes.
5014          */
5015         return;
5016     }
5017 
5018     raw_write(env, ri, value);
5019 
5020     /* This may enable/disable the MMU, so do a TLB flush.  */
5021     tlb_flush(CPU(cpu));
5022 
5023     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
5024         /*
5025          * Normally we would always end the TB on an SCTLR write; see the
5026          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5027          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5028          * of hflags from the translator, so do it here.
5029          */
5030         arm_rebuild_hflags(env);
5031     }
5032 }
5033 
5034 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
5035                                      bool isread)
5036 {
5037     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
5038         return CP_ACCESS_TRAP_FP_EL2;
5039     }
5040     if (env->cp15.cptr_el[3] & CPTR_TFP) {
5041         return CP_ACCESS_TRAP_FP_EL3;
5042     }
5043     return CP_ACCESS_OK;
5044 }
5045 
5046 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5047                        uint64_t value)
5048 {
5049     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
5050 }
5051 
5052 static const ARMCPRegInfo v8_cp_reginfo[] = {
5053     /* Minimal set of EL0-visible registers. This will need to be expanded
5054      * significantly for system emulation of AArch64 CPUs.
5055      */
5056     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5057       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5058       .access = PL0_RW, .type = ARM_CP_NZCV },
5059     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5060       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5061       .type = ARM_CP_NO_RAW,
5062       .access = PL0_RW, .accessfn = aa64_daif_access,
5063       .fieldoffset = offsetof(CPUARMState, daif),
5064       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5065     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5066       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5067       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5068       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5069     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5070       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5071       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5072       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5073     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5074       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5075       .access = PL0_R, .type = ARM_CP_NO_RAW,
5076       .readfn = aa64_dczid_read },
5077     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5078       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5079       .access = PL0_W, .type = ARM_CP_DC_ZVA,
5080 #ifndef CONFIG_USER_ONLY
5081       /* Avoid overhead of an access check that always passes in user-mode */
5082       .accessfn = aa64_zva_access,
5083 #endif
5084     },
5085     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5086       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5087       .access = PL1_R, .type = ARM_CP_CURRENTEL },
5088     /* Cache ops: all NOPs since we don't emulate caches */
5089     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5090       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5091       .access = PL1_W, .type = ARM_CP_NOP,
5092       .accessfn = aa64_cacheop_pou_access },
5093     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5094       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5095       .access = PL1_W, .type = ARM_CP_NOP,
5096       .accessfn = aa64_cacheop_pou_access },
5097     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5098       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5099       .access = PL0_W, .type = ARM_CP_NOP,
5100       .accessfn = aa64_cacheop_pou_access },
5101     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5102       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5103       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5104       .type = ARM_CP_NOP },
5105     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5106       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5107       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5108     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5109       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5110       .access = PL0_W, .type = ARM_CP_NOP,
5111       .accessfn = aa64_cacheop_poc_access },
5112     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5113       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5114       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5115     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5116       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5117       .access = PL0_W, .type = ARM_CP_NOP,
5118       .accessfn = aa64_cacheop_pou_access },
5119     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5120       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5121       .access = PL0_W, .type = ARM_CP_NOP,
5122       .accessfn = aa64_cacheop_poc_access },
5123     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5124       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5125       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5126     /* TLBI operations */
5127     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5128       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5129       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5130       .writefn = tlbi_aa64_vmalle1is_write },
5131     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5132       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5133       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5134       .writefn = tlbi_aa64_vae1is_write },
5135     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5136       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5137       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5138       .writefn = tlbi_aa64_vmalle1is_write },
5139     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5140       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5141       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5142       .writefn = tlbi_aa64_vae1is_write },
5143     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5144       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5145       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5146       .writefn = tlbi_aa64_vae1is_write },
5147     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5148       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5149       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5150       .writefn = tlbi_aa64_vae1is_write },
5151     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5152       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5153       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5154       .writefn = tlbi_aa64_vmalle1_write },
5155     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5156       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5157       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5158       .writefn = tlbi_aa64_vae1_write },
5159     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5160       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5161       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5162       .writefn = tlbi_aa64_vmalle1_write },
5163     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5164       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5165       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5166       .writefn = tlbi_aa64_vae1_write },
5167     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5168       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5169       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5170       .writefn = tlbi_aa64_vae1_write },
5171     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5172       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5173       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5174       .writefn = tlbi_aa64_vae1_write },
5175     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5176       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5177       .access = PL2_W, .type = ARM_CP_NOP },
5178     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5179       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5180       .access = PL2_W, .type = ARM_CP_NOP },
5181     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5182       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5183       .access = PL2_W, .type = ARM_CP_NO_RAW,
5184       .writefn = tlbi_aa64_alle1is_write },
5185     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5186       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5187       .access = PL2_W, .type = ARM_CP_NO_RAW,
5188       .writefn = tlbi_aa64_alle1is_write },
5189     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5190       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5191       .access = PL2_W, .type = ARM_CP_NOP },
5192     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5193       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5194       .access = PL2_W, .type = ARM_CP_NOP },
5195     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5196       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5197       .access = PL2_W, .type = ARM_CP_NO_RAW,
5198       .writefn = tlbi_aa64_alle1_write },
5199     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5200       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5201       .access = PL2_W, .type = ARM_CP_NO_RAW,
5202       .writefn = tlbi_aa64_alle1is_write },
5203 #ifndef CONFIG_USER_ONLY
5204     /* 64 bit address translation operations */
5205     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5206       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5207       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5208       .writefn = ats_write64 },
5209     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5210       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5211       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5212       .writefn = ats_write64 },
5213     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5214       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5215       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5216       .writefn = ats_write64 },
5217     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5218       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5219       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5220       .writefn = ats_write64 },
5221     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5222       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5223       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5224       .writefn = ats_write64 },
5225     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5226       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5227       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5228       .writefn = ats_write64 },
5229     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5230       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5231       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5232       .writefn = ats_write64 },
5233     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5234       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5235       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5236       .writefn = ats_write64 },
5237     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5238     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5239       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5240       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5241       .writefn = ats_write64 },
5242     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5243       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5244       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5245       .writefn = ats_write64 },
5246     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5247       .type = ARM_CP_ALIAS,
5248       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5249       .access = PL1_RW, .resetvalue = 0,
5250       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5251       .writefn = par_write },
5252 #endif
5253     /* TLB invalidate last level of translation table walk */
5254     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5255       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5256       .writefn = tlbimva_is_write },
5257     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5258       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5259       .writefn = tlbimvaa_is_write },
5260     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5261       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5262       .writefn = tlbimva_write },
5263     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5264       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5265       .writefn = tlbimvaa_write },
5266     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5267       .type = ARM_CP_NO_RAW, .access = PL2_W,
5268       .writefn = tlbimva_hyp_write },
5269     { .name = "TLBIMVALHIS",
5270       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5271       .type = ARM_CP_NO_RAW, .access = PL2_W,
5272       .writefn = tlbimva_hyp_is_write },
5273     { .name = "TLBIIPAS2",
5274       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5275       .type = ARM_CP_NOP, .access = PL2_W },
5276     { .name = "TLBIIPAS2IS",
5277       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5278       .type = ARM_CP_NOP, .access = PL2_W },
5279     { .name = "TLBIIPAS2L",
5280       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5281       .type = ARM_CP_NOP, .access = PL2_W },
5282     { .name = "TLBIIPAS2LIS",
5283       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5284       .type = ARM_CP_NOP, .access = PL2_W },
5285     /* 32 bit cache operations */
5286     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5287       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5288     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5289       .type = ARM_CP_NOP, .access = PL1_W },
5290     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5291       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5292     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5293       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5294     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5295       .type = ARM_CP_NOP, .access = PL1_W },
5296     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5297       .type = ARM_CP_NOP, .access = PL1_W },
5298     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5299       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5300     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5301       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5302     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5303       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5304     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5305       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5306     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5307       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5308     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5309       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5310     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5311       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5312     /* MMU Domain access control / MPU write buffer control */
5313     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5314       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5315       .writefn = dacr_write, .raw_writefn = raw_write,
5316       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5317                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5318     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5319       .type = ARM_CP_ALIAS,
5320       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5321       .access = PL1_RW,
5322       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5323     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5324       .type = ARM_CP_ALIAS,
5325       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5326       .access = PL1_RW,
5327       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5328     /* We rely on the access checks not allowing the guest to write to the
5329      * state field when SPSel indicates that it's being used as the stack
5330      * pointer.
5331      */
5332     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5333       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5334       .access = PL1_RW, .accessfn = sp_el0_access,
5335       .type = ARM_CP_ALIAS,
5336       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5337     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5338       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5339       .access = PL2_RW, .type = ARM_CP_ALIAS,
5340       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5341     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5342       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5343       .type = ARM_CP_NO_RAW,
5344       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5345     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5346       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5347       .type = ARM_CP_ALIAS,
5348       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5349       .access = PL2_RW, .accessfn = fpexc32_access },
5350     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5351       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5352       .access = PL2_RW, .resetvalue = 0,
5353       .writefn = dacr_write, .raw_writefn = raw_write,
5354       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5355     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5356       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5357       .access = PL2_RW, .resetvalue = 0,
5358       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5359     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5360       .type = ARM_CP_ALIAS,
5361       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5362       .access = PL2_RW,
5363       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5364     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5365       .type = ARM_CP_ALIAS,
5366       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5367       .access = PL2_RW,
5368       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5369     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5370       .type = ARM_CP_ALIAS,
5371       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5372       .access = PL2_RW,
5373       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5374     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5375       .type = ARM_CP_ALIAS,
5376       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5377       .access = PL2_RW,
5378       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5379     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5380       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5381       .resetvalue = 0,
5382       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5383     { .name = "SDCR", .type = ARM_CP_ALIAS,
5384       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5385       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5386       .writefn = sdcr_write,
5387       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5388     REGINFO_SENTINEL
5389 };
5390 
5391 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
5392 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5393     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5394       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5395       .access = PL2_RW,
5396       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5397     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5398       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5399       .access = PL2_RW,
5400       .type = ARM_CP_CONST, .resetvalue = 0 },
5401     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5402       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5403       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5404     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5405       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5406       .access = PL2_RW,
5407       .type = ARM_CP_CONST, .resetvalue = 0 },
5408     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5409       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5410       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5411     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5412       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5413       .access = PL2_RW, .type = ARM_CP_CONST,
5414       .resetvalue = 0 },
5415     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5416       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5417       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5418     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5419       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5420       .access = PL2_RW, .type = ARM_CP_CONST,
5421       .resetvalue = 0 },
5422     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5423       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5424       .access = PL2_RW, .type = ARM_CP_CONST,
5425       .resetvalue = 0 },
5426     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5427       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5428       .access = PL2_RW, .type = ARM_CP_CONST,
5429       .resetvalue = 0 },
5430     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5431       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5432       .access = PL2_RW, .type = ARM_CP_CONST,
5433       .resetvalue = 0 },
5434     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5435       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5436       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5437     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5438       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5439       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5440       .type = ARM_CP_CONST, .resetvalue = 0 },
5441     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5442       .cp = 15, .opc1 = 6, .crm = 2,
5443       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5444       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5445     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5446       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5447       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5448     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5449       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5450       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5451     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5452       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5453       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5454     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5455       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5456       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5457     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5458       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5459       .resetvalue = 0 },
5460     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5461       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5462       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5463     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5464       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5465       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5466     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5467       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5468       .resetvalue = 0 },
5469     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5470       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5471       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5472     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5473       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5474       .resetvalue = 0 },
5475     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5476       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5477       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5478     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5479       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5480       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5481     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5482       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5483       .access = PL2_RW, .accessfn = access_tda,
5484       .type = ARM_CP_CONST, .resetvalue = 0 },
5485     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5486       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5487       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5488       .type = ARM_CP_CONST, .resetvalue = 0 },
5489     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5490       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5491       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5492     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5493       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5494       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5495     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5496       .type = ARM_CP_CONST,
5497       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5498       .access = PL2_RW, .resetvalue = 0 },
5499     REGINFO_SENTINEL
5500 };
5501 
5502 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5503 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5504     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5505       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5506       .access = PL2_RW,
5507       .type = ARM_CP_CONST, .resetvalue = 0 },
5508     REGINFO_SENTINEL
5509 };
5510 
5511 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5512 {
5513     ARMCPU *cpu = env_archcpu(env);
5514 
5515     if (arm_feature(env, ARM_FEATURE_V8)) {
5516         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5517     } else {
5518         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5519     }
5520 
5521     if (arm_feature(env, ARM_FEATURE_EL3)) {
5522         valid_mask &= ~HCR_HCD;
5523     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5524         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5525          * However, if we're using the SMC PSCI conduit then QEMU is
5526          * effectively acting like EL3 firmware and so the guest at
5527          * EL2 should retain the ability to prevent EL1 from being
5528          * able to make SMC calls into the ersatz firmware, so in
5529          * that case HCR.TSC should be read/write.
5530          */
5531         valid_mask &= ~HCR_TSC;
5532     }
5533 
5534     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5535         if (cpu_isar_feature(aa64_vh, cpu)) {
5536             valid_mask |= HCR_E2H;
5537         }
5538         if (cpu_isar_feature(aa64_lor, cpu)) {
5539             valid_mask |= HCR_TLOR;
5540         }
5541         if (cpu_isar_feature(aa64_pauth, cpu)) {
5542             valid_mask |= HCR_API | HCR_APK;
5543         }
5544         if (cpu_isar_feature(aa64_mte, cpu)) {
5545             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5546         }
5547     }
5548 
5549     /* Clear RES0 bits.  */
5550     value &= valid_mask;
5551 
5552     /*
5553      * These bits change the MMU setup:
5554      * HCR_VM enables stage 2 translation
5555      * HCR_PTW forbids certain page-table setups
5556      * HCR_DC disables stage1 and enables stage2 translation
5557      * HCR_DCT enables tagging on (disabled) stage1 translation
5558      */
5559     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5560         tlb_flush(CPU(cpu));
5561     }
5562     env->cp15.hcr_el2 = value;
5563 
5564     /*
5565      * Updates to VI and VF require us to update the status of
5566      * virtual interrupts, which are the logical OR of these bits
5567      * and the state of the input lines from the GIC. (This requires
5568      * that we have the iothread lock, which is done by marking the
5569      * reginfo structs as ARM_CP_IO.)
5570      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5571      * possible for it to be taken immediately, because VIRQ and
5572      * VFIQ are masked unless running at EL0 or EL1, and HCR
5573      * can only be written at EL2.
5574      */
5575     g_assert(qemu_mutex_iothread_locked());
5576     arm_cpu_update_virq(cpu);
5577     arm_cpu_update_vfiq(cpu);
5578 }
5579 
5580 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5581 {
5582     do_hcr_write(env, value, 0);
5583 }
5584 
5585 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5586                           uint64_t value)
5587 {
5588     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5589     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5590     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5591 }
5592 
5593 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5594                          uint64_t value)
5595 {
5596     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5597     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5598     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5599 }
5600 
5601 /*
5602  * Return the effective value of HCR_EL2.
5603  * Bits that are not included here:
5604  * RW       (read from SCR_EL3.RW as needed)
5605  */
5606 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5607 {
5608     uint64_t ret = env->cp15.hcr_el2;
5609 
5610     if (!arm_is_el2_enabled(env)) {
5611         /*
5612          * "This register has no effect if EL2 is not enabled in the
5613          * current Security state".  This is ARMv8.4-SecEL2 speak for
5614          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5615          *
5616          * Prior to that, the language was "In an implementation that
5617          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5618          * as if this field is 0 for all purposes other than a direct
5619          * read or write access of HCR_EL2".  With lots of enumeration
5620          * on a per-field basis.  In current QEMU, this is condition
5621          * is arm_is_secure_below_el3.
5622          *
5623          * Since the v8.4 language applies to the entire register, and
5624          * appears to be backward compatible, use that.
5625          */
5626         return 0;
5627     }
5628 
5629     /*
5630      * For a cpu that supports both aarch64 and aarch32, we can set bits
5631      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5632      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5633      */
5634     if (!arm_el_is_aa64(env, 2)) {
5635         uint64_t aa32_valid;
5636 
5637         /*
5638          * These bits are up-to-date as of ARMv8.6.
5639          * For HCR, it's easiest to list just the 2 bits that are invalid.
5640          * For HCR2, list those that are valid.
5641          */
5642         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5643         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5644                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5645         ret &= aa32_valid;
5646     }
5647 
5648     if (ret & HCR_TGE) {
5649         /* These bits are up-to-date as of ARMv8.6.  */
5650         if (ret & HCR_E2H) {
5651             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5652                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5653                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5654                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5655                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5656                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5657         } else {
5658             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5659         }
5660         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5661                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5662                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5663                  HCR_TLOR);
5664     }
5665 
5666     return ret;
5667 }
5668 
5669 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5670                            uint64_t value)
5671 {
5672     /*
5673      * For A-profile AArch32 EL3, if NSACR.CP10
5674      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5675      */
5676     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5677         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5678         value &= ~(0x3 << 10);
5679         value |= env->cp15.cptr_el[2] & (0x3 << 10);
5680     }
5681     env->cp15.cptr_el[2] = value;
5682 }
5683 
5684 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5685 {
5686     /*
5687      * For A-profile AArch32 EL3, if NSACR.CP10
5688      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5689      */
5690     uint64_t value = env->cp15.cptr_el[2];
5691 
5692     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5693         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5694         value |= 0x3 << 10;
5695     }
5696     return value;
5697 }
5698 
5699 static const ARMCPRegInfo el2_cp_reginfo[] = {
5700     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5701       .type = ARM_CP_IO,
5702       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5703       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5704       .writefn = hcr_write },
5705     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5706       .type = ARM_CP_ALIAS | ARM_CP_IO,
5707       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5708       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5709       .writefn = hcr_writelow },
5710     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5711       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5712       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5713     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5714       .type = ARM_CP_ALIAS,
5715       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5716       .access = PL2_RW,
5717       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5718     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5719       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5720       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5721     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5722       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5723       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5724     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5725       .type = ARM_CP_ALIAS,
5726       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5727       .access = PL2_RW,
5728       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5729     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5730       .type = ARM_CP_ALIAS,
5731       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5732       .access = PL2_RW,
5733       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5734     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5735       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5736       .access = PL2_RW, .writefn = vbar_write,
5737       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5738       .resetvalue = 0 },
5739     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5740       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5741       .access = PL3_RW, .type = ARM_CP_ALIAS,
5742       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5743     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5744       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5745       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5746       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5747       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5748     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5749       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5750       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5751       .resetvalue = 0 },
5752     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5753       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5754       .access = PL2_RW, .type = ARM_CP_ALIAS,
5755       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5756     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5757       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5758       .access = PL2_RW, .type = ARM_CP_CONST,
5759       .resetvalue = 0 },
5760     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5761     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5762       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5763       .access = PL2_RW, .type = ARM_CP_CONST,
5764       .resetvalue = 0 },
5765     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5766       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5767       .access = PL2_RW, .type = ARM_CP_CONST,
5768       .resetvalue = 0 },
5769     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5770       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5771       .access = PL2_RW, .type = ARM_CP_CONST,
5772       .resetvalue = 0 },
5773     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5774       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5775       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5776       /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5777       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5778     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5779       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5780       .type = ARM_CP_ALIAS,
5781       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5782       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5783     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5784       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5785       .access = PL2_RW,
5786       /* no .writefn needed as this can't cause an ASID change;
5787        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5788        */
5789       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5790     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5791       .cp = 15, .opc1 = 6, .crm = 2,
5792       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5793       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5794       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5795       .writefn = vttbr_write },
5796     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5797       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5798       .access = PL2_RW, .writefn = vttbr_write,
5799       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5800     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5801       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5802       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5803       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5804     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5805       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5806       .access = PL2_RW, .resetvalue = 0,
5807       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5808     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5809       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5810       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5811       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5812     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5813       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5814       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5815     { .name = "TLBIALLNSNH",
5816       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5817       .type = ARM_CP_NO_RAW, .access = PL2_W,
5818       .writefn = tlbiall_nsnh_write },
5819     { .name = "TLBIALLNSNHIS",
5820       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5821       .type = ARM_CP_NO_RAW, .access = PL2_W,
5822       .writefn = tlbiall_nsnh_is_write },
5823     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5824       .type = ARM_CP_NO_RAW, .access = PL2_W,
5825       .writefn = tlbiall_hyp_write },
5826     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5827       .type = ARM_CP_NO_RAW, .access = PL2_W,
5828       .writefn = tlbiall_hyp_is_write },
5829     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5830       .type = ARM_CP_NO_RAW, .access = PL2_W,
5831       .writefn = tlbimva_hyp_write },
5832     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5833       .type = ARM_CP_NO_RAW, .access = PL2_W,
5834       .writefn = tlbimva_hyp_is_write },
5835     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5836       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5837       .type = ARM_CP_NO_RAW, .access = PL2_W,
5838       .writefn = tlbi_aa64_alle2_write },
5839     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5840       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5841       .type = ARM_CP_NO_RAW, .access = PL2_W,
5842       .writefn = tlbi_aa64_vae2_write },
5843     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5844       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5845       .access = PL2_W, .type = ARM_CP_NO_RAW,
5846       .writefn = tlbi_aa64_vae2_write },
5847     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5848       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5849       .access = PL2_W, .type = ARM_CP_NO_RAW,
5850       .writefn = tlbi_aa64_alle2is_write },
5851     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5852       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5853       .type = ARM_CP_NO_RAW, .access = PL2_W,
5854       .writefn = tlbi_aa64_vae2is_write },
5855     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5856       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5857       .access = PL2_W, .type = ARM_CP_NO_RAW,
5858       .writefn = tlbi_aa64_vae2is_write },
5859 #ifndef CONFIG_USER_ONLY
5860     /* Unlike the other EL2-related AT operations, these must
5861      * UNDEF from EL3 if EL2 is not implemented, which is why we
5862      * define them here rather than with the rest of the AT ops.
5863      */
5864     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5865       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5866       .access = PL2_W, .accessfn = at_s1e2_access,
5867       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5868     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5869       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5870       .access = PL2_W, .accessfn = at_s1e2_access,
5871       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5872     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5873      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5874      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5875      * to behave as if SCR.NS was 1.
5876      */
5877     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5878       .access = PL2_W,
5879       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5880     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5881       .access = PL2_W,
5882       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5883     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5884       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5885       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5886        * reset values as IMPDEF. We choose to reset to 3 to comply with
5887        * both ARMv7 and ARMv8.
5888        */
5889       .access = PL2_RW, .resetvalue = 3,
5890       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5891     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5892       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5893       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5894       .writefn = gt_cntvoff_write,
5895       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5896     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5897       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5898       .writefn = gt_cntvoff_write,
5899       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5900     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5901       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5902       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5903       .type = ARM_CP_IO, .access = PL2_RW,
5904       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5905     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5906       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5907       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5908       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5909     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5910       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5911       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5912       .resetfn = gt_hyp_timer_reset,
5913       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5914     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5915       .type = ARM_CP_IO,
5916       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5917       .access = PL2_RW,
5918       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5919       .resetvalue = 0,
5920       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5921 #endif
5922     /* The only field of MDCR_EL2 that has a defined architectural reset value
5923      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
5924      */
5925     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5926       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5927       .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS,
5928       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5929     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5930       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5931       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5932       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5933     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5934       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5935       .access = PL2_RW,
5936       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5937     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5938       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5939       .access = PL2_RW,
5940       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5941     REGINFO_SENTINEL
5942 };
5943 
5944 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5945     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5946       .type = ARM_CP_ALIAS | ARM_CP_IO,
5947       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5948       .access = PL2_RW,
5949       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5950       .writefn = hcr_writehigh },
5951     REGINFO_SENTINEL
5952 };
5953 
5954 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5955                                   bool isread)
5956 {
5957     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5958         return CP_ACCESS_OK;
5959     }
5960     return CP_ACCESS_TRAP_UNCATEGORIZED;
5961 }
5962 
5963 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5964     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5965       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5966       .access = PL2_RW, .accessfn = sel2_access,
5967       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5968     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5969       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5970       .access = PL2_RW, .accessfn = sel2_access,
5971       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5972     REGINFO_SENTINEL
5973 };
5974 
5975 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5976                                    bool isread)
5977 {
5978     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5979      * At Secure EL1 it traps to EL3 or EL2.
5980      */
5981     if (arm_current_el(env) == 3) {
5982         return CP_ACCESS_OK;
5983     }
5984     if (arm_is_secure_below_el3(env)) {
5985         if (env->cp15.scr_el3 & SCR_EEL2) {
5986             return CP_ACCESS_TRAP_EL2;
5987         }
5988         return CP_ACCESS_TRAP_EL3;
5989     }
5990     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5991     if (isread) {
5992         return CP_ACCESS_OK;
5993     }
5994     return CP_ACCESS_TRAP_UNCATEGORIZED;
5995 }
5996 
5997 static const ARMCPRegInfo el3_cp_reginfo[] = {
5998     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5999       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6000       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6001       .resetfn = scr_reset, .writefn = scr_write },
6002     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6003       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6004       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6005       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6006       .writefn = scr_write },
6007     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6008       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6009       .access = PL3_RW, .resetvalue = 0,
6010       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6011     { .name = "SDER",
6012       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6013       .access = PL3_RW, .resetvalue = 0,
6014       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6015     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6016       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6017       .writefn = vbar_write, .resetvalue = 0,
6018       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6019     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6020       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6021       .access = PL3_RW, .resetvalue = 0,
6022       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6023     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6024       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6025       .access = PL3_RW,
6026       /* no .writefn needed as this can't cause an ASID change;
6027        * we must provide a .raw_writefn and .resetfn because we handle
6028        * reset and migration for the AArch32 TTBCR(S), which might be
6029        * using mask and base_mask.
6030        */
6031       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
6032       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6033     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6034       .type = ARM_CP_ALIAS,
6035       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6036       .access = PL3_RW,
6037       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6038     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6039       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6040       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6041     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6042       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6043       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6044     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6045       .type = ARM_CP_ALIAS,
6046       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6047       .access = PL3_RW,
6048       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6049     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6050       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6051       .access = PL3_RW, .writefn = vbar_write,
6052       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6053       .resetvalue = 0 },
6054     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6055       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6056       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6057       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6058     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6059       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6060       .access = PL3_RW, .resetvalue = 0,
6061       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6062     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6063       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6064       .access = PL3_RW, .type = ARM_CP_CONST,
6065       .resetvalue = 0 },
6066     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6067       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6068       .access = PL3_RW, .type = ARM_CP_CONST,
6069       .resetvalue = 0 },
6070     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6071       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6072       .access = PL3_RW, .type = ARM_CP_CONST,
6073       .resetvalue = 0 },
6074     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6075       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6076       .access = PL3_W, .type = ARM_CP_NO_RAW,
6077       .writefn = tlbi_aa64_alle3is_write },
6078     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6079       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6080       .access = PL3_W, .type = ARM_CP_NO_RAW,
6081       .writefn = tlbi_aa64_vae3is_write },
6082     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6083       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6084       .access = PL3_W, .type = ARM_CP_NO_RAW,
6085       .writefn = tlbi_aa64_vae3is_write },
6086     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6087       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6088       .access = PL3_W, .type = ARM_CP_NO_RAW,
6089       .writefn = tlbi_aa64_alle3_write },
6090     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6091       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6092       .access = PL3_W, .type = ARM_CP_NO_RAW,
6093       .writefn = tlbi_aa64_vae3_write },
6094     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6095       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6096       .access = PL3_W, .type = ARM_CP_NO_RAW,
6097       .writefn = tlbi_aa64_vae3_write },
6098     REGINFO_SENTINEL
6099 };
6100 
6101 #ifndef CONFIG_USER_ONLY
6102 /* Test if system register redirection is to occur in the current state.  */
6103 static bool redirect_for_e2h(CPUARMState *env)
6104 {
6105     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6106 }
6107 
6108 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6109 {
6110     CPReadFn *readfn;
6111 
6112     if (redirect_for_e2h(env)) {
6113         /* Switch to the saved EL2 version of the register.  */
6114         ri = ri->opaque;
6115         readfn = ri->readfn;
6116     } else {
6117         readfn = ri->orig_readfn;
6118     }
6119     if (readfn == NULL) {
6120         readfn = raw_read;
6121     }
6122     return readfn(env, ri);
6123 }
6124 
6125 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6126                           uint64_t value)
6127 {
6128     CPWriteFn *writefn;
6129 
6130     if (redirect_for_e2h(env)) {
6131         /* Switch to the saved EL2 version of the register.  */
6132         ri = ri->opaque;
6133         writefn = ri->writefn;
6134     } else {
6135         writefn = ri->orig_writefn;
6136     }
6137     if (writefn == NULL) {
6138         writefn = raw_write;
6139     }
6140     writefn(env, ri, value);
6141 }
6142 
6143 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6144 {
6145     struct E2HAlias {
6146         uint32_t src_key, dst_key, new_key;
6147         const char *src_name, *dst_name, *new_name;
6148         bool (*feature)(const ARMISARegisters *id);
6149     };
6150 
6151 #define K(op0, op1, crn, crm, op2) \
6152     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6153 
6154     static const struct E2HAlias aliases[] = {
6155         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
6156           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6157         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
6158           "CPACR", "CPTR_EL2", "CPACR_EL12" },
6159         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
6160           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6161         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
6162           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6163         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
6164           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6165         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6166           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6167         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6168           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6169         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6170           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6171         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6172           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6173         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6174           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6175         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6176           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6177         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6178           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6179         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6180           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6181         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6182           "VBAR", "VBAR_EL2", "VBAR_EL12" },
6183         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6184           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6185         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6186           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6187 
6188         /*
6189          * Note that redirection of ZCR is mentioned in the description
6190          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6191          * not in the summary table.
6192          */
6193         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6194           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6195 
6196         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6197           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6198 
6199         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6200         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6201     };
6202 #undef K
6203 
6204     size_t i;
6205 
6206     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6207         const struct E2HAlias *a = &aliases[i];
6208         ARMCPRegInfo *src_reg, *dst_reg;
6209 
6210         if (a->feature && !a->feature(&cpu->isar)) {
6211             continue;
6212         }
6213 
6214         src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
6215         dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
6216         g_assert(src_reg != NULL);
6217         g_assert(dst_reg != NULL);
6218 
6219         /* Cross-compare names to detect typos in the keys.  */
6220         g_assert(strcmp(src_reg->name, a->src_name) == 0);
6221         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6222 
6223         /* None of the core system registers use opaque; we will.  */
6224         g_assert(src_reg->opaque == NULL);
6225 
6226         /* Create alias before redirection so we dup the right data. */
6227         if (a->new_key) {
6228             ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6229             uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
6230             bool ok;
6231 
6232             new_reg->name = a->new_name;
6233             new_reg->type |= ARM_CP_ALIAS;
6234             /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6235             new_reg->access &= PL2_RW | PL3_RW;
6236 
6237             ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
6238             g_assert(ok);
6239         }
6240 
6241         src_reg->opaque = dst_reg;
6242         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6243         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6244         if (!src_reg->raw_readfn) {
6245             src_reg->raw_readfn = raw_read;
6246         }
6247         if (!src_reg->raw_writefn) {
6248             src_reg->raw_writefn = raw_write;
6249         }
6250         src_reg->readfn = el2_e2h_read;
6251         src_reg->writefn = el2_e2h_write;
6252     }
6253 }
6254 #endif
6255 
6256 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6257                                      bool isread)
6258 {
6259     int cur_el = arm_current_el(env);
6260 
6261     if (cur_el < 2) {
6262         uint64_t hcr = arm_hcr_el2_eff(env);
6263 
6264         if (cur_el == 0) {
6265             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6266                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6267                     return CP_ACCESS_TRAP_EL2;
6268                 }
6269             } else {
6270                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6271                     return CP_ACCESS_TRAP;
6272                 }
6273                 if (hcr & HCR_TID2) {
6274                     return CP_ACCESS_TRAP_EL2;
6275                 }
6276             }
6277         } else if (hcr & HCR_TID2) {
6278             return CP_ACCESS_TRAP_EL2;
6279         }
6280     }
6281 
6282     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6283         return CP_ACCESS_TRAP_EL2;
6284     }
6285 
6286     return CP_ACCESS_OK;
6287 }
6288 
6289 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6290                         uint64_t value)
6291 {
6292     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6293      * read via a bit in OSLSR_EL1.
6294      */
6295     int oslock;
6296 
6297     if (ri->state == ARM_CP_STATE_AA32) {
6298         oslock = (value == 0xC5ACCE55);
6299     } else {
6300         oslock = value & 1;
6301     }
6302 
6303     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6304 }
6305 
6306 static const ARMCPRegInfo debug_cp_reginfo[] = {
6307     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6308      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6309      * unlike DBGDRAR it is never accessible from EL0.
6310      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6311      * accessor.
6312      */
6313     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6314       .access = PL0_R, .accessfn = access_tdra,
6315       .type = ARM_CP_CONST, .resetvalue = 0 },
6316     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6317       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6318       .access = PL1_R, .accessfn = access_tdra,
6319       .type = ARM_CP_CONST, .resetvalue = 0 },
6320     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6321       .access = PL0_R, .accessfn = access_tdra,
6322       .type = ARM_CP_CONST, .resetvalue = 0 },
6323     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6324     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6325       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6326       .access = PL1_RW, .accessfn = access_tda,
6327       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6328       .resetvalue = 0 },
6329     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
6330      * We don't implement the configurable EL0 access.
6331      */
6332     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
6333       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6334       .type = ARM_CP_ALIAS,
6335       .access = PL1_R, .accessfn = access_tda,
6336       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6337     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6338       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6339       .access = PL1_W, .type = ARM_CP_NO_RAW,
6340       .accessfn = access_tdosa,
6341       .writefn = oslar_write },
6342     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6343       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6344       .access = PL1_R, .resetvalue = 10,
6345       .accessfn = access_tdosa,
6346       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6347     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6348     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6349       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6350       .access = PL1_RW, .accessfn = access_tdosa,
6351       .type = ARM_CP_NOP },
6352     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6353      * implement vector catch debug events yet.
6354      */
6355     { .name = "DBGVCR",
6356       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6357       .access = PL1_RW, .accessfn = access_tda,
6358       .type = ARM_CP_NOP },
6359     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6360      * to save and restore a 32-bit guest's DBGVCR)
6361      */
6362     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6363       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6364       .access = PL2_RW, .accessfn = access_tda,
6365       .type = ARM_CP_NOP },
6366     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6367      * Channel but Linux may try to access this register. The 32-bit
6368      * alias is DBGDCCINT.
6369      */
6370     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6371       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6372       .access = PL1_RW, .accessfn = access_tda,
6373       .type = ARM_CP_NOP },
6374     REGINFO_SENTINEL
6375 };
6376 
6377 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6378     /* 64 bit access versions of the (dummy) debug registers */
6379     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6380       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6381     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6382       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6383     REGINFO_SENTINEL
6384 };
6385 
6386 /* Return the exception level to which exceptions should be taken
6387  * via SVEAccessTrap.  If an exception should be routed through
6388  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6389  * take care of raising that exception.
6390  * C.f. the ARM pseudocode function CheckSVEEnabled.
6391  */
6392 int sve_exception_el(CPUARMState *env, int el)
6393 {
6394 #ifndef CONFIG_USER_ONLY
6395     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6396 
6397     if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6398         bool disabled = false;
6399 
6400         /* The CPACR.ZEN controls traps to EL1:
6401          * 0, 2 : trap EL0 and EL1 accesses
6402          * 1    : trap only EL0 accesses
6403          * 3    : trap no accesses
6404          */
6405         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6406             disabled = true;
6407         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6408             disabled = el == 0;
6409         }
6410         if (disabled) {
6411             /* route_to_el2 */
6412             return hcr_el2 & HCR_TGE ? 2 : 1;
6413         }
6414 
6415         /* Check CPACR.FPEN.  */
6416         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6417             disabled = true;
6418         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6419             disabled = el == 0;
6420         }
6421         if (disabled) {
6422             return 0;
6423         }
6424     }
6425 
6426     /* CPTR_EL2.  Since TZ and TFP are positive,
6427      * they will be zero when EL2 is not present.
6428      */
6429     if (el <= 2 && arm_is_el2_enabled(env)) {
6430         if (env->cp15.cptr_el[2] & CPTR_TZ) {
6431             return 2;
6432         }
6433         if (env->cp15.cptr_el[2] & CPTR_TFP) {
6434             return 0;
6435         }
6436     }
6437 
6438     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6439     if (arm_feature(env, ARM_FEATURE_EL3)
6440         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6441         return 3;
6442     }
6443 #endif
6444     return 0;
6445 }
6446 
6447 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6448 {
6449     uint32_t end_len;
6450 
6451     end_len = start_len &= 0xf;
6452     if (!test_bit(start_len, cpu->sve_vq_map)) {
6453         end_len = find_last_bit(cpu->sve_vq_map, start_len);
6454         assert(end_len < start_len);
6455     }
6456     return end_len;
6457 }
6458 
6459 /*
6460  * Given that SVE is enabled, return the vector length for EL.
6461  */
6462 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6463 {
6464     ARMCPU *cpu = env_archcpu(env);
6465     uint32_t zcr_len = cpu->sve_max_vq - 1;
6466 
6467     if (el <= 1) {
6468         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6469     }
6470     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6471         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6472     }
6473     if (arm_feature(env, ARM_FEATURE_EL3)) {
6474         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6475     }
6476 
6477     return sve_zcr_get_valid_len(cpu, zcr_len);
6478 }
6479 
6480 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6481                       uint64_t value)
6482 {
6483     int cur_el = arm_current_el(env);
6484     int old_len = sve_zcr_len_for_el(env, cur_el);
6485     int new_len;
6486 
6487     /* Bits other than [3:0] are RAZ/WI.  */
6488     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6489     raw_write(env, ri, value & 0xf);
6490 
6491     /*
6492      * Because we arrived here, we know both FP and SVE are enabled;
6493      * otherwise we would have trapped access to the ZCR_ELn register.
6494      */
6495     new_len = sve_zcr_len_for_el(env, cur_el);
6496     if (new_len < old_len) {
6497         aarch64_sve_narrow_vq(env, new_len + 1);
6498     }
6499 }
6500 
6501 static const ARMCPRegInfo zcr_el1_reginfo = {
6502     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6503     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6504     .access = PL1_RW, .type = ARM_CP_SVE,
6505     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6506     .writefn = zcr_write, .raw_writefn = raw_write
6507 };
6508 
6509 static const ARMCPRegInfo zcr_el2_reginfo = {
6510     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6511     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6512     .access = PL2_RW, .type = ARM_CP_SVE,
6513     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6514     .writefn = zcr_write, .raw_writefn = raw_write
6515 };
6516 
6517 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6518     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6519     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6520     .access = PL2_RW, .type = ARM_CP_SVE,
6521     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6522 };
6523 
6524 static const ARMCPRegInfo zcr_el3_reginfo = {
6525     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6526     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6527     .access = PL3_RW, .type = ARM_CP_SVE,
6528     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6529     .writefn = zcr_write, .raw_writefn = raw_write
6530 };
6531 
6532 void hw_watchpoint_update(ARMCPU *cpu, int n)
6533 {
6534     CPUARMState *env = &cpu->env;
6535     vaddr len = 0;
6536     vaddr wvr = env->cp15.dbgwvr[n];
6537     uint64_t wcr = env->cp15.dbgwcr[n];
6538     int mask;
6539     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6540 
6541     if (env->cpu_watchpoint[n]) {
6542         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6543         env->cpu_watchpoint[n] = NULL;
6544     }
6545 
6546     if (!extract64(wcr, 0, 1)) {
6547         /* E bit clear : watchpoint disabled */
6548         return;
6549     }
6550 
6551     switch (extract64(wcr, 3, 2)) {
6552     case 0:
6553         /* LSC 00 is reserved and must behave as if the wp is disabled */
6554         return;
6555     case 1:
6556         flags |= BP_MEM_READ;
6557         break;
6558     case 2:
6559         flags |= BP_MEM_WRITE;
6560         break;
6561     case 3:
6562         flags |= BP_MEM_ACCESS;
6563         break;
6564     }
6565 
6566     /* Attempts to use both MASK and BAS fields simultaneously are
6567      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6568      * thus generating a watchpoint for every byte in the masked region.
6569      */
6570     mask = extract64(wcr, 24, 4);
6571     if (mask == 1 || mask == 2) {
6572         /* Reserved values of MASK; we must act as if the mask value was
6573          * some non-reserved value, or as if the watchpoint were disabled.
6574          * We choose the latter.
6575          */
6576         return;
6577     } else if (mask) {
6578         /* Watchpoint covers an aligned area up to 2GB in size */
6579         len = 1ULL << mask;
6580         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6581          * whether the watchpoint fires when the unmasked bits match; we opt
6582          * to generate the exceptions.
6583          */
6584         wvr &= ~(len - 1);
6585     } else {
6586         /* Watchpoint covers bytes defined by the byte address select bits */
6587         int bas = extract64(wcr, 5, 8);
6588         int basstart;
6589 
6590         if (extract64(wvr, 2, 1)) {
6591             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6592              * ignored, and BAS[3:0] define which bytes to watch.
6593              */
6594             bas &= 0xf;
6595         }
6596 
6597         if (bas == 0) {
6598             /* This must act as if the watchpoint is disabled */
6599             return;
6600         }
6601 
6602         /* The BAS bits are supposed to be programmed to indicate a contiguous
6603          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6604          * we fire for each byte in the word/doubleword addressed by the WVR.
6605          * We choose to ignore any non-zero bits after the first range of 1s.
6606          */
6607         basstart = ctz32(bas);
6608         len = cto32(bas >> basstart);
6609         wvr += basstart;
6610     }
6611 
6612     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6613                           &env->cpu_watchpoint[n]);
6614 }
6615 
6616 void hw_watchpoint_update_all(ARMCPU *cpu)
6617 {
6618     int i;
6619     CPUARMState *env = &cpu->env;
6620 
6621     /* Completely clear out existing QEMU watchpoints and our array, to
6622      * avoid possible stale entries following migration load.
6623      */
6624     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6625     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6626 
6627     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6628         hw_watchpoint_update(cpu, i);
6629     }
6630 }
6631 
6632 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6633                          uint64_t value)
6634 {
6635     ARMCPU *cpu = env_archcpu(env);
6636     int i = ri->crm;
6637 
6638     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6639      * register reads and behaves as if values written are sign extended.
6640      * Bits [1:0] are RES0.
6641      */
6642     value = sextract64(value, 0, 49) & ~3ULL;
6643 
6644     raw_write(env, ri, value);
6645     hw_watchpoint_update(cpu, i);
6646 }
6647 
6648 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6649                          uint64_t value)
6650 {
6651     ARMCPU *cpu = env_archcpu(env);
6652     int i = ri->crm;
6653 
6654     raw_write(env, ri, value);
6655     hw_watchpoint_update(cpu, i);
6656 }
6657 
6658 void hw_breakpoint_update(ARMCPU *cpu, int n)
6659 {
6660     CPUARMState *env = &cpu->env;
6661     uint64_t bvr = env->cp15.dbgbvr[n];
6662     uint64_t bcr = env->cp15.dbgbcr[n];
6663     vaddr addr;
6664     int bt;
6665     int flags = BP_CPU;
6666 
6667     if (env->cpu_breakpoint[n]) {
6668         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6669         env->cpu_breakpoint[n] = NULL;
6670     }
6671 
6672     if (!extract64(bcr, 0, 1)) {
6673         /* E bit clear : watchpoint disabled */
6674         return;
6675     }
6676 
6677     bt = extract64(bcr, 20, 4);
6678 
6679     switch (bt) {
6680     case 4: /* unlinked address mismatch (reserved if AArch64) */
6681     case 5: /* linked address mismatch (reserved if AArch64) */
6682         qemu_log_mask(LOG_UNIMP,
6683                       "arm: address mismatch breakpoint types not implemented\n");
6684         return;
6685     case 0: /* unlinked address match */
6686     case 1: /* linked address match */
6687     {
6688         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6689          * we behave as if the register was sign extended. Bits [1:0] are
6690          * RES0. The BAS field is used to allow setting breakpoints on 16
6691          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6692          * a bp will fire if the addresses covered by the bp and the addresses
6693          * covered by the insn overlap but the insn doesn't start at the
6694          * start of the bp address range. We choose to require the insn and
6695          * the bp to have the same address. The constraints on writing to
6696          * BAS enforced in dbgbcr_write mean we have only four cases:
6697          *  0b0000  => no breakpoint
6698          *  0b0011  => breakpoint on addr
6699          *  0b1100  => breakpoint on addr + 2
6700          *  0b1111  => breakpoint on addr
6701          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6702          */
6703         int bas = extract64(bcr, 5, 4);
6704         addr = sextract64(bvr, 0, 49) & ~3ULL;
6705         if (bas == 0) {
6706             return;
6707         }
6708         if (bas == 0xc) {
6709             addr += 2;
6710         }
6711         break;
6712     }
6713     case 2: /* unlinked context ID match */
6714     case 8: /* unlinked VMID match (reserved if no EL2) */
6715     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6716         qemu_log_mask(LOG_UNIMP,
6717                       "arm: unlinked context breakpoint types not implemented\n");
6718         return;
6719     case 9: /* linked VMID match (reserved if no EL2) */
6720     case 11: /* linked context ID and VMID match (reserved if no EL2) */
6721     case 3: /* linked context ID match */
6722     default:
6723         /* We must generate no events for Linked context matches (unless
6724          * they are linked to by some other bp/wp, which is handled in
6725          * updates for the linking bp/wp). We choose to also generate no events
6726          * for reserved values.
6727          */
6728         return;
6729     }
6730 
6731     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6732 }
6733 
6734 void hw_breakpoint_update_all(ARMCPU *cpu)
6735 {
6736     int i;
6737     CPUARMState *env = &cpu->env;
6738 
6739     /* Completely clear out existing QEMU breakpoints and our array, to
6740      * avoid possible stale entries following migration load.
6741      */
6742     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6743     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6744 
6745     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6746         hw_breakpoint_update(cpu, i);
6747     }
6748 }
6749 
6750 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6751                          uint64_t value)
6752 {
6753     ARMCPU *cpu = env_archcpu(env);
6754     int i = ri->crm;
6755 
6756     raw_write(env, ri, value);
6757     hw_breakpoint_update(cpu, i);
6758 }
6759 
6760 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6761                          uint64_t value)
6762 {
6763     ARMCPU *cpu = env_archcpu(env);
6764     int i = ri->crm;
6765 
6766     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6767      * copy of BAS[0].
6768      */
6769     value = deposit64(value, 6, 1, extract64(value, 5, 1));
6770     value = deposit64(value, 8, 1, extract64(value, 7, 1));
6771 
6772     raw_write(env, ri, value);
6773     hw_breakpoint_update(cpu, i);
6774 }
6775 
6776 static void define_debug_regs(ARMCPU *cpu)
6777 {
6778     /* Define v7 and v8 architectural debug registers.
6779      * These are just dummy implementations for now.
6780      */
6781     int i;
6782     int wrps, brps, ctx_cmps;
6783 
6784     /*
6785      * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
6786      * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
6787      * the register must not exist for this cpu.
6788      */
6789     if (cpu->isar.dbgdidr != 0) {
6790         ARMCPRegInfo dbgdidr = {
6791             .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
6792             .opc1 = 0, .opc2 = 0,
6793             .access = PL0_R, .accessfn = access_tda,
6794             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6795         };
6796         define_one_arm_cp_reg(cpu, &dbgdidr);
6797     }
6798 
6799     /* Note that all these register fields hold "number of Xs minus 1". */
6800     brps = arm_num_brps(cpu);
6801     wrps = arm_num_wrps(cpu);
6802     ctx_cmps = arm_num_ctx_cmps(cpu);
6803 
6804     assert(ctx_cmps <= brps);
6805 
6806     define_arm_cp_regs(cpu, debug_cp_reginfo);
6807 
6808     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6809         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6810     }
6811 
6812     for (i = 0; i < brps; i++) {
6813         ARMCPRegInfo dbgregs[] = {
6814             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6815               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6816               .access = PL1_RW, .accessfn = access_tda,
6817               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6818               .writefn = dbgbvr_write, .raw_writefn = raw_write
6819             },
6820             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6821               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6822               .access = PL1_RW, .accessfn = access_tda,
6823               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6824               .writefn = dbgbcr_write, .raw_writefn = raw_write
6825             },
6826             REGINFO_SENTINEL
6827         };
6828         define_arm_cp_regs(cpu, dbgregs);
6829     }
6830 
6831     for (i = 0; i < wrps; i++) {
6832         ARMCPRegInfo dbgregs[] = {
6833             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6834               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6835               .access = PL1_RW, .accessfn = access_tda,
6836               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6837               .writefn = dbgwvr_write, .raw_writefn = raw_write
6838             },
6839             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6840               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6841               .access = PL1_RW, .accessfn = access_tda,
6842               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6843               .writefn = dbgwcr_write, .raw_writefn = raw_write
6844             },
6845             REGINFO_SENTINEL
6846         };
6847         define_arm_cp_regs(cpu, dbgregs);
6848     }
6849 }
6850 
6851 static void define_pmu_regs(ARMCPU *cpu)
6852 {
6853     /*
6854      * v7 performance monitor control register: same implementor
6855      * field as main ID register, and we implement four counters in
6856      * addition to the cycle count register.
6857      */
6858     unsigned int i, pmcrn = PMCR_NUM_COUNTERS;
6859     ARMCPRegInfo pmcr = {
6860         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6861         .access = PL0_RW,
6862         .type = ARM_CP_IO | ARM_CP_ALIAS,
6863         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6864         .accessfn = pmreg_access, .writefn = pmcr_write,
6865         .raw_writefn = raw_write,
6866     };
6867     ARMCPRegInfo pmcr64 = {
6868         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6869         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6870         .access = PL0_RW, .accessfn = pmreg_access,
6871         .type = ARM_CP_IO,
6872         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6873         .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6874                       PMCRLC,
6875         .writefn = pmcr_write, .raw_writefn = raw_write,
6876     };
6877     define_one_arm_cp_reg(cpu, &pmcr);
6878     define_one_arm_cp_reg(cpu, &pmcr64);
6879     for (i = 0; i < pmcrn; i++) {
6880         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6881         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6882         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6883         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6884         ARMCPRegInfo pmev_regs[] = {
6885             { .name = pmevcntr_name, .cp = 15, .crn = 14,
6886               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6887               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6888               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6889               .accessfn = pmreg_access },
6890             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6891               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6892               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6893               .type = ARM_CP_IO,
6894               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6895               .raw_readfn = pmevcntr_rawread,
6896               .raw_writefn = pmevcntr_rawwrite },
6897             { .name = pmevtyper_name, .cp = 15, .crn = 14,
6898               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6899               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6900               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6901               .accessfn = pmreg_access },
6902             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6903               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6904               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6905               .type = ARM_CP_IO,
6906               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6907               .raw_writefn = pmevtyper_rawwrite },
6908             REGINFO_SENTINEL
6909         };
6910         define_arm_cp_regs(cpu, pmev_regs);
6911         g_free(pmevcntr_name);
6912         g_free(pmevcntr_el0_name);
6913         g_free(pmevtyper_name);
6914         g_free(pmevtyper_el0_name);
6915     }
6916     if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6917         ARMCPRegInfo v81_pmu_regs[] = {
6918             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6919               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6920               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6921               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6922             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6923               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6924               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6925               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6926             REGINFO_SENTINEL
6927         };
6928         define_arm_cp_regs(cpu, v81_pmu_regs);
6929     }
6930     if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6931         static const ARMCPRegInfo v84_pmmir = {
6932             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6933             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6934             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6935             .resetvalue = 0
6936         };
6937         define_one_arm_cp_reg(cpu, &v84_pmmir);
6938     }
6939 }
6940 
6941 /* We don't know until after realize whether there's a GICv3
6942  * attached, and that is what registers the gicv3 sysregs.
6943  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6944  * at runtime.
6945  */
6946 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6947 {
6948     ARMCPU *cpu = env_archcpu(env);
6949     uint64_t pfr1 = cpu->isar.id_pfr1;
6950 
6951     if (env->gicv3state) {
6952         pfr1 |= 1 << 28;
6953     }
6954     return pfr1;
6955 }
6956 
6957 #ifndef CONFIG_USER_ONLY
6958 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6959 {
6960     ARMCPU *cpu = env_archcpu(env);
6961     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6962 
6963     if (env->gicv3state) {
6964         pfr0 |= 1 << 24;
6965     }
6966     return pfr0;
6967 }
6968 #endif
6969 
6970 /* Shared logic between LORID and the rest of the LOR* registers.
6971  * Secure state exclusion has already been dealt with.
6972  */
6973 static CPAccessResult access_lor_ns(CPUARMState *env,
6974                                     const ARMCPRegInfo *ri, bool isread)
6975 {
6976     int el = arm_current_el(env);
6977 
6978     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6979         return CP_ACCESS_TRAP_EL2;
6980     }
6981     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6982         return CP_ACCESS_TRAP_EL3;
6983     }
6984     return CP_ACCESS_OK;
6985 }
6986 
6987 static CPAccessResult access_lor_other(CPUARMState *env,
6988                                        const ARMCPRegInfo *ri, bool isread)
6989 {
6990     if (arm_is_secure_below_el3(env)) {
6991         /* Access denied in secure mode.  */
6992         return CP_ACCESS_TRAP;
6993     }
6994     return access_lor_ns(env, ri, isread);
6995 }
6996 
6997 /*
6998  * A trivial implementation of ARMv8.1-LOR leaves all of these
6999  * registers fixed at 0, which indicates that there are zero
7000  * supported Limited Ordering regions.
7001  */
7002 static const ARMCPRegInfo lor_reginfo[] = {
7003     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7004       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7005       .access = PL1_RW, .accessfn = access_lor_other,
7006       .type = ARM_CP_CONST, .resetvalue = 0 },
7007     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7008       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7009       .access = PL1_RW, .accessfn = access_lor_other,
7010       .type = ARM_CP_CONST, .resetvalue = 0 },
7011     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7012       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7013       .access = PL1_RW, .accessfn = access_lor_other,
7014       .type = ARM_CP_CONST, .resetvalue = 0 },
7015     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7016       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7017       .access = PL1_RW, .accessfn = access_lor_other,
7018       .type = ARM_CP_CONST, .resetvalue = 0 },
7019     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7020       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7021       .access = PL1_R, .accessfn = access_lor_ns,
7022       .type = ARM_CP_CONST, .resetvalue = 0 },
7023     REGINFO_SENTINEL
7024 };
7025 
7026 #ifdef TARGET_AARCH64
7027 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7028                                    bool isread)
7029 {
7030     int el = arm_current_el(env);
7031 
7032     if (el < 2 &&
7033         arm_feature(env, ARM_FEATURE_EL2) &&
7034         !(arm_hcr_el2_eff(env) & HCR_APK)) {
7035         return CP_ACCESS_TRAP_EL2;
7036     }
7037     if (el < 3 &&
7038         arm_feature(env, ARM_FEATURE_EL3) &&
7039         !(env->cp15.scr_el3 & SCR_APK)) {
7040         return CP_ACCESS_TRAP_EL3;
7041     }
7042     return CP_ACCESS_OK;
7043 }
7044 
7045 static const ARMCPRegInfo pauth_reginfo[] = {
7046     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7047       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7048       .access = PL1_RW, .accessfn = access_pauth,
7049       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7050     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7051       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7052       .access = PL1_RW, .accessfn = access_pauth,
7053       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7054     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7055       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7056       .access = PL1_RW, .accessfn = access_pauth,
7057       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7058     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7059       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7060       .access = PL1_RW, .accessfn = access_pauth,
7061       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7062     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7063       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7064       .access = PL1_RW, .accessfn = access_pauth,
7065       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7066     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7067       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7068       .access = PL1_RW, .accessfn = access_pauth,
7069       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7070     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7071       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7072       .access = PL1_RW, .accessfn = access_pauth,
7073       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7074     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7075       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7076       .access = PL1_RW, .accessfn = access_pauth,
7077       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7078     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7079       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7080       .access = PL1_RW, .accessfn = access_pauth,
7081       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7082     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7083       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7084       .access = PL1_RW, .accessfn = access_pauth,
7085       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7086     REGINFO_SENTINEL
7087 };
7088 
7089 static const ARMCPRegInfo tlbirange_reginfo[] = {
7090     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7091       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7092       .access = PL1_W, .type = ARM_CP_NO_RAW,
7093       .writefn = tlbi_aa64_rvae1is_write },
7094     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7095       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7096       .access = PL1_W, .type = ARM_CP_NO_RAW,
7097       .writefn = tlbi_aa64_rvae1is_write },
7098    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7099       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7100       .access = PL1_W, .type = ARM_CP_NO_RAW,
7101       .writefn = tlbi_aa64_rvae1is_write },
7102     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7103       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7104       .access = PL1_W, .type = ARM_CP_NO_RAW,
7105       .writefn = tlbi_aa64_rvae1is_write },
7106     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7107       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7108       .access = PL1_W, .type = ARM_CP_NO_RAW,
7109       .writefn = tlbi_aa64_rvae1is_write },
7110     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7111       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7112       .access = PL1_W, .type = ARM_CP_NO_RAW,
7113       .writefn = tlbi_aa64_rvae1is_write },
7114    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7115       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7116       .access = PL1_W, .type = ARM_CP_NO_RAW,
7117       .writefn = tlbi_aa64_rvae1is_write },
7118     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7119       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7120       .access = PL1_W, .type = ARM_CP_NO_RAW,
7121       .writefn = tlbi_aa64_rvae1is_write },
7122     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7123       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7124       .access = PL1_W, .type = ARM_CP_NO_RAW,
7125       .writefn = tlbi_aa64_rvae1_write },
7126     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7127       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7128       .access = PL1_W, .type = ARM_CP_NO_RAW,
7129       .writefn = tlbi_aa64_rvae1_write },
7130    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7131       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7132       .access = PL1_W, .type = ARM_CP_NO_RAW,
7133       .writefn = tlbi_aa64_rvae1_write },
7134     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7135       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7136       .access = PL1_W, .type = ARM_CP_NO_RAW,
7137       .writefn = tlbi_aa64_rvae1_write },
7138     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7139       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7140       .access = PL2_W, .type = ARM_CP_NOP },
7141     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7142       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7143       .access = PL2_W, .type = ARM_CP_NOP },
7144     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7145       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7146       .access = PL2_W, .type = ARM_CP_NO_RAW,
7147       .writefn = tlbi_aa64_rvae2is_write },
7148    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7149       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7150       .access = PL2_W, .type = ARM_CP_NO_RAW,
7151       .writefn = tlbi_aa64_rvae2is_write },
7152     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7153       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7154       .access = PL2_W, .type = ARM_CP_NOP },
7155    { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7156       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7157       .access = PL2_W, .type = ARM_CP_NOP },
7158    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7159       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7160       .access = PL2_W, .type = ARM_CP_NO_RAW,
7161       .writefn = tlbi_aa64_rvae2is_write },
7162    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7163       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7164       .access = PL2_W, .type = ARM_CP_NO_RAW,
7165       .writefn = tlbi_aa64_rvae2is_write },
7166     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7167       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7168       .access = PL2_W, .type = ARM_CP_NO_RAW,
7169       .writefn = tlbi_aa64_rvae2_write },
7170    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7171       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7172       .access = PL2_W, .type = ARM_CP_NO_RAW,
7173       .writefn = tlbi_aa64_rvae2_write },
7174    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7175       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7176       .access = PL3_W, .type = ARM_CP_NO_RAW,
7177       .writefn = tlbi_aa64_rvae3is_write },
7178    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7179       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7180       .access = PL3_W, .type = ARM_CP_NO_RAW,
7181       .writefn = tlbi_aa64_rvae3is_write },
7182    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7183       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7184       .access = PL3_W, .type = ARM_CP_NO_RAW,
7185       .writefn = tlbi_aa64_rvae3is_write },
7186    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7187       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7188       .access = PL3_W, .type = ARM_CP_NO_RAW,
7189       .writefn = tlbi_aa64_rvae3is_write },
7190    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7191       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7192       .access = PL3_W, .type = ARM_CP_NO_RAW,
7193       .writefn = tlbi_aa64_rvae3_write },
7194    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7195       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7196       .access = PL3_W, .type = ARM_CP_NO_RAW,
7197       .writefn = tlbi_aa64_rvae3_write },
7198     REGINFO_SENTINEL
7199 };
7200 
7201 static const ARMCPRegInfo tlbios_reginfo[] = {
7202     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7203       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7204       .access = PL1_W, .type = ARM_CP_NO_RAW,
7205       .writefn = tlbi_aa64_vmalle1is_write },
7206     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7207       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7208       .access = PL1_W, .type = ARM_CP_NO_RAW,
7209       .writefn = tlbi_aa64_vmalle1is_write },
7210     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7211       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7212       .access = PL2_W, .type = ARM_CP_NO_RAW,
7213       .writefn = tlbi_aa64_alle2is_write },
7214    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7215       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7216       .access = PL2_W, .type = ARM_CP_NO_RAW,
7217       .writefn = tlbi_aa64_alle1is_write },
7218     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7219       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7220       .access = PL2_W, .type = ARM_CP_NO_RAW,
7221       .writefn = tlbi_aa64_alle1is_write },
7222     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7223       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7224       .access = PL2_W, .type = ARM_CP_NOP },
7225     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7226       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7227       .access = PL2_W, .type = ARM_CP_NOP },
7228     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7229       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7230       .access = PL2_W, .type = ARM_CP_NOP },
7231     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7232       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7233       .access = PL2_W, .type = ARM_CP_NOP },
7234     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7235       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7236       .access = PL3_W, .type = ARM_CP_NO_RAW,
7237       .writefn = tlbi_aa64_alle3is_write },
7238     REGINFO_SENTINEL
7239 };
7240 
7241 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7242 {
7243     Error *err = NULL;
7244     uint64_t ret;
7245 
7246     /* Success sets NZCV = 0000.  */
7247     env->NF = env->CF = env->VF = 0, env->ZF = 1;
7248 
7249     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7250         /*
7251          * ??? Failed, for unknown reasons in the crypto subsystem.
7252          * The best we can do is log the reason and return the
7253          * timed-out indication to the guest.  There is no reason
7254          * we know to expect this failure to be transitory, so the
7255          * guest may well hang retrying the operation.
7256          */
7257         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7258                       ri->name, error_get_pretty(err));
7259         error_free(err);
7260 
7261         env->ZF = 0; /* NZCF = 0100 */
7262         return 0;
7263     }
7264     return ret;
7265 }
7266 
7267 /* We do not support re-seeding, so the two registers operate the same.  */
7268 static const ARMCPRegInfo rndr_reginfo[] = {
7269     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7270       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7271       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7272       .access = PL0_R, .readfn = rndr_readfn },
7273     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7274       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7275       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7276       .access = PL0_R, .readfn = rndr_readfn },
7277     REGINFO_SENTINEL
7278 };
7279 
7280 #ifndef CONFIG_USER_ONLY
7281 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7282                           uint64_t value)
7283 {
7284     ARMCPU *cpu = env_archcpu(env);
7285     /* CTR_EL0 System register -> DminLine, bits [19:16] */
7286     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7287     uint64_t vaddr_in = (uint64_t) value;
7288     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7289     void *haddr;
7290     int mem_idx = cpu_mmu_index(env, false);
7291 
7292     /* This won't be crossing page boundaries */
7293     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7294     if (haddr) {
7295 
7296         ram_addr_t offset;
7297         MemoryRegion *mr;
7298 
7299         /* RCU lock is already being held */
7300         mr = memory_region_from_host(haddr, &offset);
7301 
7302         if (mr) {
7303             memory_region_writeback(mr, offset, dline_size);
7304         }
7305     }
7306 }
7307 
7308 static const ARMCPRegInfo dcpop_reg[] = {
7309     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7310       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7311       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7312       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7313     REGINFO_SENTINEL
7314 };
7315 
7316 static const ARMCPRegInfo dcpodp_reg[] = {
7317     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7318       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7319       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7320       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7321     REGINFO_SENTINEL
7322 };
7323 #endif /*CONFIG_USER_ONLY*/
7324 
7325 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7326                                        bool isread)
7327 {
7328     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7329         return CP_ACCESS_TRAP_EL2;
7330     }
7331 
7332     return CP_ACCESS_OK;
7333 }
7334 
7335 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7336                                  bool isread)
7337 {
7338     int el = arm_current_el(env);
7339 
7340     if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7341         uint64_t hcr = arm_hcr_el2_eff(env);
7342         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7343             return CP_ACCESS_TRAP_EL2;
7344         }
7345     }
7346     if (el < 3 &&
7347         arm_feature(env, ARM_FEATURE_EL3) &&
7348         !(env->cp15.scr_el3 & SCR_ATA)) {
7349         return CP_ACCESS_TRAP_EL3;
7350     }
7351     return CP_ACCESS_OK;
7352 }
7353 
7354 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7355 {
7356     return env->pstate & PSTATE_TCO;
7357 }
7358 
7359 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7360 {
7361     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7362 }
7363 
7364 static const ARMCPRegInfo mte_reginfo[] = {
7365     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7366       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7367       .access = PL1_RW, .accessfn = access_mte,
7368       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7369     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7370       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7371       .access = PL1_RW, .accessfn = access_mte,
7372       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7373     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7374       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7375       .access = PL2_RW, .accessfn = access_mte,
7376       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7377     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7378       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7379       .access = PL3_RW,
7380       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7381     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7382       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7383       .access = PL1_RW, .accessfn = access_mte,
7384       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7385     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7386       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7387       .access = PL1_RW, .accessfn = access_mte,
7388       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7389     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7390       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7391       .access = PL1_R, .accessfn = access_aa64_tid5,
7392       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7393     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7394       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7395       .type = ARM_CP_NO_RAW,
7396       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7397     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7398       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7399       .type = ARM_CP_NOP, .access = PL1_W,
7400       .accessfn = aa64_cacheop_poc_access },
7401     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7402       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7403       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7404     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7405       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7406       .type = ARM_CP_NOP, .access = PL1_W,
7407       .accessfn = aa64_cacheop_poc_access },
7408     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7409       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7410       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7411     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7412       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7413       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7414     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7415       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7416       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7417     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7418       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7419       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7420     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7421       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7422       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7423     REGINFO_SENTINEL
7424 };
7425 
7426 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7427     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7428       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7429       .type = ARM_CP_CONST, .access = PL0_RW, },
7430     REGINFO_SENTINEL
7431 };
7432 
7433 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7434     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7435       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7436       .type = ARM_CP_NOP, .access = PL0_W,
7437       .accessfn = aa64_cacheop_poc_access },
7438     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7439       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7440       .type = ARM_CP_NOP, .access = PL0_W,
7441       .accessfn = aa64_cacheop_poc_access },
7442     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7443       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7444       .type = ARM_CP_NOP, .access = PL0_W,
7445       .accessfn = aa64_cacheop_poc_access },
7446     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7447       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7448       .type = ARM_CP_NOP, .access = PL0_W,
7449       .accessfn = aa64_cacheop_poc_access },
7450     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7451       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7452       .type = ARM_CP_NOP, .access = PL0_W,
7453       .accessfn = aa64_cacheop_poc_access },
7454     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7455       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7456       .type = ARM_CP_NOP, .access = PL0_W,
7457       .accessfn = aa64_cacheop_poc_access },
7458     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7459       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7460       .type = ARM_CP_NOP, .access = PL0_W,
7461       .accessfn = aa64_cacheop_poc_access },
7462     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7463       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7464       .type = ARM_CP_NOP, .access = PL0_W,
7465       .accessfn = aa64_cacheop_poc_access },
7466     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7467       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7468       .access = PL0_W, .type = ARM_CP_DC_GVA,
7469 #ifndef CONFIG_USER_ONLY
7470       /* Avoid overhead of an access check that always passes in user-mode */
7471       .accessfn = aa64_zva_access,
7472 #endif
7473     },
7474     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7475       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7476       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7477 #ifndef CONFIG_USER_ONLY
7478       /* Avoid overhead of an access check that always passes in user-mode */
7479       .accessfn = aa64_zva_access,
7480 #endif
7481     },
7482     REGINFO_SENTINEL
7483 };
7484 
7485 #endif
7486 
7487 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7488                                      bool isread)
7489 {
7490     int el = arm_current_el(env);
7491 
7492     if (el == 0) {
7493         uint64_t sctlr = arm_sctlr(env, el);
7494         if (!(sctlr & SCTLR_EnRCTX)) {
7495             return CP_ACCESS_TRAP;
7496         }
7497     } else if (el == 1) {
7498         uint64_t hcr = arm_hcr_el2_eff(env);
7499         if (hcr & HCR_NV) {
7500             return CP_ACCESS_TRAP_EL2;
7501         }
7502     }
7503     return CP_ACCESS_OK;
7504 }
7505 
7506 static const ARMCPRegInfo predinv_reginfo[] = {
7507     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7508       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7509       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7510     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7511       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7512       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7513     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7514       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7515       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7516     /*
7517      * Note the AArch32 opcodes have a different OPC1.
7518      */
7519     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7520       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7521       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7522     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7523       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7524       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7525     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7526       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7527       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7528     REGINFO_SENTINEL
7529 };
7530 
7531 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7532 {
7533     /* Read the high 32 bits of the current CCSIDR */
7534     return extract64(ccsidr_read(env, ri), 32, 32);
7535 }
7536 
7537 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7538     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7539       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7540       .access = PL1_R,
7541       .accessfn = access_aa64_tid2,
7542       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7543     REGINFO_SENTINEL
7544 };
7545 
7546 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7547                                        bool isread)
7548 {
7549     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7550         return CP_ACCESS_TRAP_EL2;
7551     }
7552 
7553     return CP_ACCESS_OK;
7554 }
7555 
7556 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7557                                        bool isread)
7558 {
7559     if (arm_feature(env, ARM_FEATURE_V8)) {
7560         return access_aa64_tid3(env, ri, isread);
7561     }
7562 
7563     return CP_ACCESS_OK;
7564 }
7565 
7566 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7567                                      bool isread)
7568 {
7569     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7570         return CP_ACCESS_TRAP_EL2;
7571     }
7572 
7573     return CP_ACCESS_OK;
7574 }
7575 
7576 static const ARMCPRegInfo jazelle_regs[] = {
7577     { .name = "JIDR",
7578       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7579       .access = PL1_R, .accessfn = access_jazelle,
7580       .type = ARM_CP_CONST, .resetvalue = 0 },
7581     { .name = "JOSCR",
7582       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7583       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7584     { .name = "JMCR",
7585       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7586       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7587     REGINFO_SENTINEL
7588 };
7589 
7590 static const ARMCPRegInfo vhe_reginfo[] = {
7591     { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7592       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7593       .access = PL2_RW,
7594       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7595     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7596       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7597       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7598       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7599 #ifndef CONFIG_USER_ONLY
7600     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7601       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7602       .fieldoffset =
7603         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7604       .type = ARM_CP_IO, .access = PL2_RW,
7605       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7606     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7607       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7608       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7609       .resetfn = gt_hv_timer_reset,
7610       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7611     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7612       .type = ARM_CP_IO,
7613       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7614       .access = PL2_RW,
7615       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7616       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7617     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7618       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7619       .type = ARM_CP_IO | ARM_CP_ALIAS,
7620       .access = PL2_RW, .accessfn = e2h_access,
7621       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7622       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7623     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7624       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7625       .type = ARM_CP_IO | ARM_CP_ALIAS,
7626       .access = PL2_RW, .accessfn = e2h_access,
7627       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7628       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7629     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7630       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7631       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7632       .access = PL2_RW, .accessfn = e2h_access,
7633       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7634     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7635       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7636       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7637       .access = PL2_RW, .accessfn = e2h_access,
7638       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7639     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7640       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7641       .type = ARM_CP_IO | ARM_CP_ALIAS,
7642       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7643       .access = PL2_RW, .accessfn = e2h_access,
7644       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7645     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7646       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7647       .type = ARM_CP_IO | ARM_CP_ALIAS,
7648       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7649       .access = PL2_RW, .accessfn = e2h_access,
7650       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7651 #endif
7652     REGINFO_SENTINEL
7653 };
7654 
7655 #ifndef CONFIG_USER_ONLY
7656 static const ARMCPRegInfo ats1e1_reginfo[] = {
7657     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7658       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7659       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7660       .writefn = ats_write64 },
7661     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7662       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7663       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7664       .writefn = ats_write64 },
7665     REGINFO_SENTINEL
7666 };
7667 
7668 static const ARMCPRegInfo ats1cp_reginfo[] = {
7669     { .name = "ATS1CPRP",
7670       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7671       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7672       .writefn = ats_write },
7673     { .name = "ATS1CPWP",
7674       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7675       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7676       .writefn = ats_write },
7677     REGINFO_SENTINEL
7678 };
7679 #endif
7680 
7681 /*
7682  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7683  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7684  * is non-zero, which is never for ARMv7, optionally in ARMv8
7685  * and mandatorily for ARMv8.2 and up.
7686  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7687  * implementation is RAZ/WI we can ignore this detail, as we
7688  * do for ACTLR.
7689  */
7690 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7691     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7692       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7693       .access = PL1_RW, .accessfn = access_tacr,
7694       .type = ARM_CP_CONST, .resetvalue = 0 },
7695     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7696       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7697       .access = PL2_RW, .type = ARM_CP_CONST,
7698       .resetvalue = 0 },
7699     REGINFO_SENTINEL
7700 };
7701 
7702 void register_cp_regs_for_features(ARMCPU *cpu)
7703 {
7704     /* Register all the coprocessor registers based on feature bits */
7705     CPUARMState *env = &cpu->env;
7706     if (arm_feature(env, ARM_FEATURE_M)) {
7707         /* M profile has no coprocessor registers */
7708         return;
7709     }
7710 
7711     define_arm_cp_regs(cpu, cp_reginfo);
7712     if (!arm_feature(env, ARM_FEATURE_V8)) {
7713         /* Must go early as it is full of wildcards that may be
7714          * overridden by later definitions.
7715          */
7716         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7717     }
7718 
7719     if (arm_feature(env, ARM_FEATURE_V6)) {
7720         /* The ID registers all have impdef reset values */
7721         ARMCPRegInfo v6_idregs[] = {
7722             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7723               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7724               .access = PL1_R, .type = ARM_CP_CONST,
7725               .accessfn = access_aa32_tid3,
7726               .resetvalue = cpu->isar.id_pfr0 },
7727             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7728              * the value of the GIC field until after we define these regs.
7729              */
7730             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7731               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7732               .access = PL1_R, .type = ARM_CP_NO_RAW,
7733               .accessfn = access_aa32_tid3,
7734               .readfn = id_pfr1_read,
7735               .writefn = arm_cp_write_ignore },
7736             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7737               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7738               .access = PL1_R, .type = ARM_CP_CONST,
7739               .accessfn = access_aa32_tid3,
7740               .resetvalue = cpu->isar.id_dfr0 },
7741             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7742               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7743               .access = PL1_R, .type = ARM_CP_CONST,
7744               .accessfn = access_aa32_tid3,
7745               .resetvalue = cpu->id_afr0 },
7746             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7747               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7748               .access = PL1_R, .type = ARM_CP_CONST,
7749               .accessfn = access_aa32_tid3,
7750               .resetvalue = cpu->isar.id_mmfr0 },
7751             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7752               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7753               .access = PL1_R, .type = ARM_CP_CONST,
7754               .accessfn = access_aa32_tid3,
7755               .resetvalue = cpu->isar.id_mmfr1 },
7756             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7757               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7758               .access = PL1_R, .type = ARM_CP_CONST,
7759               .accessfn = access_aa32_tid3,
7760               .resetvalue = cpu->isar.id_mmfr2 },
7761             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7762               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7763               .access = PL1_R, .type = ARM_CP_CONST,
7764               .accessfn = access_aa32_tid3,
7765               .resetvalue = cpu->isar.id_mmfr3 },
7766             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7767               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7768               .access = PL1_R, .type = ARM_CP_CONST,
7769               .accessfn = access_aa32_tid3,
7770               .resetvalue = cpu->isar.id_isar0 },
7771             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7772               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7773               .access = PL1_R, .type = ARM_CP_CONST,
7774               .accessfn = access_aa32_tid3,
7775               .resetvalue = cpu->isar.id_isar1 },
7776             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7777               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7778               .access = PL1_R, .type = ARM_CP_CONST,
7779               .accessfn = access_aa32_tid3,
7780               .resetvalue = cpu->isar.id_isar2 },
7781             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7782               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7783               .access = PL1_R, .type = ARM_CP_CONST,
7784               .accessfn = access_aa32_tid3,
7785               .resetvalue = cpu->isar.id_isar3 },
7786             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7787               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7788               .access = PL1_R, .type = ARM_CP_CONST,
7789               .accessfn = access_aa32_tid3,
7790               .resetvalue = cpu->isar.id_isar4 },
7791             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7792               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7793               .access = PL1_R, .type = ARM_CP_CONST,
7794               .accessfn = access_aa32_tid3,
7795               .resetvalue = cpu->isar.id_isar5 },
7796             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7797               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7798               .access = PL1_R, .type = ARM_CP_CONST,
7799               .accessfn = access_aa32_tid3,
7800               .resetvalue = cpu->isar.id_mmfr4 },
7801             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7802               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7803               .access = PL1_R, .type = ARM_CP_CONST,
7804               .accessfn = access_aa32_tid3,
7805               .resetvalue = cpu->isar.id_isar6 },
7806             REGINFO_SENTINEL
7807         };
7808         define_arm_cp_regs(cpu, v6_idregs);
7809         define_arm_cp_regs(cpu, v6_cp_reginfo);
7810     } else {
7811         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7812     }
7813     if (arm_feature(env, ARM_FEATURE_V6K)) {
7814         define_arm_cp_regs(cpu, v6k_cp_reginfo);
7815     }
7816     if (arm_feature(env, ARM_FEATURE_V7MP) &&
7817         !arm_feature(env, ARM_FEATURE_PMSA)) {
7818         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7819     }
7820     if (arm_feature(env, ARM_FEATURE_V7VE)) {
7821         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7822     }
7823     if (arm_feature(env, ARM_FEATURE_V7)) {
7824         ARMCPRegInfo clidr = {
7825             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7826             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7827             .access = PL1_R, .type = ARM_CP_CONST,
7828             .accessfn = access_aa64_tid2,
7829             .resetvalue = cpu->clidr
7830         };
7831         define_one_arm_cp_reg(cpu, &clidr);
7832         define_arm_cp_regs(cpu, v7_cp_reginfo);
7833         define_debug_regs(cpu);
7834         define_pmu_regs(cpu);
7835     } else {
7836         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7837     }
7838     if (arm_feature(env, ARM_FEATURE_V8)) {
7839         /* AArch64 ID registers, which all have impdef reset values.
7840          * Note that within the ID register ranges the unused slots
7841          * must all RAZ, not UNDEF; future architecture versions may
7842          * define new registers here.
7843          */
7844         ARMCPRegInfo v8_idregs[] = {
7845             /*
7846              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7847              * emulation because we don't know the right value for the
7848              * GIC field until after we define these regs.
7849              */
7850             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7851               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7852               .access = PL1_R,
7853 #ifdef CONFIG_USER_ONLY
7854               .type = ARM_CP_CONST,
7855               .resetvalue = cpu->isar.id_aa64pfr0
7856 #else
7857               .type = ARM_CP_NO_RAW,
7858               .accessfn = access_aa64_tid3,
7859               .readfn = id_aa64pfr0_read,
7860               .writefn = arm_cp_write_ignore
7861 #endif
7862             },
7863             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7864               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7865               .access = PL1_R, .type = ARM_CP_CONST,
7866               .accessfn = access_aa64_tid3,
7867               .resetvalue = cpu->isar.id_aa64pfr1},
7868             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7869               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7870               .access = PL1_R, .type = ARM_CP_CONST,
7871               .accessfn = access_aa64_tid3,
7872               .resetvalue = 0 },
7873             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7874               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7875               .access = PL1_R, .type = ARM_CP_CONST,
7876               .accessfn = access_aa64_tid3,
7877               .resetvalue = 0 },
7878             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7879               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7880               .access = PL1_R, .type = ARM_CP_CONST,
7881               .accessfn = access_aa64_tid3,
7882               .resetvalue = cpu->isar.id_aa64zfr0 },
7883             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7884               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7885               .access = PL1_R, .type = ARM_CP_CONST,
7886               .accessfn = access_aa64_tid3,
7887               .resetvalue = 0 },
7888             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7889               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7890               .access = PL1_R, .type = ARM_CP_CONST,
7891               .accessfn = access_aa64_tid3,
7892               .resetvalue = 0 },
7893             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7894               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7895               .access = PL1_R, .type = ARM_CP_CONST,
7896               .accessfn = access_aa64_tid3,
7897               .resetvalue = 0 },
7898             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7899               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7900               .access = PL1_R, .type = ARM_CP_CONST,
7901               .accessfn = access_aa64_tid3,
7902               .resetvalue = cpu->isar.id_aa64dfr0 },
7903             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7904               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7905               .access = PL1_R, .type = ARM_CP_CONST,
7906               .accessfn = access_aa64_tid3,
7907               .resetvalue = cpu->isar.id_aa64dfr1 },
7908             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7909               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7910               .access = PL1_R, .type = ARM_CP_CONST,
7911               .accessfn = access_aa64_tid3,
7912               .resetvalue = 0 },
7913             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7914               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7915               .access = PL1_R, .type = ARM_CP_CONST,
7916               .accessfn = access_aa64_tid3,
7917               .resetvalue = 0 },
7918             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7919               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7920               .access = PL1_R, .type = ARM_CP_CONST,
7921               .accessfn = access_aa64_tid3,
7922               .resetvalue = cpu->id_aa64afr0 },
7923             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7924               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7925               .access = PL1_R, .type = ARM_CP_CONST,
7926               .accessfn = access_aa64_tid3,
7927               .resetvalue = cpu->id_aa64afr1 },
7928             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7929               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7930               .access = PL1_R, .type = ARM_CP_CONST,
7931               .accessfn = access_aa64_tid3,
7932               .resetvalue = 0 },
7933             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7934               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7935               .access = PL1_R, .type = ARM_CP_CONST,
7936               .accessfn = access_aa64_tid3,
7937               .resetvalue = 0 },
7938             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7939               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7940               .access = PL1_R, .type = ARM_CP_CONST,
7941               .accessfn = access_aa64_tid3,
7942               .resetvalue = cpu->isar.id_aa64isar0 },
7943             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7944               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7945               .access = PL1_R, .type = ARM_CP_CONST,
7946               .accessfn = access_aa64_tid3,
7947               .resetvalue = cpu->isar.id_aa64isar1 },
7948             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7949               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7950               .access = PL1_R, .type = ARM_CP_CONST,
7951               .accessfn = access_aa64_tid3,
7952               .resetvalue = 0 },
7953             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7954               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7955               .access = PL1_R, .type = ARM_CP_CONST,
7956               .accessfn = access_aa64_tid3,
7957               .resetvalue = 0 },
7958             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7959               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7960               .access = PL1_R, .type = ARM_CP_CONST,
7961               .accessfn = access_aa64_tid3,
7962               .resetvalue = 0 },
7963             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7964               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7965               .access = PL1_R, .type = ARM_CP_CONST,
7966               .accessfn = access_aa64_tid3,
7967               .resetvalue = 0 },
7968             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7969               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7970               .access = PL1_R, .type = ARM_CP_CONST,
7971               .accessfn = access_aa64_tid3,
7972               .resetvalue = 0 },
7973             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7974               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7975               .access = PL1_R, .type = ARM_CP_CONST,
7976               .accessfn = access_aa64_tid3,
7977               .resetvalue = 0 },
7978             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7979               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7980               .access = PL1_R, .type = ARM_CP_CONST,
7981               .accessfn = access_aa64_tid3,
7982               .resetvalue = cpu->isar.id_aa64mmfr0 },
7983             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7984               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7985               .access = PL1_R, .type = ARM_CP_CONST,
7986               .accessfn = access_aa64_tid3,
7987               .resetvalue = cpu->isar.id_aa64mmfr1 },
7988             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7989               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7990               .access = PL1_R, .type = ARM_CP_CONST,
7991               .accessfn = access_aa64_tid3,
7992               .resetvalue = cpu->isar.id_aa64mmfr2 },
7993             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7994               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7995               .access = PL1_R, .type = ARM_CP_CONST,
7996               .accessfn = access_aa64_tid3,
7997               .resetvalue = 0 },
7998             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7999               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8000               .access = PL1_R, .type = ARM_CP_CONST,
8001               .accessfn = access_aa64_tid3,
8002               .resetvalue = 0 },
8003             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8004               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8005               .access = PL1_R, .type = ARM_CP_CONST,
8006               .accessfn = access_aa64_tid3,
8007               .resetvalue = 0 },
8008             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8009               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8010               .access = PL1_R, .type = ARM_CP_CONST,
8011               .accessfn = access_aa64_tid3,
8012               .resetvalue = 0 },
8013             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8014               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8015               .access = PL1_R, .type = ARM_CP_CONST,
8016               .accessfn = access_aa64_tid3,
8017               .resetvalue = 0 },
8018             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8019               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8020               .access = PL1_R, .type = ARM_CP_CONST,
8021               .accessfn = access_aa64_tid3,
8022               .resetvalue = cpu->isar.mvfr0 },
8023             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8024               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8025               .access = PL1_R, .type = ARM_CP_CONST,
8026               .accessfn = access_aa64_tid3,
8027               .resetvalue = cpu->isar.mvfr1 },
8028             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8029               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8030               .access = PL1_R, .type = ARM_CP_CONST,
8031               .accessfn = access_aa64_tid3,
8032               .resetvalue = cpu->isar.mvfr2 },
8033             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8034               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8035               .access = PL1_R, .type = ARM_CP_CONST,
8036               .accessfn = access_aa64_tid3,
8037               .resetvalue = 0 },
8038             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8039               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8040               .access = PL1_R, .type = ARM_CP_CONST,
8041               .accessfn = access_aa64_tid3,
8042               .resetvalue = cpu->isar.id_pfr2 },
8043             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8044               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8045               .access = PL1_R, .type = ARM_CP_CONST,
8046               .accessfn = access_aa64_tid3,
8047               .resetvalue = 0 },
8048             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8049               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8050               .access = PL1_R, .type = ARM_CP_CONST,
8051               .accessfn = access_aa64_tid3,
8052               .resetvalue = 0 },
8053             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8054               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8055               .access = PL1_R, .type = ARM_CP_CONST,
8056               .accessfn = access_aa64_tid3,
8057               .resetvalue = 0 },
8058             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8059               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8060               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8061               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8062             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8063               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8064               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8065               .resetvalue = cpu->pmceid0 },
8066             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8067               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8068               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8069               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8070             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8071               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8072               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8073               .resetvalue = cpu->pmceid1 },
8074             REGINFO_SENTINEL
8075         };
8076 #ifdef CONFIG_USER_ONLY
8077         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8078             { .name = "ID_AA64PFR0_EL1",
8079               .exported_bits = 0x000f000f00ff0000,
8080               .fixed_bits    = 0x0000000000000011 },
8081             { .name = "ID_AA64PFR1_EL1",
8082               .exported_bits = 0x00000000000000f0 },
8083             { .name = "ID_AA64PFR*_EL1_RESERVED",
8084               .is_glob = true                     },
8085             { .name = "ID_AA64ZFR0_EL1"           },
8086             { .name = "ID_AA64MMFR0_EL1",
8087               .fixed_bits    = 0x00000000ff000000 },
8088             { .name = "ID_AA64MMFR1_EL1"          },
8089             { .name = "ID_AA64MMFR*_EL1_RESERVED",
8090               .is_glob = true                     },
8091             { .name = "ID_AA64DFR0_EL1",
8092               .fixed_bits    = 0x0000000000000006 },
8093             { .name = "ID_AA64DFR1_EL1"           },
8094             { .name = "ID_AA64DFR*_EL1_RESERVED",
8095               .is_glob = true                     },
8096             { .name = "ID_AA64AFR*",
8097               .is_glob = true                     },
8098             { .name = "ID_AA64ISAR0_EL1",
8099               .exported_bits = 0x00fffffff0fffff0 },
8100             { .name = "ID_AA64ISAR1_EL1",
8101               .exported_bits = 0x000000f0ffffffff },
8102             { .name = "ID_AA64ISAR*_EL1_RESERVED",
8103               .is_glob = true                     },
8104             REGUSERINFO_SENTINEL
8105         };
8106         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8107 #endif
8108         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
8109         if (!arm_feature(env, ARM_FEATURE_EL3) &&
8110             !arm_feature(env, ARM_FEATURE_EL2)) {
8111             ARMCPRegInfo rvbar = {
8112                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
8113                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8114                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
8115             };
8116             define_one_arm_cp_reg(cpu, &rvbar);
8117         }
8118         define_arm_cp_regs(cpu, v8_idregs);
8119         define_arm_cp_regs(cpu, v8_cp_reginfo);
8120     }
8121     if (arm_feature(env, ARM_FEATURE_EL2)) {
8122         uint64_t vmpidr_def = mpidr_read_val(env);
8123         ARMCPRegInfo vpidr_regs[] = {
8124             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8125               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8126               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8127               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
8128               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8129             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8130               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8131               .access = PL2_RW, .resetvalue = cpu->midr,
8132               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8133             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8134               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8135               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8136               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
8137               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8138             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8139               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8140               .access = PL2_RW,
8141               .resetvalue = vmpidr_def,
8142               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8143             REGINFO_SENTINEL
8144         };
8145         define_arm_cp_regs(cpu, vpidr_regs);
8146         define_arm_cp_regs(cpu, el2_cp_reginfo);
8147         if (arm_feature(env, ARM_FEATURE_V8)) {
8148             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8149         }
8150         if (cpu_isar_feature(aa64_sel2, cpu)) {
8151             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8152         }
8153         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8154         if (!arm_feature(env, ARM_FEATURE_EL3)) {
8155             ARMCPRegInfo rvbar = {
8156                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8157                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8158                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
8159             };
8160             define_one_arm_cp_reg(cpu, &rvbar);
8161         }
8162     } else {
8163         /* If EL2 is missing but higher ELs are enabled, we need to
8164          * register the no_el2 reginfos.
8165          */
8166         if (arm_feature(env, ARM_FEATURE_EL3)) {
8167             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
8168              * of MIDR_EL1 and MPIDR_EL1.
8169              */
8170             ARMCPRegInfo vpidr_regs[] = {
8171                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8172                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8173                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
8174                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
8175                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8176                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8177                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8178                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
8179                   .type = ARM_CP_NO_RAW,
8180                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
8181                 REGINFO_SENTINEL
8182             };
8183             define_arm_cp_regs(cpu, vpidr_regs);
8184             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
8185             if (arm_feature(env, ARM_FEATURE_V8)) {
8186                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
8187             }
8188         }
8189     }
8190     if (arm_feature(env, ARM_FEATURE_EL3)) {
8191         define_arm_cp_regs(cpu, el3_cp_reginfo);
8192         ARMCPRegInfo el3_regs[] = {
8193             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8194               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8195               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
8196             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8197               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8198               .access = PL3_RW,
8199               .raw_writefn = raw_write, .writefn = sctlr_write,
8200               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8201               .resetvalue = cpu->reset_sctlr },
8202             REGINFO_SENTINEL
8203         };
8204 
8205         define_arm_cp_regs(cpu, el3_regs);
8206     }
8207     /* The behaviour of NSACR is sufficiently various that we don't
8208      * try to describe it in a single reginfo:
8209      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
8210      *     reads as constant 0xc00 from NS EL1 and NS EL2
8211      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8212      *  if v7 without EL3, register doesn't exist
8213      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8214      */
8215     if (arm_feature(env, ARM_FEATURE_EL3)) {
8216         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8217             ARMCPRegInfo nsacr = {
8218                 .name = "NSACR", .type = ARM_CP_CONST,
8219                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8220                 .access = PL1_RW, .accessfn = nsacr_access,
8221                 .resetvalue = 0xc00
8222             };
8223             define_one_arm_cp_reg(cpu, &nsacr);
8224         } else {
8225             ARMCPRegInfo nsacr = {
8226                 .name = "NSACR",
8227                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8228                 .access = PL3_RW | PL1_R,
8229                 .resetvalue = 0,
8230                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8231             };
8232             define_one_arm_cp_reg(cpu, &nsacr);
8233         }
8234     } else {
8235         if (arm_feature(env, ARM_FEATURE_V8)) {
8236             ARMCPRegInfo nsacr = {
8237                 .name = "NSACR", .type = ARM_CP_CONST,
8238                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8239                 .access = PL1_R,
8240                 .resetvalue = 0xc00
8241             };
8242             define_one_arm_cp_reg(cpu, &nsacr);
8243         }
8244     }
8245 
8246     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8247         if (arm_feature(env, ARM_FEATURE_V6)) {
8248             /* PMSAv6 not implemented */
8249             assert(arm_feature(env, ARM_FEATURE_V7));
8250             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8251             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8252         } else {
8253             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8254         }
8255     } else {
8256         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8257         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8258         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8259         if (cpu_isar_feature(aa32_hpd, cpu)) {
8260             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8261         }
8262     }
8263     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8264         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8265     }
8266     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8267         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8268     }
8269     if (arm_feature(env, ARM_FEATURE_VAPA)) {
8270         define_arm_cp_regs(cpu, vapa_cp_reginfo);
8271     }
8272     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8273         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8274     }
8275     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8276         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8277     }
8278     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8279         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8280     }
8281     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8282         define_arm_cp_regs(cpu, omap_cp_reginfo);
8283     }
8284     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8285         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8286     }
8287     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8288         define_arm_cp_regs(cpu, xscale_cp_reginfo);
8289     }
8290     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8291         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8292     }
8293     if (arm_feature(env, ARM_FEATURE_LPAE)) {
8294         define_arm_cp_regs(cpu, lpae_cp_reginfo);
8295     }
8296     if (cpu_isar_feature(aa32_jazelle, cpu)) {
8297         define_arm_cp_regs(cpu, jazelle_regs);
8298     }
8299     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
8300      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8301      * be read-only (ie write causes UNDEF exception).
8302      */
8303     {
8304         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8305             /* Pre-v8 MIDR space.
8306              * Note that the MIDR isn't a simple constant register because
8307              * of the TI925 behaviour where writes to another register can
8308              * cause the MIDR value to change.
8309              *
8310              * Unimplemented registers in the c15 0 0 0 space default to
8311              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8312              * and friends override accordingly.
8313              */
8314             { .name = "MIDR",
8315               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8316               .access = PL1_R, .resetvalue = cpu->midr,
8317               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8318               .readfn = midr_read,
8319               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8320               .type = ARM_CP_OVERRIDE },
8321             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8322             { .name = "DUMMY",
8323               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8324               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8325             { .name = "DUMMY",
8326               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8327               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8328             { .name = "DUMMY",
8329               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8330               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8331             { .name = "DUMMY",
8332               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8333               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8334             { .name = "DUMMY",
8335               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8336               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8337             REGINFO_SENTINEL
8338         };
8339         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8340             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8341               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8342               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8343               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8344               .readfn = midr_read },
8345             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8346             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8347               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8348               .access = PL1_R, .resetvalue = cpu->midr },
8349             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8350               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8351               .access = PL1_R, .resetvalue = cpu->midr },
8352             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8353               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8354               .access = PL1_R,
8355               .accessfn = access_aa64_tid1,
8356               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8357             REGINFO_SENTINEL
8358         };
8359         ARMCPRegInfo id_cp_reginfo[] = {
8360             /* These are common to v8 and pre-v8 */
8361             { .name = "CTR",
8362               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8363               .access = PL1_R, .accessfn = ctr_el0_access,
8364               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8365             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8366               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8367               .access = PL0_R, .accessfn = ctr_el0_access,
8368               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8369             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8370             { .name = "TCMTR",
8371               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8372               .access = PL1_R,
8373               .accessfn = access_aa32_tid1,
8374               .type = ARM_CP_CONST, .resetvalue = 0 },
8375             REGINFO_SENTINEL
8376         };
8377         /* TLBTR is specific to VMSA */
8378         ARMCPRegInfo id_tlbtr_reginfo = {
8379               .name = "TLBTR",
8380               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8381               .access = PL1_R,
8382               .accessfn = access_aa32_tid1,
8383               .type = ARM_CP_CONST, .resetvalue = 0,
8384         };
8385         /* MPUIR is specific to PMSA V6+ */
8386         ARMCPRegInfo id_mpuir_reginfo = {
8387               .name = "MPUIR",
8388               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8389               .access = PL1_R, .type = ARM_CP_CONST,
8390               .resetvalue = cpu->pmsav7_dregion << 8
8391         };
8392         ARMCPRegInfo crn0_wi_reginfo = {
8393             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8394             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8395             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8396         };
8397 #ifdef CONFIG_USER_ONLY
8398         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8399             { .name = "MIDR_EL1",
8400               .exported_bits = 0x00000000ffffffff },
8401             { .name = "REVIDR_EL1"                },
8402             REGUSERINFO_SENTINEL
8403         };
8404         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8405 #endif
8406         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8407             arm_feature(env, ARM_FEATURE_STRONGARM)) {
8408             ARMCPRegInfo *r;
8409             /* Register the blanket "writes ignored" value first to cover the
8410              * whole space. Then update the specific ID registers to allow write
8411              * access, so that they ignore writes rather than causing them to
8412              * UNDEF.
8413              */
8414             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8415             for (r = id_pre_v8_midr_cp_reginfo;
8416                  r->type != ARM_CP_SENTINEL; r++) {
8417                 r->access = PL1_RW;
8418             }
8419             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
8420                 r->access = PL1_RW;
8421             }
8422             id_mpuir_reginfo.access = PL1_RW;
8423             id_tlbtr_reginfo.access = PL1_RW;
8424         }
8425         if (arm_feature(env, ARM_FEATURE_V8)) {
8426             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8427         } else {
8428             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8429         }
8430         define_arm_cp_regs(cpu, id_cp_reginfo);
8431         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8432             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8433         } else if (arm_feature(env, ARM_FEATURE_V7)) {
8434             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8435         }
8436     }
8437 
8438     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8439         ARMCPRegInfo mpidr_cp_reginfo[] = {
8440             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8441               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8442               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8443             REGINFO_SENTINEL
8444         };
8445 #ifdef CONFIG_USER_ONLY
8446         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8447             { .name = "MPIDR_EL1",
8448               .fixed_bits = 0x0000000080000000 },
8449             REGUSERINFO_SENTINEL
8450         };
8451         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8452 #endif
8453         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8454     }
8455 
8456     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8457         ARMCPRegInfo auxcr_reginfo[] = {
8458             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8459               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8460               .access = PL1_RW, .accessfn = access_tacr,
8461               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8462             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8463               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8464               .access = PL2_RW, .type = ARM_CP_CONST,
8465               .resetvalue = 0 },
8466             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8467               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8468               .access = PL3_RW, .type = ARM_CP_CONST,
8469               .resetvalue = 0 },
8470             REGINFO_SENTINEL
8471         };
8472         define_arm_cp_regs(cpu, auxcr_reginfo);
8473         if (cpu_isar_feature(aa32_ac2, cpu)) {
8474             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8475         }
8476     }
8477 
8478     if (arm_feature(env, ARM_FEATURE_CBAR)) {
8479         /*
8480          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8481          * There are two flavours:
8482          *  (1) older 32-bit only cores have a simple 32-bit CBAR
8483          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8484          *      32-bit register visible to AArch32 at a different encoding
8485          *      to the "flavour 1" register and with the bits rearranged to
8486          *      be able to squash a 64-bit address into the 32-bit view.
8487          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8488          * in future if we support AArch32-only configs of some of the
8489          * AArch64 cores we might need to add a specific feature flag
8490          * to indicate cores with "flavour 2" CBAR.
8491          */
8492         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8493             /* 32 bit view is [31:18] 0...0 [43:32]. */
8494             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8495                 | extract64(cpu->reset_cbar, 32, 12);
8496             ARMCPRegInfo cbar_reginfo[] = {
8497                 { .name = "CBAR",
8498                   .type = ARM_CP_CONST,
8499                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8500                   .access = PL1_R, .resetvalue = cbar32 },
8501                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8502                   .type = ARM_CP_CONST,
8503                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8504                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
8505                 REGINFO_SENTINEL
8506             };
8507             /* We don't implement a r/w 64 bit CBAR currently */
8508             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8509             define_arm_cp_regs(cpu, cbar_reginfo);
8510         } else {
8511             ARMCPRegInfo cbar = {
8512                 .name = "CBAR",
8513                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8514                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8515                 .fieldoffset = offsetof(CPUARMState,
8516                                         cp15.c15_config_base_address)
8517             };
8518             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8519                 cbar.access = PL1_R;
8520                 cbar.fieldoffset = 0;
8521                 cbar.type = ARM_CP_CONST;
8522             }
8523             define_one_arm_cp_reg(cpu, &cbar);
8524         }
8525     }
8526 
8527     if (arm_feature(env, ARM_FEATURE_VBAR)) {
8528         ARMCPRegInfo vbar_cp_reginfo[] = {
8529             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8530               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8531               .access = PL1_RW, .writefn = vbar_write,
8532               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8533                                      offsetof(CPUARMState, cp15.vbar_ns) },
8534               .resetvalue = 0 },
8535             REGINFO_SENTINEL
8536         };
8537         define_arm_cp_regs(cpu, vbar_cp_reginfo);
8538     }
8539 
8540     /* Generic registers whose values depend on the implementation */
8541     {
8542         ARMCPRegInfo sctlr = {
8543             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8544             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8545             .access = PL1_RW, .accessfn = access_tvm_trvm,
8546             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8547                                    offsetof(CPUARMState, cp15.sctlr_ns) },
8548             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8549             .raw_writefn = raw_write,
8550         };
8551         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8552             /* Normally we would always end the TB on an SCTLR write, but Linux
8553              * arch/arm/mach-pxa/sleep.S expects two instructions following
8554              * an MMU enable to execute from cache.  Imitate this behaviour.
8555              */
8556             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8557         }
8558         define_one_arm_cp_reg(cpu, &sctlr);
8559     }
8560 
8561     if (cpu_isar_feature(aa64_lor, cpu)) {
8562         define_arm_cp_regs(cpu, lor_reginfo);
8563     }
8564     if (cpu_isar_feature(aa64_pan, cpu)) {
8565         define_one_arm_cp_reg(cpu, &pan_reginfo);
8566     }
8567 #ifndef CONFIG_USER_ONLY
8568     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8569         define_arm_cp_regs(cpu, ats1e1_reginfo);
8570     }
8571     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8572         define_arm_cp_regs(cpu, ats1cp_reginfo);
8573     }
8574 #endif
8575     if (cpu_isar_feature(aa64_uao, cpu)) {
8576         define_one_arm_cp_reg(cpu, &uao_reginfo);
8577     }
8578 
8579     if (cpu_isar_feature(aa64_dit, cpu)) {
8580         define_one_arm_cp_reg(cpu, &dit_reginfo);
8581     }
8582     if (cpu_isar_feature(aa64_ssbs, cpu)) {
8583         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8584     }
8585 
8586     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8587         define_arm_cp_regs(cpu, vhe_reginfo);
8588     }
8589 
8590     if (cpu_isar_feature(aa64_sve, cpu)) {
8591         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8592         if (arm_feature(env, ARM_FEATURE_EL2)) {
8593             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8594         } else {
8595             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8596         }
8597         if (arm_feature(env, ARM_FEATURE_EL3)) {
8598             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8599         }
8600     }
8601 
8602 #ifdef TARGET_AARCH64
8603     if (cpu_isar_feature(aa64_pauth, cpu)) {
8604         define_arm_cp_regs(cpu, pauth_reginfo);
8605     }
8606     if (cpu_isar_feature(aa64_rndr, cpu)) {
8607         define_arm_cp_regs(cpu, rndr_reginfo);
8608     }
8609     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8610         define_arm_cp_regs(cpu, tlbirange_reginfo);
8611     }
8612     if (cpu_isar_feature(aa64_tlbios, cpu)) {
8613         define_arm_cp_regs(cpu, tlbios_reginfo);
8614     }
8615 #ifndef CONFIG_USER_ONLY
8616     /* Data Cache clean instructions up to PoP */
8617     if (cpu_isar_feature(aa64_dcpop, cpu)) {
8618         define_one_arm_cp_reg(cpu, dcpop_reg);
8619 
8620         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8621             define_one_arm_cp_reg(cpu, dcpodp_reg);
8622         }
8623     }
8624 #endif /*CONFIG_USER_ONLY*/
8625 
8626     /*
8627      * If full MTE is enabled, add all of the system registers.
8628      * If only "instructions available at EL0" are enabled,
8629      * then define only a RAZ/WI version of PSTATE.TCO.
8630      */
8631     if (cpu_isar_feature(aa64_mte, cpu)) {
8632         define_arm_cp_regs(cpu, mte_reginfo);
8633         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8634     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8635         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8636         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8637     }
8638 #endif
8639 
8640     if (cpu_isar_feature(any_predinv, cpu)) {
8641         define_arm_cp_regs(cpu, predinv_reginfo);
8642     }
8643 
8644     if (cpu_isar_feature(any_ccidx, cpu)) {
8645         define_arm_cp_regs(cpu, ccsidr2_reginfo);
8646     }
8647 
8648 #ifndef CONFIG_USER_ONLY
8649     /*
8650      * Register redirections and aliases must be done last,
8651      * after the registers from the other extensions have been defined.
8652      */
8653     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8654         define_arm_vh_e2h_redirects_aliases(cpu);
8655     }
8656 #endif
8657 }
8658 
8659 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
8660 {
8661     CPUState *cs = CPU(cpu);
8662     CPUARMState *env = &cpu->env;
8663 
8664     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8665         /*
8666          * The lower part of each SVE register aliases to the FPU
8667          * registers so we don't need to include both.
8668          */
8669 #ifdef TARGET_AARCH64
8670         if (isar_feature_aa64_sve(&cpu->isar)) {
8671             gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
8672                                      arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
8673                                      "sve-registers.xml", 0);
8674         } else
8675 #endif
8676         {
8677             gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
8678                                      aarch64_fpu_gdb_set_reg,
8679                                      34, "aarch64-fpu.xml", 0);
8680         }
8681     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
8682         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8683                                  51, "arm-neon.xml", 0);
8684     } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
8685         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8686                                  35, "arm-vfp3.xml", 0);
8687     } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
8688         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8689                                  19, "arm-vfp.xml", 0);
8690     }
8691     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
8692                              arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
8693                              "system-registers.xml", 0);
8694 
8695 }
8696 
8697 /* Sort alphabetically by type name, except for "any". */
8698 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8699 {
8700     ObjectClass *class_a = (ObjectClass *)a;
8701     ObjectClass *class_b = (ObjectClass *)b;
8702     const char *name_a, *name_b;
8703 
8704     name_a = object_class_get_name(class_a);
8705     name_b = object_class_get_name(class_b);
8706     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8707         return 1;
8708     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8709         return -1;
8710     } else {
8711         return strcmp(name_a, name_b);
8712     }
8713 }
8714 
8715 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8716 {
8717     ObjectClass *oc = data;
8718     const char *typename;
8719     char *name;
8720 
8721     typename = object_class_get_name(oc);
8722     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8723     qemu_printf("  %s\n", name);
8724     g_free(name);
8725 }
8726 
8727 void arm_cpu_list(void)
8728 {
8729     GSList *list;
8730 
8731     list = object_class_get_list(TYPE_ARM_CPU, false);
8732     list = g_slist_sort(list, arm_cpu_list_compare);
8733     qemu_printf("Available CPUs:\n");
8734     g_slist_foreach(list, arm_cpu_list_entry, NULL);
8735     g_slist_free(list);
8736 }
8737 
8738 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8739 {
8740     ObjectClass *oc = data;
8741     CpuDefinitionInfoList **cpu_list = user_data;
8742     CpuDefinitionInfo *info;
8743     const char *typename;
8744 
8745     typename = object_class_get_name(oc);
8746     info = g_malloc0(sizeof(*info));
8747     info->name = g_strndup(typename,
8748                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
8749     info->q_typename = g_strdup(typename);
8750 
8751     QAPI_LIST_PREPEND(*cpu_list, info);
8752 }
8753 
8754 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8755 {
8756     CpuDefinitionInfoList *cpu_list = NULL;
8757     GSList *list;
8758 
8759     list = object_class_get_list(TYPE_ARM_CPU, false);
8760     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8761     g_slist_free(list);
8762 
8763     return cpu_list;
8764 }
8765 
8766 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8767                                    void *opaque, int state, int secstate,
8768                                    int crm, int opc1, int opc2,
8769                                    const char *name)
8770 {
8771     /* Private utility function for define_one_arm_cp_reg_with_opaque():
8772      * add a single reginfo struct to the hash table.
8773      */
8774     uint32_t *key = g_new(uint32_t, 1);
8775     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8776     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8777     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8778 
8779     r2->name = g_strdup(name);
8780     /* Reset the secure state to the specific incoming state.  This is
8781      * necessary as the register may have been defined with both states.
8782      */
8783     r2->secure = secstate;
8784 
8785     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8786         /* Register is banked (using both entries in array).
8787          * Overwriting fieldoffset as the array is only used to define
8788          * banked registers but later only fieldoffset is used.
8789          */
8790         r2->fieldoffset = r->bank_fieldoffsets[ns];
8791     }
8792 
8793     if (state == ARM_CP_STATE_AA32) {
8794         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8795             /* If the register is banked then we don't need to migrate or
8796              * reset the 32-bit instance in certain cases:
8797              *
8798              * 1) If the register has both 32-bit and 64-bit instances then we
8799              *    can count on the 64-bit instance taking care of the
8800              *    non-secure bank.
8801              * 2) If ARMv8 is enabled then we can count on a 64-bit version
8802              *    taking care of the secure bank.  This requires that separate
8803              *    32 and 64-bit definitions are provided.
8804              */
8805             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8806                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8807                 r2->type |= ARM_CP_ALIAS;
8808             }
8809         } else if ((secstate != r->secure) && !ns) {
8810             /* The register is not banked so we only want to allow migration of
8811              * the non-secure instance.
8812              */
8813             r2->type |= ARM_CP_ALIAS;
8814         }
8815 
8816         if (r->state == ARM_CP_STATE_BOTH) {
8817             /* We assume it is a cp15 register if the .cp field is left unset.
8818              */
8819             if (r2->cp == 0) {
8820                 r2->cp = 15;
8821             }
8822 
8823 #ifdef HOST_WORDS_BIGENDIAN
8824             if (r2->fieldoffset) {
8825                 r2->fieldoffset += sizeof(uint32_t);
8826             }
8827 #endif
8828         }
8829     }
8830     if (state == ARM_CP_STATE_AA64) {
8831         /* To allow abbreviation of ARMCPRegInfo
8832          * definitions, we treat cp == 0 as equivalent to
8833          * the value for "standard guest-visible sysreg".
8834          * STATE_BOTH definitions are also always "standard
8835          * sysreg" in their AArch64 view (the .cp value may
8836          * be non-zero for the benefit of the AArch32 view).
8837          */
8838         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8839             r2->cp = CP_REG_ARM64_SYSREG_CP;
8840         }
8841         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8842                                   r2->opc0, opc1, opc2);
8843     } else {
8844         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8845     }
8846     if (opaque) {
8847         r2->opaque = opaque;
8848     }
8849     /* reginfo passed to helpers is correct for the actual access,
8850      * and is never ARM_CP_STATE_BOTH:
8851      */
8852     r2->state = state;
8853     /* Make sure reginfo passed to helpers for wildcarded regs
8854      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8855      */
8856     r2->crm = crm;
8857     r2->opc1 = opc1;
8858     r2->opc2 = opc2;
8859     /* By convention, for wildcarded registers only the first
8860      * entry is used for migration; the others are marked as
8861      * ALIAS so we don't try to transfer the register
8862      * multiple times. Special registers (ie NOP/WFI) are
8863      * never migratable and not even raw-accessible.
8864      */
8865     if ((r->type & ARM_CP_SPECIAL)) {
8866         r2->type |= ARM_CP_NO_RAW;
8867     }
8868     if (((r->crm == CP_ANY) && crm != 0) ||
8869         ((r->opc1 == CP_ANY) && opc1 != 0) ||
8870         ((r->opc2 == CP_ANY) && opc2 != 0)) {
8871         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8872     }
8873 
8874     /* Check that raw accesses are either forbidden or handled. Note that
8875      * we can't assert this earlier because the setup of fieldoffset for
8876      * banked registers has to be done first.
8877      */
8878     if (!(r2->type & ARM_CP_NO_RAW)) {
8879         assert(!raw_accessors_invalid(r2));
8880     }
8881 
8882     /* Overriding of an existing definition must be explicitly
8883      * requested.
8884      */
8885     if (!(r->type & ARM_CP_OVERRIDE)) {
8886         ARMCPRegInfo *oldreg;
8887         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8888         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8889             fprintf(stderr, "Register redefined: cp=%d %d bit "
8890                     "crn=%d crm=%d opc1=%d opc2=%d, "
8891                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8892                     r2->crn, r2->crm, r2->opc1, r2->opc2,
8893                     oldreg->name, r2->name);
8894             g_assert_not_reached();
8895         }
8896     }
8897     g_hash_table_insert(cpu->cp_regs, key, r2);
8898 }
8899 
8900 
8901 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8902                                        const ARMCPRegInfo *r, void *opaque)
8903 {
8904     /* Define implementations of coprocessor registers.
8905      * We store these in a hashtable because typically
8906      * there are less than 150 registers in a space which
8907      * is 16*16*16*8*8 = 262144 in size.
8908      * Wildcarding is supported for the crm, opc1 and opc2 fields.
8909      * If a register is defined twice then the second definition is
8910      * used, so this can be used to define some generic registers and
8911      * then override them with implementation specific variations.
8912      * At least one of the original and the second definition should
8913      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8914      * against accidental use.
8915      *
8916      * The state field defines whether the register is to be
8917      * visible in the AArch32 or AArch64 execution state. If the
8918      * state is set to ARM_CP_STATE_BOTH then we synthesise a
8919      * reginfo structure for the AArch32 view, which sees the lower
8920      * 32 bits of the 64 bit register.
8921      *
8922      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8923      * be wildcarded. AArch64 registers are always considered to be 64
8924      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8925      * the register, if any.
8926      */
8927     int crm, opc1, opc2, state;
8928     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8929     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8930     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8931     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8932     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8933     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8934     /* 64 bit registers have only CRm and Opc1 fields */
8935     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8936     /* op0 only exists in the AArch64 encodings */
8937     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8938     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8939     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8940     /*
8941      * This API is only for Arm's system coprocessors (14 and 15) or
8942      * (M-profile or v7A-and-earlier only) for implementation defined
8943      * coprocessors in the range 0..7.  Our decode assumes this, since
8944      * 8..13 can be used for other insns including VFP and Neon. See
8945      * valid_cp() in translate.c.  Assert here that we haven't tried
8946      * to use an invalid coprocessor number.
8947      */
8948     switch (r->state) {
8949     case ARM_CP_STATE_BOTH:
8950         /* 0 has a special meaning, but otherwise the same rules as AA32. */
8951         if (r->cp == 0) {
8952             break;
8953         }
8954         /* fall through */
8955     case ARM_CP_STATE_AA32:
8956         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8957             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8958             assert(r->cp >= 14 && r->cp <= 15);
8959         } else {
8960             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8961         }
8962         break;
8963     case ARM_CP_STATE_AA64:
8964         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8965         break;
8966     default:
8967         g_assert_not_reached();
8968     }
8969     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8970      * encodes a minimum access level for the register. We roll this
8971      * runtime check into our general permission check code, so check
8972      * here that the reginfo's specified permissions are strict enough
8973      * to encompass the generic architectural permission check.
8974      */
8975     if (r->state != ARM_CP_STATE_AA32) {
8976         int mask = 0;
8977         switch (r->opc1) {
8978         case 0:
8979             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8980             mask = PL0U_R | PL1_RW;
8981             break;
8982         case 1: case 2:
8983             /* min_EL EL1 */
8984             mask = PL1_RW;
8985             break;
8986         case 3:
8987             /* min_EL EL0 */
8988             mask = PL0_RW;
8989             break;
8990         case 4:
8991         case 5:
8992             /* min_EL EL2 */
8993             mask = PL2_RW;
8994             break;
8995         case 6:
8996             /* min_EL EL3 */
8997             mask = PL3_RW;
8998             break;
8999         case 7:
9000             /* min_EL EL1, secure mode only (we don't check the latter) */
9001             mask = PL1_RW;
9002             break;
9003         default:
9004             /* broken reginfo with out-of-range opc1 */
9005             assert(false);
9006             break;
9007         }
9008         /* assert our permissions are not too lax (stricter is fine) */
9009         assert((r->access & ~mask) == 0);
9010     }
9011 
9012     /* Check that the register definition has enough info to handle
9013      * reads and writes if they are permitted.
9014      */
9015     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
9016         if (r->access & PL3_R) {
9017             assert((r->fieldoffset ||
9018                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9019                    r->readfn);
9020         }
9021         if (r->access & PL3_W) {
9022             assert((r->fieldoffset ||
9023                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9024                    r->writefn);
9025         }
9026     }
9027     /* Bad type field probably means missing sentinel at end of reg list */
9028     assert(cptype_valid(r->type));
9029     for (crm = crmmin; crm <= crmmax; crm++) {
9030         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9031             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9032                 for (state = ARM_CP_STATE_AA32;
9033                      state <= ARM_CP_STATE_AA64; state++) {
9034                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9035                         continue;
9036                     }
9037                     if (state == ARM_CP_STATE_AA32) {
9038                         /* Under AArch32 CP registers can be common
9039                          * (same for secure and non-secure world) or banked.
9040                          */
9041                         char *name;
9042 
9043                         switch (r->secure) {
9044                         case ARM_CP_SECSTATE_S:
9045                         case ARM_CP_SECSTATE_NS:
9046                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9047                                                    r->secure, crm, opc1, opc2,
9048                                                    r->name);
9049                             break;
9050                         default:
9051                             name = g_strdup_printf("%s_S", r->name);
9052                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9053                                                    ARM_CP_SECSTATE_S,
9054                                                    crm, opc1, opc2, name);
9055                             g_free(name);
9056                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9057                                                    ARM_CP_SECSTATE_NS,
9058                                                    crm, opc1, opc2, r->name);
9059                             break;
9060                         }
9061                     } else {
9062                         /* AArch64 registers get mapped to non-secure instance
9063                          * of AArch32 */
9064                         add_cpreg_to_hashtable(cpu, r, opaque, state,
9065                                                ARM_CP_SECSTATE_NS,
9066                                                crm, opc1, opc2, r->name);
9067                     }
9068                 }
9069             }
9070         }
9071     }
9072 }
9073 
9074 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
9075                                     const ARMCPRegInfo *regs, void *opaque)
9076 {
9077     /* Define a whole list of registers */
9078     const ARMCPRegInfo *r;
9079     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
9080         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
9081     }
9082 }
9083 
9084 /*
9085  * Modify ARMCPRegInfo for access from userspace.
9086  *
9087  * This is a data driven modification directed by
9088  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9089  * user-space cannot alter any values and dynamic values pertaining to
9090  * execution state are hidden from user space view anyway.
9091  */
9092 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
9093 {
9094     const ARMCPRegUserSpaceInfo *m;
9095     ARMCPRegInfo *r;
9096 
9097     for (m = mods; m->name; m++) {
9098         GPatternSpec *pat = NULL;
9099         if (m->is_glob) {
9100             pat = g_pattern_spec_new(m->name);
9101         }
9102         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
9103             if (pat && g_pattern_match_string(pat, r->name)) {
9104                 r->type = ARM_CP_CONST;
9105                 r->access = PL0U_R;
9106                 r->resetvalue = 0;
9107                 /* continue */
9108             } else if (strcmp(r->name, m->name) == 0) {
9109                 r->type = ARM_CP_CONST;
9110                 r->access = PL0U_R;
9111                 r->resetvalue &= m->exported_bits;
9112                 r->resetvalue |= m->fixed_bits;
9113                 break;
9114             }
9115         }
9116         if (pat) {
9117             g_pattern_spec_free(pat);
9118         }
9119     }
9120 }
9121 
9122 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9123 {
9124     return g_hash_table_lookup(cpregs, &encoded_cp);
9125 }
9126 
9127 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9128                          uint64_t value)
9129 {
9130     /* Helper coprocessor write function for write-ignore registers */
9131 }
9132 
9133 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9134 {
9135     /* Helper coprocessor write function for read-as-zero registers */
9136     return 0;
9137 }
9138 
9139 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9140 {
9141     /* Helper coprocessor reset function for do-nothing-on-reset registers */
9142 }
9143 
9144 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9145 {
9146     /* Return true if it is not valid for us to switch to
9147      * this CPU mode (ie all the UNPREDICTABLE cases in
9148      * the ARM ARM CPSRWriteByInstr pseudocode).
9149      */
9150 
9151     /* Changes to or from Hyp via MSR and CPS are illegal. */
9152     if (write_type == CPSRWriteByInstr &&
9153         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9154          mode == ARM_CPU_MODE_HYP)) {
9155         return 1;
9156     }
9157 
9158     switch (mode) {
9159     case ARM_CPU_MODE_USR:
9160         return 0;
9161     case ARM_CPU_MODE_SYS:
9162     case ARM_CPU_MODE_SVC:
9163     case ARM_CPU_MODE_ABT:
9164     case ARM_CPU_MODE_UND:
9165     case ARM_CPU_MODE_IRQ:
9166     case ARM_CPU_MODE_FIQ:
9167         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
9168          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9169          */
9170         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9171          * and CPS are treated as illegal mode changes.
9172          */
9173         if (write_type == CPSRWriteByInstr &&
9174             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9175             (arm_hcr_el2_eff(env) & HCR_TGE)) {
9176             return 1;
9177         }
9178         return 0;
9179     case ARM_CPU_MODE_HYP:
9180         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9181     case ARM_CPU_MODE_MON:
9182         return arm_current_el(env) < 3;
9183     default:
9184         return 1;
9185     }
9186 }
9187 
9188 uint32_t cpsr_read(CPUARMState *env)
9189 {
9190     int ZF;
9191     ZF = (env->ZF == 0);
9192     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9193         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9194         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9195         | ((env->condexec_bits & 0xfc) << 8)
9196         | (env->GE << 16) | (env->daif & CPSR_AIF);
9197 }
9198 
9199 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9200                 CPSRWriteType write_type)
9201 {
9202     uint32_t changed_daif;
9203 
9204     if (mask & CPSR_NZCV) {
9205         env->ZF = (~val) & CPSR_Z;
9206         env->NF = val;
9207         env->CF = (val >> 29) & 1;
9208         env->VF = (val << 3) & 0x80000000;
9209     }
9210     if (mask & CPSR_Q)
9211         env->QF = ((val & CPSR_Q) != 0);
9212     if (mask & CPSR_T)
9213         env->thumb = ((val & CPSR_T) != 0);
9214     if (mask & CPSR_IT_0_1) {
9215         env->condexec_bits &= ~3;
9216         env->condexec_bits |= (val >> 25) & 3;
9217     }
9218     if (mask & CPSR_IT_2_7) {
9219         env->condexec_bits &= 3;
9220         env->condexec_bits |= (val >> 8) & 0xfc;
9221     }
9222     if (mask & CPSR_GE) {
9223         env->GE = (val >> 16) & 0xf;
9224     }
9225 
9226     /* In a V7 implementation that includes the security extensions but does
9227      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9228      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9229      * bits respectively.
9230      *
9231      * In a V8 implementation, it is permitted for privileged software to
9232      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9233      */
9234     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9235         arm_feature(env, ARM_FEATURE_EL3) &&
9236         !arm_feature(env, ARM_FEATURE_EL2) &&
9237         !arm_is_secure(env)) {
9238 
9239         changed_daif = (env->daif ^ val) & mask;
9240 
9241         if (changed_daif & CPSR_A) {
9242             /* Check to see if we are allowed to change the masking of async
9243              * abort exceptions from a non-secure state.
9244              */
9245             if (!(env->cp15.scr_el3 & SCR_AW)) {
9246                 qemu_log_mask(LOG_GUEST_ERROR,
9247                               "Ignoring attempt to switch CPSR_A flag from "
9248                               "non-secure world with SCR.AW bit clear\n");
9249                 mask &= ~CPSR_A;
9250             }
9251         }
9252 
9253         if (changed_daif & CPSR_F) {
9254             /* Check to see if we are allowed to change the masking of FIQ
9255              * exceptions from a non-secure state.
9256              */
9257             if (!(env->cp15.scr_el3 & SCR_FW)) {
9258                 qemu_log_mask(LOG_GUEST_ERROR,
9259                               "Ignoring attempt to switch CPSR_F flag from "
9260                               "non-secure world with SCR.FW bit clear\n");
9261                 mask &= ~CPSR_F;
9262             }
9263 
9264             /* Check whether non-maskable FIQ (NMFI) support is enabled.
9265              * If this bit is set software is not allowed to mask
9266              * FIQs, but is allowed to set CPSR_F to 0.
9267              */
9268             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9269                 (val & CPSR_F)) {
9270                 qemu_log_mask(LOG_GUEST_ERROR,
9271                               "Ignoring attempt to enable CPSR_F flag "
9272                               "(non-maskable FIQ [NMFI] support enabled)\n");
9273                 mask &= ~CPSR_F;
9274             }
9275         }
9276     }
9277 
9278     env->daif &= ~(CPSR_AIF & mask);
9279     env->daif |= val & CPSR_AIF & mask;
9280 
9281     if (write_type != CPSRWriteRaw &&
9282         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9283         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9284             /* Note that we can only get here in USR mode if this is a
9285              * gdb stub write; for this case we follow the architectural
9286              * behaviour for guest writes in USR mode of ignoring an attempt
9287              * to switch mode. (Those are caught by translate.c for writes
9288              * triggered by guest instructions.)
9289              */
9290             mask &= ~CPSR_M;
9291         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9292             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9293              * v7, and has defined behaviour in v8:
9294              *  + leave CPSR.M untouched
9295              *  + allow changes to the other CPSR fields
9296              *  + set PSTATE.IL
9297              * For user changes via the GDB stub, we don't set PSTATE.IL,
9298              * as this would be unnecessarily harsh for a user error.
9299              */
9300             mask &= ~CPSR_M;
9301             if (write_type != CPSRWriteByGDBStub &&
9302                 arm_feature(env, ARM_FEATURE_V8)) {
9303                 mask |= CPSR_IL;
9304                 val |= CPSR_IL;
9305             }
9306             qemu_log_mask(LOG_GUEST_ERROR,
9307                           "Illegal AArch32 mode switch attempt from %s to %s\n",
9308                           aarch32_mode_name(env->uncached_cpsr),
9309                           aarch32_mode_name(val));
9310         } else {
9311             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9312                           write_type == CPSRWriteExceptionReturn ?
9313                           "Exception return from AArch32" :
9314                           "AArch32 mode switch from",
9315                           aarch32_mode_name(env->uncached_cpsr),
9316                           aarch32_mode_name(val), env->regs[15]);
9317             switch_mode(env, val & CPSR_M);
9318         }
9319     }
9320     mask &= ~CACHED_CPSR_BITS;
9321     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9322 }
9323 
9324 /* Sign/zero extend */
9325 uint32_t HELPER(sxtb16)(uint32_t x)
9326 {
9327     uint32_t res;
9328     res = (uint16_t)(int8_t)x;
9329     res |= (uint32_t)(int8_t)(x >> 16) << 16;
9330     return res;
9331 }
9332 
9333 uint32_t HELPER(uxtb16)(uint32_t x)
9334 {
9335     uint32_t res;
9336     res = (uint16_t)(uint8_t)x;
9337     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9338     return res;
9339 }
9340 
9341 int32_t HELPER(sdiv)(int32_t num, int32_t den)
9342 {
9343     if (den == 0)
9344       return 0;
9345     if (num == INT_MIN && den == -1)
9346       return INT_MIN;
9347     return num / den;
9348 }
9349 
9350 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
9351 {
9352     if (den == 0)
9353       return 0;
9354     return num / den;
9355 }
9356 
9357 uint32_t HELPER(rbit)(uint32_t x)
9358 {
9359     return revbit32(x);
9360 }
9361 
9362 #ifdef CONFIG_USER_ONLY
9363 
9364 static void switch_mode(CPUARMState *env, int mode)
9365 {
9366     ARMCPU *cpu = env_archcpu(env);
9367 
9368     if (mode != ARM_CPU_MODE_USR) {
9369         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9370     }
9371 }
9372 
9373 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9374                                  uint32_t cur_el, bool secure)
9375 {
9376     return 1;
9377 }
9378 
9379 void aarch64_sync_64_to_32(CPUARMState *env)
9380 {
9381     g_assert_not_reached();
9382 }
9383 
9384 #else
9385 
9386 static void switch_mode(CPUARMState *env, int mode)
9387 {
9388     int old_mode;
9389     int i;
9390 
9391     old_mode = env->uncached_cpsr & CPSR_M;
9392     if (mode == old_mode)
9393         return;
9394 
9395     if (old_mode == ARM_CPU_MODE_FIQ) {
9396         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9397         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9398     } else if (mode == ARM_CPU_MODE_FIQ) {
9399         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9400         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9401     }
9402 
9403     i = bank_number(old_mode);
9404     env->banked_r13[i] = env->regs[13];
9405     env->banked_spsr[i] = env->spsr;
9406 
9407     i = bank_number(mode);
9408     env->regs[13] = env->banked_r13[i];
9409     env->spsr = env->banked_spsr[i];
9410 
9411     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9412     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9413 }
9414 
9415 /* Physical Interrupt Target EL Lookup Table
9416  *
9417  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9418  *
9419  * The below multi-dimensional table is used for looking up the target
9420  * exception level given numerous condition criteria.  Specifically, the
9421  * target EL is based on SCR and HCR routing controls as well as the
9422  * currently executing EL and secure state.
9423  *
9424  *    Dimensions:
9425  *    target_el_table[2][2][2][2][2][4]
9426  *                    |  |  |  |  |  +--- Current EL
9427  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
9428  *                    |  |  |  +--------- HCR mask override
9429  *                    |  |  +------------ SCR exec state control
9430  *                    |  +--------------- SCR mask override
9431  *                    +------------------ 32-bit(0)/64-bit(1) EL3
9432  *
9433  *    The table values are as such:
9434  *    0-3 = EL0-EL3
9435  *     -1 = Cannot occur
9436  *
9437  * The ARM ARM target EL table includes entries indicating that an "exception
9438  * is not taken".  The two cases where this is applicable are:
9439  *    1) An exception is taken from EL3 but the SCR does not have the exception
9440  *    routed to EL3.
9441  *    2) An exception is taken from EL2 but the HCR does not have the exception
9442  *    routed to EL2.
9443  * In these two cases, the below table contain a target of EL1.  This value is
9444  * returned as it is expected that the consumer of the table data will check
9445  * for "target EL >= current EL" to ensure the exception is not taken.
9446  *
9447  *            SCR     HCR
9448  *         64  EA     AMO                 From
9449  *        BIT IRQ     IMO      Non-secure         Secure
9450  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
9451  */
9452 static const int8_t target_el_table[2][2][2][2][2][4] = {
9453     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9454        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
9455       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9456        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
9457      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9458        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
9459       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9460        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
9461     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
9462        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
9463       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
9464        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
9465      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
9466        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
9467       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
9468        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
9469 };
9470 
9471 /*
9472  * Determine the target EL for physical exceptions
9473  */
9474 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9475                                  uint32_t cur_el, bool secure)
9476 {
9477     CPUARMState *env = cs->env_ptr;
9478     bool rw;
9479     bool scr;
9480     bool hcr;
9481     int target_el;
9482     /* Is the highest EL AArch64? */
9483     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9484     uint64_t hcr_el2;
9485 
9486     if (arm_feature(env, ARM_FEATURE_EL3)) {
9487         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9488     } else {
9489         /* Either EL2 is the highest EL (and so the EL2 register width
9490          * is given by is64); or there is no EL2 or EL3, in which case
9491          * the value of 'rw' does not affect the table lookup anyway.
9492          */
9493         rw = is64;
9494     }
9495 
9496     hcr_el2 = arm_hcr_el2_eff(env);
9497     switch (excp_idx) {
9498     case EXCP_IRQ:
9499         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9500         hcr = hcr_el2 & HCR_IMO;
9501         break;
9502     case EXCP_FIQ:
9503         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9504         hcr = hcr_el2 & HCR_FMO;
9505         break;
9506     default:
9507         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9508         hcr = hcr_el2 & HCR_AMO;
9509         break;
9510     };
9511 
9512     /*
9513      * For these purposes, TGE and AMO/IMO/FMO both force the
9514      * interrupt to EL2.  Fold TGE into the bit extracted above.
9515      */
9516     hcr |= (hcr_el2 & HCR_TGE) != 0;
9517 
9518     /* Perform a table-lookup for the target EL given the current state */
9519     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9520 
9521     assert(target_el > 0);
9522 
9523     return target_el;
9524 }
9525 
9526 void arm_log_exception(int idx)
9527 {
9528     if (qemu_loglevel_mask(CPU_LOG_INT)) {
9529         const char *exc = NULL;
9530         static const char * const excnames[] = {
9531             [EXCP_UDEF] = "Undefined Instruction",
9532             [EXCP_SWI] = "SVC",
9533             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9534             [EXCP_DATA_ABORT] = "Data Abort",
9535             [EXCP_IRQ] = "IRQ",
9536             [EXCP_FIQ] = "FIQ",
9537             [EXCP_BKPT] = "Breakpoint",
9538             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9539             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9540             [EXCP_HVC] = "Hypervisor Call",
9541             [EXCP_HYP_TRAP] = "Hypervisor Trap",
9542             [EXCP_SMC] = "Secure Monitor Call",
9543             [EXCP_VIRQ] = "Virtual IRQ",
9544             [EXCP_VFIQ] = "Virtual FIQ",
9545             [EXCP_SEMIHOST] = "Semihosting call",
9546             [EXCP_NOCP] = "v7M NOCP UsageFault",
9547             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9548             [EXCP_STKOF] = "v8M STKOF UsageFault",
9549             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9550             [EXCP_LSERR] = "v8M LSERR UsageFault",
9551             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9552         };
9553 
9554         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9555             exc = excnames[idx];
9556         }
9557         if (!exc) {
9558             exc = "unknown";
9559         }
9560         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9561     }
9562 }
9563 
9564 /*
9565  * Function used to synchronize QEMU's AArch64 register set with AArch32
9566  * register set.  This is necessary when switching between AArch32 and AArch64
9567  * execution state.
9568  */
9569 void aarch64_sync_32_to_64(CPUARMState *env)
9570 {
9571     int i;
9572     uint32_t mode = env->uncached_cpsr & CPSR_M;
9573 
9574     /* We can blanket copy R[0:7] to X[0:7] */
9575     for (i = 0; i < 8; i++) {
9576         env->xregs[i] = env->regs[i];
9577     }
9578 
9579     /*
9580      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9581      * Otherwise, they come from the banked user regs.
9582      */
9583     if (mode == ARM_CPU_MODE_FIQ) {
9584         for (i = 8; i < 13; i++) {
9585             env->xregs[i] = env->usr_regs[i - 8];
9586         }
9587     } else {
9588         for (i = 8; i < 13; i++) {
9589             env->xregs[i] = env->regs[i];
9590         }
9591     }
9592 
9593     /*
9594      * Registers x13-x23 are the various mode SP and FP registers. Registers
9595      * r13 and r14 are only copied if we are in that mode, otherwise we copy
9596      * from the mode banked register.
9597      */
9598     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9599         env->xregs[13] = env->regs[13];
9600         env->xregs[14] = env->regs[14];
9601     } else {
9602         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9603         /* HYP is an exception in that it is copied from r14 */
9604         if (mode == ARM_CPU_MODE_HYP) {
9605             env->xregs[14] = env->regs[14];
9606         } else {
9607             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9608         }
9609     }
9610 
9611     if (mode == ARM_CPU_MODE_HYP) {
9612         env->xregs[15] = env->regs[13];
9613     } else {
9614         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9615     }
9616 
9617     if (mode == ARM_CPU_MODE_IRQ) {
9618         env->xregs[16] = env->regs[14];
9619         env->xregs[17] = env->regs[13];
9620     } else {
9621         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9622         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9623     }
9624 
9625     if (mode == ARM_CPU_MODE_SVC) {
9626         env->xregs[18] = env->regs[14];
9627         env->xregs[19] = env->regs[13];
9628     } else {
9629         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9630         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9631     }
9632 
9633     if (mode == ARM_CPU_MODE_ABT) {
9634         env->xregs[20] = env->regs[14];
9635         env->xregs[21] = env->regs[13];
9636     } else {
9637         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9638         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9639     }
9640 
9641     if (mode == ARM_CPU_MODE_UND) {
9642         env->xregs[22] = env->regs[14];
9643         env->xregs[23] = env->regs[13];
9644     } else {
9645         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9646         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9647     }
9648 
9649     /*
9650      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9651      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9652      * FIQ bank for r8-r14.
9653      */
9654     if (mode == ARM_CPU_MODE_FIQ) {
9655         for (i = 24; i < 31; i++) {
9656             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
9657         }
9658     } else {
9659         for (i = 24; i < 29; i++) {
9660             env->xregs[i] = env->fiq_regs[i - 24];
9661         }
9662         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9663         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9664     }
9665 
9666     env->pc = env->regs[15];
9667 }
9668 
9669 /*
9670  * Function used to synchronize QEMU's AArch32 register set with AArch64
9671  * register set.  This is necessary when switching between AArch32 and AArch64
9672  * execution state.
9673  */
9674 void aarch64_sync_64_to_32(CPUARMState *env)
9675 {
9676     int i;
9677     uint32_t mode = env->uncached_cpsr & CPSR_M;
9678 
9679     /* We can blanket copy X[0:7] to R[0:7] */
9680     for (i = 0; i < 8; i++) {
9681         env->regs[i] = env->xregs[i];
9682     }
9683 
9684     /*
9685      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9686      * Otherwise, we copy x8-x12 into the banked user regs.
9687      */
9688     if (mode == ARM_CPU_MODE_FIQ) {
9689         for (i = 8; i < 13; i++) {
9690             env->usr_regs[i - 8] = env->xregs[i];
9691         }
9692     } else {
9693         for (i = 8; i < 13; i++) {
9694             env->regs[i] = env->xregs[i];
9695         }
9696     }
9697 
9698     /*
9699      * Registers r13 & r14 depend on the current mode.
9700      * If we are in a given mode, we copy the corresponding x registers to r13
9701      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9702      * for the mode.
9703      */
9704     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9705         env->regs[13] = env->xregs[13];
9706         env->regs[14] = env->xregs[14];
9707     } else {
9708         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9709 
9710         /*
9711          * HYP is an exception in that it does not have its own banked r14 but
9712          * shares the USR r14
9713          */
9714         if (mode == ARM_CPU_MODE_HYP) {
9715             env->regs[14] = env->xregs[14];
9716         } else {
9717             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9718         }
9719     }
9720 
9721     if (mode == ARM_CPU_MODE_HYP) {
9722         env->regs[13] = env->xregs[15];
9723     } else {
9724         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9725     }
9726 
9727     if (mode == ARM_CPU_MODE_IRQ) {
9728         env->regs[14] = env->xregs[16];
9729         env->regs[13] = env->xregs[17];
9730     } else {
9731         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9732         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9733     }
9734 
9735     if (mode == ARM_CPU_MODE_SVC) {
9736         env->regs[14] = env->xregs[18];
9737         env->regs[13] = env->xregs[19];
9738     } else {
9739         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9740         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9741     }
9742 
9743     if (mode == ARM_CPU_MODE_ABT) {
9744         env->regs[14] = env->xregs[20];
9745         env->regs[13] = env->xregs[21];
9746     } else {
9747         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9748         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9749     }
9750 
9751     if (mode == ARM_CPU_MODE_UND) {
9752         env->regs[14] = env->xregs[22];
9753         env->regs[13] = env->xregs[23];
9754     } else {
9755         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9756         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9757     }
9758 
9759     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9760      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9761      * FIQ bank for r8-r14.
9762      */
9763     if (mode == ARM_CPU_MODE_FIQ) {
9764         for (i = 24; i < 31; i++) {
9765             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9766         }
9767     } else {
9768         for (i = 24; i < 29; i++) {
9769             env->fiq_regs[i - 24] = env->xregs[i];
9770         }
9771         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9772         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9773     }
9774 
9775     env->regs[15] = env->pc;
9776 }
9777 
9778 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9779                                    uint32_t mask, uint32_t offset,
9780                                    uint32_t newpc)
9781 {
9782     int new_el;
9783 
9784     /* Change the CPU state so as to actually take the exception. */
9785     switch_mode(env, new_mode);
9786 
9787     /*
9788      * For exceptions taken to AArch32 we must clear the SS bit in both
9789      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9790      */
9791     env->pstate &= ~PSTATE_SS;
9792     env->spsr = cpsr_read(env);
9793     /* Clear IT bits.  */
9794     env->condexec_bits = 0;
9795     /* Switch to the new mode, and to the correct instruction set.  */
9796     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9797 
9798     /* This must be after mode switching. */
9799     new_el = arm_current_el(env);
9800 
9801     /* Set new mode endianness */
9802     env->uncached_cpsr &= ~CPSR_E;
9803     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9804         env->uncached_cpsr |= CPSR_E;
9805     }
9806     /* J and IL must always be cleared for exception entry */
9807     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9808     env->daif |= mask;
9809 
9810     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9811         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9812             env->uncached_cpsr |= CPSR_SSBS;
9813         } else {
9814             env->uncached_cpsr &= ~CPSR_SSBS;
9815         }
9816     }
9817 
9818     if (new_mode == ARM_CPU_MODE_HYP) {
9819         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9820         env->elr_el[2] = env->regs[15];
9821     } else {
9822         /* CPSR.PAN is normally preserved preserved unless...  */
9823         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9824             switch (new_el) {
9825             case 3:
9826                 if (!arm_is_secure_below_el3(env)) {
9827                     /* ... the target is EL3, from non-secure state.  */
9828                     env->uncached_cpsr &= ~CPSR_PAN;
9829                     break;
9830                 }
9831                 /* ... the target is EL3, from secure state ... */
9832                 /* fall through */
9833             case 1:
9834                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
9835                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9836                     env->uncached_cpsr |= CPSR_PAN;
9837                 }
9838                 break;
9839             }
9840         }
9841         /*
9842          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9843          * and we should just guard the thumb mode on V4
9844          */
9845         if (arm_feature(env, ARM_FEATURE_V4T)) {
9846             env->thumb =
9847                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9848         }
9849         env->regs[14] = env->regs[15] + offset;
9850     }
9851     env->regs[15] = newpc;
9852     arm_rebuild_hflags(env);
9853 }
9854 
9855 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9856 {
9857     /*
9858      * Handle exception entry to Hyp mode; this is sufficiently
9859      * different to entry to other AArch32 modes that we handle it
9860      * separately here.
9861      *
9862      * The vector table entry used is always the 0x14 Hyp mode entry point,
9863      * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9864      * The offset applied to the preferred return address is always zero
9865      * (see DDI0487C.a section G1.12.3).
9866      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9867      */
9868     uint32_t addr, mask;
9869     ARMCPU *cpu = ARM_CPU(cs);
9870     CPUARMState *env = &cpu->env;
9871 
9872     switch (cs->exception_index) {
9873     case EXCP_UDEF:
9874         addr = 0x04;
9875         break;
9876     case EXCP_SWI:
9877         addr = 0x14;
9878         break;
9879     case EXCP_BKPT:
9880         /* Fall through to prefetch abort.  */
9881     case EXCP_PREFETCH_ABORT:
9882         env->cp15.ifar_s = env->exception.vaddress;
9883         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9884                       (uint32_t)env->exception.vaddress);
9885         addr = 0x0c;
9886         break;
9887     case EXCP_DATA_ABORT:
9888         env->cp15.dfar_s = env->exception.vaddress;
9889         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9890                       (uint32_t)env->exception.vaddress);
9891         addr = 0x10;
9892         break;
9893     case EXCP_IRQ:
9894         addr = 0x18;
9895         break;
9896     case EXCP_FIQ:
9897         addr = 0x1c;
9898         break;
9899     case EXCP_HVC:
9900         addr = 0x08;
9901         break;
9902     case EXCP_HYP_TRAP:
9903         addr = 0x14;
9904         break;
9905     default:
9906         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9907     }
9908 
9909     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9910         if (!arm_feature(env, ARM_FEATURE_V8)) {
9911             /*
9912              * QEMU syndrome values are v8-style. v7 has the IL bit
9913              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9914              * If this is a v7 CPU, squash the IL bit in those cases.
9915              */
9916             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9917                 (cs->exception_index == EXCP_DATA_ABORT &&
9918                  !(env->exception.syndrome & ARM_EL_ISV)) ||
9919                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9920                 env->exception.syndrome &= ~ARM_EL_IL;
9921             }
9922         }
9923         env->cp15.esr_el[2] = env->exception.syndrome;
9924     }
9925 
9926     if (arm_current_el(env) != 2 && addr < 0x14) {
9927         addr = 0x14;
9928     }
9929 
9930     mask = 0;
9931     if (!(env->cp15.scr_el3 & SCR_EA)) {
9932         mask |= CPSR_A;
9933     }
9934     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9935         mask |= CPSR_I;
9936     }
9937     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9938         mask |= CPSR_F;
9939     }
9940 
9941     addr += env->cp15.hvbar;
9942 
9943     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9944 }
9945 
9946 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9947 {
9948     ARMCPU *cpu = ARM_CPU(cs);
9949     CPUARMState *env = &cpu->env;
9950     uint32_t addr;
9951     uint32_t mask;
9952     int new_mode;
9953     uint32_t offset;
9954     uint32_t moe;
9955 
9956     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9957     switch (syn_get_ec(env->exception.syndrome)) {
9958     case EC_BREAKPOINT:
9959     case EC_BREAKPOINT_SAME_EL:
9960         moe = 1;
9961         break;
9962     case EC_WATCHPOINT:
9963     case EC_WATCHPOINT_SAME_EL:
9964         moe = 10;
9965         break;
9966     case EC_AA32_BKPT:
9967         moe = 3;
9968         break;
9969     case EC_VECTORCATCH:
9970         moe = 5;
9971         break;
9972     default:
9973         moe = 0;
9974         break;
9975     }
9976 
9977     if (moe) {
9978         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9979     }
9980 
9981     if (env->exception.target_el == 2) {
9982         arm_cpu_do_interrupt_aarch32_hyp(cs);
9983         return;
9984     }
9985 
9986     switch (cs->exception_index) {
9987     case EXCP_UDEF:
9988         new_mode = ARM_CPU_MODE_UND;
9989         addr = 0x04;
9990         mask = CPSR_I;
9991         if (env->thumb)
9992             offset = 2;
9993         else
9994             offset = 4;
9995         break;
9996     case EXCP_SWI:
9997         new_mode = ARM_CPU_MODE_SVC;
9998         addr = 0x08;
9999         mask = CPSR_I;
10000         /* The PC already points to the next instruction.  */
10001         offset = 0;
10002         break;
10003     case EXCP_BKPT:
10004         /* Fall through to prefetch abort.  */
10005     case EXCP_PREFETCH_ABORT:
10006         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10007         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10008         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10009                       env->exception.fsr, (uint32_t)env->exception.vaddress);
10010         new_mode = ARM_CPU_MODE_ABT;
10011         addr = 0x0c;
10012         mask = CPSR_A | CPSR_I;
10013         offset = 4;
10014         break;
10015     case EXCP_DATA_ABORT:
10016         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10017         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10018         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10019                       env->exception.fsr,
10020                       (uint32_t)env->exception.vaddress);
10021         new_mode = ARM_CPU_MODE_ABT;
10022         addr = 0x10;
10023         mask = CPSR_A | CPSR_I;
10024         offset = 8;
10025         break;
10026     case EXCP_IRQ:
10027         new_mode = ARM_CPU_MODE_IRQ;
10028         addr = 0x18;
10029         /* Disable IRQ and imprecise data aborts.  */
10030         mask = CPSR_A | CPSR_I;
10031         offset = 4;
10032         if (env->cp15.scr_el3 & SCR_IRQ) {
10033             /* IRQ routed to monitor mode */
10034             new_mode = ARM_CPU_MODE_MON;
10035             mask |= CPSR_F;
10036         }
10037         break;
10038     case EXCP_FIQ:
10039         new_mode = ARM_CPU_MODE_FIQ;
10040         addr = 0x1c;
10041         /* Disable FIQ, IRQ and imprecise data aborts.  */
10042         mask = CPSR_A | CPSR_I | CPSR_F;
10043         if (env->cp15.scr_el3 & SCR_FIQ) {
10044             /* FIQ routed to monitor mode */
10045             new_mode = ARM_CPU_MODE_MON;
10046         }
10047         offset = 4;
10048         break;
10049     case EXCP_VIRQ:
10050         new_mode = ARM_CPU_MODE_IRQ;
10051         addr = 0x18;
10052         /* Disable IRQ and imprecise data aborts.  */
10053         mask = CPSR_A | CPSR_I;
10054         offset = 4;
10055         break;
10056     case EXCP_VFIQ:
10057         new_mode = ARM_CPU_MODE_FIQ;
10058         addr = 0x1c;
10059         /* Disable FIQ, IRQ and imprecise data aborts.  */
10060         mask = CPSR_A | CPSR_I | CPSR_F;
10061         offset = 4;
10062         break;
10063     case EXCP_SMC:
10064         new_mode = ARM_CPU_MODE_MON;
10065         addr = 0x08;
10066         mask = CPSR_A | CPSR_I | CPSR_F;
10067         offset = 0;
10068         break;
10069     default:
10070         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10071         return; /* Never happens.  Keep compiler happy.  */
10072     }
10073 
10074     if (new_mode == ARM_CPU_MODE_MON) {
10075         addr += env->cp15.mvbar;
10076     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10077         /* High vectors. When enabled, base address cannot be remapped. */
10078         addr += 0xffff0000;
10079     } else {
10080         /* ARM v7 architectures provide a vector base address register to remap
10081          * the interrupt vector table.
10082          * This register is only followed in non-monitor mode, and is banked.
10083          * Note: only bits 31:5 are valid.
10084          */
10085         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10086     }
10087 
10088     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10089         env->cp15.scr_el3 &= ~SCR_NS;
10090     }
10091 
10092     take_aarch32_exception(env, new_mode, mask, offset, addr);
10093 }
10094 
10095 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10096 {
10097     /*
10098      * Return the register number of the AArch64 view of the AArch32
10099      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10100      * be that of the AArch32 mode the exception came from.
10101      */
10102     int mode = env->uncached_cpsr & CPSR_M;
10103 
10104     switch (aarch32_reg) {
10105     case 0 ... 7:
10106         return aarch32_reg;
10107     case 8 ... 12:
10108         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10109     case 13:
10110         switch (mode) {
10111         case ARM_CPU_MODE_USR:
10112         case ARM_CPU_MODE_SYS:
10113             return 13;
10114         case ARM_CPU_MODE_HYP:
10115             return 15;
10116         case ARM_CPU_MODE_IRQ:
10117             return 17;
10118         case ARM_CPU_MODE_SVC:
10119             return 19;
10120         case ARM_CPU_MODE_ABT:
10121             return 21;
10122         case ARM_CPU_MODE_UND:
10123             return 23;
10124         case ARM_CPU_MODE_FIQ:
10125             return 29;
10126         default:
10127             g_assert_not_reached();
10128         }
10129     case 14:
10130         switch (mode) {
10131         case ARM_CPU_MODE_USR:
10132         case ARM_CPU_MODE_SYS:
10133         case ARM_CPU_MODE_HYP:
10134             return 14;
10135         case ARM_CPU_MODE_IRQ:
10136             return 16;
10137         case ARM_CPU_MODE_SVC:
10138             return 18;
10139         case ARM_CPU_MODE_ABT:
10140             return 20;
10141         case ARM_CPU_MODE_UND:
10142             return 22;
10143         case ARM_CPU_MODE_FIQ:
10144             return 30;
10145         default:
10146             g_assert_not_reached();
10147         }
10148     case 15:
10149         return 31;
10150     default:
10151         g_assert_not_reached();
10152     }
10153 }
10154 
10155 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10156 {
10157     uint32_t ret = cpsr_read(env);
10158 
10159     /* Move DIT to the correct location for SPSR_ELx */
10160     if (ret & CPSR_DIT) {
10161         ret &= ~CPSR_DIT;
10162         ret |= PSTATE_DIT;
10163     }
10164     /* Merge PSTATE.SS into SPSR_ELx */
10165     ret |= env->pstate & PSTATE_SS;
10166 
10167     return ret;
10168 }
10169 
10170 /* Handle exception entry to a target EL which is using AArch64 */
10171 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10172 {
10173     ARMCPU *cpu = ARM_CPU(cs);
10174     CPUARMState *env = &cpu->env;
10175     unsigned int new_el = env->exception.target_el;
10176     target_ulong addr = env->cp15.vbar_el[new_el];
10177     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10178     unsigned int old_mode;
10179     unsigned int cur_el = arm_current_el(env);
10180     int rt;
10181 
10182     /*
10183      * Note that new_el can never be 0.  If cur_el is 0, then
10184      * el0_a64 is is_a64(), else el0_a64 is ignored.
10185      */
10186     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10187 
10188     if (cur_el < new_el) {
10189         /* Entry vector offset depends on whether the implemented EL
10190          * immediately lower than the target level is using AArch32 or AArch64
10191          */
10192         bool is_aa64;
10193         uint64_t hcr;
10194 
10195         switch (new_el) {
10196         case 3:
10197             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10198             break;
10199         case 2:
10200             hcr = arm_hcr_el2_eff(env);
10201             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10202                 is_aa64 = (hcr & HCR_RW) != 0;
10203                 break;
10204             }
10205             /* fall through */
10206         case 1:
10207             is_aa64 = is_a64(env);
10208             break;
10209         default:
10210             g_assert_not_reached();
10211         }
10212 
10213         if (is_aa64) {
10214             addr += 0x400;
10215         } else {
10216             addr += 0x600;
10217         }
10218     } else if (pstate_read(env) & PSTATE_SP) {
10219         addr += 0x200;
10220     }
10221 
10222     switch (cs->exception_index) {
10223     case EXCP_PREFETCH_ABORT:
10224     case EXCP_DATA_ABORT:
10225         env->cp15.far_el[new_el] = env->exception.vaddress;
10226         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10227                       env->cp15.far_el[new_el]);
10228         /* fall through */
10229     case EXCP_BKPT:
10230     case EXCP_UDEF:
10231     case EXCP_SWI:
10232     case EXCP_HVC:
10233     case EXCP_HYP_TRAP:
10234     case EXCP_SMC:
10235         switch (syn_get_ec(env->exception.syndrome)) {
10236         case EC_ADVSIMDFPACCESSTRAP:
10237             /*
10238              * QEMU internal FP/SIMD syndromes from AArch32 include the
10239              * TA and coproc fields which are only exposed if the exception
10240              * is taken to AArch32 Hyp mode. Mask them out to get a valid
10241              * AArch64 format syndrome.
10242              */
10243             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10244             break;
10245         case EC_CP14RTTRAP:
10246         case EC_CP15RTTRAP:
10247         case EC_CP14DTTRAP:
10248             /*
10249              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10250              * the raw register field from the insn; when taking this to
10251              * AArch64 we must convert it to the AArch64 view of the register
10252              * number. Notice that we read a 4-bit AArch32 register number and
10253              * write back a 5-bit AArch64 one.
10254              */
10255             rt = extract32(env->exception.syndrome, 5, 4);
10256             rt = aarch64_regnum(env, rt);
10257             env->exception.syndrome = deposit32(env->exception.syndrome,
10258                                                 5, 5, rt);
10259             break;
10260         case EC_CP15RRTTRAP:
10261         case EC_CP14RRTTRAP:
10262             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10263             rt = extract32(env->exception.syndrome, 5, 4);
10264             rt = aarch64_regnum(env, rt);
10265             env->exception.syndrome = deposit32(env->exception.syndrome,
10266                                                 5, 5, rt);
10267             rt = extract32(env->exception.syndrome, 10, 4);
10268             rt = aarch64_regnum(env, rt);
10269             env->exception.syndrome = deposit32(env->exception.syndrome,
10270                                                 10, 5, rt);
10271             break;
10272         }
10273         env->cp15.esr_el[new_el] = env->exception.syndrome;
10274         break;
10275     case EXCP_IRQ:
10276     case EXCP_VIRQ:
10277         addr += 0x80;
10278         break;
10279     case EXCP_FIQ:
10280     case EXCP_VFIQ:
10281         addr += 0x100;
10282         break;
10283     default:
10284         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10285     }
10286 
10287     if (is_a64(env)) {
10288         old_mode = pstate_read(env);
10289         aarch64_save_sp(env, arm_current_el(env));
10290         env->elr_el[new_el] = env->pc;
10291     } else {
10292         old_mode = cpsr_read_for_spsr_elx(env);
10293         env->elr_el[new_el] = env->regs[15];
10294 
10295         aarch64_sync_32_to_64(env);
10296 
10297         env->condexec_bits = 0;
10298     }
10299     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10300 
10301     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10302                   env->elr_el[new_el]);
10303 
10304     if (cpu_isar_feature(aa64_pan, cpu)) {
10305         /* The value of PSTATE.PAN is normally preserved, except when ... */
10306         new_mode |= old_mode & PSTATE_PAN;
10307         switch (new_el) {
10308         case 2:
10309             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
10310             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10311                 != (HCR_E2H | HCR_TGE)) {
10312                 break;
10313             }
10314             /* fall through */
10315         case 1:
10316             /* ... the target is EL1 ... */
10317             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
10318             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10319                 new_mode |= PSTATE_PAN;
10320             }
10321             break;
10322         }
10323     }
10324     if (cpu_isar_feature(aa64_mte, cpu)) {
10325         new_mode |= PSTATE_TCO;
10326     }
10327 
10328     if (cpu_isar_feature(aa64_ssbs, cpu)) {
10329         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10330             new_mode |= PSTATE_SSBS;
10331         } else {
10332             new_mode &= ~PSTATE_SSBS;
10333         }
10334     }
10335 
10336     pstate_write(env, PSTATE_DAIF | new_mode);
10337     env->aarch64 = 1;
10338     aarch64_restore_sp(env, new_el);
10339     helper_rebuild_hflags_a64(env, new_el);
10340 
10341     env->pc = addr;
10342 
10343     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10344                   new_el, env->pc, pstate_read(env));
10345 }
10346 
10347 /*
10348  * Do semihosting call and set the appropriate return value. All the
10349  * permission and validity checks have been done at translate time.
10350  *
10351  * We only see semihosting exceptions in TCG only as they are not
10352  * trapped to the hypervisor in KVM.
10353  */
10354 #ifdef CONFIG_TCG
10355 static void handle_semihosting(CPUState *cs)
10356 {
10357     ARMCPU *cpu = ARM_CPU(cs);
10358     CPUARMState *env = &cpu->env;
10359 
10360     if (is_a64(env)) {
10361         qemu_log_mask(CPU_LOG_INT,
10362                       "...handling as semihosting call 0x%" PRIx64 "\n",
10363                       env->xregs[0]);
10364         env->xregs[0] = do_common_semihosting(cs);
10365         env->pc += 4;
10366     } else {
10367         qemu_log_mask(CPU_LOG_INT,
10368                       "...handling as semihosting call 0x%x\n",
10369                       env->regs[0]);
10370         env->regs[0] = do_common_semihosting(cs);
10371         env->regs[15] += env->thumb ? 2 : 4;
10372     }
10373 }
10374 #endif
10375 
10376 /* Handle a CPU exception for A and R profile CPUs.
10377  * Do any appropriate logging, handle PSCI calls, and then hand off
10378  * to the AArch64-entry or AArch32-entry function depending on the
10379  * target exception level's register width.
10380  *
10381  * Note: this is used for both TCG (as the do_interrupt tcg op),
10382  *       and KVM to re-inject guest debug exceptions, and to
10383  *       inject a Synchronous-External-Abort.
10384  */
10385 void arm_cpu_do_interrupt(CPUState *cs)
10386 {
10387     ARMCPU *cpu = ARM_CPU(cs);
10388     CPUARMState *env = &cpu->env;
10389     unsigned int new_el = env->exception.target_el;
10390 
10391     assert(!arm_feature(env, ARM_FEATURE_M));
10392 
10393     arm_log_exception(cs->exception_index);
10394     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10395                   new_el);
10396     if (qemu_loglevel_mask(CPU_LOG_INT)
10397         && !excp_is_internal(cs->exception_index)) {
10398         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10399                       syn_get_ec(env->exception.syndrome),
10400                       env->exception.syndrome);
10401     }
10402 
10403     if (arm_is_psci_call(cpu, cs->exception_index)) {
10404         arm_handle_psci_call(cpu);
10405         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10406         return;
10407     }
10408 
10409     /*
10410      * Semihosting semantics depend on the register width of the code
10411      * that caused the exception, not the target exception level, so
10412      * must be handled here.
10413      */
10414 #ifdef CONFIG_TCG
10415     if (cs->exception_index == EXCP_SEMIHOST) {
10416         handle_semihosting(cs);
10417         return;
10418     }
10419 #endif
10420 
10421     /* Hooks may change global state so BQL should be held, also the
10422      * BQL needs to be held for any modification of
10423      * cs->interrupt_request.
10424      */
10425     g_assert(qemu_mutex_iothread_locked());
10426 
10427     arm_call_pre_el_change_hook(cpu);
10428 
10429     assert(!excp_is_internal(cs->exception_index));
10430     if (arm_el_is_aa64(env, new_el)) {
10431         arm_cpu_do_interrupt_aarch64(cs);
10432     } else {
10433         arm_cpu_do_interrupt_aarch32(cs);
10434     }
10435 
10436     arm_call_el_change_hook(cpu);
10437 
10438     if (!kvm_enabled()) {
10439         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10440     }
10441 }
10442 #endif /* !CONFIG_USER_ONLY */
10443 
10444 uint64_t arm_sctlr(CPUARMState *env, int el)
10445 {
10446     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10447     if (el == 0) {
10448         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10449         el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10450              ? 2 : 1;
10451     }
10452     return env->cp15.sctlr_el[el];
10453 }
10454 
10455 /* Return the SCTLR value which controls this address translation regime */
10456 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10457 {
10458     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10459 }
10460 
10461 #ifndef CONFIG_USER_ONLY
10462 
10463 /* Return true if the specified stage of address translation is disabled */
10464 static inline bool regime_translation_disabled(CPUARMState *env,
10465                                                ARMMMUIdx mmu_idx)
10466 {
10467     uint64_t hcr_el2;
10468 
10469     if (arm_feature(env, ARM_FEATURE_M)) {
10470         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10471                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10472         case R_V7M_MPU_CTRL_ENABLE_MASK:
10473             /* Enabled, but not for HardFault and NMI */
10474             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10475         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10476             /* Enabled for all cases */
10477             return false;
10478         case 0:
10479         default:
10480             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10481              * we warned about that in armv7m_nvic.c when the guest set it.
10482              */
10483             return true;
10484         }
10485     }
10486 
10487     hcr_el2 = arm_hcr_el2_eff(env);
10488 
10489     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10490         /* HCR.DC means HCR.VM behaves as 1 */
10491         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10492     }
10493 
10494     if (hcr_el2 & HCR_TGE) {
10495         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10496         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10497             return true;
10498         }
10499     }
10500 
10501     if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10502         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10503         return true;
10504     }
10505 
10506     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10507 }
10508 
10509 static inline bool regime_translation_big_endian(CPUARMState *env,
10510                                                  ARMMMUIdx mmu_idx)
10511 {
10512     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10513 }
10514 
10515 /* Return the TTBR associated with this translation regime */
10516 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10517                                    int ttbrn)
10518 {
10519     if (mmu_idx == ARMMMUIdx_Stage2) {
10520         return env->cp15.vttbr_el2;
10521     }
10522     if (mmu_idx == ARMMMUIdx_Stage2_S) {
10523         return env->cp15.vsttbr_el2;
10524     }
10525     if (ttbrn == 0) {
10526         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10527     } else {
10528         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10529     }
10530 }
10531 
10532 #endif /* !CONFIG_USER_ONLY */
10533 
10534 /* Convert a possible stage1+2 MMU index into the appropriate
10535  * stage 1 MMU index
10536  */
10537 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10538 {
10539     switch (mmu_idx) {
10540     case ARMMMUIdx_SE10_0:
10541         return ARMMMUIdx_Stage1_SE0;
10542     case ARMMMUIdx_SE10_1:
10543         return ARMMMUIdx_Stage1_SE1;
10544     case ARMMMUIdx_SE10_1_PAN:
10545         return ARMMMUIdx_Stage1_SE1_PAN;
10546     case ARMMMUIdx_E10_0:
10547         return ARMMMUIdx_Stage1_E0;
10548     case ARMMMUIdx_E10_1:
10549         return ARMMMUIdx_Stage1_E1;
10550     case ARMMMUIdx_E10_1_PAN:
10551         return ARMMMUIdx_Stage1_E1_PAN;
10552     default:
10553         return mmu_idx;
10554     }
10555 }
10556 
10557 /* Return true if the translation regime is using LPAE format page tables */
10558 static inline bool regime_using_lpae_format(CPUARMState *env,
10559                                             ARMMMUIdx mmu_idx)
10560 {
10561     int el = regime_el(env, mmu_idx);
10562     if (el == 2 || arm_el_is_aa64(env, el)) {
10563         return true;
10564     }
10565     if (arm_feature(env, ARM_FEATURE_LPAE)
10566         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10567         return true;
10568     }
10569     return false;
10570 }
10571 
10572 /* Returns true if the stage 1 translation regime is using LPAE format page
10573  * tables. Used when raising alignment exceptions, whose FSR changes depending
10574  * on whether the long or short descriptor format is in use. */
10575 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10576 {
10577     mmu_idx = stage_1_mmu_idx(mmu_idx);
10578 
10579     return regime_using_lpae_format(env, mmu_idx);
10580 }
10581 
10582 #ifndef CONFIG_USER_ONLY
10583 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10584 {
10585     switch (mmu_idx) {
10586     case ARMMMUIdx_SE10_0:
10587     case ARMMMUIdx_E20_0:
10588     case ARMMMUIdx_SE20_0:
10589     case ARMMMUIdx_Stage1_E0:
10590     case ARMMMUIdx_Stage1_SE0:
10591     case ARMMMUIdx_MUser:
10592     case ARMMMUIdx_MSUser:
10593     case ARMMMUIdx_MUserNegPri:
10594     case ARMMMUIdx_MSUserNegPri:
10595         return true;
10596     default:
10597         return false;
10598     case ARMMMUIdx_E10_0:
10599     case ARMMMUIdx_E10_1:
10600     case ARMMMUIdx_E10_1_PAN:
10601         g_assert_not_reached();
10602     }
10603 }
10604 
10605 /* Translate section/page access permissions to page
10606  * R/W protection flags
10607  *
10608  * @env:         CPUARMState
10609  * @mmu_idx:     MMU index indicating required translation regime
10610  * @ap:          The 3-bit access permissions (AP[2:0])
10611  * @domain_prot: The 2-bit domain access permissions
10612  */
10613 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10614                                 int ap, int domain_prot)
10615 {
10616     bool is_user = regime_is_user(env, mmu_idx);
10617 
10618     if (domain_prot == 3) {
10619         return PAGE_READ | PAGE_WRITE;
10620     }
10621 
10622     switch (ap) {
10623     case 0:
10624         if (arm_feature(env, ARM_FEATURE_V7)) {
10625             return 0;
10626         }
10627         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10628         case SCTLR_S:
10629             return is_user ? 0 : PAGE_READ;
10630         case SCTLR_R:
10631             return PAGE_READ;
10632         default:
10633             return 0;
10634         }
10635     case 1:
10636         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10637     case 2:
10638         if (is_user) {
10639             return PAGE_READ;
10640         } else {
10641             return PAGE_READ | PAGE_WRITE;
10642         }
10643     case 3:
10644         return PAGE_READ | PAGE_WRITE;
10645     case 4: /* Reserved.  */
10646         return 0;
10647     case 5:
10648         return is_user ? 0 : PAGE_READ;
10649     case 6:
10650         return PAGE_READ;
10651     case 7:
10652         if (!arm_feature(env, ARM_FEATURE_V6K)) {
10653             return 0;
10654         }
10655         return PAGE_READ;
10656     default:
10657         g_assert_not_reached();
10658     }
10659 }
10660 
10661 /* Translate section/page access permissions to page
10662  * R/W protection flags.
10663  *
10664  * @ap:      The 2-bit simple AP (AP[2:1])
10665  * @is_user: TRUE if accessing from PL0
10666  */
10667 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10668 {
10669     switch (ap) {
10670     case 0:
10671         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10672     case 1:
10673         return PAGE_READ | PAGE_WRITE;
10674     case 2:
10675         return is_user ? 0 : PAGE_READ;
10676     case 3:
10677         return PAGE_READ;
10678     default:
10679         g_assert_not_reached();
10680     }
10681 }
10682 
10683 static inline int
10684 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10685 {
10686     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10687 }
10688 
10689 /* Translate S2 section/page access permissions to protection flags
10690  *
10691  * @env:     CPUARMState
10692  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
10693  * @xn:      XN (execute-never) bits
10694  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10695  */
10696 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10697 {
10698     int prot = 0;
10699 
10700     if (s2ap & 1) {
10701         prot |= PAGE_READ;
10702     }
10703     if (s2ap & 2) {
10704         prot |= PAGE_WRITE;
10705     }
10706 
10707     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10708         switch (xn) {
10709         case 0:
10710             prot |= PAGE_EXEC;
10711             break;
10712         case 1:
10713             if (s1_is_el0) {
10714                 prot |= PAGE_EXEC;
10715             }
10716             break;
10717         case 2:
10718             break;
10719         case 3:
10720             if (!s1_is_el0) {
10721                 prot |= PAGE_EXEC;
10722             }
10723             break;
10724         default:
10725             g_assert_not_reached();
10726         }
10727     } else {
10728         if (!extract32(xn, 1, 1)) {
10729             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10730                 prot |= PAGE_EXEC;
10731             }
10732         }
10733     }
10734     return prot;
10735 }
10736 
10737 /* Translate section/page access permissions to protection flags
10738  *
10739  * @env:     CPUARMState
10740  * @mmu_idx: MMU index indicating required translation regime
10741  * @is_aa64: TRUE if AArch64
10742  * @ap:      The 2-bit simple AP (AP[2:1])
10743  * @ns:      NS (non-secure) bit
10744  * @xn:      XN (execute-never) bit
10745  * @pxn:     PXN (privileged execute-never) bit
10746  */
10747 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10748                       int ap, int ns, int xn, int pxn)
10749 {
10750     bool is_user = regime_is_user(env, mmu_idx);
10751     int prot_rw, user_rw;
10752     bool have_wxn;
10753     int wxn = 0;
10754 
10755     assert(mmu_idx != ARMMMUIdx_Stage2);
10756     assert(mmu_idx != ARMMMUIdx_Stage2_S);
10757 
10758     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10759     if (is_user) {
10760         prot_rw = user_rw;
10761     } else {
10762         if (user_rw && regime_is_pan(env, mmu_idx)) {
10763             /* PAN forbids data accesses but doesn't affect insn fetch */
10764             prot_rw = 0;
10765         } else {
10766             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10767         }
10768     }
10769 
10770     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10771         return prot_rw;
10772     }
10773 
10774     /* TODO have_wxn should be replaced with
10775      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10776      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10777      * compatible processors have EL2, which is required for [U]WXN.
10778      */
10779     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10780 
10781     if (have_wxn) {
10782         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10783     }
10784 
10785     if (is_aa64) {
10786         if (regime_has_2_ranges(mmu_idx) && !is_user) {
10787             xn = pxn || (user_rw & PAGE_WRITE);
10788         }
10789     } else if (arm_feature(env, ARM_FEATURE_V7)) {
10790         switch (regime_el(env, mmu_idx)) {
10791         case 1:
10792         case 3:
10793             if (is_user) {
10794                 xn = xn || !(user_rw & PAGE_READ);
10795             } else {
10796                 int uwxn = 0;
10797                 if (have_wxn) {
10798                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10799                 }
10800                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10801                      (uwxn && (user_rw & PAGE_WRITE));
10802             }
10803             break;
10804         case 2:
10805             break;
10806         }
10807     } else {
10808         xn = wxn = 0;
10809     }
10810 
10811     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10812         return prot_rw;
10813     }
10814     return prot_rw | PAGE_EXEC;
10815 }
10816 
10817 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10818                                      uint32_t *table, uint32_t address)
10819 {
10820     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10821     TCR *tcr = regime_tcr(env, mmu_idx);
10822 
10823     if (address & tcr->mask) {
10824         if (tcr->raw_tcr & TTBCR_PD1) {
10825             /* Translation table walk disabled for TTBR1 */
10826             return false;
10827         }
10828         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10829     } else {
10830         if (tcr->raw_tcr & TTBCR_PD0) {
10831             /* Translation table walk disabled for TTBR0 */
10832             return false;
10833         }
10834         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10835     }
10836     *table |= (address >> 18) & 0x3ffc;
10837     return true;
10838 }
10839 
10840 /* Translate a S1 pagetable walk through S2 if needed.  */
10841 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10842                                hwaddr addr, bool *is_secure,
10843                                ARMMMUFaultInfo *fi)
10844 {
10845     if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10846         !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10847         target_ulong s2size;
10848         hwaddr s2pa;
10849         int s2prot;
10850         int ret;
10851         ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
10852                                           : ARMMMUIdx_Stage2;
10853         ARMCacheAttrs cacheattrs = {};
10854         MemTxAttrs txattrs = {};
10855 
10856         ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
10857                                  &s2pa, &txattrs, &s2prot, &s2size, fi,
10858                                  &cacheattrs);
10859         if (ret) {
10860             assert(fi->type != ARMFault_None);
10861             fi->s2addr = addr;
10862             fi->stage2 = true;
10863             fi->s1ptw = true;
10864             fi->s1ns = !*is_secure;
10865             return ~0;
10866         }
10867         if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
10868             (cacheattrs.attrs & 0xf0) == 0) {
10869             /*
10870              * PTW set and S1 walk touched S2 Device memory:
10871              * generate Permission fault.
10872              */
10873             fi->type = ARMFault_Permission;
10874             fi->s2addr = addr;
10875             fi->stage2 = true;
10876             fi->s1ptw = true;
10877             fi->s1ns = !*is_secure;
10878             return ~0;
10879         }
10880 
10881         if (arm_is_secure_below_el3(env)) {
10882             /* Check if page table walk is to secure or non-secure PA space. */
10883             if (*is_secure) {
10884                 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
10885             } else {
10886                 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
10887             }
10888         } else {
10889             assert(!*is_secure);
10890         }
10891 
10892         addr = s2pa;
10893     }
10894     return addr;
10895 }
10896 
10897 /* All loads done in the course of a page table walk go through here. */
10898 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10899                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10900 {
10901     ARMCPU *cpu = ARM_CPU(cs);
10902     CPUARMState *env = &cpu->env;
10903     MemTxAttrs attrs = {};
10904     MemTxResult result = MEMTX_OK;
10905     AddressSpace *as;
10906     uint32_t data;
10907 
10908     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10909     attrs.secure = is_secure;
10910     as = arm_addressspace(cs, attrs);
10911     if (fi->s1ptw) {
10912         return 0;
10913     }
10914     if (regime_translation_big_endian(env, mmu_idx)) {
10915         data = address_space_ldl_be(as, addr, attrs, &result);
10916     } else {
10917         data = address_space_ldl_le(as, addr, attrs, &result);
10918     }
10919     if (result == MEMTX_OK) {
10920         return data;
10921     }
10922     fi->type = ARMFault_SyncExternalOnWalk;
10923     fi->ea = arm_extabort_type(result);
10924     return 0;
10925 }
10926 
10927 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10928                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10929 {
10930     ARMCPU *cpu = ARM_CPU(cs);
10931     CPUARMState *env = &cpu->env;
10932     MemTxAttrs attrs = {};
10933     MemTxResult result = MEMTX_OK;
10934     AddressSpace *as;
10935     uint64_t data;
10936 
10937     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10938     attrs.secure = is_secure;
10939     as = arm_addressspace(cs, attrs);
10940     if (fi->s1ptw) {
10941         return 0;
10942     }
10943     if (regime_translation_big_endian(env, mmu_idx)) {
10944         data = address_space_ldq_be(as, addr, attrs, &result);
10945     } else {
10946         data = address_space_ldq_le(as, addr, attrs, &result);
10947     }
10948     if (result == MEMTX_OK) {
10949         return data;
10950     }
10951     fi->type = ARMFault_SyncExternalOnWalk;
10952     fi->ea = arm_extabort_type(result);
10953     return 0;
10954 }
10955 
10956 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10957                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10958                              hwaddr *phys_ptr, int *prot,
10959                              target_ulong *page_size,
10960                              ARMMMUFaultInfo *fi)
10961 {
10962     CPUState *cs = env_cpu(env);
10963     int level = 1;
10964     uint32_t table;
10965     uint32_t desc;
10966     int type;
10967     int ap;
10968     int domain = 0;
10969     int domain_prot;
10970     hwaddr phys_addr;
10971     uint32_t dacr;
10972 
10973     /* Pagetable walk.  */
10974     /* Lookup l1 descriptor.  */
10975     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10976         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10977         fi->type = ARMFault_Translation;
10978         goto do_fault;
10979     }
10980     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10981                        mmu_idx, fi);
10982     if (fi->type != ARMFault_None) {
10983         goto do_fault;
10984     }
10985     type = (desc & 3);
10986     domain = (desc >> 5) & 0x0f;
10987     if (regime_el(env, mmu_idx) == 1) {
10988         dacr = env->cp15.dacr_ns;
10989     } else {
10990         dacr = env->cp15.dacr_s;
10991     }
10992     domain_prot = (dacr >> (domain * 2)) & 3;
10993     if (type == 0) {
10994         /* Section translation fault.  */
10995         fi->type = ARMFault_Translation;
10996         goto do_fault;
10997     }
10998     if (type != 2) {
10999         level = 2;
11000     }
11001     if (domain_prot == 0 || domain_prot == 2) {
11002         fi->type = ARMFault_Domain;
11003         goto do_fault;
11004     }
11005     if (type == 2) {
11006         /* 1Mb section.  */
11007         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11008         ap = (desc >> 10) & 3;
11009         *page_size = 1024 * 1024;
11010     } else {
11011         /* Lookup l2 entry.  */
11012         if (type == 1) {
11013             /* Coarse pagetable.  */
11014             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11015         } else {
11016             /* Fine pagetable.  */
11017             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
11018         }
11019         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11020                            mmu_idx, fi);
11021         if (fi->type != ARMFault_None) {
11022             goto do_fault;
11023         }
11024         switch (desc & 3) {
11025         case 0: /* Page translation fault.  */
11026             fi->type = ARMFault_Translation;
11027             goto do_fault;
11028         case 1: /* 64k page.  */
11029             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11030             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
11031             *page_size = 0x10000;
11032             break;
11033         case 2: /* 4k page.  */
11034             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11035             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
11036             *page_size = 0x1000;
11037             break;
11038         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
11039             if (type == 1) {
11040                 /* ARMv6/XScale extended small page format */
11041                 if (arm_feature(env, ARM_FEATURE_XSCALE)
11042                     || arm_feature(env, ARM_FEATURE_V6)) {
11043                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11044                     *page_size = 0x1000;
11045                 } else {
11046                     /* UNPREDICTABLE in ARMv5; we choose to take a
11047                      * page translation fault.
11048                      */
11049                     fi->type = ARMFault_Translation;
11050                     goto do_fault;
11051                 }
11052             } else {
11053                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
11054                 *page_size = 0x400;
11055             }
11056             ap = (desc >> 4) & 3;
11057             break;
11058         default:
11059             /* Never happens, but compiler isn't smart enough to tell.  */
11060             abort();
11061         }
11062     }
11063     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11064     *prot |= *prot ? PAGE_EXEC : 0;
11065     if (!(*prot & (1 << access_type))) {
11066         /* Access permission fault.  */
11067         fi->type = ARMFault_Permission;
11068         goto do_fault;
11069     }
11070     *phys_ptr = phys_addr;
11071     return false;
11072 do_fault:
11073     fi->domain = domain;
11074     fi->level = level;
11075     return true;
11076 }
11077 
11078 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
11079                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
11080                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11081                              target_ulong *page_size, ARMMMUFaultInfo *fi)
11082 {
11083     CPUState *cs = env_cpu(env);
11084     ARMCPU *cpu = env_archcpu(env);
11085     int level = 1;
11086     uint32_t table;
11087     uint32_t desc;
11088     uint32_t xn;
11089     uint32_t pxn = 0;
11090     int type;
11091     int ap;
11092     int domain = 0;
11093     int domain_prot;
11094     hwaddr phys_addr;
11095     uint32_t dacr;
11096     bool ns;
11097 
11098     /* Pagetable walk.  */
11099     /* Lookup l1 descriptor.  */
11100     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
11101         /* Section translation fault if page walk is disabled by PD0 or PD1 */
11102         fi->type = ARMFault_Translation;
11103         goto do_fault;
11104     }
11105     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11106                        mmu_idx, fi);
11107     if (fi->type != ARMFault_None) {
11108         goto do_fault;
11109     }
11110     type = (desc & 3);
11111     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
11112         /* Section translation fault, or attempt to use the encoding
11113          * which is Reserved on implementations without PXN.
11114          */
11115         fi->type = ARMFault_Translation;
11116         goto do_fault;
11117     }
11118     if ((type == 1) || !(desc & (1 << 18))) {
11119         /* Page or Section.  */
11120         domain = (desc >> 5) & 0x0f;
11121     }
11122     if (regime_el(env, mmu_idx) == 1) {
11123         dacr = env->cp15.dacr_ns;
11124     } else {
11125         dacr = env->cp15.dacr_s;
11126     }
11127     if (type == 1) {
11128         level = 2;
11129     }
11130     domain_prot = (dacr >> (domain * 2)) & 3;
11131     if (domain_prot == 0 || domain_prot == 2) {
11132         /* Section or Page domain fault */
11133         fi->type = ARMFault_Domain;
11134         goto do_fault;
11135     }
11136     if (type != 1) {
11137         if (desc & (1 << 18)) {
11138             /* Supersection.  */
11139             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
11140             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
11141             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
11142             *page_size = 0x1000000;
11143         } else {
11144             /* Section.  */
11145             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11146             *page_size = 0x100000;
11147         }
11148         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
11149         xn = desc & (1 << 4);
11150         pxn = desc & 1;
11151         ns = extract32(desc, 19, 1);
11152     } else {
11153         if (cpu_isar_feature(aa32_pxn, cpu)) {
11154             pxn = (desc >> 2) & 1;
11155         }
11156         ns = extract32(desc, 3, 1);
11157         /* Lookup l2 entry.  */
11158         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11159         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11160                            mmu_idx, fi);
11161         if (fi->type != ARMFault_None) {
11162             goto do_fault;
11163         }
11164         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
11165         switch (desc & 3) {
11166         case 0: /* Page translation fault.  */
11167             fi->type = ARMFault_Translation;
11168             goto do_fault;
11169         case 1: /* 64k page.  */
11170             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11171             xn = desc & (1 << 15);
11172             *page_size = 0x10000;
11173             break;
11174         case 2: case 3: /* 4k page.  */
11175             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11176             xn = desc & 1;
11177             *page_size = 0x1000;
11178             break;
11179         default:
11180             /* Never happens, but compiler isn't smart enough to tell.  */
11181             abort();
11182         }
11183     }
11184     if (domain_prot == 3) {
11185         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11186     } else {
11187         if (pxn && !regime_is_user(env, mmu_idx)) {
11188             xn = 1;
11189         }
11190         if (xn && access_type == MMU_INST_FETCH) {
11191             fi->type = ARMFault_Permission;
11192             goto do_fault;
11193         }
11194 
11195         if (arm_feature(env, ARM_FEATURE_V6K) &&
11196                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
11197             /* The simplified model uses AP[0] as an access control bit.  */
11198             if ((ap & 1) == 0) {
11199                 /* Access flag fault.  */
11200                 fi->type = ARMFault_AccessFlag;
11201                 goto do_fault;
11202             }
11203             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
11204         } else {
11205             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11206         }
11207         if (*prot && !xn) {
11208             *prot |= PAGE_EXEC;
11209         }
11210         if (!(*prot & (1 << access_type))) {
11211             /* Access permission fault.  */
11212             fi->type = ARMFault_Permission;
11213             goto do_fault;
11214         }
11215     }
11216     if (ns) {
11217         /* The NS bit will (as required by the architecture) have no effect if
11218          * the CPU doesn't support TZ or this is a non-secure translation
11219          * regime, because the attribute will already be non-secure.
11220          */
11221         attrs->secure = false;
11222     }
11223     *phys_ptr = phys_addr;
11224     return false;
11225 do_fault:
11226     fi->domain = domain;
11227     fi->level = level;
11228     return true;
11229 }
11230 
11231 /*
11232  * check_s2_mmu_setup
11233  * @cpu:        ARMCPU
11234  * @is_aa64:    True if the translation regime is in AArch64 state
11235  * @startlevel: Suggested starting level
11236  * @inputsize:  Bitsize of IPAs
11237  * @stride:     Page-table stride (See the ARM ARM)
11238  *
11239  * Returns true if the suggested S2 translation parameters are OK and
11240  * false otherwise.
11241  */
11242 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
11243                                int inputsize, int stride)
11244 {
11245     const int grainsize = stride + 3;
11246     int startsizecheck;
11247 
11248     /* Negative levels are never allowed.  */
11249     if (level < 0) {
11250         return false;
11251     }
11252 
11253     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
11254     if (startsizecheck < 1 || startsizecheck > stride + 4) {
11255         return false;
11256     }
11257 
11258     if (is_aa64) {
11259         CPUARMState *env = &cpu->env;
11260         unsigned int pamax = arm_pamax(cpu);
11261 
11262         switch (stride) {
11263         case 13: /* 64KB Pages.  */
11264             if (level == 0 || (level == 1 && pamax <= 42)) {
11265                 return false;
11266             }
11267             break;
11268         case 11: /* 16KB Pages.  */
11269             if (level == 0 || (level == 1 && pamax <= 40)) {
11270                 return false;
11271             }
11272             break;
11273         case 9: /* 4KB Pages.  */
11274             if (level == 0 && pamax <= 42) {
11275                 return false;
11276             }
11277             break;
11278         default:
11279             g_assert_not_reached();
11280         }
11281 
11282         /* Inputsize checks.  */
11283         if (inputsize > pamax &&
11284             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
11285             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
11286             return false;
11287         }
11288     } else {
11289         /* AArch32 only supports 4KB pages. Assert on that.  */
11290         assert(stride == 9);
11291 
11292         if (level == 0) {
11293             return false;
11294         }
11295     }
11296     return true;
11297 }
11298 
11299 /* Translate from the 4-bit stage 2 representation of
11300  * memory attributes (without cache-allocation hints) to
11301  * the 8-bit representation of the stage 1 MAIR registers
11302  * (which includes allocation hints).
11303  *
11304  * ref: shared/translation/attrs/S2AttrDecode()
11305  *      .../S2ConvertAttrsHints()
11306  */
11307 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11308 {
11309     uint8_t hiattr = extract32(s2attrs, 2, 2);
11310     uint8_t loattr = extract32(s2attrs, 0, 2);
11311     uint8_t hihint = 0, lohint = 0;
11312 
11313     if (hiattr != 0) { /* normal memory */
11314         if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
11315             hiattr = loattr = 1; /* non-cacheable */
11316         } else {
11317             if (hiattr != 1) { /* Write-through or write-back */
11318                 hihint = 3; /* RW allocate */
11319             }
11320             if (loattr != 1) { /* Write-through or write-back */
11321                 lohint = 3; /* RW allocate */
11322             }
11323         }
11324     }
11325 
11326     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11327 }
11328 #endif /* !CONFIG_USER_ONLY */
11329 
11330 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11331 {
11332     if (regime_has_2_ranges(mmu_idx)) {
11333         return extract64(tcr, 37, 2);
11334     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11335         return 0; /* VTCR_EL2 */
11336     } else {
11337         /* Replicate the single TBI bit so we always have 2 bits.  */
11338         return extract32(tcr, 20, 1) * 3;
11339     }
11340 }
11341 
11342 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11343 {
11344     if (regime_has_2_ranges(mmu_idx)) {
11345         return extract64(tcr, 51, 2);
11346     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11347         return 0; /* VTCR_EL2 */
11348     } else {
11349         /* Replicate the single TBID bit so we always have 2 bits.  */
11350         return extract32(tcr, 29, 1) * 3;
11351     }
11352 }
11353 
11354 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11355 {
11356     if (regime_has_2_ranges(mmu_idx)) {
11357         return extract64(tcr, 57, 2);
11358     } else {
11359         /* Replicate the single TCMA bit so we always have 2 bits.  */
11360         return extract32(tcr, 30, 1) * 3;
11361     }
11362 }
11363 
11364 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11365                                    ARMMMUIdx mmu_idx, bool data)
11366 {
11367     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11368     bool epd, hpd, using16k, using64k;
11369     int select, tsz, tbi, max_tsz;
11370 
11371     if (!regime_has_2_ranges(mmu_idx)) {
11372         select = 0;
11373         tsz = extract32(tcr, 0, 6);
11374         using64k = extract32(tcr, 14, 1);
11375         using16k = extract32(tcr, 15, 1);
11376         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11377             /* VTCR_EL2 */
11378             hpd = false;
11379         } else {
11380             hpd = extract32(tcr, 24, 1);
11381         }
11382         epd = false;
11383     } else {
11384         /*
11385          * Bit 55 is always between the two regions, and is canonical for
11386          * determining if address tagging is enabled.
11387          */
11388         select = extract64(va, 55, 1);
11389         if (!select) {
11390             tsz = extract32(tcr, 0, 6);
11391             epd = extract32(tcr, 7, 1);
11392             using64k = extract32(tcr, 14, 1);
11393             using16k = extract32(tcr, 15, 1);
11394             hpd = extract64(tcr, 41, 1);
11395         } else {
11396             int tg = extract32(tcr, 30, 2);
11397             using16k = tg == 1;
11398             using64k = tg == 3;
11399             tsz = extract32(tcr, 16, 6);
11400             epd = extract32(tcr, 23, 1);
11401             hpd = extract64(tcr, 42, 1);
11402         }
11403     }
11404 
11405     if (cpu_isar_feature(aa64_st, env_archcpu(env))) {
11406         max_tsz = 48 - using64k;
11407     } else {
11408         max_tsz = 39;
11409     }
11410 
11411     tsz = MIN(tsz, max_tsz);
11412     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
11413 
11414     /* Present TBI as a composite with TBID.  */
11415     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11416     if (!data) {
11417         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11418     }
11419     tbi = (tbi >> select) & 1;
11420 
11421     return (ARMVAParameters) {
11422         .tsz = tsz,
11423         .select = select,
11424         .tbi = tbi,
11425         .epd = epd,
11426         .hpd = hpd,
11427         .using16k = using16k,
11428         .using64k = using64k,
11429     };
11430 }
11431 
11432 #ifndef CONFIG_USER_ONLY
11433 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11434                                           ARMMMUIdx mmu_idx)
11435 {
11436     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11437     uint32_t el = regime_el(env, mmu_idx);
11438     int select, tsz;
11439     bool epd, hpd;
11440 
11441     assert(mmu_idx != ARMMMUIdx_Stage2_S);
11442 
11443     if (mmu_idx == ARMMMUIdx_Stage2) {
11444         /* VTCR */
11445         bool sext = extract32(tcr, 4, 1);
11446         bool sign = extract32(tcr, 3, 1);
11447 
11448         /*
11449          * If the sign-extend bit is not the same as t0sz[3], the result
11450          * is unpredictable. Flag this as a guest error.
11451          */
11452         if (sign != sext) {
11453             qemu_log_mask(LOG_GUEST_ERROR,
11454                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11455         }
11456         tsz = sextract32(tcr, 0, 4) + 8;
11457         select = 0;
11458         hpd = false;
11459         epd = false;
11460     } else if (el == 2) {
11461         /* HTCR */
11462         tsz = extract32(tcr, 0, 3);
11463         select = 0;
11464         hpd = extract64(tcr, 24, 1);
11465         epd = false;
11466     } else {
11467         int t0sz = extract32(tcr, 0, 3);
11468         int t1sz = extract32(tcr, 16, 3);
11469 
11470         if (t1sz == 0) {
11471             select = va > (0xffffffffu >> t0sz);
11472         } else {
11473             /* Note that we will detect errors later.  */
11474             select = va >= ~(0xffffffffu >> t1sz);
11475         }
11476         if (!select) {
11477             tsz = t0sz;
11478             epd = extract32(tcr, 7, 1);
11479             hpd = extract64(tcr, 41, 1);
11480         } else {
11481             tsz = t1sz;
11482             epd = extract32(tcr, 23, 1);
11483             hpd = extract64(tcr, 42, 1);
11484         }
11485         /* For aarch32, hpd0 is not enabled without t2e as well.  */
11486         hpd &= extract32(tcr, 6, 1);
11487     }
11488 
11489     return (ARMVAParameters) {
11490         .tsz = tsz,
11491         .select = select,
11492         .epd = epd,
11493         .hpd = hpd,
11494     };
11495 }
11496 
11497 /**
11498  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11499  *
11500  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11501  * prot and page_size may not be filled in, and the populated fsr value provides
11502  * information on why the translation aborted, in the format of a long-format
11503  * DFSR/IFSR fault register, with the following caveats:
11504  *  * the WnR bit is never set (the caller must do this).
11505  *
11506  * @env: CPUARMState
11507  * @address: virtual address to get physical address for
11508  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11509  * @mmu_idx: MMU index indicating required translation regime
11510  * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11511  *             walk), must be true if this is stage 2 of a stage 1+2 walk for an
11512  *             EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11513  * @phys_ptr: set to the physical address corresponding to the virtual address
11514  * @attrs: set to the memory transaction attributes to use
11515  * @prot: set to the permissions for the page containing phys_ptr
11516  * @page_size_ptr: set to the size of the page containing phys_ptr
11517  * @fi: set to fault info if the translation fails
11518  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11519  */
11520 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
11521                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
11522                                bool s1_is_el0,
11523                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11524                                target_ulong *page_size_ptr,
11525                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11526 {
11527     ARMCPU *cpu = env_archcpu(env);
11528     CPUState *cs = CPU(cpu);
11529     /* Read an LPAE long-descriptor translation table. */
11530     ARMFaultType fault_type = ARMFault_Translation;
11531     uint32_t level;
11532     ARMVAParameters param;
11533     uint64_t ttbr;
11534     hwaddr descaddr, indexmask, indexmask_grainsize;
11535     uint32_t tableattrs;
11536     target_ulong page_size;
11537     uint32_t attrs;
11538     int32_t stride;
11539     int addrsize, inputsize;
11540     TCR *tcr = regime_tcr(env, mmu_idx);
11541     int ap, ns, xn, pxn;
11542     uint32_t el = regime_el(env, mmu_idx);
11543     uint64_t descaddrmask;
11544     bool aarch64 = arm_el_is_aa64(env, el);
11545     bool guarded = false;
11546 
11547     /* TODO: This code does not support shareability levels. */
11548     if (aarch64) {
11549         param = aa64_va_parameters(env, address, mmu_idx,
11550                                    access_type != MMU_INST_FETCH);
11551         level = 0;
11552         addrsize = 64 - 8 * param.tbi;
11553         inputsize = 64 - param.tsz;
11554     } else {
11555         param = aa32_va_parameters(env, address, mmu_idx);
11556         level = 1;
11557         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11558         inputsize = addrsize - param.tsz;
11559     }
11560 
11561     /*
11562      * We determined the region when collecting the parameters, but we
11563      * have not yet validated that the address is valid for the region.
11564      * Extract the top bits and verify that they all match select.
11565      *
11566      * For aa32, if inputsize == addrsize, then we have selected the
11567      * region by exclusion in aa32_va_parameters and there is no more
11568      * validation to do here.
11569      */
11570     if (inputsize < addrsize) {
11571         target_ulong top_bits = sextract64(address, inputsize,
11572                                            addrsize - inputsize);
11573         if (-top_bits != param.select) {
11574             /* The gap between the two regions is a Translation fault */
11575             fault_type = ARMFault_Translation;
11576             goto do_fault;
11577         }
11578     }
11579 
11580     if (param.using64k) {
11581         stride = 13;
11582     } else if (param.using16k) {
11583         stride = 11;
11584     } else {
11585         stride = 9;
11586     }
11587 
11588     /* Note that QEMU ignores shareability and cacheability attributes,
11589      * so we don't need to do anything with the SH, ORGN, IRGN fields
11590      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
11591      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11592      * implement any ASID-like capability so we can ignore it (instead
11593      * we will always flush the TLB any time the ASID is changed).
11594      */
11595     ttbr = regime_ttbr(env, mmu_idx, param.select);
11596 
11597     /* Here we should have set up all the parameters for the translation:
11598      * inputsize, ttbr, epd, stride, tbi
11599      */
11600 
11601     if (param.epd) {
11602         /* Translation table walk disabled => Translation fault on TLB miss
11603          * Note: This is always 0 on 64-bit EL2 and EL3.
11604          */
11605         goto do_fault;
11606     }
11607 
11608     if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
11609         /* The starting level depends on the virtual address size (which can
11610          * be up to 48 bits) and the translation granule size. It indicates
11611          * the number of strides (stride bits at a time) needed to
11612          * consume the bits of the input address. In the pseudocode this is:
11613          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
11614          * where their 'inputsize' is our 'inputsize', 'grainsize' is
11615          * our 'stride + 3' and 'stride' is our 'stride'.
11616          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11617          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11618          * = 4 - (inputsize - 4) / stride;
11619          */
11620         level = 4 - (inputsize - 4) / stride;
11621     } else {
11622         /* For stage 2 translations the starting level is specified by the
11623          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11624          */
11625         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11626         uint32_t startlevel;
11627         bool ok;
11628 
11629         if (!aarch64 || stride == 9) {
11630             /* AArch32 or 4KB pages */
11631             startlevel = 2 - sl0;
11632 
11633             if (cpu_isar_feature(aa64_st, cpu)) {
11634                 startlevel &= 3;
11635             }
11636         } else {
11637             /* 16KB or 64KB pages */
11638             startlevel = 3 - sl0;
11639         }
11640 
11641         /* Check that the starting level is valid. */
11642         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11643                                 inputsize, stride);
11644         if (!ok) {
11645             fault_type = ARMFault_Translation;
11646             goto do_fault;
11647         }
11648         level = startlevel;
11649     }
11650 
11651     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11652     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11653 
11654     /* Now we can extract the actual base address from the TTBR */
11655     descaddr = extract64(ttbr, 0, 48);
11656     /*
11657      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11658      * and also to mask out CnP (bit 0) which could validly be non-zero.
11659      */
11660     descaddr &= ~indexmask;
11661 
11662     /* The address field in the descriptor goes up to bit 39 for ARMv7
11663      * but up to bit 47 for ARMv8, but we use the descaddrmask
11664      * up to bit 39 for AArch32, because we don't need other bits in that case
11665      * to construct next descriptor address (anyway they should be all zeroes).
11666      */
11667     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11668                    ~indexmask_grainsize;
11669 
11670     /* Secure accesses start with the page table in secure memory and
11671      * can be downgraded to non-secure at any step. Non-secure accesses
11672      * remain non-secure. We implement this by just ORing in the NSTable/NS
11673      * bits at each step.
11674      */
11675     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11676     for (;;) {
11677         uint64_t descriptor;
11678         bool nstable;
11679 
11680         descaddr |= (address >> (stride * (4 - level))) & indexmask;
11681         descaddr &= ~7ULL;
11682         nstable = extract32(tableattrs, 4, 1);
11683         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11684         if (fi->type != ARMFault_None) {
11685             goto do_fault;
11686         }
11687 
11688         if (!(descriptor & 1) ||
11689             (!(descriptor & 2) && (level == 3))) {
11690             /* Invalid, or the Reserved level 3 encoding */
11691             goto do_fault;
11692         }
11693         descaddr = descriptor & descaddrmask;
11694 
11695         if ((descriptor & 2) && (level < 3)) {
11696             /* Table entry. The top five bits are attributes which may
11697              * propagate down through lower levels of the table (and
11698              * which are all arranged so that 0 means "no effect", so
11699              * we can gather them up by ORing in the bits at each level).
11700              */
11701             tableattrs |= extract64(descriptor, 59, 5);
11702             level++;
11703             indexmask = indexmask_grainsize;
11704             continue;
11705         }
11706         /* Block entry at level 1 or 2, or page entry at level 3.
11707          * These are basically the same thing, although the number
11708          * of bits we pull in from the vaddr varies.
11709          */
11710         page_size = (1ULL << ((stride * (4 - level)) + 3));
11711         descaddr |= (address & (page_size - 1));
11712         /* Extract attributes from the descriptor */
11713         attrs = extract64(descriptor, 2, 10)
11714             | (extract64(descriptor, 52, 12) << 10);
11715 
11716         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11717             /* Stage 2 table descriptors do not include any attribute fields */
11718             break;
11719         }
11720         /* Merge in attributes from table descriptors */
11721         attrs |= nstable << 3; /* NS */
11722         guarded = extract64(descriptor, 50, 1);  /* GP */
11723         if (param.hpd) {
11724             /* HPD disables all the table attributes except NSTable.  */
11725             break;
11726         }
11727         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
11728         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11729          * means "force PL1 access only", which means forcing AP[1] to 0.
11730          */
11731         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
11732         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
11733         break;
11734     }
11735     /* Here descaddr is the final physical address, and attributes
11736      * are all in attrs.
11737      */
11738     fault_type = ARMFault_AccessFlag;
11739     if ((attrs & (1 << 8)) == 0) {
11740         /* Access flag */
11741         goto do_fault;
11742     }
11743 
11744     ap = extract32(attrs, 4, 2);
11745 
11746     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11747         ns = mmu_idx == ARMMMUIdx_Stage2;
11748         xn = extract32(attrs, 11, 2);
11749         *prot = get_S2prot(env, ap, xn, s1_is_el0);
11750     } else {
11751         ns = extract32(attrs, 3, 1);
11752         xn = extract32(attrs, 12, 1);
11753         pxn = extract32(attrs, 11, 1);
11754         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11755     }
11756 
11757     fault_type = ARMFault_Permission;
11758     if (!(*prot & (1 << access_type))) {
11759         goto do_fault;
11760     }
11761 
11762     if (ns) {
11763         /* The NS bit will (as required by the architecture) have no effect if
11764          * the CPU doesn't support TZ or this is a non-secure translation
11765          * regime, because the attribute will already be non-secure.
11766          */
11767         txattrs->secure = false;
11768     }
11769     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
11770     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11771         arm_tlb_bti_gp(txattrs) = true;
11772     }
11773 
11774     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11775         cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11776     } else {
11777         /* Index into MAIR registers for cache attributes */
11778         uint8_t attrindx = extract32(attrs, 0, 3);
11779         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11780         assert(attrindx <= 7);
11781         cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11782     }
11783     cacheattrs->shareability = extract32(attrs, 6, 2);
11784 
11785     *phys_ptr = descaddr;
11786     *page_size_ptr = page_size;
11787     return false;
11788 
11789 do_fault:
11790     fi->type = fault_type;
11791     fi->level = level;
11792     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
11793     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
11794                                mmu_idx == ARMMMUIdx_Stage2_S);
11795     fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
11796     return true;
11797 }
11798 
11799 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11800                                                 ARMMMUIdx mmu_idx,
11801                                                 int32_t address, int *prot)
11802 {
11803     if (!arm_feature(env, ARM_FEATURE_M)) {
11804         *prot = PAGE_READ | PAGE_WRITE;
11805         switch (address) {
11806         case 0xF0000000 ... 0xFFFFFFFF:
11807             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11808                 /* hivecs execing is ok */
11809                 *prot |= PAGE_EXEC;
11810             }
11811             break;
11812         case 0x00000000 ... 0x7FFFFFFF:
11813             *prot |= PAGE_EXEC;
11814             break;
11815         }
11816     } else {
11817         /* Default system address map for M profile cores.
11818          * The architecture specifies which regions are execute-never;
11819          * at the MPU level no other checks are defined.
11820          */
11821         switch (address) {
11822         case 0x00000000 ... 0x1fffffff: /* ROM */
11823         case 0x20000000 ... 0x3fffffff: /* SRAM */
11824         case 0x60000000 ... 0x7fffffff: /* RAM */
11825         case 0x80000000 ... 0x9fffffff: /* RAM */
11826             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11827             break;
11828         case 0x40000000 ... 0x5fffffff: /* Peripheral */
11829         case 0xa0000000 ... 0xbfffffff: /* Device */
11830         case 0xc0000000 ... 0xdfffffff: /* Device */
11831         case 0xe0000000 ... 0xffffffff: /* System */
11832             *prot = PAGE_READ | PAGE_WRITE;
11833             break;
11834         default:
11835             g_assert_not_reached();
11836         }
11837     }
11838 }
11839 
11840 static bool pmsav7_use_background_region(ARMCPU *cpu,
11841                                          ARMMMUIdx mmu_idx, bool is_user)
11842 {
11843     /* Return true if we should use the default memory map as a
11844      * "background" region if there are no hits against any MPU regions.
11845      */
11846     CPUARMState *env = &cpu->env;
11847 
11848     if (is_user) {
11849         return false;
11850     }
11851 
11852     if (arm_feature(env, ARM_FEATURE_M)) {
11853         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11854             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11855     } else {
11856         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11857     }
11858 }
11859 
11860 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11861 {
11862     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11863     return arm_feature(env, ARM_FEATURE_M) &&
11864         extract32(address, 20, 12) == 0xe00;
11865 }
11866 
11867 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11868 {
11869     /* True if address is in the M profile system region
11870      * 0xe0000000 - 0xffffffff
11871      */
11872     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11873 }
11874 
11875 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11876                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11877                                  hwaddr *phys_ptr, int *prot,
11878                                  target_ulong *page_size,
11879                                  ARMMMUFaultInfo *fi)
11880 {
11881     ARMCPU *cpu = env_archcpu(env);
11882     int n;
11883     bool is_user = regime_is_user(env, mmu_idx);
11884 
11885     *phys_ptr = address;
11886     *page_size = TARGET_PAGE_SIZE;
11887     *prot = 0;
11888 
11889     if (regime_translation_disabled(env, mmu_idx) ||
11890         m_is_ppb_region(env, address)) {
11891         /* MPU disabled or M profile PPB access: use default memory map.
11892          * The other case which uses the default memory map in the
11893          * v7M ARM ARM pseudocode is exception vector reads from the vector
11894          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11895          * which always does a direct read using address_space_ldl(), rather
11896          * than going via this function, so we don't need to check that here.
11897          */
11898         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11899     } else { /* MPU enabled */
11900         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11901             /* region search */
11902             uint32_t base = env->pmsav7.drbar[n];
11903             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11904             uint32_t rmask;
11905             bool srdis = false;
11906 
11907             if (!(env->pmsav7.drsr[n] & 0x1)) {
11908                 continue;
11909             }
11910 
11911             if (!rsize) {
11912                 qemu_log_mask(LOG_GUEST_ERROR,
11913                               "DRSR[%d]: Rsize field cannot be 0\n", n);
11914                 continue;
11915             }
11916             rsize++;
11917             rmask = (1ull << rsize) - 1;
11918 
11919             if (base & rmask) {
11920                 qemu_log_mask(LOG_GUEST_ERROR,
11921                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11922                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
11923                               n, base, rmask);
11924                 continue;
11925             }
11926 
11927             if (address < base || address > base + rmask) {
11928                 /*
11929                  * Address not in this region. We must check whether the
11930                  * region covers addresses in the same page as our address.
11931                  * In that case we must not report a size that covers the
11932                  * whole page for a subsequent hit against a different MPU
11933                  * region or the background region, because it would result in
11934                  * incorrect TLB hits for subsequent accesses to addresses that
11935                  * are in this MPU region.
11936                  */
11937                 if (ranges_overlap(base, rmask,
11938                                    address & TARGET_PAGE_MASK,
11939                                    TARGET_PAGE_SIZE)) {
11940                     *page_size = 1;
11941                 }
11942                 continue;
11943             }
11944 
11945             /* Region matched */
11946 
11947             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11948                 int i, snd;
11949                 uint32_t srdis_mask;
11950 
11951                 rsize -= 3; /* sub region size (power of 2) */
11952                 snd = ((address - base) >> rsize) & 0x7;
11953                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11954 
11955                 srdis_mask = srdis ? 0x3 : 0x0;
11956                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11957                     /* This will check in groups of 2, 4 and then 8, whether
11958                      * the subregion bits are consistent. rsize is incremented
11959                      * back up to give the region size, considering consistent
11960                      * adjacent subregions as one region. Stop testing if rsize
11961                      * is already big enough for an entire QEMU page.
11962                      */
11963                     int snd_rounded = snd & ~(i - 1);
11964                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11965                                                      snd_rounded + 8, i);
11966                     if (srdis_mask ^ srdis_multi) {
11967                         break;
11968                     }
11969                     srdis_mask = (srdis_mask << i) | srdis_mask;
11970                     rsize++;
11971                 }
11972             }
11973             if (srdis) {
11974                 continue;
11975             }
11976             if (rsize < TARGET_PAGE_BITS) {
11977                 *page_size = 1 << rsize;
11978             }
11979             break;
11980         }
11981 
11982         if (n == -1) { /* no hits */
11983             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11984                 /* background fault */
11985                 fi->type = ARMFault_Background;
11986                 return true;
11987             }
11988             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11989         } else { /* a MPU hit! */
11990             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11991             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11992 
11993             if (m_is_system_region(env, address)) {
11994                 /* System space is always execute never */
11995                 xn = 1;
11996             }
11997 
11998             if (is_user) { /* User mode AP bit decoding */
11999                 switch (ap) {
12000                 case 0:
12001                 case 1:
12002                 case 5:
12003                     break; /* no access */
12004                 case 3:
12005                     *prot |= PAGE_WRITE;
12006                     /* fall through */
12007                 case 2:
12008                 case 6:
12009                     *prot |= PAGE_READ | PAGE_EXEC;
12010                     break;
12011                 case 7:
12012                     /* for v7M, same as 6; for R profile a reserved value */
12013                     if (arm_feature(env, ARM_FEATURE_M)) {
12014                         *prot |= PAGE_READ | PAGE_EXEC;
12015                         break;
12016                     }
12017                     /* fall through */
12018                 default:
12019                     qemu_log_mask(LOG_GUEST_ERROR,
12020                                   "DRACR[%d]: Bad value for AP bits: 0x%"
12021                                   PRIx32 "\n", n, ap);
12022                 }
12023             } else { /* Priv. mode AP bits decoding */
12024                 switch (ap) {
12025                 case 0:
12026                     break; /* no access */
12027                 case 1:
12028                 case 2:
12029                 case 3:
12030                     *prot |= PAGE_WRITE;
12031                     /* fall through */
12032                 case 5:
12033                 case 6:
12034                     *prot |= PAGE_READ | PAGE_EXEC;
12035                     break;
12036                 case 7:
12037                     /* for v7M, same as 6; for R profile a reserved value */
12038                     if (arm_feature(env, ARM_FEATURE_M)) {
12039                         *prot |= PAGE_READ | PAGE_EXEC;
12040                         break;
12041                     }
12042                     /* fall through */
12043                 default:
12044                     qemu_log_mask(LOG_GUEST_ERROR,
12045                                   "DRACR[%d]: Bad value for AP bits: 0x%"
12046                                   PRIx32 "\n", n, ap);
12047                 }
12048             }
12049 
12050             /* execute never */
12051             if (xn) {
12052                 *prot &= ~PAGE_EXEC;
12053             }
12054         }
12055     }
12056 
12057     fi->type = ARMFault_Permission;
12058     fi->level = 1;
12059     return !(*prot & (1 << access_type));
12060 }
12061 
12062 static bool v8m_is_sau_exempt(CPUARMState *env,
12063                               uint32_t address, MMUAccessType access_type)
12064 {
12065     /* The architecture specifies that certain address ranges are
12066      * exempt from v8M SAU/IDAU checks.
12067      */
12068     return
12069         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
12070         (address >= 0xe0000000 && address <= 0xe0002fff) ||
12071         (address >= 0xe000e000 && address <= 0xe000efff) ||
12072         (address >= 0xe002e000 && address <= 0xe002efff) ||
12073         (address >= 0xe0040000 && address <= 0xe0041fff) ||
12074         (address >= 0xe00ff000 && address <= 0xe00fffff);
12075 }
12076 
12077 void v8m_security_lookup(CPUARMState *env, uint32_t address,
12078                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12079                                 V8M_SAttributes *sattrs)
12080 {
12081     /* Look up the security attributes for this address. Compare the
12082      * pseudocode SecurityCheck() function.
12083      * We assume the caller has zero-initialized *sattrs.
12084      */
12085     ARMCPU *cpu = env_archcpu(env);
12086     int r;
12087     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
12088     int idau_region = IREGION_NOTVALID;
12089     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12090     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12091 
12092     if (cpu->idau) {
12093         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
12094         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
12095 
12096         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
12097                    &idau_nsc);
12098     }
12099 
12100     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
12101         /* 0xf0000000..0xffffffff is always S for insn fetches */
12102         return;
12103     }
12104 
12105     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
12106         sattrs->ns = !regime_is_secure(env, mmu_idx);
12107         return;
12108     }
12109 
12110     if (idau_region != IREGION_NOTVALID) {
12111         sattrs->irvalid = true;
12112         sattrs->iregion = idau_region;
12113     }
12114 
12115     switch (env->sau.ctrl & 3) {
12116     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
12117         break;
12118     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
12119         sattrs->ns = true;
12120         break;
12121     default: /* SAU.ENABLE == 1 */
12122         for (r = 0; r < cpu->sau_sregion; r++) {
12123             if (env->sau.rlar[r] & 1) {
12124                 uint32_t base = env->sau.rbar[r] & ~0x1f;
12125                 uint32_t limit = env->sau.rlar[r] | 0x1f;
12126 
12127                 if (base <= address && limit >= address) {
12128                     if (base > addr_page_base || limit < addr_page_limit) {
12129                         sattrs->subpage = true;
12130                     }
12131                     if (sattrs->srvalid) {
12132                         /* If we hit in more than one region then we must report
12133                          * as Secure, not NS-Callable, with no valid region
12134                          * number info.
12135                          */
12136                         sattrs->ns = false;
12137                         sattrs->nsc = false;
12138                         sattrs->sregion = 0;
12139                         sattrs->srvalid = false;
12140                         break;
12141                     } else {
12142                         if (env->sau.rlar[r] & 2) {
12143                             sattrs->nsc = true;
12144                         } else {
12145                             sattrs->ns = true;
12146                         }
12147                         sattrs->srvalid = true;
12148                         sattrs->sregion = r;
12149                     }
12150                 } else {
12151                     /*
12152                      * Address not in this region. We must check whether the
12153                      * region covers addresses in the same page as our address.
12154                      * In that case we must not report a size that covers the
12155                      * whole page for a subsequent hit against a different MPU
12156                      * region or the background region, because it would result
12157                      * in incorrect TLB hits for subsequent accesses to
12158                      * addresses that are in this MPU region.
12159                      */
12160                     if (limit >= base &&
12161                         ranges_overlap(base, limit - base + 1,
12162                                        addr_page_base,
12163                                        TARGET_PAGE_SIZE)) {
12164                         sattrs->subpage = true;
12165                     }
12166                 }
12167             }
12168         }
12169         break;
12170     }
12171 
12172     /*
12173      * The IDAU will override the SAU lookup results if it specifies
12174      * higher security than the SAU does.
12175      */
12176     if (!idau_ns) {
12177         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
12178             sattrs->ns = false;
12179             sattrs->nsc = idau_nsc;
12180         }
12181     }
12182 }
12183 
12184 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
12185                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
12186                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
12187                               int *prot, bool *is_subpage,
12188                               ARMMMUFaultInfo *fi, uint32_t *mregion)
12189 {
12190     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
12191      * that a full phys-to-virt translation does).
12192      * mregion is (if not NULL) set to the region number which matched,
12193      * or -1 if no region number is returned (MPU off, address did not
12194      * hit a region, address hit in multiple regions).
12195      * We set is_subpage to true if the region hit doesn't cover the
12196      * entire TARGET_PAGE the address is within.
12197      */
12198     ARMCPU *cpu = env_archcpu(env);
12199     bool is_user = regime_is_user(env, mmu_idx);
12200     uint32_t secure = regime_is_secure(env, mmu_idx);
12201     int n;
12202     int matchregion = -1;
12203     bool hit = false;
12204     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12205     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12206 
12207     *is_subpage = false;
12208     *phys_ptr = address;
12209     *prot = 0;
12210     if (mregion) {
12211         *mregion = -1;
12212     }
12213 
12214     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
12215      * was an exception vector read from the vector table (which is always
12216      * done using the default system address map), because those accesses
12217      * are done in arm_v7m_load_vector(), which always does a direct
12218      * read using address_space_ldl(), rather than going via this function.
12219      */
12220     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
12221         hit = true;
12222     } else if (m_is_ppb_region(env, address)) {
12223         hit = true;
12224     } else {
12225         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12226             hit = true;
12227         }
12228 
12229         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
12230             /* region search */
12231             /* Note that the base address is bits [31:5] from the register
12232              * with bits [4:0] all zeroes, but the limit address is bits
12233              * [31:5] from the register with bits [4:0] all ones.
12234              */
12235             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
12236             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
12237 
12238             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
12239                 /* Region disabled */
12240                 continue;
12241             }
12242 
12243             if (address < base || address > limit) {
12244                 /*
12245                  * Address not in this region. We must check whether the
12246                  * region covers addresses in the same page as our address.
12247                  * In that case we must not report a size that covers the
12248                  * whole page for a subsequent hit against a different MPU
12249                  * region or the background region, because it would result in
12250                  * incorrect TLB hits for subsequent accesses to addresses that
12251                  * are in this MPU region.
12252                  */
12253                 if (limit >= base &&
12254                     ranges_overlap(base, limit - base + 1,
12255                                    addr_page_base,
12256                                    TARGET_PAGE_SIZE)) {
12257                     *is_subpage = true;
12258                 }
12259                 continue;
12260             }
12261 
12262             if (base > addr_page_base || limit < addr_page_limit) {
12263                 *is_subpage = true;
12264             }
12265 
12266             if (matchregion != -1) {
12267                 /* Multiple regions match -- always a failure (unlike
12268                  * PMSAv7 where highest-numbered-region wins)
12269                  */
12270                 fi->type = ARMFault_Permission;
12271                 fi->level = 1;
12272                 return true;
12273             }
12274 
12275             matchregion = n;
12276             hit = true;
12277         }
12278     }
12279 
12280     if (!hit) {
12281         /* background fault */
12282         fi->type = ARMFault_Background;
12283         return true;
12284     }
12285 
12286     if (matchregion == -1) {
12287         /* hit using the background region */
12288         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12289     } else {
12290         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12291         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
12292         bool pxn = false;
12293 
12294         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
12295             pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
12296         }
12297 
12298         if (m_is_system_region(env, address)) {
12299             /* System space is always execute never */
12300             xn = 1;
12301         }
12302 
12303         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12304         if (*prot && !xn && !(pxn && !is_user)) {
12305             *prot |= PAGE_EXEC;
12306         }
12307         /* We don't need to look the attribute up in the MAIR0/MAIR1
12308          * registers because that only tells us about cacheability.
12309          */
12310         if (mregion) {
12311             *mregion = matchregion;
12312         }
12313     }
12314 
12315     fi->type = ARMFault_Permission;
12316     fi->level = 1;
12317     return !(*prot & (1 << access_type));
12318 }
12319 
12320 
12321 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12322                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12323                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
12324                                  int *prot, target_ulong *page_size,
12325                                  ARMMMUFaultInfo *fi)
12326 {
12327     uint32_t secure = regime_is_secure(env, mmu_idx);
12328     V8M_SAttributes sattrs = {};
12329     bool ret;
12330     bool mpu_is_subpage;
12331 
12332     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12333         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12334         if (access_type == MMU_INST_FETCH) {
12335             /* Instruction fetches always use the MMU bank and the
12336              * transaction attribute determined by the fetch address,
12337              * regardless of CPU state. This is painful for QEMU
12338              * to handle, because it would mean we need to encode
12339              * into the mmu_idx not just the (user, negpri) information
12340              * for the current security state but also that for the
12341              * other security state, which would balloon the number
12342              * of mmu_idx values needed alarmingly.
12343              * Fortunately we can avoid this because it's not actually
12344              * possible to arbitrarily execute code from memory with
12345              * the wrong security attribute: it will always generate
12346              * an exception of some kind or another, apart from the
12347              * special case of an NS CPU executing an SG instruction
12348              * in S&NSC memory. So we always just fail the translation
12349              * here and sort things out in the exception handler
12350              * (including possibly emulating an SG instruction).
12351              */
12352             if (sattrs.ns != !secure) {
12353                 if (sattrs.nsc) {
12354                     fi->type = ARMFault_QEMU_NSCExec;
12355                 } else {
12356                     fi->type = ARMFault_QEMU_SFault;
12357                 }
12358                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12359                 *phys_ptr = address;
12360                 *prot = 0;
12361                 return true;
12362             }
12363         } else {
12364             /* For data accesses we always use the MMU bank indicated
12365              * by the current CPU state, but the security attributes
12366              * might downgrade a secure access to nonsecure.
12367              */
12368             if (sattrs.ns) {
12369                 txattrs->secure = false;
12370             } else if (!secure) {
12371                 /* NS access to S memory must fault.
12372                  * Architecturally we should first check whether the
12373                  * MPU information for this address indicates that we
12374                  * are doing an unaligned access to Device memory, which
12375                  * should generate a UsageFault instead. QEMU does not
12376                  * currently check for that kind of unaligned access though.
12377                  * If we added it we would need to do so as a special case
12378                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12379                  */
12380                 fi->type = ARMFault_QEMU_SFault;
12381                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12382                 *phys_ptr = address;
12383                 *prot = 0;
12384                 return true;
12385             }
12386         }
12387     }
12388 
12389     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12390                             txattrs, prot, &mpu_is_subpage, fi, NULL);
12391     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12392     return ret;
12393 }
12394 
12395 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12396                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12397                                  hwaddr *phys_ptr, int *prot,
12398                                  ARMMMUFaultInfo *fi)
12399 {
12400     int n;
12401     uint32_t mask;
12402     uint32_t base;
12403     bool is_user = regime_is_user(env, mmu_idx);
12404 
12405     if (regime_translation_disabled(env, mmu_idx)) {
12406         /* MPU disabled.  */
12407         *phys_ptr = address;
12408         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12409         return false;
12410     }
12411 
12412     *phys_ptr = address;
12413     for (n = 7; n >= 0; n--) {
12414         base = env->cp15.c6_region[n];
12415         if ((base & 1) == 0) {
12416             continue;
12417         }
12418         mask = 1 << ((base >> 1) & 0x1f);
12419         /* Keep this shift separate from the above to avoid an
12420            (undefined) << 32.  */
12421         mask = (mask << 1) - 1;
12422         if (((base ^ address) & ~mask) == 0) {
12423             break;
12424         }
12425     }
12426     if (n < 0) {
12427         fi->type = ARMFault_Background;
12428         return true;
12429     }
12430 
12431     if (access_type == MMU_INST_FETCH) {
12432         mask = env->cp15.pmsav5_insn_ap;
12433     } else {
12434         mask = env->cp15.pmsav5_data_ap;
12435     }
12436     mask = (mask >> (n * 4)) & 0xf;
12437     switch (mask) {
12438     case 0:
12439         fi->type = ARMFault_Permission;
12440         fi->level = 1;
12441         return true;
12442     case 1:
12443         if (is_user) {
12444             fi->type = ARMFault_Permission;
12445             fi->level = 1;
12446             return true;
12447         }
12448         *prot = PAGE_READ | PAGE_WRITE;
12449         break;
12450     case 2:
12451         *prot = PAGE_READ;
12452         if (!is_user) {
12453             *prot |= PAGE_WRITE;
12454         }
12455         break;
12456     case 3:
12457         *prot = PAGE_READ | PAGE_WRITE;
12458         break;
12459     case 5:
12460         if (is_user) {
12461             fi->type = ARMFault_Permission;
12462             fi->level = 1;
12463             return true;
12464         }
12465         *prot = PAGE_READ;
12466         break;
12467     case 6:
12468         *prot = PAGE_READ;
12469         break;
12470     default:
12471         /* Bad permission.  */
12472         fi->type = ARMFault_Permission;
12473         fi->level = 1;
12474         return true;
12475     }
12476     *prot |= PAGE_EXEC;
12477     return false;
12478 }
12479 
12480 /* Combine either inner or outer cacheability attributes for normal
12481  * memory, according to table D4-42 and pseudocode procedure
12482  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12483  *
12484  * NB: only stage 1 includes allocation hints (RW bits), leading to
12485  * some asymmetry.
12486  */
12487 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12488 {
12489     if (s1 == 4 || s2 == 4) {
12490         /* non-cacheable has precedence */
12491         return 4;
12492     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12493         /* stage 1 write-through takes precedence */
12494         return s1;
12495     } else if (extract32(s2, 2, 2) == 2) {
12496         /* stage 2 write-through takes precedence, but the allocation hint
12497          * is still taken from stage 1
12498          */
12499         return (2 << 2) | extract32(s1, 0, 2);
12500     } else { /* write-back */
12501         return s1;
12502     }
12503 }
12504 
12505 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12506  * and CombineS1S2Desc()
12507  *
12508  * @s1:      Attributes from stage 1 walk
12509  * @s2:      Attributes from stage 2 walk
12510  */
12511 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12512 {
12513     uint8_t s1lo, s2lo, s1hi, s2hi;
12514     ARMCacheAttrs ret;
12515     bool tagged = false;
12516 
12517     if (s1.attrs == 0xf0) {
12518         tagged = true;
12519         s1.attrs = 0xff;
12520     }
12521 
12522     s1lo = extract32(s1.attrs, 0, 4);
12523     s2lo = extract32(s2.attrs, 0, 4);
12524     s1hi = extract32(s1.attrs, 4, 4);
12525     s2hi = extract32(s2.attrs, 4, 4);
12526 
12527     /* Combine shareability attributes (table D4-43) */
12528     if (s1.shareability == 2 || s2.shareability == 2) {
12529         /* if either are outer-shareable, the result is outer-shareable */
12530         ret.shareability = 2;
12531     } else if (s1.shareability == 3 || s2.shareability == 3) {
12532         /* if either are inner-shareable, the result is inner-shareable */
12533         ret.shareability = 3;
12534     } else {
12535         /* both non-shareable */
12536         ret.shareability = 0;
12537     }
12538 
12539     /* Combine memory type and cacheability attributes */
12540     if (s1hi == 0 || s2hi == 0) {
12541         /* Device has precedence over normal */
12542         if (s1lo == 0 || s2lo == 0) {
12543             /* nGnRnE has precedence over anything */
12544             ret.attrs = 0;
12545         } else if (s1lo == 4 || s2lo == 4) {
12546             /* non-Reordering has precedence over Reordering */
12547             ret.attrs = 4;  /* nGnRE */
12548         } else if (s1lo == 8 || s2lo == 8) {
12549             /* non-Gathering has precedence over Gathering */
12550             ret.attrs = 8;  /* nGRE */
12551         } else {
12552             ret.attrs = 0xc; /* GRE */
12553         }
12554 
12555         /* Any location for which the resultant memory type is any
12556          * type of Device memory is always treated as Outer Shareable.
12557          */
12558         ret.shareability = 2;
12559     } else { /* Normal memory */
12560         /* Outer/inner cacheability combine independently */
12561         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12562                   | combine_cacheattr_nibble(s1lo, s2lo);
12563 
12564         if (ret.attrs == 0x44) {
12565             /* Any location for which the resultant memory type is Normal
12566              * Inner Non-cacheable, Outer Non-cacheable is always treated
12567              * as Outer Shareable.
12568              */
12569             ret.shareability = 2;
12570         }
12571     }
12572 
12573     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12574     if (tagged && ret.attrs == 0xff) {
12575         ret.attrs = 0xf0;
12576     }
12577 
12578     return ret;
12579 }
12580 
12581 
12582 /* get_phys_addr - get the physical address for this virtual address
12583  *
12584  * Find the physical address corresponding to the given virtual address,
12585  * by doing a translation table walk on MMU based systems or using the
12586  * MPU state on MPU based systems.
12587  *
12588  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12589  * prot and page_size may not be filled in, and the populated fsr value provides
12590  * information on why the translation aborted, in the format of a
12591  * DFSR/IFSR fault register, with the following caveats:
12592  *  * we honour the short vs long DFSR format differences.
12593  *  * the WnR bit is never set (the caller must do this).
12594  *  * for PSMAv5 based systems we don't bother to return a full FSR format
12595  *    value.
12596  *
12597  * @env: CPUARMState
12598  * @address: virtual address to get physical address for
12599  * @access_type: 0 for read, 1 for write, 2 for execute
12600  * @mmu_idx: MMU index indicating required translation regime
12601  * @phys_ptr: set to the physical address corresponding to the virtual address
12602  * @attrs: set to the memory transaction attributes to use
12603  * @prot: set to the permissions for the page containing phys_ptr
12604  * @page_size: set to the size of the page containing phys_ptr
12605  * @fi: set to fault info if the translation fails
12606  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12607  */
12608 bool get_phys_addr(CPUARMState *env, target_ulong address,
12609                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
12610                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12611                    target_ulong *page_size,
12612                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12613 {
12614     ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
12615 
12616     if (mmu_idx != s1_mmu_idx) {
12617         /* Call ourselves recursively to do the stage 1 and then stage 2
12618          * translations if mmu_idx is a two-stage regime.
12619          */
12620         if (arm_feature(env, ARM_FEATURE_EL2)) {
12621             hwaddr ipa;
12622             int s2_prot;
12623             int ret;
12624             ARMCacheAttrs cacheattrs2 = {};
12625             ARMMMUIdx s2_mmu_idx;
12626             bool is_el0;
12627 
12628             ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
12629                                 attrs, prot, page_size, fi, cacheattrs);
12630 
12631             /* If S1 fails or S2 is disabled, return early.  */
12632             if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12633                 *phys_ptr = ipa;
12634                 return ret;
12635             }
12636 
12637             s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
12638             is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
12639 
12640             /* S1 is done. Now do S2 translation.  */
12641             ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
12642                                      phys_ptr, attrs, &s2_prot,
12643                                      page_size, fi, &cacheattrs2);
12644             fi->s2addr = ipa;
12645             /* Combine the S1 and S2 perms.  */
12646             *prot &= s2_prot;
12647 
12648             /* If S2 fails, return early.  */
12649             if (ret) {
12650                 return ret;
12651             }
12652 
12653             /* Combine the S1 and S2 cache attributes. */
12654             if (arm_hcr_el2_eff(env) & HCR_DC) {
12655                 /*
12656                  * HCR.DC forces the first stage attributes to
12657                  *  Normal Non-Shareable,
12658                  *  Inner Write-Back Read-Allocate Write-Allocate,
12659                  *  Outer Write-Back Read-Allocate Write-Allocate.
12660                  * Do not overwrite Tagged within attrs.
12661                  */
12662                 if (cacheattrs->attrs != 0xf0) {
12663                     cacheattrs->attrs = 0xff;
12664                 }
12665                 cacheattrs->shareability = 0;
12666             }
12667             *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12668 
12669             /* Check if IPA translates to secure or non-secure PA space. */
12670             if (arm_is_secure_below_el3(env)) {
12671                 if (attrs->secure) {
12672                     attrs->secure =
12673                         !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
12674                 } else {
12675                     attrs->secure =
12676                         !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
12677                         || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA));
12678                 }
12679             }
12680             return 0;
12681         } else {
12682             /*
12683              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12684              */
12685             mmu_idx = stage_1_mmu_idx(mmu_idx);
12686         }
12687     }
12688 
12689     /* The page table entries may downgrade secure to non-secure, but
12690      * cannot upgrade an non-secure translation regime's attributes
12691      * to secure.
12692      */
12693     attrs->secure = regime_is_secure(env, mmu_idx);
12694     attrs->user = regime_is_user(env, mmu_idx);
12695 
12696     /* Fast Context Switch Extension. This doesn't exist at all in v8.
12697      * In v7 and earlier it affects all stage 1 translations.
12698      */
12699     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12700         && !arm_feature(env, ARM_FEATURE_V8)) {
12701         if (regime_el(env, mmu_idx) == 3) {
12702             address += env->cp15.fcseidr_s;
12703         } else {
12704             address += env->cp15.fcseidr_ns;
12705         }
12706     }
12707 
12708     if (arm_feature(env, ARM_FEATURE_PMSA)) {
12709         bool ret;
12710         *page_size = TARGET_PAGE_SIZE;
12711 
12712         if (arm_feature(env, ARM_FEATURE_V8)) {
12713             /* PMSAv8 */
12714             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12715                                        phys_ptr, attrs, prot, page_size, fi);
12716         } else if (arm_feature(env, ARM_FEATURE_V7)) {
12717             /* PMSAv7 */
12718             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12719                                        phys_ptr, prot, page_size, fi);
12720         } else {
12721             /* Pre-v7 MPU */
12722             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12723                                        phys_ptr, prot, fi);
12724         }
12725         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12726                       " mmu_idx %u -> %s (prot %c%c%c)\n",
12727                       access_type == MMU_DATA_LOAD ? "reading" :
12728                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12729                       (uint32_t)address, mmu_idx,
12730                       ret ? "Miss" : "Hit",
12731                       *prot & PAGE_READ ? 'r' : '-',
12732                       *prot & PAGE_WRITE ? 'w' : '-',
12733                       *prot & PAGE_EXEC ? 'x' : '-');
12734 
12735         return ret;
12736     }
12737 
12738     /* Definitely a real MMU, not an MPU */
12739 
12740     if (regime_translation_disabled(env, mmu_idx)) {
12741         uint64_t hcr;
12742         uint8_t memattr;
12743 
12744         /*
12745          * MMU disabled.  S1 addresses within aa64 translation regimes are
12746          * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12747          */
12748         if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
12749             int r_el = regime_el(env, mmu_idx);
12750             if (arm_el_is_aa64(env, r_el)) {
12751                 int pamax = arm_pamax(env_archcpu(env));
12752                 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12753                 int addrtop, tbi;
12754 
12755                 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12756                 if (access_type == MMU_INST_FETCH) {
12757                     tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12758                 }
12759                 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12760                 addrtop = (tbi ? 55 : 63);
12761 
12762                 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12763                     fi->type = ARMFault_AddressSize;
12764                     fi->level = 0;
12765                     fi->stage2 = false;
12766                     return 1;
12767                 }
12768 
12769                 /*
12770                  * When TBI is disabled, we've just validated that all of the
12771                  * bits above PAMax are zero, so logically we only need to
12772                  * clear the top byte for TBI.  But it's clearer to follow
12773                  * the pseudocode set of addrdesc.paddress.
12774                  */
12775                 address = extract64(address, 0, 52);
12776             }
12777         }
12778         *phys_ptr = address;
12779         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12780         *page_size = TARGET_PAGE_SIZE;
12781 
12782         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12783         hcr = arm_hcr_el2_eff(env);
12784         cacheattrs->shareability = 0;
12785         if (hcr & HCR_DC) {
12786             if (hcr & HCR_DCT) {
12787                 memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
12788             } else {
12789                 memattr = 0xff;  /* Normal, WB, RWA */
12790             }
12791         } else if (access_type == MMU_INST_FETCH) {
12792             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12793                 memattr = 0xee;  /* Normal, WT, RA, NT */
12794             } else {
12795                 memattr = 0x44;  /* Normal, NC, No */
12796             }
12797             cacheattrs->shareability = 2; /* outer sharable */
12798         } else {
12799             memattr = 0x00;      /* Device, nGnRnE */
12800         }
12801         cacheattrs->attrs = memattr;
12802         return 0;
12803     }
12804 
12805     if (regime_using_lpae_format(env, mmu_idx)) {
12806         return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12807                                   phys_ptr, attrs, prot, page_size,
12808                                   fi, cacheattrs);
12809     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12810         return get_phys_addr_v6(env, address, access_type, mmu_idx,
12811                                 phys_ptr, attrs, prot, page_size, fi);
12812     } else {
12813         return get_phys_addr_v5(env, address, access_type, mmu_idx,
12814                                     phys_ptr, prot, page_size, fi);
12815     }
12816 }
12817 
12818 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12819                                          MemTxAttrs *attrs)
12820 {
12821     ARMCPU *cpu = ARM_CPU(cs);
12822     CPUARMState *env = &cpu->env;
12823     hwaddr phys_addr;
12824     target_ulong page_size;
12825     int prot;
12826     bool ret;
12827     ARMMMUFaultInfo fi = {};
12828     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12829     ARMCacheAttrs cacheattrs = {};
12830 
12831     *attrs = (MemTxAttrs) {};
12832 
12833     ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
12834                         attrs, &prot, &page_size, &fi, &cacheattrs);
12835 
12836     if (ret) {
12837         return -1;
12838     }
12839     return phys_addr;
12840 }
12841 
12842 #endif
12843 
12844 /* Note that signed overflow is undefined in C.  The following routines are
12845    careful to use unsigned types where modulo arithmetic is required.
12846    Failure to do so _will_ break on newer gcc.  */
12847 
12848 /* Signed saturating arithmetic.  */
12849 
12850 /* Perform 16-bit signed saturating addition.  */
12851 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12852 {
12853     uint16_t res;
12854 
12855     res = a + b;
12856     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12857         if (a & 0x8000)
12858             res = 0x8000;
12859         else
12860             res = 0x7fff;
12861     }
12862     return res;
12863 }
12864 
12865 /* Perform 8-bit signed saturating addition.  */
12866 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12867 {
12868     uint8_t res;
12869 
12870     res = a + b;
12871     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12872         if (a & 0x80)
12873             res = 0x80;
12874         else
12875             res = 0x7f;
12876     }
12877     return res;
12878 }
12879 
12880 /* Perform 16-bit signed saturating subtraction.  */
12881 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12882 {
12883     uint16_t res;
12884 
12885     res = a - b;
12886     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12887         if (a & 0x8000)
12888             res = 0x8000;
12889         else
12890             res = 0x7fff;
12891     }
12892     return res;
12893 }
12894 
12895 /* Perform 8-bit signed saturating subtraction.  */
12896 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12897 {
12898     uint8_t res;
12899 
12900     res = a - b;
12901     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12902         if (a & 0x80)
12903             res = 0x80;
12904         else
12905             res = 0x7f;
12906     }
12907     return res;
12908 }
12909 
12910 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12911 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12912 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12913 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12914 #define PFX q
12915 
12916 #include "op_addsub.h"
12917 
12918 /* Unsigned saturating arithmetic.  */
12919 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12920 {
12921     uint16_t res;
12922     res = a + b;
12923     if (res < a)
12924         res = 0xffff;
12925     return res;
12926 }
12927 
12928 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12929 {
12930     if (a > b)
12931         return a - b;
12932     else
12933         return 0;
12934 }
12935 
12936 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12937 {
12938     uint8_t res;
12939     res = a + b;
12940     if (res < a)
12941         res = 0xff;
12942     return res;
12943 }
12944 
12945 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12946 {
12947     if (a > b)
12948         return a - b;
12949     else
12950         return 0;
12951 }
12952 
12953 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12954 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12955 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12956 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12957 #define PFX uq
12958 
12959 #include "op_addsub.h"
12960 
12961 /* Signed modulo arithmetic.  */
12962 #define SARITH16(a, b, n, op) do { \
12963     int32_t sum; \
12964     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12965     RESULT(sum, n, 16); \
12966     if (sum >= 0) \
12967         ge |= 3 << (n * 2); \
12968     } while(0)
12969 
12970 #define SARITH8(a, b, n, op) do { \
12971     int32_t sum; \
12972     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12973     RESULT(sum, n, 8); \
12974     if (sum >= 0) \
12975         ge |= 1 << n; \
12976     } while(0)
12977 
12978 
12979 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12980 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12981 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
12982 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
12983 #define PFX s
12984 #define ARITH_GE
12985 
12986 #include "op_addsub.h"
12987 
12988 /* Unsigned modulo arithmetic.  */
12989 #define ADD16(a, b, n) do { \
12990     uint32_t sum; \
12991     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12992     RESULT(sum, n, 16); \
12993     if ((sum >> 16) == 1) \
12994         ge |= 3 << (n * 2); \
12995     } while(0)
12996 
12997 #define ADD8(a, b, n) do { \
12998     uint32_t sum; \
12999     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
13000     RESULT(sum, n, 8); \
13001     if ((sum >> 8) == 1) \
13002         ge |= 1 << n; \
13003     } while(0)
13004 
13005 #define SUB16(a, b, n) do { \
13006     uint32_t sum; \
13007     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
13008     RESULT(sum, n, 16); \
13009     if ((sum >> 16) == 0) \
13010         ge |= 3 << (n * 2); \
13011     } while(0)
13012 
13013 #define SUB8(a, b, n) do { \
13014     uint32_t sum; \
13015     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
13016     RESULT(sum, n, 8); \
13017     if ((sum >> 8) == 0) \
13018         ge |= 1 << n; \
13019     } while(0)
13020 
13021 #define PFX u
13022 #define ARITH_GE
13023 
13024 #include "op_addsub.h"
13025 
13026 /* Halved signed arithmetic.  */
13027 #define ADD16(a, b, n) \
13028   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
13029 #define SUB16(a, b, n) \
13030   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
13031 #define ADD8(a, b, n) \
13032   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
13033 #define SUB8(a, b, n) \
13034   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
13035 #define PFX sh
13036 
13037 #include "op_addsub.h"
13038 
13039 /* Halved unsigned arithmetic.  */
13040 #define ADD16(a, b, n) \
13041   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13042 #define SUB16(a, b, n) \
13043   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13044 #define ADD8(a, b, n) \
13045   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13046 #define SUB8(a, b, n) \
13047   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13048 #define PFX uh
13049 
13050 #include "op_addsub.h"
13051 
13052 static inline uint8_t do_usad(uint8_t a, uint8_t b)
13053 {
13054     if (a > b)
13055         return a - b;
13056     else
13057         return b - a;
13058 }
13059 
13060 /* Unsigned sum of absolute byte differences.  */
13061 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
13062 {
13063     uint32_t sum;
13064     sum = do_usad(a, b);
13065     sum += do_usad(a >> 8, b >> 8);
13066     sum += do_usad(a >> 16, b >> 16);
13067     sum += do_usad(a >> 24, b >> 24);
13068     return sum;
13069 }
13070 
13071 /* For ARMv6 SEL instruction.  */
13072 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
13073 {
13074     uint32_t mask;
13075 
13076     mask = 0;
13077     if (flags & 1)
13078         mask |= 0xff;
13079     if (flags & 2)
13080         mask |= 0xff00;
13081     if (flags & 4)
13082         mask |= 0xff0000;
13083     if (flags & 8)
13084         mask |= 0xff000000;
13085     return (a & mask) | (b & ~mask);
13086 }
13087 
13088 /* CRC helpers.
13089  * The upper bytes of val (above the number specified by 'bytes') must have
13090  * been zeroed out by the caller.
13091  */
13092 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13093 {
13094     uint8_t buf[4];
13095 
13096     stl_le_p(buf, val);
13097 
13098     /* zlib crc32 converts the accumulator and output to one's complement.  */
13099     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13100 }
13101 
13102 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13103 {
13104     uint8_t buf[4];
13105 
13106     stl_le_p(buf, val);
13107 
13108     /* Linux crc32c converts the output to one's complement.  */
13109     return crc32c(acc, buf, bytes) ^ 0xffffffff;
13110 }
13111 
13112 /* Return the exception level to which FP-disabled exceptions should
13113  * be taken, or 0 if FP is enabled.
13114  */
13115 int fp_exception_el(CPUARMState *env, int cur_el)
13116 {
13117 #ifndef CONFIG_USER_ONLY
13118     /* CPACR and the CPTR registers don't exist before v6, so FP is
13119      * always accessible
13120      */
13121     if (!arm_feature(env, ARM_FEATURE_V6)) {
13122         return 0;
13123     }
13124 
13125     if (arm_feature(env, ARM_FEATURE_M)) {
13126         /* CPACR can cause a NOCP UsageFault taken to current security state */
13127         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
13128             return 1;
13129         }
13130 
13131         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
13132             if (!extract32(env->v7m.nsacr, 10, 1)) {
13133                 /* FP insns cause a NOCP UsageFault taken to Secure */
13134                 return 3;
13135             }
13136         }
13137 
13138         return 0;
13139     }
13140 
13141     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13142      * 0, 2 : trap EL0 and EL1/PL1 accesses
13143      * 1    : trap only EL0 accesses
13144      * 3    : trap no accesses
13145      * This register is ignored if E2H+TGE are both set.
13146      */
13147     if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13148         int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13149 
13150         switch (fpen) {
13151         case 0:
13152         case 2:
13153             if (cur_el == 0 || cur_el == 1) {
13154                 /* Trap to PL1, which might be EL1 or EL3 */
13155                 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13156                     return 3;
13157                 }
13158                 return 1;
13159             }
13160             if (cur_el == 3 && !is_a64(env)) {
13161                 /* Secure PL1 running at EL3 */
13162                 return 3;
13163             }
13164             break;
13165         case 1:
13166             if (cur_el == 0) {
13167                 return 1;
13168             }
13169             break;
13170         case 3:
13171             break;
13172         }
13173     }
13174 
13175     /*
13176      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
13177      * to control non-secure access to the FPU. It doesn't have any
13178      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
13179      */
13180     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
13181          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
13182         if (!extract32(env->cp15.nsacr, 10, 1)) {
13183             /* FP insns act as UNDEF */
13184             return cur_el == 2 ? 2 : 1;
13185         }
13186     }
13187 
13188     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
13189      * check because zero bits in the registers mean "don't trap".
13190      */
13191 
13192     /* CPTR_EL2 : present in v7VE or v8 */
13193     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
13194         && arm_is_el2_enabled(env)) {
13195         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
13196         return 2;
13197     }
13198 
13199     /* CPTR_EL3 : present in v8 */
13200     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
13201         /* Trap all FP ops to EL3 */
13202         return 3;
13203     }
13204 #endif
13205     return 0;
13206 }
13207 
13208 /* Return the exception level we're running at if this is our mmu_idx */
13209 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
13210 {
13211     if (mmu_idx & ARM_MMU_IDX_M) {
13212         return mmu_idx & ARM_MMU_IDX_M_PRIV;
13213     }
13214 
13215     switch (mmu_idx) {
13216     case ARMMMUIdx_E10_0:
13217     case ARMMMUIdx_E20_0:
13218     case ARMMMUIdx_SE10_0:
13219     case ARMMMUIdx_SE20_0:
13220         return 0;
13221     case ARMMMUIdx_E10_1:
13222     case ARMMMUIdx_E10_1_PAN:
13223     case ARMMMUIdx_SE10_1:
13224     case ARMMMUIdx_SE10_1_PAN:
13225         return 1;
13226     case ARMMMUIdx_E2:
13227     case ARMMMUIdx_E20_2:
13228     case ARMMMUIdx_E20_2_PAN:
13229     case ARMMMUIdx_SE2:
13230     case ARMMMUIdx_SE20_2:
13231     case ARMMMUIdx_SE20_2_PAN:
13232         return 2;
13233     case ARMMMUIdx_SE3:
13234         return 3;
13235     default:
13236         g_assert_not_reached();
13237     }
13238 }
13239 
13240 #ifndef CONFIG_TCG
13241 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13242 {
13243     g_assert_not_reached();
13244 }
13245 #endif
13246 
13247 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
13248 {
13249     ARMMMUIdx idx;
13250     uint64_t hcr;
13251 
13252     if (arm_feature(env, ARM_FEATURE_M)) {
13253         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13254     }
13255 
13256     /* See ARM pseudo-function ELIsInHost.  */
13257     switch (el) {
13258     case 0:
13259         hcr = arm_hcr_el2_eff(env);
13260         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
13261             idx = ARMMMUIdx_E20_0;
13262         } else {
13263             idx = ARMMMUIdx_E10_0;
13264         }
13265         break;
13266     case 1:
13267         if (env->pstate & PSTATE_PAN) {
13268             idx = ARMMMUIdx_E10_1_PAN;
13269         } else {
13270             idx = ARMMMUIdx_E10_1;
13271         }
13272         break;
13273     case 2:
13274         /* Note that TGE does not apply at EL2.  */
13275         if (arm_hcr_el2_eff(env) & HCR_E2H) {
13276             if (env->pstate & PSTATE_PAN) {
13277                 idx = ARMMMUIdx_E20_2_PAN;
13278             } else {
13279                 idx = ARMMMUIdx_E20_2;
13280             }
13281         } else {
13282             idx = ARMMMUIdx_E2;
13283         }
13284         break;
13285     case 3:
13286         return ARMMMUIdx_SE3;
13287     default:
13288         g_assert_not_reached();
13289     }
13290 
13291     if (arm_is_secure_below_el3(env)) {
13292         idx &= ~ARM_MMU_IDX_A_NS;
13293     }
13294 
13295     return idx;
13296 }
13297 
13298 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13299 {
13300     return arm_mmu_idx_el(env, arm_current_el(env));
13301 }
13302 
13303 #ifndef CONFIG_USER_ONLY
13304 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13305 {
13306     return stage_1_mmu_idx(arm_mmu_idx(env));
13307 }
13308 #endif
13309 
13310 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
13311                                            ARMMMUIdx mmu_idx,
13312                                            CPUARMTBFlags flags)
13313 {
13314     DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
13315     DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13316 
13317     if (arm_singlestep_active(env)) {
13318         DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
13319     }
13320     return flags;
13321 }
13322 
13323 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
13324                                               ARMMMUIdx mmu_idx,
13325                                               CPUARMTBFlags flags)
13326 {
13327     bool sctlr_b = arm_sctlr_b(env);
13328 
13329     if (sctlr_b) {
13330         DP_TBFLAG_A32(flags, SCTLR__B, 1);
13331     }
13332     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
13333         DP_TBFLAG_ANY(flags, BE_DATA, 1);
13334     }
13335     DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
13336 
13337     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13338 }
13339 
13340 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
13341                                         ARMMMUIdx mmu_idx)
13342 {
13343     CPUARMTBFlags flags = {};
13344     uint32_t ccr = env->v7m.ccr[env->v7m.secure];
13345 
13346     /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
13347     if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
13348         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13349     }
13350 
13351     if (arm_v7m_is_handler_mode(env)) {
13352         DP_TBFLAG_M32(flags, HANDLER, 1);
13353     }
13354 
13355     /*
13356      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
13357      * is suppressing them because the requested execution priority
13358      * is less than 0.
13359      */
13360     if (arm_feature(env, ARM_FEATURE_V8) &&
13361         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13362           (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13363         DP_TBFLAG_M32(flags, STACKCHECK, 1);
13364     }
13365 
13366     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13367 }
13368 
13369 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env)
13370 {
13371     CPUARMTBFlags flags = {};
13372 
13373     DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env));
13374     return flags;
13375 }
13376 
13377 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
13378                                         ARMMMUIdx mmu_idx)
13379 {
13380     CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13381     int el = arm_current_el(env);
13382 
13383     if (arm_sctlr(env, el) & SCTLR_A) {
13384         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13385     }
13386 
13387     if (arm_el_is_aa64(env, 1)) {
13388         DP_TBFLAG_A32(flags, VFPEN, 1);
13389     }
13390 
13391     if (el < 2 && env->cp15.hstr_el2 &&
13392         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13393         DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
13394     }
13395 
13396     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13397 }
13398 
13399 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
13400                                         ARMMMUIdx mmu_idx)
13401 {
13402     CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13403     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13404     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
13405     uint64_t sctlr;
13406     int tbii, tbid;
13407 
13408     DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
13409 
13410     /* Get control bits for tagged addresses.  */
13411     tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
13412     tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
13413 
13414     DP_TBFLAG_A64(flags, TBII, tbii);
13415     DP_TBFLAG_A64(flags, TBID, tbid);
13416 
13417     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
13418         int sve_el = sve_exception_el(env, el);
13419         uint32_t zcr_len;
13420 
13421         /*
13422          * If SVE is disabled, but FP is enabled,
13423          * then the effective len is 0.
13424          */
13425         if (sve_el != 0 && fp_el == 0) {
13426             zcr_len = 0;
13427         } else {
13428             zcr_len = sve_zcr_len_for_el(env, el);
13429         }
13430         DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
13431         DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len);
13432     }
13433 
13434     sctlr = regime_sctlr(env, stage1);
13435 
13436     if (sctlr & SCTLR_A) {
13437         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13438     }
13439 
13440     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
13441         DP_TBFLAG_ANY(flags, BE_DATA, 1);
13442     }
13443 
13444     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
13445         /*
13446          * In order to save space in flags, we record only whether
13447          * pauth is "inactive", meaning all insns are implemented as
13448          * a nop, or "active" when some action must be performed.
13449          * The decision of which action to take is left to a helper.
13450          */
13451         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13452             DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
13453         }
13454     }
13455 
13456     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13457         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
13458         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13459             DP_TBFLAG_A64(flags, BT, 1);
13460         }
13461     }
13462 
13463     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13464     if (!(env->pstate & PSTATE_UAO)) {
13465         switch (mmu_idx) {
13466         case ARMMMUIdx_E10_1:
13467         case ARMMMUIdx_E10_1_PAN:
13468         case ARMMMUIdx_SE10_1:
13469         case ARMMMUIdx_SE10_1_PAN:
13470             /* TODO: ARMv8.3-NV */
13471             DP_TBFLAG_A64(flags, UNPRIV, 1);
13472             break;
13473         case ARMMMUIdx_E20_2:
13474         case ARMMMUIdx_E20_2_PAN:
13475         case ARMMMUIdx_SE20_2:
13476         case ARMMMUIdx_SE20_2_PAN:
13477             /*
13478              * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13479              * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13480              */
13481             if (env->cp15.hcr_el2 & HCR_TGE) {
13482                 DP_TBFLAG_A64(flags, UNPRIV, 1);
13483             }
13484             break;
13485         default:
13486             break;
13487         }
13488     }
13489 
13490     if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
13491         /*
13492          * Set MTE_ACTIVE if any access may be Checked, and leave clear
13493          * if all accesses must be Unchecked:
13494          * 1) If no TBI, then there are no tags in the address to check,
13495          * 2) If Tag Check Override, then all accesses are Unchecked,
13496          * 3) If Tag Check Fail == 0, then Checked access have no effect,
13497          * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13498          */
13499         if (allocation_tag_access_enabled(env, el, sctlr)) {
13500             DP_TBFLAG_A64(flags, ATA, 1);
13501             if (tbid
13502                 && !(env->pstate & PSTATE_TCO)
13503                 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
13504                 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
13505             }
13506         }
13507         /* And again for unprivileged accesses, if required.  */
13508         if (EX_TBFLAG_A64(flags, UNPRIV)
13509             && tbid
13510             && !(env->pstate & PSTATE_TCO)
13511             && (sctlr & SCTLR_TCF0)
13512             && allocation_tag_access_enabled(env, 0, sctlr)) {
13513             DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
13514         }
13515         /* Cache TCMA as well as TBI. */
13516         DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
13517     }
13518 
13519     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13520 }
13521 
13522 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
13523 {
13524     int el = arm_current_el(env);
13525     int fp_el = fp_exception_el(env, el);
13526     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13527 
13528     if (is_a64(env)) {
13529         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13530     } else if (arm_feature(env, ARM_FEATURE_M)) {
13531         return rebuild_hflags_m32(env, fp_el, mmu_idx);
13532     } else {
13533         return rebuild_hflags_a32(env, fp_el, mmu_idx);
13534     }
13535 }
13536 
13537 void arm_rebuild_hflags(CPUARMState *env)
13538 {
13539     env->hflags = rebuild_hflags_internal(env);
13540 }
13541 
13542 /*
13543  * If we have triggered a EL state change we can't rely on the
13544  * translator having passed it to us, we need to recompute.
13545  */
13546 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
13547 {
13548     int el = arm_current_el(env);
13549     int fp_el = fp_exception_el(env, el);
13550     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13551 
13552     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13553 }
13554 
13555 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
13556 {
13557     int fp_el = fp_exception_el(env, el);
13558     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13559 
13560     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13561 }
13562 
13563 /*
13564  * If we have triggered a EL state change we can't rely on the
13565  * translator having passed it to us, we need to recompute.
13566  */
13567 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13568 {
13569     int el = arm_current_el(env);
13570     int fp_el = fp_exception_el(env, el);
13571     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13572     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13573 }
13574 
13575 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13576 {
13577     int fp_el = fp_exception_el(env, el);
13578     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13579 
13580     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13581 }
13582 
13583 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13584 {
13585     int fp_el = fp_exception_el(env, el);
13586     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13587 
13588     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13589 }
13590 
13591 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13592 {
13593 #ifdef CONFIG_DEBUG_TCG
13594     CPUARMTBFlags c = env->hflags;
13595     CPUARMTBFlags r = rebuild_hflags_internal(env);
13596 
13597     if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
13598         fprintf(stderr, "TCG hflags mismatch "
13599                         "(current:(0x%08x,0x" TARGET_FMT_lx ")"
13600                         " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
13601                 c.flags, c.flags2, r.flags, r.flags2);
13602         abort();
13603     }
13604 #endif
13605 }
13606 
13607 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13608                           target_ulong *cs_base, uint32_t *pflags)
13609 {
13610     CPUARMTBFlags flags;
13611 
13612     assert_hflags_rebuild_correctly(env);
13613     flags = env->hflags;
13614 
13615     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
13616         *pc = env->pc;
13617         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13618             DP_TBFLAG_A64(flags, BTYPE, env->btype);
13619         }
13620     } else {
13621         *pc = env->regs[15];
13622 
13623         if (arm_feature(env, ARM_FEATURE_M)) {
13624             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13625                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13626                 != env->v7m.secure) {
13627                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
13628             }
13629 
13630             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13631                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13632                  (env->v7m.secure &&
13633                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13634                 /*
13635                  * ASPEN is set, but FPCA/SFPA indicate that there is no
13636                  * active FP context; we must create a new FP context before
13637                  * executing any FP insn.
13638                  */
13639                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
13640             }
13641 
13642             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13643             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13644                 DP_TBFLAG_M32(flags, LSPACT, 1);
13645             }
13646         } else {
13647             /*
13648              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13649              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13650              */
13651             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13652                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
13653             } else {
13654                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
13655                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
13656             }
13657             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13658                 DP_TBFLAG_A32(flags, VFPEN, 1);
13659             }
13660         }
13661 
13662         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
13663         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
13664     }
13665 
13666     /*
13667      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13668      * states defined in the ARM ARM for software singlestep:
13669      *  SS_ACTIVE   PSTATE.SS   State
13670      *     0            x       Inactive (the TB flag for SS is always 0)
13671      *     1            0       Active-pending
13672      *     1            1       Active-not-pending
13673      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
13674      */
13675     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
13676         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
13677     }
13678 
13679     *pflags = flags.flags;
13680     *cs_base = flags.flags2;
13681 }
13682 
13683 #ifdef TARGET_AARCH64
13684 /*
13685  * The manual says that when SVE is enabled and VQ is widened the
13686  * implementation is allowed to zero the previously inaccessible
13687  * portion of the registers.  The corollary to that is that when
13688  * SVE is enabled and VQ is narrowed we are also allowed to zero
13689  * the now inaccessible portion of the registers.
13690  *
13691  * The intent of this is that no predicate bit beyond VQ is ever set.
13692  * Which means that some operations on predicate registers themselves
13693  * may operate on full uint64_t or even unrolled across the maximum
13694  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
13695  * may well be cheaper than conditionals to restrict the operation
13696  * to the relevant portion of a uint16_t[16].
13697  */
13698 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13699 {
13700     int i, j;
13701     uint64_t pmask;
13702 
13703     assert(vq >= 1 && vq <= ARM_MAX_VQ);
13704     assert(vq <= env_archcpu(env)->sve_max_vq);
13705 
13706     /* Zap the high bits of the zregs.  */
13707     for (i = 0; i < 32; i++) {
13708         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13709     }
13710 
13711     /* Zap the high bits of the pregs and ffr.  */
13712     pmask = 0;
13713     if (vq & 3) {
13714         pmask = ~(-1ULL << (16 * (vq & 3)));
13715     }
13716     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13717         for (i = 0; i < 17; ++i) {
13718             env->vfp.pregs[i].p[j] &= pmask;
13719         }
13720         pmask = 0;
13721     }
13722 }
13723 
13724 /*
13725  * Notice a change in SVE vector size when changing EL.
13726  */
13727 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13728                            int new_el, bool el0_a64)
13729 {
13730     ARMCPU *cpu = env_archcpu(env);
13731     int old_len, new_len;
13732     bool old_a64, new_a64;
13733 
13734     /* Nothing to do if no SVE.  */
13735     if (!cpu_isar_feature(aa64_sve, cpu)) {
13736         return;
13737     }
13738 
13739     /* Nothing to do if FP is disabled in either EL.  */
13740     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13741         return;
13742     }
13743 
13744     /*
13745      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13746      * at ELx, or not available because the EL is in AArch32 state, then
13747      * for all purposes other than a direct read, the ZCR_ELx.LEN field
13748      * has an effective value of 0".
13749      *
13750      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13751      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13752      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
13753      * we already have the correct register contents when encountering the
13754      * vq0->vq0 transition between EL0->EL1.
13755      */
13756     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13757     old_len = (old_a64 && !sve_exception_el(env, old_el)
13758                ? sve_zcr_len_for_el(env, old_el) : 0);
13759     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13760     new_len = (new_a64 && !sve_exception_el(env, new_el)
13761                ? sve_zcr_len_for_el(env, new_el) : 0);
13762 
13763     /* When changing vector length, clear inaccessible state.  */
13764     if (new_len < old_len) {
13765         aarch64_sve_narrow_vq(env, new_len + 1);
13766     }
13767 }
13768 #endif
13769